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INFINITE-HORIZON LINEAR-QUADRATIC REGULATOR PROBLEMS FOR
NONAUTONOMOUS PARABOLIC SYSTEMS WITH BOUNDARY CONTROL*

PAOLO ACQUISTAPACE ANO BRUNELLO TERRENI

Abstract. This paper concerns the classical linear-quadratic regulator problem for general nonautonomous
parabolic systems with boundary control over infinite time horizon from the point of view of semigroup theory. Under
appropriate assumptions we prove existence and uniqueness of the optimal pair, as well as existence, uniqueness, and
further properties of the solution of the associated Riccati equation. Several examples are discussed in detail.

Key words, optimal control, parabolic systems, boundary control, infinite horizon, Riccati equation

AMS subject classifications. 49J20, 49N10, 49L20, 34G20

Introduction. This paper concerns the classical linear-quadratic regulator (LQR) prob-
lem for general nonautonomous parabolic systems with boundary control over infinite time
horizon. Under appropriate assumptions we prove here existence and uniqueness of the opti-
mal pair as well as existence, uniqueness, and further properties ofthe solution ofthe associated
Riccati equation. Such results generalize the similar ones known in the autonomous case [F3],
[LT2], [BDDM] and those of [DI3] relative to nonautonomous problems with distributed con-
trol; they also constitute a development of the theory of [AFT] concerning the case of finite
time horizon.

Our assumptions are, generally speaking, not uniform with respect to t, with few excep-
tions concerning the spectra of the elliptic operators A(t) appearing in the state equation and
the regularity of the Green maps G(t) associated with them: see .Hypotheses 1.1 and 1.3 be-
low. In particular, we do not assume any global exponential estimate for the evolution operator
U(t, s) or any boundedness for G(t) and the operators appearing in the cost functional.

On the other hand, some uniform requirements arise in the study of certain features of the
Riccati equation. Thus, in order to construct a minimal solutionP (t) of such an equation and
to solve the synthesis, we need the "finite cost condition" (Hypothesis 2.2), which is necessary
and sufficient; moreover a uniform version of this condition (Hypothesis 3.1) is necessary and
sufficient for the existence of a bounded solution of the Riccati equation. Further uniform
assumptions (Hypotheses 3.4, 3.5, 3.6 and 3.9) guarantee other properties, such as stability
of the optimal state and uniqueness ofP(t). The periodic case is also analyzed. All these
results seem to be new even in the case of distributed control of [DI3].

We now list some notations. If X is a Hilbert space, we denote the inner product and the
norm of X by (., ")x and II, [Ix, If Y is another Hilbert space,/2(X, Y) is the Banach space
of bounded linear operators from X into Y, and 1. [c(x,Y) denotes its usual norm; we write

(X) instead of (X, X).
IfA D(A) C_ X Y is a closed linear operator with dense domain, the adjoint operator

A* D(A*) C_ Y* - X* is defined in the usual way. In particular we denote by E(X) the
set of operators A E (X) such that A A*, and we set

E+(X) {A E E(X)’(Ax, x)x >_ 0 Vx X},
E++ (X)"- {A e E+ (X)" > O’(Ax, x)x >_ llxllz v x e x}.

If I C_ ] is an interval, we will use the spaces LP(I, X) :: {f 1 X f is strongly
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measurable and fI If(t)ll: dt < ) ( p < <), and L(I,X), C(I,X), whose defini-
tions are similar. Finally we will also use the spaces

LOE(I’X) := N L(J’X) (1 <_p <_ oo).
JCCI

1. Problem formulation and hypotheses.

1.1. Abstract formulation of a parabolic differential system. Let f C Rd be a
bounded open domain with boundary OQ of class Ce, and consider the following parabolic

yt(t, x) A(t, x, D)y(t, x) in [0, c[ x

(1.1) B(t,x,D)y(t,x) u(t,x) in [0, x[ x

y(0, x) yo(x) in .
Here the strongly elliptic differential operators {A(t,., D)}t_0 and the boundary oper-

ators {/3(t,., D))t_>0 are assumed to be such that the abstract hypotheses listed in the next
subsection are satisfied (see, for instance, the conditions of [AFT, 2.2]).

For each t >_ 0 we define A(t) as the realization in L2() of the operator A(t,., D) with
homogeneous boundary conditions determined by B(t,., D), i.e.,

DA(t) {Y E Ze(Q)lilt(t,. ,D)y L2(ft)andB(t, ,D)y 0on0ft},
A(t)y A(t, D)y V y e DA(t).

If we choose A0 F large enough, we can define simultaneously (for t 0) the fractional
powers (A0 A(t)) with 0 < a < 1. We also require that for each u Le(0) we can
solve (in the sense of [AFT, 2.4]) simultaneously for t _> 0 the following elliptic problems:

A0 A(t,.,D) 0 in
(1.2) B(t,., D) u on 0f;

in other words, we can define the map G" [0, ) LZ(0f) ---, L2(2) as G(t)u := b, where
b is the unique solution of problem (1.2). In the next section we shall need certain regularity
properties for G(t)" for instance, we shall assume that

t (o- A(t))G(t) L,o([0, oo[; (Le(Oft),Le(f)))
for some a E ]0, [. It is shown in [AFT] that systems of type (1. l) fulfill this condition.

We remark also that the map G depends on the initial choice of Ao.
Let

z(t) "= -"(t),
where y solves problem (1.1); then z solves the following problem:

zt=(A(t,’,D)-Ao)z in[0,[x
B(t,., D)z e-tu(t) on [0, c[ O,
z(0) Y0 in ,

so using the representation formula proved in [AFT, 2.5] we have

(1.3) z(t) U0(t, 0)y0 + U0(t, s)(A0 A(s))G(s)u(s)e- ds.

system:
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Here UAo(t, s)’-- e-A(-)U(t, s) where U(t, s) is the evolution operator associated with
{A(t) }_>o. Thus

(1.4) y(t) U(t, O)yo + U(t, s)(Ao A(s))G(s)u(s) ds.

We must recall that formula (1.4) is very useful for our calculations, but we understand that
its exact form is

(1.5) y(t) U(t,O)yo + [(A0 A(s)*)-U(t,s)*]*((Ao A(s))G(s)u(s)ds;

for more details we refer to [AFT, "(2.80)- (2.74)].
Throughout this paper, equation (1.4) or (1.5) will be considered the state equation for

our abstract control problem.

1.2. Standing assumptions. In the following discussion we will consider three Hilbert
spaces" H (state space), U (control space), and V (space of observations), and we will study
the optimal control of equation (1.4) over an unbounded time interval I (which could be
[To, oc[ for some To G ], or even JR, as for instance in the periodic case). We will consider
equation (1.4) as an abstract evolution equation in the Hilbert space H, subject to the abstract
assumptions listed below. Thus, equation (1.4) can also cover concrete problems different
from those explicitly described above and in the examples in 4. We assume the following
hypotheses.

Hypothesis 1.1. {A(t)}te is a family of infinitesimal generators of analytic semigroups
in H; the spectrum of A(t) is such that the fractional powers (A0 A(t)) are well defined
for any a > 0, simultaneously with respect to t E I, for some fixed A0 E ].

Hypothesis 1.2. The assumptions of [AFT] hold locally, i.e., over every bounded interval
J Cc I, possibly with constants depending on the interval. More precisely, given J
[a, b] C I, we assume

(i) the evolution operators U(t, s) and U(t, s)* are strongly continuous in A, where
& := { (t, s) [a, 6] 2. t > s}, and there exists M0 > 0 such that

IU(t, s)Ic(H) + IU(t, s)*IC(H) _< Mo V (t, ) e/x;

(ii) for every/3, # [-1, 1] and (t, ) A the operators

(o A(t))ZU(t,s)(Ao A(s))-’, (o A(s)*)ZU(t,)*(o A(t)*)-"

have continuous extensions to H, the maps

(t, s) (Ao-A(t))ZU(t, s)(A0-A(s)) -u, (t,s) (o-A(s)*)ZU(t,s)*(Ao-A(t)*) -"

are strongly continuous, and there exists Mz,u > 0 such that

I(o A(t));U(t,s)(o- A(s))-’](H) + I( o A(s)*)Zu(t,s)*(o- A(t)*)-’I(H)
<_ Mz,u[(t- s)"- + 1] V (t, s) A.

(1.6)

Hypothesis 1.3. There exists a E ]0, 1] such that, for each t I, G(t) maps U into the
domain of (A0 A(t)), and (A0 A(.))G(.) is strongly measurable and bounded over each
[a, b] C I.
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Remark 1.4. (i) The only novelty with respect to [AFT] is the uniformity with respect to
t in Hypotheses 1.1 and 1.3 for the choices of A0 and a, respectively. In particular, we do not
assume any global exponential estimate for U(t, s) and (A0 A(t))/U(t, s)(Ao A(s))-or uniform boundedness for (A0 A(t)*)G(t), C(t), N(t), and N(t) -1 (defined below).
Under these assumptions, the representation formulas (1.4), (1.5) can be studied as in [AFT]
over any bounded time interval [a, hi.

(ii) In 2 the sentence ’% depends on [a, hi" will mean that c in fact depends, besides [a, b]
itself, on all constants involved in estimating functions and operators defined in [a, hi. In 3
some questions of stability are treated, and there we shall assume the necessary uniformities
and point out the independence of the constants.

(iii) We formulated Hypothesis 1.2 in terms of the evolution operators U(t, s) and
U(t, s)*, rather than of the family {A(t)}t>_o; this choice is motivated by the existence in
the literature of many independent sets of assumptions on the family {A(t)}t>_o, each of
which implies Hypothesis 1.2. In [AT1 and [A1 one can find a review of these assumptions.

1.3. Formulation of the infinite-horizon LQR problem. Given to I and Y0 H,
we will consider the problem of minimizing the cost functional

(1.7) Jto,(u) :: [llC(t)y(t)[l + (N(t)u(t), u(t))u] dt

over all u E L12oc (t0, ; U), subject to the state equation (1.5).
Concerning C(.) and N(.) we assume the following hypothesis.
Hypothesis 1.5. For every interval [a, b] C I,

C(.) L([a,b];(H,V)) and N(.) L([a,b];E++(U)).

(This means that there exists , > O, possibly depending on [a, b], such that N(t) > t
[a, b], i.e., (N(t)u, u)v >_ v e u, v t [a, b].)

2. Solutions of the Riccati equation and related questions. The aim-of this section is
to solve the integral Riccati equation

Q(s) U(t, s)*Q(t)U(t, s)

+

Q(r)(o A(r))C(r)N(r)-’G(r)*(o A(r)*)Q(r)]U(r,s)dr,

(2.1)

with s, t E I, s < t, and to prove some further results related to this equation. We follow here
along the lines of [F3], mutatis mutandis; in particular we shall need a new local existence
result (see Theorem 2.5 below).

We recall that a solution Q(.) of equation (2.1) is an operator-valued function Q
C(I; E+ (H)) such that (i) t (A0 A(t)*)-Q(t) is well defined and strongly continuous
from I into E(H), and (ii) Q(.) satisfies the following meaningful version of (2.1):

Q(s) U(t, s)*O(t)U(t, s)

+
[(o A(r)*)’-"Q(r)l*K(r)[(o A(r)*)’-"Q(r)]]U(r, s)dr
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with s, t E I, s <_ t, and where

K(r) "= [(A0 A(r))G(r)]N(r)-l[(Ao A(r))G(r)]*;

but in order to simplify our calculations and for sake of clearness we will always use equation
(2.1).

2.1. Definition of the operator Poo(t). Let us denote by PT(t) the solution, defined for
every t < T (and t E I; we will not repeat this detail in the following discussion), of Riccati
equation (2. l) with value 0 at t T:

PT(t) U(r, t)*[ C(r)*C(r)
-[(,0 A(r)*)-PT(r)]*K(r)[(Ao A(r)*)-PT(r)]]U(r,s) dr.

(2.2)
This equation was solved in [AFT, Thm. 3.13]. We recall that

(2.3) (PT(to)Yo, YO)H min Jto,T(U)

under the condition y(to) Yo, where for each u L12oc(tO, o; U) the functional Jto,T(U) is
defined as

Jto,T(U) [[IC(t)y(t)[l + (N(t)u(t), u(t))u] dt

and y satisfies the state equation (1.4).
Let us introduce the following important condition"

(2.4to)
there exists c c(to) > 0 such that to each Yo H there corresponds
a control u u(yo) Loc(tO, o; U) for which Jto,(u) < c[lyo[[ 2

in other words condition (2.4t0) requires the existence of an admissible control with respect
to a given to I for each initial state y0 E H.

The following lemma holds.
LEMMA 2.1. Under Hypotheses 1.1 1.3 and 1.5, we have

(i) PT, (t) <_ PT2 (t) for each t <_ T1 <_ T2;
(ii) condition (2.4t,)implies condition (2.4t) for each t <_ tl;

(iii) ifcondition (2.4to) holds, then suPT_>to PT (to)It(H) < o andthere exists Poc (to)
E+ (H) such that PT(to)P(to) strongly as TTOC.

(iv) ifcondition (2.4to) holds, thenfor each fixed 7"o < to we have

(2.5) sup [P(t) Ic() <
To<t<to,T>to

moreoverP(t) is well definedfor each t <_ to, and

(2.6) Po(s) < U(t, s)*Po(t)U(t, s) + U(r, s)*C(r)*C(r)U(r, s) dr;

in particular, for eachfixed 7"0 < to we have

(2.7) IP(t)InH < .sup
TO <_t<_to
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Proof. It is standard and follows from [F1 ], [AFT]. o
Our main assumption in order to obtain a solution of equation (2.1) is the following

hypothesis.
Hypothesis 2.2. Condition (2.4t) is satisfied for every t E I.
By the preceding lemma, if Hypothesis 2.2 holds, we can define P(t) for each t E I;

this operator-valued function is the candidate solution of the Riccati equation.
Remark 2.3. As we will see, Hypothesis 2.2 is necessary and sufficient to construct

P(t) and to solve the synthesis; hence it is important to know when it is satisfied in concrete
examples. Two general remarks in this direction are the following:

(i) if system (1.4) is exactly controllable at 0 in finite time, starting from any time to and
initial position Y0, then Hypothesis 2.2 holds;

(ii) if (1.4) is exponentially stibilizable, starting from any to, and if C(t) and N(t) are
uniformly bounded, then Hypothesis 2.2 holds.

The analysis of these properties in concrete cases is under investigation; however, for
certain classes of systems property (ii), hence Hypothesis 2.2, has been proved to hold true
(see, for instance, Example 4.2 below). Note also that in the case of periodic systems it is
sufficient to show that (2.4t) is satisfied for some t R, because this implies that (2.4s) holds
for each s < t and thus for each s by periodicity.

2.2. A priori bound on (o- A(t)*)t’PT(t). The following result plays a basic role
in solving the Riccati equation (2.1). The same result was proved in [F1] in the case of
autonomous parabolic systems, but the proof given in [F1 cannot be extended (at least in an
obvious way) to the present case; thus, the proof given here is new. See also [F2], where a
similar proof provides the a priori bound needed to get a global solution over a finite time
horizon.

LEMMA 2.4. Assume Hypotheses 1.1-1.3, 1.5, and 2.2. Thenfor each ]0, 1/2[ and
each interval [a, b] C I, we have

(2.8) sup I(/0 A(t)*);PT(t)(Ao A(t))ZIC(H) =" c (, [a, b]) < +,
a<t<bT1,T>b+2

(2.9) sup I(A0 A(t)*)P(t)(Ao A(t))lc(m < +.
a<t<b+l

Proof. Let us fix an interval [a,b] C 1. Fix t [a,b + 1], x D((o- A(t))) and
set y := U(b + 2, t)(Ao A(t))x. By Hypothesis 2.2 there exists a control belonging to

Lo (b + 2, c; U) such that Jb+2, () _< cll II; hence by Hypothesis 1.2(ii) we also have
Jb/2,() _< cllll, Consider the control 2 E Loc(t, ; U) defined by

Using (2.3) we have

(2.10)

2(s)=
0 fort<s<b+2,

(s) for b+2_<s<
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Recalling that PT(t) >_ O, by (2.10) we easily obtain (2.8); moreover, as Pc(t) >_ 0 too, (2.9)
follows by letting T --+ in (2.10). []

We state now the following local existence theorem, proved in the Appendix. Its proof is
the nonautonomous version of that of [F2, Lem. 2.1 ].

THEOREM 2.5. Assume Hypotheses 1.1-1.3, 1.5, and 2.2; fix/3 E ]1/2 a, 1/2[, t E
I, ro > O, and let Qt E+(H) be such that [(Ao A(t)*)Qt(Ao- A(t))l(H < to. Then
there exists % T0(r0,/3) > 0 such that the Riccati equation

+

Q(r) (Ao A(r))G(r)N(r)-’ G(r)* (Ao A(r)*)Q(r)]U(r, s) dr
(2.11)
has a unique solution Q(.) in [t TO, t[ such that Q(s) e E+ (H) for each s e [t to, t[ and

(2.12) I(o A(s)*)’-Q(s)I(H) A c(3, a, ro)(t )/+-1 V It o, t[.

LEMMA 2.6. Assume Hypotheses 1.1 1.3, 1.5 and 2.2. Then for each # ]0, 1[ and
each interval [a, b] C I, we have

(2.13) sup I(A0 A(s)*)PT(S)Ie(,z)"= c2(#, [a, b]) <
a<s<b,T>b+2

Proof. Using Theorem 2.5 and estimate (2.8) (having fixed any/3 ]0, 1/2D, we find
two constants r ]0, 1] and c’ > 0, depending only on [a, b] and on the constant c of (2.8),
such that for each s, t [a, b + 1] with s < t and t s _< r we have

(2.14) (t- s)’--l(A0 A(,)*)’-PT(S)I(H) <_ C’.

Fix s [a, b] and choose t, := s + r/2 < t2 "= s + r _< b + 1. As PT(S), in particular,
solves (2.2) for s <_ tl with final datum PT(tl ), we deduce

tl

PT(S) U(tl,s)*PT(tl)U(t,,s) + U(r,s)*C(r)*C(r)U(r,s)ds

U(r, s)* [(Ao A(r)*)’-PT(r)]*K(r)[(Ao A(r)*)’-Pr(r)]U(r, s) dr.

Applying the operator (A0 A(s)*)u to both sides and using Hypothesis 1.2(ii) (and the
estimate (2.12) with t t2), we get

C /t C
I(0 A(s)*)"PT(s)Ic(n) <

(tl 8), IPT(t)IC(H) + (r
ds sup

rG[a,b]

"t C-+- C (/" 8)/*(t2 r)2(1-a-/3)
dr <_ c(r, c’, /3, [a, b], #),

and the proof is complete.

2.3. Existence of solutions of the Riccati equation. We prove here the following result.
THEOREM 2.7. Assume Hypotheses 1.1-1.3, 1.5, and 2.2. Then
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(i) for each # E ]0, 1[ and t I the operator P(t), defined in Lemma 2.1, maps H
into the domain of (Ao A(t)*) and

(2.15) ()o A(t)*)PT(t) --* (o A(t)*)P(t) strongly as T o;

(ii) the operator P(.) is a solution of equation (2.1); i.e.,for each t, s I with s < t
we have

P(s) U(t,s)*P(t)U(t,s)

+
P(r)(&o A(r))G(r)N(r)-’G(r)*(,o A(r)*)P(r)]

U(r, s) dr.

Remark 2.8. (i) It is possible to show that the convergence in (2.15) is uniform in t over
bounded intervals. However, we omit the proof because we do not need this result in what
follows.

(ii) In the special case where the resolvent of A(t) is compact, the proof of Theorem 2.7
is very simple (see Theorem 2 in [F1 ]). However, we prefer to deal here with the general case,
where the proof is considerably more difficult, since it is easy to construct examples with lack
of compactness (see the remark at the end of Example 4.1).

The proof of Theorem 2.7 is based on the following lemma, which has also other appli-
cations (see, for instance, [F3]). Consider the following Riccati equation for s [to, t[, with
fixed to, t I:

u(t,

+

-Q(r)(Ao- A(r)*)G(r)N(r)-G(r)*(,o- A(r)*)Q(r)]U(r,s)dr
(2.16)

under the assumption that Q +(H) and that the operator (,0 A(t)*)/Q (t) (,k0 A(t))Z
belongs to (H); denote by Q(s; Q) its solution in a suitable interval It to, [, given by
Theorem 2.5.

LEMMA 2.9. Assume Hypotheses 1.1-1.3, 1.5, and 2.2, and fix ]0, 1/2[. Let
{Qt,n}n>no be afamily ofoperators in P,+(H) such that

(i) there exists a constant c3 > 0 such that

[(,o A(t)*)Qt,n(&o A(t))lc(H) < c3 Vn > no;

(ii) Qt, converges strongly as n oc to an operator Qt E+(H) for which the
operator (,o A(t)*)ZQ(/o A(t)) also belongs to C(H).

Thenfor each s It r0, t[

()o A(s)*)-"Q(s; Q,,) (o A(s)*)-"Q(s; Q) strongly as n - oc.

Proof of Lemma 2.9. This proof is adapted from [F3]. We denote by [F(Q)](s) and
[Fn (Q)] (s) the right-hand side of (2.16) when we consider the final data Q and Q,, respec-
tively. Thus equation (2.15) can be rewritten as

(2.17) Q(s)- [r(Q)](s), s e [to, t],
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if the final datum is Qt, and

(2.17n) Q(s) [r(Q)l(s), s 6 [to, t],

if the final datum is Qt,n.
Next set 3’ := min{ a fl,/} and consider the following space’

X(t ro, t) := { Q [t ro, t] -. E+(H) Q(s)mapsHinto thedomain of

(o A(s)*)l-afor each s E It to, t[, and both (Ao A(’)*)I-Q(’)
and its adjoint are strongly continuous in [t ro, t[; moreover

I(A0 A(s)*)-"Q(s)lc(m
<_ c(Q)[1 + (t 8) -(1-a-/)] V 8 E It TO,

I(o A(s)*)l-aQ(s)u(s, r)(o A(s))Ic(H)
<_ c(Q)(t r)’[1 + (t s)-(’-"-)](s r)-v It- ,o, t[, v, [o, [},

endowed with the norm

where

IQIx "= max{A, B},

A "= sup (t- 8)l--a--/l(,,0 A(s)*)I-Q(s)IC(H),
sE[t--ro,t]

(s r’)f[1 + (t- s) ’-’-/]B := sup
t-ro<_r<s<t (t- r)

x[(A0- A(s)*)-"Q(s)U(s,r)(Ao A(r))Z[r.(H).
It can be easily shown, arguing as in the Appendix below, that the maps Fn and F are

equicontractions on any sufficiently large ball of X(to, t), provided that r0 is suitably small.
Hence, possibly replacing the constant c3 in (i) by a larger one, we may say that F and Fn are
equicontractions on the ball

(2.18) B(t- to, t; c3):= {Q X(t- to, t): IQIx <_ C3}"

Now we apply the contraction principle to equations (2.17,) in the ball B(t ro, t; c3)
uniformly with respect to n. Namely, let Qo(’) be the initial iteration point in B(t to, t; c3)
for F and I’,; then, remarking that

(2.19) lim tO(’, Ot,) [(r,,)(Q)]lx o uniformly with respect ton,

(2.20) lim IQ(" Qt) [(r)(Q)]lx o,

we deduce for each k N +, s [t ro, t], and x H

(,Xo A(sD*)l-Q(s; Qt,n)X- (Ao A(s)*)l-"Q(s; Q)xllg
< IQ(’; Qt,,)- [(r,)(Qo)]lx Ilzll/-/

(2.21)
+ I1(o A(s)*)-’[(r,)(Qo)](s)x- ()o A(s)*)l-"[(r)(Qo)](s)xll
+ I[(r)n(Qo)] Q(" ;Qt)lx IlxllH.
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Thus we just need to show that for each/c c I+ and s c It to, t]

(Xo A(s)*)l-[(rn)k(Qo)](s) - (o A(s)*)-[(r)(C2o)](s) strongly ash

This result is obviously true when/ 1, since for each s It to, t] and x H

(2.22)
(o A(s)*)-[[r(C2o)](s) -[r(Q0)](s)]z

(/ko A(s)*)l-au(t,s)*(Qt,n Qt)U(t,s)z;

on the other hand, if the result is true for the integer k 1, then we have

(2.23)

and remarking that (r)k-1 (Q0) and (r)-1 (Q0) belong to t3(t to, t; c3) by the induction
hypothesis we get the result for the integer/. This proves Lemma 2.9. []

Proofof Theorem 2.7. Fix t, to I with t > t0. We have to show that

(2.24) (,) Q(,, (t)) v, [to,

We apply Lemma 2.9 with Qt Poo(t), Qt,n Pn(t) (i.e., the solution of equation
(2.2) with final time T r0; this is allowed by Lemmas 2.4 and 2.1. As a consequence we
get

(Ao A(s)*)l-[Q(s, Pn(t)) Q(s, Poo(t))] -+ 0 strongly in[t- r0, t[asn -+

On the other hand we have

Q(s, Pn(t)) Pn(s) -- P(s) strongly in[t ro, t] ash --
and (2.24) follows for each s [t to, t[. The same result for all s "c [to, t[ follows now by
standard uniqueness arguments. []

2.4. Minimality property of Poo. Let/5 Cs(I, 2+(H)) be any solution of equation
(2.1), and consider the evolution operator (t, r) corresponding to P(.), i.e., the operator-
valued function defined for r, t I, r <_ t, by the following equation:

(2.25)
U(t,s)(Ao A(s))G(s)X(s)-’G(s)*(Ao A(s)*)(s)(s,r)ds.
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We know (see, e.g., [G], [LT1 ]) that for each s, t E I with s < t the following identities
hold:

(s) (t, s)* P(t)(t, s) + (v, s)*

[C(v)*C(v) +/5(v)(,o A(v))G(v)N(v)-lG(v)(Ao- A(v)*)P(v)](v,s) dv,
(2.26)

(2.27) P(s) U(t, s)*_f)(t)(t, s) + U(v, s)* C(v)*C(v)(v, s) dv.

We have the following propositi’on.
PROPOSITION 2.10. Assume Hypotheses 1.1 1.3, and 1.5. Then
(i) equation (2.1) has a solution ifand only ifHypothesis 2.2 holds;

(ii) if this is the case, the function P(.) defined in Lemma 2.1 is the minimal solution

ofequation (2.1); i.e.,for any solution (.) ofequation (2.1) we have

p(t) <_ P(t) v t z.

Proof (i) Theorem 2.7 shows the if part of the proposition. Conversely, if/5(.) is a
solution of (2.1) and Yo H, t I are given, we consider the control

(t) =-N(t)-G(t)*(Ao- A(t)*)P(t)(t,t)yo, t t.

A simple calculation shows that the coesponding state is (t) (t, t)y0. Using equation
(2.26) we easily obtain

((tl)YO, YO)H ((t)9(t),9(t))H + [llC(v)9()ll + (N(v)(v),(v))g]dv.

Hence for each t t we have

’[ + (N()e(), ())]IC()()ll (P(tl)yo, yo);dv

consequently

(2.28) J ,oo() < (P(t,)Yo, Yo)H < IP(t,)l<H)llY0112/--/
By the local coercivity of N(.) (Hypothesis 1.5) we then get L2oc (tl, " U), so condition
(2.4t,) holds.

(ii) Using (2.3) we obtain

(PT(tl)YO, YO)H Jt,,T(u) Vt, I, VT > tl, Vyo H, Vu Loc(tl,;U),

and consequently we have

(PT(tl)YO, YO)H Jt,,(u) Yt, e I, VT > t,, Yyo H, Vu e Loc(t,,;g);

letting T we obtain

(2.29) (P(t)yo, yo) Jt,,(u) Yt I, Vyo H, Yu Loc(t,;U
so that, in particular, by (2.28)

(2.30) ((t)yo, yo). J,,,(e) (P(t)yo, yo). vt e , Vyo e ,
and the result follows.
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2.5. Synthesis of the infinite-horizon LQR problem. We use the properties of the
operator P(.) to solve the problem of the synthesis. We have the following theorem.

THEOREM 2.11. Assume Hypotheses 1.1-1.3, 1.5, and 2.2. Let to E I and Yo H be
given. Then

(i) there exists a unique optimal control u* Loc(t0, x; U)forproblem (1.7);
(ii) if(u*, y*) is the optimal pair and P(.) is defined by Lemma 2.1, then

u*(t) =-N(t)-lG(t)*(Ao- A(t)*)P(t)y*(t) Vt >_ to;

(iii) the optimal cost is

Jto,(u*) (P(to)Yo, YO)H;

(iv) the optimal state is given by

(t) (t, to)uo,

where (t,s) is the evolution operator defined by equation (2.25) with P(.) in place
of P(t).

Proof Given to I and y0 H, set

u*(t) "= -N(t)-G(t)*(Ao A(t)*)P(t)O(t, to)yo, t >_ to;

by the same arguments in the proof of Proposition 2.10 we easily see that u* L2oc (t0, ; U)
is an admissible control with respect to to, whereas y*(t) := (I) (t, to)yo is the state corre-
sponding to u*. By (2.29) and (2.30), with/5 replaced by P, t by u*, and t by to, we
obtain

P to Yo YO H min Jto u Jto u
u

i.e., u* is an optimal control.
Finally it is clear that Hypothesis 1.5 on N(.) implies the strict convexity of Jt0,, so the

optimal control is unique. []

3. Further properties of solutions of the Riccati equation.

3.1. Bounded solutions. In many cases it is important to know whether some bounded
solution of Riccati equation (2.1) exists. In order to obtain boundedness we have to assume
some uniformity in Hypothesis 2.2. Thus, following [DI3], we introduce a stronger version
of that assumption.

Hypothesis 3.1. There exists a constant > 0 such that for each t E I and y0 H there
exists a control u Loc(t ; U) such that

H"

We have the following proposition.
PROPOSITION 3.2. Assume Hypotheses 1.1-1.3, and 1.5. Then there exists a bounded

solution ofRiccati equation (2.1) ifand only ifHypothesis 3.1 holds.
Proof. If Hypothesis 3.1 holds, then in particular Hypothesis 2.2 holds too, so that by the

results of 2 the function P(.), defined in Lemma 2.1, is a solution of equation (2.1). In
addition we have for each t I, T > t, and y H

(PT(t)Y, Y)H < min Jt,T(U) <_
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thus letting T oc we get

(P(t)y, Y)H < IlYtI V t I, Vy H,

and recalling that P (t) _> 0 we obtain

sup IP(t) It(H)

Conversely, if there exists a bounded solution (.) of (2.1), then we can repeat the
argument of Proposition 2.10(i), and (2.28) shows that Hypothesis 3.1 holds with

sup
tel

Remark 3.3. Hypothesis 3.1 is fulfilled in several cases.
(i) In the periodic case of ILl], IF], [DI2] (see 3.4), if condition (2.4t) is satisfied for

some t E g, then Hypothesis 3.1 holds.
(ii) If system (1.4) is stabilizable, i.e., there exists K L(I, E(H, U)) such that the

evolution operator associated with the family { [A- (A0- A)GK](t) ) is stable, and in addition
the operators C(.), N(.) e bounded, then Hypothesis 3.1 holds (compare with the comments
after Hypothesis (H3) in [DI3]).

(iii) In Example 4.2 below, Hypothesis 3.1 holds naturally.

3.2. Stability ofthe perturbed evolution operator. Theorem 2.11 shows, under suitable
assumptions, the existence of a unique optimal pair (*, y*) for problem (1.7) with t0 0;
we also know that

y* ,I,(., 0)y0, u* -[N-’G*(0 A*)Py*].

(From now on we will drop the indication of the variable t if unnecessary.) Here Po (t) is the
minimal solution of Riccati equation (2.1) and I, (t, s) is the evolution operator associated
to the closed-loop operator family

{a- G(A0- A)N-’G*(Ao- A*)P}

by the integral equation (2.25); in other words, (I) (t, s) is the solution, for t, s I, t _> s, of

(t, ) u(t, )

U(t,r)(Ao A(r))G(r)N(r)-’G(r)*(Ao A(r)*)Po(r)o(r,s)dr.
(3.)

In this subsection, following the ideas of [DI1], [DI2] and [BDDM, Chap. IV.2, 3.2],
we will prove a stability result for y* (t) (I) (t, 0) as t cx. In order to do this we have
to assume that Hypotheses 1.2, 1.3, and 1.5 hold uniformly over the time interval I. More
precisely we formulate the following hypothesis.

Hypothesis 3.4. (i) The evolution operators U(t, s) and U(t, s)* are strongly continuous
in/z, where A := { (t, s) E 12 t > s} and there exist M0 > 0 and w E such that

IU(t,s)[C(H) + [U(t,s)*I(H <_ Moexp(wo(t- s)) k/(t,s) A;

(ii) for each/3, # G [- 1, 1] and (t, s) Az, the operators

(o A(t))U(t,s)(o A(s)) -t’, (o A(s)*)U(t,s)*(o A(t)*)-
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have continuous extensions to H, the maps

(t,s) (Ao-A(t))ZU(t,s)(Ao-A(s)) -t’, (t,s) (Ao-A(s)*)ZU(t,s)*(Ao-A(t)*)-
are strongly continuous, and there exists M,, > 0 such that

I(,o A(t))ZU(t,s)(,o A(s))-ulC(H) + I(,Xo A(s)*)ZU(t,s)*(,o A(t)*)-ulC(H)
< Mz,,[(t- s)"- -t- 1] exp(co0(t- s)) V (t, s) e z3i.

Hypothesis 3.5. There exists a E ]0, 1] such that, for each t I, G(t) maps U into the
domain of (,0 A(t)), and (A0 A(’))G(") is strongly measurable and bounded over I.

Hypothesis 3.6. We have

C(.) e L(I;C(H, V)), N(.)eL(I;E++(U)).

(This means that there exists u > 0 such that N(t) >_ u, V t I.)
Under the assumption listed above we can revisit the proof of Lemma 2.6, and we get the

following lemma.
LEMMA 3.7. Assume Hypotheses 1.1, 3.4-3.6, and 3.1. Thenfor each # ]0, 1[ we have

sup I(A0 A(s)*)P(s)[C(H) <
s_I

Proof Fix t e I, 0 </ < 1/2, x e D[(,ko A(t))Z], and set y, "= U(t + 1,t)(Ao
A(t))x. By Hypothesis 3.1 there exists a control 2 L12oc (t + 1, oc; U) such that

J+, () < Ily 2
oc n

and by Hypothesis 3.4(ii) we also have

(3.2)

Consider the control 2 Loc(t, oc; U) defined by

2(s)=
0 ift<_s<t+l,

(s) ift+l_<s<oc.

Using Theorem 2.1 l(iii) and (3.2) we have

Recalling that P (t) _> 0, the above estimate shows that

sup I(,o A(t)*)Po(t)(,o A(t))Ic(H) =" L <
tI
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We now repeat the argument of the proof of Lemma 2.6; invoking Theorem 2.5 and
noting that our assumptions are uniform in t now, we find two constants 7- E ]0, 1] and e > 0,
depending on L and/3 but independent of t E 1, for which the analogue of (2.14) holds, i.e.,

(t- A(s)*)-P(s)Ic(H) <_ c’ V s I [t- -, t[.

Arguing as in the proof of Lemma 2.6, one arrives easily at the estimate

sup I(A0 A(s)*)P(s)lc(n) <_ c(7-, c’, 3, L, #),
sI

which concludes the proof, t2

Using the result of Lemma 3.7 it is easy to show that the evolution operator (t, s) has
an exponential growth. Namely, we have the following lemma.

LEMMA 3.8. Under Hypotheses 1.1, 3.4-3.6, and 3.1, there exist M > 0 and Wl > wo
such that

lOb(t, s)lc() _< M exp(a; (t s)) V (t, s) Az.

Proof The result follows easily by equation (3.1), using our assumptions and the result
of Lemma 3.7. []

It is important, in some applications, to give conditions under which the evolution operator
is exponentially stable, i.e., there exist M > 0 and -y > 0 such that

II(t, 0)lie<H) <_ M exp(-Tt).

A simple situation where this occurs is when the operator C(s) is invertible for each s I,
and C-1 belongs to L(I;E(V, H)) (see [BDDM]); indeed, if this is the case, we fix x H
and argue as in the proof of Proposition 2.10, replacing tl with to, ( with (I),/5 with P,
with y* := (b(., 0)x, and t with u*. Then we obtain, for each t E 1,

/- _< (P(O)x,x)H <_I]N-1/2G* (,o A*)Py* 2/_/] ds

So we have

(3.3) C(.)O(., 0)x Cy* L2(t0, ; V),

(3.4) N-1/2(/*()0 A*)Py* L(to,;H),
and by (3.3) we deduce that Oc(", 0)x L2(I; H); thus by the classical results of Datko
[D], we obtain the exponential stability of c.

A sufficient condition yielding the same property, even if C is not invertible, is given by
the following detectability condition [F1], [DI1 ], [DI3].

Hypothesis 3.9. The family { (A, C) } is detectable; this means that there exists a mapping
K I (V, H), strongly measurable and bounded, such that the evolution operator
UA-tcc(t, s) associated with(A KC} is stable; i.e., there exist two constants M2 > 0,
w2 > 0 such that

(3.5) IUA-KC(t, s)lc(H) _< M2 exp(-w2(t s)) V (t, s)

LEMMA 3.10. Assume Hypotheses 3.4, 3.6, and 3.9. Then there exists a constant c > 0
such thatfor each (t, s) AI the operator UA-Kc(t, s)(/o A(s)) 1- has a continuous
extension to H and

IUA-KC(t,s)(Ao A(s))’-lc(/) _< c(t- s)-’ exp(-a2(t- s)) V(t,s) E AI.
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Proof By Hypotheses 3.6 and 3.9 it follows that KC E L (I; (H)) and the construc-
tion of UA-C(t, s) is standard. Next, for each s E I set

V(t, s)z := UA-IO(t, s)(A0 A(s))l-z, t _> s, x e D((Ao A(s))’-);

then it is immediately seen that

V(t, s)x U(t, s)(o A(s))-x + U(t, r)K(r)C(r)V(r, s)x dr, (t, )

Using Hypothesis 3.4 we easily get

IV(t, 8)Xll H c(t 8)c-I IIxlIH v (t, e with t s _< 1;

hence, taking (3.3) into account we easily get the result. []

As a simple consequence of the above lemma we have the following theorem.
THEOREM 3.11. Assume Hypotheses 1.1, 3.1, 3.4-3.6, and 3.9. Then b(. O) is expo-

nentially stable.

Proof. We have

(3.6) UA-KC(t, S) U(t, s) + U(t, r)K(r)C(r)UA_KC(r, s) dr, (t, s) I.

Comparing with (3.1) we easily obtain for each (t, s) I

(t, ) UA-tc(t, )

gA_:c(t,r)[KC- (,Xo A)GN-1G*(,Xo A*)P](r)’(r,s)dr.

Now using (3.5), Lemma 3.10, Hypothesis 3.6, and the boundedness ofK, by Young’s inequal-
ity we deduce that (., 0) L2(I; H), and finally the exponential stability is a consequence
of the results of Datko [D]. []

3.3. Uniqueness of the solution of the Riccati equation. By Proposition 2.10 it is clear
that if a bounded solution P of equation (2.1) exists, thenP also is bounded. Under suitable
assumptions on the LQR system we are able to show uniqueness of bounded solutions.

We have the following result, which generalizes [F1, Thm. 4].
THEOREM 3.12. Assume Hypotheses 1.1- 1.3, 1.5, and 3.1; in addition, assume that the

optimal trajectory y* (.) is stable. Then the only bounded solution ofequation (2.1) is P.
Proof. By Proposition 3.2 we know that P is a bounded solution of (2.1). Now let/5

be another bounded solution of (2.1); by Proposition 2.10 we know that

Poo(t) <_ P(t) V t e Z,

so it is sufficient to prove the converse inequality.
Fix Y0 E H and t E I; by [AFT, Thm. 3.14] we deduce that

(3.7) (P(t)Yo, YO)H < Jt,,t(u) + (P(t)y(t),y(t))H VU e L2(tl,t;U), Vt > t,

where y(.) satisfies the state equation (1.4).
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We apply (3.7), using the optimal control u* -N-G*(Ao A*)P/7*; we recall that
the optimal trajectory is given by y*(t) ff(t, tl)Y0. We obtain

By assumption we have y* (t) 0 as t , whereas/5 is bounded; hence, as t we
obtain

(P(t)Yo, YO)H < (P(t)Yo, YO)H.

This shows that/5 _< p. []

3.4. Periodic case and autonomous case. We consider now two special cases of equa-
tion (2.1): the periodic case and the time-invariant case. We assume the following hypothesis.

Hypothesis 3.13. There exists > 0 such that A(t + zg) A(t), G(t + 9) G(t),
C(t + ) C(t), and N(t + ) N(t) for all t E . If this is the case we say that the
system is 0-periodic.

Remark 3.14. If the system is 0-periodic, then

(i) evidently all assumptions concerning the uniform behaviour of the operators follow
from the local assumptions listed in 1;

(ii) if P(t) is a bounded solution of (2.1), then/5o(t) /5(t + 9), t E , is also a
bounded solution;

(iii) some stabilizability results for equation (1.4) can be found in [L2].
As in [DI3, Prop. 3.4] we have the following proposition.
PROPOSITION 3.15. Assume Hypotheses 1.1-1.3, 1.5, 2.2, and 3.13. Then the minimal

solution P of (2.1) is O-periodic. If Hypothesis 3.9 holds too, then P is the unique
nonnegative O-periodic solution of(2.1) and the corresponding optimal trajectoryforproblem
(1.7) is exponentially stable.

Proof. The periodicity ofP follows from the same argument as in [DI3, Prop. 3.4]; the
stability of the optimal trajectory is a direct consequence of Theorem 3.11. []

Finally assume that A, G, C, and N are independent of t. Then our assumptions cor-
respond to those assumed by Flandoli [F1], and the corresponding result is the following
proposition.

PROPOSITION 3.16. Suppose that A is the infinitesimal generator ofan analytic semigroup
etA,andletG (U,D((o-A))), C (U, V), N,N-l E+(U). Inadditionassume
that condition (2.40) holds (i.e., there exists an admissible control). Then P(t) =_ P is
independent of t, and it is the minimal solution ofthe algebraic Riccati equation

A*Q + QA + C*C Q(,ko A)’-[(A0 A)G]N-’[(Ao A)G]*(A0 A*)-"Q O.

(3.8)

Furthermore, if (A, C) is detectable, then Po is the unique nonnegative solution of (3.8).
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4. Examples.

4.1. A finite-dimensional example. Consider the family of 2 2 matrices {A(t)}
{(1 + t)A1 },_>o, where

A1
-1

In 2 consider the state equation

(4.1) y’(t) A(t)y(t) + B(t)u(t), t

where u L12oc (F+, IF,2) is the conirol and B(t) b(t)I (I is the identity matrix), with b(.)
a nonzero continuous function with polynomial growth as t -+ oc. We want to minimize the
quadratic cost functional given by

Jo,(u) [I c(t)y(t)ll: + (N(t)u(t), u(t))i: dt,

with y, u subject to equation (4.1); here C(t) (22(1 + t) 1)I, N(t) b(t)2I.
In this situation the eigenvalues of the matrix A(t) are (1 + t, (1 + t)i) and

U(t, s) exp([(t s2)/2 + (t- s)]A1).

For a given t0 0 an admissible feedback control relative to to is easily found by choosing
g(t) K(t)$(t), with

K(t)_b(t)_,(t+l)(-2-1 )-2

so all our assumptions hold locally over the time interval [0, +[.
The Riccati equation (2.1) becomes, in this simple situation,

(4.2) P’(t) + (1 + t)[AP(t) + P(t)A,] + 412(1 + t) 2 1]I P(t)2 0, t 0.

The nonnegative symmetric solution PT(’) of equation (4.2) over the interval [0, T], with final
datum P(T) 0, is given by

PT(t) 4(1 + t)I- vT(t)-I,

where

exp[3(T2 t2) + 6(T t)]
4(1 + T)

exp[3(s2 t2) + 6(s t)] ds.

It is easily seen that vT(t) > 0 for each t [0, T] and that limT VT(t) +; hence for
each t > 0

PT(t) T P(t)"= 4(1

The optimal control u* is given by u*(t) -4b(t)-l(1 + t)Iy*(t), and the optimal
trajectory y* is the solution of the closed-loop system

y’(t) (1 + t)A2y, t O, y(O) (l,X2)
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where

A2
-1 -3

We remark that the optimal trajectory is stable. Furthermore it can be seen that Po (t)
4(1 + t)I (t _> 0) is the only positive solution of the Riccati equation (4.2).

An infinite-dimensional example can be easily obtained by the above example, by just
adding to it, as a direct sum, a control problem with unbounded time-invariant operators, in a
similar way one can easily arrange things in such a way that the resolvent operator of A(t) is
not compact for any t _> 0, using, for instance, multiplicative operators in infinite-dimensional
spaces (compare with Remark 2.8(ii)).

4.2. Parabolic equations in noncylindrical domains. Let f0 be a bounded open set
of with smooth boundary F0. Following [DZ], [A2] we consider the family of mappings
{Tt(.) n, t 0) associated with a family of regular vector fields {V(t, .)
n, t 0) by the dynamic system

T(x) V(t, T()), To() x,

Consider the sets := Tt(o) with boundary Ft := T(F), and the evolution domain Q
t>0{t} x t with boundary

We want to apply the results of the preceding sections to the following problem: minimize
among all u Loc(E the functional

(4.3) J(u)

where y is the solution of the parabolic boundary problem

y(t, ) y(t, ), t o, ,
Oy

(4.4) v(t, ) (t, ) or (t, ) (t, ), t o, e r,

(0, ) o(), e 0.
(ut is the outward normal to Ft.)

Denote by DTt the Jacobian matrix of Tt and by Jt its determinant; then the change of
variable

transforms problem (4.3), (4.4) into the following one: minimize among all v Lo (0 +)
the functional

(4.5
+ Iv(t,)12jt(x)(t,x) dH_(x)dr,

where z is the solution of the parabolic boundary problem

zt(t,x) A(t,x, D)y, t O, x o,
Oz(t,z)(4.6) z(t, x) (t, x) or v(t, )Z(t, z), > 0, z to,
Oud(t)

z(O, x) vo(x), e o,
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with

v/i +
A(t,x,D)w :: Jr(x)-’ div ((DTt(x)-’)(DTt(x)-’)* Dw(x))

+ ((DTe(x)-) Dw(x), V(t,x)),,
(t,x) := Jt(x)l(nTt(x)-’)* no(x)l,
VA(t) := (DTt(x)-l)(DTt(x)-l) *" vo(x).

Problem (4.5) (4.6) can be studied with the methods of this paper, it is shown in [DZ] (in the
case of Dirichlet boundary control) and in [A2] (in the case of Neumann boundary control)
that an admissible control exists; more precisely, in both cases Hypothesis 3.1 holds true.

4.3. Strongly damped wave equation. Let f C Itn be a bounded open set with smooth
boundary 0f. Consider the Dirichlet or Neumann boundary control problem for the damped
wave equation in ]0, x[ f:

(4.7)
y(0, x) yo(x), yt(O,x) wo(x), x

By(t,x) -u(t,x), t > O, x E Oa B= IorB=

here p is a scalar function belonging to Ce+l/2([0, oo[); the data yo, wo belong to H (f) and
Lz(Q), respectively; and A is the Laplace operator. The cost functional

(4.8) J(u) { IICI (t)Y(

+ (Nl(t)u(t, .), u(t, "))L2(0a) + (N2(t)ut(t, .), ut(t, "))L(0a)} dt

has to be minimized among all u E l/Vloff(0, oo; L2(0ft)), with y subject to (4.7); the opera-
tors C1, C2, 6’3 and N1, N2 belong to L(0, oo; Z;(L2(ft))) and L(0, oo;-2++(L2(0a))),
respectively.

In order to apply the results of this paper we rewrite problem (4.7) (4.8) in abstract form.
Define

DA {y H2(f): By 0on0f},
(4.9)

Ay Ay,

Az z in
(4.10) G" L2(Of) L2(a), Gu z ,,

Bz-u in0a.

Then, following [B21, it is easy to see that if u W2o2 (0, oe; L2(Oft)) then the function

solves
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Now set H := H (9/) x L2(f), U := L2(0f), V H, and

/:) (0A(t) A p(t)A

then it is shown in [L3] that (i) the operators A(t) generate analytic semigroups in H, and (ii)
they satisfy the assumptions of [AT1 ], [AT2] and [AT3,6]; this in turn yields that the evolution
operator UA(t, s) associated with {A(t)} exists and fulfills the hypotheses of this paper. (We
remark that by choosing H L2() x L(), as done in [B1], [B2] in the autonomous ase,
we still would have (i), but (ii) would no longer be true.)

Consequently we can write the mild form of (4.11), and after integrating by parts we get

(t, )A() ,()
a, t 0

(where the last term has to be intereted as in (1.4) (1.5)); by density we see that this formula
holds for all u Wo(0,; L2(0)). Hence, setting L (), M "= () for the sake of

simplicity, we obtain, for Y "= (v) Loc(0’ ; H),

0

+ U(t,s)[p(s)

Now, as in [B 1], [B2], we regard the control as an auxiliary component of the state and
define as a new control; namely, we set v , X "= (Y, ), )"= H x U, O "= U, and

:= and look for the state equation satisfied by X. As shown in [B 1,21, X(t) is the mild
solution of

X’(t) B(t)X(t) + Q(t)v(t), t > O,
x(o)

where

(4.12)
Dl(t) H Y Lu E DA(t

( A(t) M-A(t)L )(t)
0 0

Q(t)- (L + [p(t)-4(t)]M) Xo (Y(O)
\(o)/

It is easy to see that the operators B(t) possess in H the same properties enjoyed by the
operators 4(t) in H; in particular p(B(t)) p(.A(t)) and

[-

( [- t(t)]-’0 [A- 4(t)]-lM- 4(t)[,kl 4(t)]-lL ) v, e p(z(t)).
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In addition the evolution operator U(t, s) associated with {B(t)} exists; it fulfills the hy-
potheses of this paper and has the following explicit representation:

U(t, s) UA(t, s) UA(t, a)M da + [1 UA(t, s)]L

0

The operator Q(t) may be also written (improperly but usually) as Q(t) [1 B(t)](t),
where {)(t) [1 B(t)]-Q(t) is given, after some manipulations, by

(t)= (L + M + p(t)[ll A(t)]-lM)"
Hence the state X(t) solves the equation

(4.13) X(t) U(t, O)Xo + U(t, s)[1 B(s)](s)v(s) ds, t O.

We remark that, conversely, ifX (t) is given by this formula, then, setting X(t) (Y(t), (t)),
the second component of X gives v, and from the first component it is easy to go back
to (4.11) and hence to the solution of the original problem.

Concerning the cost functional J(), we can rewrite it as 2(v), where

(4.14) (v) { IIC(t)X(t)l + (N(t)v(t), v(t))o } dr,

with C(t) and N(t) given by

C(t)DYI + [N1

Thus the original control problem (4.7)-(4.8) is equivalent to minimizing J(v) among all
v 6 Lo(0, ; ), with X subject to equation (4.13).

In order to apply the theory of this paper we still need to verify Hypothesis 1.3 for (t)
(and this follows by the results of [B ], [B2]) and the finite cost condition (Hypothesis 2.2).
Concerning the latter, in the case of Dirichlet boundary control it is satisfied by choosing
u 0, as the following proposition shows.

PROPOSITION 4.1. Let J(u) be given by (4.8), where y satisfies (4.7) with B I, and
assume that p p(t) Po > Ofor each t > O. Then we have J(O) < .

Proof Multiply the paial differential equation (PDE) in (4.7) by yt and integrate over
; then

2 dt
lYt(t, x) dx

2 dt
IDy(t, x)[ 2 dx p(t) IDy,(t, X)l 2 dx.

Integrating over ]0, T[ we get

Iol + IDol d 2 p(t) IDut(t, )Jd
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this implies that

sup ly,(T, x)l 2 dx + IDy(T, x)l: dx + p(t) IDyt(t, x)l 2 dx dt

(4.15) T>0

<- c [J [wo[2 dx + f lDyol2 dz]
As p(t) >_ Po, by the Poincar6 inequality we also get

(4.16) lyt(t,x)l 2 dxdt c Iwol 2 dx + IDyol2 dx

On the other hand, multiplying the PDE in (4.7) by y and integrating over ]0, T[ x , we
obtain aher some integrations by parts

 2 o o,x
lyt(t, x)l dx dt IDy(t, x)l; dx dt

which implies

SoT/ IDy(t, x)] dx dt

< woyo dx + - ly(T, x)I dx + - lYt (T, x) dx

+ -p IDytl 2 dx dt +

hence if 7 is sufficiently small, again using the Poincar6 inequality we get

ly(t, x)I dx dt + [Dy(t, x) dx dt

c woYo dx + ly(T, x)i 2 dx + iyt(T, x)l

and by (4.15) we finally obtain

I1 at + IDol= at I012 + luol 2 + IDuol 2

(4.7)

The result now follows by (4.8), (4.17), and (4.16).
Remark 4.2. The above proposition and the results of [D] imply that the evolution operator

UA (t, s) associated with {A(t) } is exponentially stable; i.e., it satisfies

IIU(t,,)llc) --)

for some , > 0.
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In the case ofNeumann boundary control, the finite cost condition is fulfilled too; indeed,
we have the following proposition.

PROPOSITION 4.3. Let J(u) be given by (4.8), where y satisfies (4.7) with B O/Ou, and
assume that pl >_ p(t) :> Po > O for each t > O. Then there exists u E L2(0, oo; L2(0fl))
such that J u

Proof. MultiPlY the PDE in (4.7) by Yt and integrate over fl; then

d jf lyt(t,x)12dx j u(t,x)yt(t,x)da+p(t)L ut(t,x)yt(t,x)dcr
2 dt

2-dt
IDy(t’ x)12 dx p(t) [Dyt(t, x)l 2 dx.

Choose the feedback control u -Ylon; we then have

dj dj d L ly(t,x)12dax
2 dt

lyt(t, X)[ 2 dx + - - IDy(t, x)[ 2 dx + -- n

-p(t) L Iyt(t’x)ld p(t) in IDyt(t’ x)l dx

so that integrating over ]0, T[ we get

ia lYt(T’x)le dx + Sa [Dy(T’x)[e dx +L [Y(T’x)Ie dcr

J lwol2 dx + f lDyol= dx + A lYol2 dcr

2 p(t) lyt(t, x)l2 drx dt 2 p(t) IDyt(t, x)[ 2 dx dr.

This implies that

(4.18)

On the other hand, multiplying the PDE in (4.7) by y and integrating over ]0, T[ fl, we
obtain after some integrations by parts

yt(T, x)y(T, x) dx woyo dx + ly(t, x)l 2 dax dt

io’l. ly,(t,x)l 2 dxdt IDy(t,x)l 2 dxdt

L p(t) Ln yt(t, x)y(t, x) dcrz dt p(t) Dyt(t, z). Dy(t, x) dx dr;
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hence by (4.18) one easily finds that- [Dy(t, x) dx dt + -(4.19) <_ fa ly(T,x)12 dx + c [f Iwol2 dx + f [Dyol2 dx + j ,yol2 dx

+ lYol’ dax + ]yt (t, x)I dx dt

Now we have the following lemma.
LEMMA 4.4. There exists c > 0 such that

IlflIL(.) c [I[DflIL(.) + IlflIL(O.)] f n(),
Proofi The proof is by contradiction; otherwise there should exist a sequence {fk } in

H () such that

In particular, the right member is not zero (since in that case fa 0). Then if we set

A(x)

we have

Hence for a suitable subsequence we get Dgk z weakly in L2() and gk w weakly in
L2(0).

Now let L2(fl) and take the solution H2(fl) H (fl) of in . Then
as k we have

f gk dx f gk A dx

gda, Og Odx wd, z. O dx,

which implies that {g } is weakly convergent in L2(fl), but this is impossible since {g } is
not bounded in L2 (fl).

Let us return to (4.19); by Lemma 4.4 and (4.18) we obtain

+ IDyt(t, x)l: dx dt + lyt(t, x)l da dt

c / ,W0,2 dx f [Dyo[2 dx+ ffl ,yo, 2 dx+ fl lyo, 2 dffx],
and consequently the choice u Yo implies J(u) < .

Remark 4.4. We have in fact verified that Hypothesis 3.1 holds too.
Remark 4.5. A more general approach to problem (4.7)-(4.8) in the autonomous case,

which allows one to take controls u L2(0, ; L2(0)), can be found in [LLP], IT].
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4.4. Structurally damped plate equation. Let ft C I be a bounded open set with
smooth boundary Oft. Consider the following Dirichlet or Neumann boundary control problem
for the structurally damped plate equation in ]0, x[ ft:

(4.20)

Here p is a scalar function belonging to C ([0, x[); the data Y0, w0 belong to H2(ft) and
Lz(Q), respectively. The cost functional

(4.21)

has to be minimized among all u E Wloff (0, x; L2(0f)), with y subject to (4.20). Following
the same method of the preceding example, we define A, G as in (4.9), (4.10), set H
DA L2(ft), U L2(0Q), and finally rewrite the problem in abstract form. It turns out that
if u E reV2o2 (0, ; L2(Of)), the function

solves

Z’(t) A(t)Z(t)+ F(t),
z(o) Zo,

where

A(t)’- -A2 p(t)A
Zo’- w0+(1-A)-IGu’(O)

F(t) .=

-a(t) + (t)a’(t) + ( A)-I[G"(t) (t)a’(t) + a(t)]

As A(t) fulfills the assumptions of [AT1], [AT2], and [AT3, 6], there exists its evolution
operator UA(t, s); hence setting Y (yv) and integrating by parts we get

Y(t) Z(t) A)-’Gu’(t)

:UA(t’O)(:Y+(1-A)-Gu(O))-( 0

(t ( (l_A)-lGu,(s)+ Jo Ut(t, s) (1 A)-lGu(s) 2Gu(s)
ds,
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i.e., defining

L.= ((1- A)-’G)0 ( o
M’-

2G-(1-A)-’G Yo := (yo + (1-A)-Gu(O))’wo

"t

Y(t) UA(t, 0)(Yo- Lu(O)) Lu(t) + UA(t, s)(Lu’(s) + Mu(s)) ds.

This formula holds for u E Wo(0, x; L2(0)) as well.
Now, as in the preceding example, we set/-’= H U, -:= U, and v(t)’= u’(t), X(t)’=

(Y(t), u(t)). The state X satisfies

x’() ()x(t)+ Q(t), t > o,
x(0) x0,

where/3(t) is defined as in (4.12) and

(1) u(0

Arguing as in the preceding example we arrive again to the state equation (4.13) for X(t),
where now

(t)

Note that (t) is uniformly bounded in ]0, x[ as an element of (O, DA(t)). The cost
functional (4.21) transforms into

(4.22)

and our abstract theory applies to the control problem (4.13), (4.22), provided that we verify the
finite cost condition (Hypothesis 2.2). Now it turns out that in the case of Dirichlet boundary
conditions (B I) one can choose the control u 0, whereas in the case of Neumann
boundary conditions (B ) one can choose the feedback control u y + Yr. The proof
that the cost is finite can be done by adapting the arguments of Propositions 4.1 and 4.3.

Remark 4.6. A more general approach to problem (4.20) (4.21) in the autonomous case,
which allows one to take controls u E L2(0, cx; L2(0)), can be found in [LLP], IT].

Appendix: Proof of Theorem 2.5. We are going to use the contraction principle on a
suitable Banach space. For fixed To, T F with To < T we set, as in the proof of Lemma
2.9,

X(To, T) := { P" [To, T] E(H)such that

(i) (,o A* (’)) ’-P(") C,([To, T],f,(H));
(A.1) (ii) [[o d(t)*]l-p(t){(H) < c[1 + (T-- t)+-] Vt e [To, T[;

(iii) ][Ao A(t)*]-P(t)U(t, s)[Ao A(s)]/I(H)
< c(T- s)’[1 + (T- t)/+-’](t- s) -z VTo < s < t < T}

with "y min{ a -/3, fl}. We endow X(To, T) by its natural norm, i.e.,

IIPI[X(To,T) max{A, B},
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where

A:=

B := sup
To<_s<t<T

sup [1 + (T- t)’--]l[,o A(t)*]’-P(t)Ic(H),
t [To,T[

[.1 (T, t)!.,,](.t..-.s.). I[A A(t),]l_ap(t)U(t s)[,0 A(s)][Z:(H).(T- s)
We also set

B(p) := {P e X(To, T) IIPIIxtTo,T) <_ P}.
Theorem 2.5 will be a consequence of the following lemma.
LEMMA A.1. For each Po > 0 there exist To < T and p > 0 such that for any PT

satisfying

I[)o A(T)*]PT[AO A(T)]I:(H) <_ Po

the Riccati equation

P(t) U(T, t)*PTU(T, t) + U(r, t)*

[C(r)*C(r)- P(r)(Ao A(r))G(r)N(r)-G(r)*(,o A(r)*)P(r)]U(r, t)dr,
t e [To, T[,

(A.2)

has a unique solution P(.) in B(p).
Proof. First set

(A.3) QT (o A(T)*)/PT(AO A(T)),
Now fix Po > 0 and let PT be such that IQTIE(H) -- PO. Consider the map F defined on B(p)
in the following way’

[r(P)](t)
U(T, t)*PTU(T, t) + U(r, t)*

[C(r)*C(r)- [()o- A(r)*)l-P(r)]*K(r)[(o- A(r)*)l-p(r)]]U(r,t)dr,
(A.4)

where t E [To, T[ and

(A.5) K(r) "= [(Ao A(r))aG(r)]*Y(r)-l[[(o A(r))G(r)] *.

We remark that K(.) E L(]To, T[, .(H)) by Hypothesis 1.3.
We will show that for suitable To and p (independent of the choice of PT) the map F is a

contraction in B(p).
We start with the following estimate, which is true for t < r < T and follows by (A. (iii))

and (1.6)"

I(o A(r)*)’-P(r)U(r, t)(,ko A(t))-IZ,(H

(A.6)
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By (1.6), (A.5), and (A.4) we deduce (with QT and K(r) given by (A.3) and (A.5))

I(o A(t)*)’-"F(P)(t)Ic(H)
<_ I(o A(t)*)’-U(T,t)*(Ao A(T)*)-ZQT(,o A(T))-ZU(T,t)I(H)

+ (o A(t)*)’-U(r, t)*C(r)*C(r)U(r, t) dr
E(g)

+ [(,o A(t)*)l-au(r, t)*P(r)(/o A(r)) l-a]

x K(r)[(/o A(r)*)l-ap(r)lU(r, t) dr
E(H)

<_ + (T- t) c(T

+ cp2 (T t)’[1 + (T r)(’+-’)]2(r t)-’ dr

< c[po + + p2(T- t)min’+"r+;+-t][1 + (T- t)’+-] Vt e [To, T[.
On the other hand, for To < s < t < T we have by (A.4), (1.6), and (A. (ii))- (A. (iii))

I(o A(t)*)-[r(P)](t)U(t, s)(o
< I(o A(t)*)l-U(T,t)*(,o A(T)*)-x QT(O A(T))-U(T, s)(Ao A(s))lc(g)

+ (o A(t)*)’-U(r, t)*C(r)*C(r)U(r, s)(o A(s)) dr
12(H)

+ [(Ao A(t)*)’-U(r, t)*P(r)(Ao A(r)) -]

x K(r)[(3,o A(r)*)l-ap(r)]U(r, s)(Ao A(s)) dr
Z2(H)

_< cpo[1 + (T t)+-’] + c(T t)"(t s)-T

+ cp2 (T t)[1 + (T- r)Z+-l]2(r t)-l (T s)(r s)- dr

_< c[po[1 + (T- t)+-’] + (T- t)(t- s)-+ p2[(T- t)+a + (T t)++3a-2](T- s) (t- s) -]
< c(T- s)’[1 4- (T- t)3+a-](t- s) -z[Po + + p2(T- t)min{’+a"++2a-’}].

The above estimates show that

IIr(P)llx(%,T) _< c[po / + p2(T- t)min{7+c")’+C+2a-1}].
AsT=min{/,l-a-/3}andfl > 1/2-a, wehaveinanycaseT+/3+2a-1 >0.
Hence we can find a large p and a To sufficiently close to T such that

(A.7) r(P) e B(p) V P e B(p).

Now we have to prove that the map F is a contraction in B(p). Indeed, if P, Q E B(p)
we can estimate the X(To, T)-norm of r(P) r() exactly as before (and the calculation is
even simpler); the result is

(A.8) lit(P) F(Q)IIx(n, ) _< cpllP QIIX(To,T)(T To)min{’+a’’++2(-’}.

Hence we can find a large p and a T0 sufficiently close to T such that both (A.7) and (A.8)
hold, and the result follows by the contraction principle, rn
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ON THE AVERAGED STOCHASTIC APPROXIMATION FOR
LINEAR REGRESSION*

L/SZL( GYRFIt AND HARRO WALK

Abstract. For a linear regression function the average of stochastic approximation with constant
gain is considered. In case of ergodic observations almost sure convergence is proved, where the limit
is biased with small bias for small gain. For independent and identically distributed observations
and also under martingale and mixing assumptions, asymptotic normality with (n-1/2 )-convergence
order is obtained. In the martingale case the asymptotic covariance matrix is close to the optimum
one if the gain is small.

Key words, averaged stochastic approximation, constant gains, linear regression, adaptive
filtering, ergodicity, mixing, martingales, almost sure convergence, asymptotic normality
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1. Introduction. According to one of the most important recent results on
stochastic approximation the optimal convergence order n-1/2, together with an op-
timal (with respect to the trace) asymptotic covariance matrix, can be achieved if
the output of the conventional stochastic approximation is averaged, where the cor-
responding stochastic approximation has a gain sequence decreasing to zero slower
than the usual choice constant/n [211, [24].

In the following discussion (.,.) denotes the inner product in the Euclidean space
Rd and I1" stands for the norm of either a d-dimensional vector or a linear operator on
Rd. Let I denote the dd identity matrix and A(B) and A(B) denote the smallest and
the largest eigenvalues of a symmetric matrix B, respectively; X is used for denoting
an indicator function.

The general assumption is that a sequence of random symmetric positive semidef-
inite d d matrices An and a sequence of random d-dimensional vectors Vn, n
0, +1, +2,..., are given, where ((An, Vn)) is stationary and ergodic with
]EIIVn]I < oc. Let A := lEAn, V := ]EVn. Assume that A-1 exists. The aim is to
estimate

O:=A-IV

on the basis of observations of An, Vn for n _> 1.
For this purpose as a primary algorithm a stochastic approximation in Rd with

constant gain a > 0 is introduced:

(i.i) Xn+ Xn --o(An+lXn Vn+l), n _> O,

with an arbitrary X0. It is followed by an averaging,

(1.2) yn i
.X’io

i=1
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For reasons of simplicity X0 is assumed to be deterministic. (In view of assertions on
mean convergence one would have to impose integrability assumptions on X0.)

In the case of independent and identically distributed (i.i.d.) observations with
AN A almost surely (a.s.), for sufficiently small gain a > 0 the rate of convergence
of (Yn) and the asymptotic covariance matrix do not depend on c and are optimal
[21], [22]. Unfortunately this property does not hold in general if the sequence
is random.

The usual motivation of using a constant gain algorithm is to deal with nonsta-
tionary cases where the algorithm (1.1) is expected to have some tracking abilities
for the time-varying parameters. In this paper we deal only with stationary cases.
Here consistency does not hold for the process Xn, but for the averages Yn. Without
averaging it is applied in practice if the computational complexity of the algorithm
is a question of interest. Although the main purpose of this paper is to study the
properties of the averaging rule (1.2), as a by-product we get some interesting fea-
tures of (1.1) too, under the very general condition that the observation sequence is
ergodic; therefore, the results may be interesting for readers who apply constant gain
rule without averaging.

The paper is organized as follows. Let

An,k(a) := (I cAn)... (I aAk) for k <_ n,

An,n+l (o) :- I.

In 2 it will be shown that under the above general conditions for sufficiently small
a > 0 the almost sure limit 5a of (Yn ) exists, if

n--1

is integrable; for the asymptotic bias 5 one has

where (X)n>_o defined by

o

X := 9 + c E An,n+i+l(O)(Vn+i An+)

is a stationary and ergodic sequence satisfying recursion (1.1) (Theorem 2.1). In 2, by
an averaging argument we also study assumptions (uniform integrability of X with
respect to a, fulfilled under - or c-mixing together with uniform boundedness or un-
der M-dependence together with moment conditions) under which 5 --, 0 (a 0)
(Theorem 2.7); mixing conditions are often assumed in adaptive filtering, and bound-
edness or moment conditions prevent the constant gain algorithm from exploding.
Under more restrictive assumptions on the dependence of the observations (indepen-
dence and also martingale case) it is proved in 3 that 5 0 for sufficiently small
a (Theorems 3.1 and 3.2). It should be mentioned that in the case of a nonlinear
regression function even under i.i.d, observations there is an asymptotic bias. Section
4 concerns asymptotic normality, with (n-1/2)-convergence order, in the case of not
necessarily vanishing 5 (Theorem 4.1). The more special situation of 3 is studied in
more detail in 5, where the (n-1/2)-convergence order of Y -) to 0, together with
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an asymptotic covariance matrix differing from the optimal one by a term of order c,
is obtained (Theorems 5.3 and 5.6).

Without averaging the constant gain stochastic approximation has been mainly
applied for adaptive filtering, when based on an observed random d-dimensional vector
R one has to construct a linear estimate (x, R) of the unobserved real random variable
Z such that the vector x* minimizes the mean square error

n) z)

If a training sequence (Rn, Zn), n 0, 4-1, 4-2,..., is given such that (Rn, Zn) has the
same distribution as (R, Z), then (1.1) can be applied with

A, RnRT
and

V ZnR.
In this case (1.1) can be written as

Xn+l Xn- o((Rnw1,Xn) Znw1)Rn+l,

where there are no matrix operations, and if a is a negative integer power of 2, then one
can save some multiplications, which is very important for high-speed communication
and signal processing applications. (References on the possible application can be
seen, for example, in [12] and [6].)

Remark 1.1. it is easy to construct a 3-dependent sequence for (An, Vn) for which
5a 0, i.e., Yn is asymptotically biased: let {Wi} be i.i.d., 4-1 valued, EWi O, and
one wants to predict W +W+ from W_ +W; this is a one-step prediction problem
for a moving average process. Then d 1 and

A (W-I + W)2 2(1 + Wi-IW),
+ + + 1 + + + + +

and v 1/2. Obviously the observation sequences are 3-dependent. In this example,
with the notation

dn c]E(An,2()(V1 Al9)), n >_ 2,

one has

and thus

]E(An,2(oO(V1 AI) Wo,. Wn-1)
]E(1 A Wo,..., W-I)A-,2()(V1 AI)
(1 2)An-I,2(c)(V1 Alz9), n >_ 3,

d2 c ((1 aA2)(V1 AlZg)) -c2]E (A2(V1 AI)) -2c2,

o dn (-2o2)(1 20)n-2
n=2

therefore, Yn is asymptotically biased, but the bias is small if c is small. It will be
shown that this is true for much more general conditions on dependence, too.
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The following list of assumptions will be explained in their interdependence and
used later.

Assumption A1. There is some a > 0 such that Us is integrable for 0 < a < a.
Assumption A2. A1 is bounded a.s.; there is some a" > 0 such that X is

uniformly integrable with respect to 0
Assumption B1. E[[Alll q < oc, E[[V1]]q <: oc for all q > 0; there is some M E N

such that the sequence ((An, Vn)) is M-dependent, i.e., cr(Ao, Vo,A-1, V-l,...) and
cr(AM+I, VM+I, AM+2, VM+2,...) are independent.

Assumption B2a. A and V1 are bounded a.s.; the sequence ((An, Vn)) is a-mixing,
i.e.,

an sup{lP(B C D) P(B)P(D)I; B a(Ao, Vo,A-, V-l,...),
D (7(An, Vn, An+l, Vn+l,...)}

0

with
Assumption B2b.

mixing, i.e.,
A and V are bounded a.s.; the sequence ((An, Vn)) is -n :-" sup{lP(B c D) P(B)P(D)IP(B)-;

B cr(Ao, Vo,A_I, V-l,...), D or(An, Vn,A,+, Yn+l,...)}
o (n

Assumption B2c. A1 and V1 are bounded a.s.; the sequence ((An, Vn)) is -mixing (and thus a-mixing) with an O(n-) for some - > 1 or is a-mixing with

an O(n-r) for some - > 2.

2. Ergodic observations. We note the above-mentioned general assumptions
that ((An, Vn), n 0,+/-1,+/-2,...) is stationary and ergodic with existence of the
d x d matrix IEA =: A and of the &dimensional vector IEV =: V and that the
random matrices An are symmetric, positive semidefinite, A-1 exists. For ergodic
observations the standard stochastic approximation works; namely if

constant

then

Xn -- v9 a.s.,

which was proved by [3], [5], [15], [18], and [27] for IIAlll < 1 .s., IIAII < c, and

IIAII < oc, respectively. For constant gain a, Xn generally does not converge, but
Yn is a.s. convergent, as the following theorem states. Different choices of X0 lead to
different versions of the process (Xn). The first assertion of Theorem 2.1 tells that
there exists a stationary and ergodic version of the process and that each of these
versions is asymptotically close to it.

THEOREM 2.1. a) There exists an a’" > 0 such that for all 0 < a < am

(2.1) := IIA ,x (c )(Vo Ao )ll
n--1
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and

o

IIA0,+l(C)(Y-A,)ll

are a.s. finite. The random elements

o

X "= + a E An,n++l(a)(Vn+i An+O), n > 0,

are a.s. defined. (X) satisfies recursion (1.1) and is stationary and ergodic; further

(2.3) Xn X ---> 0 (n---- oo) a.s.

b) Suppose that the random element X is integrable; then

(2.4) Y - IEX =" O + 5 n - oc a. s.

Remark 2.2. a) Under assumption A1, for 0 < c < cd (_< a’") the random
element X is integrable. This follows from the relation

0

obtained by stationarity of ((An, Vn), n 0, +/-1, +2,...).
b) Assumption A1 is satisfied under each of the conditions B1, B2a, and B2b.
c) Obviously the integrability of X is a necessary condition for almost sure

convergence of (Yn).
The proof of Theorem 2.1 requires Lemmas 2.3 and 2.4, which will be proved first.

Remark 2.2b) is immediately proved by Lemma 2.6 and the moment or boundedness
conditions on A1 and V1; Lemma 2.6 will be stated and proved after Remark 2.5.

LEMMA 2.3. For all c > 0

(2.5) lim _1 ]E log IIAn,1 (o)II E
n---,c n

exists and E < oc; moreover

(2.6) lim _1 log IIAn,l(O)l E a.s.
n--- n

Proof. Introduce the notations

Mn I ctAn
En 1--]E log lIMnMn_I

n

According to Furstenberg and Kesten [4], for a stationary and ergodic sequence of
square matrices Mn with IE{ (log IIM II) + } < oo the limit

(2.7) E= lim En
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exists and E < ; moreover

lim _.1 log IIMnMn-l’" MIII E a.s.(.s)
n-o n

This result can be applied here since

]E{(log IIMII)/} _< ]E{log(1 + llAx[I)} _< ]E{IIAxlI} < c, t]

LEMMA 2.4. There exists an am > 0 such that for all 0 < < a" the relation
E < 0 holds. Consequently

(2.9) I.IA,()II e-
for large n, with > 0 depending on a (0, ").

Proof. First, one shows

ao8o

(2.10) lim En inf En.
n---cx n

Obviously

lim En > inf En.

In view of the reverse inequality one obtains for all integers n, N

1 1
n

EnN --IE log IIMnNMnN-...M E log IIMNMN-... M(_)N+
k=l

_1E og MNMN- M1 E/v;N

therefore,

lim ZnN EN,
n

which implies

lim En <_ inf En.
n n

Because of (2.10) it is enough to find an integer N* such that

EN. <0.

By Jensen’s inequality

E <_ loglEIIAn,(a)ll/;

thus it is sufficient to show that there is an integer N* such that

(2.11) IE[IAN., (a)I[ I/N" < 1

for a sufficiently small. (An) is ergodic; therefore

ZA-A -- 0 a.s.
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where A is positive definite. Because of Fatou’s lemma there is an integer N* such
that

(2.12) An’=]EA(IA- >0 forall n>_N*.
\ i-1

One shows (2.11) for this N*. In view of this one proves that

lElldN.,l(a)l] l/N 1
(2.13) lira <_ --AN..

a$O

Obviously

A.,I()]/" ( A. A.-1]] A])/"

N*
1

i=1

therefore,

and because

1
N*{IAN.,()II1/N*a 1

_
N* IIAI{,

i=1

i--1

one can apply Fatou’s lemma:

li-- IEIIAN*’I (a)III/N* 1
a O O

Further, one notices

(2.14) AN,,1 (a) I aE Ai
i:1

< IE lira
IIAN*,I (a) l/N* 1

aS0 O

N*

_< H( + IIAII) for 0 < a <_ 1,
i=1

N*

I-aEA
i--1

by positive semidefiniteness of EN=*I Ai, and thus obtains (2.13).
Proof of Theorem 2.1. a) The first assertion immediately follows from Lemmas

2.3 and 2.4. For the second assertion, after a transposition of the matrices one argues
in the same way, noting also the a.s. ergodic theorem for (IIV AII); the further
argument is based on the reverse extension of (1.1). Thus the random element

0

X "= t9 + a E Ao,,+. (a)(V
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is a.s. defined. Analogously one obtains for general n 0, 1,... that X in (2.2) is
a.s. defined. By induction with respect to n, noting

0

(I aAn+l) E An,n+i+(a)(Vn+i

-1

E An+l,n+i+2(o)(Vn+l+i An+l+iVg),

one shows that (X) satisfies recursion (1.1). By (2.2), (X) is a time-invariant
function of the stationary and ergodic sequence ((A, )); thus it is stationary and
ergodic, too, where the latter follows by an application of Proposition 4.3 in [11,
Chap. 1] to ((A, Vn)) with reversed order of indices. Moreover

(2.16) X X A,l(a)(Xo X) 0 (n ) a.s.

because of (2.9) in Lemma 2.4.
b) If X is integrable with EX =: + ha, by the almost sure ergodic theorem

1
n X + 5 (n ) a.s.

i=l

This and (2.16) yield

Y#+5 (n) a.s.

Remark 2.5. Unfortunately Lemma 2.4 proves only the existence of at’. There is
a special case of An where a’’ can be given explicitly. Consider the case of IIA < C
a.s. Choose a’" min{1/C, 1 }. Then a.s.

]]An,(a)] ]1- aA] ]1- aA_]] ]]1- aA]] 1 for a < a’";

therefore, (2.11) is proved if

{[[An,l(a)[[ < 1} > O.

Let N(Ai) be the null-space of Ai; then

]]A,(a) 1

iff
n

N N(A) O.
i--1

A1 is positive semidefinite; therefore

N N(Ai)= N Ai N Ai
i--1 i-----1 i----1

Because of ergodicity

1 ’-A-A a.s.,
n

i=1
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and A is invertible; therefore, there is an n such that

A is invertible > 0.
n

i--1
Tt

i:1

LEMMA 2.6. a) Under Assumption B1 or B2b, for each q E N there exist real
numbers K > O, a* > O, p > 0 such that

]E[[A,()II <_ Ke- for all n e N and 0 < a < a*.

If the second version of Assumptio. n B2c holds, then for each q N and p N there
exist real numbers K > O, * > 0 such that

]El]An,1 (o)]] q
_
Kn-p for all n e N and 0 < a < a*.

b) Under Assumption B2a

for sufficiently small > O.

Proof. a) Choose N* according to (2.12). First assume B1. Let k* := max{N*, M,
2}. Because of the moment condition and by the Cauchy-Schwarz inequality, it suffices
to show a corresponding assertion for IIAk.,l(a)ll 2q, n {2, 3,...}. One obtains

where for the second inequality one uses the Cauchy-Schwarz inequality once more
and M-dependence. (2.14) for k* instead of N* yields

+ a2 H(1 +
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Each of the terms

is majorized by

A A A A H(1 + IIA, II)
\i--1 i-----1 i=1

Now by the trivial inequality

(l+x)_<l+nx+2nmax{x2,1xl} (xER, nEN)

one obtains

and thus

:IEIIA.,(o)II a’

-l-4q]EA(Ai)
for 0 < a <_ 1, which together with (2.12) and the moment condition yields the
assertion.

Now assume B2b. Because of almost sure boundedness of ]]AI[[ and stationarity
of (A),

A* :- ess sup [IAII <

is independent of n. Neglecting a set of lP-measure zero, one has

sup [JAn(w)[[ A*.

In view of the assertion it suffices to show a corresponding assertion for [[AnN*,I [[q,
, }--then N. According to (2.14) and (2.15) one has--for 0 < a < min { 1, N*A

representation

[[Any*,(n-)Y*+(a)[[ 1- aTn(a), n e N,

with

Tn(O)

_
0, [Tn(o) A(A(n_I)N,+I(OZ) q’-"" + AN* (a))[ _< a(1 + A*)N*.

Let5* := 1/2]EA(A + +AN.) >0. For 0 < a < min{1 5" }N’A*’ 2(lq-A*) N* one now

obtains
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with

where

n (A(n-1)N*+I +"" "" ANN*) ]E,,(A(n-1)N.+I +’" "+- ANN’), n E N.

The sequence (n) is bounded and -mixing. Thus, according to an inequality of
Collomb [2] (see the details in GySrfi et al. [7, pp. 19, 20]) a constant co > 0 exists
with

P(Bn) <_ e-cn n e N.

Therefore,

IEIIAnN.,lll q e-min{cqS*,co}n, n N.

If the second version of B2c is assumed, one argues as before, noting

P(Bn) <_ (nS*/2)-2plEIII +.., + nllp
_< cn-p, n N,

with a suitable constant c < , where for the latter inequality Theorem 2 in [10] is
used instead of Collomb’s inequality.

b) We use the notations in the second part of a), As there, one obtains

cx cx nN

n.=l n.=l k.=(n-1)N*+l
 EIIAk,x( )ll

for sufficiently small a > 0. (n) is a-mixing where the corresponding mixing coeffi.
fulfill ancients an < oc. According to Ibragimov and Linnik [9, Lem. 18.5.2 and

its proof] one has, with a suitable constant c <

n=l n.=l j’-I
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OO n

n=l j=l

=cE n-2 jaj < cx.
j--1 n--j

The theorem below concerns the asymptotic mean estimation error of (Xn) and
the asymptotic bias 5a of (Yn) for small a. Its proof is based on an argument of
Sanchez-Palencia [25] concerning the averaging method for deterministic differential
equations (compare also [26, 4.2]). The first assertion in Theorem 2.75), under an
assumption similar to B2a and under Assumption B1, is due to Kushner and Shwartz
[13, especially p. 180] and to Macchi and Eweda [16], respectively. A corresponding
result for an algorithm with projection has been obtained by Krieger and Masry [12]
under conditions concerning a-mixing and finite moments.

THEOREM 2.7. a) Under Assumption A2,

lim]]Xn-]]O ( 0)
n

holds and therefore

o).

b) If Assumption B2a or B1 is fulfilled, then

lim]E[[Xn vg[]-- O(01/2), (a O(O1/2) (0 --+ 0).
n

The following remark is proved similarly to Remark 2.2b).
Remark 2.8. Assumption A2 is satisfied under each of the conditions B2a and

B2b.
Proof of Theorem 2.7. Via the recursion for (X 0), without loss of generality

V t9 0 may be assumed.
a) Choose (X) as in (2.2). Let A* be a uniform bound of IIAnll as in the proof

of Lemma 2.6. Noting that A1 is bounded and positive semidefinite, and noting
stationarity of (An) and relation (2.9) in Lemma 2.4, one obtains for a sufficiently
small

 EIIX x ll- ]El[An,l(O)(Xo X )ll o

by Lebesgue’s dominated convergence theorem. Therefore, without loss of generality
X0 X may be assumed. Since (Xn) is then stationary and ergodic, in view of the
first assertion it suffices to prove

H(a) "= ]llXnll- ]llXoll--+ 0 (c 0).

A(A) > 0 yields

aA)nl[ <-(1- aA(A))

_
e-aA(A)n

D D(a) "=for all 0 < c < A(A) -1 and n E N. Choose Q such that e-(A)c2 -,
for all 0 < a < A(A)- Further choose an integer[] + 1; thus 11(1- cA)DII <_ -T- T(a) such that

1- ellAiiDa(T + 1) (2A* + aDA* < -’2
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which is possible for all 0 < a < & with some 0 _< min{A(A) -1, a"}. In the following
discussion, let 0 < a < 0. Further, let

g(n, y) := A,+ly- V,+,
T

1
(n, ) ( + i, ),

i=l

n_>0, yER".

Thus

n

Xn+ X (,X) X (,X),
k=DN

n >_ DN, N>0.

Let

ynN+ yN OgT(n, yN), DN <_ n <_ D(N + 1)- 1

with

YN XDN.

Thus

n

k=DN

DN <_ n <_ D(N + 1)- 1.

With

n

(n, N) "= E g(j’ Xj)
j=DN

one has

Xn+l XDN --O(/)(?’t, N), DN <_ n,

and

Xn+ YnN+
=-a (n,N)- E gT(k,yN)

k--DN

=-a ((n,N)-T(n,N))+ CT(n,N)- E gT(k, Xa)
k=DN

k=DN

for DN

_
n <_ D(N + 1)- 1, where

1
T

CT(n, N):= E (n + k, N).
k=l
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Now

(n, N) CT(n, N)
T

1 E ((n, N) (n + k, N))
k--1

1
T n+k-- E E (Ad+lXd gj+l)
k=lj=n+l

for DN <. n <_ D(N + 1)- 1. Further

Cr(,N)
1 T n+k 1 T DN+k-1

k----l j=DN+k k=l j--DN

(j,z)

n n
1

T

(,x) + [( + , x+) ( + , x)]
j=DN j=DN k’-I

1
T DN+k-1

E
k=l j=DN

g(j, Xj)

E gT(j,X)+ E EA++1 a E (nl+lXl-gl+l)
j----DN j=DN k=l l---j

1
T ON+k-1

-b- E E (Aj+IXj Vj+I),
k=l j=DN

n

((,x) (,y))
k----DN

n
1

T

E E’4++l (x Y)
k=DN

for DN <_ n <_ (D + 1)N- 1. In the next step, set

z,N+ ZnN aAZN DN <_ n _< D N + I I

with

ZIN :--- XDN,

Then

E (A+I- A)YN
j=+l
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1 n k+T

k=DN j--k+l

Now

Xn+l- zN+I

n T j+k-1
1

j=DN k=l l=j

n k+T1

k=DN j=k+l

forDN<_n<_D(N+l)-l. Thus

n

< IIAII llX zll / (, D, T),
k=DN

DN <_ n <_ D(N + 1)- 1,

where

,(a, D, T) aDIE
1

T

E(A,+. A)Xo
i=l

+ a(T + 1)A*IEIIXoI]

+a2D 2
k=l

By induction one obtains

]EIIX, zNII
<_ eIIAII(n-DN)(a, D, T)
<_ ellAIID ,(a, D, T) ="
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for DN <_ n <_ D(N + 1). Let

Zn+ "= Z, aAZn
with Zo "= Xo. Noting

N 1 1

one obtains

1
]E]]XD(N+I) ZD(N+I)[I < 0"(0) + ]EIIZDN XDNII

and thus by induction

]EIIXDN ZDN]I 2a(a), N k 0.

Because

IEI]ZDNll _< II(I A)NJI IE IJXoJl - 0 (N - x)

one has

H(a) <_ 2a(a).

Moreover

H(a) <_ 4e’IIAIID aD]E - E(Ai+I A)Xo
i--1

+(2+aDX*)a- IE E + aDE E
k=l j=l

(Noting D(a) O(E), T(a) 0(), T(a) 0),

up (ZoIlx[o,>) o ( )
O<a<

{uniform integrability of X0}, boundedness of A, and

(- 0, 0 ()
i=1 i=1

(mean ergodic theorem), one obtains H() 0 ( 0). 0 ( 0) now follows
from

I111- lim IIEYII li_...m IEIIYnll < limlEllXnll H(a).
n n

b) irst assume B2a. Consider suciently small and choose D = D() and
T T() as in a). Without loss of generality Xo X may be assumed. According
to the proof of Lemma 2.6 one obtains

E (A+ A)Xo
i=l

C (A,+I A) + 2A’Ca (B,)
i=1 n=l
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with a suitable constant C < oc and IP(Bn) < oc. Because

113
n

E(A,-A)
i---1

O(n1/2), ]E O(n 1/2

according to Ibragimov and Linnik [9, proof of Thm. 18.5.4], one has

further, 5a O(o1/2) (o --+ 0).
Now assume B1. One uses the stationary sequence (X) defined by (2.2) for

sufficiently small a > 0 and notes

]EIIXc$ = 0(1) (a ---, 0).

This relation follows by an argument similar to that in the proof of Lemma 2.6b. In
fact, it suffices to prove

with k* max{N*,M} (N* according to (2.12)) for sufficiently small a > 0 with a
suitable constant c. Because of M-dependence the left side is majorized by

E n (max {lE[[Ak.,l(a)ll 4, ]EItAk.,l(a)[[s})
n--1

and thus, via Lemma 2.6a), by

(1)E Tt(1 pO)n 0
(pO)2

n--1

O --+ 0,

with a suitable constant p > 0. Square integrability of X and Lemma 2.6a) with
q 4, together with M-dependence, yield

]EIIXn Xll ]EIIA,x(a)(Xo X)ll 0 ( ).

Thus, as in a), without loss of generality X0 Xc may be assumed. It suffices to
prove

llXoll- o(1/2), - o,

One uses a modification of the argument in a). Q and D D(a) are chosen as in a);
the integer T T(a) is chosen in such a way that

1
eIIAIIDo(T 1) oD]EIIA

1
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First a refined treatment of the third and the fourth terms in the right side of (2.17)
will be given. By partial summation and use of (1.1) one obtains

k

E(Ai+ A)X
j=l

j=IE(AJ+I A)Xk + a jl= i--1

(Ai+ A) (Aj+Xj Vj+)

for k- 1, 2, Thus, by stationarity, one has

( DN+k-1

k=l \j=n+l j=DN

1< (T / 1)llAIlllXoll / 2,(, T)

for DN < n < D(N + 1)- 1 with

T k-1

k=l j=l

Aj+IXj)

II&+ll IIXll)

Noting IEIIXoll 0(1), a O, the moment conditions on A and the assumption of
M-dependence, one further obtains

alE 1-- j+kl- Aj+k+l Al+lX1
j=DN k=l l=j

(+o?DIIAII IE
k--M

k-M+l

E (Az+l A)Xz
/=1

-f-ca2D
1 2< -o DIIAII(T -4- 1)]EIIAlll ]E IIX0]l

1+aDIIAII IE ]IAlll (a, T) / carD
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for DN <_ n <_ D(N + 1) 1 with a suitable c E R+. Set

As in a) one obtains

H(a) <_ 2a*(a);

moreover

1
T

H(a) <_ 4eIIAIID aD]E - E(Ai+I A)Xo
i=1

1
+(2a + a2D[[A[[E][AI[)-#(a,T) + ca2D

+2a + D lIAr+l[[
k=l j=l k=l

j=l

The right-hand side is O(/), 0. To show this one uses the Cauchy-Schwar
inequality several gimes, notes D() O(1/), T() O(1/), T()- O(), and
he moment conditions; further one uses

(- =o(, =o()
k=l k=l

according to Billingsley [1, 20, Lem. a] and lbragimov and Linnik [9, Thm. 18..2]
(compare also Peligrad [19, Thm. 1.1]), and

x0l o(, 0.

Here in view of (, T) one notes, by M-dependence,

i=1
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3. Consistency under independence or martingale assumptions. In this
section it will be shown that in the case of independence and in the martingale case
the assertion of Theorem 2.1b) on (Yn) holds with 5a 0. This means that Yn is
strongly consistent and asymptotically unbiased.

THEOREM 3.1. If the random elements (An, Vn), n 0,=i=1,=t=2,..., are i.i.d.,
then there exists an c* with 0 < c* <_ cd" such that for all 0 < c < c*

(3.1) Yn 9 (n ec) a.s. and in the first mean.

Proof. One chooses N* according to (2.12) and argues similarly to the last part
of the proof of Lemma 2.4. By the independence assumption, EIIAlll < oc, and
Lebesgue’s dominated convergence theorem for c --, 0, one obtains

1
]EIIAN.,I (a)I <_ 1--olEA Ai

i=1

for sufficiently small a, and then IEIIUII < oc. Now Theorem 2.1b) yields the first part
of the assertion, where obviously 5 0. Further one obtains EllXn Xll - 0 for

X in (2.2) and then, by the mean ergodic theorem for (X), together with IEX
the second assertion.

For the special case of nonrandom An A almost sure convergence in (3.1) was
proved by Pflug [20] and Polyak and Juditsky [22]. In what follows we extend Theorem
3.1 for martingale differences that are not necessarily stationary and ergodic.

THEOREM 3.2. Assume that ((An- A, Vn- V),Jn_) is a martingale difference
sequence such that

c2 := suplE (IIA- All2 A-n-t)(cv) < oc

and

(3.3) suplEllVnll 2 < oc.
n

Then for all 0 < c < 2/A(A) satisfying

(3.4)
02C2

11i2 All < 1

the relations

sup llXll < , li---lElIXn ll o() ( 0)
n

hold and

Yn t (n oe) a.s. and in the second mean.

Proof. Noting the recursion for (Xn )) and the equivalence of (3.3) and
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(because of (3.2)), one may assume V 0 without loss of generality. (1.1) can
be written in the form

Xn+l Xn -ctAXn + ctWn+l, n >_ O,

where Wn+l -(An+l A)Xn + Vn+l. Obviously IE(Wn+I,Xn) 0; therefore, for
all sufficiently small e > 0

lEIIX/lll 2

< II AlIlIIXll + 2liw+ill
<_ 0;llxll + 1 +- 11/11

with p II1- cAII / c(1 + e)c < 1, because of (a.2) and (a.4). This, together with
(a.a), yields the assertions on (Xn). In the special case V O, here with e O, one
obtains

and thus

Xn An,1 (oz)Xo,

lEIIX+1112 plEllXnl] ,
IEIIAn,I ()Xoll O(pn).

The further specialization to unit vectors X0 yields

(3.6) ]EIIAn,1 ()11 O(pn)

and then

(3.7)

Therefore, in view of (3.5), without loss of generality Xo 0 may be assumed. It
i8 easy to verify

n+l

Yn+l Y ctAYn I aA a En .+_’--:-Yn + Wk.

Moreover

because

and

n+l1 E(Ak_A)Xk_I
__

0
n+l

k=l

a.s. and in the second mean

lE((Ak A)Xk-1 ’-1) 0

IEII(A A)X-II 2 c211X-1112 O(1).
From this and from

1 n+l

n+ 1 EVk --,0 a.s.,
k=l

by IlI- All < 1 one obtains relation (3.5) (compare [28, Lem. 2b]).
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4. Asymptotic normality. In this section it will be shown that the sequence
(Yn) of arithmetic means under rather weak assumptions has convergence order n-1/2;
there holds a (functional) central limit theorem.

THEOREM 4.1. If Assumption B1 or B2c holds, then for a sufficiently small,
v/-(Yn O-Sa) i.e. n-1/2 n=I(X-O-a), converges in distribution o a Gaussian
random vector with zero expectation.

Remark 4.2. Theorem 4.1 may be generalized to a weak invariance principle of
Donsker type.

Proof of Theorem 4.1. Without loss of generality (Xn) (X), with X as in
(2.2), may be assumed, because for the corresponding arithmetic means one has

n

x/-llYn Y n-X= IIA, IlXo X
k=l

< n-1/2 ]IA, IlXo Xg II-+ 0 .s.
k=l

by Theorem 2.1a). Let

0

2n := Xn 9 6a oz E An,n+i-1 (oe)(Vn+i An+i))

o
f((nl) O E An,n+i+l(OO(Yn+i An+iZg) as, n E N,

i’---I

One has

IEXn O,

and further (compare [1, 21, especially p. 183], [8])

[112o<z> E(.,o IA, V,... ,Ao, Vo,... ,A_,, V,)l123
< [{(l[.o*) oll=lAz, V,... ,Ao, Vo,... ,A_, V_z)}] 1/2

-l-1

E A0,,+l (a)(V A0)
i----oo
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a Z IE(llAn,l( )ll2[I Vo A)ll)) 1/2"
n=/+l

By Lemma 2.6a) one obtains

oo

<oo;
/=1

further, in a similar way,

 EIl oll q < for each q e N.

One uses Theorem 18.6.2 (and Remark 18.6.1)in [9], or Theorem 4.2 in [17], for which
the statement after Corollary (3.9) there concerning a2 0 also holds, together with
Definition (2.4) and the remarks in 2 and 3 there, and obtains then the assertion
by the Cramr-Wold device.

5. Asymptotic normality and covariance. In this section we assume that
the observations either are independent or form a martingale difference sequence.
Polyak and Juditsky [22] considered asymptotic normality in the martingale case too.

THEOREM 5.1 (see [22, Thm. 1], [21, Thm. 1]). Consider the iteration

Xo arbitrary,

(5.1) Xn+l Xn- o(AXn V- Wn+l), n 0,

where 0 < a < 2/A(A), under the assumption that (W, ."n--1) i8 a martingale differ-
ence sequence.

(5.2) suplE([[W,ll2 lY’,_)< a.s.,
n

(5.3) lim lim lE(llWl[X[llwnll>c] --1)= 0 in probability, and
C--+oo n--oo

(5.4) lim IE(WWT -1) S in probability,

where S is positive semidefinite, then

(5.5) n1/2 (Yn ) -* A/’(O, A-1SA-1) in distribution.

b) If Xo is square integrable and

(5.6) lim IE(WnWTn S,
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then

lim nlE( (Yn ))(Yn ))T) A-1SA-1
n--(x)

We need a slight modification of Theorem 5.1a.
LEMMA 5.2. Consider iteration (5.1), where 0 < a < 2/A(A) and (Wn, JZn_) is

a stationary and ergodic martingale difference sequence such that

w1 s

with S positive semidefinite. Then

n1/2 (Yn vg) --+ Af(O,A-1SA-) in distribution.

Proof. Without loss of generality we may assume V 0 and, according to
the proof of Theorem 3.2 with p =IlI aAII 2, also X0 0. One obtains

k

/=1

therefore,

On the one hand

A-1Wk - A/’(0, A-SA-1) in distribution
n

k=l

according to Billingsley [1, Thm. 23.1] and the Cram4r-Wold device, and on the other
hand

7%

7%1/2 __1 E (I on)n-k+ln-1 Wk 0
n

k=l

in probability; therefore, the proof is complete.
Although An A is a special case, (5.5) and (5.7) are surprises: the asymptotic

covariance does not depend on a and is the best possible covariance. Unfortunately
it is not true for random An; the asymptotic covariance differs from the best possible
covariance by a term O(a). In the following X0 is considered as a random vector.

THEOREM 5.3. Assume that (An, Vn), n 0,+/-1,+/-2,..., are i.i.d.,
and IEI[V[[ 2 <
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a) Let Xo be square integrable. Then there is an * > 0 such that for all 0 < <
the limits

(5.8) nlirno ]E((Xn O)(Xn )T) Eo

and

(5.9) lim n]E((Yn )(Y, #)T) E

exist, and

E A-SA- + IE((A-Ao I)E.(A-Ao I)T),

where

(5.11) S lE((V1 AI)(V1 AlO)T).

b) Furthermore, with Xo not necessarily square integrable, for 0 < a < * with
suitable *,

(5.12) n1/2 (Yn z9) Af(0, E) in distribution.

Remark 5.4. It is well known [13], [20] that E O(a); therefore,

E A-1SA-1 + O(a).

Proof of Theorem 5.3. a) Without loss of generality one may assume V ) 0
and X0 0, the latter because of (3.6) for sufficiently small a > 0 in the proof of
Theorem 3.2. Then

n

(5.13) Xn E BniYi’
i-1

where

Bni oAn,i+l (c),

and

(5.14)
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Using (3.6) once more one obtains that ]E{{AII 2 < oc implies the existence of an
a* > 0 such that for all 0 < a < a*

n=l

consequently

n

lim Z,.= lim E]E(B.SBnT)
i=1

nlimE ]E (BSB) E lE (BSB) F,
i-1 i=l

exists and is finite. From (5.13) and (5.15) one obtains

]E((I aAo)E(I aAo)) a2S

or equivalently

AE + EA alE(AoEAo)

thus

EA-1 + A-IE aA-IE(AoEAo)A- aA-SA-.
Moreover

n-1 n n-1 n

(5.17) n(YnZT) lIE T
n xx +E E xx+E E xx

k=l k=l/=k+l /=1 k=/+l

Then

k..-1 k=l

Fork</

)E
i-1 j=l
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therefore,

)E x xFn
\k--1

1
Ea,k (I aA)z-k 1

E k (I aA)l-k
n n

k-’l/=k+l k=l /=k+l

1
,k (I- (I- aA)’-) (aA)-l(i- aA)

n
k=l

E(aA)-I(I- aA)= E(aA)-1- Ea.
In the same way one obtains

)(5.20) lIE E XkX’ (aA)-lEa S.
n

\/=1 k=/+l

By (5.17)-(5.20) one obtains

(5.21) E (EA-1 + A-E)/a- E.

(5.16) and (5.21)imply (5.9).
b) Without loss of generality V 0 is assumed. For sufficiently small a > 0

the random variable Us defined by (2.1) is integrable. Let (X,) be defined by (2.2)
and

n
k=l

then

Y Yn
1 E (X; Xk) - E Ak,1 (a)(X Xo)
n

k--1 k--1

and thus because of (2.9) in Lemma 2.4

n1/2]]Y Y,, <_ n-1/2 ([[A,l(a)]]=
<_ n-1/2 ( a.So

Therefore, it suffices to consider only X. Now one applies Lemma 5.2 for Wn+
-(An+ A)X + Vn+, noting square integrability of X (see Lemma 5.5 below)
with ]E ,T(XoXo )= Ea by a) and (5.9), (5.10). V1

In order to treat the convergence behaviour in the martingale case the following
lemma will be used.

LEMMA 5.5. Assume that ((An A, Vn Y),T’n-1) is a stationary and ergodic
martingale difference sequence such that

E(IIA Ile c2 < a.s.
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and

Elllqll < .
Assume Xo square integrable and let a > 0 be sufficiently small.

a) Us defined by (2.1) is integrable.
Lt (X) dd @ (...). Thn

c) EIIX Xll = o (n ).
Pro@ a) The proof is established by (3.6).
b) Because (X) is stationary and ergodic (by Theorem 2.1), for arbitrary fixed

M N the sequence (Zk,M)eN with

Zk’M-- { IIX;IIM otherwiseifIIXll 2 < M,

is stationary and ergodic, thus

MEN,

Because of x x 0 .s. (by (3.7)) and

n
1In E IIXk + x;

k=l

n n

IIX x + IIX --* 2llXo <
k=l k=l

a.So

(by a), Remark 2.2a), and stationarity and ergodicity of (X)), one obtains

k-1

1
n

n
(X +X, X; X)

k=l

1
n

< Ilx; / Xll IlX Xll --, o a. So

and thus

liml ,*11
1 Enn

,,X, 2 lim- ..llx__11
n Tt

k=l k=l

Therefore, by Fatou’s lemma and Theorem 3.2,

llX = < lim
1

IlXll =
n

k=l
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n n
k=l

< supEIIX,,[[ < .
IEIIX )112 O(a) will follow from c), stationarity of (X), and li--IEIIXn [I 2

n

O(a) (a - 0) (by Theorem 3.2).
c) One uses square integrability of X0 and X and employs (3.6).
THEOREM 5.6. Under the conditions of Lemma 5.5 there is an a* > 0 such that

for all 0 < a < a*

(5.22) lim ]E((Xn O)(X ))T)

where

p; ((x o)(x )),
and

(5.23) lim nlE((Yn O)(Yn ))T) E*,

where

Z* 1B(BBr)
with

B (A-1A I)(X )) (A-1V1 A-1AIO) (A-1A1 I)X + 0 A-1V.
It holds that

r* A-lSA-1 { O(c) if]E(AI(X ))VT) 0,(5.24) O(a1/2 otherwise.

Furthermore, with Xo not necessarily square integrable,

(5.25) n1/2 (Yn )) - Af(0, E*) in distribution.

Proof. Without loss of generality V $ 0 and, according to (3.6) in the proof
of Theorem 3.2, X0 0 may be assumed. Let a > 0 be sufficiently small. By Lemma
5.5 and the auxiliary formula IICCT-DDTII <_ IIC-DII(IICII/IIDII) for d-dimensional
vectors or d d matrices C, D one obtains

II]E(XXT) ]E(XoXo

IIIE(XXT) ]E(XXT)II lE(llXn Xll(llXnl] + IIXll))

(EIIX XII=)1/2[OEIIXII=) + OEIIXcII) ] --+ 0 ( --+

which proves (5.22). In order to prove (5.23) one applies Theorem 5.1b) for Wn/
-(An+l A)Xn + Vn+l, which form a martingale difference sequence. It is sufficient
to verify (5.6), i.e.,

]E(wwT - ]E (((At A)X V1)((A A)X v1)T)
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As before, as an upper bound for the difference one obtains, with a suitable constant c,

IE(IIA,/I AllllXn Xll[llAn/ AII(IIXII / IIX,ll)/

_< c( llXn X, ll )1/2 [( llXnll ) 1/2 / ( llX, ll ) 1/2 + ( llVn+lll )1/2],
which tends to 0 because of Lemma 5.5. (5.24) also follows from this lemma. (5.25)
concerns asymptotic normality, which can be proved as that of Theorem 5.3b). [:]

6. Conclusion. The method treated above is of low computational complexity
with the following disadvantages: (i) for general (dependent) observations it is usually
asymptotically biased, (ii) for weakly dependent observations it is asymptotically
normal with (n-1/2)-convergence order but with a nonoptimal covariance matrix,
even in the i.i.d, case. In order to avoid these disadvantages one can use decreasing
gains, e.g., an an-’ (a > 0, 3/4 < - < 1). Under assumptions close to ergodicity
(see (10) and (11)in [28] and (2.15a), (2.15b)in [15]) Ljung [15] proved that Xn is
a.s. convergent to ) (asymptotically unbiased) and therefore Yn also is. Under the
assumption that a functional central limit theorem for (Vk- Akx) holds, x E Rd (see
[17] for sufficient conditions) with asymptotic covariance matrix S in the case x ),
and under the assumptions

]E E(Ak A) O(n), ]E (Vk V) O(n)
k-’l k--1

we proved for the above gains, besides almost sure convergence, asymptotic normality
with the best possible covariance matrix A- SA-. This problem has been considered
by Polyak and Juditsky [22] under i.i.d, observations and by Yin [29] under -mixing
and bounded observations. The window averaging version of the decreasing gain
algorithm has been investigated by Kushner and Yang [14].

Acknowledgment. The authors are grateful to the referees for making useful
suggestions and raising relevant questions which led to a considerable improvement
and extension of this paper.

Note added in proof. As to Theorem 2.7b), considering II]EXn]I instead of
]EIIXn[ in its proof, one can show

0),

if Assumption B1 or B2c is fulfilled. The auxiliary result that

n n

II]E(A+ A)Xoll and E II(A- A)(V1 AXo)ll
i=1 i--1

are uniformly bounded with respect to n and a is obtained by use of Lemma 3.5
(p 1)in [17], Collomb’s [2] inequality, and Theorem 2 in [10].

The authors thank L. Gerencsr for a stimulating discussion.
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ON A CERTAIN PARAMETER OF THE DISCRETIZED EXTENDED
LINEAR-QUADRATIC PROBLEM OF OPTIMAL CONTROL*

CIYOU ZHU

Abstract. The number :-- I[(- /P- 1/2 is an important parameter for the extended linear-

quadratic programming (ELQP) problem associated with the Lagrangian L(, ) i5. + 1/2./b +
.@ 1/2.( 9. over polyhedral sets x . Some fundamental properties of the problem, as well
as the convergence rates of certain newly developed algorithms for large-scale ELQP, are all related
to .

In this paper, we derive an esti.mate of for the ELQP problems resulting from discretization
of an optimal control problem. We prove that the parameter of the discretized problem is bounded
independently of the number of subintervals in the discretization.

Key words, extended linear-quadratic programming, minimax problem, optimal control,
primal-dual projected gradient algorithm

AMS subject classifications. 65K05, 65K10, 90C20

1. Introduction. The extended linear-quadratic programming (ELQP) prob-
lem, in its standard minimax form, is to find a saddle point of the Lagrangian

where 0 and are polyhedral sets in IR and IR[, respectively, and/5 E IR and
( E IRx are symmetric positive semidefinite matrices [1]. The associated primal and
dual problems are

minimize f() over all e , where f(%):= sup L(%, ),

maximize g()) over all 6 l>, where g())’= inf L(,)).
e0

The problem is called fully quadratic if both P and Q are positive definite.
The number

(1.2) "7 := RP-

introduced by Rockafellar [2] is an important parameter for the problem in the fully
quadratic case. (We use the Euclidean norm for vectors and the associated operator
norm for matrices unless otherwise specified.) It serves as a Lipschitz constant for the

mappings F" IR - IR and G" IR -, IR defined as

F(%) argmax L(%, 9) and G()) argmin L(%, 9),

*Received by the editors July 29, 1993; accepted for publication (in revised form) July 26, 1994.
This research was supported by the Office of Scientific Computing of the Department of Energy under
contract W-31-109-Eng-38 and by the National Science Foundation under contract ASC-9213149.

) Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass
Avenue, Argonne, IL 60439. Present address: EECS Department, Northwestern University, 2145
Sheridan Road, Evanston, IL 60208.
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respectively [2]. It also plays a central role in the convergence results of several newly
developed algorithms for large-scale ELQP problems.

Let s f(u) -g(v) be the th duality gap related to the primal-dual pair
of iterates (u, v). Rockafellar proved that the sequence { (u, v)} generated by the
finite-envelope algorithm [2] satisfies

(1.3) +1 < 1-
1

+
In [10], Zhu proved that the sequence {(u,v)} generated by certain variants of the
primal-dual steepest descent algorithm developed in [9] satisfies

1.4)
0 if > .

One of the variants uses a "fixed step length" strategy [10], where the step lengths
are also related to 7. In [6], [7], S. J. Wright described interior point algorithms for
linear complememarity problems (LCPs). If the ELQP problem is formulated as an
LCP and if the standard conjugate gradient algorithm is used to solve the resulting
linear equations, the convergence rate for the "inner iterations" [8] will be

(1.5) .+1 < 1-
2

+ (1 +
The right-hand sides of (1.3)-(1.5) all depend on the parameter 7 of the problem. The
smaller the value of 7, the faster the convergence for these algorithms.

In this paper, we consider the ELQP problem resulting from discretizing a
continuous-time optimal control problem with time-independent data. As we show
in 2, the matrix for such problem consists of a large number of nonzero blocks,
each of which is a product of infinite series in terms of the matrices in the original
continuous-time problem. It is usually impractical to compute 7 from the definition

(1.2): Actually, a primary goal in algorithm design is to avoid computations involving
the R matrix, because of its size and density. All three of the above-mentioned algo-
rithms for the discretized ELQP problem could be implemented in such a way that
this goal is reached by taking advantage of the discretized system dynamics in their
computations [3], [4], [8].

Mathematically, however, an unanswered question is the dependence of 7 on the
data of the original continuous-time problem and on the number of subintervals used
in the discretization. Zhu and Rockafellar [9] observe that the number of iterations
needed for their algorithms to converge remains essentially unchanged as the discretiza-
tion is refined. This observation suggests strongly that the value of 7 approaches a
constant, or is at least bounded above, as the number of subintervals increases, in
this paper, we will prove this conjecture on 7. In 2, we derive expressions for the
matrices , , and in the Lagrangian (1.1) for the discretized problem. In 3, we
give an estimate of 7 in terms of the matrices in the original continuous-time extended
linear-quadratic problem of optimal control, an estimate that is independent of the
mesh width.

2. Data matrices in the Lagrangian for the discretized problem. The
continuous-time extended linear-quadratic problem of optimal control (with time-
independent data and normalized time interval) is
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minimize 9v(ue, u)

[p.(t) + 1/2(t).P(t)- c.z(t)]dt + [p. + 1/2.P -c.x(1)]- PV,Q(q Cx(t) Du(t))dt + PV,Q (qe Cex(1) Deu)

over the state trajectory

it(t) Ax(t) + Bu(t) + b a.e., x(0) Beue + be (x(t) e IRm)

with the control space

u e e e u )

(Rockafellar [1]). Here U, Ue, V, and V are polyhedral convex sets, and P, Pe, Q, and
are symmetric positive semidefinite matrices. Each p term, defined as

py,Q(S) sup{s.v-
vEV

is a lower semicontinuous convex piecewise linear-quadratic function [1, Prop. 2.3].
The dual problem is

(cont) maximize G(v, ve)

/o [q.v(t) 1/2v(t).Qv(t) b.(t)]dt + [q.v + 1/2v.Qv b.(O)]

pv,p(BTy(t) + DTv(t) --p)dt Pu,P (BTy(O) + DT v --Pe)

over the state trajectory

-f](t) ATy(t) + CTv(t) + c a.e., y(1) CT ve + ce (y(t) e IRm)

with the control space

]2 {(v, ve) e [0, 1] ]R v(t) e V a.e., ve e Ve},

where
pu,p(r) sup{r.u- 1/2u.Pu}.

uEU

Problems (pcont) and (Qcnt) differ from the conventional linear-quadratic models in
optimal control in that they allow for piecewise linear-quadratic penalty terms in the
objective functionals, as well as constraints on the controls. See Rockafellar [1] for a
detailed presentation.

Problems (pcont) and (Qcont) are equivalent to a saddle point problem under
certain finiteness conditions (which will be satisfied if, for example, the matrices P,
Q, Pe, and Qe, are positive definite) [1, Thm. 6.1 and Coro. 6.4]. The saddle point
problem is
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minimax(,cont)
(ue,u)eM,(v,ve )e)

where

J(ue, u; v, v) J(u(t), v(t))dt + Je(ue, v) ((ue, u); (v,

with

J(u, v) p.u + 1/2u.Pu + q.v 1/2v.Qv v.Du for u E IRk, v E IRt,
J(u, v) p.ue + u.Pu + qe’v {ve.Qev for u ]Rk, v IR

((u, u); (v, ve)> x(t).(CTv(t) + c)dt + X(1).(CT ve +

(t).(B(t) + b)dt + (0).(B + b).

A numerical solution of (,cont) can be obtained by discretizing the problem into
the following approximate version [4], [15]"

(ncnt) minimax J(u, u; v, v

where

bin= (ue,u) ebl u(t) is constant on T=I,...,n
n

];n= (v, ve) e) v(t) is constant on T=l,...,n
n n

If we denote the constant values of u(t) and v(t) on (z_A, ) by ur and v,
respectively, for T 1,..., n, problem (.ncnt) can be written in the form of a finite-
dimensional discrete-time saddle point problem as

(ndisc minimax fin (u, u1, Un; vl v, ve ),
U, x V,

where

n(Ue,Ul,... ,Un; Vl,... Vn, Ve)

Jn(,, v-) + J(u, ve) <(u, u,..., ?n); (Vl,..., Vn, ve)>n

with

(2.2)
Jn(u,r, vr) pn’U,r -F qn’Vr 4- 1/2ttr.Pntt,r 1/2vr.Qnv,r vr.Dnttr 4- dn,

Je(u, re) p’ue + qe.ve + 1/2ue.Peue 1/2ve.Qeve,
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and

(2.3)

<(e, ,..., ); (,.. ,)>
n

E yr+l’(Bnu-r "f- bn) -4- yl.(BeUe A- be)
-=1
n, x,_.(c, + n) + X.(C + o).

’=1

The trajectories are given by the discretized system dynamics
(2.4)

x-=Anx-l+Bru,-+b for ’=l,...,n, x0=Beu+be (xrEIR),
yr ATy,-+I + CT v + Cn for 7" 1,..., n, Yn+l CTe ve + ce (Yr E IRm),

where we impose

(u, u,..., u) u :=u x (u) c_ IR x (Ia),
(Vl,..., Vn, Ve) Yn "=(V)n x Ye (]R1)n x ]Rle.

The transformation of the data is

(2.5a) An I + MnA,
(2.5b) Bn Mnt, bn Mnb,
(2.5c) Cn CM,, c, MT c,

(2.5d) On 1D + CSnB, dn = -C.Snb,
n

rsT(2.5p) Pn _1 p, Pn --P- B c,
n n

1
(2.5q) Qn 1Q,, qn --q CSnb,

n n

where

1(1) 1E Ai-2, M, -I + ASr,.(2.6) Sn=
n n

i=2

(Wright [4], [5]). The associated primal and dual problems are

and

(aniSC)

minimize f(u) over u Un, where

f(?,te, tl,..., tn) :- max ’n(Ue, ?.tl,..., ?.l,n; Vl,..., Vn, Ve)
v V,

maximize g(v) over v Vn, where

g(vl, v, v) := min ,Tn(Ue, u, u; v, Vn, v).
uUn

Problems (ndisc) and (Qdisc) are ELQP in the multistage format, which could be
solved directly by the techniques mentioned in 1 without forming the huge/ matrix
in the Lagrangian (1.1) of its standard form. However, in order to get an expression for
7 in terms of the matrices A, B, C, D, P, and Q from the continuous-time problem, we



A CERTAIN PARAMETER OF THE DISCRETIZED ELQP 67

eliminate the state variables x and y in the expression of Yn. From the discretized
system dynamics (2.4), we obtain

xe Be ue
xl AnBe Bn ul

n n--1Xn AnBe An Bn AnBn Bn Un

be
Anbe / bn

Abe + A-lb, +... + bn
I Beue
A I B,ul

(.7)

A A- An I BnUn

be

By substituting (2.7) in the second expression of (2.3), we obtain

Xl Xl
/ C,

Cn Vn Ce
Ce Xn Ve Xn

Cn Be
A,Be Bn Ul

Cn

vx CB
C,A,Be CnB

’Vn
ve CeAnnBe CeA-1Bn CeAnB CeBn
v

CnA, C,

v CA, CA,

be

(e.8)

c, I be
An I bn

an "nce A An-1 An I b

Similarly, we have from (2.2) that

(,) + (o,)

Pe Ue qn Vl

Pn Ul 1 u I

in
+

q , +5
Itn qe Ve ttn
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2 .v
Q

ve
Qe Vnve

Vn 0
Ve "an

By substituting (2.8) and (2.9) in (2.1), we obtain equality of Tn with the La-
grangian L(, )) in (1.1) by noting the identities

(2.10)

(2.11)

with

CIBe D
CnAnBe CIB, Dn
CA2nBe CAB, C,IB, Dn

(The additive constants in ,Tn are dropped since they play no role in the problem.)

3. Estimation of the parameter of the discretized problem. In this
section, we prove the following estimate of the parameter /of the discretized problem
in terms of the continuous-time problem data.

THEOREM 3.1. Suppose the matrices P, Q, Pe, and Qe in the continuous-time
extended linear-quadratic problems (7)cnt) and ({cont) Of optimal control are positive
definite. Then the parameter /n of the discretized versions (ndisc) and (QdnisC) satisfies

1 e(n-1)]lAll/n
(3.1) + [[Q-DP- + IIQ-CI[IBP-[ n-,i ei,.ii/n) + O(n-1),
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where n is the number of equal-length subintervals used in the discretization. Moreover,

(3.2)

Two conclusions follow immediately from Theorem 3.1:
(i) The parameter "Yn of the discretized problem, as a function of n, is bounded

above when n --. oc. Hence for the algorithms with their convergence rates having an
upper bound determined solely by /n, the number of iterations needed for convergence
should remain essentially the same as n increases. If, in addition, the algorithm has
only O(n) operations in each iteration, then the total central processing unit time
needed for convergence should be proportional to n. These results are consistent with
the observations of Zhu and Rockafellar [9].

(ii) The only part of the original data that has an exponential contribution to
is the norm of the matrix A in the system dynamics as the coefficient of the state
variables. The norms of all the other matrices contribute linearly.

Before proving the theorem, we first state two simple propositions. The proofs of
these propositions are elementary and therefore skipped.

PROPOSITION 3.2. Suppose matrix E can be partitioned as

Ell E12 Els 1Erl Er2 Ers

Then

i--1 j--1

PROPOSITION 3.3. Suppose matrix E is of block diagonal form

E diag[E1,E2,...,Er].

Then

IIEII- max {IIEII}.
l<i<r

Prooff of the theorem. Let P (-gRP-. Then 3’ Ilrll. Observe that the
matrix R in (2.11) is block lower Hessenberg, while the matrices/5 and ( in (2.10)
are block diagonal with the corresponding block structure. Hence the matrix F

(-RP- is also of block lower Hessenberg with the same block structure as that of
R. Partition F as

(3.3) F= [ FneFee Fnn]Fen
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where

(3.4) rne

Q C,IBeP

Q- 2 CnAnBp- 2

F Q-CeABeP-

(3.5) F= QCA,-IB,p

and

Q- 2 CeAnBnP 2 Q 2 CelBnP 2

(3.6)

Q DnPY
Q 2 CnIB,pj 2

C,An BP Q-2CnAn BnP " Q 2 CnIB,Pj 2 Q 2 DnPj 2

It follows from (2.6) that

(3.73)

(3.7b)

2 Ai_2=
1
I+O(n-3)Sn= . n 2n2

"._

Mn I
I + ASn

l
I +O(n-.).

n n

Hence, by equations (2.5), we have the following first-order approximations for the
matrices in the discretized problem:

(3.83) An I + MnA . n
i=0

(3.8b) Bn MnB 1-B +O(n-)
n

(3.8c) Cn CMn _1C + O(n-2),
n

(3.8d) On 10 1
+CSnB -D+O(n-2),

n n

(3.8p) Pn -P,
n

(3.8q) Q 1Q,
n

Applying Proposition 3.2 to the partitioned form of F in (3.3), we have

(3.9) Ilrll _< IIr,]l + IIrll + IIr,ll + IInnll.
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Now we estimate the norms on the right-hand side of (3.9). The matrix Fne in (3.4)
can be written as
(.0)

Fne diag[Q CnBeP Q- CnAnBeP- " Q CnA, Bep- " I I]T

However,

diag[Q CnBeP Q CnAnBeP- " Q CnA, BeP"
iB -2max

O<i<n-1

<_ IIQeC.]]]]BP-e max ]]An[[/}
O<i<n--1

<- IIQeC,IIIIBPJ max{i, I]AnJl n-1 }

by Proposition 3.3. It follows from (3.8a) and (3.8c) that

(3.12)

(3.13)

Substituting (3.12) and (3.13)in (3.11), and using I111 /]TII n, we obtain

(3.14)

IIr,ll <_ (llQ-Cll + O(n-1))]lBeP-2 max{1, e(n-1)llAll/n},

<_ IIQ-ClilIBYj 2 JIe(n-1)]lAll/n -t- O(n-1).

We can show in a similar way that

(3.15) IIr,ll _< IIQ-[CIIIIBP--Ile(’-l)llAII/n + 0(--1)

For the matrix Fee, it is obvious by (3.8a) that

(3.16) IIrll IIQ-JCeABpJ < IIQ-JCIIIIBPJ IlellAII.

Next, we estimate Ilrnn[[. Let r(n be the matrix obtained by zeroing out all the
blocks of Fnn except the diagonal blocks. Let nnr(i) 1,.. n- 1, be the matrix
obtained by zeroing out all the blocks of Fnn except the blocks on the ith Subdiagonal.
Then by Propositions 3.2 and 3.3, we have

lit(o),,..11--IIQ DnP IIQ-DP-[I + O(n-l)

and

1() --1 _IIQ--Ce(_I)A/nBp-511 + O(n_2)II,nll IIQ CnAn B,P 2

n
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for 1,..., n- 1, where the first-order approximations in (3.8) are used to get the
right-hand sides. Hence

But

Therefore

n--1 n--1

i=1 i=1

e(i-1)llAII/n
1 e(n-1)llAII/n

1 ellAIIIn

1 e(n-)llAII/n
(3.17) Ilrn,ll _< IIQ-DP--II + IIQ--CIIIIBP--II n(1--ellAII/n) +O(n-1)"

Substituting (3.14), (3.15), (3.16), and (3.17)in (3.9), we get the inequality (3.1)in
Theorem 3.1. Taking limsup on both sides of (3.1), we obtain (3.2).

In all the above discussions, we assume time-independent data in the optimal
control problem. As a final remark, we point out that it would not be difficult to
derive a similar bound for the ELQP problem arising from the Euler difference scheme
when the optimal control data is time dependent. Actually the proof of Theorem 3.1,
with minor adaptations, still works in this latter case if the data elements in

A(t), B(t), C(t), D(t), b(t), c(t), P(t), Q(t), p(t), q(t), U(t), V(t)

are all Lipschitzian in t. A detailed exposition for this kind of time-dependent case
will be presented elsewhere.

Acknowledgments. The author is indebted to S. J. Wright and the associate
editor for their helpful comments and suggestions and to an anonymous referee for
remarks on the time-dependent case. The final remark in the last section was due to
this referee.
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Abstract. Risk-sensitive control problems are considered. Existence of a nonnegative solution
to the Bellman equation of risk-sensitive control is shown. The result is applied to prove that no

breaking down occurs. Asymptotic behaviour of the nonnegative solution is studied in relation
to ergodic control problems and the relationship between the asymptotics and the large deviation
principle is noted.

Key words, risk-sensitive control, Bellman equation, ergodic control, breaking down, asymp-
totic behaviour, large deviation
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Introduction. Let us consider the following stochastic control problem mini-
mizing

1
(0.1) I(T,x;z,O) logE e foT{V(X)+(x’z)}d 0 R\{O},

subject to controlled processes governed by the stochastic differential equation

dXt a(Xt)dBt + b(Xt)dt + c(Xt, zt)dt,
Xo =x,

where Bt is a standard Brownian motion process defined on a probability space
(t2, -, P) and zt is a control process assuming its value on a control region Z C RN
The constant 0 is called a risk-sensitive parameter and its meaning is realized by
considering the asymptotics as 0 0:

I(T, x; z, O) E[gPT] -t- OVar[T] + 0(02),

where Or foT{V(Xs) + (X,zs)}ds. The case where 0 > 0 is called risk averse
and 0 < 0, risk seeking. We assume that V and are nonnegative functions such that
V(x) --, oc s Ixl o and (z,z) oc as Izl- , and therefore it may occur in
risk-averse cases that (0.1) never has finite value for any control process zt. We then
say that the control problem breaks down. Thus we are led to the problem of finding
the conditions where no breaking down occurs.

It is natural to relate the problem with the existence of the solution to the Bellman
equation from the control theoretical point of view since the value function should
satisfy the equation if it has finite value and sufficient regularity. Actually we shall
first study the existence of a nonnegative solution to the Bellman equation:

o__ !ajDiju + bDiu + Qo(x, Vu) + V(x)
(0.2) ot- 2

x)=0,

Received by the editors September 9, 1993; accepted for publication (in revised form) July 26,
1994.
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with

Qo(x p) -a3pipj + inf
zEZ

+ (x, z)},

(cf. Theorem 1.1) and then prove in 2 that no breaking down occurs under the as-
sumptions of Theorem 1.1. To obtain the existence theorem the estimate (1.28) plays
a key role and the assumption (1.16) is essential to deriving the estimate. Moreover
the assumption indicates the bound of the size of the risk-sensitive parameter 0 ensur-
ing finiteness of the value function for any terminal time T in the risk-averse case. In
fact, Theorem 2.3 combined with Theorem 1.1 shows that no breaking down occurs
under the assumption besides other conditions of Theorem 1.1 (cf. 2.2 and Remark
1.2). The linear exponential quadratic Gaussian (LEQG) case is covered by our as-
sumptions. More general examples are illustrated in 1.5. LEQG refers to the case
where V (resp., ) is a quadratic function of x (resp., z), b (resp., c) a linear function
of x (resp., z), and a a constant matrix, and it has been studied from various points
of view (cf. Jacobson [15], Whittle [25], Bensoussan and Van Schuppen [3]).

The next problem is to see how the value function I*(T,x; 0) inf I(T,x; z, 0)
behaves as T - . Related to this problem we shall study the asymptotic behaviour
of the nonnegative solution u(t, x) to the Bellman equation (0.2) as t - . We shall
prove in a specialized case of Qo(x,p) aiJppj that u(t,x) u(t, 0) converges to a
function v and ou

-bY to a constant X, characterized by the following Bellman equation
of ergodic type:

(0.s) X aiJDjv + biDv + Qo(x, X7v) + V(x),
X constant, v E C2(/N).

X RN,

We find as its corollary that

(0.4.) lim
u(T, x)

lim
Ou

(T, x) X.T

Several authors so far (cf. [1], [4], [21], [11], [19]) have deduced an equation such as

(0.3) from the Bellman equation of discounted type as the discounted factor tends
to 0, with the most far-reaching study on the matter by Bensoussan and Frehse [2].
We further mention the studies on the asymptotic behaviour of the solution u in the
case of LEQG done by several authors, e.g., by Whittle [25], Glover and Doyle [12],
Runolfsson [23], and in other cases by Fleming and McEneaney [9].

We note the relationship between the asymptotics and large deviation principle
due to Donsker and Varadhan [7], which has been noticed by Runolfsson [23]. We
illustrate a typical example in 3.3 indicating the relationship, where X is realized as
the constant relating to the principal eigenvalue of a SchrSdinger operator.

1. Existence.

1.1. Statement of Theorem 1.1. Let (Ft,9, P) be a probability space with
filtration 9t, t _> 0,/t a standard N-dimensional 9vt Brownian motion process, and
zt a progressively measurable process with the value on a Borel subset Z of RN1 We
consider the following stochastic differential equation (SDE):

+ +
(1.1) dX =aj

Xo x

i= 1,...,N,
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and introduce the value functions J_ and J_* as follows:

(1.2) J (t, x; T,/9) inf Ex [er-],
tT--t

(1.3) J* (t, x; T, O) sup Ex[er-],

where

(I)t {V(Xs) + (Xs,z)}ds

and fltT-t is the totality of (t,.T’,.T’s,P, Bs,zs)o<_s<T_t such that (1.1) has a unique
solution for 0 s < T- t. In this paper we employ the summation convention that
in cases where the same indices appear in a term twice, the symbol of summation is
omitted. We assume the following conditions:

(.6)

(1.7)
(1.8)

(1.9)

(1.10)

or, b, c, V, and are smooth,

II(x) (u)ll < MI ul. I() ()1 < Mix
M > 0,

all derivatives of a, b, and Vare dominated by

M(1 + Ixl)m, m > 0,

Ic(x,z) <_ c0(z) for some locally bounded function c0(z),
Y(x) >_ O and lim Y(x)

(x, z) _> 0 and

lim (x, z) oo, zloo!lm i 0 uniformly in x,
z)

a{{ _> .1{I, R a. > 0,

where a{j (aa*){J. In the case where 0 > 0 the Bellman equation for the stochastic
control problem (1.2) is formally written as

(I.Ii) J+ + infzez{c(x,z)DJ+ + O(V(x) + (x,z))J+} 0, [0, T) x RN,
J+ (T, x) i,

where
aJ+J+= at

1
+ -aiJDijJ+ + bDJ+

and
0 0

Dij OxiOxj’ D Ox--.
For 0 < 0, replace inf by sup in equation (1.11) and denote it as (1.11’). We put the
solution to the equation J_. In both cases, taking a transformation eOw(t’x) J+(t,x),
we obtain the equation

(1.12)
cw + O0(x. w) + V(x) o.
(T. x) 0.

[0, T) X RN,



BELLMAN EQUATIONS OF RISK-SENSITIVE CONTROL 77

where
0

(1.13) Qo(x,p) -aJppj + inf {c(x z)p + (x,z)}, p e Ry
zEZ

Let us set

(1.14) u(t,x) w(T- t,x), O <_ t <_ T.

Then we have the equation

(.lS/ o--r 1/2,D + z) + 0(,/+ u(l,
(0, ) 0

on [0, T] x Rg. If we have the sdlution u to (1.15) on [0, ) x RN, taking T > 0 and
setting w(t,x) u(T- t,x), we obtain the solution w to (1.12), and accordingly the
solution J eow(t’) to (1.11) or (1.11’), respectively. Now we are going to consider
the existence of the solution to (1.15). For that we further assume that

k2 aijpiPj,(1.16) aiYpipy Qo(x,p) - 2ki, k > 0

and that Qo(x,p) is a smooth function such that

(1.17)
OQo(x,p) _< M11Pl + M2,

OQo(x,p)
x <_ MIIpl2 + M2

for some locally bounded functions M1 and M2. Then we have the following theorem.
THEOREM 1.1. Under the assumptions (1.4)-(1.10), (1.16), and (1.17), equation

(1.15) has a nonnegative solution u E C+-’2+a((0,c) RN) C([0, c) RN).
Moreover it satisfies the following estimates:

(.s)
Ou
0t-

(1.19) t I1 + tg, + ,, (o, ) x

where Kr, ad Lr, are the constants independent of t.
Remark 1.1. Examples satisfying assumptions (1.16) and (1.17) are illustrated in

1.. Example 1 deals with our main concerns. More general cases where c grows like
z and like I1 for large and small z can be also covered (el. Examples 4 and g).
However, we don’t assume that g is quadratic but admit aW function V growing to
infinity as Izl with at most polynomial growth rate.

Remark 1.2. Assumption (1.16) indicates the bound of the sie of the risk-sensitive
parameter 0 ensuring the existence of a solution of the Bellman equation (1.1g). We
will see in Theorem 2.a that it implies the finiteness of the value function (1.2). Thus
we will see that (1.16) gives a condition of 0 under which no breaking down occurs.
The condition is more clearly seen in the examples in 1.5.

1.2. Dirichlet problem. Let us consider the following SDE:

f dY a(Ys)dBs + b(YS)ds, 1,..., N,
1.20)

Yo =x
and set

(1.21) Ct(t,x) Ex[e-k$v(Ys)ds], l= 1,2.
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Owing to our assumptions, bt is a smooth function on [0, c) RN and satisfies the
equation

1/2aJD + bD- kV,
(1.22)

Ct(0, x) 1

for each/= 1, 2 (el. [14], [16]). Put

1
ut(t,x) -- log l (t, x) 1,2,

which turns out to be the solution to the equation

t 1/2aJDJ TM + bDu- 2aJDutDjTM + V(x),
u(O,z) =0

for each 1,2. Therefore we see that Ul (resp., u2) is a nonnegative subsolution
(resp., supersolution) to the equation (1.15) because of assumption (1.16). We further-
more see that u (t, x) <: u2(t, x) by using HSlder’s inequality in Kac’s representation
(1.21). We shall find nonnegative solution u to (1.15) such that u _< u _< u2. For
that we first consider the following Dirichlet problem:

o Du+ O,(x, Vu) + V(z) (0 T] B - UT,
(1.23) -u(t, x) (t, x), O’UT,,
where Q(x,p) Qo(x,p) + bp, O’UT,R {(0, x);x --R} {(t,x); 0 <__ t <_ T,x
OB}, and Bn {x RN; Ixl <_ R}. Owing to Theorem 6.1 in 6 of [17, Chap. V]
we have the solution to (1.23). In fact, we consider the family of linear problems

Lv (1 T)Lu + T(Q(x, V) + V), x e UT,R,
(1.23’)

(t, x) (t, x), e o’u,
for C 1/2 +’1+, where

Ov 1
Lv

Ot 2
a*g Djv"

These linear problems define an operator O(r; T) which associates each function r
C1/2+ ,1+ with a solution v of (1.23’). The fixed points of for T 1 are solutions
of the problem (1.23). Let u be one of the fixed points of the transformation O(r}; T)
u (I)(u; T). Then u is a solution of the nonlinear problem

Lu (1 T)Lu + T(Q(x, Du) + V), x e UT,n,
u u(t, x), x O’UT,.

It can be seen that
sup ]ur(t,x)l <_ K1, T e [0,1]
UT,R

by Theorem 2.9 in [17, Chap. I] and then we can obtain the estimate

sup IVur(t,x)[ <_ K2, T e [0,1]
UT,R

in a way similar to the preceding discussion of Theorem 6.1 in [17, Chap. V], where
K2 is a constant depending only on K, ,, suPur. laj (x)], suPB ]M(x)I, 1, 2, k,
k2, supB IV(x)I, sup IVYI, and supoB IVu(x)l. By (1.17), Q(x,p) is uniformly
HSlder continuous on BR x {IPl -< K2}, op is bounded on the set, and all other
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assumptions in Theorem 6.1 in [17, Chap. 17] are satisfied. Thus we can obtain the
following lemma.

LEMMA 1.2. There exists a unique solution u E CI+’2+a(-T,R) tO the Dirichlet
problem (1.23).

Now we give a probabilistic representation of the solution. Let uR(t,x) be the
solution to (1.23) and set JR(t,x) eOu(T-t’x), 0 <_ t <_ T. Then JR satisfies the
following equation on [0, T) BR fT,R"
(1.24)

JR + infzez{ci(x, z)DiJR + O((x, z) + V(x))J} O, (t, x) e T,R,
JR(t, x) e’(T-t’x), (t, x) e O’T,R

in the case that 0 > 0. If 0 < 0, replacing inf by sup in (1.24), we obtain the
corresponding equation. By standard arguments using Ito’s formula we obtain the
following lemma.

LEMMA 1.3. If 0 > 0 we have

(1.25) JR(t,x) inf Ex[e(r-)(t + (T- t) A T,X(T_t)AT)]

where (t,x) e(T-t’), inf{t;Xt OBR} and AT-t is the subset of MT-t
such that zs is bounded.

Proof. The inequality can be seen by applying Ito’s formula to J+(t+., .) on the
solution to the SDE (1.1). The converse inequality is proven by taking the e-optimal
Markovian strategy z(t +., .). It is possible since Z c Rg is a separable metric space
and c and are nice functions (cf. [16]).

If 0 < 0, (1.25) holds by replacing inf by sup in the right-hand side.
Remark 1.3. om Lemma 1.3 it follows that JR(t, x) JR(t’, x), t < t’ for 0 > 0

and accordingly

(1.26) ua(t,x) u(t’,x), t < t’.

In fact, we see that (t+(T-t)AT, X(T-t)n) l(t’+(T-t’)AT, X(T-t)) for t < t’.
It is obvious that e(r-) e(r-’) and we obtain JR(t,x) JR(t’,x), t < t’.
In the case where 0 < 0, JR(t, x) JR(t’, x), t < t’ holds and implies (1.26).

1.3. Gradient estimate. We first prepare a lemma on linear algebra.
LEMMA 1.4. Let A be a symmetric nonnegative definite N N-matrix with the

maximum eigenvalue and B a symmetric matrix. Then we have

{tr(AB)}2 NA tr(AB2).
Proof. By taking a orthogonal matrix T, diagonalize the matrix A

01 0 0
A2 0

TAT*

0 0 )N

=A

with 0 _< /1 )2,... ,/N . Here T* stands for the transposed matrix of T. We
then have tr(AB)= EN=I Aib, where bij (TBT*)j. Therefore

N N

(1.27) {tr(AB)}2 E 2 2Ai bii + E ,l/jbiibjj.
i--1 i,j=l,iTj
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On the other hand
N

tr((AB)2) E bi2 +E "i’kJbi
i=1 ij

since TBT* is symmetric. Thus we obtain

Hence we conclude that
N

{tr(AB)}2 < N tr((AB)2) <_ N; E ;ibi NA tr(AB2).
i,j=l

The following lemma plays an essential role in the following arguments. Similar
kinds of estimates have been studied by Li and Yau [18] to obtain parabolic Harnack’s
inequalities for positive solutions to heat equations (cf. also Davies [5], Nagai [22]).

LEMMA 1.5. Let uR be the solution to (1.23). Then we have the following esti-
mate:

(1.28) t IVURI2 + Ot ] <- tK’ + L’’ [0, T] xB

2 where Kr, and Lr, are the constants independent of t, R, andforr<1/2R, 7>,
T.

Proof. Let us take a point a B, 0 < r < 1/2 R and a cut-off function r(x) such
that

ClT 2c2
(1.29)

0 <_ 7(x) <_ 7(a) 1, aDrDjT <_ ---, aDj >_ r
(x) 0, x B()= {x; Ix- 1 < }.

In fact, set

(1.ao)

Then it satisfies (1.29). Set

. -1): Ix-l<,
x-al>O.

((1.31) F(t,x) t IVul 2 + UR.

ou > 0 by (1 26). Let us take a maximum point (s x) of theThen F(t, x) >_ 0 since 7
function rF in [0, t] x Br(a). Then it is obvious that s > 0. To see (1.28) it suffices
to prove that

(1.a2) (rF)(s, x) <_ sKr,. + L,
for some constants K, and L, independent of t, T, and R. In fact, from (1.32) it
follows that

F(t, a) T(a)F(t, a) <_ T(x)F(s, x)
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for each (t, a) E [0, T] Br. We note that at the point (s, x)

(1.33) 7(7"F) O, a3Dij(TF)

_
O, -s >- O.

Therefore we have

TF > 1 OQ
(x Vu)D(TF)

OF rF
a’(l + N +

DTDjT (OQ )1 (aiDir)F a F + (z, V)Di F.

Here we have used the equality VF -F, which follows from (1.aa). Put

1 OQ
(z, V)DF

OF F

Then from (1.29) and (1.a4) it follows that

Set G Ivl and H s Then we have

r( 0.(1.37)

In fact,

Thus we obtain

OH Ou 02u
0-- Os - s

Os
H 1 . OQ
"-’s + -a DijH + Pi (x, Vu)DH.

OGs . OQ
(x Vu)DiG- s--F(F) -a DjG + S-p Os

(1.38) saDkiuDkju + saDkDijku

+ 2s O.__Q_Q (x, Vu)DiuDiju 2sDiuDisu.Op

By taking a derivative in equation (1.23) with respect to xa, we have

(1.39)

Therefore

(1.40)

OQ
(x, Vu)ajDijku 2Dt:su DkaijDju 2-x

OQ
(x, Vu)Dju- 2DtV.

F(F) 8aij DaiuDyu sDt:uDkaij Diju
OQ

(x, Vu) 2sDkuDkV.2sDu-----Oxt
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Since

(Diju) 2 1 (Dku)2(Dkaij)2Dku(Da3 )Dju <_ - +

for each i, j, k and e > 0, we obtain from (1.40)

(1.41)

Taking e such that u _> Ne and utilizing Lemma 1.4, we have

(1.42)
F(F)>

s (aiYDiyu)2 N2Kr 2

2NAi 2e IVul

lWl 0 (x, Vu) slWllVVl

where Ar is the upper bound of the largest eigenvalues of the matrix aij (x) in Br and
K is the constant such that IVaJ <_ K. From (1.23) and (1.42) it follows that

(1.43)
2lVu]lVV].

Note that from (1.16), (1.17), and (1.13) it follows that

(1.44) k 2k’2ai3pipj2
a*ap’P K(x) < Q(x,p) < + K(x),

(1.45)

(1.46)

OQ(z p)x
OQ(x p)

_
K1 [pl 2 -{- K2,

Kx IPl +/(2,

for some locally bounded functions K, K1, and/(2 and some positive constants k
and k. Since Ou F C

’7 we have
s’ ,

{k--aiJDuDju 2K

_
2 s7

G Ou<_ Q(x, vu) K
7 Os

k’ F< --2aiJDiuDju
2 s7

G

Note that - > 0 and k can be taken as k__ > 0 Therefore, setting2 7 2
we obtain

( Ou )2 ((1) 1)2F2 k=ku(1.47) Q
Os K >_ k- - / + -7 ---
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Thus from (1.36), (1.43), and (1.47) we obtain

(1.48)
s-N2Kr IVI 2s-IV

Cl + C2 F c3v/
r2 r

OQ
(x W)

YOQ
(x,W)

where k’ and K’ 4K(K + V). Therefore, using (1.45) and (1.46), we have

Now we can assume that F(s,x) > K’(x)s and F(s,x) > s(K2(x) + Ivgl), In fct,
otherwise (1.32) holds already. Therefore

8Multiplying by y, we obtain

(1.49)

Let us set X -1/2 F1/2 and k7- 1 5. Then the right-hand side of (1.49)
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where cr 2 +. Hence we obtain

X < N,’7 + s
2(1+ 6s)(1+ 2 2

(1 + (k’7- 1)fls)
s + 2s+ (K + v)(1 + 5a)(1 + 2 2

NaA7K fls NA:(c + c + caKr)+
( +)( ++

(c.+Ks) +(a’,-)s sSince (+as)(+)’ (as)(+)’ (L+5S)(I) and (+5s)(i+) are dominated

by a constant independent of fl and 8, we conclude that

X sK,, + L,,
for some constants Lr., and Lr,,.

1.4. Proof of Theorem 1.1. According to [17] we formulate a generalized
solution to the equation

Ou 1
(.o) aD, + Q(, W) + V(), (0,m) x .
Take and TI such that 0 < (,,) as the
Hilbert space with an inner product

(.L) (, ) +. + t,

where U,r (E, T x B. Let us set

v,o L(,T;H’(B)) n C([,T1];L(B)).
The norm of the Banach space V’ is defined by

]v] tTmax ]]v(t, x)]]2,B + I[VvII2,u,,,
where ]]vlI2,B fB Iv(t,x)2dx" We say that u is a generalized solution to (1.50) if,
for each e, T, and r, u belongs to V’(U,) and satisfies

ff O l ff l ff OaiDidzdtdzdt
(1.2) ’ ’ ’
for each (,) such that (e z) (T z) 0. Now we have the following
lemma.

LMMA 1.6. et u (t, z; T, ) be a soltio to (1.a). rhe Ior each r > O,
e, d T sch that 0 < e < T < T, there ezists {R} R+ sch that coverges

Pro@ Let be a solution to (1.2a) and take r > 0, e and T such that
r > r, 0 < e < e < T1 < T < T. Then by Lemma 1.5 and (1.26) we see that
{}>, is a bounded subset of the Hilbert space W’ (U},,) and has a subsequence
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{’Rn} converging weakly in W’I(U,,) and strongly in L2(U’,,) to some function

E W’I (U’;,,). To see that this u satisfies (1.52)we shall prove that unnU converges

to Vu strongly in L2(UI,). Take a function s(t,x) C(U,,) such that s(t,x) 1

on U Then by taking s(un u) as a test function we haveTl r"

(1.53)

Un Os(unot- u) 1//udxdt -5 a3 DunDj(s(un u))dxdt

where Un URn. Therefore we deduce that

(1.54)

at’ D(Un u)Dj(u u)sdxdt

It is easy to see that the right-hand side of (1.54) converges to 0 as n --. oo, by Lemma
1.5, (1.26), and (1.44). Thus, by using uniform ellipticity of ay, we can prove that
Vu converges to Vu strongly in L2(U,) and also almost everywhere (a.e.) by
taking a subsequence, if necessary. Hence we see that u satisfies (1.52). E]

Because of Lemma 1.6 we see that there exists a generalized nonnegative solution
I/II i,it ,ocIIo, T} Rx). Moreover regularity theorems for parabolic equations imply

that u Cl+’2+a((0, T) x RN) since Q satisfies (1.44) and [Vu[ Loc (cf. Theorem
12.1 and Theorem 12.2 in 12 of [17, Chap. III]). We furthermore note that the solution
u satisfies (1.18) and (1.28) for each r.

Now we prepare two lemmas to see that u is continuous on [0, T) x RN and that
(0, x) 0.

LEMMA 1.7. Let ul and u2 be functions defined by (1.21) and u the solution to
(1.23). Then we have

(t, x) s (t, x) _< (t, x).

Proof. These inequalities follow from the maximum principle. In fact, let us
assume that ul(to,xo) > uR(to, xo) for some point (t0,x0) UT,R. Set

(t,x) -’((t,x) (t,x)), > o
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and take a maximum point (tl,xl) of p(t,x) in UT,R
(1.56) p(tl, Xl) sup p(t, x) > O.

UT, R

Then it is obvious that tl > 0 and that xl E BR because Ul uR on O’UT,n. At
(t1, X we have

(1 0--/ ->0’ Vp=0, a3Diyp<_O.

Ul and e-At then we have

1
-a3DijtR + e- Q(x, ettR) + e-tv

If we set 1 e-At

Ot
and

01 1 e_At e,xt e_,x< a3Djtl + Q(x, Vtl) -- V Ul.ot

Dtl(tl,xl) DtR(tl,Xl) by (1.57) and Q(xl,etVtR) Q(xl,etVtl). Therefore
we obtain

0 1 ._<

Hence it follows from (1.57) that 0 <_ -Ap(t, x), which contradicts (1.56). The other
inequality is proven in a similar way since uR(t, x)

_
u2(t, x) on O’UT,R. []

LEMMA 1.8. Let ut be a solution to (1.23). Then {UR}R>3r are equicontinuous
on [0, T) x Br for each r.

Proof. For each e > 0 there exists 5 > 0 such that 0 <: u2(t,x) < e, t < 2,
x e Br. Take (tl,Xl) and (t2,x2) such that Ix1 x2[ + It t2[ 1/2 < 51, (t,xi) e UT,r,

1, 2, where 51 5 A e. In the case where tl <: or t < we have

luR(tl,Xl) UR(t2,X2)I

_
2,

because [tl- t2[ 1/2 < 51 implies tl, t2 < 25. If tl, t2 > it follows from Lemma 1.5 that

(1.58) luR(tl,xl)--uR(t2,x2)l <_ luR(t,x)--uR(t,x2)l+lu(tl,x2)--u(t2,z2)l <_ CrY,

where c is a constant independent of R. In fact, by Lemma 1.5 and (1.26) we have

5
Iv  (t, x)l (t, x) < %

-hV -T’
and the mean value theorem implies (1.58). Thus we conclude this lemma.

Let UR be a solution to (1.23). Then because of Lemmas 1.7 and 1.8 there exists
a subsequence {uRn} C {uR} such that uR converges uniformly to a solution to
(1.50) on each compact subset of [0, T) x RN and we see that u C([0, T) x RN) and
u(O,x) 0. Thus we find a nonnegative solution u to (1.15) on [0, T) x RN. The
estimate (1.28) is independent of T and we can obtain a nonnegative solution u to
(1.15) on [0, oc) x RN in a similar way as we did above. The solution also satisfies
o__u_ > 0 and (1.28) on (0, oc) x B for each r. Hence we complete the proof of TheoremOt
1.1.

1.5. Examples.
Sj (x)z zJ whereExample 1. Let Z Rg ci(x,z)= Bk(x)zk and (x,z)=

(Sij(x)) is a symmetric matrix such that Sij(x)i >_ #11, V RN, # > 0, and
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each component is a smooth function. Then

Qo(x,p) -aiJpipj + zeRNinf Bzkpi + - Sijzz0 I(BS_IB
We assume that B(x) is a bounded function for each and k and

(1.60) k2aJppy ((BS-B*) -Oa)Jppy, gp e RN

for some positive constant k2. Then (1.16) and (1.17) are satisfied. Let A(x) be the
smallest eigenvalue of the matrix BS-B and O(x) the largest one of a. If

(1.61) 0 < inf

then (1.60) is satisfied. We moreover assume that (aJ), (b), and V satisfy the as-
sumptions of Theorem 1.1. Then Theorem 1.1 applies to this example and includes
the case of LEQG.

Example 2. Let us specialize the above example. We moreover assume that
BS-B* ka for some positive constant k such that

O<k.

It is then obvious that this example satisfies all assumptions of Theorem 1.1. In this
case equation (1.15) is reduced to

O.._u _aiJDiju
_
bDu k..._.OaJDiuDju + V(1.62) ot 2

x) 0.

Let Yt be a solution to the SDE (1.20) and set

1
(1.63) u(t,x) k 0

logE[e- fg(k-e)Y(Y)ds].

Then u(t, x) defined by (1.63) turns out to be a unique nonnegative solution to (1.62).
The uniqueness follows from that of the bounded solution to the linear equation (1.22).

Example 3. We specialize Example 1 to the LEQG case, namely the case where
b(x) AxJ, V(x) .ijlJ, and aj, Aj,i Bk," Sij, and Rij are constant matrices.
Then (1.12) reads

Ow xJDiw _V { aiJ (BS-1B’) } DiwDjw- 1/2aijDijw + Ay 2

+ 1/2Rjxxj O,
=0,

which has the following nonnegative solution w:

1
w(t,x) -Pij(t)xx + G(t),

where P(t) and G(t) satisfy the ordinary differential equations

dP A* 1B*-y + R + PA + P P(BS- Oa)P O,
P(T) 0
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and
da tr(Pa) 0,--+
G(T) O.

Example 4. Let Z R, c(x,z) z, (x,z) (z) cz2 + c2zarctanz,
ap2c > c2 > 0, and u <_ a(x) <: u2. Then Qo(x,p) + Q1 (P), where

Q(p) inf {zp+ cz2 + c2zarctanz}.
zER

4Note that (z) is convex and 0 < 2cl < (z) < 2(cl + c2). Let q(p) be an inversedz
function of ’(z). Then we have 2(cl+c.) -< q’(P) -< -/7" We can see that

Q (p) pq(-p) + cq(-p)2 + c2q(-p) arctan q(-p)

and that it satisfies

cl + 2c2 p2 < Q (p) < c -c2 p2
4c(c+c2) 4c1(c+c2)

Therefore it is easy to see that if

Cl 520<
2C (C + C

then (1.16) and (1.17) are satisfied. We moreover assume that a, b, and V satisfy the
other assumptions of Theorem 1.1, and so it applies.

Example 5. Let Z R1, c(x,z) z+carctanz, (x,z) c2z2, 0 < c <: 1,
c2 > 0, and _< a(x) <_ 2. Then we set

Q (p) inf {zp + cl arctan z + c2z2} inf s(z; p).
zER

2.z(l+z2)Note that s(z) /.c+z-/z )p+ 2c2z and that g(z) +c1+z2. is monotone increasing
1c.. Let q(p) be an inverse function of g(z) Thenand 0 < +c < g(z) _< 2c2 + 4(1+c)

4(1 + cl) <_ q,(p) <_ 1 + c_______L"
8C2 -" 9CI C2 2C2

Therefore we can see that similarly,

Q1 (p) pq(-p) + cp arctan q(-p) + c2q(-p)2

and
_fp2 _< Q (p) _< _/2p2

for some D1 #32 > 0. Thus we see that if

2

then (1.16) and (1.17) are satisfied.

2. No breaking down. In the present section we always assume the assump-
tions of Theorem 1.1 and shall show that no breaking down occurs in the stochastic
control problem (1.1) under the assumptions, namely, J?(t,x;T) has finite value for
each t, T, and x.
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2.1. e-optimal diffusion processes. The following lemma is useful for studying
e-optimal diffusion processes. The proof is a modification into a parabolic case of that
of Theorem 3.2 in [2].

LEMMA 2.1. Let u E C1’2((0, T) RN) be a supersolution to (1.15) bounded
below:

(2.1)
Ou > 1
0--[ - a,9 Diju + Q(x, Du) + V, (0, T] RN.

Then limlxl_o u(t, x) c, 0 < t <_ T.
Proof. We can assume that u is nonnegative. In fact, if u(t,x) satisfies (2.1), so

does u(t, x) -c for each constant c. By assumption (1.16) we have

(2.2)
Ou 1 bi
Ot 2

ajDju Diu + a*3 DuDyu V >_ O.

Let us take a point xp such that Ixpl p, p > 0 and define a function R by

(2.3) R(t,x) c (l nlx- xol2 T-t)p T
0 < t < T,

where cp is a constant prescribed later. Let us set z(t, x) u(t, x) R(t, x), DT,p
(O,T] {x;]x-xpl_< }and

O’DT,p (0, x);Ix--xp[<_- LJ (t,x);Ix-xpl=-, O <_ t <_ T

Then z(t,x) >_ u(t, x) >_ 0 on O’DT,p. On the other hand, by (2.2) and (2.3) we have

Oz 1 bi
Ot 2

a*3Diz Diz

klaDuD (ORe> u + V aiJ DijR b DiR2 Ot 2

_
__1klaJDi,u( + R)Dj(u- R) aiJDuDju + -aiJDjR2

OR
+ biDiR- - + V

in DT,p. Therefore

Oz
(2.4) Ot

1 kl
2
aiJDijz biDiz + -a*3Di(u + R)Djz

> kl 1 bi cp
--( + _aiJDijR + DiR- - + V

Cp>_ -Kc2p gcp- - -}- Y

for some constant K > 0 because a and b are at most linear growth. Since V(x) oc
as Ix oc we can take c such that cp --, c as p oc and

cp p+ Y(x) > O, Ix- <

holds for sufficiently large p. Then we have z(t,x) >_ infO’DT,p Z(S, y) >_ 0 in DT,p by
the maximum principle. In particular, at (t,x)= (t,x) we have

t
(2.6) z(t, xp) u(t, xp) cp-

_
O.
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Hence we see that u(t, xp) oc as p oc for each t > 0.
Let u be a nonnegative solution to (1.15) on [0, ec) x RN, the existence of which

is assured by Theorem 1.1. We take T > 0 and define w(t, x) u(T-t, x), 0 <_ t <_ T.
Then w satisfies (1.12). For each e > 0 there exists a Borel function z*(t,x) (el. Krylov
[16]) such that

(2.7) inf {ci(x z)Diw(t,x) + (x z)} > c(z,z(t,x))Dw(t,z) + (x z(t,x))
zZ

since Z is a separable metric space and c, w, and are nice functions. We further
note that z(t,x) becomes locally bounded because of our assumption (1.9). Let us
consider the following SDE:

f dX a(X)dB + b(Xs)ds + c(X, z(t + s, X))ds, 0 s T- t,
(2.8)

X0=z.
Since c(x, z(t + s)) is locally bounded and and b satisfy the conditions in Theorem
1.1, we can see that SDE (2.8) has a unique solution if no explosion occurs. Namely,
we consider the martingale problem for the SDE

/ ex (x)ee + v(x)& + (,x)e, 0 t,
(.9)

X0
with a, b, and c defined as follows: a Xn + (1 X)I, b X, and
where 5(s,x) c(x,z*(t + s,x)) and X is a smooth function such that

1 B,
X

0 B+.
Let (P2, X) be a solution to the martingale problem. If we have

(2.10) lim P2( sup Ixl>n)=0, VT0<T,
n OGsTo-t

then (2.8) has a unique solution for 0 G s < T- t (cf. Stroock and Varadhan [24]).
LEMMA 2.2. Equation (2.10) holds.
Pro@ We first note that

lim inf w(s,x)-, VT0 <T
IxI OsTo

holds because of Lemma 2.1 and (1.55). Let us set

(2.11)

and

cow 1 . bi ciG(z)w - + -a 3(x)Dijw + (x)Diw + (x, z)Diw

(2.12) Bw inf {(z)w + (x, z)}.
zGZ

We then obtain by Ito’s formula

(t + ,x) (t, Xo)

(z(t + -,x))(t + , x)&
dO

+ f" ’(X.)D,(t + , X.)df,
dO
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where Cn inf{s; [Xsl >_ n}. Therefore we have

Put An :inf{w(t+s,x); 0 <_ s <_ T0-t, lxl n}. Thenlimn_,An cx. Hence
(2.10) follows from the inequalities

AnP(n <_ To t) <_ E[w(t + (To t) A n,X(To-t)An)]
< (t, X) + (To t).

Remark 2.1. We don’t assume controlled processes have any stability. But we see
that the above-defined e-optimal diffusion process has some kind of stability. In fact,
it is defined up to time T. For large T it behaves like a recurrent diffusion process
with finite recurrence time since w(t, x) >_ 0 and

+ aiJDijw + biDw + c(x,z(t,x))Diw <_ -V(x) + <_ -1

for 0 <_ t < T, [x >_ R for sufficiently large R (cf. Theorem 7.1 in [13, p. 98]).

2.2. Finiteness of the value function. The following theorem implies the
finiteness of the value function (1.2) in a risk-averse case under the assumptions of
Theorem 1.1. We note the bound of 0 ensuring the finiteness is determined by as-
sumption (1.16)(cf. Remark 1.2).

THEOREM 2.3. Let u be a nonnegative solution to (1.15) on [0, oc) RN, the
existence of which has been shown in Theorem 1.1. For T > O, set w(t, x) u(T-t, x),
0 <_ t <_ T, and J+(t, x; T) ew(t’x) Then

J* (t, x; T) < J+ (t, x; T) 0 < t < T,

where J* (t, x; T) is the value function defined by (1.2)+
Proof. For each > 0 take a Borel function z(t,x) satisfying (2.7) and consider

the SDE (2.8). Then, in the same way as in the proof of Lemma 2.2, we have
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z(t + 7, X). Thereforewhere z
ef{V(X)+(X,z)}d+Ow(t+s,X) eO(s+w(t,x))eM-1/2(M},

s (X)Dw(t + 7, X)dB. Since M is a local martingale andwhere M Ofo ay
Mo O, we have

Ex[eM-}(M}] 1.

Thus we obtain

Ex[e f{V(X)+(X’z)}d] eO(s+w(t’x)), 0 s < T- t,

since w 0. Hence we complete the proof of our theorem as s T-t and 0.
Let us consider Example 1 in 1.5. We consider the nonnegative solution u to

(1.15) with (1.59) and set w as above. Let us define a feedback control

(2.4) z(t + , x) -S-B*V(t + ,x), 0 < T- t

and consider the following SDE:

f dX a(X)dB + b(X)ds + B(X)z(t + s, X)ds, 0 s < T t,
(.1)

Xo=x.
We then have the following proposition.

PROPOSITION 2.4. Put J+(t,x) ew(t’). Then we have

)zz}(2.1) J+(t,x) E[ef-’(v(x)+s’(x ],
z(t + s X).where zs

Proof. We first note that the infimum in (1.59) is attained by z -S-B*p. By
Ito’s formula, we then obtain in a similar way as above

eO fd {y(x)+s,(z)z }d+0(t+,X)

(.) eOw(t,x)eOM-(M)
where M f a(X)Dw(Xr)dB. Therefore we have

zz s<T-t.(2.18) E[eo f{y(x)+s(x) }d] e0(t,x)

Thus we see by Fatou’s lemma that

Because of (1.60), Oa < BS-B as quadratic forms and

Sy (BS-B*zz )JDwDjw(t + s Xs)
Therefore

(e.) E[(-*] < .
Owing to Novikov’s theorem (cf. Theorem 6.1 in [20]), (2.19) implies that

Ls eOM-(M) 0 < 8 < T- t

is a martingale and we have Ex[LT-t] 1. om (2.17) and (2.18) it follows that
limT-t e0(t+s’x) exists and that the limit is nothing but one because of (1.8).
Hence (2.17) implies (2.16).
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3. Asymptotics.

3.1. General view of asymptotics. Let us study the asymptotic behaviour
as T - c of a nonnegative solution to (1.15) on [0, ) RN, the existence of which
has been proven in Theorem 1.1. We first show the following lemma.

LEMMA 3.1. Let us assume that the conditions of Theorem 1.1 and u are a non-
negative solution to (1.15) on [0, ) RN. Then there exists a subsequence {T} C R+
such that u(T,x)- u(T, O) converges to a function v E C2(RN) uniformly on each
compact set and strongly in W, and (T x) to X(x) C(RN) uniformly on each2,loc -compact set. Moreover (v(x), x(x)) satisfies

(3.1) X(x) -a3Djv(x) + Q(x, Vv)+ V(x), x e Rg.

Proof. Let us set (T, x) u(T, x) u(T, 0). Then {(T, X)}T turns out to be a
family of uniformly bounded and equicontinuous functions of x on each compact set
because of (1.19). Therefore it has a subsequence {(T, x)} converging to a function
v(x) e C(RN) uniformly on each compact set. Moreover the estimates (1.18) and
(1.19) imply that {(T, .)} forms a bounded subset of the Hilbert space W(Br) for
each r and we see that there exists a subsequence {(T[ .)} converging to W,

2,1oc
weakly in W. and strongly in Loc. Taking a subsequence, if necessary, we can see2,1oc
that (T, x) - (x) a.e. and that (x) v(x). We furthermore see that V(T, x) -(x) strongly in Lo in a similar way to the proof of Lemma 1.6.

Put (x) o Then we obtain from (1.15)-.
(3.2) 0 1 OQ

(x, Vu)Di (0, x) Rg.
0-- -a3Dij +Since is bounded on (e, c) Br because of (1.18) and (1.19), the regularity theorem

for parabolic equations implies that {(T, .)} forms a family of Hblder equicontinuous
functions on (,)B for each r. Thus we have a subsequence {(Ti", x)} converging
to a function X(x) C(RN) uniformly on each compact set. In a similar Way to the
proof of Lemma 1.6 we obta,in equation (3.1).

Equation (3.1) with X(x) =-constant is called a Bellman equation of ergodic type.
We shall show the uniqueness of the solution to the equation in a similar fashion to
Theorem 4.1 in Bensoussan and Frehse [2].

LEMMA 3.2. Besides the assumptions of Theorem 1.1 we assume that

Qo(x,p) >_ 2Qo(x,p)- (1-/)agpipj -/(1- )L(x), 0 </ < 1

for < k2 and locally bounded function L(x) such that

(3.4) V(x) L(x) c, Ixl .
Then the solution (v, X) to equation (3.5) such that v(x) as Ix] is unique,
admitting additive constants with respect to v:

(3.5) X aDijv + biDiv + Q0(x, Vv) + V(x), RN,
X =- constant, v C2 (Rg).

Proof. Let (Vl, X1) and (v2, X:) be solutions to (3.5) such that vi(x) , ]x], 1, 2. We assume that X1 X2 and take a such that Vl(X0) + a > v(xo) holds
for some x0. Let us set

(3.6) z e-(+) e-, > 0.
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Then we see that infxERN Z(X) is attained by some x, E RN since limlxl_ z(x) 0
and z(xo) < 0. Then

1
(3.7) -a3Dijz(x) O, Vz(x.) 0, z(x.) < O.

We therefore have at x
1 bO a*Djz + Dz

-aDijv + aiJDivlDjVl biDivl e-(+)

+ aiJDijv2 aiJDiv2Djv2 + biDv
j +)-- (X1- Y- 0(xff, VVl)- a ,iVlDjVl)-(v

+(x-V-Qo(x,Vv2)-aJDv2Dyv)e-.2

Thus we obtain

e-7(v+) Qo(X7, VVl) + aiJDivlDjV
(3.s) - 0(,) +ga’ ( v)-(+ ( v)-.
Because of (a.7), Vv Vve-(+ holds at z and e-(+l < 1. Therefore
fom (a.a) it follows that the left-hand side of (a.8)

e-(v+) Qo(Z, VVl) + a*DivlDjvl

ev-2(vl+) 0(z, VVl) + aijDivlDjvl

Taking < , we have

e-(+(e- e-(+)

because 2 . Thus we obtain L(z) V(z)- . Therefore from (a.4) it follows
that z B for some r0 and, taking a subsequence if necessary, lim0 z
Bo. om (a.9) it follows that 0 - by letting tend to 0. Hence we conclude

On the other hand we have

e-(()+) e-V() < e-(()+) e-()
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for each x since x is a maximum point of z. Therefore by dividing both sides by 7
and letting 7 tend to 0 we obtain

V2(X) V2() (Vl (X) Vl(:) O, VX.

Put b(x) v(x)-v(c)-(Vl(X)-V(2)). Then p(x) _> 0 and inf() (x) (2)
for each r. Since Qo(x, p) is C in p, there exists a continuous Rn-valued function R
such that Qo(x,p)- Qo(x,p’) R. (p- p’). We therefore have

1
a*D +bD + R. V O.

By Harnack’s inequality supe()(x) Cl infes()(x) 0 for some positive
constant Cl. Hence we obtain (x) 0 on B(2). By repeating the same arguments
on a ball centered at each point on OB() we have (x) 0 on B2(2). By continuing
this procedure we conclude that 0.

Remark 3.1. Condition (3.3) is rather technical but we can see that Example 1 in
1.5 satisfies the condition. A more specified case, Example 2, will be studied in the
following subsection.

LEMMA 3.3. Let us assume the conditions of Theorem 1.1 and u to be a nonneg-
ative solution to (1.15). Then u(t,x)- u(t, O) is bounded below.

Proof. Put (t, x) u(t,O)-u(t,x). Then it suffices to show that

(3.10) (t, x) Cl

for some constant Cl > 0. Since we have 0 < sUpto<t<T (t, x) eu(T’O)-u(t’x) and

lim eu(T’O)-u(t,x) 0, there exists (tT, XT) It0, T] Ry such that (tt, XT)
suP[to,T]RN (t, X). We can assume that t0 < tT because otherwise we have nothing
to prove. We then have at (tT, XT)

(3.11) 0 > 0, 0, aJDj < O.
0t-

It follows from (3.11) that VU(tT, XT) O. Therefore we obtain

0 1 bO aaDj- D

Thus we have V(zr) < (tr, O) < M for some positive constant M, which implies
that z B for some R. Hence

sup (t,z) e(tr’)-(t’) eV(t’)’z, 0 < < 1
[to,T]xR

and (1.18) and (1.19)imply (a.10).
Remark g.2. Owing to Lemma .a, v(z) in Lemma g.1 is bounded below and we

can see that v(z) as Izl in a similar way to the proof of Lemma 2.1.

.2. he ease of Nxample . In the present subsection we specialize the
problem to the case of Example 2 in 1., namely we consider the following equation:

O laiJDij + biDi(a.12) o 5a DD+ V,
0

with > 0. We then have the following theorem.



96 H. NAGAI

THEOaEM 3.4. Let us assume (1.4)-(1.6), (1.8), and (1.10), and u to be a non-
negative solution to (3 12) Then u(t x)-u(t, O) converges to a function v(z) in W.2,loc
and uniformly on each compact set, and o (t, x) to a constant X on each compact set
as t oo. The pair (v, X) is the unique solution to (3.5) with Qo(x,p) -aiJpipj.

COaOLLARY. Let us set J+_ (t, x; T) eOu(T-t,x). Then

lim
1

T-oo
log J+ (0, x; T) T-oolim Ou(T,T x)

lim oOu(T,x) OX.
T-,o

Lemma 3.1 applies to the present case and it suffices to show that X(x) =- constant
because of Lemma 3.2, Lemma 3.3 and Remark 3.1. To show this we must prepare
some auxiliary facts. Put (t, x) o (t, x) Then it satisfies-(3.13) 0 1

0--[ - a*3 Dij + biDi a DjuDi, (0, oo) x Rg

and the estimate

(3.14) I(t,x) <_ Mr,, x E Br, t >_ e > O

(cf. Theorem 1.1). For each t we set w(s,x) u(t- s,x), 0 <_ s <_ t, and consider the
following SDE:

i(Xs)dBJ + b
(3.15) dX aj (Xs)ds aaiJDjw(s,X)ds, 0 <_ s < t,

Xo X

the solution of which is denoted by (Pt’x,Xt). Let us set (s) fftt + 1/2aiJDiJ +biDi-
aiYDjw(s,x)Di. Then we have by Ito’s formula

(3.16)

f0
s

Dw(-, X)dBJ + (’)w(-, X)d-Xo)

D{wDjw(v, X) + V(X) dT,{D{w(7, X)dBaj 2
a

since w satisfies (s)w+aijD{wDjw+V O. Take a constant p such that > p > 0.
Then from (3.16) it follows that

e" f aJD{wDjw(T,Xr)+V(X)}dT+,w(s,Xs)

{D{w(r.X.)dB{--A f a{D{wDjw(T,X.)dTe,w(O.x)+, f a

and we obtain

Et,x[et f {---a W3 DwDw(r,X,)+V(X,)}dr+w(s,X)] <_ etu(t,x)

for 0 _< s < t. Therefore Jensen’s inequality implies that

#aJDwDjw(-,X) + V(X) d" + w(s,X) <_ u(t,x).

Thus we see that f a}Diw(-, X)dBJ, 0 s < t, is a martingale.
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LEMMA 3.5. For each e > O, to > O, and a compact set K, there exist R > 0 and
T > 1 such that

(3.18) Pt’x(Xs Bft, t- (to + T) < s < t- to) < e, t > to + T, x K.

Proof. In the same way as above we see that

,(t to, x-o) ,(t (to + T), X-(o+r))

-..ft. o +T -aL
DiwDjw(r, Xr) + V(X,)J dT + martingale difference.

We therefore obtain

(3.9) Et’[w(t- (to + T),Xt-(to+r))] Et’[w(t- to,xt-to)]
<_ Et’Z[u(to + T, Xt-(to+T)].

Put r(t,x) Et,[u(to + T, Xt-(to+T))]. Then it satisfies

0_ aiJ + biDil taij Dju(t x)Dir t > to + T,
(3.20) ot " Dijr

rl(to + T, x) u(to + T, x).

Setting f(t, x) e-(t’x)(t, x), we have

b00 gaijDijf + Dif nVf, t > to + T,
(3.21)

f(to + T,x) e-’(t+T’x)u(to + T, x)

and accordingly, by using Kac’s representation, we obtain

f(t,x) E[e fg-tl v(’s)dse-(t’Yt-)u(tl, Yt-t)]

<_ KE[e- fg- .V(’s)ds] Ke-au(t-t,x),

where K (de) -1, tl to -- T, and (P, Y) is a solution to (1.20). Thus we have

v(t, x) e’(t’x) f (t, x) <_ Ke(t’)-(t-t’’x)

_< Ket-t (s’x) _< KetM, t- tl < s < t, x E Br

by using (1.8) and (1.9). For each e > 0, r > 0, and to > 0, take N1 and T > 1 such
that

Ke(to+T)M

NT
and R such that B C {x; V(x) _> N }. Then from (3.19) it follows that

N1Tpt’(Xs BR, t- (to + T) < s < t- to) <_ Et’x __t-to V(Xs)ds
t-(to+T)

< Ke(to+T)M"
Hence we obtain our lemma.
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LEMMA 3.6. For each > 0, to > O, and a compact set K, there exist R1 and T
such that

pt,x(Xt_to E BR1) > 1 -, Vt > to + T, x K.

Proof. Put rR inf{ s _> t- (to +T), X8 BR} and err inf{s >_ rR, X8 BR1 },
R < R1. Then from Lemma 3.5 it follows that for each e > 0, to > 0, and a compact
set K, there exist R and T > 1 such that

(3.23) pt’x(’n <_ t- to) > l -, t > to + T, x K.

On the other hand we have by Ito’s formula

from which it follows that

Et’X[w((t to) A aR,X(t-to)/aR ); {-R _< t to}]
<_ Et’X[w((t- to) A R,X(t-to)/XR); {’R <_ t- to}].

Thus we obtain

inf
to <_s<_to+T,xEOBR

u(s,x)pt’X(crt < t-to,’ < t-to)

sup u(s,x).
to<_t<_to+T,xEB

By Lemma 2.1 infto<s<to+T,OBl u(s,x) --+ oo as R1 --, o. Therefore for each e > 0
there exists R such that

(3.24) Pt’X(aR <_ t- to, ’R <_ t- to) < -.
Hence from (3.23) and (3.24)it follows that

Pt’x((TR > t to, ’R <_ t to) > 1 e, x K, t > to + T,

which implies (3.22).
LEMMA 3.7. For each compact set K, relative compact open set G, and to > O,

there exists T > 0 such that

Pt’x(Xt-to e G) >_ (G > O, t >_ to + T, x e K.

Proof. By Lemma 3.5 for each compact set K, there exists T, R > 0 such that

1
Pt’(’R<_t--(to+l))>-, t>to+T>to+l, xEK.
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Therefore we have

Pt’z(Xt_to e G) >_ Pt’x(TR <<_ t--(to + 1),Xt-to e G)

f [,o+T pt,x (TR E t ds, XR dy)P’(X-to G)
JJto+l

inf P’(X-to G)pt’(TR t-(to + 1))
yB,to+ sto+T
1 1

inf ps’y(Xs_to G) > SG >
to+sto+T,eN

0

by using a strong Markov property.
Proof of Theorem 3.4. Now we give the proof of Theorem 3.4. By Lemma 3.1

there exists a subsequence {tk } such that (tk, x) converges uniformly on each compact
set. Put (x) limk_ (tk, x) >_ 0 and assume that (x) constant. Set m2
infzeRN(x). Then there exists xl RN such that ml (Xl) > m2. Setting
2a m m2, there exists an open neighborhood G of Xl such that (x) >
x G. Take a point x2 such that (x2) < m2 + rSa, where 56 is a constant defined
in Lemma 3.7. For each e > 0 and R > 0 there exist t such that

x)-  (x)l < Ixl < R.

Take a compact set K such that x2 K and sufficiently large R such that G c BR
and BR1 C BR, where R1 is defined in Lemma 3.6 with to t, e, and K. Then for
x K and sufficiently large t we have

(t, x) E’[(, X_)]
Et’X[({,Xt_); Xt_ a] + Et,[c({, Xt_); Xt_ e G B]

+ e

(m a e)Pt’z (Xt_ e G) + (m2 e)Pt’(Xt_ e G BR)
aSa + (m2 )(1 e)
aSa + m -e(m + 1).

Letting t tk tend to oc we obtain

(x)_>crSa+m-e(m2+l), xK, e>0.

Hence we have (x2) _> (75a + m2, which is a contradiction.

3.3. Principal eigenvalue and large deviation. We illustrate an example of
Theorem 3.4. Let us consider equation (3.12) with aj 5j, b 0, and 1-0 > 0,
namely

Ou 10 2

(3.26) 1/2Au [Vu + V,
x) =0.

It corresponds to the risk-sensitive control problem

1 { 2ds}]minimize log Ex[e
subject to dXs dBs + Zsds, Xo x,
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where the control region Z RN. Let u be a nonnegative solution to (3.26) and for
each T > 0 we set w(t, x) u(T- t, x) and consider the SDE

dYs dBs Vw(s, Ys)ds,
Yo-’x.

Then, owing to Proposition 2.4, we have

J+(t,x) ee’(’’) E[e

We furthermore have by Theorem 3.4

lim
1

T-+xa
log J+ (0, x; T) T--oolim u(T,T x)

lim OU(T,x)=x,
T-+oo

where X is a constant defined by the equation

1 1 - 12x A,, IV,, + V.

On the other hand, u(t, x) has the representation

1
logEx[e-(1-e)gV(Bs)ds]u(t, x) o

and we see that

lim
u(T, x) AI (e)

T---*o T 1 -0’

where A1 is the principal eigenvalue of -1/2A + (1 -O)V. Thus we see that
hence

lim
1 OA1 (0)

T-+m
log J+ (0, x; T)

1 e
On the other hand, by Theorem 3.4 u(T, x)- u(T, 0) converges to the solution v to
(3.27). We consider the temporally homogeneous diffusion process (Px, Xt) associated
with the Dirichlet form on L2(p2dx) defined by

1/(f g) - Vf Vgp2dx,

where p e- (cf. Fukushima [10]). Then the Donsker-Varadhan large deviation
principle asserts that

lim
1

T- log E[ee foT {V(X*)+1/2[Vv[2(Xs)}ds]

sup 0 V(x) + alVvl2

1-

(cf. Deuschel and Stroock [61, Donsker and Varadhan [7], [8]).
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OPTIMAL CONTROL OF THE BLOWUP TIME*

EMMANUEL N. BARRONt AND WENXIONG LIU$

Abstract. The problem of optimal control of the blowup time of a system of nonlinear controlled
ordinary differential equations is considered in this paper. The blowup time is defined to be the first
time that the norm of the trajectory becomes infinite. When one seeks to maximize the blowup time
the pair (Y(x), t) comes under consideration, where x E R Y(x) [0, cx] is the value function
and C R is the blowup set. This is the set of initial points from which finite time blowup
will occur for any control. We prove that (V, t) is the unique viscosity solution of the equation
1 + maxz DxY(x). f(x,z) O,x f and conditions
Finally, we derive the Pontryagin maximum principle for an optimal control. Some generalizations
are also discussed.

Key words, blowup time, optimal control, viscosity solutions, Pontryagin principle

AMS subject classifications. 49C20, 49C05, 35B99

1. Introduction. In the modern theory of reaction diffusion equations the phe-
nomenon of blowup in finite time is under study by many researchers too numerous
to list here. The usual problem considered is modelled by the semilinear parabolic
equation ut Au up, p > 1. It is known that for certain initial data the solution
will blow up, i.e., become infinite, in finite time. It is the superlinear growth in the
term up that leads to the explosion. Models with superlinear growth arise in many
contexts including thermal and chemical explosions, population dynamics, biological
processes, and some models in economics.

We pose the natural problem of controlling a system which may blow up in finite
time. In certain circumstances it is obviously of interest to maximize the time at
which the blowup will occur. For example, one may want to raise the temperature
in a chemical reaction as much as possible prior to the actual explosion. In other
circumstances one might want to minimize the blowup time. Fuel efficiency in a car
engine is one case where minimizing the blowup time is desirable. These are natural
problems to consider as optimal control problems. In addition, it may be of practical
importance to maximize the blowup time under the worst possible environmental
assumptions, or vice versa. In this case a differential game model of blowup would be
appropriate.

To initiate the optimal blowup problem, in this paper we will consider optimal
control of the blowup time when the dynamical system governing the underlying
process is a system of ordinary differential equations. Assuming superlinear growth
in the dynamics leads to the possibility that the trajectories may blow up in finite time.
Most, if not all, prior work in optimal control with ordinary differential equations has
assumed the trajectories will exist globally in time. This is not our interest here.

A notable study of optimal control of systems which may blow up is the book by
J. L. Lions [12]. Lions considers the question of optimally controlling a distributed
system which, for a fixed control, may blow up in finite time. The model problem he
considers is ut- Au- u3 z where z is the control. But Lions views the problem in a
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way completely different from our point of view. He considers the pair (u, z) together
as admissible if and only if u exists globally in time. The requirement of global
existence in time is imposed on the control functions. This is a different problem
from what we consider in this paper since blowup is then precluded. Our interest is
precisely the case when the solution may in fact blow up in finite time.

The focus in this paper is the system d/d’r f((-), (T)), T > 0 with (0)
x R’. The control function is (.). The trajectory may blow up at time
where we indicate the dependence on the initial point x as well as the control which
is used. The blowup time is considered as a map x Tx() [0, ]. For any fixed
control it is certainly possible that the blowup time is infinite, i.e., finite time blowup
does not occur. Indeed this will happen at equilibrium points of the system. If we
are trying to maximize the blowup time we might seek to steer the trajectory toward
equilibrium points.

When the goal is to maximize the blowup time, one considers the value function

V(x) sup T(), V: Rn [0,

The blowup set is defined to be the set of initial points of the trajectory at which
finite time blowup will occur for any control used: ft {x 6 Rn V(x) < +oo}. Of
course, ft is not known a priori. We will characterize the pir (V, ft) as the unique
continuous viscosity solution of the Hamilton-Jacobi equation

1 + max DY(x). f(x, z) O, x e
z6Z

satisfying the conditions

lim Y(x) 0, lim Y(x)

If no control is used, so f f(x), this equation will also hold without the max. It may
be useful to know the problem satisfied by the blowup time even for the uncontrolled
case.

The theory of necessary conditions for an optimal control for the blowup problem
is developed in 5. The Pontryagin principle is derived on the basis of the Hamilton-
Jacobi equation.

In a subsequent paper [8] we look at the problem of controlled diffusions which may
explode. This problem has the distinctive feature that for nondegenerate diffusions,
if finite time blowup occurs at any point x E R, then, because of the properties of
diffusions, finite time blowup will occur everywhere. Thus, gt Rn for the case of
nondegenerate diffusions.

Our original motivation for studying optimal control of blowups was the problem
governed by a distributed system, i.e., a partial differential equation (PDE). This
problem turns out to be substantially more difficult than the case of ordinary differ-
ential equations because of the difficulties with obtaining the regularity of the blowup
time with respect to the initial data. Since the initial data is now in a function space
we need to determine the Frechet or Gateaux differentiability of the blowup time and
the regularity of the associated value function. Differentiability of the blowup time is
not known even for the uncontrolled case with the semilinear parabolic model problem
ut Au up. On the other hand, it may be possible to bypass this difficulty using
the Crandall and Lions theory of viscosity solutions in infinite dimensions extended
by [15]. We hope to return to this problem in a future paper.
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Finally, by transforming all of our dynamics from Rn to the stereographic sphere
in Rn+l, in principle it looks like our problem can be formulated as the problem of
maximizing the time at which we hit the north pole, which is mapped to points in Rn

with infinite norm. Of course when we want to minimize the blowup time this would
be the same as minimizing the time at which we hit the north pole. We see that
there is an intimate connection between our problem of blowup and the minimum
time problem studied so effectively by Bardi, Soravia, Falcone, Staicu, and others
[3]-[6], [14]. Indeed, if we formally consider the target set T {oc}, then our blowup
problem is nothing more than maximizing the time to hit T. Using this point of
view, we adapt some arguments of [3]-[5], and [14] in order to prove some of our basic
results.

For the convenience of the’reader we record here the definition of viscosity solu-
tion.

DEFINITION 1.1. A lower (upper) semicontinuous continuous function v is a
viscosity subsolution (supersolution) of

H(x,v, Dv) =O, x,

where f is an open set, if for any E C (f)

xo E argmax(v- )(x) == H(xo, v(xo),D(xo)) >_ 0

(respectively, for any C1(") and

xo e argmin(v- )(x)== H(xo,v(xo),Dcp(xo)) <_ 0).

The reader is encouraged to look at [9], [10], and especially [11] for the primary
results in viscosity solution theory.

2. Basic properties of the blowup time. Consider the autonomous controlled
system of ordinary differential equations

(2.1) d(t)/dt f((t), (t)), t > 0,
(0) x e .

The control functions (.) are chosen from the class of functions Z {: [0, cx)
Z is Lebesgue measureable}, where Z is a fixed compact subset of some euclidean
space Rq. Z is referred to as the control set. A solution of (2.1) which starts at x R
is denoted by z(t) or by (t; x) to indicate the dependence on the initial condition.

We will assume that f R Z Rn is jointly continuous and is C in x
uniformly in z Z. This guarantees that f is locally Lipschitz in x. That is, for any
xo Rn and 5 > 0 there is a constant K(x0, 5) such that

If(x,z) f(x’,z)] K(xo,5)lx x’l, Vx, x’ e Bs(xo),

where B6(xo) denotes, here and generally, the ball of radius 5 centered at x0.
It is well known that if f is assumed to be uniformly Lipschitz continuous then

there is for each control Z a unique global solution of (2.1) for any initial position
x e R. This is also true if one assumes that f has linear growth in x. Since we are
only assuming that f is locally Lipschitz in x, we can only conclude in general that,
for each control Z, there is a unique solution on a maximal interval of existence,
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which we shall denote by [0, Tx(4)). The time Tx() e [0, +c] is called the blowup
time for the initial position x when the control used is 4. When the control is fixed we
will also denote the blowup time as simply T(x). We wish to study the blowup time
as a function T Rn [0, ]. If T(x) + for some x E R then this says that the
trajectory does not blow up in finite time. Conversely, if T(x) < oc for some x E Rn,
leaves every compact subset of R" in finite time.
When T(x) < +oc the only possible behavior of the trajectory is to blow up to

+oc at time T(x). Therefore, we may also describe T using

T(x) inf {s [O ] t--olim ]](t)]]=+c}.
Finally, the fact that finite time blowup means that leaves every compact set in
finite time motivates the useful characterization

T(x) lim -(4),

where wR is the exit time of the trajectory from BR(x). The limit exists (since R
is not decreasing) in the extended sense and can be +, if, for example, a trajectory
stays in a compact set for all time. This characterization is particularly useful in 3.

The starting points of trajectories which are of interest to us are those for which
blowup is inevitable no matter what control is used.

DEFINITION 2.1. The blowup set f c R is defined by

t= {x R’ sup T() < +}
For a fixed control Z define the set

{x e Tx() <

Obviously, ft C ft(), V Z.
We will need the following assumptions.
(Ai) For some p > 1,

(2.3)
x f (x, z)

uniformly in z E Z.
(Aii) For some M > 0,

(2.4) If(x,z)[ <_ M(1 + Ix]P).

Conditions (2.2), (2.3), and (2.4) will be assumed to hold throughout this paper.
Condition (Ai) means that f(., z) behaves like Ixlp for any z e Z when Ix] is large.

For example, f(x, z) ]xlP-lx + Ixlq-lx + g(z), where 1 < q < p and g is continuous,
satisfies these conditions.

We may also consider dynamical systems which grow exponentially fast as
oe. In that case we need an assumption like x. f(x, z)/(]xlelxl

In what follows we will use the notation that Ck(A,B) is the class of k times
continuously differentiable functions from A to B. When k 0 this is the class of
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continuous functions and will be denoted simply as C(A, B). If B =/1 we will write

Under condition (2.3) we will prove that the blowup set ft, and therefore also
f(), V E Z, contains points of sufficiently large norm for any and is therefore
always nonempty.

PROPOSITION 2.1. If (2.3) holds, then f is nonempty and unbounded. In fact,
there is a constant K > 0 such that {Ixl >_ K} C f.

Proof. By (2.3), for any > 0, there is a K > 0 so that when Ixl >_ K,

l-e<
x’f(x,z)
ii’- 1 + .

In particular this is true for any fixed e, say e g.
Consider the set M _= {x E R Ixl _> K}. We will prove that M is an invariant set

for any control Z for the corresponding trajectory given by (2.1). Indeed, define
(I)(x) K- Ixl. Then M (I)-1(-oo, 0], (I) CI(M,/1), and Dx(x) -x/lx 0
for any Ixl- K. For any z Z, if Ixl- K we have

DzO(x). f(x, z)
-x. f(x,z) -x. f(x,z) Kp < _Kp(1 ) < O.

Ixl Ixlp+l

Therefore, maxzz(Dx(x), f(x, z)) <_ 0 if Ix K. Consequently, by [1, p. 218], for
example, M is (positively) invariant and this is true for any control.

Now, let x M be the starting point of the trajectory which corresponds to an
arbitrary control E Z. We will prove that this trajectory blows up in finite time.
Define "),(t) I(t)l. Then, since M is invariant, v(t) _> K for all 0 _< t _< Tx().
Consequently, by (2.5),

(2.6) "y’ (t) > (1 e)l (t)lp (1 e)-y(t)p.

Set r/(.) as the solution of

drl(t) (1 ) Ira(t)I"
dt
(0)--Ix I.

t>0,

The solution of this problem is given by

(2.7) [Ixl p)]l/1-p,

which blows up at the finite time

1
(2.8) TV(x)

IxlP-1 (p- 1)(1- e) > 0.

Using (2.6) and the fact that /(0) Ixl, we deduce that 7(t) _> (t) for all 0 _< t _<
T() A T(x). Then, it must be the case that T() _< TV(x) < +oc. Consequently,
since was arbitrary, x ft.

We have shown that M c f. Therefore, f is an unbounded set. Finally, in the
last statement of the proposition observe that K is found for any 0 < e < 1 such that
the first inequality in (2.5) holds. El
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COROLLARY 2.2. limlxl_ Tx() O, uniformly in Z.
Proof. This follows immediately from the proof of the proposition noting that

limlxl__. T (x) 0.
We will need the following estimates.
LEMMA 2.3. Fix a control E Z and an initial point x t(). Set 1 1/(p- 1).

For any e > O, there is a 5 > O, independent of the control , such that at any time t

for which Tx () > t > Tx () 5, we have

(2.9) /3Z((1 + e)(Tx t)) -1/(p-1)
_

Ig(t)l

and, for all 0 < t < Tx,

(2.10) I(t)l _< max{/Z((1 )(T t)) -1/(p-1), K},

where K is given so that (2.5) holds.
Proof. From (2.1) it follows that

1
(2.11) (1(7)1) (-) f((-), (-)).

Dividing the above equation by I(-)1p+l and integrating it over (t,T), we get after
change of variable

(t)l u-- p- 1
(t)ll-P -(-- ds.

According to (2.5), when I (t)l >_

(2.13) 1 < (t). f((t), ((t)) < 1 + .I(t)lp+

Furthermore, by the proof of Proposition 2.1, if I()1 >_ , then I(t)l _> for 1]

s <_ t <_ Tx. Let s _> 0 be the first time that I[-> K. On [0, s], _< . On Is, T] we
integrate (2.13) from t to Tx, with s _< t < Tx, use (2.12), and rearrange the terms to
get

I(t)l _/Z((1 a)(Tx t)) -1/(p-1), 8 t < Tx.

Since ](t)[ _< K on [0, s] we combine these two bounds to obtain (2.10).
To obtain (2.9), because of the fact that I(t)[ - c as t -- Tx, there exists

7 7() > 0 such that (2.13) holds whenever Tx > t > Tx -7. Using (2.12), (2.9)
follows for T > t > Tx -7 again by integration of (2.13) and rearrangement.

We need this estimate with 7 independent of . To get it, choose 5 > 0 so that
for any time t with 5 > T() t we have that

K _</3Z((1 + e)(Tx t))-1

Notice that 5 is independent of { but t does depend on {. Now, if ({) _> 5
we are done. If ({) < 5, we set r/({) inf{ I(t)l _> K,t (Tx({)- ,Tx({))}.
Clearly ({) _> 5 and (2.9) is true for all t (Tx({)- ({), T({)). This completes the
proof. [3

The next lemma gives us a condition under which we know that a trajectory is
uniformly bounded on a given interval.
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LEMMA 2.4. Fix a control E Z and fiz x Rn.
(a) If T(z) +oo then there is a constant C > 0 such that IIxll <- C on the

time interval [0, oc). In fact C K, and K is given so that (2.5) holds for some fixed
0<<1.

(b) If T(x) < +oo, then on [0, T(x) 5], there is a constant Ce such that I111 _<
Ce, for any 5 > O.

Pro@ (a) If T(z) +oc then x(t) exists for all t [0, oo). If the conclusion
of (a) is not true, then there is a time t so that Ix(t)l > K, where K > 0 is fixed
so that (2.5) holds. By Proposition 2.1, this implies that x f() which contradicts

(b) If T(x) +oc, set S T(x) and let S- > O. Then the proof is immediate
from (2.10) of Lemma 2.3

For the next estimate, which is used later to prove the differentiability of the
blowup time, we will need the following additional assumption.

(Aiii) For some 0 < a < p + 2,

(2.14) lxl2(f + x fx) (P + 1)(x. f)x

and, for some > 0,

(2.15) f(x,z) < p(1 + )IXlp-l, aS IXl 00.

When the matrix fx is symmetric (2.15) is not necessary, since then (2.14) implies
(2.15). Notice that (Aiii) states that the derivative of f behaves like plxlp-1 for large

It is well known from the standard theory of ordinary differential equations (see
for example [1]) that on the interval of existence [0, T()), y(t) =__ Dx(t;x) exists
and satisfies the system

(2.16) dy/dt Df((t), ((t)) y(t), 0 < t < T((),

(2.17) y(0) I.

Using (2.16), (2.17), and (2.15) we can obtain the asymptotic behavior of Dx(t; x)
as t approaches the blowup time T(().

LEMMA 2.5. Assume that (Aiii) holds in addition to the basic assumptions. Let
x ft(). For any e > O, there exists an M > 0 and 5 > O, independent of the control,
such that when Tx (() > t > Tz(()- 5 we have

ID(t;x)[ < M (Tx(()- t) -p(I+e)/(p-1).

Proof. Consider, say, yj(t)= Dxj(t;x). From (2.16),

1
(ly[2) ytDf(x, z)y,

where yt is the transpose of y. Using Lemma 2.3 and (2.15), we see that for any > O,

lyl’ <- (p_ 1)(Tx(() t)lYl
for t > Tx (() -5. The conclusion of the lemma follows by integration.
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LEMMA 2.6. Let E Z be fixed. The set a(4) is open and T(4) T(x) is locally
bounded on f(4).

Proof. Let x0 e (4) and let be the associated trajectory on [0, T(x0)). Let
K be such that (2.5) holds. If gt({) is not open then there is a sequence of points
{x,} such that Xn xo and T(xn) +c. Thus, the trajectory starting at
with the fixed control 4, , (.; Xn) exists for all time. Obviously, we must have
Ix, <_ K, Vn. From Lemma 2.4, {,} is uniformly bounded (by K), for every n. Let
M > 0 be arbitrary. On [0, M] n and also are uniformly bounded. Since Xn -’ x0,

there is a subsequence, with the same notation, such that n * uniformly on [0, M]
and * is the trajectory starting from x0 associated with . By uniqueness, *But then T(xo) > M and since M was arbitrary, this means that T(xo) +c,
contradiction.

Now we prove that T(xo) is locally bounded. Indeed, if this is not the case, then
we can find a sequence of starting points x, x0 such that limn--.o T(x,)
Let M T(xo) and n sufficiently large that T(x) _> M + 1. Then {n} is uniformly
bounded on [0, M / 1/2] and so a subsequence converges uniformly to (.; x0) on this
interval. This contradicts the fact that blows up at time T(xo) M. E]

The next lemma proves that for any fixed control the blowup time is a continuous
function of the starting position.

LEMMA 2.7. Fix a control Z. T(x) is continuous in x t().
Proof. For n 1, 2,..., let x gt() with x x gt(). Let n and be the

corresponding solutions of (2.1) for the same control , and let T and T denote the
corresponding blowup times. Lemma 2.6 allows us to assume that T < +c for all
n.

We first prove that lim inf T _> T. To this end, we want to show that for any
5 > 0, T, >_ T- 5 holds for all sufficiently large n. Suppose it is not the case. Then
there exists a subsequence, again labeled as Tn, such that T _< T- 5. By taking
yet another subsequence, we may assume that T --, To _< T- 5. Given s > 0, by
Lemma 2.4, the sequence {} is uniformly bounded in [0, To- ] for all large n. Now
the argument is completed just as in the proof of Lemma 2.6.

Next we show that lim sup Tn <_ T. We again argue by contradiction. So assume
that there exists a subsequence T such that lim T >_ T + 5 for some 5 > 0. From
Lemma 2.4, it follows that {} is uniformly bounded in [0, T). The argument we
used above implies that - uniformly in [0, T); hence c is also bounded in (0, T),
which is a contradiction to the fact that T is the blowup time of . The proof is
complete. E]

The next lemma tells us that if we also assume condition (Aiii), the blowup time
is, in fact, continuously differentiable for each fixed control.

LEMMA 2.8. Assume, in addition to the basic assumptions, condition (Aiii). Fix
a control Z. The blowup time Tx() T(x) is a C function of x

Proof. Divide (2.11) by 1 + I(T)Ip+I and integrate the result over [0, T(x)) to get

17 oT() (s). f((s), (s))(2.18)
u

du : i-(]-i ds.
up+l / 1 1

The equation (2.18) defines T as a function of x implicitly. Indeed, if we set

(t; x). f((t; x), (t))
if t < T(x)g(t, x) ii;-xi;Ji : 1

1, if t _> T(x),
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and

F(T, x)
uP+1 + 1

T
du g(t, x) dt,

then F(T(x), x)= 0 and

OF x. f(x,z)
-10-- (T(x)’x) -Ixlli IxlP+ + 1

If we can show further that DxF(T, x) exists and is continuous, then the conclusion
of the lemma follows from the classical implicit function theorem in calculus.

Since for t near T(x), t > T(x)- 5, using (Aii) and (Aiii)

we conclude, by using Lemma 2.5, that

() Og(x, t)
Ox

T(x)
dt= (T(x)- t)- dt< ,

where 0 < # < 1. Combining this fact with Lemma 2.7, we see that DzF is continuous
and therefore T(x) is C1.

REMARK 2.1. Differentiate (2.18) with respect to x to obtain

(2.19) IDT(x)I - ix p+l + 1

< Ixl
Ixlp+ + 1

T(x)
+ IDg dt

T(x)
+ M (T(x) t)- dt.

Observe that (2.19) shows that IDT(x)I --, 0 as Ixl .
3. The optimal control problem. In this section we will formulate the basic

optimal control problem for the blowup time, namely the problem of maximizing the
blowup time. This corresponds to the case in which one desires to delay the inevitable
explosion as long as possible.

In this section we will assume only the basic assumptions (2.2), (Ai), and (Aii).
DEFINITION 3.1. The value function V Rn -- [0, (:x)] is defined by

V(x) sup{Tx() e Z}.

The blowup set can then be expressed as f {x E R V(x) < +}. Of course,
the blowup set is not known a priori.
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The main objective in this section is to prove that the value function is continuous.
We begin by establishing that the blowup set is open and V is locally bounded on
this set.

We introduce the relaxed control problem which will be needed for the proof. Let
M(Z) denote the space of bounded measures on Z. Viewing M(Z) as the dual space
of C(Z) continuous functions on Z, we endow M(Z) with the weak star topology
of C(Z)*. Let the space of relaxed controls be given by

Z {# e n([0, oe); M(Z))I#(z is a probability measure a.e. - e [0, oc)}.

Let AA(Z) be the set of probability measures on Z. Then we may write that Z
L([0, oe);M(Z)), the space of essentially bounded, Lebesgue measureable maps

.[0,
For any relaxed control #(.) E Z there is a relaxed trajectory given by

(a.1) (-) z + f((s), z) (s, dz)ds

on the maximal interval of existence [0, T(#)). We are using the notation that T(#)
is the blowup time for the relaxed trajectory starting from z when the relaxed control
is #. To simplify the presentation, given any # E 3//(Z) define the function

(3.2) f(x, #) f (x, z) #(dz).

It is clear that f enjoys the same continuity and growth properties as does f, i.e.,
f satisfies (2.2), (Ai), and (Aii). Consequently, the lemmas of the preceding section
also hold for the relaxed problem.

Define the relaxed value function V" Rn --+ [0, o] as

V(x) sup Tx(#).

Denote the relaxed blowup set ft {x Rn’V(x) < +x}.
We are now ready to prove the following proposition.
PROPOSITION 3.1. Thelowup set t is open and V is locally bounded on ft.

Proof. Clearly, Y(x) <_ Y(x) and ft c Ft. We will first establish that t Ft.
Let x0 ft. Then T () _< Y(xo) M < +oc for any Z. If there is a # Z

for which T (#) _> M + 1, this says that the relaxed trajectory (.), corresponding
to #, starting from x0, exists for all t E [0, M + ]. Then there is a constant K (see
Lemma 2.4) such that I1 -< K on this interval. Since f(x, z) is uniformly Lipschitz on

BK(O) Z we may apply the relaxation theorem [2] to obtain, for any given. > 0, an

ordinary trajectory (.) starting from x0 and a control Z, such that I1c -11 < e
This is ain the sup norm on [O,M + 1. Therefore M V{a} _> Ta{} > M + .

contradiction and we conclude that ft ft.
Next, for any sequence of starting points {xn} such that x - x0, and relaxed

controls {#} C Z, we know that, at least on a subsequence, # - # Z weak-*.
Denote the associated relaxed trajectories by starting at x, and starting at x0.
We claim that

(3.3) liminfTxn(tt) <_ Txo(#).
n---,c
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To prove this claim, suppose it is not true. Then, there is a 5 > 0 for which

lim inf Txn ([,-n)

_
Tx ([,) +

Hence, by Lemma 2.4 a subsequence of {n}, still denoted as {n}, is uniformly
bounded on [0, Txo(#)+ 7] for any 0 < 7 < 5. Therefore, a further subsequence
converges uniformly to on [0, Txo (#) + 7]. But then is also bounded on this time

interval, which contradicts the fact that Tx (#) is the blowup time of . We have
proved that (3.3) must hold.

Now, to show that Ft, or equivalently, Ft, is open, we must find an open neigh-
borhood of x0 contained in Ft. If this cannot be done then we can find a sequence of
points {xn} and a sequence of relaxed controls {#n} C Z, such that T (#) - +c,
and xn --+ x0 as n --+ oc.

Set To V(xo) < +oc. Select e > 0, and fix N at least large enough so that

T (#n) > To + 1 and x, E Be(xo), for all n _> N. Let n be the relaxed trajectory
associated with # starting from xn. Since Tn(# > To + 1, we have that {}
is uniformly bounded on [0, To]. Thus, there is a relaxed control # E Z and corre-

sponding relaxed tractory. starting from x0 such that on a convergent subsequence
# -. # weak-* and n -- uniformly on [0, To]. Using (3.3), we have

To + 1 < lim inf Txn (#n)

_
Txo (#)

_
V(xo) To,

which is a contradiction. Hence ft is open.
The proof that V is locally bounded follows the same line of proof. Since V _< V

we may show that V is locally bounded. If V is not locally bounded at x0 t2, this
would again mean that there is a sequence of points {x}, x - x0, and a sequence
of relaxed controls Pn, such that Tx (#) < +c but lim_,T(#)- +c.

REMARK 3.1. It is not difficult to verify, using the relaxation theorem that V
V.

We are now ready to prove the following theorem.
THEOREM 3.2. The function V(x) supez Tx() is continuous on . Further-

y(x) o Ixl
Proof. For any R > 0 let TR {x" x < R}. Set R Ft:Y {x Ft"

Ixl < R}. Let _R() denote the first exit time of the trajectory from :rR when we use
the control Z. More precisely, _R() is the first time that x is in 0TR. If the
trajectory never exits TR we set -xR() +c.

It follows from the definition of blowup time that

(3.4) Tx() lim -xR().

Clearly, WxR() increases when R increases. We claim that

(3.5) V(x) lim VR(x), x

where VR is the maximal (over controls) exit time from TR, that is, Vn(x) suPcez
Using assumption (Ai), one has that f(x,z), x/Ix > (1- a)Rp > 0 for all

sufficiently large Ixl R, say R > R0. Indeed, R0 can be taken as the constant K
from Proposition 2.1. Since u x/Ix is the outward pointing normal to the boundary
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of the ball of radius R, we have u. f > 0. It follows from [5, Prop. 5.2] that this
implies that VR(X) is continuous on fR for all R > R0.

For any R > R0, from [5, Thm. 6.1] VR is the unique continuous viscosity solution
of the problem

(3.6) max (f(x, z). DVR) + 1 0, x e ftR,
zZ

(3.7) lim Vn(x)

and

(a.8) y.(x) o, Ixl R,

where 0ft 0ftR- {Ixl R}. From Proposition 2.1, {Ix > R0} c ft and so

0ft Of/for R > R0. Consequently, (3.7) implies that for all R > R0,

(3.9) lim VR(X)
x Ot

It is clear that R _< R implies that VR <_ VR, and ft, C ft. Furthermore,
V(x) >_ V(x) for all R > 0.

Let x E ft. Using (3.4) we have, for a given 5 > 0, the existence of a control
E Z, and R > 0 such that

V(x) < T(*) + < -; + 2 < Y,(x) + 2 < lim VR(x) + 2,
R---* cx

which allows us to conclude that (3.5) is true on ft.
Now we will show that the convergence in (3.5) is uniform on compact subsets of

ft, which allows us to conclude that V(x) is continuous on ft.

First, from Corollary 2.2, we immediately have that V(x) 0 as Ix - oc. In
addition, simply from V(x) >_ Vt(x) >_ O, we see that VR(x)
uniformly in R. Consequently, for any 5 > 0, there is an Re such that 0 _< VR(X) <_
if Ixl _> Re. We may also assume that R is sufficiently large such that (2.5) holds.
For any R2 > R1 > Rs, we have that if Ixl R1

0 Y/ (x)- r/ (X) V/i2 (X) 6.

Therefore, VR1 >_ Vt. -5 on { x] R1 }. We have that in FtRI, VR is a supersolution
and VR. --5 is a subsolution. By the comparison principle for viscosity solutions of
(3.6)-(3.S), for example, [14, Thm. 2.1], we conclude that

o < y(x)- y (x) _< 6, x e a
and therefore this inequality holds also for all x ftn C fiR1. We have shown
that for any sequence {Rk}, with Rk --, oc as k oe, the sequence {VRk(X)} is a
Cauchy sequence, uniformly in x gtR1, for any R1 ) Rs. Therefore, VRk (x) V(x)
uniformly on compact subsets of f. [3
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4. The Bellman equation for the value function. We have seen in the pre-
vious section that V is a continuous function on gt. The main goal of this section is
to characterize V by proving that it must satisfy, in the viscosity sense, a Hamilton-
Jacobi equation with a free boundary. Then we will prove that V is the only viscosity
solution of the problem.

In this section we assume only that the basic assumptions (2.2), (Ai), and (Aii)
hold.

THEOREM 4.1. The value function V is a continuous viscosity solution of the
free boundary problem

(4.1) 1 +maxDxV(x). f(x,z) O, x E a,
zEZ

(4.2) lim V(x)= +oo,
x-o

lim V(x) O.(a.3)

Proof. Referring to the proof of Theorem 3.2, we have that V _> VR and VR -as x 0gt, and (4.2) follows.
We need to verify that V solves (4.1). This follows immediately from the proof

of Theorem 3.2 since we showed there that V is the uniform limit of VR and VR is
the solution of (3.6). We will give a direct proof however. The proof is based on the
dynamic programming principle:

(4.4) V(x) sup(t A Tx() + Xt<_Tx()V(x(t)))

for any t _> 0, where (.) is the trajectory starting at x at time 0 associated with the
control E Z. We use the notation that XA is the characteristic function of the set
A and a A b min(a, b).

The proof of (4.4) is standard and will not be given here (see, for example, [3]).
Now suppose that V- achieves a zero minimum at the point x0 E t, with
Ci(t). Let z G Z be arbitrary and set (t) z for all time. The corresponding

trajectory starting at x0 will be denoted by (.). Since the interval of existence of the
trajectory is open [1, Thm. 8,3], for any 0 < t < Tx(z), sufficiently small, using (4.4)

We have used the fact that, since f is locally Lipschitz, for any R > 0 there is a 5 > 0
independent of z e Z such that (t) G BR(xo) if 0 < t < 5. Therefore, for t sufficiently
small,

i +  (x0) < 0
t



OPTIMAL CONTROL OF THE BLOWUP TIME 115

and so, letting t 0+, using the fact that is smooth and is differentiable (since
we are using a constant control), we obtain from the arbitrariness of z E Z that

(4.5) 1 + max(Dx(Xo), f(xo, z)) < O.
zEZ

This proves that V is a supersolution of (4.1).
Suppose next that V- achieves a zero maximum at the point x0 E , with
C1(). Suppose that

(4.6) 1 + max(Dx(x0), f(xo,z)) < -C < O.
zEZ

Let Z be arbitrary. For a given > 0, set M sup{lf(x z)l’x e Be(xo), z e Z}.
Then the trajectory (.) starting at x0 will exist at least for t E [0,5/M) (see, for
example, [1]). Notice that this is true independently of the control which is chosen.
Thus, we know that (t) Be M(Xo) for all 0 <: t < to < Txo() for some to > 0
independent of . Using (4.6) we have that

1 + Dx(Xo). f(xo, (t)) <_ -C, O<t<to.

Then, for sufficiently small t, say 0 < t < tl < to,

1 + Dx((t)). f((t), (t)) <_ -C/2, o < t < < Txo
since is smooth and f(x, z) is locally Lipschitz. Now we integrate this from 0 to tl
to get

tl -- 9((tl)) (p(x0)

__
-(C/2)tl.

Rearranging this tells us that

tl + 9((tl)) _< (x0)- (C/2)tl < (xo).

But this contradicts the dynamic programming principle (4.4). Therefore, V is a
subsolution of (4.1) as well. [:]

We will prove next that V is the only continuous viscosity solution of (4.1) which
satisfies (4.2) and (4.3). The proof of uniqueness is based on the uniqueness theorems
of Bardi and Soravia [5], [14] for pursuit-evasion differential games. Viewing the
optimal control problem as a one-player differential game, we will state their theorem
in the form suitable for our problem.

THEOREM 4.2 (see [5, Thm. 3.1]). Assume that f(x,z) is uniformly Lipschitz.
Let A be an open set containing the closed target set T. Let U C(A- T) be a
viscosity solution of

(4.7) 1 + max DU. f(x, z) 0, x e A- 7",
zGZ

U(x) x e o:r, U(x) x oA.

Define W" R RIA {oc} by

W(x) sup +

where g is a given continuous function and a()= inf{t x(t) e 0T} and rx()
+oc if OT is never achieved. Then U =- W and A {x" W(x) <: +c}.
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Clearly this theorem gives us the uniqueness result for the blowup time problem
with the target set taken to be T {}. All we need to do is phrase it in terms
which do not use the point at infinity.

We are ready to prove the following theorem.
THEOREM 4.3. Assume (2.2), (Ai), and (Aii). Let A be any open set. Let

U E C(A) be a viscosity solution of

(4.8) l+maxzz(DU.f(x,z))=O, xEA,
limlxl__, U(x) 0, limz--,oa U(x) +.

Then U V and A gt. That is, U must be the value function for the blowup time
and A must be the blowup set

Proof. Let > 0. Define the target set TK {x [x] :> K}, where K is fixed
large enough so that [U(x)[ < and so that ’/K C /. This can be done according
to Proposition 2.1. Then U is a viscosity solution of (4.7) if we take T TK and
g(x) U(x) restricted to {[x[ K}. Consequently, using Bardi and Soravia’s theorem

(4.9) U(x) sup (g((x))+
z

and A {x" supcez (g((-))+ -K(4)) < +x}. Here -xK(() is the exit time from
A- TK. Note that Bardi and Soravia’s theorem requires uniform Lipschitz continuity
of the vector field f(x, .). Since we are working in the set A- TK, which is bounded,
under assumption (2.2), f is uniformly Lipschitz in that set.

Now, observe that U(x) < + if and only if V(x) < +x. indeed, if V(x) < +
any trajectory must exit the ball of radius K before it explodes, so TxK () < Y(x) <
+, which implies by (4.9) that U(x) < +. If U(x) <: + then an arbitrary
trajectory hits TK in finite time. Once it hits TK, since we chose K large enough so
that TK C t, it is in the blowup set . Thus the starting position of the trajectory
must have been in t as well. Therefore A t. Furthermore, we let 0, and
therefore K c in (4.9), and conclude that U V (refer to (3.5) in the proof of
Theorem 3.2). [:]

The next result we want to prove gives us a way of calculating V and without
having to solve the free boundary problem (4.8). To this end, following Bardi and
Soravia [5], we consider the Kruzhkov transform of V:

(4.10) w(x) (V(x))-- 1-exp(-V(x)), x e .
The Kruzhkov transform was introduced for viscosity solutions in [9].

The proof of the following lemma is a simple consequence of the properties of (.)
and the definition of viscosity solution (cf. [3], [9]).

LEMMA 4.4. The function w is a viscosity solution of

(4.11) 1 w + max Dxw(x). f(x,z) O,
zZ

X e t {X Rn: w(x) <: 1},

(4.12) lim w(x)= 1,
x---O

(4.13) lim w(x) O.



OPTIMAL CONTROL OF THE BLOWUP TIME 117

The fact that w goes to 0 when Ixl -- will be the key property that gives a
unique solution of the problem (4.11)-(4.13).

The problem with dealing with-(4.11) directly is the fact that it holds only on gt

which is unknown a priori since it too depends on w. But Bardi and Falcone in [4]
showed how to avoid this problem when it also arose for the minimum time problem.
We will do the same thing here. Namely, we consider the same problem for w but we
solve it in Rn:

(4.14) 1 w + max Dxw(X) f(x, z) O, x Rn.
zZ

We drop the boundary condition (4.12) and only impose the condition (4.13).
LEMMA 4.5. Assume (2.2), (Ai), and (Aii). A continuous viscosity solution of

(4.14), (4.13) is given by

(4.15) w(x)
1, ifxRn-.

Proof. We know that w is continuous and bounded. Also, by Proposition 2.1,
w(x) 0 as Ix --, . Noting that is an increasing function, we may write w as
follows:

T()
w(x) sup e ds, x E Rn,

which shows that w itself is the value function of a control problem up to the time
of blowup with a discount factor. Using a standard dynamic programming argument,
we can now prove in a straightforward way that w is a viscosity solution of (4.14).

Now we will prove that (4.15) is the only solution of (4.14) satisfying (4.13). We
phrase the theorem in the form of a comparison principle.

THEOREM 4.6. Let u be a lower semicontinuous and v an upper semicontinuous

function on Rn such that u is a bounded viscosity subsolution and v is a bounded
viscosity supersolution of (4.14) both satisfying condition (4.13). Then u <_ v on Rn.
In particular, if both u and v are continuous viscosity solutions, then u =_ v.

REMARK 4.1. In general, when the function f has superlinear growth in x this
theorem is false without the condition (4.13).

REMARK 4.2. The proof of the last assertion of the theorem follows from Theo-
tern 4.3. Indeed, if u and v are both continuous viscosity solutions of (4.14), then the
pairs (U, t(U)) and (V, (V)), where U log(1 u), t(U) {x" u(x) < 1} and
V -log(1- v), t(V) {x "v(x) < 1} are both continuous viscosity, solutions of
(4.8). Then, by Theorem 4.3, t(U) t(V) t, the blowup set, and U V must
be the value function for the blowup time. The proof below gives us the comparison
principle for discontinuous solutions which is used in [8].

Proof. The proof is standard, with the only new point being that boundary
condition (4.13) allows us to find points of maximum of the doubled function,
below, in a compact set. We sketch the proof for completeness.

Define the function )(x,y) u(x) v(y). Let E CI(R2n) and let (x0, y0) be a
maximum point of ) . Then x (x, Y0) (x, y0) achieves a maximum at x0



118 EMMANUEL N. BARRON AND WENXIONG LIU

and y H -zO(xo, y) + (xo, y) achieves a minimum at Yo. Since u is a subsolution and
v is a supersolution of (4.14), we have that

(4.16)

and

1 U(Xo) + maxDx(xo, yo). f(xo, z) >_ 0,
zEZ

(4.17) 1 v(yo) + max(-Dy(xo, Yo))" f(Yo, z) <_ O.
zEZ

Subtract (4.17) from (4.16)to get

-)(xo,Yo) + maxDxp(xo,yo) f(xo, z) max(-Dy(xo, Yo)) f(yo, z) > O.
zZ zZ

This says that 0 is a viscosity subsolution of

(4.18)
-)(xo, Yo) + max Dx)(xo, Yo) f(xo, z) max(-D)(xo, Yo)) f(yo, z) O.

zZ zZ

Suppose now that there exists a point x’ E R for which u(x’) > v(x’). Then
v(x, x) > 0. Consider the function

(x, > 0.

For each s > 0, (I) is a continuous function and (I)(x, x) > 0. Since u - 0 and v 0
as xl, lYl- c, we have that limsuplxl,tyl_ (I)(x, y) _< 0. Therefore, for each s > 0,
(I) achieves a positive maximum at, say, (x, y) E/2n. Furthermore, we have that if
we set

ME sup (I)(x,y),
(x,y)ER

then lim_.0 Ix yl 2 0 and lim_.0 M supeRn (x, X) > 0.
Using the test function Ix- yl 2 for the function , since is a viscosity subso-

lution of (4.18) we have that

1 1
(4.19) -(x, y) + max-(x y) f(x, z) max-(x y) f(y, z) > O.

zZ zZ

Given any 5 > 0, we may assume that s is chosen sufficiently small, for example,
s < o, so that ]x y 5. Define the point z Z by

1 1
max-(x y). f(x z) -(x y). f(x, z).
zZ E

Then rearranging equation (4.19) and using he local Lipschiz continuity of f (uni-
form in z, we obtain

1 1
O(x, y) max -(x y) f(x, z) max -(x y) f(y, z)

zZ zZ
1 1
-(x y). f(x, z) (x y). f(y, z)

1
-]x y]2 Ks.
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The last expression goes to 0 as s 0. But

lim )(x, y) >_ lim (I)(x, y) > 0.
e--*0 e--*0

This is a contradiction and so we have established that u < v everywhere.
Consequently, w 1- e-V is the only viscosity solution of (4.14) satisfying

(4.13). Therefore, in order to find V, the most practical way to do this is to solve
(4.14), (4.13) for w and then

V(x) -log(1 w(x)), {X E ln’w(x) < 1}

is the unique viscosity solution bf (4.1), (4.2), and (4.3), i.e., V is the value function
for the blowup time.

5. Pontryagin maximum principle. In this section we will derive the Pon-
tryagin maximum principle for our problem. Our approach will use the results of the
previous sections. It is based on the use of the Bellman equation. This approach was
first developed for use in the finite horizon problem of Lagrange in [7].

Fix a point y E and suppose that there exists an optimal control for this
initial point, * Z. Let * denote the optimal trajectory with *(0) y. Since
the control * is fixed, we will denote the blowup time from the starting point y as
simply T(y) <: +c. Finally, define the function w e CI(,R1) by w(x)= Tx(*). In
other words, w gives the blowup time from starting position x when we use the fixed
control *. From the results of 2, we know that if we assume also condition (Aiii),
w is continuously differentiable.

THEOREM 5.1. Assume (2.2), (Ai)-(Aiii). Set p(t) =- Dxw(*(t)) for 0 <_ t <_
T(y). Then * must satisfy the maximum principle

ma(p(t), f(*(t),z))= p(t). f(*(t),*(t))

for almost all 0 < t < T(y). Furthermore, p is given as the solution of

dp
(5.2) d-- -p(t). Dxf(*(t), *(t)), 0 < t < T(y)

with terminal condition

0

and p satisfies the condition

(5.4) l+p(t).f(*(t),*(t))=O, a.e. O<_t <T(y).

Proof. Begin by observing that if y , then *(t) t for all 0 < t < T(y).
Therefore, t -+ w(*(t)) is finite. Since the optimal trajectory is absolutely continuous
in t and w is continuously differentiable, p(.) is absolutely continuous.

By definition of V and w, we have immediately that w(x) < V(x) for every
x E and also, since * is optimal, w(*(t)) V(*(t)) for all t [0, T(y)]. But this
says that V w achieves a minimum of zero at each point of the optimal trajectory
*(t). Since w is continuously differentiable, it may be used as a test function in the
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definition of supersolution for (4.1). Thus, at each point of differentiability of *, that
is, for almost every t E [0, T(y)], we have that

(5.5) 1 + maxDxw(*(t)) f(*(t),z) <_ O.
zEZ

On the other hand, since w(*(t)) T(*(t)) is a.e. differentiable, we have that

(5.6) 1 + Dxw(*(t)). f(*(t), *(t)) 0, a.e. 0 <_ t < T(y).

This follows easily from the fact that for any t < - < T(y), we have that T(*(t))
T(*(-;t,*(t))) + (--t). By definition of p, (5.6) is the same as (5.4). It also follows
from (5.4) that p cannot be identically zero.

From (5.6), we obtain

(5.7) 1 + maxDxw(*(t)) f(*(t),z) >_ O.
zEZ

Then, combining (5.7) with (5.5) and using (5.6) allow us to conclude that (5.1) must
be true.

Next, it follows from Remark 2.1 (see (2.19)) that p(T(y))= O.
Finally, we need to verify (5.2). We will use the fact that the function (t, s)

Dx*(t; s, x) satisfies the linear variational systems

O0/Ot Df((*(t),*(t)) (b, O(b/Os -0. Df(*(s),*(s)), 0 < s < t,

and (s,s) 1. Again, using the fact that for any t < T < T(y), T(*(t))
T(*(’;t,*(t))) + (-- t) and (5.8), we compute

O*(’;t,*(t))(t)) t, (t))) Ox

DT(*(r;t, .* (t))) (1 + --./,-70*(7;r,*(r))ox Df(*(r), * (r)) dr)

DT((*(r;t,(*(t)))+ p(r). Df(*(r),*(r)) dr.

The last equality follows from the fact that T(* (r; t, * (t))) T(* (-; r, (* (r)))
for all t _< r < T. Letting - T(), since DT(*(-;t,*(t))) 0 (see (2.19) and
Remark 2.1) we have that

fT(y) *(5.9) p(t) p(r) Df(*(r), (r)) dr.
dt

Even though the integrand in (5.9) has a singularity at r T(y) (because I* (T(Y))I
+ec), the integral exists because the left side is always finite, according to (5.4) and
the fact that p(r) --, 0 as r T(y). rq

6. Example. In this section we will present a simple example to illustrate the
results of this paper. We look at the problem with dynamics

(6.1) d__ 2 + t > 0
dt

(6.) (0) x e R.
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The control set is taken to be Z [-1, 1]. It is clear that our assumptions (2.2),
(Ai)-(Aiii) are satisfied. Observe that for any { < 0, the dynamics have equilibrium
solutions which certainly do not blow up in finite time. At equilibrium starting points
we have T(x)

The Bellman equation for the maximal blowup time V(x) is

(6.3) 1 + max V’(x)(x2 + z) 1 + V’(x)x2 + IV’(x)l 0, x E Ft.
-1<z<1

The maximum is achieved with z V’(x)/lV’(x)l. Clearly, from (6.3), it is not possible
for V’(x) 0 on f.

Now we claim that ft (1, oc). To see formally why this is true, we begin by
noting that, from (6.3), it is not possible to have V’(x) > O. Thus, V’(x) < 0 on
and so z -1, and (6.3) becomes.

(6.4) 1 + V’(x)(x- 1)- 0, x E f.

If Ix _< 1, (6.4) cannot be satisfied. Therefore, gt c {Ixl > 1}. Next, if x -- -1, x f,
and -1 is a boundary point, we know that V(x) - +oc. But then V’(x)
which contradicts the fact that V’(x) < 0. Thus, ft C {x > 1}. We also know that
(A, oc) c f for some A _> 1. Suppose A > 1. From the fact that A2_ 1 > 0 and
V’(x) - -oc as x --, A we obtain a contradiction to (6.4). We conclude that ft
(1, oc).

The unique viscosity solution of (6.4) on (1, oc) converging to 0 at oc and growing
to o at x 1 is given by

log x+l if z > 1,
(6.5) V(x) - x-l,

+c, otherwise.

Therefore, we have discovered that the value function is given by (6.5) and the
blowup set is f (1, oc). Finally, the optimal control is {*(t) -1.

Now we illustrate the use of the maximum principle on this problem. Fix x
The optimal control, with assocoiated optimal trajectory *, satisfies

max p(t)((t) + z) p(t)(t) +
--1<z<1

with (*(t) p(t)/lp(t)l and p(t) is given by the solution of the adjoint equation

d-- -p(t) 2*(t), 0 < t < T(x), p(T(x)) O,

where T(x) T(*) is the maximal blowup time for position z. The solution of this
problem is

(/0 )p(t) =p(0) exp 2C*(r) dr

since f[()* (r) dr +oc. Finally, using condition (5.4) we obtain 1 + p(t)* (t) +
Ip(t)l 0 and this implies that p(t) < 0. Thus, at t 0 we get p(0) -1/(x 1)
Therefore,

-1 ( It )p(t)=
x2 _1

exp 2*(r) dr
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is the adjoint variable. The optimal control is again seen to be *(t) -1.
Finally we shall look at a two-dimensional problem"

d(6.6) d--
(6.7) d--

if - > 0 and ((0), r(0)) (z, y) R2 We assume that the control set is Z [-1, 1].
The Bellman equation for the value function V(x, y) becomes

(6.8) 1 +x Vv-y V: +(.x +y)(x Vx +y Vy)+lx V: +y Vvl =0.

The feedback control is

xVx+yVy

It is clearly a much more difficult problem to determine the blowup set ft from equation
(6.8) than in the one-dimensional case. Fortunately, we can calculate that the solution
of (6.8) satisfying the conditions

lim V(x, y) O, lim V(x, y)
x2 +y2 ----ocz x ,y --*Oft

is given by

/vg_,X2nt_ -2

V(x,
log if x2 + y2 > 1,

otherwise.

The blowup set is therefore f {x2 + y2 > 1} and the optimal controlis 4*(t) _= +1.

7. Some generalizations. 1. The results of this paper carry over with very
little change to the more general problem with value function

V(x) sup f0
’Tx ()

+

where g(0) 0.
2. When we want to minimize the blowup time, V(x) infcez T(), then the

blowup set 2 {x R V(x) < oc} is now the set in which the blowup time is
finite for some control rather than for every control. The Bellman equation is the
same as that in 3 with maXzez replaced by minzez.

3. The corresponding differential game also is of interest. In this. case we have
two opposing players, and 7, where is trying to minimize the blowup time and r/is
attempting to maximize it. We have an upper value, V+ (x), in which player makes
the first move. For the lower value, V-(x), the maximizer makes the first move.
The game has value if V+ V-. From a practical point of view the differential
game is the appropriate model when the designer is very conservative. That is, if
one wants to minimize the blowup time under the worst possible circumstances, one
should assume that there is an opposing player who has the opposite goal. In many
cases the opposing player can be taken as nature.
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The upper value V+ is the viscosity solution of

1 + minmaxDxV+(x) f(x,y,z) 0
zEZ yEY

and the lower value satisfies the same equation with min and max interchanged. The
proofs of these statements, as well as the various continuity results regarding the value
functions, are substantially different than those in this paper.

4. It is also possible to consider a nonautonomous version of our problem. That
is, suppose that the vector field depends on time, f f(t,z,z). In that case, we
consider the value function as depending on the initial time and state of the problem,
V V(t,x), as does the blowup time, Tt,x({). This would be the first time in the
finite time interval It, S] that the trajectory becomes infinite. If the trajectory does
not blow up within that time interval, then the blowup time is defined as S. The
Bellman equation becomes

Vt + maxDxV, f(t,x,z) 0, (t,x) E
zZ

where the blowup set f {(t,x) E [0, S) x Rn: V(t,x) < +oe}. We now have the
additional terminal condition that V(S,x) S.
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reading of the original version of the paper turned up several errors. In addition,
this final version was significantly improved by the use of the results of Bardi and So-
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of V and the uniqueness of viscosity solutions.
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A SMOOTH CONVERSE LYAPUNOV THEOREM FOR ROBUST
STABILITY*
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Abstract. This paper presents a converse Lyapunov function theorem motivated by robust
control analysis and design. Our result is based upon, but generalizes, various aspects of well-
known classical theorems. In a unified and natural manner, it (1) allows arbitrary bounded time-
varying parameters in the system description, (2) deals with global asymptotic stability, (3) results
in smooth (infinitely differentiable) Lyapunov functions, and (4) applies to stability with respect to
not necessarily compact invariant sets.

Key words, nonlinear stability, stability with respect to sets, Lyapunov function techniques,
robust stability
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1. Introduction. This work is motivated by problems of robust nonlinear sta-
bilization. One of our main contributions is to provide a statement and proof of
a converse Lyapunov function theorem in a form particularly useful for the study of
such feedback control analysis and design problems. We provide a single (and natural)
unified result that

1. applies to stability with respect to not necessarily compact invariant sets;
2. deals with global (as opposed to merely local) asymptotic stability;
3. results in smooth (infinitely differentiable) Lyapunov functions;
4. most importantly, applies to stability in the presence of bounded time-varying

parameters in the system.
(This last property is sometimes called "total stability" and it is equivalent to the
stability of an associated differential inclusion.)

The interest in stability with respect to possibly noncompact sets is motivated by
applications to areas such as output control (one needs to stabilize with respect to the
zero set of the output variables) and Luenberger-type observer design ("detectability"
corresponds to stability with respect to the diagonal set {(x, x)}, as a subset of the
composite state/observer system). Such applications and others are explored in [16,
Chap. 5].

Smooth Lyapunov functions, as opposed to merely continuous or once-
differentiable ones, are required in order to apply "backstepping" techniques in which
a feedback law is built by successively taking directional derivatives of feedback laws
obtained for a simplified system. (See for instance [9] for more on backstepping de-
sign.)

Finally, the effect of parameter uncertainty and the study of associated Lyapunov
functions are topics of interest in robust control theory. An application of the result
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proved in this paper to the study of "input to state stability" is provided in [27].

1.1. Organization of paper. The paper is organized as follows. The next sec-
tion provides the basic definitions and the statement of the main result. Actually,
two versions are given, one that applies to global asymptotic stability with respect
to arbitrary invariant sets, but assuming completeness of the system (that is, global
existence of solutions for all inputs) and another version which does not assume com-
pleteness but only applies to the special case of compact invariant sets (in particular,
to the usual case of global asymptotic stability with respect to equilibria).

Equivalent characterizations of stability by means of decay estimates have proved
very useful in control theory (see e.g. [25]) and this is the subject of 3. Some technical
facts about Lyapunov functions, including a result on the smoothing of such functions
around an attracting set, are given in 4. After this, 5 establishes some basic facts
about complete systems needed for the main result.

Section 6 contains the proof of the main result for the general case. Our proof
is based upon, and follows to a great extent, the outline of the one given by Wilson
in [31], who provided in the late 1960s a converse Lyapunov function theorem for
local asymptotic stability with respect to closed sets. There are however some major
differences from that work: we want a global rather than a local result, and several
technical issues appear in that case; moreover, and most importantly, we have to deal
with parameters, which makes the careful analysis of uniform bounds of paramount
importance. (In addition, even for the case of no parameters and local stability,
several critical steps in the proof are only sketched in [31], especially those concerning
Lipschitz properties and smoothness around the attracting set. Later the author of
[21] rederived the results, but only for the case when the invariant set is compact.
Thus it seems useful to have an expository detailed and self-contained proof in the
literature.) A needed technical result on smoothing functions, also based closely on
[31], is placed in an appendix for convenience. Section 7 deals with the compact case,
essentially by reparameterization of trajectories.

An example, motivated by related work of Tsinias and Kalouptsidis in [7] and
[29], is given in 8 to show that the analogous theorems are false for unbounded
parameters.

Obviously in a topic such as this one, there are many connections to previous
work. While it is likely that we have missed many relevant references, we discuss in

9 some relationships between our work and other results in the literature. Relations
to work using "prolongations" are particularly important, and are detailed further in

10.

2. Definitions and statements of main results. Consider the following sys-
tem:

(1) it(t) f(x(t), d(t)),

where for each t E IR, x(t) IRn and d(t) 7), and where 7) is a compact subset of
IR", for some positive integers n and m. The map f :IRn 7) - IRn is assumed to
satisfy the following two properties:

f is continuous.

f is locally Lipschitz on x uniformly on d, that is, for each compact subset K
of IRn there is some constant c so that If(x, d)- f(z, d)l _< c Ix- z for all
x, z K and all d 7), where I’1 denotes the usual Euclidian norm.
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Note that these properties are satisfied, for instance, if f extends to a continuously
differentiable function on a neighborhood of IRn x 7).

Let A4v be the set of all measurable functions from IR to 7). We will call functions
d E lv time-varying parameters. For each d E A/lv, we denote by x(t, xo, d) (and
sometimes simply by x(t) if there is no ambiguity from the context) the solution at
time t of (1) with x(0) x0. This is defined on some maximal interval (To,d Tx+o,d)
with -ec <_ To,d < 0 < T+xo,d -<

Sometimes we will need to consider time-varying parameters d that are defined
only on some interval I C_ IR with 0 I. In those cases, by abuse of notation,
x(t, x0, d) will still be used, but only times t I will be considered.

The system is said to be forward complete if T+xo,d "+’OO for all x0 and all
d A/Iv. It is backward complete if To,d --co for all x0 and all d A/iv, and it is
complete if it is both forward and backward complete.

We say that a closed set A is an invariant set for (1) if

VXo A, Vd Jiv, Tx+o,d +oc and x(t, x0, d) A, Vt _> 0.

Remark 2.1. An equivalent formulation of invariance is in terms of the associated
differential inclusion

(2) 5c e F(x),

where F(x) {/(x, d), d e 7)}. The set .4 is invariant for (1) if and only if it is
invariant with respect to (2) (see e.g. [1]). The notions of stability to be considered
later can be rephrased in terms of (2) as well.

We will use the following notation" for each nonempty subset A of IRn and each
E IRn, we denote

def

the common point-to-set distance, and I l(o -Il is the usual norm.
Let A C_ IR be a closed, invariant set for (1). We emphasize that we do not

require A to be compact. We will assume throughout this work that the following
mild property holds:

(3) sup

This is a minor technical assumption, satisfied in all examples of interest, which will
greatly simplify our statements and proofs. (Of course, this property holds automati-
cally whenever j is compact, and in particular in the important special case in which
4 reduces to an equilibrium point.)

DEFINITION 2.2. System (i) is (absolutely) uniformly globally asymptotically
stable (UGAS) with respect to the closed invariant set ,4 if it is forward complete and
the following two properties hold:

1. Uniform Stability. There exists a lC-function 5(.) such that for any >_ O,

(4) Ix(t, xo, d)[A < for all d E J4v, whenever IxoIA < and t >_ O.

2. Uniform Attraction. For any r, > O, there is a T > O, such that for every
dE.h/Iv,

(5) Ix(t, zo, d)l <

whenever Ix01A < r and t > T.
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For the definitions of the standard comparison classes of/Co- and/(:/:-functions,
we refer the reader to the appendices.

Observe that when A is compact the forward completeness assumption is redun-
dant, since in that case property (4) already implies that all solutions are bounded.

In the particular case in which the set :D consists of just one point, the above
definition reduces to the standard notion of set asymptotic stability of differential
equations. (Note, however, that this definition differs from those in [3] and [31],
which are not global.) if, in addition, ,4 consists of just an equilibrium point x0, this
is the usual notion of global asymptotic stability for the solution x(t) Xo.

Remark 2.3. It is an easy exercise to verify that an equivalent definition results
if one replaces A/t by the subset of piecewise constant time-varying parameters.

Remark 2.4. Note that the uniform stability condition is equivalent to the state-
ment that there is a/C-function so that

Ix(t, xo, d)lA <_ 99(Ixo1), Vxo, Vt >_ O, and Vd

(Just let 5-1.)
The following characterization of the UGAS property will be extremely useful.
PROPOSITION 2.5. The system (1) is UGAS with respect to a closed, invariant

set Jt C_ IRn if and only if it is forward complete and there exists a 1C-function
such that, given any initial state xo, the solution x(t, x0, d) satisfies

(6) Ix(t, xo, d)] <_  (Ix0l , t) fo any t >_ O,

for any d
Observe that when A is compact the forward completeness assumption is again

redundant, since in that case property (6) implies that solutions are bounded.
Next we introduce Lyapunov functions with respect to sets. For any differentiable

function V :IRn IR, we use the standard Lie derivative notation

LfdV( dej OV() fd()Ox

where for each d E :D, fd(’) is the vector field defined by f(., d). By "smooth" we
always mean infinitely differentiable.

DEFINITION 2.6. A Lyapunov function for the system (1) with respect to a
nonempty, closed, invariant set .4 C_ ]In i8 a function V ]Rn ]R such that
V is smooth on ]Rn\Jt and satisfies

1. there exist two lC-functions al and a2 such that for any ]Rn,

(7)

2. there exists a continuous, positive definite function a3 such that for any
IRn\A, and any d

(8) LfdV() <_-a3(llA).

A smooth Lyapunov function is one which is smooth on all of ]R.
Remark 2.7. Continuity of V on ]R\A and property 1 in Definition 2.6 imply:

V is continuous on all of ]R;
V(x)=O xA;and
V’ IRn ?- IR_>0 (recall the assumption in equation (3)).
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Our main results will be two converse Lyapunov theorems. The first one is for
general closed, invariant sets and assumes completeness of the system.

THEOREM 2.8. Assume that the system (1) is complete. Let ,4 C_ IRn be a
nonempty, closed, invariant subset for this system. Then, (1) is UGAS with respect
to 4 if and only if there exists a smooth Lyapunov function V with respect to

The following result does not assume completeness but instead applies only to
compact A.

THEOREM 2.9. Let Jt C_ IR be a nonempty, compact, invariant subset for the
system (1). Then, (1) is UGAS with respect to Jt if and only if there exists a smooth
Lyapunov function V with respect to

3. Some preliminaries about UGAS. It will be useful to have a restatement
of the second condition in the definition of UGAS stated in terms of uniform attraction
times.

LEMMA 3.1. The uniform attraction property defined in Definition 2.2 is equiva-
lent to the following: there exists a family of mappings {Tr}r>0 with

for each fixed r > O, Tr lR>o ]R>o is continuous and is strictly decreas-
ing;
for each fixed > O, T(s) is (strictly) increasing as r increases and
lim__, T() ;

such that, for each d

(9) [x(t, xo, d)[A < whenever [xo[A < r and t >_ Tr().

Proof. Sufficiency is clear. Now we show the necessity part. For any r, > 0, let

Ar, e
def__ {T _> 0" V Ix0IA < T, Vt _> T, Vd M, Ix(t, x0, d)lA < } C_ lR>0._

(10)
Then from the assumptions, A, - 0 for any r, > 0. Moreover,

Ar,l C_ A,2 if 1 _< 2, and A2,

Now define r() dej inf A,. Then () < , for any r, > 0, and it satisfies

=’r(l) r(2), if 1 2, and r() =r2(), if ?1

_
?2.

So we can define for any r, > 0,

(11) () def 2

Since (.) is decreasing, (.)is well defined and is locally absolutely continuous.
Also

(12) r() >_ _2 (s) ds
c/2

Furthermore,

ds

(3)
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hence r(’) decreases (not necessarily strictly). Since (.)()increases, from the defi-

nition, (.)(e) also increases. Finally, define

r
(14) %() dof ()+

Then it follows that
for any fixed r, T(.) is continuous, maps JR>0 ?- lR>0, and is strictly
decreasing;
for any fixed e, T(e) is increasing as r increases, and lim %(e) .

So the only thing left to be shown is that Tr defined by (14) satisfies (9). To do this,
pick any xo and t with IxoA < r" and t T(e). Then

t T(s) > (s) ().

Hence, by the definition of r(), ]x(t, x0, d)]A < ,as claimed.

3.1. Proof of characterization via decay estimate. We now provide a proof
of Proposition 2.5.
[] Assume that there exists a K-function such that (6) holds. Let

def 0) < OOCl sup3(.,

and choose 5(.) to be any K:-function with

5(e)_<-(e), for any0_<e<c,

where --1 denotes the inverse function of/(.) dej (., 0). (If Cl (:X), we can simply

choose 5(s) de=f )-I(s).) Clearly 5(s) is the desired /(:m-function for the uniform
stability property.

The uniform attraction property follows from the fact that for every fixed r,
lim (r, t) 0.

[] Assume that (1) is UGAS with respect to the closed set A, and let 5 be as
in the definition. Let (.) be the K:-function 5-1(.). As mentioned in Remark 2.4, it
follows that Ix(t, xo, d)l.4 <_ (IxolA) for any x0 E IR, any t _> 0, and any d

Let {T}e(0,) be as in Lemma 3.1, and for each r (0, oc) denote de=f T_I.
Then, for each r (0, oc), lR>0---,lR>0 is again continuous, onto, and strictly
decreasing. We also write (0) +oe, which is consistent with the fact that

lim (t)=
t-,0+

(Note: The property that T(.)(t) increases to oc is not needed here.)
CLAIM. For any IxolA < r, any t >_ O, and any d Adv, x(t, xo, d)lA <_ (t).
Proof. It follows from the definition of the maps T that, for any r, e > 0, and

for any d

IxolA < r, t >_ %(e) Ix(t, xo, d)l < e.

As t T(r(t)) if t > 0, we have, for any such x0 and d,

(15) Ix(t, xo, d)l < (t), Vt > 0.
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The claim follows by combining (15) and the fact that Cr(0)
Now for any s _> 0 and t > 0, let

Because of the definition of and the above claim, we have, for each Xo, d E A4,
and t 2 0,

(17) Ix(t, xo, d)lA t).

If were of class K, we would be done. This may not be the case, so we next
majorize by such a function.

By its definition, for any fixed t, r(., t) is an increasing function (not necessarily
strictly). Also, because for any fixed r E (0, ec), Cr(t) decreases to 0 (this follows

from the fact that lR>0 ?- lR>0 is continuous and strictly decreasing), it follows
that

for any fixed s, (s, t) decreases to 0 as t

Next we construct a function ]R[0, ) JR>0 -- JR>0 with the following properties:
for any fixed t _> 0, (., t) is continuous and strictly increasing;
for any fixed s _> 0, (s, t) decreases to 0 as t ;

t) >_ t).
Such a function always exists; for instance, it can be obtained as follows. Define
first

(18) (8, t) def I
s+l

(e, t)da.

Then (., t) is an absolutely continuous function on every compact subset of lR_>0,
and it satisfies

(8, t) (8, t)s
s+l

de (s, t).

It follows that

t)
08

@(s + 1, t) -(s, t) _> 0, a.e.,

and hence (., t) is increasing. Also since for any fixed s, }(s, .) decreases, so does
(s, .). Note that

}(s, t) _< (s, 0) min { inf
re(s, )

(recall that (0) +), so by the Lebesgue-dominated convergence theorem, for
any fixed s _> 0,

lim (s, t)= lim (e, t)de 0.
cx:
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Now we see that the function (s, t) satisfies all of the requirements for (s, t) except
possibly for the strictly increasing property. We define as follows:

(s, t) = (, t)+ (s + 1)(t + 1)

,’(V()) (V(,)) (Ol([,l.A)),
so

(19) L:f,W C t’ V C L]’, V C <_ -(o(11))o(11.)
defWe claim that this is bounded by -&a(llt). Indeed, if s 114 <- a-(1), then

from the first item above and the definition of

()/(o1(8)) >_ 8 _>
()

Clearly it satisfies all the desired properties.
Finally, define

/(8, t) de__.f V/(8, t).

Then it follows that/(s, t) is a A:-function, and for all x0, t, d,

I(t, 0, )1 <_ f(Ix01)v/(Ix0l, t) _< (Ix01, t),

which concludes the proof of Proposition 2.5.

4. Some preliminaries about Lyapunov functions. In this section we pro-
vide some technical results about set Lyapunov functions. A lemma on differential
inequalities is also given, for later reference.

Remark 4.1. One may assume in Definition 2.6 that all of al, a2, a3 are smooth
in (0, +oc) and of class ]C. For al and a2, this is proved simply by finding two
functions 01,02 in A:, smooth in (0, +oc) so that

() _< () _< .() _< (), or ]] .
For a3, a new Lyapunov function W and a function 03 which satisfies (8) with respect
to W, but is smooth in (0, +oc) and of class A:o, can be constructed as follows. First,
pick 03 to be any -function, smooth in (0, +), such that

03(8) <: 8o3(8), ’8 E [0, o-1(1)].
This is possible since a3 is positive definite. Then let

7 lR>_o ---+ lR>_o

be a A:-function, smooth in (0, +oc), such that
"7(r) _> c-l(r) for all r E [0, 1];
/(r) > 03((l(r))/c3(cl(r)) for all r :> 1.

Now define/(s) dej f 3’(r)dr. Note that/ is a AS-function, smooth in (0,
Let W() dej /(V(C)). This is smooth on IRn\A, and/ o al,/ o c2 bound W as in
equation (7). Moreover,
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if instead s > c{ 1(1), then from the second item, also

"/(OZ (8))

In either case, 7(cl(s))a3(s) >_ &3(s), as desired. From now on, whenever necessary,
we assume that al, a2, a3 are/(:-functions, smooth in (0,

4.1. Smoothing of Lyapunov functions. When dealing with control system
design, one often needs to know that V can be taken to be globally smooth, rather
than just smooth outside of A.

PROPOSITION 4.2. If there is a Lyapunov function for (1) with respect to ,4, then
there is also a smooth such Lyap’unov function.

The proof relies on constructing a smooth function of the form W o V, where

IR>_0 IR_>0

is built using a partition of unity.
Again let ,4 c_ IRn be nonempty and closed. For a multi-index co

n(col, co2,..., con), we use COl to denote Y’]i=l coi" The following regularization result
will be needed; it generalizes to arbitrary A the analogous (but simpler, due to com-
pactness) result for equilibria given in [13, Thm. 6].

LEMMA 4.3. Assume that V" IRn ---. lR>_o is C, the restriction Vln\A is
C, and also Vlt 0, VIn\A > 0. Then there exists a t:-function , smooth
on (0, oc) and so that ()(t) -- 0 as t ---. 0+ for each 0,1,..., and having
’(t) > O, Vt > O, such that

defW #oV

is a C function on all of ]Rn.
Proof. Let K1, K2,..., be compact subsets of ]Rn such that A C_ [-Jl int (Ki).

For any k > 1, let

Ik
def (1 _I) cIR

and Io de2 I1. Pick for any k _> 1 a smooth (C) function 7k lR>o --+ [0, 1]
satisfying

/k(t) 0 if t Ik; and
/k(t) > 0 if t E Ik.

Define for any k _> 1,

X ]R x U Ki, V(x) clos Ik
i=1

Then 6k is compact (because of compactness of the sets Ki and continuity of V).
Observe that each derivative 7(ki) has a compact support included in clos Ik, so it is
bounded. For each k 1, 2,..., let ck IR satisfy

1. ck>_l;
2. ck >_ ](DV)(x)l for any multi-index Icol -< k and any x k; and
3. ck _> ]7(i) (t)l, for any _< k and any t e lR>0.
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Choose the sequence dk to satisfy

1
(20) 0<dk <

z(t’k"+l"c’)!}
k=1,2,

Let a" IR_>0 - lR>_0 be a C function such that a 0 on [0, 1/2] and a >_ 1 on

[1/2, x). Define 7(0) dej 0 and

(21) 9’(t) dej E dkk(t) - O(t) Vt > O.
k=l

Notice that for any t e (0, 1), if k
def [j

_
1 denotes the largest integer <_ , then

t E I-1 and

tIj if j=k,k-1.

Hence the sum in (21) consists of at most three terms (for t _> 1 the sum is just, a), and so 7 is C at each t E (0, c).
CLAIM. For any >_ O, limt_.0+ ()(t) 0.
Proof. Fix any >_ 0. Given any s > 0, let k0 E be such that > o > 0. Let

1 1 1}T de___.f min 0’ i+l’

1}We will show thatt(0, T) == [(i)(t)l <e. Indeed, as0<t<min k, i+l, 5

it follows that k dej [j
_
max{/+ 1, k0, 3}. So

/(i) (t) --< dk-l(ki)- (t) - dk/(ki) (t)

and noticing that

Ok-1

__
we have

1 1 1 1 < 1
dk-lCk-1 + dkck +(),tl . 2( + 1)! . o

as wanted.
then /(t) > a(t) > 1 > 0; and if t (0, ) thenNote also that ift _> ,

,(t) _> d_-,/_l (t) > 0 with k d=f [j _> 2, so the function

(22) (t) def f
i (s)ds
Jo

is also a K:-function, smooth on (0, c). Furthermore, 3 satisfies 3(i)(t) - 0 as
t -. 0+ for each 0, 1,

Finally, we show that W / o V is C. For this, it is enough to show that
DeW(xn) - 0 as xn - 2 OA, for each multi-index 0 and each sequence {x} C_
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IRn\Jt converging to a point 2 in the boundary of jr. (In general--see, e.g., [4, p. 52]--
if ,4 C_ ]Rn is closed and " IRn -- IR satisfies that lt 0, )I\A is C, and for
each boundary point a of ,4 and all multi-indices o (ol, o2,..., On), it holds that
limx-,a De(x) 0, then ) is C on IR.)

Pick one such 6o and any sequence {x} with x 2 E 0.4. If 1601 0, one only
needs to show that W(x,) -- O, which follows easily from the fact that E K: and

V(xn) -- O. So from now on, we can assume that IOol dej _> 1. As ,4 C_ U=0int Kj,
2 int Kt for some l, and without loss of generality we may assume that there is some
fixed so that

"Xn K, for all n.

Pick any > 0. We will show that there exists some N such that

n > N = IDoW(x)l < e.

Let k , be so that

k>max{i, log9.(),l}
Observe that if t < T, then t 11 U... U Ik.and let T (0, 1/2) be such that T <

As V is CO everywhere, V 0 at A, V(xn) V(2) 0. So there exists N such
that V(xn) < T whenever n > N. Fix an N like this. Then for any n > N,

(V(x,)) 0, vi, w 2,...,

(since % vanishes outside I). Pick any j IN with j _< i, any h E IN with h _< i, and
01,..., 0h multi-indices such that I1 -< i, # 1,..., h. Then for any q IN with
q > k, by the way we chose ca,

since q > k > _> j. Also, if V(xn) Iq, then again by the properties of the sequence
Ck

IDV(x)I _< cq

(since q > k > and xn Kt imply xn K1 U... U Kq, and [01 <- i < k < q).
Therefore, for such q, if V(x) Iq,

(23) _< c3 < cJI/(q) (V(x)) IDV(x)I ]DV(x)I <_ cq

If instead it were the case that V(Xn) I, then /Y)(V(Xn) O, and hence the
inequality (23) still holds. Since

E dq’)/j) (g(xn))
q=k+l
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we also have

I(j) (v(x,)) IID’v(x)l ID"v(x)l E dqcqq < E 2q(q+l)!
q=k+l q--k+1

(24) < - (k+l)! 2k(k+l)! < (k+l)!’
q.-k+l

Now observe that

(DW) (x) (D( o V)) (x)

is a sum of _< i! terms (recall 0 < 1001), each of which is of the form

V) (D V) (z),

where 0 < p

_
i, h _< i, and each Icol _< i. Each

(P) (V(x)) ’,/(J) (V(x)) j p- 1 <_ 1,

so (24) applies, and we conclude

(DW)(x)]

_
i! (k / 1)! < ’

(since k > i.) rl

Now let us return to the proof of Proposition 4.2.
Proof of Proposition 4.2. Assume Jr, V, and al,a2,a3 are as defined in Defini-

tion 2.6. Let , W be as in Lemma 4.3. We show that W is a smooth Lyapunov
function as required.

Let &i de o ai, 1, 2. These are again K:-functions, and they satisfy

We define, for s > O,

(8) deaf min (s)]’(t) > 0.
t[al (S), a2

Also let/(0) de2 0. Define &3(s) de__f (8)O3(8)" Then &3 is a continuous, positive
definite function. Also, for any E IRn\A,

LfaW() =/’(V(())LfaV() <_ -’(V())c3(IIA)

which concludes the proof of Proposition 4.2.

4.2. A useful estimate. The following lemma establishes a useful comparison
principle.

LEMMA 4.4. For each continuous and positive definite function a, there exists
a tgE-function/(s, t) with the following property: if y(.) is any (locally) absolutely
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continuous function defined for t >_ 0 and with y(t) >_ 0 for all t, and y(.) satisfies the
differential inequality

(25) )(t) _< -a(y(t)), for almost all t

with y(O) Yo >_ O, then it holds that

<_ t)

for all t >_ O.

Proof. Define for any s > 0, r](s) def fl dr
(r)" This is a strictly decreasing

differentiable function on (0, oc). Without loss of generality, we will assume that
lims_0+ r(s) +oc. If this were not the case, we could consider instead the following
function:

((s) de___f min(s, a(s)}.

This function is again continuous, positive definite, satisfies ((s) _< a(s) for any s _> 0,
and

s dr s dr
lim > lim

r

Moreover, if )(t) <_ -a(y(t)) then also )(t) <_ -((y(t)), so a could be used to bound
solutions.

Let
def

0<a lim r(s).

Then the range of r], and hence also the domain of r-1, is the open interval (-a, oc).
(We allow the possibility that a oc.) For (s, t) E lR_>0 lR_>0, define

de_f f 0, if s--0,t) /-1 (r(s) + t), if s > 0.

We claim that for any y(.) satisfying the conditions in the lemma,

(26) y(t) <_ (Yo, t), for all t >_ 0.

As 9(t) _< -a(y(t)), it follows that y(t) is nonincreasing, and if y(to) 0 for some

to _> 0, then y(t) =_ 0, Vt >_ to. Without loss of generality, assume that Y0 > 0. Let

def
to inf{t y(t) O} <_

It is enough to show (26) holds for t E [0, to).
As r/is strictly decreasing, we only need to show that rl(y(t)) >_ rl(.yo) + t, that

is,

which is equivalent to

(27)

y(t) dr fyo dr>--

VO dr

(t) a(r) >- t.
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From (25), one sees that

(------) d- < d- -t.
(())

Changing variables in the integral, this gives (27).
It only remains to show that is of class K;. The function/ is continuous

since both 7 and 7
-1 are continuous in their domains, and limr-oo r/-l(r) 0. It is

strictly increasing in s for each fixed t since both 7 and 7-1 are strictly decreasing.
Finally,/(s, t) 0 as t -- oe by construction. So/ is a/C-function.

5. Some properties of complete systems. We first need to establish some
technical properties that hold for complete systems, and in particular a Lipschitz
continuity fact.

For each E IR and T > 0, let

T/T([) ded {7" 7-x(T,,d), de.h4}.

This is the reachable set of (1) from at time T.
U0<t<T (). If S is a subset of IR, we write

r-<TWe use () to denote

n(s) doU U n()’ n-< (S) doj U n-< ()"

In what follows we use S to denote the closure of S for any subset S of IRn.
PROPOSITION 5.1. Assume that (1) is forward complete. Then for any compact

subset K of IR and any T > O, the set T<T (K) is compact.
To prove Proposition 5.1, we first need to make a couple of technical observations.
LEMMA 5.2. Let K be a compact subset of IRn and let T > O. Then the set

T< (K) is compact if and only if T< () is compact for each K.

Proof. It is clear that the compactness of T<-T (K) implies the compactness of
T4<T () for any c K.

Now assume, for T > 0 and a compact set K, that 7<T () is compact for each
K. Pick any c K, and let b/= {7" d(7, 74-<T ()) < 1}. Then is compact. Let

C be a Lipschitz constant for f with respect to z on , and let r e-cT. For each
d E 2tdz and each 7 with 17- 1 < r, let {= inf{t > 0" Iz(t, , d)- z(t, , d)l >_ }.
Then, using Gronwall’s lemma, one can show that { >_ T, from which it follows that

Thus, for each K, there is a neighborhood 12 of such that 7Z<T (12) is compact.
By compactness of K, it follows that T4<-T (K) is compact. Cl

LEMMA 5.3. For any subset S of ]R and any T > O,

(-) c_ n(s), <- (-) c_ <- (s).

In particular, n<- (-) n<- (S).
Proof. The first conclusion follows from the continuity of solutions on initial

states; see [26, Thm. 1]. The second is immediate from there. El
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We now return to the proof of Proposition 5.1. By Lemma 5.2, it is enough to
show that 7-<T () is compact for each E IRn and each T > 0. Pick any 0 E IRn,
and let - sup{T _> 0" r (0) is compact }.

Note that 7 > 0. This is because lz(t, 0, d) 0] 1 for any 0 t < 1/M and any
d , where

M-max{f(,d)" -0 1, dD}.

We must show that .
Assume that < . Using the same argument as above, one can show that if

(0) is compact for some t > 0 then there is some 5 > 0 such that (*+e) (0) is

compact. om here it follows that " (0) is not compact. By definition, (0)
is compact for any t < .

Let 71 7/2. Then there is some 1 *(0) such that (’-’)(1) is not

compact; otherwise, by Lemma 5.2, (’-’a)(*(0)) would be compact. This, in

turn, would imply that " (0) is compact, since

On the other hand, combining Lemma 5.3 with the fact that s, (, (0)) is compact
for any 0 t < 7 1, one sees that (1) is compact for any 0 t < 1.

Since 1 rl (0), there exists a sequence {z} 1 with z 71 (o). nssgme,
for each n, that z x(l, 0, d) for some d . For each d M and each
s N, we use d to denote the function defined by d(t) d(s + t). Then by
uniqueness, one has that for each n, x(s, z, (d)) K1 for any -71 s 0, where

K1 ’ (o). We want to claim next that, by compactness of KI and Gronwall’s
lemma,

Iz(-l, , (d),,)-0l Iz(-l, 1, (dn)r)-z(-T1, zn, (d),,)l O, as n .
The only potential problem is that the solution x(-7,, (d)) may fail to exist a
priori. However, it is possible to modify f(x, d) outside a neighborhood of K1 x
so that it now has compact support and is hence globally bounded. The modified
dynamics is complete. Now the above limit holds for the modified system, and a
fortiori it also holds for the original system.

Choose n0 such that

1

Let v do, and let o x(-r,, , (do)). Then, by continuity on initial condi-
tions, there is a neighborhood N of contained in B(, 1) such that

1
(29) I (-T1, , (1)7,) w01 < , v 1,

where B(, r) denotes the open ball centered at with radius r. Combining (28) and
(29), one has

X(--T1, , (Vl)1-1
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where b/o B(0, 1).
Let 7.2 7.1/2 (7. 7.1)/2. Applying the above argument with 0 replaced by

r/l, 7. replaced by (7.- 7.1), and 7.1 replaced by 7.2, one shows that there exists some

r/. E Tr2 (r/l) such that 7-<’ (r/2) is compact for any 0 <_ t < 7.- a2, and
is not compact, where a2 71 nt- 7"2, and there exist some v2 defined on [0, 7"2) and
some neighborhood/A2 of r/2 contained in B(r/2, 1), such that

z(-7"2, , (V2)r.) C btl, ’ C

By induction, one can get for each k _> 1 a point r/k, a neighborhood
contained in B(r/k, 1), and a function vk defined on [0, 7"k) (where 7"k 2-k7") such
that

7-<(--) 7"(1- 2-k(r/k) is not compact, where rk 7"1 + 7"2 + + 7"k - 7";

X(--Tk, , (Vk)rk) C /aCk-1, for any C
Now define v on [0, 7") by concatenating all the vk’s. That is, v(t) vk(t) for

def
t [ak-l, Crk) (withao 0). ThenvEM. For eachk, let

where vk is the restriction of v to [0, ak). By induction,

for each 0 _< <_ k, from which it follows that k /20 for each k. By compactness
of b/0, there exists some subsequence of {k} converging to some point 0 IRn. For
ease of notation, we still use {k } to denote this convergent subsequence. Our aim is
next to prove that the solution starting at 0 and applying the measurable function
v does not exist for time 7", contradicting forward completeness.

First notice that for any compact set S, there exists some k such that r/k S.
Otherwise, assume that there exists some compact set S such that r/k S for all
k. Let $1 {r/" d(r/, S) _< 1}. The compactness of S implies that there exists some
6 > 0 such that

<tn-- (r/) Sl

for any r/E S and any t e [0, 6]. In particular, it implies that 7-<(’-k) (r/k) C_ S for

k large enough so that 7"- crk < 5. This contradicts the fact that 7-<(’-k) (r/k) is not
compact for each k.

Assume that x(7", 0, v) is defined. By continuity on initial conditions, this would
imply that x(t, k, v) is defined for all t <_ 7" and for all k large enough, and that it
converges uniformly to x(t, 0, v). Thus, x(t, k, v) remains in a compact set for all
t [0, 7"] and all k. But

contradicting what was just proved. So x(7", 0, v) is not defined, which contradicts
the forward completeness of the system. []

Remark 5.4. For T > 0 and IR’, let

n-r() {v. v x(-T, , d), d e and 7
>-T

()= U 7t()"
tel-T,0]
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These are the reachable sets from for the time-reversed system

(30) it(t)--f(x(t), d(t))

Similarly, one defines 7-T(s) and 7->-T (S) for subsets S of ]Rn. If (1) is backward
complete, that is, if (30) is forward complete, and applying Proposition 5.1 to (30),
one concludes, for system (1), that 7>-T (K) is compact for any T > 0 and any
compact subset K of ]Rn. In particular, for systems that are (forward and backward)
complete,

n (K)U
is compact for any compact set K and any T > 0.

Combining the above conclusion and Gronwall’s lemma, one has the following
fact.

PROPOSITION 5.5. Assume that (1) is complete. For any fixed T > 0 and any
compact K c_ IR, there is a constant C > 0 (which only depends on the set K and
T), such that for the trajectories x(t, x0, d) of the system (1),

Ix(t, , d)- x(t, , d)l Cl - 1
for any , K, any t T, and any d .

6. Proof of the first converse Lyapunov theorem.
Proof. [] Pick any x0 and any d 6, and let x(.) be the corresponding

trajectory. Then we have

dV(x(t)) < -(Ix(t)l) < -(V(x(t))) a.e. t > 0

where a is the -function defined by

3(1(’))
Now let be the -function as in Lemma 4.4 with respect to a, and define

(31) (8, t) def_ 1(a(2(8), t)).
Then is a -function, since both 1 and a are -functions. By Lemma 4.4,

V((t)) Z,(V(xo), t) o ,y t O.

Hence

I (t)lA --<  (Ix01 , t), for any t >_ 0.

Therefore the system (1) is UGAS with respect to A, by Proposition 2.5.
[:=] We will show the existence of a not necessarily smooth Lyapunov function;

then the existence of a smooth function will follow from Proposition 4.2. Assume that
the system is UGAS with respect to the set A. Let 5 and Tr be as in Definition 2.2
and Lemma 3.1.

Define g" IR IR by

(32) g() de__f inf {Ix(t,
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Note that, by uniqueness of solutions, for each to > 0 and each d, it holds that

x(t- to, x(to, , d), dto) x(t, , d),

where dto is defined by dto (t) d(t + to). Pick any d E J4, E IRn, and tl > 0. Let
1 X(tl, , d). Then for any t < 0, and v 4,

x(t, , v) x(t tl, 1’ Vtl #dt, ),

where

Thus,

d(s+tl), if-t <_s_<0,
vtl #dtl (s) v(s + tl), if s < -t.

g() inf Ix(t, {, v)lat inf Ix(t- tl, 1’ vt#dt,)]at<_O,vEJA t<_O,dEJA

inf Ix(T, 1, vtl dtl)lA > inf Ix(T, 1’T--t,v O,v

(1).
This implies that

(33) g(x(t, , d)) <_ g(), Vt > 0, Vd e A/tz).

Also one has

(34) (ll)-< g()-< I1.
The second half of (34) is obvious from x(0, , d) . On the other hand, if the first
half were not true, then there would be some d A and some to _< 0 such that

5(l1) > Ix(to, , d)l

Pick any 0 < < [l.a so that Ix(to, , d)IA < 5(s). By the uniform stability property,
applied with t -to and xo x(to, , d),

I1 -Ix(-to, x(to, 5, d), dto)l < I1,

which is a contradiction.
def ]an r}For any0<<r, defineK, { <:]IA <

FACT 1. For all and r with 0 < < r, there exists q, <_ O, such that

and t < q,

Proof. If the statement were not true, then there would exist , r with 0 < < r
and three sequences {k} C_ K,, {tk} c_ lR, and da A/[z) with lima__,o t
such that for all k

Ix(t, 5,dk)l4 < r.

Pick k large enough so that --tk > Tr(). Then by the uniform attraction property,

Ikl --Ix(--ta, x(t., , d), (d)t.)l < ,
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which is a contradiction. This proves the fact.
Therefore, for any E K, ,

g() inf{Ix(t , d)lA t E [q,r, 0], d

LEMMA 6.1. The function g() is locally Lipschitz on IR\,4 and continuous
everywhere.

Proof. Fix any 0 IR\-4, and let s I0JA/2. Let/) (0, s) denote the closed
ball centered at 0 and with radius s. Then B (0, s) C_ K, for some 0 < a < r.
Pick a constant C as in Proposition 5.5 with respect to this closed ball and T
Pick any , r e/) (o, s). For any s > 0, there exist some dv, and tv, [qo,, 0] such
that g(r) _> Ix(tv,, r, dv,)lA -s. Thus

(35) g(C)- g(r) _< Ix(t,,, , dv,)lA -Ix(t,,, n, d,,)l / <_ C[- rl /

Note that (35) holds for all > 0, so it follows that

(() (,) < C I(

Similarly, g() g(() <_ C[( ?1. This proves that g is locally Lipschitz on IR’\A.
Note that g is 0 on A, and for E A, IR,

thus g is globally continuous. (We are not claiming that g is locally Lipschitz on IR’,
though.) []

Now define U" IR ---, JR>0 by

(36) U([) de=f sup {g(x(t, , d))k(t)},
t>_O,dE3d9

where k" R>0 lR>0 is any strictly increasing, smooth function that satisfies"
there are two constants 0 < cl < c2 < oe such that k(t) [Cl, c2] for all
t_>0;
there is a bounded, positive decreasing, continuous function -(.), such that

k’(t) >_T(t) for all t_>0.

(For instance, (cl + c2t)/(1 + t) is one example of such a function.) Observe that

() u() _< sup(()(t)) _< () _<

and

(38) U()

_
sup g(x(t,
dEJM

For any ]Rn since

Ix(t, , d)lt _< (11, t), Vd, Vt _> o,

for some/(:/:-function/, and 0 g(x(t, , d)) Ix(t, , d)lA for all t 2 O, it follows
that

lim sup g(x(t, , d)) O.
--*-t-c d
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Thus there exists some T E [0, OC) such that

U() sup g(x(t, , d)) k(t).
OtT,dJ’D

In fact, we can get the following explicit bound.
FACT 2. For any 0 < IIA < r,

U() sup g(x(t, , d))k(t),

where t 2c2
Proof. If the statement is not true, then for any

Tr(-z-5(llt)) and some d such that2c2

U() <_ g(x(t, , d))k(t) + .
So we have

(II4) < i
U(C _< i

c- c- g(x(t, , d)) k(t) +
Cl

<_ A (x(t, , d)) + +/- < A Ix(t, , d)l + <
Cl Cl Cl Cl Cl

Taking the limit as s tends to 0 results in a contradiction.
For any compact set K C_ IR\jI, let

deftK maxt <
EK

(Finiteness follows from Fact 2, as K C_ {. 0 < IIA < r} for some r > 0.)
LEMMA 6.2. The function V(.) defined by (36) is locally Lipschitz on IR\A and

continuous everywhere.
Proof. For o A, pick up a compact neighborhood K0 of 0 so that K0 g ,4 0.

By (38), one knows that

U() > r0, VeK0,

for some constant r0 > 0. Let rl ro/(2c2) and let

{ 7’1}KI=KoN r/" Ir/-ol_< -where C is a constant such that

(39) Ix(t, , d) x(t, , d)l <_ C I- 1, v, Ko, 0 t tKo, d .
In what follows we will show that there exists some L > 0 such that for any , r K1,
it holds that

(40) IU() U(/)l _< L I
First of all, for any e K1 and any (0, r0/2), there exists t, [0, tKo] and
d, E Adz) such that

U() <_ g(x(t,, , d,))k(t,) + <_ c2 Ix(t,, , d,)lA + ,
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from which it follows that

It follows from (39) that for any r/E/(1,

By Proposition 5.1 one knows that there exists some compact set K2 such that

x(t, , d) E K2, V K1, Vt [0, tK1], and Vd A/tz)

Again, applying Lemma 6.1 to the compact set K2 {" ]1,4 -> r/2}, one sees that

Ig(x(t,, , d,)) g(x(t,, , d,)) <_ C Ix(Q,, , d,) x(t,, r/,

for some C1 > 0. Therefore, we have the following:

for some constant L that depends only on the compact set K1. Note that the above
holds for any (0, r0/2), thus,

By symmetry, one proves (40).
To prove the continuity of U on ]Rn, note that for any jr, it holds that

U() 0, and so for all r/ IR"

The proof of Lemma 6.2 is thus concluded. V1

We next start proving that U decreases along trajectories. Now pick any A.
Let h0 > 0 be such that

2
Vd T, Vt [0, ho],

where d denotes the constant function d(t) _= d. Such an h0 exists by continuity. Pick
any h E [0, h0]. For each d 7:), let r/d x(h, , d). For any > 0, there exist some

td, and dd, J) such that

(41)

U(r/d) _< g(x(t, r/d, dd,))k(td,) +

g(x(td, + h c, 0d,))k(td + h) (1- k(td, + h)- k(td,))k(td, + h) + e

<_ U() (1- k(td, + h)c2- k(td,) )
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where d,e is the concatenation of d and dd,e. Still for these and h, and for any
r > IIA, define

max Tr cl 5(ix(- d)lA
O<<h,dT)

CLAIM. td,e + h

_
T,h, for all d e 7:) and for all (0, ()).

Proof. If this were not true, then there would exist some l and some

(0, 5(-)) such that ta, + h > T,h, and hence in particular for { h and

d it holds that

ta,e+h > Tr

which implies that

x(ta,, , da,) x(t, + h, v) < 5(]rial

where v is the concatenated function defined by

{ a’
da, (t- h),

if0_<t_<h,
ift > h.

Using (38), one has

g

which is a contradiction, since g < 5() <_ This proves the claim.
From (41), we have for any d E D and for any e > 0 small enough,

U(x(h, , d)) U({) _< -U({)(k(td, + h) k(td,))
C2

U({) k’(td,+Oh)h+e,
C2

where is some number in (0, 1). Hence, by the assumptions made on the function
k, we have

U(x(h, {, d))- U({) < U({) T(td, + eh)h + <_ U() r(T,h) h + .
C2 C2

Again, since can be chosen arbitrarily small, we have

U(x(h, , d)) U({) _< U() T(T,h)h,
C2

Vd e T.

Thus we showed that for any d and any h > 0 small enough,

U(x(h, , d))- U() _<
C2
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Since U is locally Lipschitz on IRn\A, it is differentiable almost everywhere in ]R\A,
and hence for any d E 73 and for any r > IIA,

(43)

(44)

h-.0+ C2

U(x(h, , d))- U() _< lim U()T(T, h)

where

Now define the function c by

((s) sup((s).

Note that ((0) 0 for any r > 0, so ((0) 0. Also, applying to r 2s, we have

(s)>_ c5(s) -(T2(c2 5(s))) >0

for all s > 0. Notice that (44) holds for any r > I[A, so it follows that for every
d 73, LfdU() _< -((IIA) for almost all e IRn\A. Now let

T T ( Cl ((8) dr
c. : \ 2c

for s > 0, and let &(0) 0. Then & is continuous on [0, oc) (the continuity at s 0
is because is bounded and 5(0) 0), and for s > 0, it holds that

because of the monotonicity properties of T and 7. Furthermore,

LfU() <--([[A)--<

for almost all ]Rn \ A.
By Theorem B.1 provided in the appendix, there exists a C function V

IR\A -- lR_>0 such that for almost all

1(11), Vde 73U()
and nfV() < -Iv(:) u()l <

Extend V to IR by letting V]A 0 and again denote the extension by V. Note
that V is continuous on ]Rn. So V is a Lyapunov function, as desired, with

O1 (8) gk((8), 0/2(8 2
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7. Proof of the second converse Lyapunov theorem. We need a couple of
lemmas. The first one is trivial, so we omit its proof.

LEMMA 7.1. Let f IRn 7) -- IR be continuous, where T) is a compact
subset of IR. Then there exists a smooth function ai IR -- IR, with af(x) >_ 1
everywhere, such that If(x, d)l

__
af(x) for all x and all d.

Now for any given system

E 2 f(x, d),

not necessarily complete, consider the following system:

1
Eb" af(x----f(x, d).

Note that the system Eb is complete since If(,d)l <: 1 for all x d We let Xb(" Xo d)aS(x
denote the trajectory of b corresponding to the initial state xo and the time-varying
parameter d. The following result is a simple consequence of the fact that the tra-
jectories of E are the same as those of Eb up to a rescaling of time. We provide the
details to show clearly that the uniformity conditions are not violated.

LEMMA 7.2. Assume that A is a compact set. Suppose that system E is UGAS
with respect to jr. Then, system Eb is UGAS with respect to fit.

Proof. Pick a time-varying parameter d A4 and an initial state x0 IR.
Let %(t) denote xb(t, x0, d). Let % (t) denote the solution for t _> 0 of the following
initial value problem:

(45) /- af(%(T)), ’(0) O.

Since af is smooth, and 7b is Lipschitz, af % is locally Lipschitz as well. It follows
that a unique T (t) is at least defined in some interval [0, [). Note that - is strictly
increasing, so [ < +c would imply limt- - (t) +c.

CLAIM. For every trajectory % of Eb, ’ (t) is defined for all t >_ O.
Proof. If the claim is not true, then there exist some trajectory ?b of E and some

t > 0 such that limtt- 7 (t) x. Now for t [0, t), one has

1 dt%(-(t)) a(%(.(t))) f(%(7(t)) d(7(t)))-(t)
(46) f(%(7b(t)), d(’b(t))).
Thus 7b(-(t)) is a solution of E on [0, tl). By the stability of E, it follows that

I((t))l < 6-(Ix01), t e [0, ti),

where xo %(0), and 5 is the function for E as defined in Definition 2.2. (Cf.
Remark 2.4.) Let c 5-1([xolA), and let M suPlel_< a(). (M is finite because
the set {" [1.4 -< c} is a compact set.) From here one sees that [%(t)[ _< Mt for
any t [0, t). This is a contradiction. Thus - (t) is defined for all t _> 0. This
proves the claim.

Since af(s) >_ 1 and, for every trajectory % of E, %(0) 0, it follows that- (.) /(: for each trajectory % of Lb. From (46), one also sees that if %(t) is a
trajectory of Eb, then %(%b (t)) is a trajectory of E, and furthermore,

1"3/b(T,yb(8))l,A ( e V8 O, if Ib(O)l4 6(e).
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It follows that

I’b(t)lA I/b(Tb(Tl(t)))lA < , Vt >_ 0, whenever [,b(0)lA _< 5(s).

This shows that condition (1) of Definition 2.2 holds for Eb, with the same function
5.

Fix any r, s > 0. Pick any x0 with Ixolt < r and any d E A/. Again let /b(t)
denote the corresponding trajectory of Eb. Then

I(t)l I((%(t)))l < -(), vt > 0.

Let

L sup{a/() I1
Then one sees that I-/-(t)l < L, which implies that Tb (t) <_ Lt for all t _> 0. Note that
for the given r, s > 0, by the UGAS property for E, there exists T > 0 such that for
every d

whenever Ib(0)l < r and s > T. This implies that

I’(t)l
whenever Ib(0)l < r and t _> T (T). Combining this with the fact that - (t) < Lt,
one proves that for any d A//7, it holds that

whenever 17(0)1 < r and t >_ LT. Hence we conclude that Eb is UGAS. E!
In Lemma 7.2, the assumption that .A is compact is crucial. Without this as-

sumption, the conclusion may fail as the following example shows.
Ezample 7.3. Consider the following system

(aT) -( +) tnh x, .
(Here f is independent of d.) Let A {(x, y) x 0}. Clearly the system is
UGAS with respect to A. For this system, a natural choice of ay is 2 + ya. Thus, the
corresponding E is as follows"

1 + y2 y
=-(tanhx) 2+y, = 2+y"

However, the system Eb is not UGAS with respect to A. This can be-seen as follows.
Assume that E is UGAS. Then for , there exists some T > 0 such that for any
solution (x(t), (t)) of with x(0)= , it hods that

Since (1 + y)/(2 + ya) 0 as y m, it follows that there exists some y0 > 0 such
that

1 +y2 1
2 + < ’ v 0.
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Now consider the trajectory (x(t), y(t)) of ED with x(0) 1, y(0) Y0, where Y0 is as
above. Clearly y(t) >_ Yo for all t > 0, and thus,

l+y2 1 1
5: -(tanh x)

2 +y4 > -(tanh x) >
3T’

which implies that

1 2
[x(T)l >_ 1- -- TThis contradicts (48). From here one sees that ED is not UGAS with respect to

We now prove Theorem 2.9.
The proof of the sufficiency part is the same as in the proof of Theorem 2.8.

Observe that the fact that V() is nonincreasing along trajectories implies, by com-
pactness of A, that trajectories are bounded, so x(t) is defined for all t _> 0. We now
prove necessity.

Let af be a function for f as in Lemma 7.1, and let Eb be the corresponding
system. Then by Lemma 7.2, one knows that the system b is UGAS. Applying Theo-
rem 2.8 to the complete system Eb, one knows that there exists a smooth Lyapunov
function V for b such that

Ol([]jt) V() o2([[j[) V e n
and

for some K:o functions al, a2 and some positive definite function a3, where

() f(, d)
as(

Since af() 1 everywhere, it follows that

Thus, one concludes that V is also a Lyapunov function of E.

8. An example. In general, for a noncompact parameter value set , the con-
verse Lyapunov theorem will fail, even if the vector fields f(, d) are locally Lipschitz
uniformly on d on any compact subset of (for instance, if f is smooth everywhere).
To illustrate this fact, consider the common case of systems affine in controls:

f(x) + (x)d,

where for simplicity we consider only the unconstrained single-input case, that is,. Assume that there would exist a Lyapunov function V for this system in the
sense of Definition 2.6. Then, calculating Lie derivatives, we have that, in particular,

LfV() + dLgV() < 0, V = 0, Yde JR,

which implies that

LgV() O, V 7/: O.
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Thus V must be constant along all the trajectories of the differential equation

(x).

In general, such a property will contradict the properness or the positive definiteness
of V, unless the vector field g is very special. As a way to construct counterexam-
ples, consider the following property of a vector field g, which is motivated by the
prolongation ideas in [28].

Consider the closure W(c0) of the trajectory through 0 with respect to the vector
field g. Note that if 1 E W(0), then the fact that V is constant on trajectories,
coupled with continuity of V, implies that V(I) V(0). Now assume that there is
a chain 0,1,2,... so that for each 1,2,..., E W(_I). Then we conclude
that V() V(0) for all i. If the sequence {} converges to zero (and 0 - 0) or
diverges to infinity, we contradict positive definiteness or properness of V, respectively.
For an example, take the following two-dimensional system, which was used in [7] to
show essentially the same fact.

Let (R) be the spiral that describes the solution of the differential equation

:--x-y, =x-y,

passing through the point (1, 0). Explicitly, (R) can be parameterized as x
e-t cost, y e-t sin t, -c < t < c. In polar coordinates, the spiral is given
by r e-, -c < 0 < c. Let a(x, y) be any nonnegative smooth function which
is zero exactly on the closure of the spiral (R) (that is, (R) plus the origin). (Such a
function always exists since any closed subset of Euclidean space can be described as
the zero set of a smooth function; see for instance [6].) Now consider the system

(49)
ic -x y + xa(x, y)d,
f] x- y + ya(x,y)d.

Note that the system is smooth everywhere. Let 7) IR, and let A be the origin. In
polar coordinates, the system (49) on IR2\{0} satisfies the equations

(50) / -r + ra(r cos O, r sin O)d, =1.

(This can be seen as a system on ]R>o S.) In polar coordinates, then, the trajectory
passing through (r, 0) (1, 0) is precisely the spiral r e-e, for any d A/iz). Pick
any trajectory (r(t), O(t)) with (r(0), 0(0)) (to, 0o), where 0o [0, 2r). Then there
exists some integer k >_ 0 such that ro e-0+2kr.

CLAIM. It holds that

(51) r(t) < e-0+2-t

_
e2k-t, Vt >_O.

Assume that (51) is not true. Then there exists some t > 0 such that

r(t e-O+2k-tl

Note that we also have O(t) 00 +tl. Now let (4(t), (t)) (e-e+k-t, 0o-2kr+
t). Then (4(t), (t)) is a trajectory of the system, and furthermore, (4(0), (0)) and
(r(0), 00) are different points since 4(0) : r(0). However, the points (r(tl), (t))
and (4(t), O(t)) are the same point on the xy plane. This violates the uniqueness of
solutions. Therefore, (51) holds for t _> 0.
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Note that in the above discussion, one can always choose k <_ r0 + 1. It then
follows from (51) that for any trajectory of the system with r(0) r0, it holds that

(52) r(t) <_ e2(r+l)-t, Vt _> 0, Fd.

Thus we conclude that the system is UGAS.
However, this system fails to admit a Lyapunov function. In this example, the

vector field g is (xa(x, y), ya(x, y)). Consider the sequence of points in the xy plane
{k } with k (e2kr, 0) for k _> 0. Note that for each k >_ 1,

where (e2k + , 0).
implies that

Therefore, V(C) g(_1) for any j and any k. This

V(k) V(o) Vk >_ 1,

contradicting the properness of V. This shows that it is impossible for the system to
have a Lyapunov function.

It is worthwhile to note that by the same argument, one sees that not only is there
no smooth Lyapunov function for the system, but also there is not even a Lyapunov
function which is merely continuous (in the sense that V is not even smooth away
from A, and the Lie derivative condition is replaced by a condition asking that V
should decrease along trajectories).

In [17], a simple example is given illustrating that uniform global asymptotic
stability with respect merely to constant parameters is also not sufficient to guarantee
the existence of Lyapunov functions.

9. Relation to other work. The study of smooth converse Lyapunov theorems
has a long history. In the special case of stability with respect to equilibria, and for
systems without parameters, the first complete work was that done in the early 1950s
by Massera and Zurzweil; see for instance the papers [18] and [13]. (Although we are
more general because we deal with set stability and time-varying parameters, there is
one important aspect in which our results are weaker than some of this classical work,
especially that of Kurzweil" we assume enough regularity on the original system so
that there are unique solutions and there is continuous dependence. We do so because
lack of regularity is not an issue in the main applications in which we are interested.
Of course, the proofs become much simpler under regularity assumptions.) In the
late 1960s, Wilson, in [31], extended the Massera and Kurzweil results to a converse
Lyapunov function theorem for local asymptotic stability with respect to closed sets.
But some details of critical steps were omitted in [31]. In 1990, Nadzieja [21] rederived
the results given in [31] for the special case when the invariant set is compact. As
explained earlier, our proof is modeled along the lines of [31]. See also the textbooks
[32] and [12] for many of these classical results.

Nondifferentiable Lyapunov functions have been studied in many papers and text-
books. Among these we may mention the classic book [3] by Bhatia and SzegS, as well
as Zubov’s work (see for instance [33]), which study in detail continuous Lyapunov
function characterizations for global asymptotic stability with respect to arbitrary
closed invariant sets. Also, in [29] and [28] and related work, the authors obtained
the existence of continuous Lyapunov functions for systems which are stable, uni-
formly on parameters (or inputs) and with respect to compact sets, assuming various
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additional conditions involving prolongations of dynamical systems. (The next section
provides some more details on the prolongation approach.) Many results on converse
Lyapunov functions with respect to sets can also be found in the many books and
articles by Lakshmikantham and several coauthors. For instance, in [14, Thm. 3.4.1],
a Massera-type proof is provided of a general converse theorem on local asymptotic
stability with respect to two K; functions that provides a Lipschitz Lyapunov func-
tion. As the authors point out, their theorem immediately provides a set-stability
result (when using distance to the set as one of the comparison functions). In a very
recent work [22], the author considered asymptotic stability for systems with merely
measurable right-hand sides, and proved the existence of locally Lipschitz Lyapunov
functions for such systems. Note that in our case, we obtained the existence of locally
Lipschitz Lyapunov functions as an intermediate result, but our regularity assump-
tion on the vector fields made it possible to obtain the existence of smooth Lyapunov
functions.

The questions addressed in this paper are related to studies of "total stability,"
which typically ask about the preservation of stability when considering a new system
ic f(x) + R(x, t), where R(x, t) is a perturbation. (Sometimes the original system
may be allowed to be time varying, that is, it has equations 2 f(z,t); in that
case, its stability can in turn be interpreted in terms of stability of the set {x 0}
for the extended system 2 f(x,z), 2 1.) In [15], Lefschetz discussed stability
with respect to equilibria under perturbations (referred to by the author as quasi-
stability). In [12] and [32] one can find such studies and relationships to the special
case of 2 f(x)+ d(t), with results proved regarding stability under integrable
perturbations (not arbitrary bounded ones).

Under suitable technical conditions, systems with time-varying parameters can
also be treated as general dynamical systems, or general control systems, as in [24],
[33], [23], [10], [11]. In these works, systems were defined in terms of set-valued maps
associated with reachable sets (or attainable sets). A similar treatment was also
adopted in [29] and related work, where the prolongation sets of reachable sets were
used to study stability. In [23], the author established the existence of different types of
Lyapunov functions (not necessarily continuous) for both stability and weak stability
with respect to closed invariant sets, where "weak stability" means the existence of
a stable trajectory from every point outside the invariant set. In [10], the author
provided Lyapunov characterizations for both local asymptotic stability and weak
asymptotic stability. See [11] for an excellent survey of work along these lines.

It is also possible to reformulate stability for systems with time-varying parame-
ters in terms of differential inclusions, as explained earlier; see for example [1] and [2].
The first of these books employs Lyapunov functions in sutficiency characterizations of
viability properties (not the same as stability with respect to all solutions), while the
second one (see Chapter 6, and especially 4) shows various converse theorems that
result in nondifferentiable Lyapunov functions, connecting their existence with the
solution of optimal control problems. In a recent work [20], one can find conclusions
analogous to those in this paper but only for the very special case of linear differential
inclusions, resulting in homogeneous "quasiquadratic" Lyapunov functions. Finally,
let us mention the work [19] on systems with time-varying parameters, in which the
author established, under the assumption of exponential stability, the existence of
differentiable Lyapunov functions on compact sets, for the special case of equilibria.

10. Relations to stability of prolongations. In [7], [8], [28]-[30], the authors
considered various notions of stability for systems of the type (1) (with 7? not nec-
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essarily compact). These properties are defined in terms of the "prolongations" of
the original system. The above papers investigated the relationships between such
stability notions and the existence of continuous, not necessarily smooth, Lyapunov
functions. In this section, we briefly discuss relations between UGAS stability and
the notions considered in those papers, with the purpose of clarifying relations to this
related previous work. For more details on the definitions and elementary properties
of prolongation maps and the corresponding stability concepts, we refer the reader to
the papers mentioned above.

We start with some abstract definitions. Let F IR x lR_>0 --, 2, (, t) H
F(, t) C_ IRn be any map from IRn x lR>_0 to the set of subsets of IR. Associated to
F, one defines F and F by

F(, t) {r E IR there exist sequences , E IRn, and t _> 0

with n -- , - r/, t --+ t, r/ F(, t)},

3F(, t) {r/G IR" there exist tl, t2, tk >_ 0 with

k

E ti- t, such that r/G r(r(.., tl), t2)..., tk-1), tk)},
i=1

where F(S, t) de__f Ues F(c, t) for any subset S of IRn.
The map F is called cluster if F F, and F is called transitive if 3F F.
For any system (1), consider the reachable set 7t() defined in 5, seen now as

a set-valued map. The prolongation map F associated with (1) is then defined by
letting F(, t) be the smallest set containing 7t() such that r is both transitive and
cluster. For further discussion regarding the definition of the map F, we refer the
reader to [28] and to the other papers mentioned above.

For subsets A and B of IR", we denote the usual distance between the two sets by
d(A, B) inf {d(, 7): A, r E B} We say that a system (1) is T-stable (we use
here the "T" for the name of the author of [28] who, in turn, was inspired by previous
work [8]) with respect to a closed, invariant set A if the following two properties hold:

There exists a K:-function 5(.) such that for any e > 0,

d(F(,t),4)<e, whenever A_<5(e), and t_>0;

For any r, e > 0, there is a T > 0 such that

d (F(, t), ,4) < e, whenever IIA < r, and t _> T.

Note that this is the same as what is called "global absolute asymptotic stability"
(global AAS) in [28] for the special case when 4 is compact. Clearly, if a system is
T-stable, then it is UGAS. It was shown in [28], under some extra technical assump-
tions but without the compactness of 79, that global AAS implies the existence of a

continuous, not necessarily smooth, Lyapunov function (meaning that V is globally
merely continuous; the condition Lfd V() <_ -c3(lIA) is replaced by a condition that
V should decrease along trajectories).

We will show next that, at least when 79 is compact, UGAS implies (and is
therefore equivalent to) T-stability. So in what follows in this section, we assume that
79 is compact, and also that all systems involved are forward complete. We first need
the following fact.

LEMMA 10.1. For system (1), F(, t) 7t() for any IR and any t > O.
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Proof. First note that the cluster property of F implies that F(, t) is closed for
each E IRn and each t _> 0. Thus it is enough to show that the map 9l" (, t)
74t() is cluster and transitive.

Take 0 E IR and - > 0. (The case when t 0 is trivial.) Pick 70 X)9(0, -).
Then, by definition, there exist sequences {}, {}, and {t} with t 0 such that

0, 0, t 7, and t(n).
Note then that for each n, there exists d such that

1
x(t, n, d) <

Let X(tn, , d). Then tn() and , 0. Let K0 be a compact set
such that n K0 for each n, and let T > 0 be such that t T for any n. Then by
Proposition 5.1, there exists a compact set K such that (K0, T) K1. Let L be a
Lipschitz constant for f with respect to states in gl. Then it follows from Gronwall’s
Lemma that, for n large enough so that - 0l < e-LT, it holds that

Ix(t, o, d)- z(t, n, dn)l o- .]e5T

for any 0 t T. Let n x(7, o, d.). Then

In- nl Ix(, 0, dn)- X(tn, n, dn)l
Ix(. o. d.) x(. n. d.)I + Ix(. n. d.) x(t.. . d.)I
o +M

where M max{]f(, d)], d(, K1) 1, d e }. It then follows that gn
for each n and , o. Thus, we conclude that 0 (o). Hence we showed that
n(0) (o) for any 7 > 0 and any o , that is, the map is cluster.

To show the transitivity of , first note that, by induction, it is enough to show
that

(53)

for any IRn and any tl, t2 _> 0.
Applying Lemma 5.3 to S Rtl (), together with the fact that

one immediately gets (53). Cl

Rewriting the definition of UGAS in terms of reachable sets, one has that a system
(1) is UGAS if and only if the following properties hold:

There exists a/Cc-function 5(.) such that for any a > 0,

d (w(), ) < , whenever clA _< 6(a), and t _> 0;

For any r, > 0, there is a T > 0 such that

d (74t(), A) < , whenever I]A < r, and t _> T.

The following conclusion then follows immediately from the continuity of the
function H d(, A) and Lemma 10.1:

PROPOSITION 10.2. For compact 1), a system (1) is UGAS with respect to ,4 if
and only if it is T-stable.
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Remark 10.3. In the special case when ,4 is compact, a UGAS system is always
forward complete. Thus in that case Proposition 10.2 is still true without complete-
ness.

Remark 10.4. The compactness condition on 79 is essential. Without the com-
pactness of 79, Proposition 10.2 is in general not true. For instance, the system defined
by (50) in 8 is UGAS with respect to the origin (0, 0). However the system is not
T-stable, since F(0, t) IR2 for any t > 0. Note that for this example, Rt(0, t) {0}
for any t > 0 which is different from F(0, t). The inconsistency with the conclusion
of Lemma 10.1 is caused by the noncompactness of 79.

Appendix A. Some basic definitions. In this section we recall some standard
concepts from stability theory.

A function 3‘" lR>0 ----. lR>0 is"
a l-function if it is continuous, strictly increasing and 3’(0) 0;
a lo-function if it is a/(:-function and also 3’(s)
a positive definite function if 3’(s) > 0 for all s > 0, and 3’(0) 0.

A function " lR>0 x lR>0 lR>0 is a ICE-function if:
for each fixed t _> 0 the function (., t) is a K:-function, and
for each fixed s _> 0 it is decreasing to zero as t

Note that we are not requiring to be continuous in both variables simultane-
ously; however it turns out in our results that this stronger property will usually
hold.

Appendix B. Smooth approximations of locally Lipschitz functions. In
the proof of the converse Lyapunov theorem, we used a parameterized version of
an approximation theorem given in [31]. For convenience of reference, and to make
this work self-contained and expository, we next provide the needed variation of the
theorem and its proof. (Several details, missing in the proof in [3 1], have been included
as well.)

THEOREM B.1. Let (9 be an open subset of IRn, and let 79 be a compact subset
of IR, and assume given:

a locally Lipschitz function " 0 ---. IR;
acontinuousmapf" IR x79 IRn, (x,d) f(x,d) which is locally
Lipschitz on x uniformly on d;
a continuous function a (9 IR and continuous functions #,

]R>0
such that for each d E 79,

(B.54) Lfd+( < c(), a.e. e O,

where fd is the vector field defined by fd(’) f(’, d). (Recall that VO is defined a.e.,
since is locally Lipschitz, by Rademacher’s theorem, see e.g. [5, p. 216].) -Then there
exists a smooth function q2 (9 ----+ ]1% such that

and for each d 79,

Lfdq2(() < () + (), V( e O.

To prove the theorem, we first need some easy facts about regularization. Let
IRn IR be a smooth nonnegative function which vanishes outside of the unit
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disk and satisfies

(s)ds 1.

For any measurable, locally essentially bounded function (.9 IR and 0 < a _< 1,
define the function o by convolution with (), that is:

(B.55) () deZ f (+as)(s)ds.

We think of this function as defined only for those so that + as E (9 for all Isl <_ 1.
Note that the integral is finite, as the integrand is essentially bounded and of compact
support. The following observation is a standard approximation exercise, so we omit
its proof.

LEMMA B.2. For each compact subset K of (9, there exists some ao > 0 such that
is defined on K, and smooth there, for all a < do. Moreover, if is continuous,

then approaches uniformly on K, as a tends to O.
Now assume that q is a locally Lipschitz function. Then, for each d

is defined almost everywhere, and furthermore, on any compact subset K c_ (9,

where k is a Lipschitz constant for (I) on K. Therefore, for each d (omitting from now
on the lR in integrals)

() / (nfa) ( + as)(s) ds(L)o

is well defined as long as + as 0 for all Isl _< 1. Applying Lemma B.2 to (Lfa),
this is smooth for any a > 0 small.

Suppose that for all d

(8.56) LI( _< a(), a.e. e O,

for some continuous function a. Pick any compact subset K C_ (.9. On this set K, we
have

(La) () J()(+)() _< J( + )()

< ()+ mx ( +)- ().
]sll,K

om here we get the following conclusion.
LEMMA B.3. For any compact subset K of O, (LIa 0) is a C function defined

on K for all a small enough, and, if (B.56) holds for all d and all , then
for any e > 0 given, there exists some ao > 0 such that

(L.)() () +

for all a do, all d , and all K.
The following lemma illustrates the relationship between Lid (0) and (Lia).
LEMMA B.4. On any compact subset K of O,

sup ]Lia()()- (LfaO) ()l 0
de,(eK
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as tends to O.
Proof. For each E (9, we use (t, , d) to denote the solution of the differential

equation

f(x, a)

with the initial condition qo(O, , d) . It follows from the assumptions on f and
compactness of K and/9 that there exist some compact neighborhood V of K and
some n > 0 and ao > 0 such that 99(t, + as, d) V for all
co, d D, and ]t rl.

For the Lipschitz function O, we have, for all f, d and

d f O(w(t, , d) + as)(s)
d

o((t, , d))
=o

()()
=o

ds

lim
1 f

o (o((t’ , d) + ) ( + ))()d,

(B.57) (L) () ] La( + as)(s) ds

/ d
((t,+s,d))(s)ds(8.58)

t=0

(B.59) lim
1 /t--.0

[((t, + as, d)) ( +as)] (s)ds.

Notice that the integrand in (B.57) equals that in (B.58) almost everywhere on s
(for each fixed and a) and that (B.59) follows from (B.58) because of the Lebesgue
dominated convergence theorem and the following fact:

1

It IO((t, + s, d)) O( + as)l (s)

k
](t, + s, d) ( + as)] (s) kC(s), Vt e [-r, T1],

where C def
maxey,de ]f(, d)] and k is a Lipschitz constant for on Y.

Now one sees that

nfa ()() (nfa) () t01im t f[((t, , d) + as) ((t, + as, d))](s) ds.

Thus it is enough to show that for any > 0, there exist some 5 > 0 and * > 0 such
that the above integral is bounded by for all d D, K, ]t] < *, and a < 5.
This is basically a standard argument on continuous dependence on initial conditions,
but we provide the details. For 0 T rl, let

(r) d sup{[/((t,,d),d)-/(,d)]" [tr, eV, deD}.

Then (0) 0, and is nondecreasing and continuous at t 0, because

]/((t, , d), d)-/(, d) S C ](t, , d)- S CC4 ]t],

and
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where C3 is a (uniform) Lipschitz constant for f on V1, C4 is an upper bound for
If(, d)l on V1, and V1 is some compact neighborhood of V such that (t, , d) E V1
for any E V, d Z), and It[ < T1. For any E V, d Z), and It[ < T,

I(t, , d)- ( + tf(, d))l _< "r(T) dT <_ It] (It]).
J0

Now for e K, we have

(B.60)

Finally, for e > 0, let 5 and T* be such that

7(T) < and [f(,d)-f(+as, d)l < 3-’
for any K, d E :D, Is _< 1, a < , and Itl < T*. It then follows from (B.60) that

i e d) + as) O((t, + as d))](s)ds < J e(s)ds

for any E K, d :D, Itl < T*, and cr < 5, which implies

[L;d (O,,)(t) (L;d O),,()l < e

for anya<a0, dZ),andK. 0
Combining the previous three lemmas, we obtain the following conclusion.
LEMMA B.5. Let K be a compact subset of (.9. Then for any given > O, there

exists some smooth function defined on K such that

I() o()l < e and Lfd() < c() +

for all
Now we are ready to complete the proof of Theorem B.1. For the open subset (.9

of ]Rn, let {5/i } be a locally finite, countable cover of (9 with/gi compact and b/i C_ (9.

Let {i} be a partition of unity on (9 subordinate to {/gi}. For any given positive
functions #(.) and v(.), let

e min inf #(), inf v()

For each i, it follows from Lemma B.5 that there exists some smooth function
defined on/gi such that

IO()- i()l < 2+1(1 + Ti)
and Lfdi() < ()+ 2
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def max{on L/j, where T L/d/i()l E /, d E 7)). We define ’.i/i"
Clearly is a smooth function defined on O, and

<: maxej < #(),
jej

where
For Lfd, one has

<

We conclude that is the desired function.
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DETERMINISTIC APPROXIMATION FOR STOCHASTIC
CONTROL PROBLEMS*

R. SH. LIPTSER, W. J. RUNGGALDIER:, AND M. TAKSAR

Abstract. We consider a class of stochastic control problems where uncertainty is due to driving
noises of general nature as well as to rapidly fluctuating processes affecting the drift. We show that,
when the noise "intensity" is small and the fluctuations become fast, the stochastic problems can be
approximated by a deterministic one. We also show that the optimal control of the deterministic
problem is asymptotically optimal for the stochastic problems.

Key words, stochastic and deterministic control, stochastic differential equations, weak con-
vergence, asymptotic optimality

AMS subject classifications. 93E20, 93C15, 60B10, 60F17, 60G44, 49J15, 49K40, 49M45

1. Introduction. There are only few stochastic control problems that can be
solved in closed form. A lot of effort has therefore been put into developing approx-
imation techniques for such problems. One approach in this direction is to consider,
instead of the original model, a model where the underlying processes are replaced by
simpler ones. This approach makes it possible to construct nearly optimal.controls for
the original model, based on the solution to the simpler model. This simpler model
may involve underlying processes that are diffusions ("diffusion approximation"), but
it may also simply be a deterministic model ("fluid approximation"). A general tool,
especially for diffusion approximations, is techniques of weak convergence of random
processes [1], [3], [6], [15] combined with an averaging principle [5]. This methodology
is actively used in various practical problems of engineering, manufacturing, queuing,
inventory, and others and is studied, e.g., in [7]-[13].

The underlying idea of this methodology is actually rather simple, but the math-
ematics required for its implementation are in general quite sophisticated. Although
there exist some general approaches (see, e.g., [9]), in each particular case the rigor-
ous verification of the convergence of the controlled systems requires specific technical
tools and ideas.

In the present paper we apply "fluid approximation" techniques to a rather general
stochastic control model with convex control cost function. In this model the controlled
process X is described by a stochastic differential equation with respect to a general
(not necessarily continuous) martingale M. The control affects the drift of X; this drift
is furthermore affected by a rapidly fluctuating exogenous process c. To implement the
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approximation approach, we embed the given model into a family of similar models,
parametrized by a small parameter > 0. We consider the case when the "intensity"
of the random noise disturbance M becomes small with s, while the "contaminating"
process fluctuates with increasing speed. For such a case the limiting model becomes
deterministic, and it is possible to obtain asymptotically (as s $ 0) optimal controls for
the prelimit models by using the optimal control of the limiting deterministic system.

Although we consider explicitly only the case when the controlled state process
X can be completely observed, our results nevertheless hold in the same form when
the state is only partially observed.

In a more formal way, we have a family of controlled stochastic systems, parametri-
zed by a small (positive) parameter ( 0), with dynamics

(1.1) dX [a(X, t/) + b(X)u(t)] dt + dM[

and initial condition X. Here X (X) is the controlled state (or signal) process,
(t) is the "contamination" process affecting the drift of X, and Me (M[) is a

process representing the noise in the system. The random function u (u(t)) is the
control that affects the drift of X in a linear way and satisfies the usual requirements
for admissibility (see Definition 2.1 below).

Given a finite horizon T > 0, with each control u we associate the cost

(1.2) {/0J(u) E 9(X) + q(u(t))]dt + r(X)

where p(x), q(u), and r(x) are nonnegative functions on the real line referred to as
holding cost, control cost, and terminal cost functions, respectively. The objective is
to find

(1.3) V inf J(u)

and an optimal (minimizing) control. For practical purposes one may just as well
be interested in finding a nearly optimal control or, as will be the case here, an
asymptotically (as $ 0) optimal control.

To describe the limiting control model, we assume that the following ergodic
properties hold:

(1.4) P-limX=x0, x0ER,
---0

(1.5) (x) P- lim
1

t- - a(z, s)ds; x R,

(1.6) P lim sup [M[ 0.
--,0 t<T

In the next section we formulate conditions under which (1.4)-(1.6) are valid.
The dynamics of the limiting system is given by the following ordinary differential

equation:

(1.7) dx(t) [(x(t)) + b(x(t))u(t)] dt; x(O) xo.
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Here x(t) is a (deterministic) controlled process and u(t) is a (deterministic) control.
Define

(1.8) j(u) "= fo
T

+ dt +

and

(1.9) v "= inf j (u),
u

where the infimum is taken over all (deterministic) measurable functions on [0, T].
Our main results are the following two theorems.
THEOREM 1.1. The following relation holds:

lim Ve v.
s--0

THEOREM 1.2. Let u*(t), 0 <_ t <_ T, be an optimal deterministic control for
(1.7)-(1.9). Then u*(t) is asymptotically optimal for (1.1)-(1.3) in the sense that

limlJ(u*)-V -0.
--*0

Remark 1. If for the limit model there exists a feedback control

(t) (t, (t)),

where x*(t) is the controlled process defined by the differential equation (1.7) with
u(t) u*(t), and the function u(t,x) is Lipschitz continuous in x uniformly in t E
[0, T], then the statement of Theorem 1.2 remains true with u(t, X) replacing u*(t);
i.e., the feedback control u(t,X) is asymptotically optimal.

Remark 2. The results obtained here for the one-dimensional control problem can
be extended to an n-dimensional problem. The motivation to consider just the scalar
case is to present the main ideas in the simplest form.

The main contribution of this paper is twofold: from a more theoretical point of
view we obtain a stability result for the optimal control of a deterministic system in the
sense that this control is asymptotically optimal for a large class of stochastic control
problems of a rather complicated nature. From a practical point of view our results
allow one to compute an asymptotically optimal control for a variety of problems
under quite general conditions, where a direct approach would be impossible.

The proof consists of two parts carried out in 3 and 4: first we show that v is
an asymptotically lower bound for the optimal cost functions V. Then we show that
the deterministic optimal control of the limiting problem can be applied to the pre-
limit models, yielding asymptotically optimal cost. Results of more technical nature,
interesting in their own right, are moved to appendices (5, 6, and 7).

2. Main assumptions and notations. For simplicity we assume e E (0, 1].
For each e let SB := (ft,$’,F (.T’)t>_o,P) be a fixed stochastic basis, where
(gt, $’, P) is a complete probability space and Fe is a filtration satisfying the "usual
assumptions" (see [2]). The initial value X of the state process is 9-measurable,
while (t/), (M) are F-adapted.
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DEFINITION 2.1. The control process us (uS(t))t>_O is said to be admissible if
it is Fs-adapted and

’o

T

(2.1) lus(t)l dt < oc, P-a.s.

Throughout the paper we make the following assumptions:

(A.1) The control cost function q(u) is nonnegative convex satisfying
() > cll+, , > 0.

(A.2) The cost functions p(x) and r(x) are continuous nonnegative satisfying
p(x), r(x) 1(1 -I-Ixl/), Cl, 1 > 0.

(A.3) There exist x0 R and positive constants c, 7 such that
(i) P lims-.o X xo,
(ii) EIXI2* <
where n* is the smallest integer such that 7 < n*.

(A.4) The function a(x, y)is measurable in (x, y) and satisfies the linear growth and
Lipschitz conditions in x (uniformly in y); i.e., there exists t? > 0 such that
(i) la(x,y)] < e(1 + IxI), x,y R,
(ii) la(x’, y) a(x", Y)I < Six’ x"l, x,, x,, y R.

(A.5) The function b(x) is bounded and Lipschitz; i.e.,
(i) Ib(x)l _< g,
(ii) ]b(x’) b(x")l < Six’- x"l, x,, x,, a.

(A.6) The random process (t)t>o is ergodic; namely, there exists a probability
measure A(dy) on R such that for any bounded and measurable function g(y)

P- lim lf0 /rt- ()d () (d).

(A.7) The process Me (M[)t>_o is a square integrable martingale with paths in the
Skorokhod space D[0, c) whose predictable quadratic variation (Ms}t satisfies
(i) (Ms) e f mg ds

with bounded density m. The latter means that there exists a constant c3 such
that
(ii) m_<c3; t_<T P-a.s.
The jumps AM "= M -limvTs Me are bounded, i.e., there exists a constant
L > 0 such that
(iii) IAMgl < L; t _< T, E (0, 1].

Note that by assumptions (A.4) and (A.5) equation (1.1) has a unique strong solution
X for every admissible control us. We shall refer to Xs as the state process associated
with us. The only requirement for the "contamination" process is its ergodicity; no
stationarity of ( or independence from other processes is required. We furthermore
remark that our results remain valid if Me is any process with paths in D satisfying

i) suPt<T IMI -P 0 VT > 0 (see derivations (4.5) and (6.3) below),
ii) sups E supt<T IMI2n < c, n >_ 1 (see 7).

In this more general case, a rigorous representation of the dynamics of the system
should be made in the integral form below rather than in the differential form (1.1):

[a(X$,s/s) + b(X$)us(s)] ds + M.
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Finally, note that our assumptions on the cost functions are quite natural and represent
a minimal set of assumptions for the problem to be meaningful: (A.I) guarantees that
we stay within the classical control problems rather than having also to deal with
singular controls (e.g., see [14]), while (A.2) is the usual polynomial growth condition
assumption.

3. Asymptotic lower bound for the optimal cost functions. Let v and
V be the optimal cost functions, corresponding to the deterministic and the original
control problems respectively (see (1.7)-(1.9) and (1.1)-(1.3)). The aim of this section
is to prove the following theorem.

THEOREM 3.1. Let the assumptions of 2 be satisfied, Then

lim inf V > v.
---0

Proof. We may limit ourselves to the case when liminfe_,0 Je(u) < c. Take
a subsequence sa -- 0 (k -, c) such that lima g(uk) liminfe_,0 J(u). Then for
k large enough

(3.1) J(uk) <_ 23.

(For notational convenience we shall assume that (3.1) holds for all k.) From (3.1)
and (1.2) it follows that

(3.2) E q(u dt < 2.

Let X be the state process associated with u.
Given (3.2), we may apply Theorem 6.1 to conclude that the sequence (X,

U, IIUII), k _> 1, is relatively compact, where U f u(s)ds and []U[t
f ]u(s)ds. Let (X,U, U]) be a weakly converging subsequence with limit
(X, U, [U[). Then, by Theorem 6.1, we have

xo + +

(3.3) U(t) u(s)ds,

where x0 is the "limit of Xg" (see assumption (A.3)), (x) is defined in (1.5), and b(x)
is the same as in (1.1). Since

(3.4) liminf g(u) lim J(u),
e0 0

where () is any subsequence of (), we use (3.4) with () corresponding to the
weakly converging sequence (Xe, Ue, [[Ue ). Then by Theorems 5.1 and 6.1 we get

(a.5) liJ() E (Xt) +q((t))]dt +r(Xr)

om (a.4) and (a.5)we derive

(3.6) lim inf J > v.
e--+0
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If an optimal control exists, then the statement of the theorem is a consequence of
(3.6). Otherwise we approximate the optimal value function by the cost associated
with &optimal controls.

4. Proofs of Theorems I.I and 1.2. It follows from Theorem 3.1 that the
lower limit of the optimal costs is bounded from below by the optimal cost correspond-
ing to the deterministic model (1.7)-(1.9). The existence of an optimal control u* for
problem (1.7)-(1.9) can be shown by standard arguments (see the remark at the end
of 6 or the proof of Theorem III.4.1 in [4]). Notice also that assumption (A.I) implies

(4.1) lu*(t)ll+dt < c.

Next let x*(t) be the (deterministic) solution of (1.7) corresponding to the control
u*(t) and X*, (X;’)o<t<_T be the (stochastic) state process associated with the
control u[ =_ u*(t) via (1.1).

We first show that

(4.2) P- lim sup IX; ’e x*(t)l O.
e.-o t<T

Let

(4.3)

Using (1.1) and (1.7), we get the inequality

Ix x01 / I(x:’) (x*(s))l / Ib(X:’) b(x*(s))llu*(s)l] ds

sup [(x2’, /) (x2’)] d + sup IMI.
t<T

By the Lipschitzianity of g(x) and b(x) (see assumptions (A.4) and (A.5)) it follows
that

ZX _< { IX xol + sup
t_<T /o [a(X;’e,cs/e) g(X;’e)] ds + sup

t<_T

--I- g (I + lu* (s) l) lag ds.

Therefore, by the Gronwall-Bellman inequality

(4.4)

/osup [aI <_ { Ix8 x,0I + sup [a(X;’, s/e) (X:’e)] ds
t_T t_T’

/ sup IM#I} exp e [1 / lu*()l] d
t<_T

Now, by assumption (A.2) we have P- lims-,o IX xo[ 0; furthermore, using a
similar argument as in the proof of (6.8) below, we get

(4.5) /oP lim sup [a(X;’, /) (X;’)] ds O.
e--*O t<T
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Finally, by assumption (A.7) and by Problem 1.9.2 in [15], P-lim-.0 suPt<T IMI 0.
Thus, (4.2) holds. As a consequence of (4.2) we have

(4.6)

P i p(X;’) p(x* (t)),

P lim r(Zr’) r(x* (T)),
--*0

t e [0, T],

Next we need to prove that the families p(X’) of functions on [0, T] gt and of random
variables r(Xr’) are uniformly integrable with respect to the measures dt x dP and
dP on [0, T] x Ft and f, respectively. To this end it is sufficient to show that there
exists a constant c > 0 such that

(4.7) E [p(Xt*’e)] 2 <_ c, E [r(X’)] _< c.

By assumption (A.2) we have p(x), r(x) <:_ cl (1 + Ix[l ). Let n* be the smallest integer
such that 71 < n*. Evidently, (4.7) holds if there exists a constant d such that

(4.8) E sup IXt*’l 2n*
__

c’.

Using (1.1) as well as assumptions (A.4) and (A.5), we get

sup ]X;’e[ _< [X[ + t 1 + sup ]X*’s[ ds + [u*(t)] dt + sup
s<_t <_s s<_T

The Gronwall-Bellman inequality implies

{ /o }(4.9) sup IX2’I _< eeT IXI + gT + g lu*(t)l dt + sup IM[I
s_T s<_T

From (7.1) we have

(4.10) E sup [M[2n* <_ const.
t<_T

Inequality (4.8) is therefore a consequence of (4.9), (4.10), and assumption (A.3).
By virtue of (4.8) and Theorem 5.4 in [1]

(4.11) {/o }lim Je(u*) lim E [p(X: ’e) + q(u*(t))] dt + r(Xr’)
e--O

[p(z*(t)) + et + r(z*(r)) v.

Since Ve <_ Je(u*), we have limsup_0 V _< v. This inequality and Theorem 3.1
imply Theorem 1.1, which together with (4.11), in turn implies Theorem 1.2.

5. Relative compactness of (U, [[U[[).
Let q(u) be the control cost function from (1.2). Assume

(5.1)
T

sup E q(ue (t))dt < .
e<_l
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Recall that Ue(t) f u(s)ds and denote its total variation in the time interval [0, t]
by

The process [[U[[t, 0 _< t _< T has paths in a subset of C[0,T of continuous increasing
functions CO,T]. Also, p will be used for designating of the uniform metric in C[0,T].

THEOREM 5.1. Let assumption (A.1) and (5.1) be satisfied. Then the family of
random processes (Ue, [IUI[) (U(t), I[Ue[It)O_t_T,E

_
1 is relatively compact in

+the metric space (C[o,T] C[O,T1, P P).
(u, IIu II) i an at co,iqith ,it (U, IIUII), thn th

exists a measurable process (u(t))o<t<T such that
1. E foT lu(t)[l+’dt < oe;
2. for any t <_ T and P-a.s.

U(t) u(s)ds, ]lU]lt lu(s)lds;

(5.3) lim inf E q(uek (t)) > E q(u(t))dt.
k--*oc

/Proof. Since C[0,T is closed in C[0,T in the metric p, by virtue of Prokhorov’s
+theorem (see, e.g., [1]) only tightness of the family in C[O,TI x C[0,T has to be checked.

Due to Theorems 8.2 and 15.2 in [1], we verify two conditions:

lim limsup P (sup IIUllt > c) O,
c-,cx e O <T

(5.4) lim limsupP sup [[[Ul]t- ][U[[[ > ,) =0 Vv, >0
5-,0 e--,O t,s<_T:lt-s[<_5

and the same conditions for U. Conditions (A. 1) and (5.1) imply

(5.5) sup E lus(t)ll+’rdt < oc.
e<l

Thereby, conditions (5.4) are verified by HSlder’s inequality. Namely,

(5.6) (jO
T

) 1/(1+)sup [IUllt- IIUI[T _< T’/(1+’) [ue(t)l(l+’r)dt

and for any random t, s <_ T [t- s <_ 6

(5.)

We conclude by using Chebyshev’s inequality. The validity of the conditions of the
type (5.4) for Ue is proved analogously.
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Let W(t) be any random process with paths from C[0,T] and let In {s
0, 1 2}, n > 1 be subdivisions of the time interval [0, T] Put

(5.8) Wn(t) Ws Ws_l, 8i-1 <_ t < 8i.
8i 8i-

It is known (see [16]) that under the assumption

T

sup E Iw(t)12dt < o
n

the process W(t) is absolutely continuous (with respect to Lebesgue measure A(dt)
dr); i.e., there exists a measurable process w(t) such that for any t <_ T and P-a.s.

(5.10) W(t) w(s)ds,
T

E Iw(t)12dt < oc,

and additionally

(5.11) w(t,w) limwn(t,w), A x P a.s.
n

The same proof shows that under the assumption that for some /> 0

(5.12)
T

sup E ]Wn(t)ll+’dt < oc
n

we have that (5.10) with Ef[ [w(t)ll+dt < oe and (5.11) hold.
Let W(t) =_ U(t) and, correspondingly, u,(t) =_ w,(t). Therefore, statements 1.

and 2. of Theorem 5.1 take place if, for 3’ the same as in (A.1),

(5.13)
T

sup E [un(t)ll+dt <

kTo this end, defining u (t) in the same way as w(t) but with W(t) =_ Uk (t), we find

T 2n

gn(Uk) fo lu (t)l+dt E
i=1

f@ u (t)dt

On the other hand, due to Jensen’s inequality and assumption (A.1),

(5.14)

2 fu (t)dt 2 TJ;" /02- < ’ Iu(t)ll+dt Iu(t)ll+dt
i=1

<_ q(u(t))dt.

By virtue of the weak convergence of U and assumption (5.1), for any N _> 1 we get

T

E min [N, gn(U)] lime min [N, gn(USk)]
k
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By the monotone convergence theorem, sup E $(U) < c, and thus, noting that
$n(U) f lu,(t)ll+dt, we conclude that (5.13) holds.

To prove statement 3. of Theorem 5.1, introduce

en’q(Uk) q(uk(t))dt q
2-

i--1

Since by Jensen’s inequality

T
n <_ q(u(t))dt,

we derive statement 3. by Fatou’s lemma and by (5.11), reformulated for u(t):

liminfE q((t))dt >_ liminf lim lime min [N,gq(U)]
k n N--c k

liminf lira E min [N, gn,q(U)]
n

lim]nf E gn,q(U) limnf E q((t))dt

E limnfq((t))dt E q((t))dt.

6. Relative compactness of (Xe, Ue, IlUll ). Let Xe (X)t>o be defined as
in (1.1) and I]Ullt in (5.2). We consider the triple (X
with values in D[0,T] C[0,T] CO,T], where D[O,T is Skorokhod’s space.

THEOREM 6.1. Let the assumptions of2 and (5.1) be satisfied. Then the family
(Xe, Ue, lUel]),g 1, is relatively compact in the metric space (D[o,T]
+C[o,T], p p p). If (Xe, Ue, [Ue]) is any weakly converging sequence with limit

(X, U, I[U), then the statements of Theorem 5.1 hold and

(6.1) Xt xo + [(Xs) + b(X)u(s) ds, t T,

where (x) is defined as in (1.5) and u(s) is the process from Theorem 5.1. For any
continuous nonnegative functions p(x) and r(x),

(6.2) liminfE {
T

Proof. Parallel to x, introduce a process X’ defined by (compare to (1.1))

(.a) x2, x + [(x,,/)+

Due to (1.1), (6.a), and assumptions (A.4) and (A.5), the process e supt IX
X’I satisfies the inequality

e Y[d[s + IISl]] + sup [MI, t T,
s<T
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and thus by the Gronwall-Bellman inequality we get

Y _< g sup

By virtue of assumption (A.7) and Problem 1.9.2 in [15], supt<_T IMI 0,s 0, in
probability and [IUelIT satisfies (5.4). Consequently Y --* 0,e 0, in probability,
and by Theorem 4.1, Chapter 1 in [1] the result of the theorem remains true if its
statements are proved only for the triple (X,, U, IU II).

By virtue of (5.4), it is sufficient to verify only the following two conditions (see
Theorems 8.2 and 15.2 in [1]):

(6.4)

c--.o o \ <_T

lim limsupP sup [X -X8 I>u =0 Vu>0.
6--.0 0 t,sT:lt-sl5

It follows from (6.3) and assumptions (A.4) and (A.5) that for any t

__
T

sup IX,l IXl + e 1 + sup IX,l ds + IIUIIT,
s<_t r<_s

and thus, using Gronwall-Bellman’s inequality, we get

xOsup -< eeT(IXl + ellull)
s<T

Evidently, the first condition in (6.4) holds by the proof of Theorem 5.1 and by as-
sumption (A.3.i).

For any t- s < 5 we can apply assumptions (A.4) and (A.5) to write

Therefore, the validity of the second condition in (6.4) follows from the proof of The-
orem 5.1 and from the first condition in (6.4), which has already been proved.

Let (Xek,, Uk IIU II), k

_
1, be a weakly converging sequence with limit (X, U,

IIUII). Denote by Q the distribution of the limit (X, U, IIUII); i.e., Q is a probability
+measure on C[0,T] x C[0,T] x C[0,T]. For any element (X, U, IIUII) from C[0,T] x C[0,T] X

+C[0,T put

fo foot(X, U, IIUI[) Xt xo -g(Xs) ds b(Xs) dU(s),

where the function g(x) is defined by (1.5) and x0 is the same as in assumption (A.3.i).
The second statement of Theorem 6.1. holds if

(6.6) sup ,t(X, u, IIuII) o Q .s.
t<T
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To prove the validity of (6.6), we show that the functional supt<T It(X, U, IIull) is
continuous in the product-metric p3 ppp. Let (X, U, ]lUll) and (X

+n _> 1, be elements of C[O,T] C[0,T] C[0,T such that

lim p3 ((X, U, IIUll), (X", U, IIUII) 0.
n

We show that lim, supt<T ]t(X, Un, []Un]l) suPt<Tlt(XO, U, I[U[I). Taking
(6.5) into account, we get

Isup I(Xn, U, IIUnll)l- sup I(X, Uo, IIUOlI)IL
t<T t<T

< sup t(Xn,Un, IIUn[I) Ot(Xo,U,
t<T

t<T

+ b(X) b(X)ldllgll + sup b(X) d[g() go()]
t<_T

Using the Lipschitzianity of the functions g(x) (it is inherited from a(x, y); see (A.4.ii))
and b(x), we obtain the following upper bound for Ln:

L <_ p(X,X) {2 + gT + el[UllT + ep(ilU]{, IIuoll) } + L,
where

sup b(X d[Un(s) U0(s)]L :---
t<T

The quantity L can be evaluated from above in the following way ([a] below stands
for the integer part of a):

(x)d[() o(,)]
t(T N

+ sup [X X[,[([U[T + U[)T ].

Therefore, limsupL 2U[Tsup],_,,]S X -X[, 0 for N ; i.e.,
s.p, ,(x, , []]) is conti.uous .nctio..

Using this fct, the equality

Q(sup,Ot(X,U,,U{[){ ):limP(sup,t(Xe,,Ue,’Ue,)] ), >0,
t<T k t<T

is implied by the weak convergence mentioned above, and by the estimate

(6.7) sup O,(X’, U, llUll)
t<T t<T

we can conclude that (6.6) holds if the right-hand side of (6.7) goes to zero in prob-
ability as k + oo. Taking assumption (A.3.i) into account, for the validity of (6.6)
only

(6.8) a(Xs )]ds 0P lim sup [a(Xes s/e) e
k t<T
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has to be checked.
Evidently, for a piecewise constant function such that (t) () for

(6.9) P lim [a((s) s/ek) --5((s))]ds =0 Vt<T

holds. Notice also that (6.9) remains true when a(x,z) and (x) are replaced with
a+(x, z) and +(x), where e+ max[0, e] and e- -mini0, el. Then, by Problem
5.5.2 in [15] we get

(6.10) I/oP lim sup [a((s),s/ek) --5((s))]ds 0,
k--*c t<_T

/v-k m nThen approximate the process (X )o<t<_T by a sequence Xk,m, bt )O<t<_T, n >_
1, m _> 1, where

Xt’m’n- E J-lI j-1 j i+1< X/ < < t <
m n n

The process Xk,m,n has piecewise constant paths, and on the set {suPt<T IX;I <_ c}
the number of its paths is finite and does not depend on k. Therefore, using (6.10),
we see that for any c > 0, m >_ 1, n _> 1 and putting k s/

/
(6.11) P- lim I {sup IX:kl <_ c] sup

k \t<_T ] t<_T
Xk’m’" ks a(.xs’ )] ds

On the other hand, taking into account the weak convergence of (X)0_<t_<T, which
implies limk lira supc__,o P (supt<T IXI > c) 0, for the validity of (6.8) it remains
to show that

Taking into account the Lipschitzianity of the function a(x, y) (see assumption (A.4)),
which is also inherited by the function (x), it is sufficient to show

(6.12)
T

lzk,m,nP lim lira IX-‘‘s Ids=O.

To this end, put Xkt’n Xit, where [a] is the integer part of a. Then

-s ConsequentlyObviously ,’k’n Xk’m" <_ -.
Xk,,n T TZ-. ]ds <_ --+ Xe,-z ds <_ --+T

m
sup

s,t<_T:ls-t]<_l/n
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Therefore, for any u > 0

(6.13)

P Xe,- x’m’nlds > u < P sup IX- X,kl >
s,t<;,T:ls_tl<_l/n T

As a result, (6.12) follows from weak convergence of (X:k)O<_t<_T, which implies the
convergence to zero of the right-hand side of (6.13).

It remains to prove (6.2). Due to the weak convergence of (Xk)o<_t<_T, k >_ 1, we
find

liminfE{ p(X:)dt+r(XYr) > lime (NAp(X;))dt+NAr(X)
k k

E { (N A p(Xt))dt + N A r(Xr) VN >_ 1

and conclude by using the monotone convergence theorem.
Remark. The method of proof of Theorem 6.1 can be adapted to the following

deterministic problem. Let un(t), n _> 1, be a sequence of measurable functions
satisfying

sup lun(t)[l+dt < oc, > O.
n

For each n consider the differential equation

dx"(t)
dt

-d(xn(t)) + b(xn)un(t)

with the initial condition x’(0) x0. Put

Un(t) un(s) ds, IIUll lu (s)lds,

By the same technique as in the proof of Theorem 6.1, one can show that the family
(x(t),Un(t), ]IU]I)O<t<T, n _> 1 is uniformly bounded and equicontinuous. Then
by the Arzel/-Ascoli theorem this family is relatively compact and there exists a
subsequence (xnk(t) Un(t) IIuIIn)o<t<T converging uniformly to a limit

with absolutely continuous U(t); i.e., there exists a measurable function uO(t) such
that U(t) f) u(s)ds. Furthermore, x(t) is the unique solution of the differential
equation

dx(t) -g(xO(t)) + b(x)u(t)
dt

with the initial condition x(0) x0.

7. Upper bound for E suPt<T [MI2n. In this section we prove, under as-
sumption (A.7), that for any n > 1 and T > 0

(7.1) sup E sup
<1 t<T
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In the case of E IMI2n < oc, we can apply Doob’s inequality (see, e.g., [15]) to obtain

E sup [M[2n < ( 2n

t<_T 2n -1 E [M[2n.

Thus, it suffices to show that

sup E IM l <
e<l

We shall use the notations k, Nt, and V to denote a generic positive constant de-
pending on (c3, L, n), a local martingale, and a nondecreasing process (with paths in

D[0,)), respectively, where Nt and V are adapted to the filtration Fe. (All these
objects might be different in different formulas.)

To check the validity of (7.2), we shall show that (M[)2n admits the representation

(M)2n k [1 + (Mf)2]ds + Nt Vt.

From (7.3) the desired result follows immediately. In fact, by Ito’s formula we find

e-kt(M)2n 1 e-kt + e-ksdNs e-ksdVs

<_ 1 + e-dN.

The Ito integral f e-ksdNs is a local martingale. Denote its localizing sequence of
I’t/’J e-kdN 0 j > 1.stopping times by (Tj)j>I; i.e., for any t > 0, E J0

Therefore, from (7.4) it follows that

E e-k(TArj)(M, )2n < 1

and so we conclude by using Fatou’s lemma.
Thus, only (7.3) has to be proved.
By Ito’s formula

j_>l,

(M)2n 2n (Mes_)2n-ldMes + n(2n- 1) (Mse_)2n-2d(Me,cls

q- (Mse)2n -(M:_ )2n 2n(M:_ )2n-1/kMse]

where (Me,c)t is the predictable quadratic variation of the continuous part of the
martingale M.

The representation (7.5) is nothing but

(7.6) (M)2n Nt + Bt

with the local martingale

(7.7) Nt 2n (Mes_)2n-ldMes
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and the nondecreasing process

(7.8)

8 Me )2n )2n--1Be n(2n-1) (M_)2n-2d(Me,c} +E (Ms)2n s- 2n(M_
s<t

Denote by #(dt, dz) the measure of jumps of the martingale M and by e(dt, dz) its
compensator. Since (R R \ (0})

E (Ms)2n (Mse-)2n 2n(M-)2n-lMs]

[(M_ + z)2n -(M_)2n 2n(M_)2n-lz]#(ds, dz)

and the process

is a local martingale too, we arrive to a new decomposition of the type (7.6) with local
martingale

(7.9)

and nondecreasing process

(7.10)

Be n(2n 1) (Ms_ )2n-2d(Me,C}s

+ [(M_ + z)2n -(M_)2n 2n(M_)2n-lz]e(ds, dz).

Using the fact that IMI L, we get e(ds, dz) I(Izl L)’e(ds, dz). Therefore,
by virtue of Taylor’s expansion for the function f(x) x2 and HSlder’s inequality
one can find a constant k such that

dBt <_ n(2n- 1)(M_)2n-2d(Me,c}t + k I<L(M_)2n-2(1 + z2)e(dt, dz).

Recall that the quadratic variation [Me, Me]t of M is defined as

[Me, M]t {Me,c}t + E(AM)

(M,cie + z2,e(dt, dz).
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Consequently, taking into account that X2n-2 1 + x2’ we obtain

dBt <_ 2[n(2n-1)+k](M_)2n-2d[M,M]t <_ 2[n(2n-1)+k](l+M_)2nd[M,M]t.

Define a nondecreasing process

Vt 2[n(2n- 1)+ k] (1 + M_)2nd[Me, M]s Bt.

Then for (M[)2’ we have the following decomposition:

(7.11) (M)2 Nt + 2[n(2n- 1)+ k] (1 + M_)2nd[M, M]s Vt,

where the local martingale Nt is defined in (7.0). Since [M,Ms]t- (Ms)t is a local
martingale, we arrive at a new representation for (M)2"

(7.12) (M[)2" Nt + 2[n(2n- 1)+ k] (1 + M)2nd(M}s Vt

with the same nondecreasing process Vt and a new local martingale Nt.
Due to assumption (A.7) we have (for _< 1) d(M}t <_ c3dt; i.e.,

Vt 2[n(2n- 1)+ k][ (1 + Ms)2nc3ds (1 + Ms_)2nd{M}s

is a nondecreasing process.
Thus, (7.3)is implied by (7.12) and (7.13).
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FINITE-DIMENSIONAL FILTERS WITH NONLINEAR DRIFT IV:
CLASSIFICATION OF FINITE-DIMENSIONAL ESTIMATION
ALGEBRAS OF MAXIMAL RANK WITH STATE-SPACE

DIMENSION 3*

JIE CHEN, STEPHEN S.-T. YAU, AND CHI-WAH LEUNG$

Abstract. The idea of using estimation algebras to construct finite-dimensional nonlinear filters
was first proposed by Brockett and Mitter independently. It turns out that the concept of estimation
algebra plays a crucial role in the investigation of finite-dimensional nonlinear filters. In his talk at
the International Congress of Mathematics in 1983, Brockett proposed a classification of all finite-
dimensional estimation algebras. Chiou and Yau classify all finite-dimensional estimation algebras of
maximal rank with dimension of the state space less than or equal to two. In this paper we succeed
in classifying all finite-dimensional estimation algebras of maximal rank with state-space dimension
equal to three. Thus from the Lie algebraic point of view, we have now understood generically all
finite dimensional filters with state-space dimension less than four.

Key words, finite-dimensional filter, estimation algebra of maximal rank, nonlinear drift

AMS subject classifications. 17B30, 35J15, 60G35, 93Ell

1. Introduction. In the sixties and early seventies, the basic approach to non-
linear filtering theory was via the "innovation methods" originally proposed by Kailath
and subsequently rigorously developed by Fujisaki, Kallianpur, and Kunita [FKK] in
1972. As pointed out by Mitter [Mi], the difficulty with this approach is that the
innovations process is not, in general, explicitly computable (except in the well-known
Kalman-Bucy case). In the late seventies, Brockett and Clark [BrCi], Brockett [Br],
and Mitter [Mi] proposed the idea of using estimation algebras to construct finite-
dimensional nonlinear filters. In a previous paper [Ya], Yau has studied the general
class of nonlinear filtering systems which included both Kalman-Bucy and Benes fil-
tering systems as special cases. He gives necessary and sufficient conditions for an
estimation algebra of such filtering systems to be finite dimensional. Using the Wei-
Norman approach, he constructed explicitly finite-dimensional recursive filters for such
nonlinear filtering systems.

In his talk at the International Congress of Mathematics in 1983, Brockett pro-
posed classification of all finite-dimensional estimation algebras. Since then, the con-
cept of estimation algebras has proved to be an invaluable tool in the study of nonlinear
filtering problems. In [ChYa], Chiou and Yau introduced the concept of an estimation
algebra of maximal rank. They were able to classify all finite-dimensional estimation
algebras of maximal rank with state-space dimension less than or equal to two. The
novelty of their theorem is that there is no assumption on the drift term of the non-
linear filtering system. On the other hand, if the drift term has a potential function
(i.e., drift term is a gradient vector field), then the corresponding estimation algebra
is called exact. In [TWY], Tam, Wong, and Yau classified all finite-dimensional ex-
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act estimation algebras of maximal rank with arbitrary state-space dimension. This
paper is a natural continuation of [ChYa]. We shall classify all finite-dimensional esti-
mation algebras of maximal rank with state-space dimension equal to 3 (without any
assumption on the drift term). The following is our main theorem.

THEOREM 1 (main theorem). Suppose that the state space of the filtering system
(2.0) is of dimension three. If E is the finite-dimensional estimation algebra of m.axi-
real rank, then the drift term f must be a linear vector field (i.e., each component is
a polynomial of degree one) plus a gradient vector field, and E is a real vector space
of dimension eight with bases given by 1, xl, x2, x3, DI, D2, D3, and Lo.

This kind of nonlinear filtering system was studied by Yau [Ya]. Therefore, from
the Lie algebraic point of view, we have shown that the finite-dimensional filters
considered in [Ya] are the most general.

Let wij ox oxj, which was first introduced by Wong [Wo2]. Our strategy
is to prove wij constant for all i, j. Then we can apply the result of [Ya] to finish
the proof. This involves two steps. The first step is to prove that wj is a degree-one
polynomial. The second step is to prove that wiy is a constant. Let n be the dimension
of the state space. Unlike the case n 2, where there is only one unknown, w12, the
case n 3 for the treatment of the first step is more difficult because there are three
unknowns: w12, d13, and d23, and they cannot be separated and thus they cannot be
treated individually. For the second step, which is the hard part of the paper, we have
to introduce a new concept and technique in addition to the method used in [ChYa]
to overcome the difficulties.

The paper is in essence a continuation of [Ya], [ChYa], and we strongly recommend
that readers familiarize themselves with the results in [Ya], [ChYa]. However, every
effort will be made to make this paper as self-contained as possible with minimal
duplication of the previous papers.

2. Basic concepts. In this section, we shall recall some basic concepts and re-
sults from [Ya]. Consider a filtering problem based on the following signal observation
model:

dx(t) f(x(t))dt + g(x(t))dv(t),

dy(t) h(x(t))dt + dw(t),

x(O) xo,

=0,

in which x, v, y, and w are, respectively, Rn-, Rp-, am-, and Rm-valued processes, and
v and w have components which are independent, standard Brownian processes. We
further assume that n p, f, h are C smooth, and that g is an orthogonal matrix.
We shall refer to x(t) as the state of the system at time t and to y(t) as the observation
at time t.

Let p(t, x) denote the conditional density of the state given the observation {y(s)
0 <_ s <_ t}. It is well known (see [DaMa], for example) that p(t.,x) is given by
normalizing a function, a(t, x), which satisfies the Duncan-Mortensen-Zakai equation.

m

(2.1) dcr(t,x) Loa(t,x)dt + E Licr(t,x)dy(t), a(0, x) a0,

i--1

where

fi 0- Oxi 2 hLo - = Ox = = =
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and for 1,..., rn, L is the zero-degree differential operator of multiplication by hi
and a0 is the probability density of the initial point x0. In this paper, we will assume

a0 is a C function.
Equation (2.1) is a stochastic partial differential equation. The stochastic differ-

ential is a Stratonovich one, not an Ito one. In real applications, we are interested
in constructing state estimators from observed sample paths with some property of
robustness. Davis IDa] studied this problem and proposed some robust algorithms. In
our case, his basic idea reduces to defining a new, unnormalized density

x) exp x).
i--1

It is easy to show that (t,x) satisfies the following time-varying partial differential
equation:

mO- (t x) Lo(t, x) + E y(t)[Lo, L](t, x)Ot
i=1

1
m m- EEy(t)yj(t)[[L’ L]’ Lj](t’ x)
=1 j=

where [., .] is the Lie bracket defined as follows.
DEFINITION. If X and Y are differential operators, the Lie bracket of X and Y,

IX, Y], is defined by IX, Y] X(Y) Y(X) for any C function .
DEFINITION. The estimation algebra E of a filtering problem (2.0) is defined as

the Lie algebra generated by {Lo, L,...,Lm}. E is said to be an estimation algebra
of maximal rank if, for any 1 <_ <_ n, there exists a constant c such that x + c is
in E.

Most of the known finite-dimensional estimation algebras are maximal. For ex-
ample, if the equation (2.0) is linear, i.e., f(x) Ax, g(x) B, and h(x) Cx, and if
also (A, B, C) is minimal, then the corresponding estimation algebra is maximal [Ha].

In [Ya], the following proposition is proven.
o_ are constant functions for all and j ifPROPOSITION 1 (Yau).

and only if (fl fn) (/1 ln)"’( 0 0) where 11 In are polynomials
of degree one and is a C function.

We need the following basic result for later discussion.
THEOREM 2 (Ocone). Let E be a finite-dimensional estimation algebra. If a

function is in E, then is a polynomial of degree < 2.
Define

0
D Ox f

m

i--1 i=1 i--1

Then

1(_ )L0 D2
r/

The following theorem proved in [Ya] plays a fundamental role in the classification
of finite-dimensional estimation algebras.
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THEOREM 3 (Yau). Let E be a finite-dimensional estimation algebra of (2.0) such
o_ are constant functions, if E is of maximal rank, then E is a realthat wj ox oxj

vector space of dimension 2n + 2 with bases given by 1, xl,x2,... ,xn, D1,D2,... ,Dn,
and Lo.

For the convenience of readers, we also list the following elementary lemmas
without proof. The lemmas were proven in [Ya] and [ChYa].

LEMMA 4. (i) [XY, Z] X[Y, Z] + IX, Z]Y where X, Y and Z are differential
operators.

Oh where D(ii) [gD, hi g-5-, f, g and h are functions defined on R.
(iii) [gDi hDi] -ghwii + g Ox Ox"
(iv) [gD hi 2 Oh OhyD +g.

Di h(v) [D hDy] 2 Oh ninj 2hwijni +
(vi) [D Dy] 4wjiDjDi + 2Di + 2Dj + 2

Oxj Oxi OxiOxj 2ji"
Oh DiDjOh DkDiDj(vii) [D,hDiDj] 2

2hDk +hDi Dj +ox Ox + h ox oxox"
gOh DiDk +g Oh DjDk +ghwkjDi +ghwkiDj + oxOx(viii) [gDiDj hDk] g

gh hDDjOx Ox
nLEMMA 5. (i) [Lo,xj + cj] Dj, where Lo (=D -).

(ii) [Di, xj + cj] 5ij.
(iii) [Di, Dj] wji.

(iv) := [Lo + Oxi 20xj

(v)
(vi) Oxk i=10xkOxi 20xkOx
Consider Rx, where R is an orthogonal matrix. Then (2.0) becomes

d2(t) ](Sc(t))dt + O(Sc(t))dO(t),

d](t) h(2(t))dt + d(t),

2(0) 20 := Rxo,

=0,

where
](c) Rf(x), [7(c) ng(x),

V, (V W,

f] y, () h(x).
n 0 nIt was observed for instance in [TWY] and [ChYa] that o 1/2 }-’i=1 gf(-.i=1 fi o

n -.m 2m is equal to Lo Hence the Lie algebra/ (Lo, Ll, Zm)L A.,--.,i= 0i i=

is isomorphic to E (L0, L1,..., Lm}L.A..
0x 0A0xj and wj- It wasLet gt (wij) and t (&ij) where wij o o"

shown in [ChYa] that the following lemma is true.
LEMMA 6. --RR-1.

3. Proof of the main theorem, in this section, we shall classify all finite-
dimensional estimation algebras with maximal rank for dimension of state space equal
to three. By Lemma 5, we know that wj is in E and in view of Ocone’s result, wj
is a polynomial of degree at most two for all i, j. The first step is to prove wj is a
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degree-one polynomial for all i, j. This step was carried out in detail in our Conference
on Decision and Control paper [YaLe]. So we have

d13 a21 a22 a23 x2 -- c13

d23 a31 a32 a33 x3 c23

Now we have to deal with the hard part of the proof. We are going to prove that wj’s
are constants. For this, we introduce an invariant rmax of the estimation algebra E as
follows.

DEFINITION. Let p(x) be a quadratic polynomial. The rank ofp(x), r(p) is defined
as the rank of the Hessian matrix oZoxj )"

Denote

Q space of homogeneous polynomials of degree 2,

P space of polynomials of degree at most i,

Uk space of differential operators with order at most k.

LEMMA 7. Let E be a finite-dimensional estimation algebra of maximal rank.
Then P1 C_ E. If p(x) is a polynomial of degree two in E, then the homogeneous
degree-two part of p(x) is also in E.

Proof. This follows immediately from Lemma 5 and the definition of maximal
rank.

DEFINITION. Let EQ E N . Define rmax Max(rank p(x) p(x) E EQ.
Remark. Observe that rmax is invariant under orthogonal change of coordinates

and 0 <_ rmax _< 3 in this paper.

3.1. Case rmax 3. There exists homogeneous p(x) E with rank (p(x)) 3.
By applying an orthogonal change of coordinates, if necessary, we may assume without
loss of generality that

p(x) + +
where ki # 0 for 1, 2, 3. There are three possibilities.

Case I: all ki’s are distinct. By Lemmas 4 and 5,

e)[D,xj] 5ij(4xjDj +
3 3

1
[Lo,p(x)] - E[D,p(x)] E(2kjxDj + 1).

i--1 j--1

So= kjxjDj E and

[ 1] 3]ixi6E.kxD,-p(x) E 2 2

i--1 i=1

Replacing p(x) by }-i3__ kx, we deduce that Ei3=1 ]gx/2 E. Since the matrix

kl k2 k3)
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is nonsingular, we conclude that x, x22, x e E. Now for j,

2] [Lo, x] [2xiDi + 1,2xjDj + 1]][[Lo, xi
-4xixjaij E E.

Since xixjwij is a polynomial of degree at most 2 by Ocone’s result, we deduce that
wj is constant.

Case II: two of the ki’s are equal. In this case we may take p(x) klx2 +
2 2k2(x2 + x). By evaluating [[Lo,p(x)],p(x)], we can obtain klx + k(x2 + x) e E.

It follows that x2 e E and x2 +x] e E. Since [Lo, x2] 2xiDi+ 1, we have
xD1, x2D2 + x3D3 E. So we have

[xD,x2D2 + x3D3] xlx2w2 + xx3w3
allX21X2 + a21x21x3 + al2XlX + a23xlx + (a13 + a22)XlX2X3

E.
mod P

By Ocone’s result, [xD, x2D2 + x3D3] E P2. We deduce immediately that

all a21 a12 a23 0, a13 + a22 0.

Furthermore, from the cyclic relation++ 0, we have a13+a31-a22 0Ox3 oxl Ox.
and

A 0 a 0
2a22 a32 a33

Recall that

Y [Lo, D] w12D2 + w3D3
Y2 [Lo, D2] w21D + w23D3
Y [Lo, D] w31D + w2D

mod Uo,
mod Uo,
mod Uo.

Then

1[Y2 x22 + x32] w23x3 a31xlx3 + a32x2x3 + a33x]2

+ x]] + +2

IXl D1, 1 [Y2, x22 t-x]]:a31xlx3 mod Uo,

a3 (x03 + x3D), alxx3] a(x + x]) mod Po.

rood P

mod P,

Choose k such that k # +/-al, 0. Then a(x2 + x) + k(x2 + x) a32 x2 + kx22 +
(al + k)x is in E. If a3 # 0, then we are back in Case I and we are done. So we
have a31 0 a3 a22 and

0 0
A= 0 0 0

0 a32 a33
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a31 0 implies a32x2x3 + a33x and a32x22 + a33x2x3 are in E.

[Lo, a32x2x3 -+- a33x32] a32(x2D3 + x3D2) -+- a33(2x3D3 -+- 1)
:: a32x3D2 A- (a32x2 -+- 2a33x3)D3 E E,

[Lo, a32x2 + a33x2x3] a3(2x2D2 + 1) + a33(x203 + x3D)
==> (2a39.x + a33x3)D2 + a33x2D3 E,

[a32x3D2 + (a32x + 2a33x3)D3, a32x2x3 + a33x]
a32x322 + a32x2 (a32x2 -+- 2a33x3) -4- 2a33x3(a32x2 + 2a33x3)
2 2 + + + e Z,

[(2a32x2 + a33x3)D2 + aa3x2D3, a32x22 -4- a33x2x3]
2 2(2a32x2 -+- a33x3) 2 -f- a33x2

2 2(a323 + 4a322)x22 + 4a32a33x2x3 + a33x3 e E.

From (3.1) and (3.2), we have

(_a33 3a32)x2 + (a322 + 2 23a33)x3 E.

Recall that x + x32 E. If

1
det _a3 3a]2

1 )a322 + 3a3 4(a322 + a33)

is nonzero, then x and x are in E. So ogij constant for all i, j in view of the
argument in Case I. On the other hand if the determinant above is zero, then a2 +

’Sa3 0, which implies a32 a33 0. So A 0, which means that 0 are constants.
Case III" all ki’s are the same. In this case, we may take p(x) Xl-+ x2 +x E.

If there exists quadratic form q(x) with 0 < rank(q(x)) < 3, we can find an orthogonal
transformation R such that

or

p(x) + +

so that E contains either 21, 22 + 23 or 21 + 222, 23, for which the proof in Case II
works. Therefore we shall assume without loss of generality that EQ (x +x + x}.

Recall from Lemma 5, Yj 3__1 jD mod Uo is in E.

[YI,p(x)]--[&12D2 -t-13D3,p(x)]- 2(X2W12 q- X3Cdl3)
2(allXlX2 -+- a12x22 -4- a13x2x3 -4- a21xx3 -+- a22x2x3 -+- a23x) mod P.

So alxx2 + al2x2 + (a13 + a2)x2x3 + a2lXlX3 + a23x is in EQ and hence equal to
Cl(Xl2 +x2 + x). Comparing coefficients of x2 allows us to conclude that Cl 0. Thus
all a21 a2 a23 0, a13 + a22 0, and

0 0 a13 )A 0 -a13 0
a31 a32 a33
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Similarly,

mod P1

So (a31 a3)xlx3 + a32x2x3 + a33x is in EQ and hence equal to c2(x + x + x]).
Thus c2 0 and a32 a33 0, a31 a13.

A a13

0 0 1)0 -1 0
1 0 0

Finally, the cyclic relation / + 0 allows us to conclude that a13 0.0X3 0Xl 0X2
Therefore A is a zero matrix and we are done.

3.2. Case rmax 2. There exists homogeneous polynomial p(x) E E with
rank(p(x)) 2. Without loss of generality, we shall assume that

+

where klk2 O. We remark that E cannot contain x32 since rmax 2.
22 22Case, I: 1 g2. By evaluating [[Lo, p(x)], p(x)], we can obtain klx + k2x2 in E.

It follows that x, x2 are in E.

[Lo, x2] 2xlD + 1 and [Lo, x] 2x2D2 + 1

xD E and x202 E
xx2w2 -[xID,x2D2] E

= w12 c2 constant by Ocone’s result.

LEMMA 8. Suppose that xD1, x2D2 are in E. If q(x) qllXl2 / ql2XlX2 /

ql3XlX3 / q22x22 / q23x2x3 / q33x23 is in E, then each individual qijxixj is in E.
Proof.

Oq
[xD1, q(x)] Xl -Xl 2qllX / ql2XlX2 / ql3XlX3

[xlD, [xlD, q(x)]] 4qlx2 + ql2XlX2 / ql3XlX3.

These imply qx21 E and ql2XlX2 / ql3XlX3 E.

[x2D2, ql2XlX2 / q13xlx3] q2xx2 E.

This implies q13xlx3 E.

[x2D2, q22x22 + q23x2x3 + q33x] 2q22x / q23x2x3 E
[x2D2, 2q22x22 + q23x2x3] 4q22x22 / q23x2x3 E.

These imply q22x E, q23x2x3 E and q23x] E. rl
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We now claim that XlX3 E. If xlx3 E E, then

1
[Lo, XlX3] -[D + D2 + D,xlx3] x3D1 + xlD3 E

[xlD3 + x3Dl,xlx3]- x + x E

== Xl
2 + x + x] E and rank(x2 + x22 + x32) 3.

This gives a contradiction. So we conclude that xlx3 E. Similarly we conclude that
x2x3

_
E. Clearly x E. In view of Lemma 8, we have

By Lemma 5,

-[xlD1,D3] xlw3 a2lxl + a22xx2 + a23xlx3 E.

In view of Lemma 8, we have a23xlx3 E, which implies a23 O. Similarly,

[xD2, D3] x2w3 a31xlx2 -+-a32x22 + a33x2x3 E

implies a33 0. Then

Let Z1 xlD1,

0 0 0 /A- a21 a2e 0
a31 a32 0

1

2-zDiD1 2XlWiDiZ2 [L0, Z1]
i=1

rood Uo

D + c12x1D2 + XlW13D3 mod Uo,

1
3

Z3 "--[Lo, Z2] [D,D + c12xlD2 @ Xla)13D3]
i-I

mod UI

mod U1
=3c12D1D2 + (4a2xl + 3a22x2 + 3c13)D1D3 -4a21xlDiD3 -a3xD2D3

mod U1
=3c12D1D2 + 3a22x2 + 3c13)DID3 -a32x1D2D3 mod U1

1Z4=l[z3,Z1]- + Z3 3c12DID2 + (2a21x1 + 3a22x2 + 3c13)DID3

[Z4, Z1] =[3c12DID2 + (2a21x1 + 3a22x2 + 3c13)DID3,x1D1] mod U1

mod U1,
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=3c12D1D2 + (2a21x1 + 3a22x2 + 3c13)DID3 2a2x1DiD3
=3c2DID2 + (3a22x2 + 3c3)DD3 rood U1,

1
(Z4 [Z4, Z1]) a2xlD1D3 rood U1,Z

1
[L0, Zs] [D12 -+- D -+- D, a21xlD1D3] mod U2

a2D12D3 mod U2,
[[Lo, Z5],Z5] [a21D21D3,a21xID1D3] mod U3

22=aDD3 mod U3.

By induction, we get infinite elements in E of the form

DID3(-1)nAd7(L0) al 2 n

Since E is finite dimensional, we conclude that

mod Un+l.

(3.3) a2 0.

mod U

(3.4)
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[[W3, W1], Z1] [(2a3 + a32xD2D3 a32x2DD3,xD1] mod U1
=-a32x2DiD3- (2a31 + a32)xlD2D3 mod U1

1
(3.5) ([W3, W] +’[[W3,W],Z1]) a32x20103 mod U.

1
(3.6) ([W3, W1] [[W3, W1], Z1]) (2a3 + a32)xlD203 mod U.

It follows from (3.4), (3.5), and (3.6) that

W4 :-- -2a22x2D1D2 + 2a32x2D2D3 12D12 / 2a31xlDiD3 mod U1,

[W4, Z] [-2a22x2DiD. + 2a32x2D2D3 -c2D + 2a3xxDD3,xD1]
mod U1

-2a22x2DiD2 2c2D2 mod U,
1
[W4, Z1] mod U1w.=-

a22x2DID2 + c12D mod U,
1

[Lo, W5] -[D + D + D,a22x2D102 + c12D2] mod U2

a22DID22 mod U2,
[[Lo, Ws], W5] [a22D022, a22x2D02 + c2D] mod Ua

2 22a22D1D22 mod U3.

By induction, we have

n n(-1) Adws (Lo 2n-l’’n rn r2 mod Un+t22Ll J2

Since E is finite dimensional, we conclude that

(3.7) a22 0.

By the cyclic relation / / 0, we get0X3 0Xl 0X2

a3 / a31 a22 0.

From (3.3) and (3.7), we get a31 --0. It follows that

W4 2a32x2D2D3 c2D2 mod U1,

I111[D +D + D,a32xD2D3-a32DD3 mod U2,

Lo,-W4 W4 a32DD3, a32x2D2D3 cl2D12
2a322 2 2D2D3 mod U3,

n 2(-1)’Adw4
(Lo) 2’-1a3202D mod U+.

mod -U

mod Ua

Since E is finite dimensional, we have a32 0. Therefore, the COij’S are constants for
all i, j.
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Case II: kl k2. Without loss of generality, we may take p(x) x21 + x22. in view
of Case I, we shall assume that E does not contain x2, x22.

LEMMA 9. Under the Case II assumption, (x + x22} C_ EQ C_ (x21,x22,xlx2).
Proof. Let q(x) E EQ. Then

q(x) qllX21 + q22x -+- q33x q- ql2XlX2 + ql3XlX3 -Jr- q23x2x3.

Recall that xlD + x2D2 is in E. By applying xlD1 + x2D2 repeatedly to q(x), we
see immediately that qx21 + q22x + q2xlx2, q3xlx3 + q23x2x3, q33x E. These
imply q33 0 (since rmax 2) and 1/2(x + x22) + (q3xx3 + q23x2x3) e E.

Hess
1
(x21 + x2) + (ql3XlX3 -[- q23X2X3)

1 0 q13 10 1 q23

q13 q23 0

The determinant of the above matrix is -(q123 + q3). Since rmax 2 <: 3, we have
q123 -+- q223 0 which implies q13 0 q23. [’1

We deduce from Lemma 9 that 1 _< dimEQ _< 3.
2If dimEQ 3, then EQ (x,x2,xlx2 and we are in Case i.

If dimEQ 2, then we may take EQ (x21 + x22, qllX nc ql2XlX2). If q12 0,
then EQ contains both x2 and x22 and we are back in Case I. Therefore we can assume
that q12 = 0. Furthermore if q 0, then EQ is actually (x21 +x,xx2). We consider
the following particular orthogonal transformation"

2-- Rx (1 o
R-- 0

such that it gives rise to

x RT2

Thus,/ contains 212 and 22. By Case I, the w{j’s are constants and so are the wj as
RTtR. Hence we may also assume that q 0. So EQ <x2 + x22,x + 2kxlx21

for k : 0. Observe that if we can find a quadratic form po EQ with r(po) 1,
then there exists an orthogonal transformation such that EQ is mapped into
which contains both 22 and 2, and we are done. So we try to find such a po below.
Consider

Po A(x + x) + a(x + 2kxlx2).

Its underlying symmetric matrix is

(1 0)(1 k) (A+a ak)Apo A
0 1 + a

k 0 ak A
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and detApo ,k2 + a) a2k2. Fix a 0 (say a k) and choose

-1 + v/1 + 4k2

2

Then r(po) 1. We are done for dimEQ 2.
If dimEQ 1, then EQ @21+x2}. Recall from Lemma 5 that Y’s are in E where

Y w2D2 +w3D3 rood Uo, Y w2D +w23D3 rood Uo, and Y3 w3D +w32D2
mod Uo.

1
[Yl,x + x] X2a212 a.lXlX2 + a12x22 + a.3XlX3 mod P12

=: allXlX2 .-t-- al2x + a13xlx3 e EQ {x21 +
all a12 a13 0

1
[Z3,x + x] XlWl3 + x223

2
+ + + + + mod P

a21x -+- (a22 -b a31)XlX2 q- a32x + a23xlx3 + a33x2x3 E (x21 q-- x222}
a21 a32 a22 + a31 0 a23 a33 0.

By the cyclic relation + + 0, we have a13 q-a31 --a22 0. It followsOx3 Oxl
that a22 --a31 --0 and

(ooo)A a2 1 0 0
0 1 0

In order to prove that a21 0, we consider the following sequence of elements in E.

K1 xlD1 -}- xD,
1

3
1

3

K2"= [Lo, K] E[D,xlD] + - E[D2,x2D2] mod Uo
i=1 i=1

D21 + xw2D2 + XlWl3D3 + D + x2w2D + x2w23D3 mod Uo
D21 + D + x2w21D1 "[" XlWl2D2 + (XlWl3 -}" x2w23)V3 mod Uo,

g3" = [Lo, K2]
1

3- [D,D +D + x2w21D1 q" Xlw12D2 "[- (Xltdl3 -[" x2w23)D3]
i=1

mod U1
2(w12D1D2 + w13DID3 + w21D2D1 + w23D2D3)
c12D2D1 + c2DID2

+ (w13DD3 + a21x1DiD3 + w23D2D3 + a32x2D2D3) mod U1
(3w3 + a2xl)DD3 + (3w23 + a2x2)D2D3 mod U1
4a2(xiD1 + x2D2)D3 mod U1,

(-1)Adg3 (g) [K:, K3]
[D2 + D, 4a21(x101 + x202)D3] mod U2
4a2([D,xD] + [D,x2D2])D3 mod U2
8a2(D2 + D)D3 mod U2.
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Inductively, we have

D2)D3 mod Vn+l.(-1)Ad3(K2) (Sa21)n(D + 2 n

Since dimE < , a21 0 and we have A 0. So wij’s are constant for all i,j.

3.3. Case rmax 1. In this case, we may assume that p(x) x E E and

[Y2,p(x)] =-[w21D1 +w23D3,x2] 2w21xl e EQ
[Y3,p(x)] [w31D1 + w32D2, x] 2w31xl e EQ.

Thus, w2 and w3 depend onl on xl because EQ (x}. So

all 0 0 )A a2 0 0
a31 a32 a33

The cyclic relation + + 0 implies a31 0 and implies aa 0 and0X3 (Xl 0X2

aii 0
A= a2i 0 0

0 0 0

Now x2 E implies xlD1 E. Let

mod U

We are going to show that al 0. Suppose al # 0. Denote a a_ and define
all

1 (3c12)(3c13)a:= aal-:-iX3 x +all DD2 + ax +-----al DID3 mod U.
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X3,a= --. Then for j> 1LEMMA 10. If all 0, let a
all

(-1)JAdJ(z2) D2 (D2 + aD3)J mod Uj+I.
2J

Proof. We shall prove this by induction.

(-1)Ad(X2)
2

_--1 D x + DD2 + ax + DID3 modU2
2 all all

Ox--- x+al DD2+ ax+al DD3 modU

D(D2 + aD3) mod U2,

I[(-I)JAd(X)2J

D(D2 +aDa)j, Zl + /D1D2 + aZl + all DIDa
mod U+
D(D + aDa)D + aD(D + aDa)Da mod U+
D(D + aDa)(D + aDa) mod U+
D(D + aDa)+ mod U+.

The above lemma implies that E is infinite dimensional, contradicting the finite-
dimensionality of E. Hence a 0. Then

(0 0 0)A a 0 0
0 a32 a33

X2 D + c12x1D2 + (a2x + cl3xl)D3 mod Uo,
X3 3c12DD2 + (4a21x1 + 3c13)DID3 mod U1.

Next we shall see that a21 0. Suppose a21 0. Consider

1 c1:=Xa=DD+ z+ DDa modUs,

(-1)Ad(X) [X,] D,DD+ z + DDa mod U

=2DDa modUs.

We claim that (- 1)Ad(X) 2DDa mod U+. This can be seen by induction.

DDa,DD+ z+ DDa modU+
2j+12nJ+l
13 mod U+.
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Then E contains an infinite-dimensional subspace, which is impossible. Hence a21 0
and

A= 0 0 0
0 a32 a33

Consider the expression of [Yj, Dk] in Lemma 5(vi). Noting that wj’s are linear,
the following elements belong to E:

3 1

OxOxj
i--1

Kjk is symmetric about j,k (Table 1) and is a polynomial of degree at most two,
which in turn forces to be a polynomial of degree at most four.

TABLE 1.

(j,k) Kyk

Recall our notation:

13 A x2 + C13 A 0 0 0
C023 X3 C23 0 a32 a33

Since Kjk E P2 and EQ (Xl2} in this case rmax 1, we have

Kjk kx mod Pi.

So we can form the following relationships:

1 02r/ 2 2

20x a32x2 + 2a32a33x2x3 -t-- a33x + ax2 mod P1,

1 027 2 2

20x] a32x2 + 2a32a33x2x3 + a33x + bx2 mod Pi,

1 Orl cx mod Pi.20xOxs
02

X2X3 term in r/. Let /Observe that the term a33x] in must come from the 2 2

contain the term ax2x]. Since

102axx] ax 102ax2x] ax2 102axx 2ax2x3,
2 Ox 2 Ox 20xOx
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by comparing coefficients we obtain

a=a], a=a], 2a=0.

So, a32 --a33 ---0 and accordingly

=O33 modP0.

Hence Case rmax 1 is done.

3.4. Case rmax = 0. In this case EQ . All functions in E are automatically
linear.

Recall that
3

mjk = _ECdjiOJki nt_
027]

OXkOXj
E EQ.

i--1

This expression is written in element form. It’s more insightful to view it in matrix
form.

Let M (mjk)33 and note that the gt matrix is antisymmetric. Then we have

1

1
Hess(7]),=f+

where Hess(7]) (okoj)33 is the Hessian matrix of 7].

Let gt Dxl + Bx2 + Cx3 (mod Po), where D (aij)33, B (ij)33, C
(%y)33 are skew-symmetric matrices. We make use of gt2 + 1/2Hess(7]) 0 mod P1
to infer that D B C (0)33 as follows. Writing

H =gt2

Hx + g22x + H33x + H2xx2 + g3xx3 + H23x2x3
D2x2 + B2x + C2x] + (DB + BD)xx2 + (DC + CD)xx3
+ (BC + CB)x2x3,

we have

HI D2=-DDT, where
0 o12 o13 /D -o12 0 o23

So

Hll 013a23 a122 + 03 012c13

-a2a23 a12a13 a23 + a223
The other Hij matrices can be obtained similarly and they are listed explicitly at the
end of this section.

We consider terms in 7] and relationships derived from gt2 + 1/2Hess(7]) 0 rood
P in terms of entries in Hij matrices. The coefficient of xx in -7] H1[2, 2]
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H22[1, 1] 1/2H12[1, 2]. Similarly, Hl113, 3] H33[1, 1] 1/2H13[1, 3] and H2213, 31
H3312, 2] H2312, 3] (Hj[p, q] means the (p, q)-entry of matrix Hj). We have

(a.s)

(3.9)

(3.10)

Together with the simple majorization relationship between any two real numbers,
2ab <_ a2 + b2, we can rewrite (3.8), (3.9) and (3.10) to obtain

2(O122 Jr- O3 t_ 122 _}_ 123) 2(O13fl23 " O23fl13) O123 - 223 - O223 -" /123,
13) --2(OZ12")’23 nu OZ23’)’12)

_
O2 nu 3 nu OZ223 nt- ’)’122,

e(Zla +Z +- +) e(Zl-,a + Z-) _< Zl + "la + Z + "1.
Summing these three inequalities and simplifying, we have

which implies that

O12 Oz13 O23 12 =/13 /23 12 ’)’13 23 0,

Hence

Case ?max ---0 is done.

D B C O3x3.

f/= 03 x 3 mod Po.

For reference we list the Hij matrices below:
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DYNAMIC PROGRAMMING FOR NONLINEAR SYSTEMS
DRIVEN BY ORDINARY AND IMPULSIVE CONTROLS*

MONICA MOTTAt AND FRANCO RAMPAZZOt

Abstract. A dynamic programming approach is considered for a class of minimum problems
with impulses. The minimization domain consists of trajectories satisfying an ordinary differential
equation whose right-hand side depends not only on a measurable control v but also on a second
control u and on its time derivative/. For this reason, the control u and the differential equation are
called impulsive.

The value function of the considered minimum problem turns out to depend on the time, the
state, the u variable, and the variation allowed to the impulsive control. It is shown that the value
function satisfies, in a generalized sense, a dynamic programming equation (DPE), which is obtained
from a dynamic programming principle involving space-time trajectories. Moreover the value function
is the unique map-solving equation (DPE) satisfying either an inequality condition or a supersolution
condition at each point of the boundary. Incidentally this extends a result by Barron, Jensen, and
Menaldi [Nonlinear Anal., 21 (1993), pp. 241-268], where the impulsive control is scalar monotone
and the corresponding vector field is independent of the state variable. Next, a maximum principle
is proved, and the well-known relationship between adjoint variables and value function is suitably
extended to impulsive control systems. A fully elaborated example concludes the paper.

Key words, impulsive control, minimum problem, dynamic programming

AMS subject classifications. 34A37, 49N25, 49L20, 49L25

1. Introduction.
The optimal control problem. This paper concerns the dynamic programming

approach to minimum problems involving impulsive control systems of the form
m

 0(t, x, v) + x,
(E)

where the state x belongs to In and the controls u and v map a time interval [, T]
into a closed subset U c Im and a compact subset V C q, respectively. Moreover
u is subject to the directional constraint E C, where C c m is a closed cone.
Optimum problems involving a dynamics of the form (E) arise in applications to
rational mechanics [13]-[15], [35], economics [17], space navigation [25], [29], [33], and
advertising strategy [20], [39].

Because of the presence of the derivative on the right-hand side of (E) the state
can jump in consequence of a discontinuity of the control u. However, the notion
of solution to (E) is provided by the Carathodory theory of ordinary differential
equations only if the control u is absolutely continuous. Moreover, it is known--
see, e.g., [9]-[12], [19], [21], [23], [28], [30], [32], [37], [41J--that whenever the fields
gl,..., gm depend on x, u, and v, a mere measure-theoretic extension of this notion to
the case of a discontinuous u does not agree with elementary requirements of continuity
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of the input-output map. In order to overcome this difficulty, in [10], [32], [34] one
extends system (E) to the space-time system

(STE)
m

x’ g0(t, x, u, v)t’ + E gi(t, x, u, v)u,
i--1

where the controls t(s), u(s) are Lipschitz continuous and the superscript denotes
differentiation with respect to the pseudo-time parameter s E [0, 1]. In this space-
time setting a discontinuous control u(t) is regarded as the space projection of a space-
time control t(s), u(s) whose first component t(s) is allowed to be nondecreasing. We
just recall--see, e.g., [10], [30], [32], [37J--that, because of the noncommutativity of
the vector fields gl,..., g,, the "evolution of x depends on the particular space-time
control t(s), u(s) which completes the graph of u(t). Incidentally we remark that in the
standard impulse control theory there is no need of considering space-time controls.
Indeed, in that case the fields gl,..., g, (m n) coincide with the canonical basis; in
particular they commute. As a consequence each completion of a control u produces
the same trajectory which in turn coincides with the unique trajectory resulting from
the measure-theoretic approach; see, e.g., [3].

As a prototype of a minimum problem initially formulated for the original system
(E) we consider an unconstrained Mayer problem with finite horizon and a bound on
the total variation of u.

More precisely, let :1’ U -- I be a continuous map, C be a closed cone of
F", and K > 0 be an upper bound for the total variation of the control u. For every
({, 2, , ) E [0, T) In V [0, K], we consider the following problem:

(P(,,,)) minimize {O(x(T), u(T))}

over all end points (x(T), u(T)) of (E) corresponding to control policies (u(.), v(.)),
where v’[, T] - Y is a Borel-measurable map and u" [-, T] U is an absolutely
continuous map which satisfies

u(t-)=, Vt-T(u)_<K-, and /t(t) eCfora.e, t[,T].

(vt-T(u) denotes the total variation of u(.) on the interval [, T].) Since the unbounded
control/t appears linearly on the right-hand side of (E), problem P(,,,) does not
display anyone of the standard coercivity assumptions which guarantee the existence
of an optimal control. This justifies the introduction of the extended system (STE)
and of the corresponding space-time reformulation of problem 7)(,,,). Actually
this extension is proper, i.e., the infimum of the original problem turns out to coincide
with the infimum of the extended problem. Hence the value functions determined by
the two problems coincide. Moreover the set of original controls is dense in the set
of space-time controls, and under some further assumptions, there exists an optimal
control (t(s), u(s), v(s)) for the extended problem; see [32].

The dynamic programming approach. We call value function the map
’[0, T) ltn U [0, K] --. l which associates the infimum of problem P(,,,) to

every (, 2, fi, ). Actually Y can be identified with the value function corresponding to
the extended problem, for the two maps turn out to coincide on [0, T) ]n U [0, K].
Moreover, in the extended setting Y can be defined also at t T.

In the particular case when the control u is a scalar nondecreasing map (i.e.,
m 1, C I+, and u -_- k [0, K]) and the vector field gl does not depend on x
and u, the dynamic programming approach has been already pursued by E. N. Barron,
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R. Jensen, and J. L. Menaldi [8]. Their main result consisted in proving that the
value function 12 is the unique continuous map which satisfies (in the viscosity sense) a
certain Hamilton-Jacobi-Bellman equation together with the following, quite natural,
Dirichlet conditions:

(BC)I 12 coincides with the value function of the corresponding nonimpulsive
problem ( 0) on the strip [0, T] ]Rn {K} (where all the available variation of u
has run out);

(BC)2 12 coincides with the value function of the corresponding purely impulsive
problem (go 0) on the region {T} Rn [0, K](where no more time is available).

Moreover, Barron, Jensen, and Menaldi left the following questions as open prob-
lems:

a) Can the well-known relatibnship between the adjoint variables of the maximum
principle and the value function be extended in some way to impulsive problems?

b) Can we state a rigorous result (i.e., a verification theorem) which relates the
dynamic programming equation with the problem of testing the optimality of a given
control?

c) What can be said when gl depends also on x and u ?
This paper is also a trial to give an answer to the above questions, not only in the

scalar control case but also in the general situation where u is vector valued. More
precisely, we begin by proving that, under suitable assumptions on the set U and the
cone C, the value function 12 is continuous on [0, T] In U [0, K]. Next, via
a dynamic programming principle involving space-time trajectories, we prove that

the value function 12 is a viscosity solution on [0, T[xR x r x [O,K[ of the dynamic
programming equation

OV OV OV 0)=0,(DPE) -H t, x, u, Ot Ox Ou Ok

where, for every (pt,px,p,Pk) E ]l+n+m+l
by

the Hamiltonian function H is defined

H(t,x, u, pt,Px,P,Pk)

min / +  o(t,x, v)) o + + +
i=1

I(Wo,...,Wm)I 1, W0

_
0, W--- (Wl,...,Wm) e C, v e Y

Furthermore, 2 turns out to be the unique solution of (DPE) satisfying the following
boundary conditions:

(BC)[ 12 is a (viscosity) supersolution of (DPE) at all points of [0, T[ x]R x OU x
[0,K[ U

(BC)2 at each boundary point (T,x, u,k)’P <_ , either 12 is a supersolution of
(DPE) or it satisfies the relation 12(T, x, u, k) O(x, u).

We remark that, unlike conditions (BC) and (BC)2 above, boundary conditions
(BC) and (BC)2 do not involve any auxiliary minimum problem and refer only to
the cost function ( and to equation (DPE).

We also prove a verification theorem (Theorem 5.1), which incidentally provides
a possible answer to the open question b) mentioned above.

Finally, by applying standard results to the space-time embedding, we are able
to clarify the relationship occurring between the adjoint variables of the maximum
principle and the value function 12. This provides a possible answer to the open
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question a) above, while the answer to question c) is inherent to the general setting
of the problem, for the vector fields gl,..., gm do depend on x and u.

The paper ends with a simple, elaborated example where the theoretical results
proved throughout the paper are explicitly applied to test the optimality of a feedback
control previously computed by means of the maximum principle.

2. The minimum problem. Let us consider the control system
m

(2.1) 2 go(t, x, u, v) + Egi(t,x,u,v)it(t),
i=1

(2.2) x(t-) 2, u(t-) 2

defined on a time interval [{, T], where the state x ranges in IRn while the controls u
and v take values on a closed arcwise connected subset U c IRm and a compact subset
V c IRq, respectively. Moreover the control u is subject to the directional constraint
/t E C, where C IR" denotes a given closed cone.

Let K be a positive constant, and for every [0, K] let us define the set

(u, v) AC([{, T], U) x B([{, T], V) u(
(2.3) WK_({, )

5(t) C for a.e. t [L T] and (u) K- f
where AC ([{, T], U) denotes the set of absolutely continuous functions from [{, T] into

U, B([{, T], V) is the set of Borel-measurable functions from [{, T] into V, and T(u)
denotes the total variation of u on the interval [{, T]. We call WK_}({ ) the set of
admissible regular controls from ({, g) such that the variation of u is less than or equal
toK-k.

Let be a continuous function defined on RnxU. For any ({,2, , ) [0, T[xR" x
U x [0, K] we consider the following minimum problem of Mayer type:

(P(,,,)) minimize (x[{, x, u; u, v] (T), u(T)),
(,)WK_(L)

where x[, x, u; u, v](.) denotes the solution of (2.1), (2.2) corresponding to the control

Throughout this paper we assume the following hypothesis (H1) on the vector
fields g0,..., g and the function :

(H1) g0,..., g and are continuous in all of its variables, and there is a positive
constant M such that

]g(t,x, u, v)l M(1 + [(x, u)l), [O(x, u)] M

v(t, x, , )e [0, T] " U v ( 0,..., ).

Moreover, for any compact subset Q c " x U there is a constant L such that

19(t, x, , v) 9(t, z, , )1 Ltx 1
V(t, x, , ), (t, z, , v) e [0, T] x x Y (i 0,..., ).

In the following discussion, whenever the compact set Q is specified, we will
denote by Wgo,...,w and we the modulus of uniform continuity of the restrictions
of the functions go,..., gm and to [0, T] x Q x V and Q, respectively.

Remark 2.1. The condition ](x, u)] M implies that the value function is glob-
ally bounded, which turns out to be very convenient for applying the theory of viscosity
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solutions. On the other hand one can skip such a limitation by replacing the cost func-
tion (I) with the bounded cost function arctan (I). It is obvious that this transformation
will not affect the essential character of the problem.

Since the right-hand side of (2.1) depends linearly on the derivative/t, in general
no optimal controls can be found within the class WK_( fi). Hence, denoting the
triple (t,x, u) by y, on the basis of the results in [10], [32], we embed (2.1) into the
space-time system

m

(2.4) Y’= t)0(Y, v)t’(s) + Ei(y, v)u(s)
i--1

together with the initial condition-

In (2.4) the superscript denotes differentiation with respect to the new parameter
s E [0, 1] and for every 0,..., rn the vector field t)i coincides with the ith column
of the (1 + n + rn) (1 + rn) matrix

1

0

0

DEFINITION 2.1. The control system (2.4) is called the space-time control system
relative to (2.1), and a map

[o, U V

is called a space-time control for (2.4), (2.5) whenever the following hold:
(i) (t, u)(0) (, );
(ii) (t, u): [0, 1] [, T] U is Lipschitz continuous and u’(s) C for almost

every s [0, 1];
(iii) t: [0, 1]- [, T] is surjective and nondecreasing;
(iv) v: [0, 1]- V is Borel measurable.

The set of space-time controls will be denoted by F(, t). A solution of the space-time
control system (2.4) will be called a space-time trajectory.

We remark again--see the introduction--that a mere interpretation of the orig-
inal system (2.1) as an equation in measure would lead to an ill-posed problem, for
the dependence of gl,..., gm on x and u makes it impossible to define a concept of
(univalued) trajectory as a map of the original parameter t.

We refer to the appendix for some basic facts concerning the concept of canonical
parametrization and the related topology on the set of space-time controls. Briefly, the
parametrization of a space-time control (t, u, v) is called canonical if the norm
is constant almost everywhere in [0, 1]. Any space-time control can be reparametrized
in such a way that the resulting space-time control turns out to be canonical. And, up
to reparametrization, the corresponding trajectories coincide (see Proposition A.2).

Observe that after introducing new equations we regard t and u both as state
variables and as control variables. This allows us to embed problem 7)(,,,) into the
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extended problem

where

minimize (I) (y[f, 2, ; t, u, v] (1)),
(t,u,v)rK_ (,t)

(2.6) FK_({, {(t,u,v) F({,fi) Vol(u) < K-
is the set of admissible space-time controls and y[{, 2, t; t, u, v](.) denotes the solution
of (2.4), (2.5) corresponding to the space-time control (t, u, v).

Remark 2.2. We point out that (I) is a function of the only variables (x, u). With
abuse of notation we write (y), where y (t, x, u), instead of (x, u), just to remind
the reader that we are now referring to the space-time extension (2.4).

It is clear that in the space-time setting the original set W/_ ({, ) of admissible
controls has to be identified with the subset F+K_({ ) C F/_({, ) formed by the
Lipschitz continuous reparametrizations of the graphs of the elements belonging to

The subset F+K_({ )turns out to be dense--see [32] and the Appendix--in the
set FK_(, ) of space-time controls.

We now prove that the infimum of the extended problem 7),,a,) coincides with
the infimum of the original problem 7)(,,a,).

THEOREM 2.1. For every initial condition
one has

inf (y[, 2, ; t, u, v](1)) inf (I) (x[{, x, ; u, v] (T), u(T)).
(t,u,v)er:_ (,) (u,v)eWK_ (,)

Proof. Let (, 2, , ) be a fixed initial datum and let us observe that Gronwall’s
lemma, together with the bound on the total variation of u, guarantees that there is
some positive constant M such that

(.S)
[’ ’ ; t, , ]()1 < M’,

Ig(y[{,,t;t,u,v](s),v(s))l <_ M’ (i--0,...,m) for a.e. s E [0,1]

for all (t, u, v) FK_ (/, ). Hence, setting Q -" Bn+n [0, M’] N I V (where
Bn+,[O,Mr] denotes the closed ball of center 0 and radius M in n+m), we can
identify the vector fields go,..., g, and the function (I) with their restrictions to the
compact sets [0, T] Q V and Q, respectively.

By the definition of F+K_(/, ), proving (2.7) is equivalent to checking that the
identity

inf (b (y[{, 2, ft; t, u, v] (1) inf (y[{, 2, ft; t, u, v] (1)
(t,u,v)r+_ (,) (t,u,v) er

_
(,)

holds true. Hence it suffices to show that

(2.9) inf (y[,2,t;t,u,v](1)) < inf (y[,2,t;t,u,v](1)).
(t,,v)r+_ (,) (t,,)r

_
(,)

Since these infima are bounded, for any > 0 there is a space-time control
(t, u, v) F_(, ) verifying

(2.10) inf (y[{,2, ft;{,ft,](1)) >_ (y[{,2, ft;t,u,v](1)) /2.
(,,)r_(,)
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Note that on the basis of Proposition A.2 it is not restrictive to assume that the norm
l(t, u)l is constant almost everywhere in [0, I], this constant being less than K + T.
Then, by setting

re(s) + (T t-) (t(s) t-) + spe
Vs e [0, 1](T-+pe)

for a p E (0, (T- t-)/2] to be chosen, we obtain a space-time control (t, u, v)
F+K_(, fi) such that

and the corresponding trajectory x - x[-, , fi; t, u, v] satisfies

/0
i=1

P Igo(te(cr),xe(a),u(a),v(a))l[(T- t-) + t’(a)lda+ T-+pe

< (K+T)}co(2p)+(m+l)(K+T)L
i=0

By Gronwall’s lemma it follows that

_<
i=0

Hence for a Os small enough from (2.10) we have

inf ([-, if:, 2; ’, 2, ](1)) _> (zs(1), (1))
(,,)er_(,)

which by the arbitrariness of > 0 yields (2.9).
3. The value function. In this section we introduce the so-called value function

for the problem T’(,,,) and study its regularity properties.
DEFINITION 3.1. The map

(3.1) /P(, , , ) inf O(x[,x,u;u,v](T),u(T))
(u,v)wK_(,)

from [0, T) n U [0, K] into IR is called the value function of the original minimum
problem.

DEFINITION 3.2. The map

(3.2) (, , , ) inf (y[,hc,t;t,u,v](1))
(,,v)erK_(,)

from [0, T] n U [0, K] into IR is called the value function of the extended minimum
problem.

The following result follows from Theorem 2.1.
COROLLARY 3.1. The value function of the original minimum problem is

bounded and coincides with the value function ]2 of the extended minimum problem.
Let us observe that the value function P of the extended problem is defined even

at time T. Furthermore, in Theorem 3.1 below we show that "g is continuous
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provided that one of the following two hypotheses on the cone C and the closed set U
holds:

(H2)c The set U coincides with the whole Nm.
(H2)u the cone C coincides with the whole ]Rm; moreover for any s > 0 and

Ul E U there exists a 5 > 0 such that for each u2 U gl B(Ul, 5), there is a path
/12 AC([0, 1], U) satisfying /2(0)= ul, 12(1)---u2, and

<ds

THEOREM 3.1. Let Qx c Nn, Qu c U be compact subsets. Then for every
({, 2, fi, ) [0, T] Q Q, x [0, K] one has the following:

i) the functions x 2({, x, fi, ), t ;(t, 2, , ), and k ]2(, , t, k) are
continuous on Q, [0, T], and [0, K], respectively, uniformly with respect to the re-
maining variables on [0, T] Qx Qu [0, K]; furthermore, k - ]2(,, t, k) is non-
decreasing;

ii) in addition, if either hypothesis (H2)c or hypothesis (H2)u is assumed,
then the function u - ]2(, , u, k) is continuous on Qu, uniformly with respect to the
remaining variables on [0, T] x Qz Qu [0, K]. In particular the value function ]2
is continuous on its domain.

Proof. By (2.8) the trajectories starting from points of [0, T] Q Qu lie in the
compact set [0, T] Bn+m[Qx Qu; M’] (Nn U). Let wg denote the modulus of
uniform continuity of g (i 0,..., m) on [0, T] B,+m[Q Qu; M’] (Nn U) V,
and let w be the modulus of continuity of (I) on Bn+m[Q Q; M’] (Nn U).

Let Xl, x2 Qx, and consider the difference

V(-, X2, , :) V(-, Xl, , ),
which can be assumed nonnegative. For any e > 0 let (t, u, v) e FK_(-, ) be a
space-time control satisfying

(3.3) (’,Xl, , ) _> O(y[,Xl,ft;t,u,v](1)) .
Thus by the definition of V we have
(3.4)
(, x2,, ) (, xl,, ) _< O(y[,x2,ft;t,u,v](1)) (y[,Xl,ft;t,u,v](1)) + .

Furthermore standard estimates for the trajectories of (2.4) yield

(3.5) IX[,X2,t;t,t,V](8) X[,Xl,t;t,t,V](8)l
_

IX2 XlleL(I+m)(K+T)s

for all s e [0, 1]. Hence (3.4) and (3.5)imply

_< x l) +
which, by the arbitrariness of > 0, proves that x ];(,x, fi,) is continuous
uniformly with respect to (, fi, ).

Now let t, t2 [0, T], tl = t2, and consider the difference

v(t , v(t ,

which can be assumed nonnegative. For any e > O, let (t, u, v) be a space-time control
for (tl, 5:, fi, k) satisfying

V(tl,2, ft,) >_ O(y[tl,2, ft;t,u,v](1)) e,
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and consider the space-time control (, u, v) E rg_(t2, g), where is defined as
follows"
if tl < t2, set

where

if tl _> t2, set

() { t, s e [0,
t(), e [, ],

. min{se[0,1] t(s)=t2);

(s) t(s) (tl t2)(1 s), s [0, 1].

In both cases the definition of and Gronwall’s lemma imply
(3.6)

I(s) t(s)l <_ It.
m

[:(s) x(s)[ _< [Mt[t2 tit + (K + T) EWg([t2 tl[)]eL(I+m)(K+T) Vs [0, 1],
i=0

where we have set :(.) x[t2,2, ; , u, v](.), x(.) x[tl, 2, ; t, u, v](.). It follows that

V(t, 5:, ’, ) V(tl, 5:, , :)
m

<_ wo([M’lt2 tl[ + (K + T)EWg([t2 tll)]eL(I+m)(K+T)) + ,
i=0

which, by the arbitrariness of , implies that t Y(t, 2, ft, k) is continuous uniformly
with respect to the remaining variables (2, , ).

Now let kl, k2 [0, K], with kl # k2. Since the map k 12(, 2, , k) is nonde-
creasing, it is not restrictive to consider only the case k2 > kl. Choose a space-time
control for (, 2, , k) satisfying

and set

where

])(-, , , ]1) _> b(y[,2, ft;t,u,v](1))

(), e [0, ],
(s)

u(.), s e [., 1],

. max{se[0,1] V(u)<_K-k}.

Observe that either K- k2 < Vol(u) <_ K- kl and V(u) K- k with . < 1, or
.= 1; furthermore, V0 (2) V(u) K-k so that (t,5, v) FK_k(/,). For every
s [, 1) one has

V(u) V (u) Vd (u) V(u) Vd (u) K + k k2 1.

Hence, from the definition of and applying Gronwall’s lemma one obtains

I()- u(s)l v() =- ,
Ix[,,u;t, ,]() x[,, ;t, , v](s) [mM’V:() + Wo(Tlk kll)]e(+T)

[=M’I 1 + T,o(l 11)]+) V e [0, 1].
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This implies
(3.7)
)({, fiT, , ]2) ],(, 7, , ]1) wo([(1 +raM’) ke-kl+Two(lk-kl)]eL(K+T)) +e;

thence k (, 2, , k) is continuous uniformly with respect to the variables (, 2, ).
Thus thesis i) of the theorem is proved.

In order to prove ii), let e > 0 and, for a 6 > 0 to be determined later, let
Ul, u2 Q satisfy [u 6, 1, 2. Let us consider the difference

v(, ,, ) v(, ,, ),

which i i8 no restrictive o assume is nonnegaive. Le (t, u, v) E_(, u) be a
control satisfying

v(, ,, ) (v[,,;t,,]()) /.
u (uz)c i uma, th h otrol (t, , ) (t, + (), ) i i

E_(, ). The definitions of Wao,..., wa and w ogeher wih 8andard estimates
for he rajecorie8 of (2.4) imply

V(, , 2, ) V(, , 1, k)
(y[,2, u2;t,,v](1)) (y[,2, ul;t,u,v](1)) + /2

m

O (12 ll + (K + T) g(l2 ll)eL(I+m)(K+T)) + El2.
i=0

This yields the continuity of the map u P(, 2, u, k) uniformly with respect to the
remaining variables.

We conclude by proving ii) under hypothesis (H2)u. Let p (0, 1). If K-
p, by setting (s) u Vs [0, 1] we obtain

(3.8) v(, ,, ) v(, ,, )
(y[[,2, u;t, u2,v](1)) O(y[,2, u;t,u,v](1)) + /2

(1 1 + + (To(l 1 + p) + M’P)(1+)(+)) + /e.

Suppose on the contrary that K- > p. Then by (H2)u there exists a > 0 such
that if lu < , lu2 < one has

V(21) p/2 (< 1)

for some path 71" [0, 1] U such that 7(0) u, 7(1) Ul. We set

f (), [0, ],
g(8)

(), [, 1],
where

g max{s E [0, 1] V(u) <_ K- [- V01(’)’21)}.
Hence for any u E V the control defined by

(t, u, v)((s r)/(1 or)), s [cr, 1],
where cr V01 (721) is in FK_({, u2). Standard estimates yield

1(8) 2t(8)1 12t2 2tl]-I- (3 q- K -- T)V01(’)/21),
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from which proceeding as in the previous case one obtains an inequality similar to
(3.8). Hence, by choosing 5 min{p/2, 5}, there exists some p > 0 such that we
have

v(, , u, ) v(, , u, ) < ,
which implies the continuity of u 12({, , u, ) on Qu uniformly with respect to the
variables ({, , k).

Thus the continuity of the value function l) is proved. []

4. Dynamic programming principle and dynamic programming equa-
tion. Let us define the Hamiltonian function H" [0, T] IR U ]R1+n+’+1 --, ]R

by setting

(4.1) H(t,x,u, po,pl,...,p,pn+l,...,pn+,,p)

"- min 7-/(t, x, u, po,Pl,... ,Pn,Pn+l,... ,Pn+m,P, W0, W, V),
vEV
(wo ,w)Esr

where 7-t denotes the unminimized Hamiltonian

(4.2) 7-/(t, x, u, po,pl,... ,P,,Pn+I,... ,Pn+m,P, W0, W, V)
’

Pig0( ,X U,: (p0+ 
i=1

while S is the intersection of [0, +oc[C and the unit sphere S" {(To, w) E
Rl+m" I(w0,w)l=l}.

We shall prove that 12 solves the dynamic programming equation

(DPE) vv) -0,

where V]; stands for (Vt;, Vz];, V,];, Vk)), and Vt;, Vx);, V,;, and VkF denote
the gradients of ]; with respect to t, x, u, and k, respectively. The presence of the
minus sign in (DPE) is motivated by the fact that we wish to be consistent with the
terminology of the theory of viscosity solutions. In fact, like in the nonimpulsive case,
the value function ; fails in general to be continuously differentiable, so it can satisfy
(DPE) only in a generalized sense. Aiming at self-consistency we recall the definition
of viscosity solution of a first-order partial differential equation; see, e.g., [18].

DEFINITION 4.1. Let E be a subset of]I{y. A function 12 E C(E) is a viscosity
subsolution of (DPE) at (t,x,u,k) E E if for any ) CCX(]N) such that (t,x,u,k)
is a local maximum point of 12- , on E one has

-H (t, x, u, VA(t, x, u, k))
_

0.

C(E) is a viscosity supersolution of (DPE) at (t,x, u,k) e E if for any e
C(RN) such that (t,x,u,k) is a local minimum point ofl2- ) on E one has

-H (t, x, u, VA(t, x, u, k)) _> 0.

C(E) is a viscosity solution of (DPE) at (t,x,u,k) if it is both a viscosity
subsolution and a viscosity supersolution.

In order to state Theorem 4.1 below, let us introduce the domain

a [0, T) s } [0, )
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and the boundary’s subsets

(4.3)
OTf {T} x R’ x U x [0, K],
0’a 0a \ o a.

THEOREM 4.1 (dynamic programming equation and boundary conditions). Assume
either hypothesis (H2)c or hypothesis (H2)u. Then

a) P is a viscosity solution on f of the dynamic programming equation (DPE);
b) P satisfies

c) is a viscosity supersolution of (DPE) on O’f and at any point (T, x, u, k)
OTf such that Y(T,x, u, k) < (x, u).

Remark 4.1. Note that although the cone [0, +oo[x (TUC) (where TuU denotes
the contingent cone to U at u; see, e.g., [1]) could be considered the natural range
of the control’s derivative (t’, u[,..., urn), the minimum in (4.1) is searched over the
compact set S. This is due essentially to the bound on the variation of u and to the
possibility of replacing any space-time control with its canonical parametrization (see
the appendix). On the other hand, the positive homogenity of J-/in the variable (w0, w)

[0 callows us to use S" in the definition of H instead of .+
I(w0, w)l _< 1}. Actually by allowing the elements (w0, w, v) _= (0, 0, v) in the domain
of minimization of l-f, we would obtain an equation lacking uniqueness properties; see

5. As a direct consequence of having replaced the unbounded set [0, +oc) x (TUC)
with a compact set, we achieve the continuity of the Hamiltonian H. Incidentally we
observe that this approach presents some analogies with the one adopted by G. Barles
[5] in an infinite horizon problem.

Remark 4.2. The fact that the domain of minimization of (w0, w) is independent
of u is strictly related to the very definition of viscosity supersolution on a closed
set. Indeed it is well known (see, e.g., [40]) that the supersolution condition together
with the subsolution condition on the interior accounts for a constraint on the state
variables. Actually, in our case the situation is slightly different, since t the bound-
ary points we have an alternative between supersolution condition and an inequality
condition; a similar situation is encountered, e.g., in [2], [16], [24].

The proof of Theorem 4.1 will be based on the following dynamic programming
principle, whose proof is an obvious adaptation to the parameter-free extended prob-
lem (’P(,,a,)) of the standard reasonings which yield to the dynamic programming
principle in the ordinary case.

PROPOSITION 4.1 (dynamic programming principle). The value function has
the following properties:

i) For an initial condition (f, 2, fi, k) [0, T] xn x V x [0, K] and an admissible
control (t, u, v) FK_ ([, ), let y y[[, 2, t; t, u, v] be the corresponding trajectory of
the extended system (2.4), (2.5). Then the map

(4.5) s V(y(s), + V(u))
is nondecreasing.

ii) If in i) the control (t, u, v) is optimal, then the map (4.5). is constant.

Proof. Assume by contradiction that there exist s, s2, 0 _<: Sl < s: _< 1, and
s > 0 such that

(4.6) P(y(se), + V(u)) Y(y(s), + Y(u)) .
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By the definition off there is a space-time control (,
satisfying

([(=);,,1()) <_ v((), + y0 ()) +
Define the space-time control (, , ) by

(t, t, V)(81 - 28(82 81)),({, t, )(s)
({, , ) (2(s 1/2)),

and set ) y[y(81);{,t,)]. Note that (,,) e F:_(+v:())(t,u)(s)), for we have

vd() v?()+ vd() v? ()+ K- -V() K- ( +V ()).

Moreover, by the pargmeter-free character of the extended system (2.4)see Propo-
sition A.2we have

$(1/2) y(s),

9(1) y[y(s2); {, , ](1).

Hence, by (4.6) and (4.7), we obtain

v(v(), + v; ()) ((1)) (v[v(); , ,](1))
v(v(), + vg ()) + /2 v(v(), + vg ()) /2.

Since e > 0, this proves i).
To prove ii) it is enough to observe that whenever the control (t, u, v) is optimal,

on the basis of i) one has

V(,,, ) V(V(), + V()) (V(1)) V(,,, )
for every s [0, 1].

Proof of Theorem 4.1. We begin by proving that is a viscosity subsoluti0n
of (DPE) on . Fix a point (9,) ({,2,,) and consider a map
C(+n+m+l) such that P(9, ) A(9, ) and F- A has a local maximum at
Then

V(t, x, , ) (t, x, , ) V(t, x, , ) e a ((9, ), )
for a sufficiently small r > 0. Choose v V and w (w,..., w) B[0, 1] C,
where B[0, ] { e" }, nd st 0 -[. Sin < T,
and < K, there exists some e (0, 1) such that the control (t, u, v) defined by

(+ 0, +, v), e [0, ],
(t ’ )() (+0 + (T - 0)( )/( ), + w, v), e (, ],

is in FK_({ ). Then by the dynamic programming principle one has

(, ) V(9, ) V(V[,, ; t, , ](), +Vg()) (V[,, ; t, , ](), +V()),
provided 0 < s p, with p small enough. Dividing the last inequality by s one has

(4.S) (V[,,;t,,](), + Vg()) (, )
0

8



212 MONICA MOTTA AND FRANCO RAMPAZZO

for every s E (0, p]. Passing to the limit in (4.8) as s - 0+, we obtain

m

(v(. . . )+ v(... )0(. . . ))0 + v(...)(...)
i=1

+ v(,,, )w + v(,,, )wl o.

Since w and v are arbitrary in B[O, 1] C and V, respectively, it follows that

-H ({, 2, 5, VA({, 2, 5, ) 0.

Hence is a subsolution of (DPE) on .
Let us prove that is a supersolution of (DPE) on U 0 and at any point

(t,x,u,k) OT where P(t,x,u,k) < O(x,u). Let (,) ({,2,5,) and
consider a function A C(l+n+m+l) such that P- A has a local minimum on
at (, ) and (, ) A(, ). Then

v(t,x,., ) k (t,x,., ) v(t,x,, )e B((, ),)
for a sufficiently small r > 0. For any n e N {0} let (t,, Un, Vn) e FK_({, ) be a
space-time control such that the corresponding trajectory y satisfies

(4.) (.(1)) v(. )+ 1/n.
The dynamic programming principle yields

(n(). + Y("n)) ((). + Y(..)) (.) + 1/n (.) + 1/,
provided 0 < s p, with p small enough. By choosing s 1/n and dividing by 1/n
we obtain

/

(4.10 (,a(, + u(),t’,’,)e /
0

for every suciently large. Since it is not restrictive to assume that the controls
(t, n, v) coincide with their canonical parametriations, we have I(t’, ’)l(s)
V(t,) for almost every s [0,1]. Now if (9,) ao’a, o h U(t,l
V(t) T-{ > 0. Hence by the continuity--on the bounded setB((, , , ), r)--
of all the considered functions, there exists a map e R+ R+ such that lim e()
0 and

1/

o

min ({,,g, V(,,g,),w0 w,v) ds(4.11) nV(tn )
ev0 (o,es

Therefore, as n tends to infinity, one has-(, , , a(, , ,) 0,

i.e., V is a viscosity supersolution of (DPE) at (, , g, ).
Now let (9,) (T,, g,) 0a and observe that any space-time control

(t, , v) r(T, ) having components t(s),(s) coinciding with T,g, respectively, gives
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rise to the constant trajectory y (T, 2, ft). Hence thesis b) holds true by the very
definition of 12; in particular the condition

(4.12)

is equivalent to the optimality of any space-time control (t, u, v) with t(s) T and
u(s) =_ ft. On the contrary, if (4.4) is satisfied as a strict inequality, set

(4.13) ?] (2, ft) 2(T, 2, ft, ).
In order to show that 12 is a viscosity supersolution of (DPE) at (T, 2, ft, k) we claim
the existence of a sequence of controls (tn, un, v) (T, u, Vn) enjoying the following
properties" i) there exists two positive constants 5, such that

(4.14) Vo(U) >_ 5 Vn >_ ;

ii) the trajectories y y[f, 2, ; tn, un, vn] satisfy (4.9).
In order to prove this claim, assume by contradiction that for any minimizing

sequence ((T, u, v))eN whose corresponding solutions satisfy (4.9) and for any 5 >
0, > 0 there exists a n > such that

Then one can determine a subsequence, still denoted by ((T, u, v))N, such that
the corresponding trajectories y satisfy

IV()- (T,, )1-< I,((), ())I1,’()1 -< M’nVo() < M’,*.
i=1

Then, choosing 5 such that w(rnM’5) _< ?]/4, for any n _> 2/x/ we obtain

1/n2 < ?]/4.

These inequalities and (4.9) provide a contradiction, for

(I)(:, ft) ?]/2

Hence a sequence of controls (T, un, v) satisfying (4.14) exists, and the proof is com-
pleted by replacing T with 5 in (4.11).

We conclude this section by showing that (DPE) can be replaced by a quasi-
variational inequality. We point out that the latter can be regarded as a generalization
of the dynamic programming equation which was obtained in [8] in the special case
where rn is equal to 1, gl is independent of x and u, and C coincides with [0,
Set

(4.15) I(t,x, u,p) min{Hl(t,x, u,p),H2(t,x, u,p) },
where H1, H2 are defined by

H(t,x,u,p) min Po + pig(t,x,u,v)
vV

i=1
(4.16)

(t, x, u v)wj + Pn+jW
jmin p + pigjH2(t,x,u,p)

Il=,ec j=li---
j--1,,..,rn
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THEOREM 4.2 (dynamic programming equation in the form of quasi-variational
inequality). Assume either hypothesis (H2)c or hypothesis (H2)u. Then the follow-
ing hold:

a) ]; is a viscosity solution of

(DPE)(QVI)

on ;
b) ]; satisfies

-(t, x, , vv) 0,

(t, x, , ) < (x, u) v(t, x, u, k) Ov;

c) ; is a viscosity supersolution of (DPE)(QvI) on 0’ and at any point (t, x, u,
k) E OT such that ];(t,x, u, k) < O(x, u).

Proof. Since H(t, x, u, p) <_/(t, x, u, p) for all (t, x, u, p) E t Rl+n+m+l by the
fact that ; is a viscosity subsolution of (DPE) on t it follows straightforwardly that
; is a viscosity subsolution of (DPE)(QVI) on

Now suppose that either (, ) ([,2, , ) belongs to gt U 0’ or it belongs to
OT, and assume that ;(,2, ,) < (i)(2,). By Theorem 4.1 it follows that for
any A C(Rl+n+m+l) such that ;- has a local minimum on at (,) and
;(, k) A(, k), there is a pair (v, w) V Bm[O, 1] N C satisfying

(4.17)
m

(v(, )+ Vx(, )0(, , , ))0 + v(,)(,,,)
i=1

+ v(,) + v(, )lwl < 0,

where w0 v/i -Iwl 2. If w 0 or Iwl 1, then 2 is a supersolution of (DPE)(QvI).
Otherwise, i.e., if 0 < Iwl < 1, divide (4.17) by Iwl and observe that either the first term
or the sum of the remaining terms must be nonpositive. Hence 12 is a supersolution
of (DPE)(QVI).

Remark 4.3. Theorem 4.2 exhibits a certain analogy of the considered problem
with standard impulse control problems; see, e.g., [3], [8]. indeed the value functions
of the latter satisfy certain quasi-variational inequalities, which replace the usual Bell-
man equation. Actually, the dynamics considered in standard impulse theory can be
considered as the simplest case of the dynamics considered in this paper, namely, the
case where the vector fields gl,..., gm are constant. Yet the comparison between the
two approaches cannot be pushed further, for the two corresponding minimum prob-
lems are not equivalent. Instead, a more strict relation can be recognized between the
problems considered here and the questions adressed in E. N. Barron and R. Jensen’s
paper [6], where (nonimpulsive) controls (.) with bounded variation are considered.
Indeed by adding the trivial (impulsive) equation i the control system studied in
[6] will be reduced to the form considered in this paper.

5. Uniqueness of the solution of (DPE) and verification theorem. In this
section we prove a comparison result for viscosity solutions of (DPE). As a consequence
we obtain a uniqueness result and a verification theorem for the extended problem

P(,,,).
We assume hypothesis (H3) below on the boundary of U. Hypothesis (H3),

which excludes the presence of zero-amplitude corners in OU, is quite standard in
problems involving state constraints; see, e.g., [40].
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(H3) There exist a map E BUC(U,m) and two positive numbers q,r such
that

B (u + t(u), rt) C for u OU and 0 < t _< q.

THEOREM 5.1. Assume hypothesis (H3) and either (H2)c or (H2)u. Let
be a bounded continuous viscosity subsolution of (DPE) in which satisfies
(5.1) ]21 (t, x, u, k) <_ O(x, u) V(t, x, u, k) e OT.
Let 22 be a bounded continuous viscosity supersolution of (DPE) in U0 such that
for any (t, x, u, k) OT either 22 satisfies the inequality

(.2) v(t, x,

or it is a viscosity supersolution of (DPE).
Then

(5.3) 1 _<

Proof. For every (t,k) [0, T] [0, K] let us define the map Tt,k" I+ -- i by
setting

log r
Tt,k(r) l+t+k"

Let M be a lower bound for the maps (I), l;1, and 1;2, and let us set

Z(t,x,u,k) Tt,(1;(T t,x,u,K- k)- M + 1), 1,2,

(t, x, u, k) Tt,k(gP(x, u) M + 1).

Then, on the one hand, the map Z1 turns out to be a bounded continuous subsolution
of
(TDPE)

{ 1+t+kw0+ }z + (,o,m)x I(T t,x, , VZ,-VZ,-VZ, VZ, V, o,) 0

in Ft, where 7-t is the unminimized Hamiltonian defined in (4.2); moreover Z1 satisfies

z(t,x,,k) < (t,x,, )

on00t {0} InU [0, K].
On the other hand, Z2 is a bounded continuous supersolution of (TDPE) on

\00t. Furthermore, at each point (0, x, u, k) 00t, Z2 either satisfies the inequal-
ity Z(O,x, u,k) >_ (0, x,u,k) or is a viscosity supersolution of (TDPE). Hence, a
straightforward application of Theorem 1.1 in [2] implies that

Z

__
Z

on 2, which in turn yields the thesis.
THEOREM 5.2 (uniqueness). Assume hypothesis (H3) and either (H2)c or (H2)u.

Then the value function l; is the unique bounded continuous viscosity solution of (DPE)
on gt which satisfies the following boundary conditions:
(BC) 1; is a viscosity supersolution of (DPE) at all points of[0,T[n OU [0, K[
[0,T[ u
(BC)2 at each boundary point (T,x, u, k) one has ]2(T, x, u, k) <_ O(x, u) and, more-

over, either P is a supersolution of (DPE) or it satisfies the relation ]2(T, x, u, k)
(x,u).
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Remark 5.1. By using the same arguments as in the previous theorem a unique-
ness result for (DPE)(QVI) can be proved as well. Hence (DPE) and (DPE)(Qv)
turn out to be equivalent as soon as one assumes the boundary conditions (BC),
(BC)2 It is worthwhile comparing the latter conditions with the boundary condi-
tions of Dirichlet type assumed by Barron, Jensen, and Menaldi [8] in the particular
case when rn 1, u k E [0, K], gl is independent of (x,u), and C [0,+).
Barron-Jensen-Menaldi’s conditions can be stated as follows:

(BC)i the map Y coincides with the value function

hT(2,) inf (z[2,;u,v](1))
(T,u,v)eFK_(T,)

on the strip {T} xInx [0, K), where z[2, ; u, v](.) is the solution of the purely impulsive
(integrable) Cauchy problem

z’ (T,v(s))u’(s),
z(0)

(BC)2 the map 1; coincides with the value function

hg([, 2) inf (x[[, 2; vl(T), K)
vet([[,T],V)

on the strip [0, T) x ]1n X {K}, where x[[,2; v](.) is the solution of the nonimpulsive
Cauchy problem

ic go(t,x(t),K, v(t)),
z(t-)

In particular, in order to construct the maps hT and hK one needs solving a class of
auxiliary optimization problems whose difficulty is often comparable to the difficulty
of the original problem. Instead, conditions (BC), (BC)2 of Theorem 5.2 refer only
to equation (DPE) and to the known function (I) (see also the example in 7).

We conclude this section with a verification theorem, which incidentally provides
an answer--in the present, more general, framework--to the question posed by Barron,
Jensen, and Menaldi [8] (see the introduction, question b)) about the relationship
between optimal controls and dynamic programming equation.

THEOREM 5.3 (verification theorem). Let Z C() be a bounded viscosity sub-
solution of (DPE) in which satisfies the condition Z <_ on OT. Then

(5.5) z < on .
Moreover, if for a given (,2, t,k) there exists a space-time control (t, u, v)
FK_ (, t) such that

then the control (t, u, v) is optimal and

6. Costate, maximum principle, and gradient of the value function. In
ordinary control theory it is well known that the costate involved in the Pontryagin’s
maximum principle coincides--when no endpoint constraints are imposed--with the
gradient of the value function evaluated along an optimal trajectory. More generally,
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if the value function is not differentiable at some point, the costate belongs to the
supergradient of the value function; see, e.g., [7], [22].

It is clear that in order to prove an analogous result for an impulsive system we
need to understand the behaviour of the costate in the presence of spatial jumps of
the trajectory.

In the special case where m 1 and gl is independent of (x, u) (and C [0,
the question is posed as an open problem in [8] (see the introduction, question a)).
Since the problem with impulses has been reduced to a standard nonimpulsive control
problem, under hypothesis (H2)c and by simply applying standard arguments (see
[7], [22]), it is now easy to provide an answer to the above question in the general case
treated in the present paper.

Throughout this section we assume that the vector fields go,..., g, and the map
(I) are continuously differentiable with respect to the variables t, x and u.

We recall that the space-time Hamiltonian equations in the variables (y, k) and
(p, Pk) have the form

(6.1)
’ vn(,,p, t’, ,’, ),

’ vn(,,p, t’, ’, ),
p’ -Vy’H (y, p, pk, t’, u’, v)

t t V)Pk =--VkTE(y,p, pk,

where 7t is the unminimized Hamiltonian introduced in 4. In components we have

(6.2)

m

,o -(,, Vo x, v)t’) (,v (t, x, , )1,
j=l

m

p -(, Vo (t, x, , )t’) (p, Vx(t,x, , v)),
(6.3) j=l

Ep -(p, go(t,x, u, v)t’} (p, g(t,x, u, v)u},
j=l

p=0.

Note that (6.2) is nothing but the control system (2.4) supplemented with the equation

’= I’.
By saying that a control (t(.), u(.), v(.)) evolves instantaneously at a time [0, T]

we mean that the preimage t( is a nondegenerate interval [s,s2] on which the
component u(.) is not constant. Accordingly, one can compute the jumps at time
of both the state (y, k) and the costate (p, p) by solving the Hamiltonian equations
(6.2), (6.3)on the interval [Sl, s2].

In order to state a maximum principle for the extended problem P,z,,) in the
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unconstrained case defined by hypothesis (H2)c we recall that it is not restrictive
to assume that the norm of the derivative (’(s), ’(s)) is equal to the constant value

Vol (, t)= fo (’(s), t’(s))lds almost everywhere in [0, 1]; see the appendix.
THEOREM 6.1 (maximum principle). Let us assume (H2)c, i.e., U ’. Fix

(, 2, , ) E [0, T] In+m [0, K] and let (, , )) be an optimal control for the extended
problem 7)e with I(’ t’)l L almost everywhere in [0 1] for some positive con-(,,,),
stant L. Moreover denote the corresponding optimal trajectory by (), k)= (,2, , ).

Then there exists a costate map (15,i5k) (iSo,iSx,15u,15k): [0, 1] l+n+n+l such
that

i) (),k,15,iSk) is a solution of the Hamiltonian equations (6.1) corresponding to
the control (, , ) and satisfies the boundary conditions

(i(o),
(6.4) iSx(1) Vx(I)(2(1), t(1)), 15(1) V(I)(2(1), 5(1)),

H(T, 2(1), 5(1),iSo(1),iSx(1),iS,(1),iSk(1)) 0,

where the Hamiltonian H is defined as in 2;
ii) the minimum relation

H

holds for almost every s [0, 1], and the equality

(6.6) H ((s), 2(s), t(s),o(s),x(S),(s),k(s)) 0

holds for all s [0, 1];
iii) if t verifies V (t) < K- , one has k 0 identically on [0, 1].
This theorem, whose proof will be given after the statement of Theorem 6.2, is a

straightforward consequence of the Pontryagin maximum principle when the latter is
applied to the extended (nonimpulsive) control problem.

We point out that in the case when the fields g are independent of (x, u), some
versions of the maximum principle already exist in the literature; see, e.g., [33], [36],
[38], [42]. What is more, up to some formal changes a maximum principle for the
general case considered here can be already found in [31]. Yet since our main goal is
to establish a relationship between the costate and the value function, we prefer to give
here a statement and a proof of the maximum principle in the theoretical framework
introduced in the previous sections.

In order to state a relationship between the costate and the value function let us
introduce the family of maps defined by

,)t,k in+m ]1, (t, k) e [0, T] X [0, K],
"- e

Moreover, let us recall the definition of superdifferential of a continuous map.
DEFINITION 6.1. Let f be a function in C(IN). Then for every x ]1y the

subset V+f(x) c l[N defined by

V+f(x) {p IN lim sup f(y) f(x) (p y-x}
.y-x. <_0
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is called the superdifferential of f at x.
In the statement of the following theorem ({,,, ) and (/5,iOk)= (i50,15x,ibu,lbk)

have the same meaning as in Theorem 6.1.
THEOREM 6.2 (costate and value function). For every s E [0, 1] one has

(6.7) ((),.()) v+v(),() ((), ()).
Proof of Theorem 6.1. This theorem follows straightforwardly from the Pontrya-

gin maximum principle for nonimpulsive control systems. Indeed, thanks to the fact
that we can restrict the family of controls to the subfamily formed by canonically
parametrized control strategies, a control ({, t, 3) is optimal for problem 7),,,) if

and only if the control (b0, b, 3") (’, t’, ) is optimal for the following ordinary
control problem with endpoint constraints:

minimize (I)(z[[, 2, g, ; w0, w, v] (1))
over the trajectories (z[[, 2, g, k; (w0, w, v)](.) of

m

z’= O0(z(), ())0 + 0(z(), ())(),
i=1

((0), (0)) (, , , ),

satisfying the endpoint constraints

z0(1) T, z(1) < K

and corresponding to measurable control maps (w0, w, v) from [0, 1] into

{ (0, , ) e [0, +) c v. I(0, )1 -< r +/}.
By applying the Pontryagin’s maximum principle (see [26]) to this problem we obtain
a statement which is equivalent to Theorem 6.1 except that relation (6.5) must be
replaced by
(6.8)

( ’(s) ’(s), ())TI (s),2c(s),t(s),Do(S),p=(s),u(s),p(s),
L ,----

min { ((s),2(s), t(s),o(s),z(s),(s),(s), wo, w, v) },
(o,,)B;+ [--

where

Brn++ T,+Kl’(wo]( w)[O,+oo)C" I(o
J l

On the other hand, since I(’(s),g’(s))l L almost everywhere, in the minimum

relation (6.8) one can replace B+1 [_Z___] with the set S. Hence (6.8) reduces to
(6.5), and the theorem is proved.

We observe that the proof of Theorem 6.2 cannot be derived directly from analo-
gous results concerning nonimpulsive systems. Indeed, to our knowledge these results
concern problems without endpoint constraints, while the trajectories of system (6.2)
are subject to

() T, ()_< C.
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However, since the coordinates (2(1), t(1)) are not constrained, the arguments we use
to prove Theorem 6.2 are substantially the same as the ones used in the nonimpulsive
case without endpoint constraints; see, e.g., [7], [22].

Proof of Theorem 6.2. By the definition of optimal trajectory there exists a mea-
surable map such that the solution corresponding to the space-time control (, , )
coincides with the optimal trajectory (,2, , ). Let s* E [0, 1] and for every initial
point (2, ) E IR IRm define the control map

Next consider the cost functional

J(2, fi) (2[:, fi](1), fi(1)),

where 215:, ](.) denotes the solution on the interval [s*, 1] of the Cauchy problem

m

x’ +
i--1

Up to a reparametrization from the interval Is*, 1] into the standard interval [0, 1], the
control (,, ))" [s*, 1] --+ ]Rl+m V is feasible for the initial point ((s*), 2, , :(s*)).
Hence one has

for every (2, ) n+m, and, by the optimality of (, , (C)),

J(2(s*), fi(s*)) Y(s*)’(8.) (2(s*), (s*)).

Therefore by the definition of superdifferential of ]fi(8*),&(s*) it is sufficient to prove
that J(2,)is differentiable at (2(s*),(s*))and satisfies

(6.9) (px(s*),pu(s*)) V,J (2(s*), t(s*)).

By standard computations involving the differentiability of the solutions of (6.2) with
respect to the initial data we obtain

(6.10) V,J (&(s*), t(s*)) (Vx,(I) (2(1), t(1)) Z(1)/,

where the (n + rn) (n + rn) matrix Z(.) is the solution in Is*, 1] of the variational
Cauchy problem
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Since (iSx, 5) coincides with the unique solution to the adjoint Cauchy problem

one has
d

0
ds

on the whole interval Is*, 1], from which it follows that

(iOx(s*),i0(s*)) ((p(s*),.(s*)),Id} {V,., (&(s*), t(s*)) ,Z(1)}.

The latter equality and (6.10) yield (6.9), and the theorem is proved.

7. Example. We apply the results proved in the previous sections to a simple
minimum problem. In particular we check the optimality of a certain feedback control
by showing that the corresponding cost function satisfies equation (DPE) and the
boundary conditions (BC), (BC).

Let T, K, and c be positive constants, and for any ([, 2, k) E [0, T) [0, K]
consider the minimum problem:

(P(,,)) minimize arctan (x(T))
over all the endpoints of the trajectories of

C - tl (t) - X/t2(t Vte (-, T],
x(t-)

corresponding to the absolutely continuous controls (tl, t2) satisfying vt-T(u, u2) _<
K- . Moreover assume that the derivatives (/tl,/t2) belong (for a.e. t [, T]) to the
closed cone

C {(Wl,W2) ]12 Wl 0, w2 0}.
Following 2, let us consider the extended system relative to (7.1), (7.2)"

(7.3)
x’ =.ct’(s) + u(s) + xu2(s) Vs e [0, 1],

(t,x)(0) (,2), (u,u2)(s) e C for a.e. s e [0, 1].

The form of the equation in (7.3) implies that the optimal solution of problem 7)(,,)
wand hence the value function -- is independent of the initial values ul (t-) and u2(t-)
of the controls. Moreover, by the definition of space-time control one has t (s) _> 0 for
a.e. s [0, 1]. Since both/tl and x/t2 are negative whenever x is negative, heuristics
suggests the following strategy: at the initial time let the state jump to the minimum x
reachable by spending all the available variation K-. After the jump set/1 0 =_ 2
and let the state evolve in time (with constant derivative equal to c). The maximum
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principle (6.5) yields

-(K + T t-)(1 + x2)-/2(0, 1,x)(
(7.4) -(K- } + T- t-)(0, 1, 0)

( (K + T- t-)(1,0,0)

if x<0,
K-if x >_ 0, s [0, ’R:’+T:]’

if x>0 s[ K- 1]’K"i.’_T_2’

as a control candidate to be optimal. Accordingly, for each initial condition ({, 2, k)
the corresponding terminal position &(T; , 2, }) is given by

sinh(arc sinh(2) (K )) + c(T t-), 2 <_ 0, 0 _< } _< K,
sinh(2-(K-))+c(T-t-), 2>0, 2+<K, O<[<K,
2-(K-)+c(T-t-), 2>0, 2+>_K, 0_<_<K,

so that the resulting cost is given by 12(,2, ) arctan(?(T;,2, )). We claim that
I;(t,x, k) is the optimal cost; i.e., it coincides with the value function of problem
P(t,x,k). Since 1; is continuously differentiable on f (0, T) II (0, K), on the basis
of the uniqueness of Theorem 5.2 it is sufficient to verify that i) 1 is a classical solution
on ft of (DPE) equation
(7.5)

min{(VtV + VzPc)wo + VzV(wl + xw2) + Vk/w +w (Wo, Wl,W2) e S2 }
ii) 1; is a viscosity supersolution of (DPE) on Oft \ ({T} ]R {K}) and satisfies

(7.6)

Relations (7.5) and (7.6) can be checked by means of straightforward calculations.
Hence it only remains to check the supersolution inequality for every (t,x, k) Ot \
({T} x {K}). If A e C() is a map such that %;- A has a local minimum at
(t,x, k), then it satisfies the following relations:

Vt(t,x,k) > Vt]2(t,x,k), (V,Vk)(t,x,k) (V]2, Vk]2)(t,x,k) ift=T

and

VkA(t, x, k) >_ VkY(t, x, k), (VtA, VzA)(t, x, k) (VtY, VzY)(t, x, k) if k K.

Moreover observe that relation (7.5) holds at any (t,x, k) E Oft \ ({T} x N x {K})
and the minimum in the right-hand side of (7.5) is achieved by a vector (0, 1, 2)
verifying 0 0 if t T and (1, 2) 0 if k K. It follows that

+ 0 on cga \ ({T} x N x {K}).
Hence ]2 is a viscosity supersolution on Oft \ ({T} x N x {K}), so we can conclude that
2 coincides with the value function of problem P(t,x,k) V(t,x, k) f. In particular
the controls (7.4) are optimal.

Appendix.
Canonical parametrizations. We recall the notion of canonical parametrization

from [32]. For this purpose, if (t, u) is not identically constant let us introduce the
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map a from [0, 1] onto itself defined by

V(t, u) f I(t’, u’)lds

If (t, u) is constant on the whole interval [0, 1], we set

If (t, u) is not constant, we set

(D) (tc, u, v)(a) "- (t, u, v)(s), r r(s).

In principle (D) defines a multivalued map. Yet (tc, uc) turns out to be univalued, while
vc is uniquely determined almost everywhere. More precisely we have the following
proposition.

PROPOSITION A.1. The relation (D) defines a Lipschitz-continuous map (t, u)
on [0, 1], and the derivative (tc’, uC’), which exists almost everywhere, has constant
norm equal to V(t, u). Moreover (D) defines a univalued Borel-measurable map vc

almost everywhere in [0, 1].
Thanks to Proposition 1 we can give the notion of canonical parametrization.
DEFINITION A.1. The space-time control (tC, uC, v) defined by relation (D) is

called the canonical parametrization of (t, u, v).
DEFINITION A.2. Let (tl,ul,vl), (t2,u2,v2) be two space-time controls and let

(t, u, v), (t, u, v) be the corresponding canonical parametrizations. The space-time
control (tl, ul, vl) is called equivalent to (t2, u2, v.) if (t, u)(s) (t, u)(s) Vs e
[0, 1] and v(s) v(s) for almost every s in [0, 1].

Proposition A.2 below illustrates the relationship between the trajectory y[t, u, v]
corresponding to a space-time control (t, u, v) and the trajectory y[t, u, vc] corre-
sponding to the canonical parametrization (tc, u, vc) of (t, u, v).

PROPOSITION A.2. Fix the initial condition y(O) (tl,xl, ul). Then the trajec-
tories y[t, u, v], y[t, u, v] satisfy the relation

for every E [0, 1].
A pseudometric for space-time controls. The notion of canonical paramet-

rization allows us to introduce a pseudometric 5 on the space F(, fi) of space-time
controls. For every two space-time controls (tl, ul, vl), (t2, u2, v2) let us set

(c((tl, 1, Vl) (t2 ?22 V2)) [[(tcl 72c 1) (tc2 uc2)II + IIV V]]I

where I1" and I1" II1 denote the CO norm and the L norm, respectively. In particular
two space-time controls have 5c pseudodistance equal to zero if and only if they are
equivalent, so 5 induces a metric on the quotient space.

The following density result was proved in [32].
PROPOSITION A.3. Any set F/_(, ) of regular controls is dense, in the topol-

ogy induced by 5, in the corresponding set FK_(- ) of space-time controls.

Acknowledgments. The authors wish to thank Martino Bardi and Pierpaolo
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ASYMPTOTIC STABILITY OF THE OPTIMAL FILTER WITH
RESPECT TO ITS INITIAL CONDITION*

DANIEL OCONE AND ETIENNE PARDOUX$

Abstract. Consider the problem of estimation of a diffusion signal observed in additive white
noise. If the solution to the filtering equations, initialized with an incorrect prior distribution,
approaches the true conditional distribution asymptotically in time, then the filter is said to be
asymptotically stable with respect to perturbations of the initial condition. This paper presents
asymptotic stability results for linear filtering problems and for signals with limiting ergodic behavior.
For the linear case, stability of the Riccati equation of Kalman filtering is used to derive almost sure
asymptotic stability of linear filters for possibly non-Gaussian initial conditions. In the nonlinear
case, asymptotic stability in a weak convergence sense is shown for filters of signal diffusions which
converge in law to an invariant distribution.

Key words, nonlinear filtering, asymptotic stability, ergodicity in filtering, forgetting of initial
conditions
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1. Introduction. Let X (Xt)t>_0 be a Markov process taking values in Id, W
be an lRP-valued Brownian motion independent of X, and h be a function h IRd Ip,
and set

(1) Yt h(Xs) ds + Wt, t > O.

Supposing that we can observe only Y but wish to know X, we would like to compute
the conditional distribution

77t(A)

of Xt given J;t cr{Ysl0 _< s _< t}. This is the classical problem of filtering a signal in
independent, additive white noise, and we shall call 77t the exact filter.

The computation of (77t)t>_O is Bayesian in character. Let 770 denote the distribu-
tion of Xo. Knowledge of 770 and the transition probability laws of X fixes the prior
law of X, while 77t is the a posteriori law of Xt based on observing {Y, s < t}. In this
paper, we discuss the sensitivity of the calculation of 77t to errors in the choice of 770.
Suppose that we mistakenly think that another probability measure 0 770 is the
initial distribution and that we compute a corresponding filter t using this erroneous
prior. We want to know how well the erroneous filter t will perform as the time t
gets large. In particular, it is interesting to find conditions under which

t 77t tends to zero in some sense as t -- oc.

In other words, for large time intervals, the strength of the observations, or the ergodic
properties of X itself, correct for erroneous initial conditions in the computation of
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a posteriori distributions. We shall describe a situation in which a property like (2)
holds by saying that the filter is asymptotically stable with respect to perturbations of
the initial conditions. Of course, this is not a mathematically precise definition, and
we shall use the term asymptotically stable only in this heuristic sense. The precise
sense of convergence that can be achieved in (2) will depend on the filtering model
and the techniques used.

The Kushner-Stratonovich equation provides a dynamical system interpretation
of our stability question. Let L denote the infinitesimal generator of X, and for a
measure # on ]d and " ]d ], let #() f (x) d#(x). Let P(]t{d) denote the
space of probability measures on ]Rd. Then, given a probability measure on Id, a
process (pt)t>o taking values in 7)(IRd) satisfies the Kushner-Stratonovich equation
with initial condition if (pt)t>o is adapted to Y and if it satisfies

(3)

.()+ f0 p(L) ds + fot
V E Domain (L).

[ps(h) p(h)ps()] [dY p(h)ds]

When 0 is the initial distribution of X, (t)t>_o will be the unique solution of (3)
with initial condition 0 once appropriate regularity assumptions are satisfied (see
[9]). Given an erroneous initial condition 0, the erroneous filter t is the solution of
(3) with initial condition 0. Asymptotic stability means roughly that the solution of
(3) forgets its initial condition and acquires an asymptotic behavior determined solely
by the observation process Y and the generator L.

When X satisfies a linear stochastic differential equation with a Gaussian initial
law and h is linear, the Kalman filtering equations compute the exact filter 7t. The
study of the asymptotic stability of the Kalman filter has been of course a central
feature of Kalman filtering theory from its inception (Kalman and Bucy [6]), and
the insensitivity of Kalman filters to initial conditions, given simple controllability
and detectability assumptions on the signal-observation dynamics, is of fundamental
applied importance. (See Kwakernaak and Sivan [10] for an expository treatment; we
don’t even try to reference the huge technical literature on this point.) Usually, this
stability is stated in terms of stability in law; that is, the erroneous filter t performs
as well in the limit as the exact filter and has the same limiting law. It is interesting
to note that these results do not require asymptotic ergodic behavior of the signal
itself, which may be transient.

Beyond the linear case, general qualitative results on asymptotic filter stability
with respect to initial condition perturbation are few. Stettner [15] provides conditions
under which the process (t, Xt)t>_o is ergodic, from which strong stability properties
in the sense of (2) follow immediately, in the special case of a discrete-time, discrete-
state-space model. Delyon and Zeitouni [2] prove almost sure (a.s.) exponential decay
of the total variation IIrt- tll for filtering an ergodic, finite-state, continuous-time
Markov chain whose observations are sufficiently rich. Closely related and, as we shall
see, very relevant studies have been carried out by Kunita [7], [8] and Stettner [14] on
the behavior of filters when the Markov transition semigroup of the signal is ergodic
so that the signal itself forgets its initial conditions. Roughly, they show that when
the signal converges in law to an invariant measure independent of the initial law,
the exact filter (7t)t>_O inherits a similar property. Namely, (71t)t_>0, itself a Markov
process with state space 7)(Fd), will also converge in law to an invariant distribution
M 7)(7)(d)), where M is independent of the initial distribution. The filter
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computed with an incorrect initial condition is not a Markov process, but the pair
(Nt, Xt)t>_o is.

This paper presents several results on the asymptotic stability question. The
purpose of 2 is to state the strongest possible results in the case of linear system and
observation dynamics so as to establish a standard for evaluating progress in nonlinear
problems. The results of 2 seem largely known, but it is difficult to find the precise
statements we make, and so we have provided proofs. In particular, we emphasize the
a.s. weak convergence of Nt rt to 0 and the case of non-Gaussian initial conditions,
handled by Makowski’s [11] reference probability transformation technique. Makowski
and Sowers [12] state discrete-time versions of this result. Delyon and Zeitouni [2]
also derive a.s. convergence results using Lyapunov exponent techniques.

In 3, we study the ergodi’c case of Kunita and Stettner. We show that when the
signal tends in law to a unique invariant measure independent of the initial law and
when r0 << N0, then

lim E[g’t() rt()]- 0
t--+ cx

for any bounded continuous . Briefly, the Stettner-Kunita theory allows one to
choose time lengths T so that the conditional expectation

E[(Xt) / Ys Yt-T t-- T <_ s <_ t],

based on the observation of Y for the past T units of time, approximates rt() to
within arbitrary accuracy, uniformly in t, and similarly for 9t(). These approxima-
tions depend only on the observations and on the prior distribution of Xt-T under r0
and -5, respectively. Since Xt-T converges to an invariant distribution independent
of r0 or N0 as t --. oc, filter stability follows.

Roughly paraphrased, the result of 3 says that if the signal forgets its initial
condition, then so does the filter. But we know from the linear case that ergodicity
of the signal is not necessary for asymptotic filter stability. In future-work we hope
to obtain asymptotic filter stability with respect to initial condition perturbations for
signals which have nonlinear dynamics and are not necessarily ergodic.

2. Asymptotic stability of the time-invariant Kalman filter. In this sec-
tion we shall study the filtering problem defined by the linear system

(4) dXt BXt dt + FdVt + GdYt,

dYt HXt dt + dWt, Yo =O,

where B E ][dxd, F ]ldxq, ]Idxp, H ]pxd, and V and W are independent
standard Brownian motions taking values in Rq and Rp, respectively. X0 is assumed
to be a random vector independent of (V, W). Throughout, we shall let )t denote
the conditional expectation E[Xt/Yt], where Yt a{Ys, 0 <_ s <_ t}.

We shall let (Z’R, PtR) denote the solution to the Kalman filtering equations
initialized at (z, R), where z Nd and R is a symmetric, nonnegative definite, d x d
matrix:

(6)
dZ:’R BZ:’R dt + CdYt + PtRH*[dYt HZ:’R dt],
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t7}

If Xo is normal with mean o and variance Ro,

t Z’, po E[(Xt_
as is well known.

We shall be concerned with the asymptotic behavior of t Z[’n as t , given
an arbitrary, square-integrable, initial state X0. The study of the asymptotic stability
of the Kalman filtering equations (6)-(7) is classical and dates to the origins of the
Kalman filter theory. Here we shall state a few complements to the theory relating to
the question of a.s. convergence of filters. These seem essentially known, but we have
not found a good reference, especially in the case of non-Gaussian initial conditions
for continuous-time problems.

The classical stability theory introduces the fundamental assumption"

There exists a solution P 0 to the Mgebraic Riccati equation

(8) 0- BP + PB* + FF* PH*HP
such that B- PH*H is asymptoically stable.

Remark 2.1. If (8) holds and if P + P as + , hen

(9) P + P as + exponentially fast.

In fac, for any 0 < < inf{-ReA A is an eigenvalue of B- PH*H}, there is
constant K such

IIP- Pll Ke-t.
The last face can be proved by observing

(P P) [B 1/2(P + P)H*H](P P)
d

+(P)- x/u(Py +
and carrying out an analysis similar to Chat proving (16) in Che proof of Theorem 2.3.

The virtue of (8) is ha here is a well-known and simple sufficient condiion for
(8) o hold (see Kwakernaak and Sivan [10]), and it has srong consequences.

LEMMA 2.2. If (B,H) i8 defec6/e 6d (BF) i8 8giliz6le fe (8) olds
P is the unique nonne9ative definite solution o the al9ebraic Riccati equation, and

P P emponentiall fast for an initial condition P R O.
Proof. Kwakernaak and Sivan [10, Thm. 4.11] may be referred o for he unique-

ness of P and the convergence of P + . The exponential speed of convergence
is shown above.

Some classical stability sCaements ha follow from his result are as follows.
(a) If (B, H) is deecable, (B, F) is sCabilizable, and X0 is normal with mean z

and variance 0, he stead state filter Z’P is asymptotically optimal in the sense
that

lim E[(Xt Z’g )* (Xt Z’P )]

lira E[(Xt t)* (Xt t)] tr P.
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(b) If, again, (B, H) is detectable and (B, F) is stabilizable but the initial distri-
bution o of X0 is arbitrary, then

(10) Zt’R Xt converges weakly to N(0, P),

where N(0, P) denotes the normal law on d with mean 0 and covariance matrix
P. See Vintner [16] for a proof of (10) in an infinite-dimensional state space.

We shall state here some a.s. limit theorems. The first is a rather immediate
consequence of condition (8) and Remark 2.1. Define the constant A min{-ReAIA
is an eigenvalue of B- PH*H}; condition (8) implies that A > 0.

THEOREM 2.3. Assume (8). Let Xo be normal with mean mo and covariance Ro.
Let R1 >_ O, and assume

(11) lim PtR P lim Pt

Then for any z E ]1d and any 0 < a <

(12) lim (’t- z’R1)et 0 almost surely.
t---*o

Proof. Recall that t Z’R and that PtR is the error covariance of the
optimal filter. For simplicity of notation, set Pt PtR, Pt PtR1 and Zt Z’nl

Let dut dYt HXt dt define the innovations process, which is a Brownian motion,
and observe that

(13) d2t Bf(t dt + GdYt + PtH*dut, 20 too.

From equation (6) for gt and from (13)

d f( Z B PtlH*H f( Z dt + Pt Pt g du

(14) 2o Zo m0 z.

Let (t) E Rdd be the state transition matrix associated with B- PtH*H; that is,

(15) (t) (B- PtH*H) O(t), ((0) I.

The proof of Theorem 2.3 is a consequence of the following facts: for every 0 < cr <
there exist an Ma < oc and a t < oc such that

(16) IlO(t) O-(s)l <_ Mze-(t-s) for t > s _> t,

and

(17) IIPt -Pt Me-at for all t.

We have already seen (17) in Remark 2.1. (16) is very natural in view of the fact that
B PtH*H B PH*H as t oc, and we return to its proof in a moment.

Now from (14) we have

(8) 2t Zt (t)(mo z)q ((t) (I)-l(8)[Ps0 pls]H* du,.
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Clearly (16) implies

(19) lim eat (t)(mo- z) 0 if

Because is Brownian, if a < A there is a constant Ka < c such that

2

E ((t)(-l(s)[Ps PslH*

tr [(t)-l(s)[Ps PsI] H*H [pO pls] -(s)*(t)*] ds

< K e-2t

where we have used (16) and (17) to derive the last estimate. Also, (19) and (20)
show that for any 0 < a < , there is a K such that

(21) E[{2t- Ztl 2] _< K e-2.

By applying the Borel-Cantelli lemma to (n Zn and

sup
n<t<n+l

we obtain from (21) that

lim I.t- Ztl eat 0 almost surely

for any 0 < a < i, which was to be proved.
Finally, we consider (16). This is a consequence of the estimate

lie(t) -1(s)11 <_ M e-z(t-s)

for the solution to (t) A(t)(t), (0) I, where

Ile (t) ll <_ Ke Vt >_ 0, W >_ 0,

II i(t)ll _< 5

and 0 </ 7-(hK log K)/, M K; see Harris and Miles [5, Thm. 5.10, p. 146].
Apply this to A(t) B- Pt H*H, using the fact/bt -, 0 as t - x and the fact that
the eigenvMues of B- Pt H*H will have real parts less than -a for all large enough
t, to derive (16). []

We can deduce from Theorem 2.3 a statement about the convergence of proba-
bility measures. For a vector rn and matrix Q >_ 0 let N(m, Q) denote the Gaussian
distribution with mean rn and covariance Q. We shall write

/ (x) N(m, Q)(dx).N(m,

In the context of Theorem 2.3, if X0 has the distribution N(m0, Ro), then t
N(f(t, PtR) is the conditional distribution of Xt given J;t. On the other hand

r "= N Z: R1 PtR1
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would be the conditional distribution that we would think we were getting if we
had started with the wrong initial conditions z and R1. t solves the Kushner-
Stratonovich equation for the conditional distribution starting from the initial condi-
tion N(z, R1).

For a continuous function f on d, let

IIfIIBL :-- sup If(x)l +
x

sup Ix- y]-]f(x)
x,yEd

and define the metric

f (d#-dv) llf]l.L <-- l }
on T’(Id). It is well known that /3 metrizes the topology of weak convergence on
P(Id). It is easy to prove the following lemma.

LEMMA 2.4. If rnt rn -- 0 as t oc and if tli_,m Qt Q t-lim Q, then

lim IIN(mt Qt) N( t, Qt)IIBL O.

Theorem 2.3 and Lemma 2.4 immediately imply the following.
COROLLARY 2.5. Let the assumptions of Theorem 2.3 hold. Then

lim IIt- tllBL 0 almost surely,

where t N(2t, PtR) and t N(Z:’R1 Ptnl).
We next want to present a similar result for the case in which the initial condition

X0 is not Gaussian. A discrete time version of this result may be found in Sowers
[13] and Makowski and Sowers [12]. We shall present the convergence result under
the assumption

(22) (B, H) is detectable and (B, F) is stabilizable.

THEOREM 2.6. Let (X, Y) denote the solution of (4)-(5). Assume that (22) holds
and E[IX0] 2] < . Then

(23) lim f(t Z:’R 0 almost surely,
t---c

and in the L2 sense for any z E Id, R

_
O. Moreover, if rt denotes the conditional

distribution of Xt given

(24) lim 7t()- N(Zz’Rt PtR)() 0 almost surely
t---c

for every bounded, uniformly continuous .
Proof. The proof uses a formula, due to Makowski [11] and Bene and Karatzas

[1], which expresses the optimal filter for a linear system with non-Gaussian initial
conditions in terms of the solution to a Kalman filtering equation. The idea is to
decompose the signal X as

(25) Xt eBt Xo + t,
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where

-t eB(t-s) FdV + eB(t-s)GdY,

and to introduce the new measure IP defined by

dIpd [T lfo:rxp o -//-/x’ e/-

Then on (at, IP)

Wt := HeBSXo ds + Wt, t <_ T,

is a Brownian motion, and X0 is independent of (Vt, t)t_T. Moreover

Ip(Xo A)= Ip(Xo A)

for all Bore1 A (i.e., the law of Xo remains unchanged).
Let

i/o 1/o Lt := exp (HeBXo, dW - IHeBXo[ ds

dip(note that L d)" Then for any nonneggtive measurable function 0 of (X0,t)
(or equivalently of (Xo, Xt))

(e6) E[0(Xo, X)/Y] E[0(Xo, X)L/y]
E[nt/t]

om the above formula for Xt and the fact that Xo and (W, Y) are -independent,
both the numerator and the denominator may be expressed by an integral involving
the Kalman filter for the process (Xt, Wt), given , whose equations we now write.
Let (Zt, P) denote the solution of (6)-(7) with initial conditions (Zo, P) (0, 0).
Define (St, Qt, Mr) and Zt by the equations

BSt PH*H(ere+St), So=0,

(27) (t -eB*tH*HSt SH*HeBt SH*HSt, Qo O,

lt eB* H*HeBt, Mo=0, and

(28) dZ-t (eBt + St)*H* (dYt HZt dt), o O.

We then have that

(29)

-E[O(Xo, -Zt)Lt/Yt] 7ro(dx) e-1/2(Mtx’x) { jfd 2d
0(x, r)e(’’:)nt(dr, dr2)},
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where nt is the Gauss measure with mean

and covariance

Note that

(30)

(31)

Thus

f
ei(’r)+i(’r:)+(x’r) nt(dr dr2)

i(A,Zt)q--i(tt-ix, Z"’t) X (-1/2 (Ct( t_ix ),( t_ix ))

t(drl, dr2) "= e-I/2(Q‘x’x)-(x’Z‘) e(x’r2)nt(drl, dr2)

is the normal distribution with mean

Qt )x
and variance Ct since it has the correct characteristic functional by (30) For each t,
let Ut denote a N(0, Pt) random variable. Then by (26) and (29)

E[o(X)/yt] E[V(e’tx +
(32)

f rco(dx)e1/2((Qt-Mt)x’x)+(x’Zt) f 99(eBtx -{- r)gt(dr,dr2)

f 7ro(dx)

f rco(dx) e/:<(Q-M)’x>+<’Z> E[p(Zt + (eBt + St)x + Ut)]

f 7ro(dx) e1/2((Qt-Mt)x’x)+(x’Zt)

In the case o(x) x, (32) gives

(33) 2 z + E[(" + S)Xo/Y].

Note that

d
--7--(era + St) (F- PtH*H)(eBe + St)
dt

as follows directly from equation (27) for St. Thus eBt + St is the state transition
matrix for B- PtH*H. Since p0 p where B- PH*H, the same argument as
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in the proof of Theorem 2.3 (see (16)) shows that for any 0 < r </ min{IReAI A
is an eigenvalue of B- PH*H} there exists M such that

(34) II(B + SDII _< M-.
Furthermore E[Xo]t] is a square-integrable martingale, and hence its sample paths
are bounded. Thus it follows easily from (33) and (34) that

(35) lim t- Zt’ 0 almost surely and in L.
(Recall Zt Zt’.) To complete the proof of (23) it only remains to show that

(36) lim Zt Z[’R 0 almost surely
t--c

and in the L2-sense for any z E R and R _> 0. To do this, we apply the argument of
Theorem 2.3 to

d(Zt Z[’R) (B- PtRH*H)(Zt Z[’R) dt + (Pt PtR)H

+(Pt PtR)H*H(f(t- Zt) dr,

where is the innovations process, ’t Yt f Hf(s ds. The details are completely
analogous, and we omit them. We remark that (35) is used to handle the effect of the
third term in (36).

Finally we consider the proof (24). Because of (25) and Lemma 2.4 it suffices to
prove

(38) lim rt() Nt(Zt, Pt)() 0 almost surely

for any bounded, uniformly continuous . By (32) and the definition of Ut.

(39)
() N(Z,, pO )()

f o(x)[/<(,-M),x>+<,z>] E[(Z + U) (Z + U + (’ + S)x)]
f ro (dx) exp[l/2((Qt Mt)x,x) + <x, Zt)]

Decompose the integral in the numerator into the sum of the integral over the region
](eBt + St)x < and the integral over the region I(eBt + St)xl >_ . Then from (38)

I() N,(Z,, P)()l sup ()- {(’)

+ 21111 E{l{l(+s)XoleIlYt}
< sup I(y)-(y’)]+2l eBt 2 12-ty_y,< 2 +Stll E[lX0 lYt].

By first letting t oc and then using uniform continuity, we arrive at (38) and thus
complete the proof.

Remark 2.7. By being a bit more careful, we can prove, as in Theorem 2.3, that

lim et[2t- Z’hI 0 almost surely
cx

for any 0 < cr < under the hypotheses of Theorem 2.6.
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3. Stability in the case of signal ergodicity. In this section, we prove stabil-
ity of filters for a class of signals which themselves forget their initial condition in the
sense that they converge in law to a unique invariant measure. A result of Stettner
[14] and Kunita [7] shows that the conditional distribution (Trt)t>_O inherits a similar
ergodic property, and we use this to obtain stability.

3.1. Filtering model. Rather than model the signal X directly by a stochas-
tic differential equation, we begin more abstractly with a locally compact, complete
separable metric space E and a Markov semigroup (St)t>_o on Cb(E) specifying the
transition laws of X. (Note that St was used in the previous section to denote part
of a covariance matrix; we change that notation from here on.) More precisely, we
suppose throughout that (St)t_>0.is a strongly continuous, positive, and conservative
(St i 1) contraction semigroup on Cb(E). We shall assume that Markov processes
associated to (ct)t>_o admit c/dlg sample paths. That is, if X denotes the canonical
process on the Skorohod space D([0, oc)" E), we suppose that for each z E E there
is a probability measure Px on D([0, oc)" E) for which X is a Markov process with
transition semigroup (t)t>_O and Px[Xo z] 1. In addition, we assume throughout
that z Px(A) is measurable for all Borel sets in D([0, oc) E) for the topology of
uniform convergence on compact time intervals. The measure

P’(A) fE Px(A),(dx), A e cr(X, 0 <_ s < ),

where P(E), then defines the law of the process corresponding to (St)t>_o with
initial condition .

We note for future use the following consequence of the Feller assumption. Let
{.} be a sequence of probability laws on E converging weakly to the law. and {X }
and X denote the Markov processes associated to (St)t>o with respective initial laws
{.n} and .. Then

(40) X = X

as n - oc, where = denotes weak convergence of Xn to X in D([0, oc) E). Corollary
3.3.2 in Ethier and Kurtz [3] says that to show this it is enough to show that X
converges weakly to X in D([0, oc); E/X), where E/x is the one-point compactification
of E. However, Theorems 3.9.4 and 3.9.1 in [3] and the fact that the generator of
(St)t>_o is dense in Cb(E) imply that Xn is relatively compact in D([0, oc); E/X), and
the Feller property implies that (Xn(tl),...,X(tk)) =;, (X(tl),...,X(tk)) for any
finite set of nonnegative times tl,..., tk, just as in the proof of Theorem 4.2.5 of [3].
These two facts imply the desired weak convergence (see Theorem 3.7.8 in [31).

Our filtering model is then specified by the signal-observation pair (X, Y) defined
on a probability space (ft, $’, IP) as follows:

(41) X (Xt)t>_o is a cdl/g, E-valued Markov process with law p0;

(42) Yt h(X) ds + Wt,

where W is an RP-valued Brownian motion independent of X and

(43) h E ]lp is bounded and continuous.
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In the model (41)-(42), note that r0 denotes the initial distribution of X. As
usual, rt shall denote the conditional distribution of Xt given :Pt a(Ys, 0 <_ s <_ t).

It is convenient to work throughout on the canonical probability space f
D([0, cx) E) C0([0, oe) P) for the signal-observation pair. Henceforth, we
let (X, Y) denote the canonical process on t. For a probability measure E P(E),
let Q be the measure on gt corresponding to the filtering model (41)-(42) when is
the probability measure of X0; that is, the marginal of Q" on D([0, oc) E) is P and,
on (, Q), Yt f h(Xs) ds is a Brownian motion independent of X. Sometimes, to
emphasize that we are working on (f, Q), we shall write (X", Y) for the canonical
process. We use E[.] to denote expectations with respect to Q and r (r’)t_>0 to
denote the conditional distribution of Xt given a{Ys, s <_ t} on (t, Q).

This canonical formulation is useful because we shall need to consider (41)-(42)
for arbitrary initial laws for X0. In particular, it allows us to define a semigroup
for the conditional law process. Endow 7)(E) with the topology of weak convergence.
For F e Cb(P(E)), define

Given the assumptions above made on (St)t>o and in (41)-(42), (Mr)t>0 defines a
Feller, Markov transition semigroup on Cb(T)(E)); see Stettner [14].

3.2. Ergodicity assumptions. We formulate next the precise ergodicity as-
sumptions that we require of the signal semigroup.

(St)t>_o admits a unique invariant measure # and

(H1) lim sup f [Stf(x) #(f)] #(dx) 0 V f Cb(E).
t--,O JE

For P(E), let St denote the law of X. We say that St forgets for # if

(H2) weakly as t --. .
The main point of (H1) and (H2) is Stettner’s result, Theorem 3 in [14], lifting

ergodic properties of (St)t>O tO (Mt)t>o.
LEMMA 3.1. a) If (St)t>_o satisfies (H1), there is a unique measure M on T)(E)

such that M is (Mt)t>_o-invariant and

7() M(d) #() V e CD(E).
(E)

b) If, in addition, satisfies (H2), then for every F e CD(7)(E))

lim (MtF)() / F(]) M(&7) =" M(F).

3.3. Stability result. Our stability theorem compares the correct estimate
for a fixed function to a filter t() computed with an erroneous initial condition
T0. Rather than work with the Kushner-Stratonovich equation, we construct rt and
t by means of the Kallianpur-Striebel formula. It is convenient to do this on the
canonical space t D([0, x3) E) x C0([0, c) ]1p) with the canonical process
(X, Y). Let denote Wiener measure on C0([0, c); Ip) and y denote an element of
c0([0,
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Let

Lt(X,Y) exp {fot x/0th(Xs) dYs -Recall the definition of P" on D([0, oc); E) from 3.1. Then we may define

.=
EP"[O(Xt) Lt(X, Y) / Y, s <_ t](y)

EP"[Lt(X, Y) / Ys, s <_ t](y)

where the dependence on y E Co(J0, c) Rp) is explicitly indicated. Then for the
filtering model (X, Y) specified.in (41), (42) with initial condition ro

(44) Y).

In other words, on (ft, Qo), pt()(Tro, Y) defines a version of the optimal filter
E[(Xt)lyt]. Now fix To E P(E), To - 7r0, and define

(45) <() Y).

On (Ft, Qo), t() computes the optimal filter, but on (t, Qo) it corresponds
to a filter computed with the incorrect initial condition To. (The perturbed filter
t() will satisfy the Kushner-Stratonovich equation on (9, Qo) and hence also on
(, Qo) because the laws of yo and yo are mutually absolutely continuous up to
any finite time.) We wish to assess the performance of t() on (, Qo), that is,
when ro is the true initial measure.

Given an initial distribution for X0, let R" denote the marginal of Q on
Co ([0, ) Rp); that is, R is the law of the observation process when Xo has
distribution .

THEOREM 3.2. Assume
(i) (St)t__o satifies (H1);
(ii) 7to and To both satisfy (H2) (that is, (H2) is true when , is replaced by 7to and

o);
(iii) R << R
Then for every bounded, continuous E ---, R

lim E [(Trt() t(99)) 2] 0.

Remark 3.3. 1. Condition (iii) says roughly that on supp RTM, it is impossible
to distinguish with certainty from the entire history of the observations, whether the
initial condition is ro or o. Condition (iii) is certainly satisfied if r0 << To as one
may easily see by conditioning Y on cr(X).

2. The choice ofE(Trt()-t())2 to measure the difference of 7rt() and t()
is made for convenience of calculation. In fact, because [Trt()], [t()[ <_ I1[[ almost
surely for all t, 7rt() t() 0 in LP(QTM) for all p _> 1.

Proof of Theorem 3.2. The proof takes several steps. The first step is to establish
a uniform finite memory approximation of 7rt() and t().

Let Yt a{Yr- Y;s _< r _< t} be the (r-algebra of the increments of the
observations on Is, t]. We shall call
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the (exact) filter of memory length T. Because of the time-homogeneity of X, com-
puting 7rt_T,t(q is the same as computing the filter on [0, T] when the initial condition
is 7rOSt_T since 7rOSt_T is the law of Xt_T when X0 has distribution r0. In other
words,

(46)

(see (44)). Likewise, we define the finite memory filter computed with the wrong
initial condition:

(47) -,() pr()(oSt-, Y-+.- 5-).

LEMMA 3.4. Let hypotheses (i)-(iii) of Theorem 3.2 be satisfied. Then for every
there is a T and a t such that

(48) E[(()- _r,())] < V t > t

and

(49) E[(()- _,())] < Vt > t.

Remark 3.5. We obtain in (48) and (49) an estimate for a fixed-length finite
memory filter uniform in t for all large t. The expectations in (48) and (49) are both
evaluated assuming that r0 is the initial law of X.

Proof. We shall first establish (48). (49) will follow, using a similar argument and
the absolute continuity of R with respect to R.

Let the continuous bounded function F 7)(E) be given by
Observe that

Eo [(,() ,_,,())]

(50)

t-TE[(’t())] 2E{E[(Xt)/Nt] E[(Xt)/ ]}
+E[(_,())

Eo(,()) Eo (,_,,())

(M,F)(o)- (MF,)(oS,_),

where the last line follows from (46). Lemma 3.1 implies that there exists a T such
that

(51) I(MtF)(#)- M(F)] < e/3 Vt > T

and

(52)

Since (Mt)t>_o is Feller, so that r MtF() is continuous in in the weak topology
(see Stettner [14]), and since roSt # weakly as t oc, we may choose t so that,
with T already fixed,

(53) IMTF(#)- MTF(TrOSt-T)I < /3 Vt >_
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Combining (51)-(53) gives the result (48).
To establish (49), we work on the canonical space for the observations. By (45)

and (47)

where

(() _r,()) (t T, t;

(t- T, t; V).= (V()(o V) r()(oS-r V-r+.- V-r))

for y e Co(J0, oc) NP).
Thus, since the law of Y is R and by hypothesis (iii) R << R,
E[(t() t_T,t())] f (T t, t; y) R (dy)

yco([0,) .p)

(54)

However,

(T t, t; v) d&o (v)o(@).

T t, t; V) o (@) Eo(o () o,()),
where in the right-hand side E denotes expectation on a space where T0 is the true
distribution of X0 and 7r () is the true conditional estimate. By the same argument
as above, for each 6 > 0 we can choose t-5 and e so that E[(Tct()-Tct%,t())2 <
5 for all t > te. Now fix e > 0 and choose K _> 1 so large that

(55) j...o { }-dRo
(y) 1 dR" (y) <

dR’rO (y)>K
dR’O 81111"

Then let Te Tel2K, ts e/2K. Using (54), (55), and the fact that

(T-t,t;y)l <_ 41111, R almost surely,

we get

Eo[(,()- ,_,,())] < vt > t,

thereby proving (49). It is clear that we can find T and t that work simultaneously
for (48) and (49) as in the statement of the lemma. D

The second step of the proof will be to demonstrate the following lemma.
LEMMA 3.6. For any fized T

(56) lim E[(Trt-T,t() t-T,t())] O.

Before giving the proof of (56) we show how to use it to complete the proof of
the stability result Theorem 3.2. The idea is simply to write for t > t, where t and
T are from Lemma 3.4,
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By first taking t - x and using Lemma 3.6 and then taking $ 0, we obtain the
result

lim E[(rt() Kt())2] 0,
t--- oo

and that proves Theorem 3.2.
Proof of Lemma 3.6. The idea of the proof is that as t increases, r0 St-T and

o St-T converge weakly to the same limit, and hence, using (45) and (47), Kt-T,t()
and 7rt_T,t(q also converge. Indeed, if for every path y the function taking the path
x to (XT)LT(X, y) were continuous in x, then the weak convergence of 0 St-T and
o St-T would imply that Kt-T,t()(Y) converges to rt-T,t()(y). This is not the case,
but by using Skorohod’s representation theorem we can complete the argument. The
arguments we use very much follow the techniques of Goggin [4], who establishes con-
ditions for weak convergence of filters. As in [4], we shall use the following inequality,
here stated abstractly.

LEMMA 3.7. Let Z,Z’ be nonnegative, integrable random variables, U be a
bounded random variable, and be a sub-a-algebra. Then

[uz/g] [uz’/g]
e[z/] E[z,/]

where ull ess sup IUI and, by convention,

(E[ZI])-1 0 on {E[Z/] 0},

and similarly for Z’.
Proof of Lemma 3.7.

E [z E[UZ/]
[ E[Z/] E[Z’/]

E [Z E[U(Z- Z’)/]
E[Z/]

E [Z E[U(Z- Z’)/]
E[Z/]

E[UZ’/]

E[UZ’/]+ E[ZI]
E[uz’/]+ E[Z’/]

E[UZ’/]I]E[Z’/]
E[Z’ ZI] I]E[Z/]

_< IIUIIE [z E[Iz- z’lE[z/]/]] + IIUII [zE[ Z’- ZE[z/]
211uIl EIZ’- Z.

T being given_, we proceed by constructing for each t > T a measure /St on a

probability space ft with processes (X, X, W) such that

W is a Brownian motion independent of (X, X),
X is a Markov process with initial condition 7to St-T and semigroup (Ss)s>0,
X is a Markov process with initial condition 0 St-T and semigroup (Ss)s_>0.

(7)
The purpose of this construction is to have a common probability space for evaluating
the expectations defining PT()(0 St-T, Y) and pW()(rO St-T, Y). To explain, we
define

8

z h(X) d + w.
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If

dOT~ .--’-- Z (X, Y)
dPt

it is clear by the usual Girsanov argument that, under Qt, Y is a Brownian motion
independent of (X,X). Thus, referring to the definition of Pt()(’ Y),

E0T [b(T)LT (-, Y)/Ys, 0 <_ s <_ T]PT()(O St-T, Y) EdT[LT(-, Y)/Y, 0 < s <_ T]
(s)
because under 0T the law of (, Y) is Pos_v x . Likewise

/St almost surely,

(59) ()(o s,_r, Y) EOr[(XT) LT (X, Y)/Y, 0

_
s

_
T]

Ed[LT(X, Y)/Ys, 0 <_ s <_ T]

Since IpT(c/))(’, ")1 <--IIllc almost surely for any u, it follows that

e[(,_,,(+) ,_,,())]
2 Illoe [IPT()(0 S-T, Z) PT()(O St-T,

2llll Ed2t [LT(X, Y)I Pr()(Tro St-T, Y) PT()(TO St-T, Y)

Now set g a{Ys, 0 <_ s < T}, write (59) as

+EO,[LT(X,Y)/Q]
EOT [(f) LT (X, Y)/Q]
E( [LT(X, Y)/g]

EO,T[LT(X,Y)/g]

+ [(X) (r)]/g],

and use Lemma 3.7 to derive

(60)
E[(,_r,,() e,_r,,())]

1111{21111 EO"ILT(X, Y) LT(-, Z)I
+EPt I(XT) (T)I}-

Note that (60) is true regardless of the joint law of X and X.
To complete the proof it is necessary to show that the right-hand side of (60)

approaches 0 along any sequence of times {tn} such that tn - 0. Let Xn denote the
sequence of D([0, oo) E)-valued Markov processes corresponding to the semigroup

(S)t>_o and initial laws r0 Stk-T, and let denote that sequence corresponding
to initial laws T0 Stk-T. Since r0 Stk-T and T0 Stk-T both converge weakly to the
invariant measure # as k oo by assumption (ii) of Theorem 2.3, it follows from the

discussion at (40) that X = g and = g, where g is the stationary process
with initial law # and transition semigroup (St)t>o. By Skorohod’s representation
theorem, as stated and proved in Theorem 3.1.8 in [3], we may assume that there is

a common probability space (t./5) on which g and the sequences X and are
defined such that the convergence is almost sure in D([0, oo) E). Let this probability
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space also support a Brownian motion Y independent of the other processes. On this
probability space, (60) translates into

(61) 1111o{1111o EPlLT(X, Y) LT(--, Y)I
/EPlO(X) 0()1}.

It is immediate that the second term on the right-hand side converges to 0 as n
As for the first term, note that {LT(Xn, Y)- LT(-, Y} converges to 0 in probability
and, because h is bounded, is uniformly integrable. Hence the first term also converges
to 0, which completes the proof.
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This paper is dedicated to Professor O. L. Mangasarian on the occasion of his 60th
birthday (January 12, 1994). We submitted this paper for publication on Professor Man-
gasarian’s birthday to a journal that he has been associated with for many years, the SIAM
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topics addressed in this paper, namely, error bounds, weak sharp minima, minimum princi-
ple sufficiency, and complementarity problems. We are both indebted to him for his constant
encouragement, advice, and fruitful collaborations over many years. Without his help and
guidance, this paper would not have been possible.

Abstract. The notion of a strictly complementary solution for complementarity problems is ex-
tended to that of a nondegenerate solution of variational inequalities. Several equivalent formulations
of nondegeneracy are given. In the affine case, an existence theorem for a nondegenerate solution is
given in terms of several related concepts which are shown to be equivalent in this context. These in-
clude a weak sharp minimum, the minimum principle sufficiency, and error bounds. The gap function
associated with the variational inequality plays a central role in this existence theorem.

Key words. Variational inequalities, nondegenerate solutions, weak sharp minima, minimum
principle, error bounds
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1. Introduction. Strict complementarity is a familiar notion in the context of
optimization problems and complementarity theory. A classical result proved in [17,
Cor. 2A] shows that a solvable linear complementarity problem defined by a skew-
symmetric matrix must possess a strictly complementary solution. In general, the
property of strict complementarity of a solution to an optimization or a .complemen-
tarity problem plays an important role in many aspects of such a problem. Historically,
Fiacco and McCormick [14] used this property to develop the first sensitivity theory
of nonlinear programs under perturbation. Robinson [40] has introduced a general-
ized notion of strict complementarity and considered its role in parametric nonlinear
programming.

In recent years, the strict complementarity property was given a renewed em-
phasis in the analysis of many iterative algorithms for solving linear and nonlinear
programs and complementarity problems. Dunn [10] and Burke and Mord [6] used a
geometric definition of a strictly complementary solution to a nonlinear program and
showed how such a solution was essential for the successful identification of active
constraints in a broad class of gradient based methods for solving constrained opti-
mization problems. Giiler and Ye [19] showed that many interior-point algorithms
for linear programs generated a sequence of iterates whose limit points satisfied the
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strict complementarity condition; they also extended the result to a monotone linear
complementarity problem having a strictly complementary solution. Monteiro and
Wright [36] demonstrated that the existence of a strictly complementary solution was
essential for the fast convergence of these interior-point algorithms for a monotone
linear complementarity problem.

The theory of error bounds for inequality systems has in recent years become an
active area of research within the field of mathematical programming. In this regard,
Hoffman [21] obtained the first error bound for a system of finitely many linear in-
equalities. The generalizations of Hoffman’s result are too numerous to be mentioned
here. There are several factors that have motivated this proliferation of activities.
In general, an error bound is an inequality that bounds the distance function from a
test vector to the solutions of a system of inequalities in terms of a residual function.
Part of the importance of an error bound is that it provides the foundation for exact
penalization of mathematical programs [24], [30]; this in turn is strongly connected
to the theory of optimality conditions for nonlinear programs [4]. Error bounds play
an important role in the convergence analysis (particularly in establishing the conver-
gence rates) of many iterative algorithms for solving various mathematical programs.
These include the the matrix splitting methods for linear complementarity problems
[8, Chap. 5] and affine variational inequalities [25], various descent methods for convex
minimization problems [26]-[28], and interior-point methods for linear programs and
extensions [23], [35], [42]. Error bounds can also be used to design inexact iterative
methods [37], [16].

The concept of a weak sharp minimum for a constrained optimization problem was
introduced in [11]. The usefulness of this concept in establishing the finite convergence
of various iterative algorithms was discussed in several subsequent papers [12], [5],
[1]. Among the classes of optimization problems that possess weak sharp minima
are linear programs [32] and certain convex quadratic programs and monotone linear
complementarity problems [5].

Finally, the minimum principle [29] is a well-known set of conditions that must be
satisfied by any local minimum of a nonlinear program with a convex feasible region.
One way to state this principle is in terms of the gap function [20] of the nonlinear
program; informally, this principle states that a local minimum of a nonlinear program
must be a global minimizer of the gap function over the same convex feasible region of
the program. In [13], Ferris and Mangasarian studied the "converse" of this principle
for the class of convex programs and coined the term minimum principle sufficiency
when this converse was valid. They also showed (Theorem 6 in [13]) that for a convex
quadratic program, the minimum principle sufficiency is equivalent to the existence of
weak sharp minima of the program and that of a nondegenerate solution in the primal-
dual linear complementarity formulation of the quadratic program. This somewhat
unexpected result therefore links up the various concepts that we have discussed so
far.

The present research is motivated by the desire to gain a better understanding of
the concepts of strict complementarity, error bounds, weak sharp minima, and mini-
mum principle sufficiency for various mathematical programs and how these concepts
are related. The results in [13], [31] suggest that for a monotone linear complemen-
tarity problem and its "natural" convex quadratic program [8, Chap. 3], all these
concepts are equivalent (to be made precise later). In this paper, we shall extend the
equivalences to a monotone affine variational inequality.

By adding appropriate multipliers to the constraints of an affine variational in-
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equality, this problem becomes equivalent to a linear complementarity problem [38].
in view of the results available for the linear complementarity problem [13], [31],
this transformation therefore raises the question of whether the intended generalized
equivalences for the affine variational inequality are of any significant interest. We
shall argue that the results derived herein are potentially useful for two reasons: (i)
they do not rely on the multipliers of the constraints and hence are independent of
the representation of the defining set of the affine variational inequality; and (ii) as
it turns out, we shall use a nondifferentiable optimization problem as the bridge to
connect the various concepts in question. The latter approach raises the issue of the
extent to which these equivalences will remain valid for more general nondifferentiable
optimization problems. The full treatment of this last issue is, regrettably, beyond
the scope of the present work.

2. Definitions and review. For a given mapping F" Rn Rn, the nonlinear
complementarity problem, which we shall denote NCP (F), is to find a vector x E Rn
such that

x>0, F(x)>0, x

A solution 2 of this problem is said to be strictly complementary, or nondegenerate,
if 2 + F(2) > 0. For an optimization problem of the form

minimize f x
(2.1)

subject to x E C,

where f Rn R is continuous and C c_ Rn is convex, different forms of nondegen-
eracy abound in the literature. Dunn [10] and Burke and Mor [6] use the relative
interior condition

Vf() e ri Nc ()

to define an optimal solution 2 of (2.1) as being nondegenerate. Here ri S denotes
the relative interior of the convex set S and Nc (x) denotes the normal cone to the
convex set C at the point x Rn, which is defined by

{yeRnlyT(c-x)<_OforallceC}
Nc (x)

0

ifx E C,
otherwise.

Robinson [401 uses the dual form: Tc (2) C Vf(2) +/- is a subspace where the tangent
cone, Tc (x), to C at x is the polar of the normal cone at x; i.e.,

Tc (x) {z e R zTy <_ 0 for all y

It is easy to show (see [40, Lem. 2.1] for a proof) that the definition (2.2) is equivalent
to the subspace definition. In general, for a convex set S c_ Rn, the negative of the
polar of S is the dual cone of S, which is denoted by S*.

It is not difficult to extend the notion of strict complementarity to the context of
a variational inequality (VI) of the following form: find x C such that

F(x)T (y x) >_ O for allyC,

where C c_ R is a nonempty closed convex set and F Rn R is a continuous
mapping. We shall denote this problem by VI (F, C); its (possibly empty) solution
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set is denoted SOL(F, C). When F is affine and given by F(x) =_ q + Mx for some
vector q E Rn, some matrix M E Rn, and all vectors x R, we shall append
the word "affine" to describe this VI and denote it by AVI (q,M, C); the notation
SOL(q, M, C) will be used to denote the solution set of this AVI.

Given a vector 2 SOL(F, C) by simply replacing Vf(2) by F(2) in either (2.2)
or in Robinson’s dual definition, we obtain a definition for 2 to be a nondegenerate
solution of the VI (F, C). Thus, 2 is a nondegenerate solution of the VI (F, C) if

(2.4) F(2) e ri Nc (5).

A justification for this definition of nondegeneracy for the VI is the well-known fact
that the VI (F, C) is equivalent to the generalized equation

o Nc

or equivalently

Ne

which easily leads to the generalized definition.
When C is a polyhedron, it is possible to give some further characterizations for

the nondegeneracy of a solution 2 SOL(F, C). We shall summarize these character-
izations in Proposition 2.2 below. The additional characterizations rely heavily on the
face structure of a polyhedral convex set. It is well known that the relative interiors
of the faces of a convex set C form a partition of C [41, Thm. 18.2]. Throughout this
paper, we will use the notation 9(x) to denote the face of C which contains a vector
x E C in its relative interior. According to [41, Thin. 18.1], 9(x) is the "minimal"
face of C containing x C, minimal in terms of set inclusion. The following result
was established in [6].

LEMMA 2.1. The normal cone to a polyhedral convex set C is constant for all
x ri $-, where . is a face of C, henceforth labeled A/’:. Furthermore,

aft .if" x lin Tc (x) (aft.h/’-) +/-

As a consequence of this lemma, it follows that 9 -Aft: has full dimension and
hence has a nonempty interior. This observation will be used in the proof of the
following proposition which gives a number of equivalent conditions for a given solution
of the VI (F, C) to be nondegenerate. Among these conditions, condition (iv) has been
used by Reinoza [39].

PROPOSITION 2.2. Suppose Yc solves VI (F, C) and C is polyhedral. Let 2:’(2)
so that-F(2) A/’. The following statements are equivalent:

(i) 2 + F(2) e int(9v -A/’:),
(ii) -F(2) E riA/’:,
(iii) Tc (5) A F(2) +/- is a subspace,
(iv) 2 is in the relative interior of the face of C exposed by-F(2).

If F is monotone and any one of the above four conditions holds, then SOL(F, C) C_
:().

Proof. The equivalence of (ii) and (iii) has been noted before. The equivalence
of (ii) and (iv) is by [7, Thm. 2.4]. Since 2 rif" and -F(2) rials:, it follows that
2 + F(2) ri $" + ri(-A/’:) ri(9 Aft:) which, as we have noted, has a nonempty
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interior. Thus (ii) implies (i). We now show that (i) implies (ii).
2 + F(2) E ri 2" + ri(-N’:), so suppose

First note that

+ + z

with y E ri$" and z ri(-Af:). Then y- & aft 9r- 2, F(2)- z affAf:, and these
two subspaces are orthogonal. Hence y- & 0 F(2) z as required.

For the final statement of the proposition, let z SOL(F, C) be arbitrary. Since
F is monotone, it follows that (see, e.g., [3])

F(c)T(c--z)>O for allceC,

which implies, since 2 C, that F()T(2- z) > O. However, 2 also solves the VI
(F, C), so

F(2)T(c- c) > O for allc@C,

implying F(2)T(2- z) 0. Hence,

z e {c e C IF( c)T(c 0},

which is 9c(2) by [7, Thm. 2.4]. [:]

In the remainder of this paper, we shall focus on the AVI (q, M, C). As stated
before, our goal is to establish the equivalence of the existence of a nondegenerate
solution to this problem and a number of related concepts. In what follows, we shall
describe each of these concepts more formally.

The notion of a weak sharp minimum was introduced in [11] and extensively
analyzed in [5], [13]. The formal definition is as follows.

DEFINITION 2.3. Let f Rn -+ RU {cx3} and C C_ Rn. A nonempty subset S C_ C
is a set of weak sharp minima for the problem (2.1) if there is a scalar a > 0 such
that for all x C and all y S

f(x) > f(y) + adist (x IS),

where

dist (x IS) --inf{llz- xll’z e s}

is the distance from the point x to S measured by any norm.
Note that a set of weak sharp minima for (2.1), if it exists, must be equal to

the set of global minimizers of f over C. In general, for the problem (2.1), it would
be useful to know when a set of weak sharp minima exists. As mentioned in the
introduction, an affirmative answer to this question is known for a linear program
and certain convex quadratic programs.

Observe that if the problem (2.1) has a weak sharp minimum, then the inequality
(2.5), which is equivalent to

(2.6) dist (x IS) < o-l(f(x)- fmin) for all x e C,

where fmin is the minimum value of f on C, can be interpreted as providing an error
bound for an arbitrary feasible point x to the set of minimizers of (2.1), with the
residual given by the deviation of the objective value f(x) from its minimum value.
Consequently, a necessary and sufficient condition for the existence of a weak sharp
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minimum for the problem (2.1) is the existence of an error bound of the type (2.6)
where S is the set of minimizers of (2.1).

The notion of minimum principle sufficiency was introduced in [13]. The minimum
principle is a well-known necessary optimality condition for a program of the form
(2.1), where C is convex; this principle states that, for a continuously differentiable
function f, if 2 solves (2.1) then 2 E SOL(V/, C). Roughly speaking, minimum
principle sufficiency is the converse assumption; nevertheless, in order to make this
precise, it will be necessary for us to introduce the gap function associated with the
VI (F, C). Specifically, the gap function for the latter problem is the extended-valued
function 9:Rn -+ R tO {oc} given by

g(x) xTF(x) -w(x) forallxeR,
where

(2.8) co(x) inf{zTF(x) z e C}.

The function co was introduced in [18], where it was used for stability analysis of the
AVI. Let

D(x) =_ argmin{zTF(x) z C};

it is understood that if the minimum value in co(x) is not attained, then f(x) is
defined to be the empty set. We note that if C is polyhedral, then co(x) is the
optimum objective value of a linear program.

The following proposition summarizes some important properties of the two func-
tions 9 and w. No proof is needed for these properties.

PROPOSITION 2.4. Let F Rn R be a mapping and C be a closed convex
subset of Rn. The following statements are valid.

(i) The function w" Rn -- R t {-oo} is concave and extended-valued; if F is a
monotone affine function, then g is convex.

(ii) The function g is nonnegative on C.
(iii) A vector x e SOL(F, C) if and only if x e ft(x) or, equivalently, x e C and

(iv) If C is polyhedral, then

domco {xeRnlco(x)>-co}
{x e RnlF(x) e (recC)*},

where (rec C)* is the dual of the recession cone of C.
(v) If C is polyhedral and F is affine, then co is piecewise linear and g is piecewise

quadratic.
Returning to the problem (2.1) and letting F Vf, we see that the minimum

principle for this problem can be stated simply as: if x is a local minimizer of (2.1),
then x ft(x). Obviously, if f is a convex function, then every vector x E C with the
property that x ft(x) must be a global minimizer of (2.1). For a convex function f,
the minimum principle sufficiency stipulates that for all optimal solutions x of (2.1),
or equivalently, for all x such that x ft(x), if x’ ft(x), then x’ is also a global
minimizer of (2.1). In what follows, we shall give several equivalent formulations
for this sufficiency property, one of which will be the basis for generalization to a
nondifferentiable function f.
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PROPOSITION 2.5. Let f Rn R be a continuously differentiable convex

function and C c_ Rn be a closed convex set. Assume that
C} : . The following statements are equivalent.

(a) The minimum principle sufficiency holds for the minimization problem (2.1).
(b) For all x e S, S t(x), where t(x) argmin{zTVf(x) z e C}.
(c) For all x S,

[z C C, VI(x)T(z- x) 0]

If in addition, C is polyhedral and S , then any one of the above statements is

further equivalent to
(d) S is a set of weak sharp minima for (2.1).
Proof. Since S C t(x) for all optimal solutions x of (2.1), the equivalence of (a)

and (b) is obvious. That (c) is also equivalent to (a) or (b) is equally obvious because
x solves (2.1) if and only if x e (x). Finally, the equivalence of (d) and the above
statements was proved in [5, Thm. 4.2].

Remark. Theorem 4.2 in [5] shows that in the above proposition, (d) always
implies (a) for an arbitrary closed convex set C; nevertheless, Example 4.3 in [5]
shows that the polyhedrality of C is needed for the reverse implication.

3. Miscellaneous preliminary results. We have now defined all the concepts
we shall del with in this paper. Our ultimate goal is to link them together for the
monotone AVI (q,M, C), where M is assumed to be positive semidefinite and C is
polyhedral. The linkage is via the gap function g for this AVI. Motivation for using this
function g stems partly from statement (iii) in Proposition 2.4, which suggests that g
is a likely candidate for a residual function for the AVI. This choice is also supported
by some error bound results in [18] which are derived with the aid of some additional
properties of the monotone AVI. In what follows, we shall summarize the relevant
results for later use. Throughout the rest of this paper, we shall fix the vector q Rn,
the matrix M Rnn, and the set C c_ R. We shall assume that M is positive
semidefinite and C is a polyhedral. We shall further assume that SOL(q, M, C) :/: 0.

There are two important constants associated with the solution set of the mono-
tone AVI (q, M, C). Indeed, by results in [18], there exist a vector d R and a scalar
a R+, both dependent on the data (q, M, C), such that

(3.1) d (M + MT)x, a xTMx
for all x E SOL(q, M, C). Furthermore, SOL(q,M,C) can be characterized, using
these constants, as

SOL(q, M, C) {x e C w(x) (qTx + ) >_ O, (M + MT)x d}.

Since, for every x SOL(q,M,C),w(x) <_ (q + Mx)Tx (q + d- MTx)Tx
(q + d)Tx Or, simple algebra gives the alternative characterization:

SOL(q,M,C) {x e C lw(x (q + d)Tx + >_ O, (M + MT)x d}

{x e C[w(x) (q + d)Tx + cr O, (M + MT)x d}.

For a given polyhedral cone K c_ R, the AVI (q, M, K) is equivalent to a gener-
alized linear complementarity problem which is to find a vector y E/n such that

y K, q + My K*, and yT (q + My) 0,
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where

is the dual cone of K. In this case, we shall use the prefix GLCP instead of AVI to
describe the problem. The feasible region of GLCP (q, M, K) is given by

(3.2) FEA(q,M,K) {y E K Iq + My K*}.

Since 2"- A/’: c_ K + K* and both have full dimension, it follows from Proposition
2.2 that if ) is a strictly complementary solution of the GLCP (q, M, K), then

) + q + M) int(K + K*).

It is known [38] that the AVI (q, M, C) is equivalent to a mixed linear complemen-
tarity problem in higher dimensions. In what follows, we shall establish a connection
between the nondegenerate solutions of these two problems. For this purpose, we
shall represent C as

(3.3) C= {x e Rn Ax > b}

for some matrix A tmn and vector b RTM. Then a vector x E C is a solution
of AVI (q, M, C) if and only if there exists a vector RTM such that the following
conditions hold:

0 q + Mx ATA,
w Ax-b,

W > O, > O, wT --O.

These conditions define the GLCP (p,N,K) where the variable y and the data
(p, N, K) are given by

(3.4) y p _=- N
-b A 0

and K _= Rn x R. Specializing Proposition 2.2 to the latter GLCP, we can show
that a solution (2, J) of GLCP (p, N, K) is nondegenerate if and only if zb + > 0,
where ff A2- b. Based on this observation, the following result is easy to prove.

PROPOSITION 3.1. Let C be given by (3.3). A solution 2 of the AVI (q,M,C)
is nondegenerate if and only if for some , (2, ,) is a nondegenerate solution of the
GLCP (p, N, K).

Proof. Let

Z =_ {il(A2 b)i}

be the index set of active constraints at 2. By the definition of 9r 2-(2), we have

= {x e C l(Ax- b) for all/

and 2 ri 9=. Hence,-- {ATXIX e R_m, X 0, for all/ Z}.
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Prom the theory of convex polyhedra, particularly [41, Thm. 6.6], we have

rib {x e ,T’l(Ax > b) for all

riN’= {AT, / < 0 for all 2-; A 0 for all :Z’}.

Hence, according to Proposition 2.2, 2 is nondegenerate if and only if 2 E ri 9c and
-(q + M2) E rials:. Prom this, the existence of the desired is obvious. [:]

The GLCP (p, N, K) defined above is related to the linear program defining the
function w(x), which is given by

oa(x) min{zT(q + Mx)" z C};

see (2.S). The dual of this linear program, denoted A(x), is

maximize bT

subject to q+Mx-ATA=o, A>_0.

We shall let A(x) denote the (possibly empty) optimal solution set of A(x). The
following result summarizes an important relation between the dual program A(z)
and the GLCP (p,N,K) as well as two properties of A(x) as a parametric linear
program with a changing right-hand side in the constraints.

PROPOSITION 3.2. The following three statements hold:
(a) if SOL(q, M, C), then a pair (2c, ) solves the GLCP (p, N, K) if and only

if e A(2);
(b) there exists a constant a > 0 such that for all x R with A(x) 0 and all

; feasible to A(x),

bT, + co(x) > adist ( A(x))

(c) there exists a constant > 0 such that for all x and x’ in In with A(x) : 0
and A(x’) 0,

A(x) c_ A(x’) +/31Ix x’ B(0, 1),

where B(0, 1) is the unit Euclidean ball in R".
Proof. Statement (a) is obvious. For statement (b), observe that if A(x) 0 for

some x, then w(x) is finite and equal to the optimal objective value of A(x). By [32,
Lem. A.1], every solvable linear program has a nonempty set of weak sharp minima.
A careful look at the proof of this result reveals that the constant associated with such
a set of weak sharp minima is independent of the right-hand side in the constraints of
the program. Thus (b) follows. Statement (c) follows from the Lipschitzian property
of the solutions to a parametric right-hand sided linear program as proved in [33,
Thm. 2.4].

We shall associate the following optimization problem with the AVI (q, M, C):

minimize g(x)
(3.6)

subject to x C,

where g is the gap function defined in (2.7) with F(x) =_ q / Mx. By Proposition 2.4,
the function g is convex, piecewise quadratic, and possibly extended-valued; it is in
general not Fr6chet differentiable. We should mention that recently there have been
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several differentiable optimization problems introduced for the study of a monotone
VI [2], [15], [34]; since the objective functions of the latter optimization problems are
not known to be convex even for a monotone AVI, it is therefore not clear whether our
results can be extended to these other (possibly nonconvex) optimization formulations
of the AVI.

Since C is polyhedral, it can be represented as

(3.7) C conv G + rec C

for some finite point set G c_ Rn, where cony G denotes the convex hull of G and rec C
denotes the recession cone of C. When C is a cone, we have G {0} and C rec C.
Clearly, the problem (3.6) can be equivalently stated as

minimize
(3.8)

subject to

xT(q + Mx) &(x)
x E C, q / Mx (rec C)*,

where

(3.9) &(x) min{zT(q + Mx) z e G}.

When C is a cone, the latter formulation reduces to

minimize XT (q + Mx)
subject to x PEA(q, M, C),

since C recC and &(x) is identically equal to zero in this case; see (3.2) for the
definition of PEA(q, M, C).

Unlike the function w(x), &(x) is finite valued for all x Rn, and it is dependent on
the point set G (in particular, on the representation of C). Nevertheless, w(x) &(x)
for all x domw; recall that by Proposition 2.4, domw consists of all vectors x
satisfying q + Mx (rec C)*. The function &(x) will play an important part in the
proofs (but not the statements) of the results involving the AVI (q, M, C). We shall
let PEA(q, M, C) denote the feasible region of the problem (3.8). This coincides with
the previous definition (3.2) when C is a cone. Trivially, we have SOL(q, M, C) c_
PEA(q, M, C). Moreover, the problem (3.6) is equivalent to

minimize g(x)
(3.10)

subject to x FEA(q, M, C).

Although the function g is not Prchet differentiable, it is directionally differen-
tiable at every vector in PEA(q, M, C) along all feasible directions. This fact is made
precise in the following result.

PROPOSITION 3.3. Let q R and M R’’ be arbitrary; let C C_ Rn be a
polyhedral set. For any vectors 2 and x in PEA(q, M, C), the directional derivative

(2; x 2) lim
$0

+

exists, is finite, and is equal to

min{uTM(x- 2) u e
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where ft(2) =_ argmin{zT(q + M2) z e C}; hence, g’(2; x 2) exists and is equal to

(x 2)T (q + (M + MT)2) --w’(2; x

Proof. Since q + M2 E (rec C)*, f(2) - . it suffices to verify that

w’(2;x- 2) min{uTM(x 2) u e

and that this derivative is finite. Since both 2 and x are in PEA(q, M, C) it follows
that

+ +
for all - E [0, 1]. Hence, we have

w’(2; x 2) ’(2; x 2) min{uTM(x 2)" u e (2)},
where

t(2) argmin{zT (q + M2)’ z e G}

is a nonempty, finite subset of ft(2). Since &’ (2; x 2) is finite, thus so is w’ (2; x 2).
Moreover, we have

(3.11) w’(2; x 2) _> min{uTM(x 2)" u e ft(2)}.

Since

w(2 + T(X 2)) min{zT(q + M2) + TzTM(x 2)" Z e C}
<_ min{zT(q + M2) + TzTM(x 2)" Z

W(2) + ’min{uTM(x-- 2)’u e

it follows that the reverse inequality in (3.11) also holds. Consequently, equality holds
in (3.11).

Note that if 2 SOL(q, M, C) and M is positive semidefinite, then Proposition
3.3 yields

(3.12) g’(2; x 2) (x 2)T(q + d) w’(2; x 2)

for all x PEA(q, M, C), where d (M+MT)2 is one of the two constants associated
with the solutions of the AVI (q,M, C). With the above proposition, we can now
discuss the extension of the minimum principle sufficiency to the nondifferentiable
gap minimization problem (3.6) or equivalently to (3.10). Some related work on error
bounds for convex, piecewise quadratic minimization problems, of which (3.6) is a
special case, can be found in [22]. The following result establishes two properties of
solutions to the AVI (q, M, C).

PROPOSITION 3.4. Let q Rn be arbitrary, M Rnxn be positive semidefinite,
and C c_ Rn be a polyhedral set. If x and 2 are any two vectors in SOL(q, M, C),
then g’ (2; x 2) 0 and

+ x
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Proof. Since SOL(q, M, C) is convex, 2+T(x--2) e SOL(q, M, C) for all 7" e [0, 1].
Hence for all such -,

+ o,

which easily implies g(2; x 2) O.
Since x and 2 belong to SOL(q, M, C), we have

w(x) xT (q + Mx)
xT(q + M2) + xTM(x 2)
2T(q + M2) + (x 2)T(q + M2) + 2TM(x

> w(2) + min{uTM(x- 2)’u e

+ x >

where the last inequality follows from the concavity of w. [:1

Alternatively stated, Proposition 3.4 says that for a monotone AVI (q, M, C) and
any 2 E SOL(q, M, C), we have

SOL(q,M,C)
(3.14)

C_ {x e FEA(q,M,C) g’(2;x-2 O,w(x) =w(2) + w’(2;x 2)}.

We say that the restricted minimum principle sujficiency (RMPS) holds for the prob-
lem (3.10) if for any 2 E SOL(q, M, C), equality holds in (3.14); or equivalently, the
implication holds:

x FEA(q, M, C), g’ (2; x 2) 0
(3.15) = x e SOL(q, M, C).

+ x

The word restricted that describes this property reflects the additional restriction--
equation (3.13)--that the vector x has to satisfy in order for it to be a solution of AVI
(q, M, C). If w is a smooth (linear) function on FEA(q, M, C) (instead of a piecewise
linear function), the latter restriction is redundant. In particular, this is the case
when C is a cone.

The following two results give some necessary and sufficient conditions for the
two conditions, g’(2; x- 2) 0 and (3.13), to hold separately. Although these results
are not needed in the proof of the main theorem in the next section, they give some
insights into the RMPS property of the AVI.

PROPOSITION 3.5. Let q Rn and M Rnn be arbitrary; let C c_ Rn be a
polyhedral set. Let 2 SOL(q, M, C) and x FEA(q, M, C) be given. Then g’(2; x-
2) 0 if and only if x t(2) and

(3.16) (u 2)T(q + Mx) > 0 for all u

Proof. Indeed, by Proposition 3.3, we have gt(2; x 2) 0 if and only if

(x 2)T (q + (M + MT)2) min{uTM(x 2) u t(2)},

or equivalently

(x 2)T(q + M2) min{(u 2)TM(x 2) u Ft(2)}.
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Since 2 E SOL(q, M, C) and x E C, the left-hand side is nonnegative, whereas the
right-hand side is nonpositive because 2 ft(2). Consequently, g’ (2; x- 2) 0 if and
only if

0 (x- 2)T(q + M2) min{(u- 2)TM(x-- 2)’u

The first equality is equivalent to x f(2). Moreover, for all u f(2), we have
(u- 2)T (q + M2) 0; hence,

Consequently,

(u- 2)TM(x 2) (u 2)T (q + Mx).

min{(u- 2)TM(x 2) u e ft(2)) 0

if and only if (3.16) holds. [1

PROPOSITION 3.6. Let q Rn and M Rnxn be arbitrary; let C c_ R’ be a
polyhedral set. Let 2 and x be any two vectors in FEA(q, M, C). Then the following
are equivalent:

(i) (3.13)holds,
(ii) Ft(x) C ft(2) - O,
(iii) for all/ (0, 1),

w(Ax + (1 A)2) Aw(x) + (1 A)w(2).

Proof. Suppose (3.13) holds. Then for any u ft(2) such that uTM(x- 2)
w’(2; x ), we have

w(x) <_ uT(q+Mx)
uT(q + M2) + uTM(x-- 2)
() + ’(;x-- ).

Hence w(x) uT(q + Mx), which implies u
(x) N t(2), then

Conversely, if u

(x) UT (q + Mx)
uT(q + M2) + uTM(x-- 2)

> () + ’(; x- ).

By the concavity of w, we have

(x) < ()+ ’(; x- ).

Thus (i) is equivalent to (ii). The equivalence of (ii) and (iii) follows from the fact
that ft(x) is the subdifferential of the support function of C at -(Mx + q) and [9,
Lem. 5.3]. El

4. The main result. We are now ready to state the main result of this paper.
This result gives various necessary and sufficient conditions for the existence of a
nondegenerate solution for a monotone AVI.

THEOREM 4.1. Let q Rn be arbitrary, M Rnn be positive semidefinite, and
C c_ R’ be a polyhedral set. Suppose SOL(q, M, C) O. Let d R and R+ be the
two constants associated with the AVI (q,M, C); see (3.1). The following statements
are equivalent:
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(a) The AVI (q, M, C) has a nondegenerate solution; that is, (2.4) holds.
(b) The set SOL(q, M, C) is a set of weak sharp minima for the problem (3.6).
(c) There exists a constant " > 0 such that for all x E C

(4.1) dist (x SOL(q, M, C)) <_ 7g(x).

(d) The representation

(4.2) SOL(q,M,C) {x e C lw(x (q + d)Tx + a >_ 0}

holds.
(e) The restricted minimum principle sufficiency holds for the problem (3.10);

i.e., the implication (3.15) holds.
As it turns out, the proof of this theorem, except for the equivalence of (b) and (c),

is rather complicated. We shall divide the entire proof into several parts. Throughout
the proof we will assume, if necessary, that C is written in the form (3.3) or (3.7).
Note that since the function w is in general not differentiable, the equivalence of (b)
and (e) does not follow from Proposition 2.5.

The easiest part is the equivalence of (b) and (c); this follows from the remark
made after Definition 2.3 and the observation that gmin 0. Note that effectively, the
inequality (4.1) concerns only those vectors x FEA(q, M, C); indeed, since g(x)
for all x C \ FEA(q, M, C), (4.1) trivially holds for the latter vectors x.

The following lemma establishes (a) = (d).
LEMMA 4.2. Under the assumptions of Theorem 4.1, statement (a) implies state-

ment d
Proof. Let S denote the right-hand set in (4.2). It suffices to verify

S c_ SOL(q, M, C),

because the reverse inclusion is always valid. Let x e S and let 2 be a nondegenerate
solution of AVI (q, M, C). Since w(x) is finite, its dual program A(x) has an optimal
solution A that satisfies

bTA W(X).

Since 2 SOL(q, M, C) is nondegenerate, by Propositions 3.1 and 3.2 there exists a

E A(2) satisfying

,T(A2 b) 0 and + A2 b > 0.

We have

which yields

>_ (q+d)Tx--a
(q + (M + MT)&)Tx-- &TM&
(q + M&)Tx + kTM(x-- 5)
TAx + (,-- )TA&
T(Ax- b)+ AT(A2- b)+ ATb,

O >_ T(Ax-b) + AT(A-b) >_ O.
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Since + A? b > 0 and ,k and Ax b are both nonnegative, it follows easily that
,T(Az b) 0. Thus x SOL(q, M, C) as desired, rl

Next we prove (d) (c). The proof of this implication uses the following conse-
quence of the famous Hoffman error bound for systems of linear inequalities [21]. Let
P be a polyhedral set in R, and let E and f be, respectively, a matrix and vector of
compatible dimensions. If the polyhedron

S-- {x P" Ex >_ f}

is nonempty, then there exists a constant c > 0 such that

dist (x IS) <_ cll(Ex-/)-I1 for all z P,

where the subscript denotes the nonpositive part of a vector.
LEMMA 4.3. Under the assumptions of Theorem 4.1, statement (d) implies state-

ment (c).
Proof. Invoking the function &(x) defined in (3.9), we can express (4.2) equiva-

lently as

SOL(q,M,C)

={xeFEA(q,M,C) [zT(q+Mx)-(q+d)rx+a>_O,VzeG}.

By the aforementioned consequence of Hoffman’s result, we deduce the existence of a
constant , > 0 such that for all z FEA(q, M, C),

dist (z SOL(q, M, C)) _< 7max (zr(q + Mx) (q + d)z + a)
zEG

To complete the proof, it remains to verify that for all x E FEA(q, M, C) and all
zEG

(zT(q + Mx) (q + d)Tx + o)_ <_ xT(q + Mx) co(x)..

Since xT(q+Mx) > (x) for all x C, it suffices to show that for all x e FEA(q, M, C)
andz G

(q + d)Tx o zT (q + Mx) < xT (q + Mx) w(x);

in turn, since zT(q + Mx) > w(x), it suffices to verify

(q + d)Tx o <_ xT(q + Mx).

For some SOL(q, M, C), the left-hand side of the above inequality is equal to

(q + (M + MT)c)Tx TMc
(q + M )rx x) <_ (q + Mx) x,

where the last inequality follows by the positive semidefiniteness of M. C1

We next show that (d) and (e) are equivalent. The proof of this equivalence is
based on the following lemma which shows that the two sets on the right-hand sides
of (3.14) and (4.2)are equal.

LEMMA 4.4. Under the assumptions of Theorem 4.1,

{x e FEA(q, M, C) w(x) (q + d)Tx + o" >_ 0}
(4.3)

{x e FEA(q, M, C) g’ (2; x 2) 0, w(x) co(2) + w’ (2; x 2) }
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for any 2 E SOL(q, M, C); hence statements (d) and (e) are equivalent.
Proof. Let x be any vector belonging to the right-hand set in (4.3). Combining

(3.12) and (3.13), we deduce

() () + (x )(q + g).

Thus

(x) (q + d)x + () (q + d) + O,

where the last equality holds because 2 E SOL(q, M, C). This establishes one inclusion
in (4.3). To show the reverse inclusion, let x belong to the left-hand set in (4.3). By
the concavity of w, we have

o <_ (x) (q + d)x +_
w(2) (q + d)Th + cr-- (q + d)T(x-- 2) +w’(2;x-- 5)

-’(;x ) _< o.

Thus equality holds throughout and (4.3) follows. The equivalence of statements (d)
and (e) is now obvious.

Finally, we show that (c) (a). Before presenting the details of the proof, we
explain the key steps involved. First, we recall the GLCP (p, N, K) that is equivalent
to the AVI (q, M, C); see (3.4) for the definition of this GLCP. Consider the convex
quadratic program in the variable (x, A)"

minimize xT (q + Mx) bT

(4.4) subject to 0 q + Mx- AT,

Ax b >_ O, >_ 0;

this is the "natural" quadratic program associated with the GLCP (q, N, K). We will
show that condition (c) in Theorem 4.1 implies that this program has a nonempty set
of weak sharp minima; the proof of this implication will use Proposition 3.2. Thus by
Proposition 2.5, the minimum principle sufficiency holds for (4.4). Next by using a
similar proof technique as in [13, Thm. 13], we will establish that the GLCP (p, N, K)
has a nondegenerate solution. Proposition 3.1 will then imply that the AVI (q, M, C)
has a nondegenerate solution.

In what follows, let y (x, A); also let f(y) denote the objective function of (4.4).
Note that f(y) yT(p + Ny) and the matrix N is positive semidefinite; moreover,
the feasible region of (4.4) is precisely FEA(p, N, K).

LEMMA 4.5. Under the assumptions of Theorem 4.1, statement (c) implies that

(4.5) SOL(p, N, K) {y e FEA(p, N, K) Vf()T (Y ) < 0}

for any fl SOL(p, N, K).
Proof. Since SOL(q, M, C) : 0, it follows that SOL(p, N, K) # 0; moreover, the

optimal solution set of (4.4) is equal to SOL(p, N, K). The claimed equation (4.5) is
a consequence of the minimum principle sufficiency holding for (4.4); see Proposition
2.5. Thus by the analysis made above, it suffices to show that condition (c) in Theorem
4.1 implies that there exists a constant 7 > 0 such that

(4.6) xT(q + Mx) bTA >_ 7’dist (y SOL(p,N,K))
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for all y (x, A) E FEA(p, N, K). Let y be any such vector. Then x E FEA(q, M, C)
and A is feasible to A(x). Thus A(x) and the inequality (3.5) is valid for this pair
(x, A). We have

xT(q + Mx) bTA () + (x) b
_> 3‘-ldist (x SOL(q, M, C)) + adist (A A(x)),

where the last inequality follows from (3.5) and (4.1). Pick (x’, A’) SOL(q, M, C) x
A(x) such that

IIx x’ll dist (x SOL(q, M, C)) and I1 ’11 dist (A A(x)).

Since x’ SOL(q, M, C), it follows that w(x’) is finite and thus A(x’) 0. By part
(c) of Proposition 3.2, there exists A(x’) satisfying

By part (a) of the same proposition, the pair (x’, A) SOL(p, N, K). Consequently,
we have

dist (y SOL(q, N, K))

_< dist (x SOL(q, M, C))+ dist (A A(x))+ t1’- ll
_< (1 +/3)dist (x SOL(q, M, C)) + dist (A A(x)).

Thus by letting

( 17’ min 3’(1+/3)’a
it is easy to see that (4.6) must hold. [:]

LEMMA 4.6. Under the assumptions of Theorem 4.1, statement (c) implies state-
ment (a).

Proof. It suffices to show that the GLCP (p, N, K) has a nondegenerate solution.
By the expression of SOL(p, N, K) given in Lemma 4.5 and by expanding Vf(9)T (y
9), such a solution exists if and only if the following linear program in the variables
(x, A, ) has a feasible solution with a negative objective value:

minimize

subject to 0 q + Mx ATA,
Ax-b >_O, A_>0,

(q + (M + MT)2)T (X "2) bT(. ) <_ O,
;k + Ax b >_ e,

where e is the vector of all ones and (2,) is an arbitrary solution of the GLCP
(p, N, K). Assume that the GLCP (p, N, K) does not have a nondegenerate solution.
Since the above linear program is feasible, with (x, A, e) _= (2, A, 0) as a feasible so-
lution, the assumption implies that the program has an optimal solution with zero
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objective value. By letting (u, v, , w) be an optimal dual solution, we have

Mu + A (v + w) (q + (M + M)2) O,

-Au + b( + w <_ O,

eTw 1,

v,,w>_O,
--qTu + bT(v + w) + (bT 2T(q + (M + MT)2)) O.

Premultiplying the first equation by uT, the second constraint by (v + w)T, and the
last equation by -, adding the resulting constraints, using the fact that bT 5cT(q-[
M2) O, and simplifying, we deduce

(u (2)TM(u <2) + (v + w)Tw <_ O.

Since M is positive semidefinite and both w and v are nonnegative, the last inequality
implies that w 0, which contradicts the equation eTw 1.

Combining the above lemmas, we have the following proof of Theorem 4.1.

Proof of main theorem. From Lemmas 4.2-4.4 and 4.6, as well as the previously
mentioned equivalence of (b) and (c), we see that the following implications are valid:

(a) = (d): (e)

(c)

(b)

Consequently, all five statements (a)-(e) are equivalent.
In summary, Theorem 4.1 has shown that for a monotone AVI, the following five

properties are equivalent" (a) existence of a nondegenerate solution, (b) existence of
a nonempty set of weak sharp minima for the gap minimization problem, (c) validity
of an error bound in terms of the gap function alone, (d) a simplified representation
of the solution set, and (e) validity of the restricted minimum principle sufficiency for
the gap minimization problem.

We conclude this paper by giving an application of Theorem 4.1 that generalizes
the classical result of Goldman and Tucker [17] mentioned in the beginning of this
paper.

COROLLARY 4.7. Let q R be arbitrary, M Rnn be positive semidefinite,
and C C_ Rn be a polyhedral set. Suppose SOL(q, M, C) ? and FEA(q, M, C) is
contained in the null space of M +MT. Then the AVI (q, M, C) has a nondegenerate
solution.

Proof. Since FEA(q, M, C) is contained in the null space of M + MT, it follows
that xTMx 0 for all x FEA(q, M, C). Thus the two constants, d and a, of the
AVI (q, M, C) are both equal to zero. Moreover, it is easy to verify that the right-hand
set in (4.2) reduces to

{x e GluT(q + Mx) xT(q + Mx) >_ 0 for all u e C},

which is exactly SOL(q,M, C). Thus property (d) of Theorem 4.1 holds, and the
corollary is established.
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CONSTRAINED LQR PROBLEMS IN ELLIPTIC DISTRIBUTED
CONTROL SYSTEMS WITH POINT OBSERVATIONS*

ZHONGHAI DING, LINK JI$, AND JIANXIN ZHOU

Abstract. In this paper, we study (bound constrained) LQR problems in distributed control
systems governed by the elliptic equation with point observations, which are motivated by problems
in corrosion engineering and contemporary "smart materials." Several regularity and characteriza-
tion theorems have been established. In particular, three decomposition formulas are obtained to
characterize the optimal control and optimal layer density, and are used to direct the numerical
computations. These results cannot be obtained by the traditional Galerkin variational method. In
the process, several useful lemmas are established, which are of independent interest. We point out
that the classical Lagrangian multiplier method (LMM) may fail to provide a reliable numerical algo-
rithm. Based on our characterization results and the boundary element method, two algorithms are
proposed to carry out numerical computations. It has been shown by our numerical experiments that
both algorithms are efficient and insensitive to the partition number of the boundary. An adaptive
local refinement scheme has also been designed to handle the rough behavior of the optimal solution
around sensor locations.

Key words, linear-quadratic regulator, distributed boundary control, point observation, poten-
tial theory, boundary element method, numerical method

AMS subject classifications. 49N10, 49J20, 93C20, 31A10, 65N38

1. Introduction. Let t be an (interior or exterior) open domain in nr (Af
2, 3) with bounded smooth boundary F F0 U Fc (i.e., F is a Ca surface). We study
the following linear-quadratic regulator (LQR) problem in a distributed parameter
control system governed by the elliptic equation

where

LQR
subject to

(i.I}

Aw(x) f(x),
Ow(x)

On

9frcu(x)dax -Jfrog(X)da

in t,

on Fo,

on lc,

+In f(x)dx,

f(x) is a given (loading) function in t,
o is the outward normal derivative,On
g(x) is a given Neumann type boundary data on F0,
u E b/, is a Neumann type boundary control on Fc,
5/C L2(Fc), is the admissible control set,
/, #k > 0, 1 _< k _< M, are given weighting factors,
Pk C9t, 1 <_ k <_ M, are prescribed "sensor locations,"
Zk , 1 <_ k <_ M, are prescribed "target" values at Pa.
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In the above setting of the LQR problem, the loading function f(x), Neumann
boundary data g(x) and the admissible control set 5/ will be chosen such that the
solution w(x) of Neumann problem (1.1) is continuous on , otherwise point obser-
vations w(Pk) (1 _< k _< M) will be meaningless. In fact, f can be any given function
in Hr(t), r > -1 when A/" 2 and r > -1/2 when Af 3; g can be any given function
in L2(F0) when Af 2 and in LP(F0) (p > 2) when Af 3. The admissible control
set will be specified later (see (2.3) and (3.4)).

The study of the above system is motivated by problems in cathodic protection
systems in corrosion engineering (see [13] and [14]). Cathodic protection systems
have been employed extensively in ships, offshore structures and pipeline networks,
and other structures in a corrosive environment. The physical domain gt occupied by a
"corrosive fluid" can be either finite, as in the case of electrolyte container protection,
or infinite with a bounded boundary, as in the case of ship propeller protection where
t is the sea surrounding the ship. The boundary F is the walls of the container or the
surface of the ship, and F0 is the insulated (or painted) part of the boundary. The only
control is the current (w u) on the part Fc of the boundary. So the LQR problem
is to obtain an optimal current u(x) on Fc (anodes) that produces a desired potential
distribution w(x) in a certain interested area (cathode) which is to be protected. For
contemporary "smart materials," Pk, 1 _< k _< M, are the locations of piezoelectric
sensors to measure the deformation at these points and w(P), 1 _< k _< M, are called
point observations. We wish to find the values of u(x) on F such that at sensor
locations P, 1 _< k _< M, the observation values w(P) are as close as possible to
the target values Z with least possible control cost fFc u2(x)dax" The formulation of
LQR can also be adjusted to meet other physical interest.

General LQR problems governed by elliptic equations on smooth domains were
first studied by J. L. Lions in Chapter 2 of [9] and were based essentially upon the
Galerkin variational method, which leads to a characterization formula of optimal
control coupled with an adjoint system. Unfortunately it is not directly applicable
to our LQR problem. Recently, Ji and Chen [?] studied the above LQR problem
by using the potential theory and boundary element method (BEM). Their approach
has been shown to provide certain important advantages over the traditional Galerkin
variational approach. It can provide rather explicit information about the control and
state, and it is amenable to direct numerical computation through BEM. Motivated
by the observation of their numerical results and computer graphics, Ji and Chen [7]
proved some regularity results. They show that for Af 3, LQR has no nontrivial
solution and for Af 2, LQR has a unique solution that may contain certain singu-
larities at sensor locations. At the end of their paper, they proposed to study the
LQR problems with a bound constraint on the control. Once an inequality constraint
is added to the LQR problems, numerically it becomes very diificult to handle. The
optimal control behaves roughly, especially around the sensor locations. The un-
known singularities around sensor locations may result in divergence and instability
in numerical computations.

Motivated by Ji and Chen’s results, we will use the potential theory to study the
constrained and unconstrained LQR problems. We first prove certain regularity and
characterization results for unconstrained LQR. From our characterization theorem
and the singularity decomposition formula of optimal control, we point out that the
classical Lagrangian multiplier method (LMM) is not reliable to provide numerical
solution for unconstrained LQR. Then we establish several regularity and character-
ization theorems for the constrained LQR. Our singularity decomposition formulas
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play key roles in characterizing the singularities in optimal controls and optimal layer
densities. In the course of the proofs, several useful lemmas have been established,
which are of independent interest. Based upon our (decomposed) characterization
results for the constrained LQR, a gradient truncation method and an iterative trun-
cation method have been developed to carry out numerical computations on several
test problems. In both methods, truncation techniques have been proposed to han-
dle the bound constraints. An adaptive local refinement scheme is proposed in the
iterative truncation method to enhance the convergence and stability in numerical
computations. Our test problems show that both methods are efficient and insensitive
to the partition number of the boundary of domain. This is a significant advantage of
our methods over other numerical methods. Since the optimal control problem under
consideration is governed by a partial differential equation, the partition number of
the boundary can be very large and any numerical method sensitive to the partition
number of boundary may fail to carry out numerical computations.

The results in this paper are derived for interior domain problems. For exterior
domain problems, parallel results can also be obtained with suitable modifications.

Before the discussion of LQR problems, let us briefly recall the potential theory,
BEM, and Ji and Chen’s results.

Let E(x, ) be the fundamental solution of the Laplacian, i.e.,

(1.2)

It is well known [1, p. 214] that

(1.3) E(x,) --lnlx- I, x, e N2,
1 N3

4r Ix- 1’
x,

According to [1, Chap. 6], any solution w of (1.1) can be represented as a sum of a
volume potential and a simple-layer-potential:

(1.4) w(x)= [-/nE(x,)f()d]+
where U is called a layer density, to be determined from the boundary integral equation
(BIE)

1 Jfr OE(x,) Ow(x) O faE(x )f()d,(1.5) (x) + On ()da On + xEF.

Since the last term of (1.5) is known and fixed once the inhomogeneous term f(x) is
given, without loss of generality, from now on we assume f(x) =_ O. Then the BIE for
the layer density r/(x) becomes

(1.6)
fr OE(x,+ 8y: x e r0,

+ OE(x,o  x e

Once the layer density r/is found, the solution w(x) of (1.1) can be computed from
(1.4). Because BIE (1.6) is linear in terms of r/, g, and u, for simplicity, throughout
of this paper we assume g(x) =_ O.
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In BEM, the boundary F F0 t Fc is divided into N pieces (elements). N is
called the partition number of the boundary. Assume that the layer density (x) is
piecewise smooth, e.g., piecewise constant, piecewise linear,..., etc.; then the BIE
(1.6) becomes a linear algebraic system of order N. This system can be solved for
r(x) and then w(x) can be computed from a discretized version of (1.4) for any x

The following example for LQR was considered by Ji and Chen in [7].
EXAMPLE 1. For LQR, let Af 2 and be the unit circle centered at the origin.

l<k<3, ,3)=(1 0,1), andFo=O, Fc=FAssume that M 3 Pk k- Z(1,2
They have applied the LMM to reformulate the optimization problem of Example

1 and implemented numerically by BEM. Since only linear equality constraints are
involved in the LQR problem, LMM leads to solving a linear system. They obtained
Fig. 1 for the optimal controls with different boundary partition number N.

o

-1

-2(,,

N=32

N,’64

N=IT.

I
785 1.57 2.36 3.14 3.93 4.71 5.5 6.28

FIG. 1. Optimal controls u(x) of the LQR in Example 1, computed by LMM, for different
boundary partition number N.

In observing Fig. 1, they found that when the boundary partition number N
increases, the magnitudes of the optimal control u(x) at sensor locations Pk increase
without bound. Motivated by this observation, Ji and Chen proved the following
theorem.

THEOREM 1.1 (see [7]). (i) For A/" 3 and F0 0, LQR does not have any
nontrivial optimal control u* in L2(F);

(ii) For Af 2, LQR has a unique optimal control u* that is differentiable at
every point x E Fc, x Pk, 1 <_ k

_
M. While around Pk, 1

_
k

_
M, u* has at worst

a logarithmic singularity of magnitude (.9(ln Ix Pk]).

They were unable to characterize singularities in the optimal control of LQR.
In this paper, the singularities in optimal controls of constrained and unconstrained
LQR problems are displayed explicitly (see Theorems 3.9 and 4.4).

Naturally, for practical and numerical purpose, a bound constraint of control,
[u(x)l <_ B, should be added to LQR.
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2. Constrained LQR problems and gradient projection method. Con-
sider the following constrained LQR problem:

Constrained
LQR

M

min J(u) E #klW(Pk)- Zk[ 2 + 3 fr u2(x)d:’
k=l

subject to

(2.2)

Aw(x) 0, in f,

O (x) O, on Fo,On

On u(x), on G,

(2.1)

where

(2.3) b/= {v E L2(Fc) frc u(x)da: 0, Iv(x)l< B on re}.
Let

L(Fc)-{fELP(Fc)Ifr f()dcr-O}, l_<p<oc.

When N" 2, b/is a bounded, closed, and convex subset of Lg(r). By [10] and the
Sobolev imbedding theorem, (2.1) admits a solution w(x), unique up to a constant,

for any u L02(F). WhenN" 3 /g isin g(ft) C C’() where 0 < a <
a bounded, closed and convex subset of L(G) for any p > 2. By [4], [5], and the
Sobolev imbedding theorem, (2.1) admits a solution w(x), unique up to a constant, in

WI+-’P(Ft) c C’() where 0 < c < p-2 for any u b/. Thus the point observationp

makes sense. For each given u e b/, (2.1) has a unique solution w e C(ft) such that

M M

E #klw(Pk)- Zkl2 minE #klw(Pk) + c-
k=l k=l

A calculation shows that w(x) must satisfy

M

(2.4) E #k(w(P) Zk)
k=l

Therefore the constrained LQR problem is well posed. Once an optimal control is
found, the optimal state can be obtained by solving (2.1) and (2.4).

By [4], [5], [10], the solution Tu of (2.1) satisfying

M

o
k=l

defines a linear bounded operator T from Lo(r) to C’a() with 0 < ct < 1/2 for
Af= 2 and fromL(F) toC,() with0 < c < p-2 andp> 2 forAf=3. Thusp
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the solution w(x) of (2.1) and (2.4) can be expressed as

M
1

kltkZk"
THEOREM 2.1. The constrained LQR problem has a unique optimal control u* E

and a unique optimal state w* e C() satisfying (2.1) and (2.4), such that

(2.5) J(v) >_ J(u*), Vv e H.

Proof. When Af 2, the coristrained LQR problem is well posed in Hilbert space
L2(Fc). By applying Theorem 1.1 of Chapter I of [9], we obtain that the constrained
LQR problem admits a unique optimal control u* / and a unique optimal state
w* C() satisfying (2.1) and (2.4) such that (2.5) holds. When Af 3, the
constrained LQR problem is no longer in Hilbert space. Hence Theorem 1.1 of Chapter
I of [9] cannot be applied directly to the above constrained LQR problem. Let p > 2
and L inf{J(u)’u 5/}. Assume {un} c b/and {wn(x)}, the solution of (2.1) and
(2.4) with u(x)= Un(X), such that

1
L <_ J(un) <_ L +-.

n

Since 5/ is bounded, closed, and convex (therefore weakly closed) in LP(Fc), there
exists a subsequence {u. } c {Un} and u* E 5/such that

u* Lplim Un weakly in (l"c).

Hence

p-2
lim Tu=. Tu* weakly in C’(), 0 < a <

Let w*(x) be the solution of (2.1) and (2.4) with u(x) u*(x). Then

p-2
lim Wn, w* weakly in C’(), 0 < a <

Noticing that the injection from C,1 () to C’a2 () is compact for any 0 < a2 <
al < 1, we obtain

p-2
lim wn=w* strongly inC’(), 0<a<

P

Hence

M M

mlimoo#k Iw(Pa) Zkl 2 Z#a Iw*(Pk) Z,I 2

k=l k=l

By (2.6), we have

mlim9/ r (Un’ (x))2dax >- / fr (u*(x))2dax"
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Thus

L lim J(un.)_ J(u*)>_ L.
m-cx

Therefore the existence of optimal control of the constrained LQR problem is proved
when A/= 3. The uniqueness of optimal control can be easily obtained by using the
strict convexity of J(u) on b/.

Thus the existence and uniqueness of the optimal control of the constrained LQR
problem is established. But with this constraint--an inequality constraint, numeri-
cally the problem becomes very tough to handle. There are three major difficulties in
numerical computations:

(1) The consistency condition fro u(x)dax 0 a linear equality constraint;
(2) The Neumann boundary condition

0
u(x)On

For each u(x), equation (2.1) has many solutions w(x), which is unique up to a
constant;

(3) The bound constraint on control, lu(x)l <_ B, x E Fn inequality con-
straint.

Basically there are two types of approaches in numerical algorithm design for the
(constrained) LQR problems. The first is to use the layer density 7 as the variable
of the LQR problem. The state variable w and control variable u are expressed as
functions of 7. Then difficulties (1) and (2) are automatically resolved. But difficulty
(3) becomes much more complicated. The second is to use the control u as the
variable of the LQR problem. Then difficulty (3) becomes more direct but difficulty
(2) remains and difficulties (1) and (3) are mixed up.

Due to (1.4) and (1.6), the gradient VJ of the objective functional J with respect
to either the control variable u or the layer density variable 7 can be computed directly
without invoking any adjoint systems.

Using the layer density as the variable, we apply the gradient projection method
(GPM), a classical method, to solve the constrained LQR problem. So the state,
control, and objective functional are all represented as functions of the layer density.
Therefore the only difficulty is to deal with the inequality constraint. This method
can be briefly stated as following:

Step 0: Given initial guess 70;
Step 1: Using (1.4) and (1.6) to solve for state variable w0 and control variable u0;
Step 2: Compute VJ(70);
Step 3: If some constraints are active, project VJ(T0) to the constraint surface;
Step 4: Find a0 argmine J(70 cVJ(70)) subjected to lu(70 aVJ(70))l _< B

and set 7 70 a0VJ(70);
Step 5: If 17- 701L2(r) < Ss then compute u(70 a0VJ(70)), output, and stop

else set 70(x) 7(x} x E F, goto Step 1.

REMARK 1. (1) Step 1 can be performed numerically by BEM [1].
(2) In Step 4, the linear search is still an inequality constrained minimization

problem.
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(3) More technical details have been omitted in Step 3 because this method is not
important in this paper.

The GPM has been used to solve the test problem stated in Example 1. The
numerical values of the cost Jmin corresponding to different partition numbers N of
the boundary and different bounds B are presented in the first column of Table 2.
The optimal controls are shown in Fig. 2.

.2

.1

0

-o1

-.2

-.3

-4

785 1,57 2.36 3.14 3.93 4.71 5.5 6.28

N128

FIG. 2. Optimal controls u(x) of the LQR in Example 1, computed by GPM, for different
boundary partition number N with B 0.5.

From Table 2, we found that, when the bound B is fixed and the partition number
N of the boundary increases, the value of Jmin increases. This is certainly not what
we expect. The reason can be explained as follows. In the above GPM, the inequal-
ity constraint is treated pointwisely. When the partition number of the boundary
increases, more inequality constraints are involved, hence the value of Jmin may in-
crease. So this method is sensitive to the partition number of the boundary. And
compared to the two numerical algorithms developed in this paper, this method is
also rather slow.

Observe that the profiles of Figs. 1 and 2 are quite different. Since the control
bound used in Fig. 2 is considerably large and is active only on a very small part of
the boundary, the profile of Fig. 2 should be quite close to that of Fig. 1. What is
wrong? To answer this question, we need more information about the optimal control.

3. Characterizations of optimal control for LQR problems. Before giving
the main results of characterization of optimal control, let us first introduce the simple
layer potential S, boundary operators/C and/C*, and several basic properties of these
operators.

For any f E L2(F) and x E A:, define the simple layer potential by

S(f)(x) E(x, )f()da

I1 1-fr Ix : 1 f()dr’ j3,

The simple layer potential S is well defined and is continuous across the boundary
F (see [I, pp. 223-225]). For any f L2(F) and x F, define the boundary operator
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and/C* by

(3.2)

o
E(, )I()d(lf)(x) p.v.

lim fr O---E(x, ):()da(

e 0+

1
lim [}-e-0+ Jr

<n,x- > f()dcr, A/= 3,

f()da, N" 2,

(3.3)

(tC* f)(x) p.v.fr oE(x,)f()da
lim ] 0
e-0+ [{Ix-l>e} On--- E(x’ )f()dcr

4-o+ N{l-l>e}
____1 lim [

<nxX-- >
f()da, A/" 3,

f()da, N" 2.

For the operators defined above, the following results are well known.
THEOREM 3.1 (see [1], [3]). Let 1 <_ p < +oc and 0 <_ s <_ 1; the following

operators are continuous: . w,,(r) w,(r);
:*. w,(r) w,(r).

In addition, l (1*, resp.) is the adjoint operator of l* (h:, resp.) in Le(F). Here
Ws,p(F) denotes the usual Sobolev space.

THEOREM 3.2 (see [1]). Let s > 0 and f E L2(F); then

s. H’(r)- HS+ (f)

is a linear bounded operator, hence a linear bounded operator from H(r) to H+(r),
and

lim --S(f)(x) f(y) -4- 1C*(f)(y), a.e. on r,
xEf,x--y

where H8 (r) W8’2 (r).
THEOREM 3.3 ([8], [11]). There exists an absolute constant e e(r) > 0 such

I + h:* is invertible in Lg(r), where L(F)=that for 2 <_ p < +o, the operator -{f e LP(F)I fr f()dcr 0}.
Notice the fact that the operator 1/2I + K:* is a linear and bounded operator from

LP(F) into n(r) for 1 < p < +cxz. Then there exists a unique foe Lv(I’) such that

I+ fo =0, fo()dcr( 1.
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It is known (see pp. 286-287 in [1]) that Sf0 constant :/: 0 for any t c 3 and
Sf0 constant - 0 for "most" domains Ft C . Indeed, 8f0 : 0 for any domain
Vt 2 with diameter sup{Ix1 -x21 xl, x EFt} < 1 [6], and any bounded
domain Ft c can be transformed into a domain with diameter less than 1 by a
scale transform x -- x/k, x E , with a sufficiently large k > 0. Thus, throughout
this paper we assume $f0 0 for . Define

L_yo(F) {gLP(F)I rg()fo()da= 0}.
Applying the interpolation theorem [10] and the results in [8], [11], we can easily

prove the following theorem.
THEOREM 3.4. For 0 <_ s <_ 1 and 1 < p <_ 2 + , where is an absolute constant

that depends on F, 1/2I + K:" H(F)I"ILo2(F) H(F)[’IL2 fo(F) is invertible and

!12 +/C" L(F) L_yo (F) is invertible.
With the above theorems, we can prove the first main theorem, a characterization

result of optimal controls for LQR problems in 2 with the admissible control set

(3.4) Lt L(Fc) {u L2(Fc)l u(x)dax O}
THEOREM 3.5. Let t C 2. The LQR problem admits a unique optimal control

u* 5/ L(Fc) and a unique optimal state w* C(-) satisfying (2.1) and (2.4)
such that

(3.5) J(v) >_ J(u*), Vv e L(F).

Furthermore the optimal control is characterized by

(3.6) u*(x)=--
-1 M

z + x:) + Co, x e
k=l

where

(3.7) Co=
1 fr (1 )-1 M

7 Irl + C E#k(W*(Pk) Zk)E(P, .)(x)daz
k=l

and

(3.s) u* e H1/2-(r) w* e H-(a) V 0 < e < 1
2

Proof. Since the LQR problem is well posed in Hilbert space L:(F), the existence
and uniqueness of the optimal control u* L(F) and optimal state w*, as well as
(3.5) can be obtained by applying Theorem 1.1 in [9] and the Sobolev imbedding
theorem. We need only prove (3.6)-(3.8). From (1.4) and (1.6), w(x) S o (1/2 +
/C*)-l(x) +C is the solution of equation (2.1), where C is an arbitrary constant and

0, x F0,(3.9) (x) u(x) x Fc
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as well as u E Lo2(rc). Hence

(.o) *(x) s o + * *(x) + c*,

where C* is determined from (2.4), i.e.,

Therefore, from (3.5) we have

(3.12) (u) _> 2(u*), vu e Lo2(r),
where

M -1

For any u e Lg(r), u* + O(u- u*) Lo2(r) V0 e [0, 1],

lim
1

o-o+
[(u* + o(u- *))- (*)1 > 0.

Denote

+ 9/fF u2(x)dx"

Z ,(*(P)- z).

We obtain

Zs o z + :* (- *)(P)
k=l

+’ fr u*(u- u*)da > o, vu e Lo2(r).

Using the definition of the simple layer S, we have

(3.13) fr E/3kE(Pk’) I + K,* (--
k=l

+9/Jfr u*()(u()- u*())da >_ O, Vu e L(r).

In IPk- l and E(Pk ") e H(r) for 0 < s < 1/2 ([7]). It isNote that E(Pt,) -easy to verify that

M
1

(3.14) E ZE(P, .) H(r) L2tfo (F), 0 _< s < .
k=l

Thus, applying Theorems 3.1 and 3.4, we have

]E3aE(Pk,) + u*() (u()-u*())dcr >_ O, ’flu e L(r).
k=l

(3.15)
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Since Lo2(Fc) is a linear space, we obtain

jfr [1 (1i)-1 M

(3.16)
2 + K EZt:E(Pk,) + u*() u()do’ 0, Vu e n(r).

For any u C L2(rc),

u- u()dc c L(r).

Thus, by the Fubini theorem, we have

(3.17)jfr I+IC E3kE(Pk,)+C+u*() u()da=O,
k-1

where

" Irl 2 + Y-" E/3E(P., .)(x)dcrx.
k----1

By Theorem 3.4, (1/2I + K:) -1 -M= ZE(P, .) C L(F), we have

(3.19) C=
1 fr ( 1

Irl E I + E3E(Pk, .)(x)do’:.
k--1

It follows from (3.17) that

-1 M

k----1

a.e. on

Therefore

(3.20) u*(x) -- -I + EkE(Pk, .)(x) C, a.e. on
k=l

where C is determined by (3.18) or (3.19). By (3.14) and Theorem 3.4,

1
(3.21) u* C H1/2-(r), 0 < <

By Theorems 3.2 and 3.3, it follows from (3.11) and (3.22) that

w* E H2-C(gt) 0 < e < 1
,-.o
2

Thus we have proved (3.6)-(3.8). 13
To see the profile of the optimal control u*, we need to know more information

(i.e., singular behavior) of u* (x) at each sensor location Pk, 1 <_ k <_ M. The singular-
ities of the optimal control u* around sensor locations are displayed through Theorem
3.9. Let us first establish the following two lemmas.
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LEMMA 3.6. For ft C NX (N" 2, 3) and P E F, we have

(3.22) ]E(P,.)(x) =S (oE(P,)) (x), Vx E F.

Proof. For x e r and x # P, let ae f \ {B(x, e)[.J B(P, e)} and F Oa for
any sufficiently small e > 0, where B(x, e) is the ball of radius e centered at x. Let
n always denote the unit outward normal along F for F. It follows from the
divergence theorem that

0 E(P,C)] E(x,)da.

Thus we have

rE(P, .)(x)

E(x ()E(P, ()da(p.v. n
lim fr 0

E(x,()E(P,
-0+ [{l-(l>(}{,P-(,>(} On(

__E(x’)E(P’)da OB(,) --E(x,)E(P,)daon

lim { 0 0
E(x)E(p,()da

o+ E(P,)E(x,)d o(,) On

lim { 0
o+ (_>(_>o(’)(’

( 0 __0 E(x,))da(+
OS(,e) E(P’ )E(x, ) E(P,)

fa ( 0 u’n(O E(x’ )) da }"+ E(P, )E(x, ) E(P,)

Therefore
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1 1E(P, x)
0

E(P, )E(x )dcr

0
E(P, )da.E(x,)-5-

Hence the lemma is proved.
LEMMA 3.7. Let C NAt (N" 2, 3) be a bounded domain with smooth boundary

F. Then there exists a constant C C(F) such that

I(,, x- )1 <- c(r)lx- 1
Proof. See [1, p. 222].
LEMMA 3.8. For t C 2, let {Pk}=l C F and {/3k}t=l c satisfying

M

-./3 =0.
k--1

Then

(3.24)

+ ZE(P,.)(x)
k--1

2EkE(P,x) 2 -I + l ZS 0
E(Pk,) (x)

k--1 k--1

E 2 ] E P
k----1

and

(1 )-.M (__Tn)-I + tC E/kS 0
E(P, ) e C(F).

k=l

Proof. From Lemma 3.6, we can see that

EkE(Pk,x) -I + IC (2 EI3kE(Pk,) + Co)(x) 2S()(x),
k--1 k--1

where

(3.26)
o
E(P, )

k=l

(3.27) Co
M

Irl
ZE(P, x)d.

k--1

Applying Theorem 3.4, we obtain that

+ ZE(P,.)(x)
k--1
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2E ZkE(Pk, x) 2 - + ;C E/kS E(Pk, ) (x)
k--1 k=l

E 2/9k r E Pa
k=l

Since

o
E(P, ) < He, P >

One 2 IP 1
and F is smooth, we obtain

0
(3.28) (0n E(Pk, ) e L (F)

by applying Lemma 3.7. Hence by Theorem 3.2, we have

0 H1S(nE(Pk,)) c (F),

and by Theorem 3.4 and the Sobolev imbedding theorem

-I + ;C E/98 0
E(P, ) C C(F).

k--1

Applying Lemma 3.8, we obtain our second main theorem--the singularity de-
composition formula of the optimal control.

THEOREM 3.9. Under the assumptions of Theorem 3.5, the optimal control can
be decomposed as

(3.29)

1( )-IMu*(x) - I + ;C E#k(W*(Pk) Zk)E(Pk, .)(x) + Co
k--1

M-- ,(*(P)- Z)E(P,x)
k=l

+- + ,(*(P) z)s
o
E(P,) (x) + c

k=l

and

(1 )-IM (n()+ ,(*(P) z)s
o
E(P,) e c(r),

k=l

where

C Co + - (w* (Pk) Zk)E(Pk, ()da(.
0’ k:l
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TABLE
The values of optimal control at sensor locations.

LMM GPM (3.29)
z *(P) ,(P) ,(P)

0.7562 0.7799 4-00
0 0.4876 0.4402
1 0.7562 0.7799 4-00

From Theorem 3.9, we can see that the first term of the right-hand side of (3.29)
contains all possible singular terms and that at sensor location Pk, 1 < k < M, the sign
of the singular term is completely determined by the sign of the term (w* (Pk) Zk).
Now we return to Example 1 and utilize (3.29) to answer the question asked at the
end of 2. Let us examine the values of the optimal controls u* of the LQR and the
constrained LQR at three sensor locations, which are computed by LMM and by our
GPM.

From Table 1, we can see that the profiles of u*’s in Fig. 2 computed by GPM are
correct and the profiles of u*’s in Fig. 1 computed by LMM are not correct because
the middle cusp, according to (3.29), should be pointed to -oo.

Next we analyze the failure of LMM. Notice that in the numerical computation
of LQR problems, LMM is implemented by BEM with the layer density r/ as the
variable of the problems. The next theorem indicates that the optimal layer density
/* behaves just like the optimal control u*. It can also be decomposed into a singular
part and a bounded part.

THEOREM 3.10. Under the assumption of Theorem 3.5 and F0 O, the optimal
layer density l* has the same possible singularities as that of the optimal control u*
and can be decomposed into following singular part and bounded part:

(3.30)

(3.31)

)_1

(3.32)

where C is defined in Theorem 3.9.

Proof. From Theorem 3.9, we already knew that

It then follows from Theorem 3.5 that u* E HS(F),0 < s < 1/2. Since t c 2 has
bounded smooth boundary F, K:* is a linear bounded operator from HS(F) to C(F)
[1, pp. 249-250]. Therefore

e c(r).
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By Theorem 3.3, we have

ff + * o ** e c(r).

Hence (3.31) and (3.32) are bounded. To prove the theorem, we only need to note
that

(1 )* (x) 2 + * * (x) **().

Thus

*() + * *(x)

2,*(x) 2 +:* :**(x). D

In BEM, the layer density is approximated by piecewise smooth elements. Since
the optimal layer density has the same possible (logarithmic) singularities at sensor
locations as the optimal control, many elements are required around each sensor
location for a good approximation. But this will cause the system size to be too large
to handle. The following facts show how poor the approximation is.

(3.33) (In Ixl- (in 5- 1))2 dx min (ln Ixl- y)2 dx (25)1/2
5 yE 5

II ( 5) II rain ,]lnx-(ax+b)]]L2(o,,)-- -1/2(3.34) ln x- x- In 5-
L2(0,5) a,be

(3.35)

lnx_ (2x2 4 1)x + In- L2(O,,)

min lnx (ax2 + bx + c)llL(0,
a,b,cE

7 + higher-order terms.

In other words, to have an accuracy of order 10-4 for the optimal layer density, one
must let the length 25 of element be of order 10-s. So LMM cannot provide us a
reliable numerical solution.

Since the GPM is sensitive to the partition number of the boundary and rather
slow, we wish to develop some fast and reliable numerical methods for the constrained
LQR problem. The next section will be devoted to this purpose and the derivation of
some characterizations of optimal control of constrained LQR problems.

4. Characterizations of optimal control for constrained LQR problems.
We first establish the following important lemma.
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LEMMA 4.1. Let -oe < a < b < +oe, f(x) be a Lebesgue measurable function on

(a, b), and B > 0 be given. Then there is a C E such that

(4.1)

where

(4.2)

ib[f(x) + C]Bdx O,

B
If(x) + C]B f(x) + C

-B

if f(x)+C>B,
if -B <_ f (x) + C <_ B,
if f(x) + C < -t3,

is the truncation of the function f(x) + C by the bound B, and the map --defined by
b

(A) If(x) + )qBdX,

is continuous and increasing.
Proof. The function (A) is obviously well-defined on and

-B(b- a) < (A) < B(b- a).
First we will prove that (A) is an increasing continuous function. Suppose A1,
E , ,1 ,2, and A2 ,1 2B, and let

Then

Therefore

I1 {X e (a, b)l f(x) > B-/1},
/2 {x e (a, b) B-A2 <f(x) <B-
I3 {x e (a, b)[ B- ,1 <_ f(x) < B- ,2},
/4 {x (a,b)] B- ,2 f(x) ( -B-/1},
h {x e (a,b)l f(x) < -B- .}.

I, UI.UIaUI4UI (a,b) and w

,b4(A2)- 4(A1) (If(x) + A2]B -If(x)+ ik]B)dx

(IX(x) + a],, -IX(x)+ l],,)dx

/ / (If(x) / A2]B -[f(x) / ,l]B)dx

+ f/(If(x)+ 2], -If(x)+ l])dx

/ ]i (If(x) / A2]B --[/(x) / ,l]B)dx
4

+f (If(x) + a] If(x) + a,],)dx

f/9. (13 --If(x)+ /l]B)dX + f/3 (/2-/l)dx
+ Ji4 ([f(x) + A2]B + B)dx > O.
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Hence

and

0 < ()- ()

_< m({ e (, b/I e a -< (/< -e a }/
nt-(b a)(,2 -/1) + Bmes({x (a,b)l B- ,’2 < I(z) g-- ,1}).

Applying Lusin’s theorem, we have that for any given e > 0, 5 > 0 such that if

IA2- All < 5, then

(4.3) I()- ()1 < .
Thus (A) is an increasing continuous function. Note

lim mes({x e (a, b)l f(x) > B A}) b- a

and

lim mes({x E (a, b)l f(x) < -B }) b- a.

Thus

lim (I) B(b- a),
A-foo

lim () -B(b- a).

Therefore there exists a C E N such that

(c) 0.

Using the same method, we can prove the following lemma.
LEMMA 4.2. Let f(x) be a Lebesgue measurable function on Fc and let B > 0 be

given. Then there exists a C such that

(4.4)

where

(4.5)

[f(x) + C]Bda O,

B,
[f(x) + C] f(x) + C,

-B

if f(x)+C> B,
if -B <_ f(x) + C <_. B,
if f(x) + C < -B.

Denote

(4.6) a.e. on Fc}.
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THEOREM 4.3. The constrained LQR problem has a unique optimal control u* E
N and a unique optimal state w* C() satisfying (2.1) and (2.4). The optimal
control is characterized by

[1(1 )- M

(4.7) u*() I + pa(w*(P) Z)E(Pk,) + C Vx re,
k=l B

where C is a constant such that

[1(1 )- M ](4.8) I + ,(w*(P) Zk)E(P,) + C da O.
k=l B

Pwof. The existence and uniqueness of the optional control u* /d and the
optimal state w* follow from Theorem 2.1. So we only have to prove (4.7) and (4.8).
Denote

#(w*(F)- z).

For ,Q c ,2, repeating the same argument as (3.9)--(3.15) in the proof of Theorem
3.5, we have

(4.9 I + K flE(P,4) + u*() (u() u*())da 0, Vu e N.
k=l

Since u, u* N, we obtain

(4.10)
where C is a constant in Lemrna 4.2 such that

fr [(1 )-1 M ](4.11) -I + I E/kE(Pk,.) + C
k=l

Let

(4.12) G()= I+
M

Z(P,) + c,
k--1

(4.13) a() .-[G(.)] Z I + ]C E(P, ) + C
k--1 B

then ’5, b/. For any v b/we have

(4.14)

+ r Z,(P, ) + c + () (v()
k=l

:/ (a()+ -())(,()- g())da

[ (a()- z)(()+) + [ (a()+ B)(()-
Jr

>_0,
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where

and F- {x rl() < -B}.

Let u()= 5()in (4.10) and v()= u*()in (4.14). We have

jfF {1( 1 /
-1 M }(4.15) -i + E/kE(Pk,) + C + u*() (t() u*())dcr >_ O,

and

1 1
K:/(4.16) 9fr (I+ -ZE(P,) + C + e() (*() e())d > 0.

k--1

Adding (4.15) to (4.16), we obtain

*() e())de < 0.

Therefore

u*() 5() a.e. on rc.
Thus we have proved (4.7) and (4.8). For t C R3, using Theorems 3.3 and 3.4, the
proof of (4.7) and (4.8) is exactly the same as above.

REMARK 2. The constant C in (4.7), the expression of optimal control, is uniquely
determined from (4.8), if Fc is connected. When Fc is not connected, the constant C
may be not unique. In this case, the set of all such C’s is a bounded closed interval.
For all C in this interval, the value of the optimal control remains the same.

For t C 2, coupled with the decomposition formula (3.29), the Characterization
formula (4.7) can be applied in numerical algorithm to compute the exact value of the
optimal control at any point x E F. Unfortunately, the decomposition formula (3.29)
is only valid for t C R2. For the same purpose, we will establish a decomposition
formula for C }3. The proof is different and much harder.

THEOREM 4.4. Let t C 3 be a bounded domain with smooth boundary F. Let
{k}//=l C satisfy

M

/ 0.
k--1

Then the following decomposition formula holds:

(4.17)

(4.18)

-1 M

k--1

M M

=2EE(Pk, x)-4EkS (OE(Pk,
k= k= On

-1 M

k--1 On
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with

1 jfr[
M M (OE(pk,))]daIF

2E kE(Pk, ) 4EkS Onk=l k--1

where (4.17) is the singular part with a dominant term 2 -Mk=: IE(Pk, x) and (4.18)
is the bounded part.

To prove the theorem, we need several lemmas.
LEMMA 4.5. Let t C 3 be a bounded domain with smooth boundary F. For any

PEF,

E(P, .) e L"(r), <_ a < 2,

and

E(P, .) L(r).

Proof. See [2].
By Theorem 3.4 and Lemma 4.5, the function (1/2I+K:) -: -kM__ kE(Pk, ") is well

defined only in L(F) with 2 s < a < 2, where s is defined in Theorem 3.4.
LEMMA 4.6. For x, y > 0 and 0 < < 1, we have the following inequality:

M()I-I max
zl+ +

where M(a) ()-.
Proof. See [2].
LEMMA 4.7. Let C 3 be a bounded domain with smooth boundary F, and

0 < < 2. There exists a constant C C(F, a) such that

Zl,x_
Pro@ The proof follows from a direct calculation, and thus is omitted.

1+ there ezists constetLEMMA 4.8. or a z, r,0 < 1, < <
C(P, ,) > 0 sch that

1 1 1

I 1+ I 1a c(r,,),
i 1.

Pro@ Using the inequality (a + b) a + b, a > 0, b > 0, 0 < < 1, we have

< I 1 + I 1

1 1 1 1

x- 1-(-) "IY- ld + x- 11+ "IY- 1-
+ Ix 1(’+)d I (,-z)d
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2The last inequality follows from the HSlder inequality, where 2 < pl < 1-(-a), ql

P and 2 2 thus 1 < (1 (3- a)) < 2, 1 < ql <2 2 and
Pl- 1- <2 P2 <2 1--’ q2 P2-1 Pl
1<p2(1+a)<2,1<q2(1-)<2. Here we have used the fact0_<a<l,a<<
a+l By using Lemma 4.7, we obtain2

where C(F,c,/) is a constant depending on F, c, and .
proved. [’1

LEMMA 4.9. Let f E L(r), < q < 2. Let 0 < c < 3q--a.
q

Thus the lemma is

Then

S o to*. L(r) - c,(r)

is a linear continuous mapping and there exists a constant C C(F, , q) such that

IS o 1c*(f)(x) S o :*(f)(y)l -< CIx YlllfllL(r), Vx, y e r.

Proof. For x E F, by Fubini’s theorem, we have

1 fr[ 1 fr(n’-r}f(r)dar]dcrS o *(f)(x)
16r2 x+/-’’l I 1113

1 jrr[ 1
16r2 x- 1 I- 1113

It follows from Lemma 3.7 that for any x, y F,

IS o K*(f)(x) S o l*(f)(y)l
1 fr fr( 1 1 )(n,,-1]}dcr’ If(r)ldcr,<- 16r x 1 lY 1 [ 1113

(by Lemma 3.7)
C(F) fr{] 1

(by Lemma 4.6)

fr{ { 1 1 } 1 }_< C(F)M(a)lar2 Ix yl a max
ix l:+a lY l l+a ’1 l da If(1])ldav

C(r)M(a) {Z( 1 1 ) 1 }< x-l162 lx-l+ + ly_ll+ :lda lf()dav

(apply Lemma 4.8 with a < < )
C(F)M(a)

lx-  l c(r<_
162 ix + y . f()da

dav dav_< C(F)M(a)162 C(F, a, )lx YlallfllLq(r) x lzp + ly lzp

where the last ineqality follows from Lemma 4.7 with the Net that a < < W, p
and 0 < a < imply 0 < p < 2; and where the constant C depends onlyq--l q

on q, r, a.
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Proof of Theorem 4.4. From [12, p. 56], we have

8o:* =o8.

Thus by Lemma 3.6, it is easy to verify that

Upon using Theorem 3.4, we get

From Lemmas 3.7 and 4.5, we have

OE(P , ELq(F), l<q<2

and

OE(Pk, ) (r).On
Applying Lemma 4.8, for 0 < < 1, we have

S OE(P,) (x) <C(F,/)lx_pklZOn
l <_k<_M,

where C(F, ) depends on F and/. Therefore the dominant term of the singular part
(4.17) is

M

E(P , x).
k--1

By Lemma 4.9, for 0 < c < 1, we have

8oK*(OE(Pk’)) EC,a(F),On
Since

l<_k<_M.

!(1 )
-1 M

( )2 -I+ El3kSol OE(Pk,)

k=l On
M

k=l

/3k,S o lC*
OE P,

1 o I
On( + kS o 1* OE(Pk, )

=1 On
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by Theorem 3.4, Lemma 4.9, and [1], we have

(1 )
-I M

( OE(P, ) ) C(F).
k---1

Therefore (4.18) is continuous and then bounded on F. [:1

REMARK 3. It is worthwhile to indicate the importance of the decomposed results,
Theorems 3.9 and 4.4. When x -- Pko for some 1 <_ ko < M, E(Pko,X
The original characterization formulas (3.6) and (4.7) are not computable and fail to
provide further information about the optimal control u* around the singular point
P. Due to Theorems 3.9 and 4.4, we cannot only determine the sign of u* at P
but also compute the exact value of u*(P). These results also make it possible to
develop numerical algorithms. We also obtained Theorem 4.3 from Theorem 3.9--a
decomposed characterization of the optimal layer density. With this result, we are able
to detect the failure of the classical LMM in providing reliable numerical solutions.

5. Numerical algorithms for solving constrained LQR problems. Mo-
tivated by characterization results obtained so far, we will develop two numerical
algorithms in this section to solve the constrained LQR problems. Observe that due
to equation (2.4), the optimal state w* is uniquely determined by the optimal control.
We formulate the constrained LQR problem in terms of the control variable u, so the
bound constraint on controls becomes more directly handleable. The first algorithm
is called the gradient truncation method (GTM) and the second one is called the iter-
ative truncation method (ITM). Our numerical examples show that these algorithms
are efficient and insensitive to the partition number of the boundary, a significant
advantage over other methods. Theorems 3.9, 4.3, and 4.4, and Lemma 3.8 are used
in the development of these algorithms.

The GTM is constructed using the gradient of cost functional and characterization
results in 4.
Step 0: Give initial guess u0 E b/;
Step 1" Use the potential theory and BEM (see 1) to solve w(z) from

Aw(x) 0 in
Ow(x)

0 on to,

On uo(x) OAFs;

Step 2" Find Co such that

M

+ Co o
k--1

and setwo(x)=w(x)+Co xeF;
Step 3: Compute VJ(uo);
Step 4: Find ao argmin J (uo a VJ(uo));
Step 5: Find C1 such that

[uo(x) aoVJ(uo) + C]B do 0

and set u(x) -[uo(x)- aoVJ(uo) + C1]B x
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FIG. 3. Optimal controls u* (x) of the constrained LQR in Example 1, computed by GTM with
B =0.05.

.5 ""i"
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0

"’50 .785 1.57 2.36 3.14 3.93 4.71

FIG. 4. Optimal controls u* (x) of the constrained LQR in Example 1, computed by GTM with
B 0.1.

Step 6: If lu u01L2(Fc) < s then output and stop
else set uo(x) u(x) x EFc, goto Step 1.

REMARK 4. (1) Step 4 in GTM is a minimization problem without constraints,
while Step 4 of GPM solves a constrained minimization problem;

(2) Step 5 is motivated by our characterization result (4.7) and (4.8). It takes
care of the consistency condition and handles the bound constraint uniformly.

Applying the GTM to the constrained LQR problem in Example 1, we obtain
the second column in Table 2 and Figs. 3, 4, and 5. From Table 2, it can be seen
that this method is efficient in the comparison to GPM. From Figs. 3, 4, and 5, when
the control bound B increases, we observed that u* does not reach the bound B at
sensor locations where w* (Pk) Zk : 0. This is different from our characterization
formula (4.7) in Theorem 4.3. The reason is that GTM does not use (4.7) and (4.8)
exactly (see the difference between Step 5 in GTM and (4.7)). So if we want to catch
the characterization of the optimal control described in (4.7), we have to develop a
numerical algorithm based on it. The ITM is constructed this way and considers the
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FIG. 5. Optimal controls u*(x) of the constrained LQR in Example 1, computed by GTM with
B 0.5.

optimal control u* as a fixed point of (4.7).
Step 0: Given initial guess uo E/4;
Step 1" Use the potential theory and BEM (see 1) to solve w(x) from

Step 2: Find Co such that

Aw(x) 0 in

0 on r0,

On uo(x) on

M

+ Co o,
k=l

and setw0(x)=w(x)+C0 xeF;
Step 3: To compute u(x), for Af 2, use (4.7) and (3.29), for A/" 3 use (4.7),

(4.17), and (4.18);
Step 4: If lu- uolL(r) < s then output and stop,

else set uo(x) 1/2[u0(x)+ u(x)] x e F, goto Step 1.

All the formulas in Step 3 of the ITM scheme treat the bound constraint uniformly,
so it can handle only uniform bound constraints. Originally the last formula in Step
4 of the ITM scheme was

 0(x) x e

But this diverges in some of our numerical experiments. The current formula uo(x)
![u0(x) + u(x)] x Fc a relaxation formula, is used to enhance the stability of2
convergence. All of our numerical experiments have confirmed this and have shown
that this method is efficient and catches the characterization of the optimal control.
Applying ITM and the adaptive local refinement scheme (to be explained next) to
the constrained LQR problems in Example 1, we obtain Table 2 and Figs. 6, 7, and
8.
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FIG. 6. Optimal controls u*(x) of the constrained LQR in Example 1, computed by ITM with
B 0.05.
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FIG. 7. Optimal controls u* (x) of the constrained LQR in Example 1, computed by ITM with
B=O.1.
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FIG. 8. Optimal controls u*(x) of the constrained LQR in Example 1, computed by ITM with
B=0.5.
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TABLE 2
Comparison of convergence and Jmin.

B =0.05

32
64
128
256

GPM
Itn Jmin
29 0.6261
25 0.6314
28 0.6357
27 0.6391

GTM
Itn Jmin
3 0.5907
4 0.5888
5 0.5879
5 0.5874

ITM
Itn Jmin
3 0.5914
3 0.5891
3 0.5880
3 0.5874

B=0.1

32
64
128
256

GPM
Itn Jmin
29 0.5913
29 0.5998
28 0.6072
26 0.6134

GTM
Itn Jmin
5 0.5396
6 0.5361
6 0.5343
7 0.5335

ITM
Itn Jmin
6 0.5403
5 0.5363
5 0.5344
4 0.5335

B 0.5 GPM GTM ITM
N Itn Jmin Itn Jmin itn Jmin
32 20 0.4569 5 0.4569 9 0.4609
64 25 0.4542 5 0.4487 10 0.4494
128 31 0.4613 7 0.4448 11 0.4449
256 27 0.4720 7 0.4427 11 0.4428

In Table 2, the error control is s 10-4. One can see that both GTM and
ITM are efficient in the comparison to GPM. If we compare the minimum values
Jmin w.r.t, the partition number N of the boundary, we find that both the GTM
and ITM schemes are insensitive to the partition number of the boundary. This
is a significant advantage of GTM and ITM schemes over other algorithms. Since
the optimal control problems under consideration are governed by partial differential
equations, the partition number of the boundary can be very large, therefore any
numerical method sensitive to the partition number may fail to carry out the numerical
computation.

Figs. 6, 7, and 8 show that the ITM scheme does catch the characterization of the
optimal control at sensor locations Pk, 1 <_ k <_ M, no matter how large the bound
is. However, this will also cause the divergence of the scheme. Since the optimal
control of the LQR problem has singularities around the sensor locations, even after
truncation around the sensor locations, the peak in the graph of u* around the sensor
locations may still be very narrow. When the partition number of the boundary is
fixed, the length of each element in BEM is fixed. If the control bound B is large, the
property that u* reaches the bound at sensor locations will causes too much control
around sensor locations and result in the divergence of the scheme. This is why ITM
diverges in computing the constrained LQR problems in Example 1 for B 1.5.
Piecewise linear or quadratic elements are not helpful in this situation (see (3.33)-
(3.35)). Refining the partition of the boundary can relieve the problem, but this will
enlarge the size of the problem. To overcome this difficulty, the following adaptive
local refinement scheme is proposed.

For N 2, add two nodal points around each sensor location. Then carry out
the ITM scheme. If ITM converges then continue. If ITM still does not converge,
move two added nodal points closer to the sensor location and go on.

For N 3, the basic idea is the same. When the adaptive local refinement
goes on around each sensor location, the partition number of the boundary is fixed.
After we coupled this scheme with the ITM scheme, the algorithm converged in all
our numerical examples. The adaptive local refinement scheme can be expected to
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be useful in other numerical algorithms where the solution has singularities at some
points.

Finally we point out that although the motivations of GTM and ITM are quite
different, it can be shown that they are essentially the same, that is, Step 3 of ITM

Of course, a relaxation formulais essentially equal to Step 4 of GTM with s0 .
has to be added in ITM to enhance the convergence stability. Since singularities are
treated differently in GTM and ITM, both methods have different advantages and
disadvantages. The GTM works for the problem with any bound constraints on the
control, but the numerical solution of optimal control may fail to reach the control
bound around some sensor locations where, according to characterizations of optimal
control, the optimal control should reach the control bound. While the numerical
solution of the optimal control computed by ITM does catch the characterization
of the optimal control, it may also cause stability problems in the convergence of
ITM. To remedy this defect, an adaptive local refinement scheme is proposed to
handle the rough behavior of the optimal control around sensor locations without
enlarging the size of the problem considered. The ITM coupled with an adaptive local
refinement scheme works very well for the LQR problem with any bound constraint
on the control; in particular, it has a potential in solving bound-constrained LQR
problems on nonsmooth domains where some sensors are placed at vertex points of the
boundary (see [2]). Many details are omitted in both numerical algorithms because
of space constraints, e.g., most of the integrals involved are singular integrals, and
careful treatments are necessary to have a successful computation. The convergence
analysis of GTM and ITM will be discussed in a separate paper.

6. Conclusion. In this paper, several regularity and characterization theorems
for LQR and constrained LQR problems have been established. In particular, three
decomposition formulas are proved to characterize the optimal control and the optimal
layer density and to direct numerical computations. These results cannot be obtained
by the traditional Galerkin variational method. Along with the proofs, several useful
lemmas are established, which are of independent interest. We point out that the
classical Lagrangian multiplier method is not reliable to provide numerical algorithms
for this kind of problem due to the existence of singularities in the solutions. Based
upon the characterization results, two numerical algorithms, GTM and ITM, have
been developed to carry out the numerical computations of the constrained LQR
problems. Both methods are efficient and insensitive to the partition number of the
boundary, a significant advantage over other algorithms. Both algorithms have been
carried out for several numerical examples and the numerical results confirm our
analysis.

Finally, we point out that all of the above results are valid if the boundary F is
a piecewise C surface with point sensors placed at smooth points of the boundary.
But the constrained LQR problems on nonsmooth domains wih some sensors placed
at the vertex points of the boundary are quite different. The theoretical analysis is
much tougher. The related results are presented in a forthcoming paper [2].
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AVERAGE OPTIMALITY IN MARKOV CONTROL PROCESSES VIA
DISCOUNTED-COST PROBLEMS AND LINEAR PROGRAMMING*

ONISIMO HERN/NDEZ-LERMA AND JEAN B. LASSERRE:

Abstract. This paper shows the existence of solutions to the average-cost problem for Markov
control processes on Borel spaces, with possibly unbounded costs and noncompact control constraint
sets. This is done via a combination of the well-known "vanishing discount" approach and recent
results on the linear programming formulation for both discounted- and average-cost Markov control
problems.

Key words. (discrete-time) Markov control processes, average-cost criterion, discounted-cost
criterion, linear programming (in general vector spaces)

AMS subject classifications. 93E20, 90C40

1. Introduction. Among the several ways available to analyze average-cost (AC)
Markov control processes, two of the most commonly used are the "vanishing dis-
count" and the linear programming (LP) approaches. In the latter case, one intro-
duces a suitable linear program and its dual and gives conditions for their value to
coincide and for their common value to equal the value of the AC problem. In the
former approach, on the other hand, one defines discounted-cost problems with a
discount factor E (0, 1) and shows that under suitable assumptions, appropriately
normalized functions converge to the AC value as I 1. These approaches are not
directly comparable: they require (apparently) independent settings.

This paper presents, for Markov control processes on Borel spaces, a combination
of the two approaches: First, for each E (0, 1), we introduce a "discounted" linear
program (P) and its dual (P), and then we give conditions for some modified,
equivalent versions, (MP) and (MP), to converge in some sense, as c I 1, to
programs (MP1), (MP) related to the AC problem. Our main results are that
(MPI) and the AC problem are both solvable, with the same value J*, and that
there is no duality gap, i.e., J* sup(MP*). These conclusions are of course not
new. What is indeed new is the way we obtain them here, via the linear programs
(MP)-(MP). In particular, in contrast with the usual hypotheses [2], [15], [16], we
do not require the discounted differential cost (ha in Assumption 5.1) to be majorized
by a finite function. Thus, on the one hand, we obtain a new set of conditions
ensuring solvability of the AC problem, and on the other, we provide a setting for the
comparison of the vanishing-discount and the LP approaches.

Related literature. This paper is essentially a sequel to [8] and [7], where we
developed the LP formulation of AC and discounted-cost problems, respectively, for
Markov control processes with Borel state and action spaces, allowing unbounded one-
stage costs and noncompact control constraint sets. [7] and [8J--see also-, e.g., [2], [3],
[12], [13J--present many related references. For the vanishing-discount approach see,
e.g., [2], [6], [15], [16]. The LP terminology we use is based on [1, Chap. 3].
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Organization of the paper. Section 2 introduces the Markov control problems
we are interested in. The linear programs (P)- (MP) and their duals (P)-
(MP), 0 < a < 1, are defined in 3, together with conditions for them to be
consistent. For c 1, the linear program (MP1) and the AC problem are both
shown to be solvable in 4; it is also shown that they are equivalent in the sense that
they have the same optimal value. In 5 it is proved that there is no duality gap
for (MP1), i.e., (MP1) and its dual (MP{) have the same value. In the last section,
6, we briefly compare the usual vanishing-discount-factor approach with the version
presented here, and we also make some comments on how one can get deterministic
(as opposed to randomized) policies with optimality properties.

2. Markov control processes.
Notation. We essentially use the same notation as in [7], [8]. In particular, if S

is a Borel space, (S), C(S), and T)(S) stand for the Borel r-algebra, the space of
bounded and continuous functions, and the set of probability measures on S, respec-
tively. If S and T are Borel spaces, then the family of stochastic kernels on S given
T is denoted by

Let (X, A, Q, c) be a stationary Markov control model [2], [4], [5], [10] satisfying
the following conditions. The state space X and the action (or control) set A are
both Borel spaces. To each x E X is associated a nonempty set A(x) B(A) whose
elements are the feasible control actions when the system is in state x. The set

(2.1) K:={(x,a)lxeX, a e A(x) }

of admissible state-actions pairs is assumed to be a Borel subset of X A.
The transition law Q, or Q(BIx a) with B B(X) and (x, a) K, is a stochastic

kernel on X given K, which is assumed to be weakly continuous, i.e., f v(y)Q(dyl.
is in C(K) whenever v C(X). The one-stage cost c is a nonnegative lower semi-
continuous function on K.

To ensure that the set $" defined next is nonempty, we will assume that K
contains the graph of a measurable map. (Conditions for the latter to hold are given
by so-called "measurable selection theorems" [2], [4], [5], [10].)

DEFINITION 2.1. denotes the set of all measurable functions f X ---, A such
that f(x) A(x) for all x X, and stands for the set of all stochastic kernels
99 7)(AIX) that satisfy (A(x)lx 1 for all x X.

DEFINITION 2.2. Let Ho := X and Ht := K Ht-, t 1,2, A (control)
policy is a sequence 5 {St} of stochastic kernels 5t 7)(AIHt) that satisfy the
constraint 5t(A(xt)lht) 1 for all ht (xo,ao, ,xt-,at-,xt) in Ht, t O, 1,
The set of all policies is denoted by A. A policy 5 is said to be relaxed (or randomized
stationary) if there exists 99 such that 5t(.Iht) 99(.Ixt) for all ht Ht, t
0, 1,..., and it is called deterministic stationary if, for some f . 5t(.Iht) i8
concentrated at f(xt) for all ht Ht, t 0, 1,

We shall identify 9 (resp., ) with the set of all deterministic stationary (resp.,
relaxed) policies.

Let (t, $) be the measurable space that consists of the sample space t := (X
A) and the corresponding product or-algebra $. Then for every policy 5 and initial
distribution E T)(X) a probability P and a stochastic process {(xt, at), t O, 1,...}
are defined on (gt, $) in a canonical way (see, e.g., [10, p. 80]), where xt and at denote
the state and action at time t, respectively. The expectation operator with respect to
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P is denoted by E. If u is concentrated at some initial state x0 x, we write P
and E as P and Ez, respectively.

Performance criteria. For every a E (0, 1), let

be the total expected a-discounted cost when using the policy , given the initial
distribution u. We may write

V(’u):=/xV(’z)u(dz)’ whereV(5’x)’=E[atc(zt’at)l’t=o
Let us define

V* (u)"= if Va(5, ), u e P(X).

For a given u, 5 is said to be a-discount u-optimal if V(5, u) V(u), whereas if
V(5, x) V(x) for all x X, then 5 is said to be pointwise a-discount optimal.

Now we define the long-run expected AC when using the policy 5, given the initial
distribution u, as

(2.3) J(5, u) "= limsup n-lE6. [c(xt,at)l
n--*cx I_t=0

and let

(2.4) J* := inf inf J(5, ).
5

(In [8], J* is written as infA AC.) A pair (5",*) consisting of a policy 5" and an
initial distribution * is said to be a minimum pair [8], [11] if J(5*,,*) J*. The
problem of finding a minimum pair is sometimes referred to as the AC problem, and
J* is called the value of the AC problem.

This AC problem has been studied by Kurano [11] using Doeblin’s (ergodicity)
condition and in [8] using an LP approach. Here we again use the LP approach,
but not directly on the AC problem itself as in [8]; we use instead linear programs
associated with the a-discount problems [7]. This requires, to begin with, that J* is
finite. We will thus make the following assumption.

Assumption 2.3. J(, ) < for some 5 A and 79(X).
Assumption 2.3 ensures, of course, that J* is finite, but it also guarantees that

V(, ) is finite for every a (0, 1), since by a well-known Tauberian theorem (see,
e.g., [2], [15], [16])

(2.5) limsup (1- a)V(, ) <_ J(,).

Note that the latter inequality implies

(2.6) lim sup (1 a)V() < J(, ).
cT1

In the next section we consider linear programs associated with the problem of
minimizing V(5, f,) over A, which are then used in 4 to obtain a minimum pair.
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3. Linear programs. The plan of this section is as follows. First, for every
c E (0, 1), we state linear programs (P) and (P) associated with the c-discounted
cost problem, which are then shown to be equivalent to modified linear programs
(MP), (MP). For a 1, the latter are programs associated with the AC problem.
(The LP terminology that we use is borrowed from [1, Chap. 3].)

We begin with the introduction of two dual pairs of vector spaces, which are the
same already used in [7], [8].

Dual pairs. Let K be the set in (2.1) and b: K R the function

b(x, a) "= co + c(x, a),

where co is a given positive number. (Recall that, by assumption, the one-stage cost
is nonnegative; hence b >_ co.) We define F(K) as the vector space of all real-valued
measurable functions v on K such that

(3.2) IlVllb := sup Iv(x, a)l/b(x, a) <

Note that c is in F(K). (If necessary, a function v F(K) is considered to be extended
to all of X A in an arbitrary way as long as measurability and (3.2) are preserved.)
Now let M(K) be the vector space consisting of all the finite signed measures # on
X A concentrated on K and such that

bdl#l <

where denotes the total variation of #. Then (M(K), F(K)) is a dual pair with
respect to the bilinear form (#, v} "= f vd#.

Similarly, let bl X R be a positive measurable function bounded away from
zero and define F(X) as the vector space of all the real-valued measurable functions
u on X such that

IIZllbl :-- sup I(x)l/bl(X) < ,
and let M(X) be the vector space of all the finite signed measures u on X for which

f bldlU < oc. Then (M(X), F(X)) is a dual pair with respect to the bilinear form

f
Remark. We adopt here the convention that, unless explicitly stated otherwise, a

vector space in a dual pair is always endowed with the weak topology [1]. Convergence
in this topology will be denoted -L. However, for finite nonnegative--in particular,
probability--measures, we will also use the usual notion of "weak convergence," noted-- or w-convergence. Thus, e.g., #n

_
# (resp., #n - #)in M+(K)’= {#

M(K)]# _> 0} means that

<#n,v> - (#,v> Vv C(K) (resp., Vv F(K)).

Clearly, r-convergence implies w-convergence.
To guarantee that the linear programs (Pa) and (P2) below are properly defined,

throughout the following we suppose the following assumption.
Assumption 3.1. (a) is in M(X), i.e., f bld < o.

(b) b(3, a) bl (x) Cl for all (x, a) K and some positive number cl.
(c) f bl(y)Q(dy[.) is in F(K), i.e., sup(,a) f bl(y)Q(dylx, a)/b(x, a) < o.
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Linear programs. For each positive a _< 1, let T M(K) -+ M(X) and
T’F(X) -+ F(K) be the linear operators defined as

(3.3) (Ta#)(g) :-- itl (B) o / Q(B]x, a)#(d(x, a))

for all # e M(K), B e B(X), where ,1 (B) ’= #(B A) is the projection (or marginal)
of # on X, and

(3.4) (T;u)(x, a) u(x) c / u(y)Q(dylx, a), u e F(X), (x, a) e K.

In view of Assumption 3.1, these linear operators are continuous. Moreover, T is the
adjoint of T, i.e.,

(3.5) (T#, u} (#, Tu} V# e M(K), u e F(X).

Consider the following linear programs:
(Pa) minimize (#, c} subject to

(3.6) it e M+ (K) and T# ;

(P*) maximize (, u} subject to

u E F(X) and T2u <_ c.

The linear program (P2) is the dual of (P) [1]. Under Assumptions 2.3 and 3.1,
it has been shown in [7, 4] that (P) and the problem of minimizing V(.,) are
equivalent, i.e, Vg() inf(P), and by weak duality,

gz(z>) inf(P) _> sup(P).

Moreover, under the additional Assumption 3.2(a) below, (P) is solvable and, under
Assumption 3.2(b), equality holds in (3.8), i.e.,

(3.9) Vo(O min(P) sup(P).

Before we state Assumption 3.2, note that if it is feasible for (Pa), then (1-a)it(K)
1. Thus it’(.)"= (1 -c)it(.) is a probability measure on K.

Assumption 3.2. (a) If {itn} is a sequence of feasible solutions for (P) such that
sup, f cditn <_ r for some r > 0, then {itn} is tight.

(b)If {its} is a sequence of probability measures in M(K) such that SUpn f cd# <
r for some r > 0, then {#n} is tight.

Assumption 3.2 holds, e.g., if the one-stage cost c is a "moment" (see [8, Rem. 5.6
and 6]). Observe also that Assumption 3.2(b) implies 3.2(a)

We now wish to relate (P) and (P*) to the minimum-pair problem. To do this,
we modify these programs as follows.

Modified linear programs. Consider the dual pair (R M(X), R F(X))
with the bilinear form

(p. := + (..

For every positive a _< 1, let L M(K) --+ R M(X) be the linear operator defined
&s

Lit (#, Tit) with # it(K), it E M(K).
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Consider the adjoint L: R F(X) F(K) of L, i.e.,

L*(p, u) p + Tu.
Now, instead of (P)- (P2), the corresponding linear programs are
(MP) minimize (#,c} subject to

(3.10) L# (1, (1- c)), # e M+(K);

(MP2) maximize (p + (1 a)(D, u>) [= ((1, (1 a)D), (p, u))] subject to

L*(p, u) < c, (p, u) R x F(X).

In particular, for c i we obtain linear programs associated with the AC problem

(MP1) minimize (#,c} subject to

(3.12) LI# (1, 0), # E M+(K);

(MP{) maximize p [= {(1,0), (p,u)}] subject to

L(p,u) < c, (p,u) E R x F(X).

It turns out that, for positive c < 1, the modified linear programs are equivalent
to the original programs in the following sense.

PROPOSITION 3.3. For every 0 < c < 1, we have the following:
(a) if # is feasible for (P), then #’(.) (1 -c)#(.) is feasible for (MP) and

(#, c> (#’, c} / (1 o).

(b) Conversely, if# is feasible for (MP), then/2(.) := #(.)/(1-c) is feasible for
(P) and

(fit, c) (#, c) I (1 c).

Hence

(3.14) inf(Pa) (1 o) -1 inf(MPa).

Similarly for the dual problems:
(c) If u is feasible for (P2), then for any real number rn, the pair (p, u’) defined

as p (1 c)rn and u’(.) := u(.) rn is feasible for (MP2) and

<, u> [p + (1 c)(z}, u’>]/(1 c).

(d) If (p, u) is feasible for (MP2), then u’(.) := u(.) + p/(1 c) is feasible for
and

<f,,, u’> [p + (1 c)<#, u>]/(1 c).

Hence

(3.15) sup(P2) (1 ct) -1 sup(MP2).
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We omit the easy proof.
From (3.8)-(3.9) and (3.14)-(3.15), we obtain the following.
COROLLARY 3.4. If Assumptions 2.3 and 3.1 hold, then for every 0 < a < 1,
(a) (1 -a)V(,)= inf(MP) _> sup(MP).

If, in addition, Assumption 3.2 holds, then
(b) (MPa) is solvable and

(3.16) (1 a)V() min(MP) sup(MP).

In part (b) of the corollary, solvability of (MPa), 0 < a < 1, means, of course,
that there is a measure # E M(K) that satisfies (3.10) and

min(MP) / cd#a

In the next two sections we show that (3.16) holds "in the limit as a T 1," so that

(3.18) J* min(MP) sup(MP),

with J* as in (2.4). In particular, the solvability of (MP) is equivalent to the existence
of a minimum pair. The first equality in (3.18) is proved in 4; the second, in 5.

4. Existence of minimum pairs. To prove the first equality in (3.18), let us
first note the following elementary fact. (Recall the notation introduced in the remark
preceding Assumption 3.1.)

LEMMA 4.1. Let tt and tta, 0 < a < 1, be measures in M(K) such that tza 2, tt
as a T 1, i.e.,

(4.1) lim(# v} (#, v) Vv e F(K).
aT1

Then T# 2, TI# and L# 2, LI#. If, moreover, # is feasible for (MPa), 0 <
a < 1, then # is feasible for (MPI). If we have instead #a -- # in M+ (K) as a T 1,

wall of the conclusions hold replacing --, by 4.
Proof. For any B e B(X), Ta#(B) T#(B) (1- a)f Q(BIk)#a(dk).

Therefore, as a T 1,

(4.2) limT# limT# T#,

where the latter equality is due to (4.1) and the continuity of T. Furthermore, letting
v(.) 1 in (4.1), we obtain -a _ . Thus La# 2, LI#, completing the proof of the
first statement. Now if each # satisfies (3.10), then 1, and from (4.2),

T#(B) l(1 a)(B) 0 B B(X),

i.e., # satisfies (3.12) and therefore is feasible for (MP). Finally, to prove the last
statement it suffices to note that # --, # implies w-convergence of the projections,

o and alsoi.e., # --. #1,

Q(’lk)#(dk) -%/g Q(.Ik)#(dk) in M+ (X)

by the weak continuity of Q.
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THEOREM 4.2. Suppose that Assumptions 2.3, 3.1, and 3.2(a) hold, and for every
o E (0, 1), let # be an optimal solution for (MP), i.e. (from the first equality in
(3.16)),

(4.3) (1- a)V()= min(MP)= /cd#, 0 < a < 1.

Then
(a) there exist a sequence a(n) T 1, a number j* <_ J(, ), and a measure #*

feasible for (MP1) such that

(4.4) j* linm(1 c(n))V(n)( >_ /cd#*.
(b) If j* is such that, for any initial distribution

(4.5) j* <_ lim(1 c(n))V(n)(u),

then there exists a minimum pair (*, u*), where
(the projection of It* on X), and

is a relaxed policy,

(4.6) j* =J(*,#)=J*.

Hence
(c) #* is optimal for (MP1) and

(4.7) J* min(MP1) /cd#*.
Proof. (a) From (2.6), there is a sequence c(n) T 1 and a number _j* _< J(, )

such that

j* linm(1 o())g:(n) (/)) linm / cd#a(n)"

By Assumption 3.2(a), with r j*+ for some > 0, {a(n)} has a weakly convergent
subsequence. Combining this with Lemma 4.1, there is a subsequence {a(n)} of
{a(n)} and a measure #* feasible for (MP1) such that #(n) - #*; in particular,
since c is lower semicontinuous, we obtain (4.4) with {c(ni)} in lieu of {c(n)}.

(b) By (3.12) and a well-known result ([4, p. 89, Thm. 2]; [10, Cor. 12.7]; [8
Lem. 4.7]), the measure #* can be "disintegrated" into a relaxed policy * and a
probability measure * # so that

#*(B x C) /B *(Clx)(dx) VB g(X), C e B(A),

and such that

(4.8) /cd#* J(*, #).

Thus, by (4.4) and the definition of J* in (2.4), j* _> J*.
j* _< J*, follows from (4.5) and (2.6).

The reverse inequality,
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(c) From the "disintegration" result referred to in part (b), for any feasible mea-
sure # for (MP1) there is a relaxed policy and an initial distribution (= #1)
such that f cd# J(, ). Since this is true for any such #, inf(MP1) _> J*. This
inequality, together with (4.6), yields (c). D

Remark 4.3. A sufficient condition for (4.5) is Assumption 5.1(b), as shown in the
proof of Theorem 5.3.

Part (c) in Theorem 4.2 shows that solving (MP1) and finding a minimum pair
are "equivalent" problems in the sense that J* min(MP1); i.e., the first equality in
(3.18) holds. In the next section we prove the second equality in (3.18).

5. Absence of duality gap. A standard argument (see, e.g., [8, Lem. 4.5])
shows that if (p, u) is feasible for (MP{) and (5,) is any policy-initial-distribution
pair with J(5, ) < oc, then p <_ J(5, ); hence p _< J*. This implies

(5.1) sup(MP{) _< J*.

To get the equality in (5.1) we shall use Assumption 5.1 below on the pointwise
a-discount value function V(x), x E X, 0 < a < 1.

Assumption 5.1. For every a E (0, 1) and x X, V(x) < oc and
(a) Vo7 satisfies the dynamic programming equation

(5.2) V(x) aeA(x)min [c(x, a) + a JV(y)Q(dylx, a)l x X;

(b) for some state z e X, N _> 0, and s0 e [0, 1), the function ha(x):= V(x)-
V(z), x X, satisfies ha(x) >_ -N Vx X, (c0, 1).

(c) Vo7 belongs to F(X).
Sufficient conditions for (5.2) are well known (see, e.g., [2], [4], [5], [9], [10]).

(Observe that, from (2.6), V(x) < oc for every a (0, 1) and -almost all x X.)
On the other hand, the conditions (b) and (c) in Assumption 5.1 are model

dependent and usually have to be verified directly, which is easily done in some cases:
For (b), see [15], [16], [2, 5.2, 6.2]; and for (c), a sufficient condition is, for example,
the existence of a policy r E A with a bounded average cost. In this case, by a
well-known Tauberian theorem,

limsup(1 -a)V(x) _< J(x, 7) <_ g Vx X,

so that, for every fixed discount factor c G (0, 1) and some constant K > 0,

v: + K)
SUPx bl(x) -< sup (1 a)bl (x)

since bl (.) is bounded away from zero. Hence V F(X) for every a (0, 1).
Note that in contrast to previous work (see, e.g., [2], [15], [16]), we do not require

ha to be majorized by some function independent of a. The latter condition implies
the "unichain" assumption for average optimal policies. We shall return to this point
in 6.

LEMMA 5.2. If (a) and (c) of Assumption 5.1 hold, then (P) and (MP) are
solvable for every 0 < < 1, and

max(MP) (1 a)max(P) (1 (x)(#, V2).



304 ONISIMO HERN/iNDEZ-LERMA AND JEAN B. LASSERRE

Proof. If Vg is in F(X) and satisfies (5.2), then it obviously satisfies (3.7), i.e.,
Vg is feasible for (P2). Hence, f Vo:d _< sup(P2). The reverse inequality is also true,
since u _< Vg whenever u satisfies (3.7); see, e.g., [9]. Therefore max(P2) f Vd,
which together with (3.15) yields (5.3).

Throughout the remainder of this section, let z E X be the fixed state in Assump-
tion 5.1(b), and let the initial distribution in Assumption 2.3 be the Dirac measure
at z. Then, under the assumptions of Theorem 4.2(a), (4.4) becomes

(5.4) j* linm(1- a(n))V()(z)= limpa()

for some sequence c(n) T 1, where Pa (1 -a)Vg(z). Moreover, it is convenient to
rewrite (5.2) in the form

min [c(x, a) + a f ha(y)Q(dylx, a)l(5.5) Pa + ha(x)
aEA(x)

Finally, without loss of generality, we may assume that ha is nonnegative (cf. As-
sumption 5.1(b)), for if (p, u) is feasible for (MP2), then so is (p (1 c)N, u + N)
for any constant N.

THEOREM 5.3. If Assumption 5.1 and the hypotheses of Theorem 4.2(a) hold,
then

(5.6) sup(MP{) J* (= min(MP1)).

Proof. If, as assumed above, # is the Dirac measure at z, then, by (5.3) and (5.5),
(pa, ha) is optimal for (MP2), 0 < a < 1, with ha(.) >_ 0 and max(MP2)
We also note that if (p, u) is feasible for (MP2) and u > 0, then (p, u) is feasible for

(MP) for all 3 E [a, 1] since

+ u(x) <_ c(x, a) + o I u(Y)Q(dylx’ a)P

<_ c(x, a) +// u(y)Q(dylx, a) Vo <_ <_ 1.

Therefore, from the definition of (MP), Va0 < a < 1,

Pa max(MP)
sup{p + (1 c)u(z)l (p, u) satisfies (3.11)}
sup{p + (1 c)u(z)l (p, u) satisfies (3.11), u >_ 0}

<_ s(MP:) + s{( )(z)l (, ) stiss (.)}.

Thus, from (5.4) and letting a T 1, j* _< sup(MPl* ). To prove the reverse inequality
note first that Assumption 5.1(b) implies (4.5) since, for any initial distribution

)v: (.) > (1 ) .I v: (x).(dx)(1

(1 ) ./" h(x).(dx) + (1 )Y: (z)

> -( )N + (1 ):(z).

Hence, by weak duality and (4.6)-(4.7),

sup(MPl* <_ inf(MP) J*= j*.
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This completes the proof of (5.6). I"I
From the proof of Theorem 5.3, observe that the pair (pa, ha) is maximizing for

(MP{) since (pa,ha) is feasible for that problem and pa J* as a $1.

6. Existence of pointwise optimal policies. The objectives of this final sec-
tion are to make a brief comparison between the standard "vanishing discount" ap-
proach and the version presented in the previous sections and to comment on the
existence of "pointwise" optimal policies--as opposed to minimum pairswthat can
be derived from our results.

In the standard vanishing discount approach [2], [15], [16] one tries to obtain the
so-called average-cost optimality equation

(6.1) J* + h(x) min c(x,a) + f h(y)Q(dylx, a)l x E X,
aeA(x) J

or the optimality inequality

(6.2) J* + h(x) >_ min
aeA(x)

c(x, a) + f h(y)Q(dylx, a) xEX,

starting from the dynamic programming equation (5.2). The basic idea is to rewrite
(5.2) in the form (5.5) and give conditions on Pa and ha(.) under which, for some
sequence s T 1, pa - J* and ha(.) --* h(.), with (J*,h(.)) satisfying (6.1) or (6.2).
Finally, if h(.) is bounded from below and if a deterministic stationary policy f $"

is such that f(x) A(x) attains the minimum in the right-hand side of (6.1) or (6.2)
for all x X, then f satisfies

(6.3) J(f, x) if J(5, x) J* for all x e X

provided that in Assumption 5.1(b) we impose the additional requirement

(6.4) ha(x) <_ g(x) Vx e X, s e (so,1),

for some finite-valued function g [15], [16]. Without (6.4)we cannot guarantee (6.3)
for all x. To see what can go wrong consider the following elementary "multichain"
example.

Example6.1. X := {1,2,3}, A= {1}, and c(x, 1)=cx > 0, with cl < c2,c3. The
transition law Q({y}lx, 1), which we write as Pxy(1), is given by

Pxx(1)=I if x=1,2; P31(1)==l-P32, whereO</< 1.

Then V(x) cx/(1 s) if x 1,2, and Vo (3) c3 + s(1 S)-I[c1 -- (1 )C],
and Vo satisfies assumptions 5.1(a) and (c). To verify Assumption 5.1(b), it suffices
to take z 1 and s0 := Cl/C2 so that Cl < sc (< c2) for all s (s0, 1). This yields
ha _> 0. (If we take z 2 or 3, then ha does not satisfy Assumption 5.1(b).)

Moreover, h(x) := limaT1 ha(x) 0 if x z 1, and h(x) +c if x 2, 3;
therefore, (6.4) does not hold for a finite-valued function g. However, the ".minimum"
cost, given the initial state x X, is J* (x) cx if x 1, 2, and J* (3) fCl +(1-)c,
so that J* := infx J* (x) cl, i.e.,

J* j* 11(1 s)V(z): c1.
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Thus the pair (J*,h) trivially satisfies (6.1), but (6.3) does not hold for all
xX.

Example 6.1 suggests that a "unichain" assumption is implicit somehow in (6.4).
Since we have not made any such assumption here nor assumed (6.4), we would expect
to get a pointwise result such as (6.1)-(6.2) or (6.3) only for states in a proper subset
of X. In the next theorem we identify such a subset in the context of Theorem 5.3.

THEOREM 6.2. Suppose that Assumption 5.1 and the hypotheses of Theorem
4.2(a) hold, and let It* and (*, ItS) be as in (4.6)-(4.7). Then

(a) the randomized policy * is average optimal for It-almost all (a.a.) initial
states, i. e.

(6.5) J(*,x) J* for It-a.a. x E X;

(b) there exists a measurable function h on X bounded from below and such that

(6.6) J* + h(x) >__ c(x, a) + / h(y)Q(dylx, a)

for It*-a.a. (x, a) E K;
(c) if the set S := {x e XI (6.6) holds and h(x) < } is nonempty, then there

exists a deterministic stationary policy f iF such that

(6.7) J* + h(x) >_ c(x, f(x)) + / h(y)Q(dylx, f(x)) Vx e S,

and

(6.8) J(f, x)-- J* Vx S.

For instance, a sujficient condition for S to be nonempty is that, for some constant

limsup IVa(z)- J*/(1- c)l <: g <:

(where z is as in Assumption 5.1).
Remark. The above sufficient condition simply states that the optimal discounted

cost in state z converges sufficiently fast to the AC and can be checked in many
problems (see, e.g., the linear-quadratic regulator problem [4]). In fact, we may
obtain (6.6) directly from (4.6)-(4.7) or the stronger result (6.2) from Assumptions
2.3 and 5.1. However, we chose the above form of Theorem 6.2 because we wish to
relate the vanishing-discount-factor approach with the LP results in 3-5.

Proof of Theorem 6.2. (a) As in the proof of Theorem 4.2(b), disintegrate It* as
It*(d(x,a)) *(dalx)Itl(dx and note that the condition Tilt* 0 in (3.12) can also
be written as

(6.9) It (B) Ix Q(BIx,*)(dx) VB e B(X),

where Q(.]x, *)"= fA Q(.Ix, a)*(dalx). In other words, (6.9) says that It is an
invariant probability measure for the stochastic kernel Q(.I., *). We also have that

J* ]’cdIt* J c(x, *)It(dx),
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where c(., 99*) := fA c(., a)o*(dal. ). Thus c(x, o*), the one-stage cost of the random-
ized policy o*, is #-integrable, and then the individual ergodic theorem (see, e.g.,
Theorem 6 in [17, p. 388]) yields that the limit

J(*’x) :- nlimn-lEx* [
exists for #-a.a. x E X and satisfies

Finally, to conclude that (6.5) holds, let B := {x J(cp*,x) :> g*} and note that, by
(2.4), the complement of B is Bc := {x J(*,x) g*}. Hence, from the second
equality in (*),

J* f J(V*, x)#7 (dx) + J*#’ (BC),
JB

which is equivalent to

that is,

J(cp*, x)# (dx) J*#’ (B),

B[J(*,
x) J*]# (dx) 0,

which, in view of (2.4), implies #(B) 0. This completes the proof of (6.5).
(b) Let N be as in Assumption 5.1(b) and define

Pa,g := Pa (1-a)N, ha,g(x) := ha(x) + g, x e Z, o e (Co,1).

Then we may rewrite (5.5) as

pa,N W ha,N(X) min |c(x,a) + a ] ha,N(y)Q(dy]x,a)| Vx X,
aEA(x)

and therefore, since ha,N(.) :> 0 and c <: 1, the pair (Pa,N,ha,Y) is feasible for (MP{),
i.e.,

Pa,g + ha,g(X) <_ c(x, a) + / ha,g(y)Q(dy]x, a) V(x, a) K.

Let ua(x, a) be a "slack variable," i.e., ua is a measurable nonnegative function such
that, V(x, a) K,

(6.10) Pa,N + ha,y(X) + ua(x, a) c(x, a) + / ha,N(y)Q(dylx, a).

Thus, defining

(6.11) v(x, *) f v(x,a)*(dalx for all x
JA
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integration of both sides of (6.10) with respect to #* yields (by (6.9))

i.e., from (4.7)

ud#* J* -Pa,N.

In the last step, note that we may indeed cancel out the integral f h,Nd# since, by
Assumption 5.1(c), this integral is finite. Notice also that with c(n) as in (5.4)

lim Pa(n),N J* J*,
n

where the last equality comes from (5.6). Therefore, lima f U(n)d#* 0, which in
turn, using Fatou’s lemma (recall that u >_ 0), yields

(6.12) lim inf ira(n)(X, a) 0 for #* a.a. (x, a) e K.
n

Finally, define

h(x) := lim inf ha(n)(x) lim inf h(),g(X) N >_ -N,
n n

xEX.

Let x be an arbitrary state for which (6.12) holds for some a E A(x), and then take
the limi in (6.10) over a subsequence c(ni) of a(n) for which h,(,)(x) --+ h(x) and
U(n)(x, a) ---+ O. This yields, by Fatou’s lemma again,

J* + h(x) N >_ c(x, a) + / h(y)Q(dylx a) N,

i.e., J* + h(x) >_ c(x, a) + f h(y)Q(dylx, a). Hence, since (x, a) K was an arbitrary
pair for which (6.12) holds, we conclude (6.6).

(c) We will first prove the last statement, i.e., the set S is nonempty if

limsup IVy(z) J*/(1 c)l < g <

Indeed, from the optimality equation (5.2) we have

(1 o)V(z) + ha(x) <_ c(x,a) + a J ha(y)Q(dylx, a Vx, a

so that integrating both sides with respect to #* and using

f
Ta#*(B) TI#*(B) + (1 c) / Q(BIk)#*(dk

VB e

(see 4) yields

(1 a)V(z) + (1 a)f had.;

_
f cd#* J*
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and thus

J* (1 o)V(z) N < No < + < + 2g +

for all c sufficiently close to 1. Then, by Fatou’s lemma,

which in turn implies that h is finite #-a.e.
This and (6.6) prove that the set S is nonempty. It contains the support of the

invariant probability measure #.
Integrating both sides of (6.6) with respect to the measure p*(dalx yields

(6.13) J* + h(x) >_ /A [c(x,a) + / h(y)Q(dylx, a)] *(dalx # a.e.

Since J* + h(x) < oc for each x S, the right-hand side of (6.13) is a finite-valued
function on S. Therefore, by the measurable selection theorem of Blackwell and
Ryll-Nardzewski (see, e.g., [4]) there exists a deterministic stationary policy f 5c

satisfying

c(x, a) + / h(y)Q(dylx a) *(da x) >_ c(x, f(x)) + / h(y)Q(dylx f(x))

for all x E S, which together with (6.13) yields (6.7). Moreover, S is "absorbent" in
the sense that if x E S, then Q(SIx f(x)) 1 for #-a.a. x S; otherwise we would
get a contradiction to (6.6). This fact and (6.7) yield (6.8) by a standard recursion
argument [2], [15], [16].

It is worth noting that the converse of Theorem 6.2(b) holds, which provides a
"minimum pair" version of (6.2)-(6.3). That is, if a measure #* is feasible for (MP)
and (6.6) holds #*-a.e., then #* is optimal for (MP1), (*,#) is a minimum pair,
and (4.6)-(4.7)hold.

Theorem 6.2, vis-a-vis (6.1)-(6.3), is perhaps not surprising. Previous works for
countable (mainly finite) Markov decision processes in the multichain case (e.g., [3],
[12]) have shown that what the LP approach does is to identify the set of states of an
ergodic chain with minimum cost rate, as in Example 6.1. In our general (Borel) state
case, our guess is that such a set is precisely the set S in Theorem 6.2(c). However, a
precise answer on this issue requires further research on "ergodic decompositions" for
controlled Markov processes, which for practical purposes is an untouched problem. In
fact, to our knowledge, the only related work is Kurano’s [11] for the very special case
in which the state space is compact and Doeblin’s condition holds. (For noncontrolled
Markov chains, see, e.g., [14].)
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APPROXIMATIONS IN DYNAMIC ZERO-SUM GAMES I*
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Abstract. We develop a unifying approach for approximating a "limit" zero-sum game by a
sequence of approximating games. We discuss both the convergence of the values and the convergence
of optimal (or "almost" optimal) strategies. Moreover, based on optimal policies for the limit game,
we construct policies which are almost optimal for the approximating games. We then apply the
general framework to state approximations of stochastic games, to convergence of finite horizon
problems to infinite horizon problems, and to convergence in the discount factor and in the immediate
reward.
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AMS subject classifications. 90D05, 93E05

1. Introduction. In many cases, one encounters dynamic games for which time
and space are continuous and possibly unbounded. In general, numerical solution of
such games involve discretization both in time and in space. In pursuit evasion games
in particular (see Bardi, Falcone, and Soravia [6] and Pourtallier and Tidball [21])
and in differential games in general (see Pourtallier and Tolwinsky [22], Tidball and
Gonz1ez [25]), the time and space discretization often leads to dynamic programming
that has a stochastic game interpretation. The numerical solution then typically
requires a finite state approximation.

Approximations in dynamic games has therefore been an active area of research
for several decades. Several schemes for discretization of time and space and for
approximations have been developed for differential games [6], [7], [21], [22], [25]. In
stochastic games, much attention was devoted to approximations of infinite-horizon
problems by (long) finite-horizon ones, e.g., [14], [19], [24], [27]; discretization of the
state space has further been considered by Nowak [20] and Whitt [31]; [32] (who also
discretizes the actions spaces). Except for [20], [31], all the above references consider
approximation of the value function of the games.

The aim of this paper is to study in a systematic way approximations in games,
not only of the values but also for the policies. We begin by developing a general
framework for establishing the convergence of the upper and lower values of a sequence
of games Gn, n 1,2,..., to a value R (which we assume exists) of a limit game
G G. We are further interested in the following questions: (i) Do (almost)
optimal policies converge (in some sense)? (ii) Assume that u and v are (almost)
optimal for some approximating game Gn (where n is large enough in some sense).
Can we construct from these almost optimal policies for the limit game? (iii) Assume
that u and v are (almost) optimal for the limit game. Can we use them to construct
almost optimal policies for the approximating game G for n large enough?

Problem (ii) above arises in the following situation. Suppose that two players
use some approximating numerical schemes to obtain "good" policies, e.g., time dis-
cretization. Each player might be using a different discretization scheme. Yet each
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player would like to ensure that regardless of the discretization scheme used by the
other player, he or she can guarantee some value, which would be "almost" the value
of the nondiscretized game. In fact, since the real game that is played is the non-
discretized one, the desired discretization should perform well even if the adversary
uses an optimal policy for the nondiscretized game.

Problem (iii), on the other hand, arises in the opposite situation, and this serves
as an additional motivation for studying approximations in games. There are many
examples of dynamic games where one can solve an infinite limiting game easier, where
problems related to the boundaries are avoided. Indeed, examples are given in 8 of
stochastic games with (large) finite state space for which the natural approach for
constructing almost optimal policies is to solve a limit game with a countable state
space.

After establishing the general theory for approximations in 2, we apply it to
several approximation problems in discrete-time stochastic games with discounted
reward and denumerable state space. Applications to other dynamic games are the
subject of future research. The basic model of the stochastic games is presented in 3.
We then present three schemes for state approximation in 4 for the case of infinite
horizon. This generalizes many results on the convergence of the optimal value in
Markov decision processes (i.e., stochastic games with a single player), e.g., [11], [15],
[?], [29], [30]. Other related work on finite state approximations in Markov decision
processes are [1], [2], [26]. In 5 we extend the results on state approximations for
infinite horizon to the case of finite horizon by a transformation of the state space. In
6 we study the convergence of the finite-horizon problem to the infinite-horizon one,
and we combine state approximations with approximation of the horizon. In 7 we
study the stability of stochastic games in the discount factor and in the immediate
reward. Applications of approximation methods developed in this paper are presented
in 8, and some generalizations are finally discussed in 9.

2. Key theorems for approximations. We consider the sequence Gn
(Sn, Un, V,), n 1,2,...,, of generic zero-sum games, where Un is the set of
strategies of player I and Vn is the set of strategies of player II for the nth game. We
assume that both Un and Vn are endowed with some topology. Sn Un V IR is
a measurable function for all n. We define the upper (lower) value of the game:

Rn= inf sup S(,v) sup inf Sn(,v)
vV, Ur U, vV,

G (S, U, V) de=.f (Sc, U, gx) will be called the limit game. It will be assumed that

it has a value R de R.
An example where Gn does not have a value but G does will be given in 6.3

for computing almost optimal stationary policies for stochastic games with long (but
finite) horizon.

A strategy u* E U is said to be -optimal for player one in game n if

(1) inf S, (u* v) > inf Sn (u, v) Vu Un
v V, v V

which is equivalent to infvey. Sn(U*, v) >_ R_.n
for player one in game n if it satisfies

-e. It is said to be strongly -optimal

inf Sn u v) >_ Rn .
vEV,
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A strategy v* E Vn is said to be e-optimal for player two in game n if

(2) sup Sn(u, v*) < sup Sn(u, v) + e Vv Vn,
uEUn uEUn

which is equivalent to supueu Sn (u, v*) < Rn + e. It is said to be strong e-optimal if

sup Sn(U, V*) <_ R
uUn

Note that strong e-optimality implies e-optimality. If a game has a value _R Rn,
then strong e-optimality is equivalent to e-optimality.

Assume that (S, U, V) converge (in some sense) to (S, U, V). We are interested
in the following questions"

(Q1) Convergence of the values" Does ----n (or R) converge to R?
(Q2) Convergence of policies: Fix some e _> 0. Let en be a sequence of positive

real numbers such that lim__, en e. Assume that u and v are e-optimal policies
for the nth game. Are u and v "almost" optimal for the limit game for all n large
enough?

(Q3) Let g G U (resp., V) be some limit point of u (resp., v), defined
above. Is g (resp., ) e-optimal for the limit game?

(Q4) Robustness of the optimal policy" If u* (resp. v*) is e-optimal for the
limit game, can we derive from it an "almost" (strongly) optimal policy for the nth
approximating game for all n large enough?

In most applications that we discuss in this paper, Un U, V V do not depend
on n. However, in several applications this is not the case, e.g., approximations in
pursuit evasion games; see Bernhard and Shinar [7]. Another example is given for a
state approximation scheme for solving stochastic games; see 4.3.

THEOREM 2.1. Assume that there exist sequences of functions 7rn Un --+ U,
2 .UU 2"V-V n-1 2 such that7rn Vn V on an

2(.41) lim [Sn(U, an(V)) S(Tcln(u),v)] < 0 uniformly in u e Un for each v e V.
n---+(:x

(.42) lira [S(al(u), v)- S(u, 7c2(v))] > 0 uniformly in v e Vn for each u e U.
n--

Then
(1) limn__, __Rn limn+ Rn R.

2 definitions(2) For any e’ > e, there exists N such that 7rn(u) (resp., 7cn(v); see
in (Q2)) is e’-optimal for the limit game for all n >_ N.

(3) Let u* (resp., v*) be e-optimal for the limit game. Then for all
2there exists N(e’) such that an(U* (resp., a,(v*)) is strongly -optimal for the nth

approximating game for all n >_ N(e’).
(4) Suppose

(A3) S(u, v) is a lower sernicontinuous function in u,

(A4) S(u, v) is an upper sernicontinuous function in v.

(?.t) (?’esp. 2 (V)). Theft tSuppose ft U (resp., f V) is a limit point of
(resp., ) is e-optimal for the limit game.

Remark 2.1. Part (1) of Theorem 2.1 is a generalization of Lemma 1 in [14].
Proof. (1) Choose e > 0. Let u* U and v* E V be e-optimal for the limit

game G, and choose some sequence e(n)such that lim__,o e(n) 0. Let u Un
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2 2be an (n)-best response to the policy O’n(V* in game n (i.e., cn(tn, O’n(V*)) >
2Sn(u, an(v*))- (n) for all u e Un), Similarly, let Vn e Vn be an (n)-best response

to the policy an(u* in game Gn.
Choose some 5 > 0. By (A1), there exists N such that for all n N and u U,

2 v*S(u, an(V*)) S(=n(u), < 5. Then for all n N

Rn R inf sup Sn(U, v) inf sup S(u, v)
v6V u6U v6V u6U

2sup S,(u,a,(v*))- supS(u,v*)+e
uU uU

((), +()Sn(,n(*))--S *)+
+ + (n).

Hence limn Rn R + 5 + .
Similarly, by (A2), one shows that Rln + 5 + e. Since R, this

implies that limn ]R-] 5+e and lim [R-Rn] 5+e. The result follows
since e and 5 can be chosen arbitrarily small.

(2) Fix some 5 > 0. By (A1), as u is e(n)-optimal for Gn, and by part (1), there
exists N(e, 5) such that for n > N(e, ) we have

2(3) vev. S(,n())--S((),)<, (n)<+, --<,
and thus , 2inf S(rn (u), v) > inf Sn( n, an(V)) 5

vEV vEV

>_ inf Sn(u,v)-5>Rn-5-e(n)R-35-e.
veV

So n(u) is d-optimal for S with e’ 3 + .
In the same way, by assumption (A2) and considering an e(n)-optimal policy v

for Gn, we obtain that 2n(Vn) is d-optimM for S for all large enough n. The proof
follows from the fact that 5 was chosen arbitrarily.

(3) Fix some 5 > 0. As u* is an e-optimal strategy in the limit game G and by
(A2), for all n large enough we have

())_inf S(a(u*), v) inf S(u
vV vV

infS(u*,v)-5R-5-Rn-25-e.
vV

The proof for v* is obtained in the same way.
(4) Let V be such that infey S(fi, v) S(, )- . By (A1), (A3), and

part (1) of Theorem 2.1, for all 6 > 0 there exists N(6) such that n > N(5) implies
(n) < e + 5, and

inf S(, v) S(, ) 5 S((u), ) 25
vV

2(,n())
> R 3 (n)
R 4 e(n);

hence, is d-optimal with e’ e + 5. In the same way, by (A2) and (A4) we
prove that V is d-optimal for S. The proof follows from the fact that 6 was chosen
arbitrarily.
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Remark 2.2. (i) In the rest of the paper, whenever Un U and Vn V do not
depend on n, 7rn and an will be chosen as the identity maps.

(ii) It follows from the proof of part (1) in the above theorem that if for all Gn,
n 1,2,...,o0, there exist optimal policies for both players and if Un U and
Vn V do not depend on n, then

V V

3. Stochastic games: The model. We will use the results from the previous
section to study approximations of zero-sum stochastic gmes.

Let I be a denumerable set of states.
Ai (Bi) is a compact metric set of actions for player I (resp., II) at state i.
Let K {i, Ai, Bi}iei.
r K - IR is a bounded immediate reward function. (The boundedness

condition can be relaxed; see 9.) Let M de__f supi,a,b ir(i a, b)l.
P(a, b) 9(i, a, b,E)],E, a E A, b E B is a (sub) probability transition
(from state to a set E c I) when the players use actions a and b.

is the discount factor satisfying 0 <_/ < 1.
We shall use the following standard assumption (see, e.g., Nowak [18])"
(M1)" r(i, , ) and p(i, , , E) are continuous in both actions for any E C I.
The game is played in stages t 0, 1, 2, If at some stage t the state is i, then

the players independently choose actions a Ai, b Bi. Player II then pays player
I the amount r(i, a, b), and at stage t + 1 the new state is chosen according to the
transition probabilities p(i, a, b, ). The game continues at this new state.

Let U and V be the set of behavioral strategies for both players. A strategy u U
is a sequence u (u0, Ul,...), where ut is a probability measure over the available
actions, given the whole history of previous states and of previous actions of both
players as well as the current state.

A Markov policy q {q0, ql,...} is a policy (for either player I or player II) where
qt is allowed to depend only on t and on the state at time t.

A stationary (mized) policy g for player one is characterized by a conditional
distribution pg( J) over Aj, so that pg(Aj J) 1, which is interpreted as the
distribution over the actions available at state j which player I uses when it is in state
j. With some abuse of notation, we shall set g( J) p( J) for stationary g. Let
SA be the set of stationary policies for player I, and define similarly the stationary
policies SB for player II. If both players use stationary policies, say u and v, then
{Xt } becomes a Markov chain with stationary transition probabilities, given by

(4) p(j, u, v, k) f [ p(j, a, b, k)u(dalj)v(db]j ).
JA JBj

In the following section we are concerned with the infinite-horizon discounted
problem. It is known that under (M1), optimal stationary policies exist for both
players; i.e., if u and v are optimal policies for both players when both of them are
restricted to stationary policies, then each one of these policies is also optimal against
an arbitrary policy of his or her opponent. We shall therefore restrict the game to
stationary mixed policies, without loss of generality (see [12], [17]).

Next we introduce a topology on the sets of stationary policies. For any compact
metric set F, let M(F) denote the set of probability measures on F endowed with
the weak topology (F) (see [18]). The class of stationary policies for player I (and
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similarly for player II) can be identified with the set HiEI M(Ai) M(B); moreover,
it is compact with respect to the product topology HiEI (Ai) x (gi).

Let (u, v) be a pair of strategies and I be a fixed initial state. Let It, At, Bt,
t 0,..., be the resulting stochastic process of the states and actions of the players.
Let E denote the expectation with respect to the measure defined by u, v, i. Define
the -discounted game payoff

(5) S(i, u, v) E’v E tr(It’ At, Bt).
t--0

Let R(i) denote the value of the stochastic game for initial state i. For stationary
policies u and v, let the expected current payoff be defined by

(6) r(i, u, v) f f_ r(i, a, b)u(dali)v(dbli).

Consider the following (contracting) map:

(Tu,vf) (i)
def

r(i, u, v) + Ep(i, u, v,j)f(j).
jI

Then S(i, u, v) is known to be the unique solution of (7). The value R(i) is the unique
solution of

(8) R(i) val [r(i,a,b) + Ep(i,a,b,j)R(j)]
Moreover, any stationary policies u* and v* that choose at any state j the mixed
strategies that are optimal for the game

J a,b

are known to be optimal for the stochastic game S (see [18] for these statements).
Remark 3.1. S(i, ., .) SA x SB ---. IR are continuous for all states i. This follows

from Corollary 2.2 in Borkar [10]. It will thus follow below that assumptions (A3)
and (A4) hold.

4. State approximations: Infinite-horizon case. We introduce below sev-
eral approximating schemes. All of them involve some sequence In C I of sets of
states, which are naturally chosen to be increasing. We shall assume

(B1) In C In+l, UIn I.

The following property will imply conditions (A1)-(A2) in the various schemes that
we consider below:

(B2) For all integers r, e(r,n)=sup{p(i,a,b,j)}Oasn--OC.a,b,iirj
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Remark 4.1. Consider the case that the sets Ir are all finite. Condition (M1) as
well as the compactness of Ai and Bi then implies (B2). Indeed, assume that (B2)
does not hold. Then, there exists some a > 0 such that for some i,

(9) li-- max(Ep(i,a,b,j)l{jIn}
n---, a,b\]jI

Let an and bn be some actions achieving the max. (The fact that the max is achieved
follows from the compactness and continuity assumption (M).) Choose a subsequence
n(t),g 1,2,..., along which the limsup is obtained and along which an and
converge to some actions a* and.b*. Then p(i, a(), bn(), ") converges (pointwise) to
the probability p(i, a*, b*, .) as g c (by (M1)). But then it follows from a dominant
convergence theorem [23, Chp. 11, 4] and (B1) that

lim Ep(i, an(i),bn(),j)l{j In()} Ep(i a* b* j).0=0
jI jI

which contradicts (9). Hence (B2)is established.
For the case of a single player, (B2) was introduced as an assumption for several

approximating schemes by Cavazos-Cadena [11]. Note, however, that in [11], (M) and
the compactness of the action spaces are not assumed. In order to obtain conditions
(,41) and (A2) for the approximating schemes below (and hence obtain statements
(1), (2), and (3) in Theorem 2.1) one could relax the compactness assumption as well
as (M); in that case one would indeed need to impose (B2) as an assumption. The
compactness and (M1) (or other similar assumptions, such as (M2) or (M3) from [18])
are required, however, to establish the continuity conditions (.43) and (.44) required
to establish statement (4) in Theorem 2.1.

Other typical assumptions that imply (B2) have often been used in the literature;
see White [29] and Hernndez-Lerma [15] as well as (B3), introduced in Altman [1],
which will be used occasionally below:

(B3) From any state k, only a finite set of states Xk can be reached.

In all approximations in this section, the approximating games G have a value,
i.e., Rn(i) Rn(i Rn(i). Moreover, they will have a saddle point among the
stationary policies.

4.1. Approximation scheme I. We define

(10) (H,vf)1 (i) def= { r(i,o u, v) + EjIn p(i, u, v,j)f(j) if/if In.In’
For this approximating problem we define Sn(i, u, v) to be the solution of

H(11) (,f) (i)= f(i) Vi e I.

Sn is thus the total discounted payoff (defined in (5)) for the stochastic game whose
transition probabilities are p instead of p, where f(i, u, v, j) p(i, u, v, j) if {i, j In },
0 if {i, j In}. The value of the game G is the unique solution of

(12) Rn(i) { Valo [r(i,a,b)+ -yp(i,a,b,j)R(j)]
ifiIn.if/
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Moreover, optimal stationary policies u and v for the game Gin are obtained by
chosing at any state E In the mixed strategies that are optimal for the game

r(i, a, b) + E p(i, a, b, j)Rn (j)]jin a,b

The proof of the following theorem will enable us to evaluate the precision of the
approximation. More precisely, it will enable us to get a bound on
which will be uniform in E J where J is an arbitrary fixed subset of I.

THEOREM 4.1. Assume (M1) and (B2). All statements of Theorem 2.1 hold for
approximating scheme i, where the reward S for the limit game G is defined in (5)
and for approximating game G it is Sn

Proof. The proof uses an idea by Cavazos-Cadena [11]. We need first to introduce
some definitions. Let e > 0. We define

g(,r) T, gk(,/.) g(,gk-l(,l,)) k 1,2,...,

where

g(e, r) min {rn" e(r, rn) _< e}

and e(r, m) is defined in property (B2). To understand the meaning of gS(e, r), we
consider first e 0. Then Igs+l(0,r) is the set of neighbors of Igs(0,r) in the sense that
states that are not contained in Is+l(0,) are not reachable from any state in I(0,).
For e > 0, I+1(,) is the set of "e-neighbors" of I(,) in the sense that for any state
in I(,), the states that are not contained in I+(,) are reachable from with

probability smaller than or equal to e. Note that for any r k 0

(13) p(i, u, v, j) Vi e I,(,r), Vl 0, Vu, v.

jIg*+l (,.r)

Note also that g*(, r) need not be increasing in 1.
Let J C I, (J) min {m" J C Ira}, and suppose (J) < +. (This is the case

if J is chosen to be finite.) We define

(14) ink(e, e(J)) max {(J), g(, (J)),..., gk(e, e(j)) }, k 0, 1, 2,

We show that assumptions (A1)-(A4) hold for S(i, u, v) and S(i, u, v) defined
above.

Below, e and J are fixed, so for simplicity of notation we shall write gt instead of
g(, (J)). Let n ink(e, e(J)). Then for all J

IS(i, u, v) S(i, u, )1 p(i, u, v,j) IS(j, u, v) S(j, u,
ji

+

Note that for any state j, S(j, u, v)l M/(1- ) and IS(j, u, v) M/(1- ).
Hence by (13), (15), and (B2)we obtain
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(16)

+ p(j,u,v,e)Is (e,u,v)- s(e,u,v)l

2M9 2M_</32 max ISnl(g,u v)-S(g u,v)l+ei /.+el--
max i&l (e, s(e, +
gIgk g=0

The first inequality follows by (13) since n >_ mk >_ gl and since E J C Igo. Similarly,
(16) follows by (13) since n >_ rnk >_ g2 and since g E Igl. So we have

IS(j, u, v) S(j, u, v)l <_ 2M ’’1 +
1-

Hence (A1) and (A2) hold true (whereas (A3)-(A4) are established in Remark
3.1). [1

Combining (17) with Remark 2.2 yields the following corollary.
COROLLARY 4.2. For any J, if n is chosen such that n >_ me(e, e(J)), then

(18) 2M/(1 e)e/(1 -/3) + 3eR(i) R(i)
1-

In the previous theorem, the sets {In} where given a priori. Next we consider
a special choice of {In} that will be especially useful under assumption (B3) for a
finite set J. This construction will enable us to express in a simple way the sets In
needed in (10) in order to approximate R by Rn with a given error. This is especially
desirable when it is not easy to compute me(e, e(J)) (and thus Corollary 4.2 cannot
be used).

Let J be a given set (for which we would like to get a computable uniform bound
on the error of the approximation), and set Y(i) {j: p(i, u, v, j) > 0 for some u, v}.
Then we define In in the following way:

(19) I0 J, In+l U Y(i)UIn.
iIn

Remark 4.2. Note that if J is finite and if (B3) holds, then all sets In are finite.
This construction might be especially useful if the number of states reachable from
any given state is small. In that case In do not grow too quickly. We now consider
Sn(i,u, v) the solution of (11) with In defined in (19). We have that the following
theorem (analogous to (4.1)) holds.

THEOREM 4.3. Assume (M1) and (B3).
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(i) Fix a state E J. Then all statements of Theorem 2.1 hold for the approxi-
mating scheme I, where the reward S of the limit game G is defined in (5) and the
reward Sn for the approximating game Gn is the solution of (11) with In defined in

(19).
(ii) For any J and n 0, 1,..., IRn(i) R(i)] <_ 2M/n/(1 -/).
Proof. It suffices to prove that (jtl) and (A2) are satisfied. Let J. Then

< n max ISn(j, u, v) S(j, u, v)l <
jeI, 1

The proof of (ii) then follows from Remark 2.2. D
As suggested in Remark 4.2, the above method is useful specially when the ap-

proximating games have finite states (i.e., In are finite) and the typical number of
states (neighbors) is reachable from a state is not too high. If, however, the typical
number of neighbors is high, then the sets In become large very rapidly, which sug-
gests that obtaining good estimates of optimal value and policies might require an
unacceptably high complexity of computations. We thus present an alternative more
general way of constructing finite sets In (even when (B3) does not hold), which will
result in a simple expression for rnk(e, e(J)) and will thus enable use of Corollary 4.2
to obtain a uniform computable error bound for the approximation for any J.

We define a parametrized family {In (e)}, where e is a positive real number. Define
I0(e) J. {In(e)} are then chosen to be an arbitrary sequence increasing to I that
satisfies the following. If for some > 0, say [,

sup E p(i,a,b,j) < e,
a,b,iIt(e) jIt (e)

then In(e) I for all n > [. Otherwise, I/+l is chosen such that

sup E p(i,a,b,j) <_ e.
a,b,iIi(e) jII+l

It follows that e(J) 0, gO 0, and hence gk k and rnk(e, e(J)) gk k for k < [.
(The above quantities were defined in the proof of Theorem 4.1.) If J is finite, then
it follows from the same arguments as in Remark 4.2 that In(e) can be chosen to be
finite for n < [ and hence in particular I[(e), which is the truncated state space that
should be used to perform approximation scheme I in order to obtain a precision as
in Corollary 4.2.

In this setting, Theorem 4.3 (ii) becomes a special case of Corollary 4.2 with
e--0o
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4.2. Approximation scheme II. In the previous approximation scheme, the
dynamics are seen to be a result of transition probabilities that need not sum to
one, even if in the limit game they do sum to one. Indeed, (10) can be considered a
stochastic game where we set p(i, u, v, j) 0 for j In. In many applications this
may be undesirable, and one would like p(i, u, v, .) to remain a probability measure.
This is especially the case when we want to learn about the optimal value and (almost)
optimal policies for a given specific stochastic games with large finite state space by
approximating them through an infinite state game. Indeed, there are cases where
one can solve an infinite game more easily, since some boundary problems are avoided.
Examples are given in 8.

We assume that -jiP(i,a,.b,j) 1 for all a E A,b E B. We define the follow-
ing sequence of games. We let In C I be an increasing sequence of sets, converging to
I, as in the previous section. Define

(20) (H,f)2 (i) { r(i,o u, v) + EjI p*(i, u, v,j)f(j) if/if I,I’
where

p(i,u,v,j)+qn(i,u,v,j) ifieIn, jI,(21) p*(i, ,v,j)=, 0 ifiInorjIn.

q,(i, u, v, .) is some nonnegative measure satisfying -jIn (p(i, u, v,j) + q(i, u, v,j))
1. Hence,

(22) qn(i, u, v,j) p(i, u, v,j).
jIn jIn

We define S to be the solution of

() (H,vf (i) f (i).

S is thus the total discounted payoff (defined in (5)) for the stochastic.game whose
transition probabilities are p* instead of p.

Assume (M) and (B2). Then all the results of 4.1 still hold. We demonstrate
this with the proof of the analogue of Theorem 4.1. It suffices to show that (A1)-(A2)
hold. With the same notation as in 4.1 we obtain

IS(, ,)- s(, ,)1 z (,,,J)IS(J,, )- s(J,,)l
jIg

+ z q(, , ,J)IS(J, , ) s(J, , )1
jIg

+ Z (, , ,J)ls(J, , ) s(J, , )1,
jIa

and by (22)

IS(, , ) s(, , )1 z (, , ,J)Is(j, , ) s(y, , )1
jIg

+ ez p(, , ,J)Is(y, , ) s(y, , )1
jIg

<-- E p(i, U, v,j) IS2(j, u, v) S(j, u, v)l +2
jIg
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So continuing as in the proof of Theorem 4.1 we have

2/(1 3k)e/(1 3) +/kS2 v) S(j,u,v)l<_2M(24) n(J, t,
1-

n _>

4.3. Approximation scheme III. The basic idea of the approximation scheme
is to fix some stationary policies for both players and use them in all states except
for a subset In. The problem is then of determining the optin:lal mixed strategies
for both players in the remaining set of states In. We are interested in studying the
asymptotic behavior of this approach as In I. Similar approaches were used in a
framework of Markov decision processes (e.g., [2]), where In were assumed finite. We
first fix some arbitrary policies E U, E V. We shall now use the framework of
Theorem 2.1. Define

Un {u e U u(i) fi(i), Vi In}, Vn {v e V v(i) )(i), Vi In}.

Fix some e I. The limit game is defined as S(u, v) S(i, u, v), where S(i, u, v) is
and r2n togiven in (5). For any u Un, v Vn, define Sn(U, v) S(u, v) We set

be the identity mappings and

u(i) if/e In, (v(i) if e In,
2

(Tn (t)(i) rn (V)(i
(i) if/t In; 0(i) if In.

(25)

THEOREM 4.4. Assume (M1) and (B2), and fix a state i. Then
(i) All statements of Theorem 2.1 hold for approximation scheme IIi.
(ii) Rn is the unique fixed point of the equation

I val [r(k,a,b) + -jip(k,a,b,j)Rn(j)]
r(k, , 0)+/-jelP(k,t,O,j)Rn(j),

(iii) Optimal stationary policies un and Vn for both players are obtained by using
at any state k I, mixed strategies that achieve the value in (25).

The proof of this theorem is similar to the proof of Theorem 4.1.

5. State approximations for the case of finite horizon. Consider the model
in 3 with, however, a finite-horizon reward criterion instead of (5)"

S[m] =--iEu’v[’tr(Itt=O At, Bt)](26)

It is well known that there exist optimal policies for both players within the class of
Markov policies. The value R of S[’] is obtained by the recursion

(27) Rm+ de
0

;k(i de_____f val r(i,u,v) + p(i,u,v,j)Rk+(j) k 0,...,rn,
ji

R R.
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Define U[rn] (U[rn], Ul[rn], Um[rn]), Vim] (V[rn], V [rn],..., Vm[rn]), where
Uk[rn], V [rn] are the set of mixed strategies which are optimal for the matrix game

(28) [r(i,a,b) + Ep(i,a,b,j)Rk+l(j)] k O,...,rn,
jEI a,b

for all E I. Then, any Markov policies (u, v) such that ut Ut, vt Vt, t 0,..., rn,
are optimal for the stochastic game S[m].

In order to apply the results from 4 to the finite-horizon case we make the
following observation. The finite-horizon model is equivalent to the following infinite-
horizon model with enlarged state space:

]: I x {0,...,rn};
k(,k) A, l(,k) B;
((i, k), a, b) r(i, a, b);

((i, k), a, b, (j, 1)) I p(i,a,b,j) if k + 1 <_ rn,

0 otherwise;

Define

There is a one-to-one correspondence between stationary policies in the new model
and Markov policies in the original one; if g, ? are stationary in the new model, then
the corresponding Markov policies in the original model are given by

(29) ut(.Ix) t(.l(x t)), vt(.Ix) 9(.l(x, t))

and vice versa. Moreover, we have

sI l

Consequently, the state approximation schemes from the previous section also hold
for the case of finite-horizon models. The computation of the (approximating) values
and (almost) optimal policies can be done by using the above infinite-horizon model
with enlarged state space and then applying (29). , may be chosen, for example, as

in In x {0,..., m}. Note that condition (B2) will hold for in if it holds for

6. Successive approximations. We study in this section several new aspects of
successive approximations. The convergence of the value of successive approximation
is already well known [19], [24], [27]. By applying Theorem 2.1, we establish in the
following subsection the convergence of (almost) optimal policies. We then study the
application of both state approximation and finite horizon approximation. Finally,
we discuss the restriction of games with finite horizon to stationary policies.

6.1. Convergence of policies for successive approximations. An interest-
ing application of the results in the previous subsections is the observation that suc-
cessive approximations (or value iteration) can be viewed as a special case of state
approximations. One can define game Gn such that Sn SIn], where SIn] is given in
(26), and consider the limit game G G where S is defined in (5). Let u and v be
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a pair of optimal (or en-optimal, where limn_ n 0) Markov policies for Gn. Let
u* and v* be any e-optimal stationary (or Markov) policies for the infinite-horizon
game G. If we use for both Gn and G, the equivalent infinite-horizon model with

u* and v* all have an equivalentthe enlarged state space defined in 5, then un, vn,
representation as stationary policies. The problem becomes one of approximating the
state space I’= (I IN) by the subsets I (I {0, 1,..., n}). Note that condition
(B2) holds in this case since the probability of going from any state in I to any state
in Yn is zero for n > r + 1. Then using Theorems 2.1 and 4.1, we conclude with the
following theorem.

THEOREM 6.1. Assume that (M1) holds. Then
(1) limn_. Rn R.
(2) For any ’ > , there exists N such that u (resp., v) is ’-optimal for the

infinite-horizon game for all n >_ N.
(3) Let t E U (resp., V) be a limit point ofu (resp., v). Then t (resp., )

is e-optimal for the limit game.
(4) For all ’ > , there exists N(e’) such that u* is ’.optimal for the nth approx-

imating game for all n >_ N(’).
6.2. Successive approximation and finite state approximation. We use

the above approach to combine state approximations with finite horizon reward crite-
rion. Such a combination may be specially useful for computational purposes, where
In can be chosen to be finite. We can now compute Rn and (Markov) policies which
are optimal for Gn, using approximating schemes introduced in the previous sections,
in order to approximate the optimal value R and an almost optimal strategy for the
original limit game G. Let again In C I be an increasing sequence of sets of states
converging to I. One can repeat the construction of a model with enlarged state space
(that includes both the original state space and the time) so that the state space for
the nth game Gn is in (In {0, 1,..., n}) and for the limit game G is i (I IN).
This would establish the correctness of approximations based on value iteration for
a problem with truncated state space. For example, if we adapt the first approach
in 4, we get the approximating values Rn and Markov policies by performing the
following iterations"

R+I (j) dej 0,

R(j) de { val [r(i,a,b)+/yjenp(i,a,b,j)Rk+l(j)] if i In,
0 ifi In,

Rn def 0Rn
Define Un (Un, UI,.. Un) Vn [m] K0n n,Vn,...,Vn), where Un,V are the set
of mixed strategies which are optimal for the game

(30) val Ir(i,a,b)+ EP(i,a,b,j)Rk+l(j)] k=0,...,m,
L EIn a,b

for any In. Then any Markov policies (u, v) such that ut Ut, vt Vt, t
0,..., m, are optimal for the stochastic game Gn.

6.3. Finite horizon and stationary policies. For simplicity of implemen-
tation, one may be interested in restricting to the class of stationary policies in a

k 0,...,n,
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stochastic game rather than using Markovian policies (or others). It is well known,
however, that finite-horizon games do not have a value within the class of stationary
policies. However, it is immediately seen that the conditions (41)-(44) hold when
there is restriction to stationary policies, and thus we conclude from Theorem 2.1
that the optimal stationary policies for both players converge (in the sense of Theo-
rem 2.1 (3)) to the strongly optimal policy of the infinite-horizon game as the horizon
goes to infinity. Moreover, the lower and upper values converge to the value of the
infinite-horizon game.

7. Convergence of the discount factor and immediate reward. We estab-
lish in this section the robustness of values and optimal policies with respect to the
discount factor and immediate rward. This may be of importance in case that these
parameters are not known precisely. One can similarly establish robustness for the
random time-varying discount factor and immediate reward. We consider a horizon
rn which is the same for both the limit and the approximating game and which may
be either infinite or finite.

We consider a sequence of stochastic games Gn, n 0, 1, 2,..., where the quan-
tities defining each one of them are as in 3, Eq. (5), if rn is infinite or as in 5, Eq.
(26), if rn is finite. However, the immediate reward and discount factor are replaced
by/n + 5, rn r + Pn, where (n and Pn converge to zero as n -- oc uniformly
in the states and actions. Denote by S(i, u, v) the reward for game G (as defined
either in (5) or in (26)). Then

m

"v_< + + +
t--O

and we obtain convergence to zero uniformly over all Markovian policies u and v (to
which we may restrict ourselves, without loss of generality, as in 5). This implies
conditions (A1) and (,42), and hence, by Remark 3.1, we see that all statements of
Theorem 2.1 hold. This establishes the continuity of the value of the stochastic game
as a function of the discount factor/ in the open interval/ E (0, 1) and as a function
of the immediate reward. Moreover, it establishes the convergence of (almost) optimal
policies (in the sense of Theorem 2.1).

An especially interesting case is the asymptotics of stochastic games as/ 1.
We restrict for simplicity to the case of finite state and action spaces. The asymptotic
behavior of the value of the game was studied by Bewley and Kohlberg [8]. In fact
they establish the convergence of (1 -/)R(i) to the value Raveage of the expected
long run time-average game (where Rz(i) is the value of the game with discount factor
and initial state i).
When trying to apply the approximating Theorem 2.1 to the limit as/ 1, we

are faced with the following problems:
(i) The limit game does not have a value among the stationary (nor even the

Markov) policies (see the "big match" by Blackwell and Ferguson [9]).
(ii) The value of the limit game (with the expected average reward) is in general

not continuous in the policies (and thus assumptions (,43) and (44) do not hold in
general). This is the case even for a single controller, for which it is known that the
value may exhibit discontinuity in the parameters (see Gaitsgory and Pervozvanskii
[13, p. 407]).
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However, both problems are avoided in the case when we restrict ourselves either
to games with perfect information or to irreducible games (see Gillette [14]). Games
with perfect information (resp., irreducible games) have a saddle point within the class
of stationary deterministic policies (resp., stationary mixed policies), and (jll) and
(jI2) hold; see [14]. Within these classes of policies, (43) and (jI4) also hold; indeed,
for the perfect information case this follows from the fact that there is only a finite
number of stationary deterministic policies. For the irreducible case, this follows, e.g.,

8. Applications. We present in this section a few problems that motivated our
research on approximations in stochastic games. As mentioned in the introduction,
many discretization schemes of differential games yield dynamic programming that can
be interpreted as representing some stochastic game. In some pursuit evasion games,
such as the game of the two cars [22], an additional finite state approximation is then
required. The calculations in [22] was done following scheme I (introduced in 4.1).
The state transition in the discretized model satisfied property (3), and, in fact,
each state had at most four neighbors (i.e., four states reachable in one transition).
This feature motivates the use of Theorem 4.3 for such applications, which not only
establishes the convergence but also gives the rate of convergence (or, more precisely,
enables computation of n for obtaining any required precision).

Another application of the theory we developed in previous sections are stochas-
tic games appearing in queueing systems. Such problems may serve as models for
situations of conflicts between users in telecommunication systems or for worst-case
control situations in the presence of some unknown disturbance (in production sys-
terns or again in telecommunications applications). An interesting feature in the
control of queueing networks is that, often, infinite queues are easier to handle than
finite queues, as some boundary problems are avoided. Moreover, the optimal policies
for infinite-horizon problems, being stationary, are easier to implement than those
for finite-horizon problems. In real applications, however, queues are always finite;
moreover, one is often interested in finite-horizon problems (e.g., controlling manufac-
turing during working hours, etc.). Our results may thus be applied to obtain almost
optimal policies for these cases. Here are some examples:

(i} Altman considered in [3] a stochastic game with an infinite state space in order
to solve a flow control problem with an infinite buffer. The solution of the problem
with a finite buffer [4] seems more involved and was obtained only under an important
restriction on the actions of the ilow controller (namely, it had to contain an action
that corresponds to rejection of arriving customers).

(ii) Altman and Koole [5] solved a game where one or more servers has to be as-
signed to customers of different classes. In a telecommunication context, the different
classes may represent different traific types, such as voice, video, and data, and the
servers may represent a channel through which the traffic has to be transmitted. A
controller has to decide a customer of which class will be served next (which traific will
have access to the channel). The input traffic was assumed to be controlled as well,
e.g., it may have been the output of some dynamic routing mechanism or dynamic
flow control. The problem was posed as a zero-sum stochastic game between the
service controller and "nature" which represented the unknown input control mecha-
nism. Simple structural results were obtained for the case of infinite queues. In the
case of finite queues, the structure of optimal policies is unknown, even in the case
of uncontrolled input. By applying our second state approximation scheme, it follows
that the policies obtained for the problem of infinite queues are almost optimal for
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the case of finite queues which are large enough.

9. Further generalizations. Although we considered in this paper bounded
rewards, it is well known that different sets of conditions exist for which problems
with unbounded reward can be transformed into ones with bounded reward. Such
transformations have been used in the past for finite state approximations of Markov
decision processes; see White [30]. The generalization of such conditions to games
are straightforward (see, e.g., Wessels [28]). (For examples of stochastic games with
unbounded costs, see [3], [5].)

There are many other useful directions where the general approximation theorems
are applicable, on which we continue our investigation. Among these are

(i) Differential games in which a standard problem is to discretize both space and
time. Several works have been done in this direction; see [6], [7], [21], [22], [25], where
the convergence (and rate of convergence; see [21]) of the values of the approximating
games have been established. However, little is known about the convergence of
policies. Theorem 2.1 seems to be a suitable tool for approaching these issues.

(ii) Discretization of stochastic games with general state and action spaces. Some
results were obtained in the case of a single controller; see 6 of Hernandez-Lerma
[15] and references therein. Further results for stochastic games on the convergence
of the value and some results on convergence of policies were obtained by Whitt [31]
and then generalized to N-person games in [32] and by Nowak [20].
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Abstract. This paper considers the optimal consumption and investment policy for an investor
who has available one bank account paying a fixed interest rate and n risky assets whose prices are

log-normal diffusions. We suppose that transactions between the assets incur a cost proportional to
the size of the transaction. The problem is to maximize the total utility of consumption. Dynamic
programming leads to a variational inequality for the value function. Existence and uniqueness of
a viscosity solution are proved. The variational inequality is solved by using a numerical algorithm
based on policies, iterations, and multigrid methods. Numerical results are displayed for n 1 and
n--2.

Key words, portfolio selection, transaction costs, viscosity solution, variational inequality,
multigrid methods

AMS subject classifications. 90A09, 93E20, 49L20, 49L25, 65N55, 35R45

1. Introduction. This paper concerns the theoretical and numerical study of a
portfolio selection problem. Consider an investor who has available one riskless bank
account paying a fixed rate of interest r and n risky assets modeled by log-normal

2diffusions with expected rates of return ai > r and rates of return variation ai.
The investor consumes at rate c(t) from the bank account. Any movement of money
between the assets incurs a transaction cost proportional to the size of the transaction,
paid from the bank account. The investor is allowed to have a short position in one
of the holdings, but his position vector must remain in the closed solvency region S
defined as the set of positions for which the net wealth is nonnegative. The investor’s
objective is to maximize over an infinite horizon the expected discounted utility of
consumption with a HARA (hyperbolic absolute risk aversion)-type utility function.

This problem was formulated for n 1 by Magill and Constantinides [21], who
conjectured that the no-transaction region is a cone in the two-dimensional space of
position vectors. This fact was proved in a discrete-time setting by Constantinides
[8], who proposed an approximate solution based on some assumptions on the con-
sumption process. Davis and Norman proved, in continuous time and without this
restriction, that the optimal strategy confines indeed the investor’s portfolio to a
wedge-shaped region in the portfolio plane [10]. An analysis of the optimal strat-
egy, together with regularity results for the value function, can be found in Fleming
and Soner [13, Chap. 8.7] and Shreve and Soner [28]. Taksar, Klass, and Assaf [31]
consider a model without consumption and study the problem of maximizing the
long-run average growth of wealth. A deterministic model is solved by Shreve, Soner,
and Xu [29] with a general utility function which is not necessarily a HARA-type
function. A stochastic model driven by a finite-state Markov chain rather than a
Brownian motion and with a general but bounded utility function has been investi-
gated in Zariphopoulou [32]. She supposes that the amount of money allocated in
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the assets must remain nonnegative and shows that the value function is the unique
constrained viscosity solution of a system of variational inequalities with gradient
constraints. Fitzpatrick and Fleming [12] study numerical methods for the optimal
investment-consumption model with possible borrowing. They examine a Markov
chain discretization of the original continuous problem similar to Kushner’s humeri-
cal schemes [18]. The convergence arguments rely on viscosity solution techniques.

We consider here Davis and Norman’s model [10] in the case where more than
one risky asset is allowed. We restrict to power utility functions of the form -5- with

0<’< 1.
The purpose of the paper is to prove an existence and uniqueness result for the

dynamic programming equation associated with this problem and then solve this
equation by using an efficient numerical method, the convergence of which is ensured
by the uniqueness result.

The mathematical formulation of the problem is given in 2. In 3, we prove that
the value function is the unique viscosity solution of a variational inequality. Since
the utility and the drift functions are not bounded, uniqueness is not derived from
classical results. For the numerical study, an adequate change of variables performed
in 4 reduces the dimension of the problem. Then, in 5, the variational inequality is
discretized by finite-difference schemes and solved by using an algorithm based on the
"Howard algorithm" (policy iteration) and the multigrid method. Numerical results
are presented in 6 in the case of one bank account and one or two risky asset(s).
They provide the optimal strategy and indicate the shape of the transaction and
no-transaction regions. Finally, in 7, a theoretical study of the optimal strategy is
done by using properties of the variational inequality; this analysis corroborates the
numerical results.

2. Formulation of the problem. Let (gt, 9r, P) be a fixed complete probability
space and ($’t)t>_0, a given filtration. We denote by so(t) (resp., s(t) for 1,..., n)
the amount of money in the bank account (resp., in the ith risky asset) at time t and
refer by s(t) (si(t))i=0 n the investor position at time t. We suppose that the
evolution equations of the investor holdings are

(1) dso(t) (rso(t) c(t))dt + E(-(1 + Ai)di(t) + (1 #i)dAdi(t)),
i=1

dsi(t) csi(t)dt + ais(t)dW(t) + d(t) dAd,(t), 1,..., n,

with initial values

(2) s(0-) x, 0,..., n,

where Wi(t), i= 1,..., n, are independent Wiener processes, i(t) and Adi(t) repre-
sent cumulative purchase and sale of stock on [0, t], respectively, and s(t-) denotes
the left-hand limit of the process s at time t. The coefficients A and #i represent the
proportional transaction costs.

A policy for investment and consumption is a set (c(t), (i(t),Adi(t))i=l n) of
adapted processes such that

1. c(t,w) >_ O, f c(s, w)ds < oc for (t,w) a.e.,
2. i(t), A/li(t) are right-continuous and nondecreasing and i(0-) 2V/i(0-)

0.
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The process s(t) is thus right continuous with the left-hand limit and equations (1)
and (2) are equivalent to

so(t) xO + fo
s(t) x + ]’o

 (O))de + + +
i--1

aisi(O)dO + aisi(O)dWi(O) + i(t) JMi(t), 1,..., n,

for t > 0.
We define the solvency region as

S {X- (2:0,Xl,... ,Xn) E ]n+l /(C) > 0}

where

(3) 142(x) x0 + E min((1 #i)xi, (1 + i)xi)
i=1

represents the net wealth, that is, the amount of money in the bank account after
performance of the transactions that bring the holdings in the risky assets to zero.

Suppose that the investor is given an initial endowment x in 6’. A policy is
admissible if the bankruptcy time defined as

(4) inf {t _> 0, s(t) $}

is infinite. We denote by/d(x) the set of admissible policies. The investor’s objective
is to maximize over all policies 79 in/d(x) the discounted utility of consumption

(5) J(P) E e-etu(c(t))dt,

where Ex denotes expectation given that the initial endowment x, 5 is a positive
discount factor and u(c) is a utility function defined by

(6) u(c)=--, 0<’<1.

We define the value function V as

(7) sup
,eu(x)

We are facing a singular control problem. We refer to Menaldi and Robin [23] and
Chow, Menaldi, and Robin [7] for various treatments of singular stochastic control
problems.

Remark 2.1. When the process s(t) reaches the boundary 0S at time t, i.e.,
s(t-) E 08, the only adtnissible policy is to jump immediately to the origin and
remain there with a null consumption (see Shreve, Soner, and Xu [29]). Consequently,
if the initial endowment x is on the boundary, then V(x) O.

Remark 2.2. Let - denote the exit time of the interior of S, defined as

(8) -= inf {t _> O,s(t)
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For all admissible policies P, we have

(9) J(P) E e-etu(c(t))dt.

On the other hand, for any policy/), we can construct an admissible policy which
coincides with P until time T (such that the process s(t) jumps to the origin at time
-). The value function can then be rewritten as

(10) V(x) sup E e-5tu(c(t))dt,

where b/is the set of all policies.
We make the assumptions

(A.1) 5>7 r+2(1_7) = ai

(A.2) 0_<#i< 1, Ai_>0, Ai+#i>0 Vi=l,...,n.

Remark 2.3. When the transaction costs are equal to zero (Merton’s problem),
the value function V is finite iff Assumption (A.1) is satisfied (see Davis and Norman
[10] for n 1, Karatzas et al. [17], and 7 below).

3. The variational inequality. We state the main theorem.
THEOREM 3.1. Under Assumptions (A.1) and (A.2),

(i) the value function V defined in (7) or (10) is /-HSlder continuous and con-
cave in ,9 and nondecreasing with respect to xi for 0,..., n.

(ii) V is the unique viscosity solution of the variational inequality (VI):

(11) max {AV + u* ( OZozo) }max LiV, max MiV =0 in S;
l<i<n l<i<n

(12)

where

V 0 on 08,

(14)
OV

OV OV
(15) MiV (1 #) Oxo Oxi’
and u* is the convex Legendre transform of u defined by

(16)

u* (p) max(-cp + u(c))
c>O

1 p-i.
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The solvency region $ is divided as follows:

(17) B={xe$, LV(x)=O},
(18) Si={xeS, MV(x)=O},
(19) NT S \ (Bi U Si),

n

(20) NT N NT.
i=1

NT is the no-transaction region. Outside NT, an instantaneous transaction brings
the position to the boundary of NT: buy stock in B, sell stock in S. After the
initial transaction, the agent position remains in

and further transactions occur only at the boundary (see [10]).
We shall first recall the definition of viscosity solutions and then prove points (i)

and (ii) of Theorem 3.1 in 3.2 and 3.3, respectively.

3.1. Viscosity solutions of nonlinear elliptic equations. For simplicity, we
restrict ourselves to equations with Dirichlet boundary conditions. Consider fully
nonlinear elliptic equations of the form

(21) F(D2v, Dv, v, x) 0 in CO,
(22) v 0 on

where F is a given continuous function in SN x ]N X ] X (., SN is the space of
symmetric N x N matrices, (9 is an open domain of N, and the ellipticity of (21) is
expressed by

(23) F(A,p, v, x) >_ F(B,p, v, x) if A >_ B, A, B E SN, p ]N, v ], x O.

A special case of (21) is given by

(24)F(X, p, v, x) max
TEU

i,j’-I i=l

where (23) is satisfied when the matrix (aj(x,)),j is symmetric nonnegative in
(9U.

Bellman equations are clearly equations of this type, whereas variational inequal-
ities like (11)-(12) can also be formulated in this form by using an additive discrete
control which selects the equation which satisfies the maximum.

DEFINITION 3.2. Let v C((9). Then v is a viscosity solution of (21)-(22) if the
following relations hold, together with (22)"

(25) F(X, p, v(x), x) >_ 0 V(p, X) e J2’+v(x), Vx e (9,

(26) F(X,p, v(x), x) _< 0 V(p, X) e J2’-v(x), Vx e (.9,

where j2,+ and j2,- are the second-order "superjets" defined by

J2’+v(x) { (p,X) IN SN,

[ 1
lim2up v() v(x) -(p, z) -(X( z), z)
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and

J2’-v(x) { (p, X) E IN SN,

liinf v() v(z) (p, y z) -(X(y- x), z) I zl- >- 0

A viscosity subsolution (resp., supersolution) of (21) is similarly defined as an
upper semicontinuous function satisfying (25) (resp., a lower semicontinuous function
satisfying (26)) (see Crandall, Ishii, and Lions [9]).

3.2. Properties of the value function.
PROPOSITION 3.3. The value function V is concave in S.
Proof. The dynamic (1) is linear, and the solvency region S is convex. Hence, for

any 0 in [0, 1], x and x’ in $, 7) in L/(x), and P’ in b/(x’), we have 07)+(1-0)7)’ e bt(y)
for y Ox + (1 -O)x’ and

V(y) >_ J(OP + (1 -O)P’)= E e-tu(Oc(t) + (1 -O)c’(t))dt.

Since u is concave we infer

>

Taking now the supremum over all 7) and 7)’, we obtain that V is concave. []

As a consequence, V is locally Lipschitz continuous in . The continuity of V
at the boundary is a consequence of the Proposition 3.5 below. First let us state the
following lemma.

LEMMA 3.4. Suppose (A.1) holds. Then there exists a positive constant a such
that the functions

(27) (z) a :Co + (1 u)z with , (u,..., u), u - or,
i=1

are classicM sufersoltions of eqatio (11). Consequently, the fctio

(28) (z) a zo + min((1 i)zi, (1 + i)zi)
i=1

is a viscositg supersolutioe of equation (11) sch that 0 o 0.
Pro@ Denote

n

(29) V.(x) x0 + E(1 i)xi.
i--1

Then

and we have

(31) Li(x) -(I + i)a]/Y,(x)-1
_

O,
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(32)

with

M(x) (# ,)a’J/Y,(x)"- <_ O,
A,(x) a/Y,(x)’-G(x)

1
n

2 2 2G(x) - Eox (1 ) (, 1)
i--1

+-/’(X) ((Ozi-r)xi(1-l]i)i=l
From Assumption (A.1), there exists > 0 such that

This implies

and

(33)

C(x)

Moreover

A,(x) <_-a,rj/Y(x) =-Tr/.(x).

The constant a can then be chosen such that

A+u* (0, <0 in(34) Oxo ]

Since (31), (32), and (34) hold and _> 0 on 0S, . is a classical supersolution of

(11) (continuous in $ and twice continuously differentiable in ).
Now, can be rewritten s

Consequently, is a viscosity supersolution of (11) as the minimum of continuous
supersolutions and clearly vanishes on OS. D

PROPOSITION 3.5. Suppose (A.1) holds. The value function V satisfies

(35) 0 <_ V(x) <_ (x) x $,

where is the supersolution defined by (28). Consequently, V is continuous in S.

Proof. Consider x E $ and 7) E b/ and denote by - the first exit time of , of
the process s(t) defined by (1) with s(0-) x. The function . defined in (27)
has C2-regularity and is a classical supersolution of (11). Denote by Ac the operator

(1)u*(a’yV,(x)"-) 1
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A- c--0-- and by (t) and 3d(t) the continuous parts of i(t) and JMi(t) We applyOxo
Ito’s formula for c/dlg processes (see Meyer [25]) to e-et(s(t)). For any stopping
time 0, the process

e-et A(t),(s(t))dt + [L(s(t))d(t)+ M(s(t))dM(t)]
J0 i=1

-*[((t)) ((t-))]

is a martingale.
Since s(t) has a jump only when i(t) or Adi(t) is discontinuous, we have

w((t)) w((t-))

[(, + ,)((t) (t-)) + ( )((t) (t-))]
i=1

Hence,

<_w((t-)).

((t)) _< ((t-)).
In addition, and Ad are nondecreasing. Consequently

rAy-

(36) M e-e(tA)99(s(t A 7")) + e-eu(c(O))dO
dO

is a supermartingale, as is the process min M’. Therefore

E e-etu(c(t))dt <_ (x).

Taking the supremum over all policies 7) E/, we get V(x) <_ (x). As V(x) >_ 0, we
conclude that V(x) 0 on 0S and that V is continuous on OS. Since V is locally

Lipschitz continuous in 8, V is continuous in 8. gl

The regularity of V can be stated as follows.
PROPOSITION 3.6. Suppose (A.1) holds. Then V is uniformly "-Hd’lder conti-

nuous in $, that is,

(37) 3C > o, IV() v(’)l CIl- ’11 Vx,’ s.

Proof. Consider two initial positions x and x, and denote by T (resp., T) the first

exit time of of the process s(t) (resp., s’(t)) defined by (1) and s(O-) z (resp.,
s’ (0-) z’). We have

V(z) V(z’) sup E e-etu(c(t))dt- sup E e-etu(c(t))dt

sup E e-tu(c(t))dt- e-etu(c(t))at

sup E e-etu(c(t))dt.
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Using the supermartingale property of min Mt defined in (36), we get

E e-tu(c(t))dt <_ E(e-(/’)(s(T A T’))- e--{(S(T))),
AT

and since vanishes on OS, we have

V(x) V(x’) <_ sup E(e-’’ (O(S(T’)) (S’(T’)))I-,<-),

where 1A denotes the characteristic function of the set A.
Let us fix for instance Ilxll sup{=0 n Ix{I The function is ,7-gSlder continu-

ous, that is,

for some positive constant C. We thus get

(38) V(x)- V(x’) _< C sup E(e-’ (s(T’)-

The process E(t) s(t) s’(t) is a diffusion process with generator A + 6I and
initial value E(0) x- x’.

If the function (x) Ilxll would satisfy A _< 0, then (E(T At))e-5(At) would
be a supermartingale which would readily lead to (37). Because is not smooth, we
consider the function CZ(x) E{0(x2 +/3)/2 with B > 0. We have

dCz=,7(xg+Z)(-) r- Xo-3 +’7(x+
i--1

with

(1fi=xi ai(,7-1)+ai
Assumption (A. 1) implies

5 1
r- < 0 and 2

’7 ri (’7 1) + ai

Consequently, there exists a positive constant C such that

AZ <_ C3"/.

Applying Ito’s formula to CZ, we obtain

C3/(39) E(e-(’)bZ(E(T A T))) _< bz(X- X’) + -Taking the limit of (39) when fl goes to zero and using

(x) <: 0(x) _< (n +
we get

E(e-5(’n)O(E(T A T))) __< (n + 1)(x- x’),



338 M. AK!AN, J.L. MENALDI, AND A. SULEM

which leads, together with (38), to the desired estimate (37).
PROPOSITION 3.7. V is nondecreasing with respect to x for 0,..., n.

Proof. Let us denote explicitly by s(t, x) the process s(t) defined in (1) with initial

value x and by Tx the exit time of , of s(t, x). Because
Tc

V(x) sup E e-tu(c(t))dt

and u is positive, it is enough to prove the nondecreasing property of the stopping
time -x for any control process P.

Define y(t, x) by

0(t,x)

(t, )

e-rtso(t,x),

e-(a-1/2a)t-aiW(t) 8i(t, X), 1,...,n.

The process y(t, x) evolves according to

(40)
dyo(t,x) e-rt -c(t)dt + E(-(I+ Ai)d4(t) + (1 #i)dAdi(t))

i=1

dy(t,x) e-(i-1/2a)t-w(t)(dg(t) dAd,(t))

and satisfies y(0, x) x. Hence, we can write

y(t,x) x + Y(t, 7)),

where Y(t, P) depends only on 7). Consequently,

(41) s(t,x) (ertxo, (e(-1/2)t+w(t)xi)i=l n) + S(t,7)),

where S(t, P) is a process which is independent of x.
Consider 2 _> x (i.e., 2i _> xi Vi 0,..., n) and fix 7) in/A. We have from (41)

(t, x) <_ s(t, )

w(s(t, x)) <_ v((t, )),

where I/Y is defined in (3).
Since - inf{t >_ 0, 1A2(s(t, Sc)) <_ 0}

for any t > -, there exists t’ such that Te < t’ < t and W(s(t’,c)) <_ o. This implies
l/Y(s(t’,x)) <_ 0 and t > t’ >_ . Consequently, 7 _> - and V() _> V(x).

3.3. Existence and uniqueness results. First, we show that the value func-
tion V is a viscosity solution of the variational inequality (11). The problem is reduced
to prove a weak dynamic programming principle (see Fleming and Soner [13]).

LEMMA 3.8. There exists C > 0 such that

(42) IJ() J,()l CIIx x’ll Vx, x’ e s, v e u,



INVESTMENT-CONSUMPTION MODEL WITH TRANSACTION FEES 339

where Jx(7)) is given in (9).
Proof. Estimate (42) is readily obtained from the proof of Proposition 3.6.
PROPOSITION 3.9. The weak dynamic programming principle is satisfied for the

value function V, that is,

(4a) V(z) sup E e-et(c(t))dt + e-e(/"lV(s((O/x r)-)) Vz S
u o

for an stoppi9 time O.
Pro@ By means of the Markov property, we have for all in

E 5tue- (c(t))dt e 5tu(c(t))dt + e
J0

with P equal to P "shifted" by 0A7. Note that P may not be admissible. The correct
method would be to proceed with admissible systems composed with a filtration
(,t,P), a Wiener process W (W)= in n, and an admissible control
process P and consider V as the supremum of J(P) over all admissible systems
instead of the supremum over all admissible policies. We give here a formal proof.
Rigorous proofs are given in Fleming and Soner [13], Nisio [26], E1 Karoui [11], and
Lions [19]. Thus,

E e-tu(c(t))dt + e-(’)V(s((O A )-))

By taking the supremum over all policies P, we deduce one inequality side of (43).
For the reverse inequality, we need to construct nearly optimal controls for each initial
state x in a measurable way. To that purpose, consider e > 0 and {Sk}= a sequence
of disjoint subsets of $ such that

$ 8, diameter(Sk) < e.
k=l

n) in U such thatFor any k, take xk in Sk and pk (ck (, )i=,...,

(44) V(x) - j().

Now, for a given stopping time 0 and an arbitrary policy P in N, we define
0 .,) with

(t) (t)<0 + (t 0)le0,
of(t) c(t)<0 + (c(0-)+ c(t- o))to,
f(t) (t)<0 + ((0-)+ (t- 0))o

for s(0-) Sk. Using (42) and (44) we have

j(o_)() (j(o-)() j()) + J()
-Ce e + V(x)

2 -2Ce + V(s(O-)).
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Denote by I the right-hand side of (43). There exists a policy 7) such that

I s <_ E e-btu(c(t))dt + e-5(e/)V(s((O A -)-))

and using the Markov property, we get

I- <_ J(7)/) + (2Ca + e)

and

<_ <_ V(x),

which leads to (43). [-1

COROLLARY 3.10. The value function V(x) defined by (10) is a viscosity solution

of the variational inequality (11)-(12).
In the case of pure diffusion processes, this is a standard result of the theory of

viscosity solutions (see Lions [20]). For singular stochastic control problems, we refer
to Fleming and Sonar [13, Chap. 8, Thm. 5.1].

PROPOSITION 3.11. Under Assumptions (A.1) and (A.2), the value function V
is the unique viscosity solution of the variational inequality (11)-(12) in the class of
continuous functions in S which satisfy

(45) IV(x)l <_ C(1 + Ilxll) Vx e $.

Proof. By Corollary 3.10 and equation (35), the value function V is a viscosity
solution of (11)-(12) and satisfies (45). Uniqueness is a consequence of the following
maximum principle.

LEMMA 3.12. If V is a viscosity subsolution and v is a viscosity supersolution of
(11) which satisfy (45) and v <_ v’ on 0, then v <_ v’ in .

Indeed, a viscosity solution of (11)-(12) is both a subsolution and a supersolution
with the boundary condition v 0 on 08. We prove Lemma 3.12 by using the Ishii
technique; in particular we adapt the proofs of Theorems 3.3 and 5.1 of Crandall, Ishii,
and Lions [9]. They are themselves based on the following corollary of Theorem 3.2

LEMMA 3.13. Let V be an upper semicontinuous function and V be a lower
semicontinuous function in an open domain (9 of N. Consider W(x, y) V(x)
V’(y) Ix- yl 2 with k > 0 and suppose that (&, )) is a local maximum of W. Then
there exist two matrices X and Y in SN such that

and

$) x)e ($)

(46) 0 -Y _< 3k -I I

In this statement, I.I denotes the euclidian norm and I the identity N N matrix

and 2,+ is defined as follows:

?2’+V(X) {(p, X)
(pn, Xn) e J2’+v(xn), and (x, v(x),pn,X)n(X, v(x),p,X)}.
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F2,- is similarly defined. If F is a continuous function in SN x ]lN X It{ X O satisfying
the elliptic condition (23), and v is a viscosity subsolution of (21), we have

(47) -2,+r(x, v, ,(x) x) > 0 V(v, X) ,(x), Vx O.

Consider now v and v as in Lemma 3.12 and argue by contradiction in order to
prove v <_ v’ in . Suppose that there exists z in such that v(z) v’(z) > 0. For
k > 0, define the function wk in x c as

x vl (W.(x)’’,(x, ) (x) ’() - + w.(v)"’),

where

n

142, (x)= xo + E(1 ui)xi
i=1

and u, , and 7 are parameters which will be chosen further. In addition, denote

mk sup wk(x, y).
(x,y)S x,.9

In the following, C, C1, and C2 denote generic constants.
LEMMA 3.14. For u (ui)i=l , with - < < #, there exist C1 and C2 > 0

such that

(48) cll _< W(x) < c xl Vx e s.

Proof. The second inequality of (48) is straightforward. To obtain the first in-
equality, we use the nonnegativity of 1/Y (defined in (3)) in S"

n n

1/V(x) 14](x) E min((ui #i)xi, (ui + ,ki)xi) >_ CE Ixl > o.
i=1 i=1

Moreover,
n

IA2,(x)- Z(1 u)x
i-’1

n

W(x) + c Ixl cw().
i--1

Consequently,

Ixl cw(x),

Fix 7 > 7 such that Assumption (A.1) is still valid with 3/ instead of 7, and u
as in Lemma 3.14. This guarantees mk < +c (see Lemma 3.15). On the other hand,
we have

mk > sup{v(x) v’(x) 2el,V(x)’ } _> v(z) v’ (z) 2e14]u(z) z’
x8

As v(z) > v’(z), there exists e > 0 such that m _> > 0 for any k; in the following,
we consider such e.
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LEMMA 3.15. Consider / > and t as in Lemma 3.14. There exist xk, Yk in S
such that

m w(x, y) <

(49) klxk ykl 0,
k---cx

and

(50)

Proof. Since v and v’ satisfy (45), we have

mk <_ C +sllp(Cllxl- C2lxl’) <
xES

Let (xn, yn) be a maximizing sequence:

1 1
w(x, y) > m >_ -,

n n

which implies that

c. Ix ’ (]’1 Ixn J _< C.

Hence, xn is bounded, and similarly yn is bounded. Consequently, there exists a con-
verging subsequence of (x, y), and the limit (xk, yk) E S x S realizes the maximum
of w. As

(x) ’() (W(x)’ + w()’) + lx o

for any k, we conclude that x, y, and k[xk yk[ are bounded. Moreover, for any
subsequence of (xk, Yk) converging to (2, ) when k goes to infinity, we have 2 ,
and using m , we get

lim sup
k
{x 2 () ’() 2()’ 0.

Consequently, (49)and (50)are satisfied.

Now, since > 0 and v v on 0$, the limit 2 of xk and Yk is in S; then for any

converging subsequence of (xk, Yk), we have (x, Yk) e for large k. Applying

Lemm 3.13 with V v-’ and Y’= v’+’ at the point (x,yk) in ,
we obtain that there exist X, Y in Sn+l satisfying (46) such that

(pk,Zk) (k(Xk Yk) + ’Wu(Xk)7’-I, x + ,(t 1)W(xk)’-2A)
() e (),

(52)
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with 15 (1, 1 -/21,..., 1 -/]n) and A fit/5.
Denote

F(X,p, v,x) max (Fo(X,p, v,x) + u*(po) max Gi(p) max Hi(p)
l<_i<_n l<_i<_n /

n n

E + +  xo o-Fo(X, p, v, x) - a
i=1 i=1

a(p) -( + )po + p,

Hi (p) (1 #i)po Pi,

where X (Xij)i,j=o n, P (Pi)i=o n.

Note that although F is continuous, F takes its values in t2{+oc}, since F +oc
when Po _< 0. This leads to a difficulty to obtain a uniform continuity property similar
to [9, eq. (3.14)], and consequently straightforward application of the results of [9]
cannot be used. Moreover, as the discount factor 6 appears only in the F0 component
of F and not in G and F, property [9, eq. (3.13)], that is,

F(X, p, v, x) F(X, p, v’, x) < -A(v v’) for v v’, with > 0,

is not satisfied.
Using that v is a viscosity subsolution and v is a viscosity supersolution of (11)

(that is, of F(Dv, Dv, v,x) 0 in ) and using (51) and (52), we get

F(X,p, (), x) 0,
F(Ya,p,v’(ya),ya) O.

This last inequality implies G(p) 0 and H(p) O, and by linearity of G and
Hi, we obtain

() () ’(W(x)’- + w(w),’-)( + ) < 0

and

H(p) H(p) + ’(W()"’- + W(W)"-)(,, ,) < 0.

This leads to

Fo(X,p, (x),x)+ *((p)o) 0 Fo(Y,p, ’(W),W)+ *((p)o).

Using now that u* is nonincreasing and (p)o < (pa)o, we obtain

VFo(X,p, v(),x) Fo(Y,p, (W), W) O.

Hence,

(53)
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where

with

We have

1
n

ai xi’ (’ 1)YY,(x)’f(x) - E 2 2 -2A
i--1

(1 u)x
W (x)

f(x) <_ /’}&,(x)’ r- -- +and since -’ is such that (A.1) is satisfied, f(x) <_ 0 Vx e ]tn+l. Using (461, we see
that the first term of the right-hand side of (53) is bounded by Cklxk ykl 2. Hence,

O < Cklx yl: Sm -- -5 < 0.

We thus get a contradiction, and Lemma 3.12 and Proposition 3.11 are proven. [:]

4. Change of variables.

4.1. Reduction of the state dimension. The value function V. defined by (7)
has the homothetic property (see [10])

(54) > o,

Consequently, the (n / 1)-dimensional VI (111-(121 satisfied by V can be reduced to a
n-dimensional VI by using the following homogeneous model, that is, by considering
the new state variables:

n

p x0 + E(1 #)x (net wealth),
i=1

Y
(1 #i)xi

1, n
P

(55)
and the new control variable

(56) C _e (fraction of net wealth dedicated to consumption).
P

The function V(x) can be written as

PYl PYn
(57/ V(x) V p 1 Yi (1 #11’"" (1 #n)

i=1

(fraction of net wealth invested in stock i)
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where the function

Yl Yn(58) W(y) V 1- Yi, (l #),..., (l #n)
i--1

is defined in -- y-- (yl,...,yn) en 1-- {Yi}-- > 0
1 #i--1

with {y}- max(0,-y).
Using inequality (35) we deduce that the function W is bounded in g:

(59) O <_ W(y) <_ fl 1- yi,
Yl Yn < a.

i=
(1-#l)""’(1-#n)

The function W is the unique viscosity solution of

(60) max fIW+u*(BW) max LiW, max 2/iW 0 in S,
l<i<n l<i<n

(61) W 0 on

where

(63)
OW

BW ")/W- Z YJ Oyj
j=l

OW
(64) LiW Oy

OW
Oy

and

(66)

(67)

(6s)

n

r](gj y),bj yj E[(7 1)ai yi + a-
i=1

The symbol ij denotes the Kronecker index, which is equal to 0 when j and equal
to 1 when j.

Using the properties of V and (60), we deduce that W is concave, nonnegative,
and nondecreasing with respect to each coordinate yi.
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Remark 4.1. Equations (60)-(61) depend only on u (l/i)i=l...n with u
(A + #)/(1 #), and so does the function W. Denote by Vx,, the value function
(7) in order to express explicitly the dependency of V on the transaction costs and
by Wx, the solution of (60)-(61). We have

w,,(u) w,0()
(69) V,,o 1 Y, Yl, Yn

i=1

Using (54), we get

(70) V,,(x) V.,0(x0, (1 #1)xl,..., (1

Consequently, it is sufficient to compute the value function V when the transaction
costs on sale are equal to zero.

This remark could have been observed directly from the model. Indeed, the
quantity si(t) represents the amount of money in the ith risky asset at time t, that
is, the quantity of the ith asset multiplied by the reference price Pi(t). This reference
price is useless in practice unless the transaction costs are time dependent. What
matters for the investor is the buying price (1 + Ai)Pi and the selling price (or net
price) (1 #i)Pi. The relevant quantity to consider is the net value of the ith asset,
that is, (1 tti)si. Purchase of dLi units of the ith asset increases the net value of
this asset by dL’ (1 #)dL and requires a payment of (1 + )dL’, whereas sale
of dM units reduces the net value by dM’i (1- #)dMi and realizes effectively
dM’ in cash. Consequently, by using a formulation of the problem based on the net
values (1 #)s of the assets, the value function depends only on the coefficients
where u{ represents the proportional transaction cost on purchase with respect to the
net price of the ith asset.

4.2. Additional treatment for numerical purpose. Our purpose is now to
solve equations (60)-(61).

In order to simplify the numerical computation, we restrict the admissible region
S to

X E n+l xl,...,xn _> 0, x0 + E(1 -#)x >_ 0
i--1

that is, we suppose that the amounts of money allocated in the risky assets are
nonnegative, while the amount of money in the bank account can be negative as long
as the net wealth remains nonnegative. This is not restrictive since, when a > r, the
no-transaction cone is inside S+ and a trajectory which starts in S+ remains in $+

(see [10] for n- 1).
This leads to the study of VI (60) in the domain (+)’

(71) max(flW+u*(BW)max,iW,,l<i<n l<_i<_n,maXy>O/1/iW)= 0 in (IR+)’

This VI degenerates at the boundary and is valid up to the boundary, but the
controls which make the trajectory go out of the domain are not admissible. Note
that the function W has bounded derivatives in (+)n.
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We proceed with a technical change of variables which brings (N+)n to [0, 1] n,
namely,

(72)

(z) e(z)W(),

n

() l-I(- z),
i--1

Yi i--1 n.Z ---------- ..
l+yi

The function is bounded and concave with respect to z, 1,..., n, has bounded
derivatives, and satisfies

{ < ( C--> max-i’ max-i)max + sup -CN + O(Z)
l<i<n i, zi>Oc0

0 on [0, 1] n {zi 1} Vi 1,..., n,
()
where

n02 + bj
j,k=l j=l

E z E z(1 z),
j= j=

L ( z) + ( z)

(M -(1 z) + ( z)

with

1
ajk zj(1 Zj)Zk(1 zk)-gjk,

b z( z) + z-a
k--1

j=l J,k=

zi zi2 ki jiajk (. 1 Zi 1 Zii--1

zib (- 1)
1

i=1

and/ defined in (68).
The numerical study is organized as follows: equation (73) is solved by using

the numerical methods explained in 5 below. Then a reverse change of variable is
performed in order to display the numerical results for equation (71) (see 6).
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5. Numerical methods. We consider equations of the form

(74)
max (APW+u(P))=O int=[0,1]m\F,

P E T)ad
W =0 onF,

where AP is a second-order degenerate elliptic operator

m

APW(x)= E ay(x,P) O!W...
i,j--1

OXiOXj

m

(x) + E b(x, P)OW
i--1

(x)-(x,P)W(x)

with

m

E a,j (x, P),j >_ O, (x, P) _> 0
i,j=l

x E t, r] E ]m, p E ’)ad.

’)ad is a closed subset of Ik (which may depend on x) and F is a part of the
boundary 0t, which consists of faces of the m-cube [0, 1] m. On 0 \ F, the operator
AP is degenerate.

In 3, we have proven that the value function (7), within a change of variables, is
the unique viscosity solution of an equation of type (74). This solution can be approx-
imate by the following numerical method: (i) Discretize (74) by using a consistent
finite-difference approximation which satisfies the discrete maximum principle (DMP)
(recalled below). (ii) Solve the discrete equation by means of the value iteration (suc-
cessive approximation) algorithm or the Howard algorithm (policy iteration). This
method does not require any stronger regularity condition on the viscosity solution
(see Barles and Souganidis [3], Fleming and Soner [13]). The algorithms mentioned in
(ii) may be replaced by the (full) multigrid-Howard algorithm (FMGH), introduced
in Akian [1], [2] and based on the Howard algorithm and the multigrid method. This
algorithm is more efficient, but proof of convergence has been obtained only when
the DMP is satisfied, the feedbacks are regular, and the Bellman equation is strongly
elliptic.

For the numerical solution of (74), we use a classical finite-difference discretization
in a regular grid and the FMGH algorithm. Convergence arguments used in [1], [2]
cannot be applied here since the DMP is not satisfied (because of the presence of mixed
derivatives), the equation is degenerate, and the control is singular. Nevertheless,
numerical experiments show that this numerical method converges.

This procedure and the computer implementation are treated by using the expert
system Pandore (see Chancelier, et al. [6], Akian [2]), which has been developed to
automate studies in stochastic control.

5.1. Discretization. Let h 1IN (N E N*) denote the finite-difference step
in each coordinate direction, e the unit vector in the ith coordinate direction, and
x (xl,...,x,) a point of the uniform grid h A (hZ)m. Equation (74) is
discretized by replacing the first- and second-order derivatives of W by the following
approximation:

(75)
OW W(x + he) W(x- he)
Ox 2h
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or

(76)

W(x+hei)-W(x) when bi(x P)>0,
OW h

Ox W.(x) -:....W. (x.- he.) when b(x,P) < 0
h

(77)
02W W(x + he) 2W(x)+ W(x- he)
Ox2i (x) h2

02W W(x + hei + hej) W(x + he hey)(78)
OxOxj 4h2

W(x he hej) W(x he + hej)
for j.+ 4h2

Approximation (75) may be used when A is uniformly elliptic, whereas (76) has to be
used when A is degenerate (see Kushner [18]). These differences are computed in the
entire grid fth by extending W to the "boundary" of fth in (hZ)m:

W(x) 0 VxeFN(hZ)",
W(x hei) W(x) Vxe{x=0}Ngth,
W(x + he) W(x) Vxe{x=l}Ofth.

We obtain a system of Nh nonlinear equations of Nh unknowns {Wh (x), x E fth }"

max (AWh + u(P))(x) 0 Vx e fth,(79)
P e 7Dad

where Nh h 1/hm. Let 9Oh denote the set of control functions P h J’)ad
and )h the set of functions from "h into N. Equation (79) can be rewritten

max (AWh + u(P)) O,
PPh

Then, the operator A’, depending on P in 7)h, maps l;h into itself (or is a Nh x Nh
matrix).

Because of the degeneracy of the operator AP at some points of the closed m-cube
and the presence of mixed derivatives, AhP does not satisfy the usual DMP (i.e.,

(AWh(x) <_ 0 Vx fth) = (Wh(x) >_ 0 Vx fh)). Consequently, equation (79)
may not be stable, even for small step h. However, AhP can be written as the sum of
a symmetric negative definite operator and an operator which satisfies the DMP; we
thus infer the stability of AhP, which is confirmed by numerical experiments.

We describe below the available algorithms to solve equation (79).
5.2. The value iteration method. Suppose that the Nh x Nh matrix A sat-

isfies

(80) (A’)j > 0 Vi = j,
Nh

(Ah )ij -) < 0 Vi,
j=l

which implies that A satisfies the DMP. Equation (79) can be rewritten as

1
max (MPWh + ku(P)),(81) Wh 1 + ,kk Pe’Ph
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where k > 0 and MP I/ k(APh +)I) is a Markov matrix. (I is the Nh Nh identity
matrix.) Equation (79) can then be interpreted as the dynamic programming equation
of a control problem of Markov chain with discount factor 1/(1 / Ak), instantaneous
cost ku(P), and transition matrix MP"

k
max )n+i u(Xn, Pn).
(g,) (l+k

n--0

The value iteration method (see Bellman [5]) consists in the contraction iteration

(82) wn+l 1
max (MPWn + ku(P)).

1 + ,k Pe’

The contracting factor is 1/(1 / k) 1 O(h2) and the complexity of the method
is

log h / (2+,)Ch 0 h.2... Yh O(-h- logh) O(N+2/m log Nh).

When the operator A’ does not satisfy the DMP, equation (79) cannot be interpreted
as a discrete Bellman equation. Nevertheless, the iterative method (82) can still be
used if we find A and k such that the L2 norm of MR (which is no more a Markov
matrix) is lower than 1 for all P. This condition may be obtained for instance when
the discount factor/(x, P) is large enough.

An example of the use of the value iteration algorithm is given in Sulem [30] for
solving the one-dimensional investment-consumption problem.

5.3. The multigrid-Howard algorithm. Another classical algorithm is the
Howard algorithm (see Howard [16], Bellman [4], [5]), also named policy iteration. It
consists of an iteration algorithm on the control and value functions (starting from
p0 or W)
(83) for n :> 1, pn E irgmax(A’Wn-1 + u(P)),

PET::h

(84) for n _> 0, Wn is the solution of AnW + u(Pn) O.

When AhP satisfies the DMP, the sequence W decreases and converges to the solution
of (79) and the convergence is in general superlinear [4], [5], [1], [2].

The exact computation of step (84) is expensive in dimension rn

_
2. (The

t.f} hT’3-2/m’complexity of a direct method is ,,,h j.) We thus use the multigrid-Howard
algorithm introduced in [1], [2]" in (84), Wn is computed by a multigrid method
with initial value Wn-. The advantage is that each multigrid iteration takes a
computing time of O(Nh) and contracts the error by a factor independent of the
discretization step h. For a detailed description of the multigrid algorithm, see, for
example, McCormick [22], Hackbusch [14], and Hackbusch and Trottenberg [15].

Let JP denote the operator of an iteration of the multigrid method associated
with the equation AW+u(P) 0. Starting from W, we proceed with the following
iteration:

(85)

(83),
wn,O Wn-l,

for n _> 1 for 1 to rnn, Wn, MP(Wn’-l),
W W,-

The number of elementary operations for computing an approximation of the solution of (79)
with an error in the order of the discretization error.
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This algorithm converges to the solution Wt of (79) if W is sufficiently close to Wt
and mn is large enough (independently of the step h) [1], [2].

We introduce now the FMGH algorithm, which solves equation (79) from any
initial value W.

5.4. The FMGH algorithm. This algorithm [1], [2] fully uses the idea of the
full multigrid method (see, for example, Hackbusch and Trottenberg [15]).

Consider the sequence of grids (tk)k>l of steps hk 2-k and denote by +1
the operator of the m-linear interpolation from hk into Yhk+l.

If Wk E Yhk, Wk+l +Wk is defined by

W (x)

Wa+(x + y) Wk+(x) + Wk+l(y)
2 2

VX E tk C

VX, y t+l such that

and x, y are in the same cell of k,

where a cell of ’h is & m-cube of width h included in t and with vertices in (hZ)m.
The FMGH algorithm is defined as

For 1_< k_< k,
W is the th iteration of the sequence defined by (85) in
the grid gtk of initial value Wk.

For l_<k<k,
0 k+lWk+ Zk Wk

Under appropriate assumptions (strong ellipticity, DMP, regularity of the feed-
back; see [1], [2]), the error between W and the solution W of (79) with h h
is in the order of the discretization error for any k. This property is realized for any
initial value W, if the numbers mn and are large enough (but independent of the
level k). Consequently, this algorithm solves equation (79) (with an error in the order
of the discretization error) with a computing time of (9(Nh).

6. Numerical results. Equation (71) is solved in (+)n by using the FMGH
algorithm for n 1 and n 2 and various numerical values of the parameters.

Remark 6.1. The regions B and S defined in (17) and (18) are characterized by

Bi {x e S, [,iW(y) O, y given by (55)},
Si {x e S, MW(y)= O, y given by (55)},

where the operators and h:/ are defined in (64) and (65). By extension we use the
notation

Bi {y e (+)n, LiW(y) 0},

(86)

e 0},

NT (+)n\(B t2 S),
n

NT N NT.
i-’l
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6.1. One risky asset. Numerical tests are performed with 7 0.3, 5 10%,
T 7%, Oz 11%, 1 30%,/2 :/21 (1--1)/(1-#1) 0.1,0.3,0.5,1,2,3 or 4%.
These values of/2 are obtained for example when )1 #1 /2/2 0.05, 0.15, 0.25,
0.5, 1, 1.5, 2%.

When/2 > 0, the regions B1 and $1 are of the form (see 7) B1 [0, 7r-] and
$1 [;r+, +) with 0 < r- < 7r+. When/2 0 (no transaction costs), the optimal
policy is to keep a constant proportion of risky asset equal to r (given by (90) below),
that is 7r+ 7r- 7r. In our example, ;r 0.635. The values of ;r+ and 7r- are
given in Table 1 and displayed in Fig. 1 as functions of/2.

TABLE 1.-- 0.56 0.54 ’0.52 0.47 0.42 0.39 0136"
r+ ’0.68 6.68 0.68 0268" ’0’.68 0.68’ ’0.’6

The graphs of 7r+ and ;r- are similar to those obtained by Davis and Norman [10]
who already observed that the "sell-barrier" is very insensitive to the transaction cost,
while the "buy-barrier" decreases rapidly as/2 increases. Indeed, even if the selling
cost is high, the risky asset must be sold before it can be realized for consumption. On
the other hand, it may not be worthwhile to invest in the risky asset if the transaction
costs are too high.

The value function W, solution of (71), and the optimal consumption C are
displayed in Figs. 2 and 3.

From equations (71) and (86), we obtain W(y) c(1 +/2y) in B1, where c
is a constant depending on /2. In $1, W is constant and seems insensitive to the
transaction costs. This means that when the initial proportion in the risky asset is
in $1, the probability of a future purchase is small. On the other hand, if the initial
proportion invested in stock is in B1, loss of profit (when/2 increases) is due mainly
to the first transaction.

The values of C are not relevant in B1 and S1 since the investor makes transactions
and thus does not consume. As expected, C decreases in [Tr-, 7r+], as does the fraction
of wealth in cash.

6.2. Two risky assets. We set " 0.3, 5 10%, and r 7% and fix the
parameters of the first risky asset to al 11%, o 30%, and/21 (1 + #1)/(1
1)-- 1%.

Four tests are performed:
test 1: a2 15%, a2 35%, /22 2%,
test 2: a2 15/0, a2 35, /22 0.5,
test3: a2=15%, a2=35%, /22=1%,
test4: a2=20%, a2=50%, /22=1%.

For test 1, the value function W, the optimal consumption C, and their contour
lines are displayed in Figs. 4-7.

The partition of the domain is displayed for each test in Figs. 8-11. As expected,
nine regions appear: buy (resp., sell) asset when y is below (resp., above) a critical
level r- (resp., 7r+) depending on yj (j i) and no transaction between 7r- and r+.

After the first transaction, the position of the investor evolves as a diffusion
process with reflection on the boundary of NT. The direction of the reflection is
given by the equation LW 0 on the frontier with B and MW 0 on the frontier
with S.
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Note that the no-transaction interval for the first asset NT1 N {y2 constant}
_

[0.39,0.78] is much larger than the no-transaction interval [0.47,0.68] obtained in
dimension 1, when only one asset (with same parameters) is available. This is not
surprising since the second asset has larger expected rate of return; it is thus more
interesting to make transactions on the second asset.

We observe that the boundaries of the regions Bi and Si seem at first to be straight
lines (y constant). This would mean that the investment policies are decoupled
although the dynamics are correlated. In fact, when the cost for purchase /2 grows,
the region NT2 grows as expected but the boundaries of $1 and B are also perturbed.
Moreover, a variation of c2 and a2 affect both NT2 and NT. A theoretical study of
the boundaries is done below in order to confirm these remarks.

7. Theoretical analysis of the optimal strategy.

7.1. No transaction costs: The Merton problem. When the transaction
costs are equal to zero, the optimal investment strategy is to keep a constant fraction
of total wealth in each risky asset (see Merton [24], Sethi and Taksar [27], Karatzas,
et al. [17], and Davis and Norman [10]). Indeed, set , # 0 in equation (71). We
obtain

(87) max ftW+u*(BW) max max =0 in(I+)n
l<_i<_ y/’ l_i<n., yi:>0 y/

0.700

0.665

0.630

0.595

0.560

0.525

0.490

0.455

0.420

0.385

0.350

0.0
K

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

FIG. 1. Graph of r+ and 7r- for n 1, /= 0.3, 6 10%, r 7%, al 11%, al 30%.
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FIG. 2. Value function W for n 1, - 0.3, 6 10%, r 7%, al 11%, al 30%.
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FIG. 3. Optimal consumption C for n 1, 7 0.3, 5 10%, r 7%, al 11%, al 30%.
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FIG. 4. Value function W for’y= 0.3, 5= 10%, r 7%, a (11o, 15%), a (30%,35%),
(i%, 2%).
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FIG. 5. Value function W for’y 0.3, 5 10o, r 7%, a (11o, 15%), a (30,35%),
u (1%, 2%).
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FIG. 6. Optimal consumption C for - 0.3, 6 10%, r 7%, a (11%, 15%), cr (30%,
35%), (%, 2%).
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FIG. 7. Optimal consumption C for " 0.3, ti 10%, r 7%, c (11%, 15%), a (30%,
35%), , (1%, 2%).
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FIG. 8. Boundaries of the regions Bi, Si, and NTi for -y 0.3, 6 10%, r 7%, a (11%,
15%), a (30%, 35%), u (1%, 2%).
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FIG. 9. Boundaries of the regions Bi, Si, and NTi for 7 0.3, 6 10%, r 7%, a (11%,
15%), a (30%, 35%), v (1%, 0.5%).
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Fla. 10. Boundaries of the regions Bi, Si, and NTi for /--- 0.3, 6 10%, r 7%, a (11%,
15%), a (30%, 35%), v (1%, 1%).
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FIG. 11. Boundaries of the regions Bi, S, and NTi for 0.3, 6 10%, r 7%, a (11%,
20%), (30%, 50%), . (1%, 1%).
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which is equivalent to

(88)
W constant,
-()w + *(Tw) <_ o v e (+)

with (y) defined in (68). Uniqueness of the solution of (88) is not guaranteed since
Assumption (A.2) is not satisfied, but the function W defined in (58) is the minimal
solution of VI (87). Hence, we have

(89) max {-fl(y)W + u* (TW) } 0.
ye(a+)

Equation (89) coincides with the Bellman equation of the problem where the
proportion Yi is considered as a control variable (see [10]). Under Assumption (A.1),
the optimal proportion denoted by ’ and called the Merton proportion is given by

O r
(90) wi 2( 1 7).r

The optimal fraction of wealth dedicated to consumption is

C*=
1

-’,/ r+
1-7 2(1 -3’) .=

and the value function W is equal to

C,(-1)

The regions "sell i" and "buy i" are characterized by

Bi {y e (]lq)n, yi 7},
S { e (+)’, >_ }.

Note that these regions are not obtained by merely setting # 0 in (86) but
by taking the limit of these expressions when and # tend to 0.

7.2. A general shape of the transaction regions. In this section, we de-
rive formally from VI (71), without numerical computation, the general shape of the
transaction regions, given in Fig. 12. To that purpose, we assume the function W
to be C2 in the interior of (+)n. Although this is not true in general, what is done
below can be adapted by using the theory of viscosity solutions. This approach is
used for example in Fleming and Soner [13] to obtain regularity results for the value
function V and general prqperties of the transaction regions for n 1.

From (71), we have MiW <_ 0; in addition, the concavity of W implies that
OWMiW -- is nondecreasing with respect to yi. Consequently, the region Si defined

in (86) can be written as

where r+ is some mapping of

9 (Yl,..., Y-, Yi+I,..., Yn).
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Y2

AS1 NS2

c’ bl yl

FIG. 12. General shape of the transaction regions.

To obtain a similar characterization for Bi, we consider another change of vari-
ables (p’, y’) obtained by substituting -li for #i in (55) for some fixed E {1,..., n}.
Proceeding as above, and using Remark 6.1, we obtain

(91) B{ e < -{-(9’)}

with

(l+pi)yi
and ’= 1

),+ +
where i is defined in Remark 4.1. Since y is non decreasing with respect to yi, we
get

{ < 1 yi’9)}B{: ye(I+)n, y{<_- 1/

Suppose 79+ < +c and r- > 0. This implies that h+ and r- are continuous
functions and that the regions Si and Bi are connected.

We restrict ourselves to the case n 2, but what is done below can easily be
generalized to n > 2.

In $1, 57/1W ow. 0. The function W is thus constant with respect to yl

in S. Consequently 1 parts of the boundaries OB2 and 0S2 included in S are
straight lines of equation Y2 constant. Similarly, using the change of variables (92)
with 1, we infer that the parts of the boundaries c9B2 and 0S2 included in B are
straight lines of equation

Y2 constant.Y 1 + Yl
By symmetry, we get similar properties for the boundaries OBI and OS as dis-

played in Fig. 12. No other property has been obtained for the boundary of NT.
A question which arises now is how is located the "Merton proportion" r*. In

general, * is not necessarily in the region NT. Nevertheless, we have the following
proposition.
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PROPOSITION 7.1. We use the notation of Fig. 12’

A (al, a2) 0S1 c 0S2, B (bl, b2) 0S1 Fi OB2,

C OB1 n OB , D (dl, d2) OB1 1 0S2,

Cl bl c2 d2
Cl 1 + u2c’ bl 1 + ub’ c2 1 + ulcl’ d2 1 + uldl

and set

17r

~*= uiTr[ if ri <1+--,
r 1 + ui u

+ec otherwise.

Then

<al b, 7r2_ d27r

and

< b2 c2<dl c 7r 7r2

Proof. We prove r _< ai, 1, 2. The other inequalities are obtained similarly
by using the change of variables (92). In $1CS, the function W is equal to a constant
W0 and satisfies (71), which reduces to

-Z(u)Wo + (TWo) _< o

with/(y) given in (68). Hence,

-(y) + (1 -7)7-f-Wd---- _< 0 Yy E $1 1 $2.

On the other hand, the point A is in Si C1 $2 C1 N--. Assuming that W is C2 at point
A, we obtain

(93) W + u* (BW) 0

and

-fl(A) + (1 /)l/’-lWoT=-f- 0.

Consequently

(y) _> (A) Vy e $1 C1 $2 [al, +oo) x [a2,

As the function (y) is of the form 1(Yl) + 2(Y2) with quadratic functions i, we
get

(y) > (a) Vy _> a.

Consequently, ai >_ Argmini r.
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7.3. Special case of no transaction cost for one of the risky assets. We
suppose here n 2, 1 0, p2 > 0. The VI (71) then reduces to

(94) max AW + u* (BW)
OW OW

b,2BW, max 0,
Oyl Oy2 i=1,2, y>0

which implies that the function W is independent of yl. Consequently the boundaries
of B2 and $2 are horizontal straight lines of equation Y2 7r- and y2 r2+, respec-
tively. Since equation (94) holds for all Yl >_ 0 and W is the minimal solution of (94),
we have

OW
max (max(fi,W + u*(BW)) -’flY2\y>_o

for Y2 > 0.

Y2

$2 NB

NT2 N B,

B2 NB1

NT2 N S

/B2 N $1

7r{ y

FIG. 13. Boundaries of the transaction regions in the case of no transaction cost for the first
risky asset.

The regions B1 and S are delimited by the curve of equation y rl (y2), where

71"1 (Y2) Argmax(W + u* (BW))
x_>o

is the solution of

OW
(2(’7 1)(712Yl + (al r))Y2 a_-. + ’7((al r) + (’7 1)a12yl)W 0.

ay2

Consequently

()
BW - y. OBW"

1 "70y

In particular rl(0) 7r and 7r1(Y2) (1 + z2Y2)Tr in B2. In $2, W is constant
and 7r (Y2) 7r (see Fig. 13). Moreover, by using the concavity of W, we obtain the
estimate

0 < 7rx (Y2) < 7r
1 P2Y2
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ADAPTIVE CONTROL VIA A SIMPLE SWITCHING ALGORITHM*

JI FENG ZHANGt AND PETER E. CAINES$

Abstract. In this paper we present an adaptive stabilization control for systems with unknown
constant parameters and stochastic disturbances, which may be neither open-loop stable nor mini-
mum phase. The ideas come from previous works [J. F. Zhang and H. F. Chen, Adaptive stabilization
under the weakest condition, Proc. 31st Control and Design Conference, December 14-18, 1992, pp.
3620-3621, and H. F. Chen, Continuous-Time Stochastic Adaptive Control Stabilizing the System
and Minimizing the Quadratic Loss Function, Tech. Report, Institute of Systems Science, Academia
Sinica, Beijing, 1992], but here we not only simplify the construction procedure of an adaptive control
but also reduce the computational load significantly, so that the adaptive control in this paper is
more practical. Furthermore, parameter estimation is carried out in only a finite time period and,
unlike previous work, the parameter estimates are generated by ordinary differential equations rather
than stochastic differential equations.

Key words, adaptive control, parameter estimation, switching algorithm, continuous time,
stochastic system

AMS subject classifications. 93C40, 93E15, 93E35

1. Introduction. The switching control strategies of Zhang and Chen [1991]
and Chen [1992] show that an alternation of excitation and control regimes can yield
stabilizing controls. The idea is that, if a certain prediction error test fails at a
specified instant, then a signal which is (in the limit) persistently exciting is applied.
On the other hand, if the test is passed, then a particular certainty equivalence control
law using the current estimate is applied. This strategy has common-sense appeal,
despite the fact that the laws are somewhat complex in their present form. It is shown
in the analysis of these laws that eventually the prediction error tests must always
be passed, and hence it is shown that the system "locks on" to an acceptable control
law. In summary, the adaptive control algorithms used in Zhang and Chen-[1992] and
Chen [1992] are as follows:

Step A) Introduce an appropriate criterion to judge whether or not the param-
eter estimate is satisfactory (for instance, a prediction error criterion).

Step B) Apply an excitation signal to the system, and estimate the unknown
parameters via a least-squares (or related) algorithm until a "satisfactory"
estimate is obtained according to the criterion; and after this,

Step C) construct a control law via the previously obtained "satisfactory" pa-
rameter estimates and use this law to control the system until some "unsat-
isfactory" property appears according to the criterion; and then

Step D) repeat this procedure through Steps B) and C).
If no "unsatisfactory" property appears at some stage in Step C), then the
designed adaptive control law is used forever.

It is worth noticing that in some previous works (i) one or both of the derivatives
dxt and dyt of the system state x and observation process y are required to be mea-
surable in the parameter estimation procedure (see, e.g., Caines [1992]; Chen [1992];
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Chen and Guo [1990]; Chen and Moore [1987]; Duncan and Pasik-Duncan [1990],
[1991]; Gevers, Goodwin, and Wertz [1991]; Goodwin, et al. [1991]; Moore [1988];
Christopeit [1986]); (ii) the criteria used in steps A through C have to be verified
at all time instants, which is an uncountable procedure because of the nature of the
continuous time model (see, e.g., Chen [1992] and Zhang and Chen [1991]); (iii): the
unknown parameters are always estimated no matter whether they are needed or not
(see, e.g., Chen [1992]; Chen and Zhang [1992]; and Zhang and Chen [1991]); (iv)
some external stochastic excitation signals are invoked (see, e.g., Chen and Zhang
[1992] and Zhang and Chen [1992]).

In this paper, we formulate an adaptive control algorithm which (i) avoids use
of dxt or dyt and the introduction of external stochastic signals in the procedures
of parameter estimation and adaptive control, (ii) simplifies the criteria in steps A
through C so that they are required to be verified at discrete time instants only,
(iii) stop the parameter estimation procedure when it is not needed in order to make
the adaptive control law more practical, and finally, (iv) does not use an external
stochastic excitation signal. (In effect the Brownian motion w driving the system is
exploited for this purpose.)

It may be conjectured that such an alternation of identification and control
regimes will work in certain time-varying cases.

2. Full observation systems. In this section we consider the LQ adaptive con-
trol problem for the following system model:

dxt Axtdt + Butdt + Cdwt, t > O,

where xt E n and ut are the state and input of the system and {wt, 9vt } is a
standard Wiener process in m.

Using controls which at any instant t are based only on information available up
to time t, we wish to stabilize the system (2.1). In this paper, this is achieved by the
use of controls which are certain time-interleaved versions of an excitation signal and
a signal designed via the certainty equivalence principle for the following quadratic
loss function:

(2.2) min lim sup Jr(u),
uEb/ t-,cx

where

(2.3)

(2.4)

=a{x, u, 0_<_<t, 0_<s<t}, t_>0

l forJr(u)--- (XQlxs + Q2U2s)ds, Q,1 >_ O, Q2 > O.

This problem has been investigated in previous work; see, for instance, .Zhang and
Chen [1991], Chen [1992], where these authors presented the first rigorous stability
analysis for such adaptive stabilization of a system, which might be neither open-loop
stable nor minimum phase and might be subject to disturbances with an unknown
bound.

Specification of the adaptive control law. First, we define a causal system
which shall generate a disturbance input u’, which shall be employed over an at most
countable set of intervals; second, we define a linear state feedback control law, which
shall be used over the intervals which interleave those during which the disturbance
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is used; then, third, we give a rule for determining the switching times which depend
solely upon the history of the system inputs and outputs.

Following the procedure described from step A to step D, we now find an adaptive
stabilization control for model (2.1).

Assume that the control input u is defined on the interval [0, t); then the input
u and a countable sequence of stopping times with no finite accumulation point are
defined as follows:

Let T > 1 and a be positive constants chosen arbitrarily. Define for 1, 2,
n+l

(2.5) (-1)i+lc (n+ 1)!
i! (n+l-i)!

and for some integer k _> 0

with 0 A__ 1, i!
A
=12...i

LTk -}- #lSklt -}- + n+l n+l Tk+lut s ., t [T, ),

where Skut f;k usds and Lt 1 + f (ll ll + IIz ll + u)ds with Ct [Sx{, Sut]
and zt [S-2, St]’. Here, S is the integral operator Sxt f xsds; xt and ut
are, respectively, the system state and system input, which is recursively given by
(2.5)-(2.12); t and t are the solutions of the following equations, respectively:

(S + l)’t xt, (S + l)t ut,

/oo /oot xt e-(t-)xd), "t ut e-(t-)udA.

It will be seen below that the function u which appears in the definitions above is
equal to u during the time intervals when the excitation input to the system is in
use and is given as a linear function of the state x during the periods when u is not
being used as a system input.

Set 0 [A, B]. Choosing an arbitrary 00, the unknown parameter 0 is estimated
via the least-squares method, which is modified so as to be active only over a sequence
of intervals ITi-1 Ti). Specifically, the estimate Ot [At, Bt] is given by

( /0(2.7) Ct Pt;(t -O[)) with Pt I+

and

-1

zt if t e [0, TTM) or t E IT-I,T) Vi > 1,(2.8) = 0 ifte[T,T)

where {-} and {a} are two stopping time sequences defined as follows"

cri inf{k > Ti_ k if, (AT,BT,D) is controllable and observable,
where here, and hereafter, N" denotes the set of all positive

(2.9) integers, and D is any square matrix such that DD QI},
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f0 k7=inf k>a" kAf,

(2.10)

Tai

JO

+ TiTk + Ti }
with the excitation input u" given by

,, {u ifte[0, T)ortE[Ti-l,T{) Vi>l(2.11) ut 0 iftE[T{,T)

Here Q1 is given in (2.4) and u is defined by (2.6).
The adaptive control u is generated by interleaving the excitation input u’ and a

linear feedback input as follows:

(2.12) ut={u ift[0, T)ort[T-I,T)forsomeil,
_QIBa{ RT{ Xt if t IT{, T{) for some k 1,

where Q2 is the positive constant in (2.4), BT{ is the estimate for B t time instant
T{ given by (2.7) and (2.8), and RT{ is a solution of the following algebraic Riccati
equation:

ART + RTAT RTBTQBRT + DD O.

Here AT is the estimate for A at time instant T given by (2.7) and (2.8).
Remark 2.1. om the definition (2.12) of ut, it is easy to see that 7 and a are

Markov times, i.e., a{T t} t and a{T t} t. Thus, u N and t.
Remark 2.2. The excitation signal in (2.12) is generated by (2.6), in which a de-

signer needs only determine the deterministic coefficients . No additional stochastic
signal is introduced except LT so we call this a deterministic-like excitation signal.

Remark 2.3. In (2.9), to get a, the only thing one should do is t0 check the
controllability and observability of (ATe, BT, D) for every integer k at time instant
Tk. While in (2.10), one need only check whether or not

T rT

JO

for every integer k at time instant Tk and such a set of time instants is evidently
countable.

Remark 2.4. By (2.7) and (2.8) it is easy to see that 0t 0T" for all t [T T).
In other words, unlike in Zhang and Chen [1991] or in Chen [1992], the LS parameter
estimation is not carried out in the time interval IT T). Thus, if adaptive control
(2.12) results in an integer such that ai < and 7i , then the unknown
parameter estimates will be locked on an acceptable value OTi forever.

(t)LEMMA 2.1. Let min denote the smallest eigenvalue of matrix gl Then the
parameter estimate Ot given by (2.7)-(2.12) has the following property:

< + 1) vt > 0(t)min
where here and hereaer c 0 is a possibly random quantity which is independent of
t.
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Proof. Let Ot Ot 0. Then from (2.1) it follows that

xt xo + 0’t + Cwt.

Substituting this into the first equation of (2.7) and noting (2.8), (S + 1)t xt, and
S + 1) zt t we get

-Pttt Ot + tt[(S+ 1) (Cwt) +
where here and hereafter st denotes a time function which exponentially converges to
zero.
om this and the second equation of (2.7) we obtain

d(OPt) _(0)2 + 20,t[(S + 1)-l(Cwt)+ t]dt

which implies that

+ [(s + +

where for the last inequality we have invoked f[(S + 1)-l(Cws)]ds O(t + 1) a.s.
(e.g., Chen and Guo [1990]).

Therefore, Lemma 2.1 is true.
LMMa 2.2. In sstem (2.1), if (A, B) is coetrollable aed t for some

ll t (T, T+], thee there ezist c > O, > 1, aed o > 0 sch that

(T+ eaTS+(2. la) min T V 0.

Pro@ See Appendix A.
TOagM 2.1. g Span(B) C Span(C) and (A,B,D) is coetrollable and observ-

able with DD Q, then eder the a&ptive control (2.12) it is the case that
(a) there is integer sch that < , r , and Ot 0 Vt T;

ds ezist and are fiite(b) limt 7 fo zszds ad limt 7 fo %
Here nd here@er b Span(X) we meae the lieear space spaned b the colme
vectors of X.

Pro@ Let R be the solution of the following algebraic Riccati equation:

A’R + RA RBQIB’R + D’D O.

Then it is well known that A- BQ BR is stable, and hence there is a positive
matrix P such that

p + rp -I.

From this, it is easy to see that there exists a small enough positive constant s such
that

(2.14)
1
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We now define

A if t e [0, T) or t e IT- T),Or= A- BQBRT ift[T,T).
Then the adaptive control system defined above is expressed as

dxt Otxtdt + Bu[dt + Cdwt.

om the definitions (2.9) and (2.10) of sequences {ai} and {i} we see that only
three cases can possibly hold. The first case is that there exists an integer such that_

< and a ; the second is that ai < Ti < for every integer 1, and
the third is there exists an integer such that ai < and 7i . We shall now
show the first two cases are impossible.

Case 1. It is impossible that an integer such that Ti- < and ai exists.
om Lemmas 2.1 and 2.2, it is easy to see that if there were an integer such

that Ti_ < and ai , then there would be

AT A and BT B.

Thus, by the assumption that (A, B, D) is controllable and observable, we see that
there would exist a k such that Tk T- and (AT BT D) is controllable and
observable. This contradicts ai .

Case 2. It is impossible that ai < Ti < for every integer 1.
If for every integer 1, ai < Ti < , then by Lemmas 2.1 and 2.2 it is easy to

see that T . Therefore, there exists io such that for all i io,

which together with (2.14) implies that

1
(2.15) [Ot]] c and PT +OP -I.
Using Ito’s formula (cf. Schwartz [1984]) we find that for k [a, T)

r  l ,ll=d XTPXT 5 xPxo + x (PO + OP)xsds-
do

Ti rT
(2.16) +2/ x:PBuds + 2/ x:eCdwt + tr(CPC)Tk,

J0 Jo

where here and hereafter tr(X) denotes the trace of X.
Note that by Lemma 4 of Christopeit [1986], there exist random numbers d,

independent of t, such that for all k sufficiently large, say, for all k am,

T T n+]
1 1

5 + 5 c" + v e 0,

Then from (2.16), for some random number cm independent of time, we have

T

x)PXT c’" + c’" Ilxll2ds- N IIxll2ds
0 am

+c ll  ll2d + tr(C’PC)r
o
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and hence, for some random number c independent of time,

(2.17)
T Tam

J0

Now there exists sufficiently large that T > c, and so by (2.17) this gives

T

J0
Vk

_
which contradicts Ti <

So, there must exist an integer such that ai < oe and -Thus by (2.7) and (2.8) we get Assertion (a) of Theorem 2.1. Furthermore, (2.10)
together with -i oc implies that

(2.18) limsup
1 j0

Tk

IIxllds < oo a.s.

Notice that Span(B) C Span(C) and (A, B) is controllable implies that (T, C)
is controllable. Then by (2.18) and Lemma B.1 in Appendix B we see that (I)Tz is
stable. Therefore, from Lemma 3 of Chen and Guo [1990] it follows that

exists and is finite a.s.,

which together with (2.12) implies that

lim
l otU2sds Q2B ( l foo It--*oo - T iRT tIn - xsxds (BrRT)r exists and is finite a.s.

This proves Assertion (b) of Theorem 2.1.

3. Partially observed system.

3.1. Problem statement. In this section we consider the single-input single-
output continuous-time system described by

A(S)yt Yo + SB(S)ut + C(S)wt + St Vt >_ O,

where A(S), B(S), and C(S) are polynomials in S with unknown coefficients:

p q

(3.2) A(S) 1 + E aS’ B(S) E bSi-I’ C(S) E cS;
i--1 i--1 i--0

{wt,.Tt} is a standard Wiener process with respect to a nondecreasing a-algebras
{grt} defined on a probability space; yt and ut are the system output and input,
respectively, and measurable with respect to 9rt; and t is unknown disturbance or
unmodeled dynamics which is measurable with respect to t.

As Zhang and Chen (1991) show, model (3.1) subject to (3.2) is very general and
includes some widely used models. For instance, in the case where p and Cp gap,
the input-output properties of (3.1) are equivalent to those of the following well-known
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state-space representation (e.g., Gevers, Goodwin, and Wertz [1991]; Goodwin, et al.
[1991]; Caines [1992])’

dxt Axtdt + Butdt + Cdwt + Drtdt,
dyt Drxtdt + gdwt,

with

-al 1 1
bl ] co gao

0
A= -a2 ".

B= J C= D=
1 bm Cm-1 gam-1

--a, 0

where m max{p, q} and here and hereafter we set a0 17 ai 0 for > p, bj 0
for j > q, and ck 0 for k > 1.

Let us denote the collection of unknown coefficients of A(S) and B(S) by 0:

(3.3) 9 [-a],...,-ap, bl,...,bq] ’.

Let

sl+F(S) 1 + flS +"" + f+] with f+] #- 0

be an arbitrarily given stable polynomial of S; i.e., every S that satisfies F(S) 0
has negative real part.

Denote by y[ and u{ the filtered value, respectively:

(3.4) F(S)y[ Yt, F(S)u{ ut

and

Define

(3.6) t= 0
if t E [0, TTM) or t E ITr-I Ta) for some _> 1,
if t e [T,T) for some _> 1,

where {-i} and {a{} are two stopping time sequences such that
Then the unknown parameter is estimated as follows:

( )(3.7) -0tt) with Pt= I+ 8sds
-1

where 00 is a constant chosen arbitrarily.
The purpose of this paper is to design a 0t-based adaptive control so that the

closed-loop system is stabilized in the sense that

1/0 (3.8) sup
t+ i (Y2s + u2s)ds < c a.s.

t_>0

under the following assumptions:
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A.1. A(S) and SB(S) are coprime, bq = 0, _< min{p, q- 1}, and p and q are
known.

2A.2. supt>0 fo rsds < "From Zhang and Chen [1991] it follows that Assumptions A.1 and A.2 are as weak
as the following necessary and sufficient ones even when 0 is known:

A.I’. The greatest common factor of A(S) and SB(S) is 1 or a stable polynomial,
bq = 0, the order of the greatest common factor, _< min{p, q- 1}, and p and q are
known.

2A’2 supt>0 fo rsds < a.s.
However, for simplicity of notation, in this paper we use Assumptions A.1 and A.2.

Remark 3.1. We now look at how to calculate the filtered values y[ and u{ of Yt
and ut, respectively, with respect to filter F(S) in (3.4).

Let

-fl -f2 -ft+ y[ 1
1 0 0 Sy[ 0

DR= ". ".
Yt H //1.

0 1 0 Sty[ "0
Then from (3.4) we see that

Yt DFSYt / HlYt,

which is equivalent to

Yt DF eDf(t-’)Hlyd, / Hlyt.

Thus we have

y[ HIE yt + H[DF eDF(t-X)Hzyxd).

Similarly, we can get

u{ ut / H[DF eDF(t-)Hlud/.

3.2. Adaptive control. We first look at what the stabilization control is in the
case where is known. To see this, we introduce the following lemma (e.g., Chen and
Guo [1990]).

LEMMA 3.1. Let k >_ 0 be an integer and E(S) 1 + e,S +... + ekSk be a stable
polynomial with ek O. Then there is a (nonrandorn) constant Ce >_ 1 (depending on

E(S) only) such that

i--0

for any square-integrable process {zt}.
If A(S), SB(S) are coprime and bq : 0, then for any polynomial

(3.9) E(S) l + el S + + ep+qSp+q with ep+q k O,
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there exists a unique polynomial pair (G(S), H(S)) such that

(3.10) A(S)G(S) SB(S)H(S) E(S) with O(G(S)) < q- 1 and O(H(S)) p,

where here and hereafter O(X(S)) denotes the degree of the polynomial X(S) in S.
From (3.10) and (3.1)it is clear that

E(S)yt A(S)G(S)yt SB(S)H(S)yt
G(S)[A(S)yt- SB(S)ut] + SB(S)[G(S)ut- H(S)yt]
G(S)[yo + C(S)we + Srle] + SB(S)[G(S)ue H(S)ye]

and

E(S)ue A(S)G(S)ut SB(S)H(S)ue
H(S)[A(S)ye- SB(S)ue] + A(S)[G(S)u- H(S)ye]
H(S)[yo + C(S)we + Stir] + A(S)[G(S)ue H(S)ye].

Therefore, in the case where 0 is known, < min{p, q- 1} and Assumptions A.1
and A.2 hold, for any given stable E(S) subject to (3.9), if the control is defined as
follows:

G(S)ut H(S)yt O, t >_ O,

then the system is stabilized in the average sense (3.8).
Similar to 2, we now introduce a deterministic-like excitation signal u. Let

T > 1 and c be positive constants chosen arbitrarily. Define for I, 2,...,p + q,

/i (-1)i+1ci (P + q)!
i!

/x

i!(p+q-i)!
with 0! /1, =12...i,

and for some integer k >_ 0,

f pq-q Tk+lUt’ LTk + lSkUt q"""-+- pp+qOk (*t, t E ITk, ),

2 fwhere Skut fk usds and Lt 1 + f( oI,,, 9 + ]los,, 2 + u,)ds with o defined by
(3.5) and t defined by

gt [Syt,..., SPyt, Sut, gqut] r.

For any k _> 1, write OT in the component form

and set

p q

(3.12) Ak(S) 1 + E aiTSi’ Ba(S) E biTSi-l"
i=1 i=1

Let E(S) be a stable polynomial subject to (3.9). Then by Lemma 3.1 there is a
constant Ce (depending on E(S) only) such that

/o(3.13) E(S) z
da < C zlda

i=0



ADAPTIVE CONTROL VIA A SIMPLE SWITCHING ALGORITHM 375

for any square-integrable process {z }.
Let R(S) be a stable polynomial of S with O(R(S)) min{p + 1, q} and let ,

denote the filtered values of ut, Yt with respect to R(S), respectively:

(3.14) R(S) ut, R(S) yt Vt >_ O.

Actually, the filtered values and Y can be calculated as in Remark 3.1.
Set t [St,... ,SPt, S,... ,Sq]. Then by (3.11) and (3.14) we get

(3.15) R(S)t t.

In the following discussion, for a given polynomial Z(S) zo + Zl S - -" ZrSr,
its norm is defined as

IIZ(S)ll z
i=0

Define switching times 1 ’o < al < -1 < a2 < -2"’" as follows:

(
inf k > -_1 Ak(S)Gk(S) SBk(S)Hk(S) E(S) is solvableo-

with respect to Gk(S) and Hk(S) subject to

O(Gk(S)) <: q- 1 and O(Hk(S))=p; and
k

Ila(s)ll + IIH(S)II <
2Ce(p + q + 1);

}[ ] d _< -(,T)

min /k > cr there exists t E (T Tk] such that

[( 0] ds > -f(cr, t)

where Ce is given in (3.13), and

(3.18)f(x t) (t + 1) sup x3 + (SY)2 + y 2Ss ds
o<<t A + 1

kj= j=0

Similar to (2.12) we define the adaptive control ut as follows:

(3.19) ut={u iftE[0, T)ort[T-I,T) for someil,
Ha,(S)yt (Ga,(S) 1)ut if t e [Ta,T’) for some 1,

where H, (S) and G,(S) re generated by (3.16), (3.12), and (3.4)-(3.7).
In this case, similar to Lemmas 2.1 and 2.2 we my obtain the following results.

(t)LEMMA 3.2. Let min denote the smallest eigenvalue of matrix R Then the
parameter estimate Ot given by (3.4)-(3.7) has the following property:

0_ 011 (t + 1) vt > 0(t)min
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for some time-in_dependent random variable c >_ O.
Proof. Let Ot Ot O. Then from (3.1)-(3.3) and (3.5) it follows that

y{ 0o{ + F-I(s)[c(S)wt + ST]t] + st,

where we recall that st denotes a function of time decaying exponentially to zero.
Substituting this into the first equation of (3.7) and noting (3.6), we get

tt ut + Ptt [F-l(S)(C(S)wt + ST]t)+ st]
Then combining this with the second equation of (3.7) gives

d(tTP[-l’t)
dt ’IF-1-(o;) + 2o (s)(c(s) + s) + ],

which together with f[F-(S)(C(S)ws]2ds O(t) (cf. Lemma 3 of Chen and Guo
[1990]) implies that

<_ o (Os)2ds + 2 [F-(S)(C(S)w + ST]8) + st] ds

< P0-10 + [F-I(s)(c(S)ws -- ST]s + t] 2
ds O(t + 1),

where for the final bound we have used Lemma 3.1 and Assumption A.2.
LEMMA 3.3. Under Assumptions A.1 and A.2, if ut u for some k and any

t E (Tk, Tk+], then there exist c > O, a > 1, and ko > 0 such that

l(mTi:+) > caT+LT Vk > ko.

Proof. The proof resembles that of Lemma 2.2 and is given in Appendix C.
THEOREM 3.1. Under Assumptions A.1 and A.2 and the adaptive control (3.4)-

(3.7), (3.16)-(3.19), we get that
(a) there is an integer such that a < o, - oe, and 8t OT Vt >_ T;
() su,_>0 ,- 0( +) < a..

Proof. We first show that it is impossible that T < OC and a+l oc on a sample
set Z) with positive probability for an integer-valued random variable _> 0.

In fact, if there were a sample set Z) of positive probability, i.e., for which P(:D) >
0, which was such that for every sample w E Z), there were an i(w) >_ 0 (for simplicity,
we drop w below) such that T < Oe and a+ oe, then ut u for all t _> -. Thus,
by Lemmas 3.2 and 3.3 we would have that for some constant a > 1

(3.20) IleT, -112 O O ,.s on :D vie > TiaTk LT -which together with Lemma D.1 in Appendix D implies that there exists an integer
k _> 0 such that for any k >_ kl, Ak(S)Gk(S)- SBk(S)Hk(S) E(S) is solvable
with respect to Gk(S) and H(S) subject to O(Gk(S)) _< q- 1 and O(H(S)) p,
and II(k(S)ll 2 -5 IIHk(S)II 2

_
k/(2Ce(p + q + 1)).
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From Lemma 3 of Chen and Guo [1990] and the fact that O(R(S)) >_ O(C(S))+ 1
it follows that

while from (3.1), (3.3), (3.14), and (3.15)it follows that

c(s) s
Vt, sP_O.

Therefore, by Assumption A.2, Lemma 3.1, and (3.18) we find that

where (3.20) is invoked for the last equality.
From (3.21) we conclude that there exists an integer k2 kl such that for any

k_> k,

T

(3.22)
f(k,ll) J0 07 (8]2 k-2., [sy T ds <__ a.s. on

Thus, ai+l < oo a.s. on :D. This contradicts ai+l oe on Z) and P(:D) > 0.
We now prove that - oo a.s. for some integer-valued random variable _> 1.
In fact, from Lemmas 3.2 and 3.3 it follows that for some a > 1,

As in (3.21) we would have

where the last inequality is valid for some large enough and t _> T because of
(3.23). Hence there must be Ti oc for some i; i.e., assertion (a) is true. We now
prove assertion (b). From assertion (a) and (3.19) it follows that for some _> 1,

(3.24) H, (S)yt G, (S)ut O, t k T’.

Henceforth, for simplicity of notation, we shall write 0 for 0.
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(3.26)

In view of (3.16) we get

E(S)Skyt SA(S)Ga, (S)yt S+Ba, (S)Ha, (S)yt
SGa, (S)[da, (S)y SBa, (S)u]
+Sk+IBa,(S)[Ga,(S)ut- Ha,(S)yt], k 0, 1,... ,p+ 1;

E(S)S, SH, (S)[A, (S), SB, (S),]
+SA, (S)[C, (S), H, (S),], 0, 1,..., q.

Thus, noting that Aa,(S)yt- SBa,(S)ut yt- O,St, by (3.14), (3.25), and
inequality (a + b) 2 _< 2a2 + 2b2 we get

Sj R(S)- sjYt
E(s)-lsa,(S)R(S)-(w
+E(S)-iR(S)-IsJ+IBa,(S)[Ga,(S)ut Ha,(S)yt]
E(s)-lsc,(S)(
+E(S)-IR(S)-S+B,(S)[C,(S),- H, (S),]
j=0, 1,...,p+l,

and, furthermore, we have

(3.27)

p+l p+l q-1

(sJff) < 2llG,(s)lt 2 X:E[Sj+kE-I(S)( 0;, (s)]2
j=0 j=0 k=0

p+l

+2E E-I(S)R-I(S)Sj+IBa’(S)[Ga’(S)us Ha’(S)Ys])
j=o

p+q

<_ 211G(S)ll2(p/q / x)[SJE-I(S)(- OL()]2

j=O

p+l

+2E E-I(S)R-I(S)Sj+Ba’(S)[Ga’(S)us Ha,(S)Ys]) 2

j=o

and similarly, by (3.26) we get
q q p

-’(sY:)= -< 211H,(S)II X: -[sJ+E-(S)( 0;,C)]
j=o j=o k=o

q

+2E E-(S)R-(S)SjAa,(S)[Ga,(S)u Ha(S)ys]) 2

j=o

p+q

< 2 IH,(S)II=(p / q / 1) E[SJE-I(S)( O;,(s)] 2
j=o

q

(3.28) +2E E-I(S)R-I(S)SjAa,(S)[Ga,(S)u Ha,(S)Ys])
j=o

By Lemma 3.1 and (3.24) we see that

lim sup
1 tt-- t +’i (E-(S)R-(s)sJ+IR---a, (S)[Ga, (S)us Ha, (S)yI)

j=o

d8< a.S.
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and that

-. t’/ 1 (E-(S)R-(S)SA,(S)[G,(S)u H,,(S)ys]) 2
ds < oo a.s.

j=0

Therefore, by (3.27), (3.28), and Lemma 3.1 we conclude that for some < oo which
is independent of t

(3.29)

k=O

_< (p + q + 1)[lla(s)ll +
j=o

< 2(p+q+l)i Ce t
< i"[

1

’t+i I(’t)+u a.s., t 2T,
where (g.17), i < , and i a.s. have been used for the last inequality.

Set

{ 1 j]Fp+I_._ ] }O<A<T{ A+ i
=0

Then from (3.29) and (3.18) it follows that

2

( eL6)] d + ,

ky2 2sup (S s) + E(Sk ds <f-. 0"<
1

0<x<t A + 1
U:0 k:o

t +’i/(a{, t)+ 2

2 -sup { 1 Zx[ ] }i + "2 +1 +’1 (Sk() + (Sk(2) ds a.s.,
O<A< Lk=O

limsup sup { 1 /oX [+k={.q,c] +{,q,c] ] }dsk----O

From this and (3.14), assertion (b) follows

Appendix A. Proof of Lemma 2.2. Let

(A.1) N

/1 /2
i 0

and, for any t ITk, Tk+l),
,_n ITU(k) M, S,..., j
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Then from the definition of ut it follows that for any t E (Tk, Tk+l),

(A.2) dUt(k) NUt(k) with UTk(k) HLTk,
dt

i.e.,

(A.3) SkUt(k) N-1Ut(k)- N-1HLT Vt ITk, Tk+l).
We first to show that there exist constants c > 0, > 1 and k0 such that

(A.4) ,min (Skgs(]))(Skgs(k))Td8 C"Tk+IL2T / 0,

where here and hereafter ,min(X) denotes the minimal eigenvalue of matrix X.
Prom (2.5) and (A.1) we see that the characteristic polynomial det(xI-N) (x-

c)n+l of N coincides with the minimal polynomial of N. Thus there is a nonsingular
(n + 1) x (n + 1) matrix P such that

(A.5) =/x P-INP 1

(n--t- 1) (n--t-- 1)

Let t(k) p-1ut(]) and P-H. Then (A.2) is equivalent to

dUt(k) -. t(k) withT (k) -LTk Vt (Tk, T+).(A.6)
dt

Noting that for a given positive semidefinite matrix U,

min(PUP) _/min(PPr)min(U)

and Amax(PPr) llpl12, by (A.3) and inequality a2 b -(b- a) we have

min (Skgs(k))(Skgs(k))7d8

1> -am(N-N-’)amin U(k)U2(k)ds

1< -Amin(N-1N-)Amin (PP’)Ami U(k)2(k)ds

Thus, in order to show (A.4), it suces to prove that there exist constants c > 0,
> 1, and k0 such that

(A.7) amin (k)2(k)ds 2 cTT+IL Vk ko.

om (A.6) it follows that

F() e t [r, T+1),
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which implies that

(A.8)

Note that (N, H) is controllable and hence (A, H) is controllable. Therefore,

(A.9) /min(foole_,’Ks-’-reX"Sds)
Set

(t- 1) "’.

(t- 1)"
7%! (t- 1) 1

Then from (A.5) we see that

(A.10) cA(t-l) ea(t-1)Et"

It is evident that

det(EtE) 1 and
n

,max (]tr) <_ (n q-- 1) E(t- 1)
i=0

where "max(X) denotes the maximum eigenvalues of X.
l--[n+1Thus, from the fact that det(X) 1i=1 /i(X) for any (n + 1) (n + 1) matrix

with eigenvalues ,i(X) (i 1,..., n + 1) it follows that

,min (t]-) _> [)max (t’)]-n _> (?%-}- 1)E(t- 1)2
i=0

_> (n + 1)-2’(t 1) -2n2 gt > 2.

From this and (A.10) we get that

/min (e-(t-1)e’r(t-1)) >-- e2a(t--1), (n-J- 1)--2n(t- 1) -2n2 /t __> 2,

which together with a > 0, (A.9), and (A.8) implies the desired result (A.7). There-
fore, (A.4) is true.
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We are now in a position to prove (2.13).
Write

Adj(I- AS) I + A1S +... + An-ISn-,
A(S) A__ det(I AS) ao + aS +... + a,S

and set

M= 0 B AIB
ao al a2 an

.where i denotes n n identity matrix.
Clearly, we have

where

Vt [ut, Sut, Sut] ’.

Therefore, we get

(A.11)
1 ( iT ) L 2]e 7/min M (SU,)(SUs)rdsMr cE [s2i + [[Siwsll ds.

t
i=0

Using the argument in, e.g., Zhang and Chen [1991] we can obtain

(A.12) wIJ <2ds ct2+3 0, 1, 2, n,

and

(A.13)

d8

From (A.11)-(A.13) we have
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By induction we can show that

T

I,- ,I-< - ]0 lId W , e,..., W e IT, T+).

om this we see that for any x n+ with x] 1 and t IT, Tk+),

(xV)d [xV()]ds- e()-

2- [xSVs(k)]ds ]u]ds s2(-)ds

> [x’SU(k)]2ds- uds T2i(a+)

> [zU()]d- ( + )T"++2 Us

which implies that

1
(SkU(k))(SkUs(k))rdsmin (es)(Vs)Td8 min

(A.15) -(n + 1)T2(n+)(k+)LT

This together with (A.4) and (A.14) leads to

(A.16)min s2ds c-T-(+)(+)r+L cT(+a)(+).

With (S + 1)zt t in mind, we get

min
T

Cs:d8 :min

min[ Ixz + Sxz]2 ds= JT

4T2(k+l)amin zz2ds + 2T2(k+l)

,min zzs ds >_ 4-T-2(k+1) ’min )s)ds

T

-2-1fo
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From this, (A.16), and the definition of LTk it follows that

)min zsz2ds

_
c-lT-(2n+3)(k+l),.yT+L cT(2n+I)(k+I)LT,

which implies the desired result (2.13).
Appendix B. The following lemma is based on Chen [1992].
LEMMA B.1. If T > 1 is a constant, (F, C) is controllable, F E with

a.s. being a stopping time, and if

(B.1) lim sup
1 f0

T}

for the system

(B.2) dxt Fxtdt + Cdwt, t >_ r,

then F must be stable a.s.

Proof. Assume that Fr has an eigenvalue A with (A) _> 0, where (x) denotes
the real part of a complex number x. Let y be the corresponding eigenvector, i.e.,
Fry- Ay. Then by (B.2) we get

d[(yrxt) + i(yrxt)] [(A) + i(A)][(yrxt) + i(yrxt)]dt + yrCdwt Vt >_ a,

i.e.

(A) -(A) ztdt + dwt,(B.3) dzt= (A) (A) 3(yrC)

where (x) denotes the imaginary part of a complex number x and

zt

Using Ito’s formula, by (B.3) we obtain

which implies (Christopeit [1986]) that for any e (0, 1/2),

(B.4) IIzll IIzll2d / o IIzlld + IlfCll2(t ),

Noting that (B.1) implies that

(B.5) limsup
1 f[Tk

k--o ’ zll2d8 < c,
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by (B.4) we have

( )(B.6) IIzll 2 IIzll /2(,) IIzll2ds/O t1/2/ / Ily’Cll2(t-) vv e (0, /e).

From controllability of (F, C) it is easy to see that ]]yCII = 0, and hence from
(B.6) and (A) _> 0 it follows that for some to >_ a and c > 0,

Ilztll 2 >_ ct Vt >_ to, to random,

which contradicts (B.5).
Appendix C. Proof of Lemma 3.3. As in Appendix A, we can show that

there exist constants c > 0, > 1, and k0 such that

(C.1) /min (SkUs(k))(SkUs(k))ds >_ n Vk>_ko,

where here and hereafter

.p+q-u() b, s,...,
Set Wt yot + SC(S)wt + $27t and M [M1, M.]r with

p+q

’0 bl bq 0 0

.A 0 0 ". ". ".
P

0 0 0 bl bq

and

p+q

1 al aq 0 0

z 0 1 ". ". ".

0 0 1 a aq

Then from (3.1) and (3.11) it follows that

A(S)t MSUt + [Wt, SWt, Sp-Wt,

where here and hereafter,

(c.3) p+q-- tt]Vt [Ut, SUt,...,

Notice that by Assumption A.2, for 1, 2, p,

t it t2i s2i 2 ds < ct2+(Sis)2ds <- 2i(2i- 1)[(i- 1)!] 2
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Then similar to (A.11)-(A.14), by (C.2) we obtain

( )-’ (i.)tmin sTsd8 - 1

C
i=0

(C.4) -c t2i+1 (t + 1)2i+1 ll,lle.
i=0 i=0

By (C.3) and along the argument of (A. 15) we get

T+ 1mn (m.)(mm.)

-(p

mis toeter wit (O.1) na (O.4) leas

(C.) min sds 2 c-IT-(P+I)(k+I)T+
T

With F(S) t in mind, as in (A.a) w

-Tk+ l+l 2

min ] fSx ds
]l=

=0

S cr(2t+)(k+l)Amin ()rds +cT(+)(+) IIllds,

min fs (fs )’d8
_

cT-(2l+3)(k+l)lmin Oso[d8

T

fro IIos d.

From this, (C.5) and the definition of LT it follows that

imin
\JTk

fs(f)’r’d8 2> c-IT-2(p+I+2)(k+I)’),Tk+F --cr2(p+q+l+2)(k+l)T

which implies the desired result, Lemma 3.3. FI

Appendix D.
LEMMA D.1. if A(S) and SB(S) are coprime, bq 0 and

tOTk 0 a.8.,
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then there is an integer-valued K, possibly depending on a sample path such that for
all k >_ K, Ak(S)Gk(S)- SBk(S)Hk(S) E(S) is solvable with respect to Ga(S)
and Hk(S) subject to O(G(S)) <_ q- 1 and O(H(S)) p, and such. that IIG/(S)II 2 +
IIH (S)ll <_ + +

Proof. Let

(D.1) M

p+q+l

1 a ap 0 0 0

0 1 ’. ". ".

". ". ". ". 0 0
0 0 1 a ap 0

(D.2) M 0 0 ’.

0 0 0

(D.3) M’= [M3, M4],
He = [1, e, ep+q] "r.

p+q+l

-Oq" 0 0

-bl -bq

p+l,

Noting that

we see that there exists an integer K _> K’ such that for all k > K, IIGk(S)II 2 +
IIH ( )II I1 , 11 <_ + + 1)).

OTk O,

we see that there is an integer K’ >_ 0 such that for all k _> K’, M is nonsingular,

M M’ and >
q- Srthermore for all k K’, if we set G(S) i=0 gi, H(S) i=0 hi,a Si

with

[go,k, gl,k gq- l,k ho,k hl,k hp,k k

then we have O(Ga(S)) q- 1, O(Sk(S)) p and

A(S)G(S) SB(S)Hk(S) E(S).

[go, 91, gq 1, ho, hi, hp] z

Then recalling that

Replacing ai and bj by their estimates aiTk and bjT respectively, in (D.1)-(D.3)
for 1,..., p and j 1,..., q, we correspondingly denote M3, Ma, and M’ by M3,,
Ma,k, and M. Furthermore, if M is nonsingular, we set k (M)-1He.

Since A(S) and SB(S) are coprime and bq O, we see that M’ given by (D.1)-
(D.3) is nonsingular. Let (M’)-IHe and G(S) q-1 siE=og ,H(S)= Pi=o his
with
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MULTIPLICATIVE INTERIOR GRADIENT METHODS FOR
MINIMIZATION OVER THE NONNEGATIVE ORTHANT*

ALFREDO N. IUSEMt, B. F. SVAITERt, AND MARC TEBOULLE*

Abstract. We introduce a new class of multiplicative iterative methods for solving minimiza-
tion problems over the nonnegative orthant. The algorithm is akin to a natural extension of gradient
methods for unconstrained minimization problems to the case of nonnegativity constraints, with the
special feature that it generates a sequence of iterates which remain in the interior of the nonnegative
orthant. We prove that the algorithm combined with an appropriate line search is weakly conver-
gent to a saddle point of the minimization problem, when the minimand is a differentiable function
with bounded level sets. If the function is convex, then weak convergence to an optimal solution
is obtained. Moreover, by using an appropriate regularized line search, we prove that the level set
boundeness hypothesis can be removed, and full convergence of the iterates to an optimal solution is
established in the convex case.

Key words, multiplicative iterative algorithms, gradient methods, proximal methods, Q-diver-
gences

AMS subject classifications. 90C25, 90C30

1. Introduction. Consider the problem of minimizing a continuously differen-
tiable function f :R - R over the nonnegative orthant of Rn,

P" min{f(x) x e R},
where R_ {x R’xy >_ 0 (1 _< j <_ n)}. From now on, we assume that problem
P has solutions.

In this paper, we are interested in multiplicative iterative methods, which starting
with an initial point in the interior R+ of the nonnegative orthant, will generate a

sequence of feasible interior points {x} R_+ through an iteration of the form

(1) _k+l xM(Vf(xk)j ) j 1 nxj

where M is an appropriate mapping, Vf(xk)j denotes the jth component of the gradi-
ent of f, and Ak is a given positive parameter. As shown below, this class of methods
can be seen as a natural extension of gradient methods for unconstrained minimiza-
tion problems, with the special feature that they generate iterates in the interior of
the nonnegative cone. Accordingly, such methods will be called multiplicative interior
gradient algorithms.

The fact that all the iterates of these algorithms remain in the interior of the non-
negative orthant connects them with interior points methods for linear programming,
which became popular after Karmarkar’s method [9] proved to be computationally
efficient. These methods apply a transformation to the current iterate xa so as to
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move it away from the boundary of the orthant, and then use minus the gradient
of the objective at xk (projected onto the corresponding affine manifold, if there are
linear equality constraints besides positivity) as the moving direction. Then a stepsize
is chosen so as to preserve positivity, a new point is obtained, and finally the trans-
formation is reversed. Typical transformations include projective transformations, as
in [9], and atone scalings, as in [3], possibly the first among methods of this kind.
A survey on this type of algorithms can be found in [6]. In this paper we consider
only positivity constraints (so that no projection onto a linear manifold is needed),
and we use a distancelike function, called a 99-divergence, which has a penalization
effect. We use -Vf(xk) and the -divergence in order to generate the direction, and
it is automatically ensured that a unit stepsize in this direction will produce a fully
positive point. No transformation or change of variables is explicitly performed.

The motivation for considering multiplicative interior gradient algorithms stems
from the recent work of Eggermont [4], who studied algorithms of the form (1) with
particular choices of the mapping M. As demonstrated in [4], multiplicative iterative
algorithms are useful in various interesting applications such as image reconstruction
and inverse problems. For further details, we refer the reader to [4] and references
therein.

The construction of the family of multiplicative interior gradient algorithms in-
troduced here for solving problem P is derived by imitating the classical gradient
method, which can be interpreted as solving

(2) xk+l argmin{xtVf(x
where I1" denotes the Euclidean norm in Rn. This algorithm can alternatively be
also viewed as an explicit realization of the proximal regularization method for solving
inf {f(x): x Rn}; for the proximal minimization algorithm, see, e.g., Rockafellar
[12] and Lemaire [10]. To incorporate the nonnegativity constraints of problem P, we
replace here the quadratic kernel by a distancelike function, based on the -divergence
of Csiszr (see, e.g., [2]).

Let : (0, ) [0, ) be a strictly convex and thrice continuously differentiable
function which satisfies

(1) ’(1) 0 "(1) > 0, lim ’(t) -cx.
t--*0

The class of such functions will be denoted by . Define d" R_+ Rn++ R+ as

xj

j=l

When e ,d is said to be a -divergence. In the context of proximal methods,
-divergences are studied in [13], Where several of their properties are presented. It is
easily seen that d(x, y) >_ 0, with equality if and only if x y, and thus d can be
interpreted as a kind of (nonsymmetric) distance between two points inthe positive
orthant of R. In analogy with (2), we define the basic multiplicative interior gradient
algorithm (BMIG) as a method generating a sequence {xk } c R_+ according to

(4) x > O,

(5) Xk+l =argmin{xtVf(x) + ,kd(x, xk) }

with E (I)l
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Alternatively, BMIG can also be seen as an explicit version of the -divergence
proximal algorithm we recently introduced in [8]:

(6) x > 0,

(7) xk+i --argmin{f(x) + Akd(x, xk)},
xE l:t

_
where the function f in (7) is replaced by its linear approximation around xk in (5).
For a convergence analysis and applications of (6)-(7) see [8]. Noting that (5) basically
reduces to solving, for x+l,

, (x.)=_A_lVf(x)j j=l,...,n,

and assuming that ’ can be easily inverted (as in the case of most relevant examples),
we get the explicit formula which is the basis of our algorithm:

(9) k+i k -i Vf(xa)j).
Before discussing in the next section the advantages and drawbacks of this approach,
we present some of the multiplicative algorithms resulting from iteration (5) for several
relevant choices of , illustrating the unified framework emerging from our approach
to generate multiplicative algorithms.

Example 1. Let (ill(t) t- log t- 1; then (9) gives

+i (1 + A-ixy xy Vf(xk)j)-

Example 2. 2(t) t logt t + 1,

j=l,...,n.

xy+l xyk exp(-A-lVf(xk)j) -1, j=l,...,n.

Example 3. 3(t)= (v/ 1) 2,

xj
a+i

xj(I + A-iVf(x)y)-2

Example 4. 4(t) 1/2 (t 1) 2,

j=l,...,n.

xk+l k
j xj(1 A-iVI(xk)j), j=l,...,n.

The algorithm in Example 1 was introduced and studied in Eggermont [4], which
under appropriate assumptions proved its convergence in the convex case. The algo-
rithms in Examples 2 and 3 appear to be new in the literature and can also be seen
as explicit realizations of the -divergence proximal methods (see also 7 in [8]). Note
that for the first three examples E O1. The algorithm which emerges from Example
4 was also pointed out by Eggermont as another possible iterative method for solving
P in the convex case; however, no convergence results were established. Note that
ince 4 is not in the class Oi, positivity-preserving safeguards are needed; see [7] for
the analysis of such an algorithm and its application to maximum-likelihood estima-
tion problems. We also observe the interesting similarity between the algorithms of
Examples 2 and 4, the latter being just a "linearization" of the algorithm of Example
2, although it is not clear that this can be used in the analysis of the algorithm given
in Example 4. As discussed in the following section, in order to obtain satisfactory
convergence results, a linear search must be added to algorithm BMIG, producing the
complete form of the multiplicative interior gradient (MIG), which we present in 3.
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The iterative formulae for MIG with as in Examples 1-3 can be found in (50)-(52),
where ak is the optimal stepsize found in the linear search.

2. Preliminary discussion. The reason for considering iteration (5) as an
algorithm for problem P follows from the fact that its fixed points are easily seen to
be closely connected to the solutions of problem P. If we take A A a fixed positive
constant, and x* a fixed point of (9) we have

(10) x; x;(99’)-l(-,k-1Vf(x*)j),
and therefore either x; 0 or A-1Vf(x*)j a’(1) 0, implying Vf(x*)j 0. It
follows that if the sequence {xk} generated by (5) is convergent, then its limit x*
satisfies x* >_ 0, Vf(x*)tx 0, and it can be proved that when f is convex, we also
have Vf(x*) _> 0, in which case x* is a solution of P (see 4).

Iteration (5) seems therefore, in view of the explicit formula (9), also an appealing
option for implementing an approximate version of the -divergence proximal method.
However, in its bare formulation given in (5) and (9), the method exhibits some
serious problems. The first one refers to the existence of solutions of (5). While
in the case of the -divergence proximal method, existence of solutions for (7) are
guaranteed by the existence of solutions of problem P together with positivity and
strict convexity of dr, this is not true anymore for (5), since the objective Vf(xk)tx
may fail to attain its minimum on R_ (in fact this happens whenever Vf(xk)j < 0
for some j). In terms of (8), lack of solution of the subproblem in (5) translates as

--.-Vf(xk)x not belonging to Imp’, the range of . Since 1, it holds that
limt_.0 a’(t) -, ’(1) 0, and a’ is increasing so that Imp’ (-oc, ) with

r limt__. ’(t) > 0. If--,lVf(xk)j > , then the minimization problem in (5)
has no solutions. This cannot happen if V , as for of Example 2, but it can
occur with al of Example 1, for which 1. In this case the right-hand side in
that example could be negative so that the iterate xk+ would not be a solution of
the subproblem given by (5). There are two ways to overcome this obstacle. One
is to demand that satisfies limt_ (t) oe, but then we must exclude several
interesting choices of ’s from the analysis, such as a and a3 of Examples 1 and 3
(for both of which r- 1). Another option, which will be followed in this paper, is to
adjust the regularization coefficients A so that -Vf(xk)j)- < r for all k.

The second difficulty with iteration (5) is far more serious and stems from the fact
that, while the fixed points of (5) are, in general, solutions of P, they are not necessarily
attractors for the iteration. Another way to see this obstacle is the following" it is
easy to check that iteration (7) implies f(xk+) <_ f(xk), and this descent feature of
algorithm (7) is a key in the proof of its convergence [8]. This desirable property is
not shared by BMIG, as the following examples show.

Example 5. Take n 1, A 1 for all k, and a 2 as in Example 2. Here,
Ima (-c, oe) so that xk+l is always well defined by (5). Consider first the
objective function f(x) ax2- bx, with a 2/e 1, b (e + 1)/(e 1). Note that f
is a strongly convex quadratic function and the solution of problem P is x* (e+ 1)/2.
If we start with x 1, then x e, x2 1, and the sequence oscillates between 1
and e, forever missing x*, which is the midpoint between these two limit points. For
this choice of f the sequence {xk } is at least bounded, but this is not always the case.
Consider now for instance f(x) 1Ix + x2. This f is also strictly convex and the

x2ksolution of P is x* 2-1/3 It can be verified that if x > x*, then lim_ c,
lim_ x2k+l O, and the values of such limits reverse when x < x*. Of course for
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X X* we get xk x* for all k, but x* is a repeller, rather than an attractor, for
iteration (5), so that even a local convergence result is not attainable.

This obstacle can also be removed by choosing a sufficiently large value for
but the trouble is that such value cannot be determined with the information available
at iteration k. Another way to overcome this difficulty is suggested by the fact that
the direction (xk+l -xk), with xk+ given by (5), is a descent one. More precisely,
the directional derivative of f at xk in this direction is given by

n

(11) (xk+ xk)tVf(xk) A -.(x y-k+W’r-k+/x)y < O.
j=l

It follows that adding a line search in the segment between xk and xk+ to itera-
tion (5) will at least produce a sequence with decreasing functional values. This will be
the approach taken in this paper. We remark that even with the line search, iteration
(5) is far easier to implement than the -divergence proximal method (6)-(7), since
minimization in a segment substitutes for minimization in an orthant of Rn (i.e., for
the solution of the n n nonlinear system (8)).

The issue arises of what function should be minimized in the segment between x
and the point given by the left-hand side of (8) (which we call yk, reserving xk+ for the
result of the line search). Two obvious candidates are f(x) and f(x)4- kd(x, xk);
both guarantee a decreasing (and henceforth convergent) objective-value sequence
{f(xk)}. From the point of view of the convergence analysis neither of these is the
best choice. The reason is the following. In order to establish convergence of {xk}
we will follow the approach developed in [8], proving quasi-Fejr convergence of {xk }
to the set of solutions of problem P, meaning that x+1 cannot be much farther
away than xk from any solution z (see definition and properties in 5). Quasi-Fejr
convergence implies boundedness of {xk} and ultimately convergence to a solution.
Under the choices given above for the line search objective we are not able to prove
quasi-Fejr convergence. We have developed, however, in 4 some convergence results
which hold when we choose just f(x) as the minimand of the line search. We enforce
boundedness of {xk } by assuming that f has one bounded level set which contains x
and get a so-called weak convergence result in the following sense:

DEFINITION 1. A sequence {xk} C Rn is said to be weakly convergent to a set
SCRn /f

(i) the sequence is bounded,
(ii) limk_(xk+ xk) O,
(iii) all limit points of {xk} belong to S.
In 4 we prove that for E I), arbitrary f, and Ak in an appropriate interval,

{x } is weakly convergent to the set of points u which satisfy

u>_0, ujVf(u)j=O, j=l,...,n,

i.e., two of the three Karush-Kuhn-Tucker optimality conditions for problem P. We
do not get Vf(u) >_ 0, so a limit point of {xk} could fail to be a solution of P.
However, for a convex f, we prove Vf(u) >_ 0 for every limit point u, so {xk} is
weakly convergent to the set of solutions of P. It follows that for a strictly convex f
the sequence (xk} converges to the unique solution of P (boundedness of a level set
is redundant in this case).

In 5 we prove that, adding an appropriately chosen regularization term to f(x) in
the line search, we can eliminate the level set boundedness hypothesis and furthermore
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get full convergence when f is convex and 99 is in a subset of the class of functions in
(I) defined by

99i 99/i{99EO1 (t) < (1)logt, Vt>0}.
Note that the functions 99i in the Examples 1-3 satisfy the above inequality. The
function 994 of Example 4 does not belong to .

We decided to keep the weaker results for the nonregularized line search of 4 for
three reasons. First, they hold for a wider choice of f and 99; second, most of these
results will be used in the proofs of 5, so there is no duplication; and finally, it can
be argued that our algorithm is akin to a natural extension to the case of positivity
constraints of the steepest descent method for unconstrained optimization in the sense
that in both of them a descent direction is chosen and a line search is performed in
this line. The descent direction of our algorithm is not the steepest one but one which
automatically takes care of the positivity constraints, so it is interesting to compare
convergence results when the same objective, namely f(x), is used in the line search
of both algorithms, and it turns out that the results of 4 are the same that hold for
the steepest-descent method under similar hypotheses on f (see, e.g., Polyak [11]).

3. Formal definition of algorithm MIG. Take 99 E 1. Let r/= limt 991(t).
It follows from the definition of (I) that r/> 0 (possibly r] oe). For any vector x Rn

let x- Rn be defined by x- max{0,-xj}, and I]xll maxl<j_<n Ixjl denotes
the/-norm. In order to define the algorithm we need four exogenous real constants
,/, , satisfying

(12)

(13)

A, A are a priori candidates for lower and upper bounds of the regularization parameters
Ak. / and/ will be used to generate surrogate bounds k, "k for A, required in the
dynamical adjustment of the A’s which guarantees that the minimization problem in
(5) has solutions, even when < c (both /k and "k are zero when r/ oc). The
constants in (13) guarantee that the sequence {Ak} is bounded.

The multiplicative interior gradient algorithm (MIG).
Initialization.

(14) x > 0.

(5)

Iterative step. Given xk > 0, define

(16) Ilvf(x )-II ,
and choose any A R such that

(17) max{k, } _< Ak <: max{k, }.
Compute

(18) yk argmin{Vf(x)tx + Akd(x, xk)},
x>0
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(19) ak argmin{f(xk + a(y x))},
[0,]

(20) x+ x + ak(y x).
We remark that if ce 0 for some g, then it follows from (14)-(20) that Xl+l X

and consequently xk x for all k _> g; i.e., in practice the computation stops at k 6.
It is not difficult to show that in such a case Vf(xe) 0; i.e., xe is a stationary point
for problem P, but there is no need to prove this fact, because by considering that
the sequence {x} is always infinite (even if it stays always at the same point), our
convergence proof simultaneously covers the cases of finite and infinite termination.

4. Convergence analysis for the MIG algorithm. The next two proposi-
tions and corollary do not use the specific form of the minimand in the line search
given by (19), and so they hold also for the algorithm considered in 5. We start with
an elementary property of and (t):= (t- 1)’(t).

PROPOSITION 1. Take E 1, {yk}, {Zk} C R+, {zk} bounded. It holds that
i) if lim_ d(yk, z) O, then lim_(yk zk) O,
ii) if limk_ d,(y, zk) O, then limk_.(y z) 0.

Proof. i). Assume that the result is false so that there exists subsequences
{yek},{Zek} of {y},{Zk}, respectively, such that lyk- zkl > for some j and

k < { for all k,j If ly esome e > 0. Take { such that zj -zj > , then either

+a > . In the first case y/z < 1 a/zjz >_y+a>aory >_zj
so that (y/z > (1 a/) > 0 (recall that 9(t) is decreasing for 0 < t < 1) and
therefore

(21) d(yk,z) >_ z(y/z) > 1-

kIn the second case yk/z >_ 1 + /zj > 1 so that

>

using convexity of and (t) > 0, ’(t) > 0 for t > 1. It follows from (22) that

(23) d(yZ, z >_ zj - 1 +

1,(1 + )} > 0 in contradictionFrom (21), (23), d(y,z) >_ amin{(1- ),
with lim_ d(y, z) O.

ii) The proof follows from (i) using (11).
The next proposition just checks that the MIG algorithm is well defined and

preserves positivity. From now on {x } refers to the sequence generated by (14)-(20).
PROPOSITION 2. xk is well defined and x > 0 for all k.
Proof. The proof is by induction.. The result holds for k 0 by (14). Assume

x > 0. We establish first the following facts:
v()a) There exists a unique tj > 0 such that ’(t)

< for all j, k.b) If < c, then there exists < c such that tj
Since E 1, we know that is increasing and limt-.0 (t) -x. It follows

that the equation (t) s, in the unknown t, has a unique solution for all s R if
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r oo and for all s < 7 if 7 < oo, so that (a) holds when 7 oo. We now prove (a)
and (b) for

using (17), (15), and (12). It follows that tj (t) --Vf(xk)j/k)
< from the fact thatand, taking as the solution of ’(t) , we conclude that tj

’ is increasing. (a) and (b) have been established.
The gradient of the minimand in (18) has jth component equal to

(24)

it follows from (b) that (24) vanishes. Since the minimand in (18)Taking xj tj xj,
is the solutionis convex, we conclude that the vector y with components yj tj xj

k kof (18). Since tj > 0 by (a) and xj > 0 by inductive hypothesis, we get y > 0. A
minimizer ak [0, 1] of (19) exists by continuity of f. Hence x > 0, y > 0, and (20)
imply xk+ > 0. ]

COROLLARY 1. For all k > 0

Proof. The proof is immediate from Proposition 2.
The following proposition establishes the monotonicity and boundedness proper-

ties of the algorithm under the hypothesis that x belongs to a bounded level set of

For p E R, let L(p) {x E R: f(x) < p} and f* min{f(x) x E R}.
PROPOSITION 3. If there exists p R such that L(p) is bounded and x L(p),

then
i) f* <_ f(xk+l) <_ f(x) for all k,
ii) {f(xk)} converges,
iii) {xk } is bounded,
iv) {k} is bounded,
v) {yk} is bounded.
Proof. i) The left inequality follows from Proposition 2, and the right one from

(19), (20).
ii) The proof follows from (i).
iii) f(xk) <_ f(x) for all k by (i) so that x L(p) for all k.
iv) Let # maxeL(){llVf(x)-II}. # < c by continuous differentiability of

f and compactness of L(p). From (16) and (iii) k
max{#, }.

k k withv) yj tjxj tj as in (a) of the proof of Proposition 2, which also gives
yk > 0. If r/ < oc we have y < x by (b) of the proof of Proposition 2, and the result
follows from (iii). If r# oo, then, using Corollary 1, (17), and # as in (iv),

xj
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so that tjk _< (,)-1 (); i.e., tjk is bounded and the result follows from (iii).
The next proposition establishes the second requirement in the definition of weak

convergence.
PROPOSITION 4. Under the hypothesis of Proposition 3, lim_(xk+l xk) 0.
Proof. Assume the result is false. Then by Proposition 3(iii) there exists a sub-

sequence {xk} of (x} such that limk_xk u v limk_xk+l. Define
hk, h: [0, 1] -- R as hk(t) f((1 t)x + txk+), h(t) f((1 t)u + tv), so that
limk__, hek (t) h(t) for all t E [0, 1]. By Corollary 1, for all k

h;(o/= (/(/1 /=v(/( /= -a.= ’
=-c,Xde(,z) < O.

From (25)

(26) h’(0) lim h (0) < 0.

By (19), (20), hk(1) < hk(t) for all t e [0, 1], implying

(27) h(1) _< h(t) (t e [0, 1]).

By Proposition 3(ii) and the definitions of u and v, f(u) f(v), implying

(28) h(0) h(1).

From (27), (28), h(0) <_ h(t) for all t e [0, 1], implying h’(0) > 0, and therefore, using
(26),

(29) 0 h’(0)= Vf(u)t(v- u).

We may assume, refining the subsequence {xg } if necessary, that limk_
and, using Proposition 3(v), that limk_ yg y. From (20)

(0) (- ).

u : v implies - 0. Replacing (30) in (29) and using Corollary 1
(31)

)0 Vf(u)t(y- u)= lim E’
y ek lim d@(y xe).

Since >_ J, > 0, we conclude from (31) that limk-, d@(y xk) 0 and then, from
Proposition l(ii), that y u, in which case we get, from (30), u v, in contradiction
with the assumption.

The next proposition completes our weak convergence result for a general (i.e.,
not necessarily convex) f.

PROPOSITION 5. Let u be a limit point of {x}. Under the hypothesis of Propo-
sition 3, u >_ 0 and ujf(u)j 0 for all j.

Proof. u >_ 0 follows from Proposition 2. In order to prove ujVf(u)j 0, we
define

k(a) f((1 a)xk + ayk);
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i.e., hk(a) is the minimand of (19), so that h(a) Vf(x+)t(y- xk), and we-- -- {Xhave h(a) > 0 if ck 0 h() 0 if a (0, 1) -’h(a) 0 if ak 1. Let
be a subsequence of {xa} such that lima x u. Without loss of generality, i.e.,
refining the subsequence if necessary, we may assume, in view of Proposition 3(iv),
3(v) and (17) that lira y y, lira > 0. We claim that y u. We consider

k k
two cases:

i) there exists a subsequence {x } of {x } such that I for all k. In this case,
by (20), x+1 y and, using Proposition 4, u limkx limkx+1
limk y* y, and the claim holds.

ii) If (i) does not occur, then a [0, i) for large enough k, implying

(32) 0 ’a(g) Vf(x+)t(y xg).

om (32), using Corollary 1 and (17)

(Vf(xt+1) Vf(x))t(y xZ) -Vf(x)t(y x)
n

j=l

d, (y, x)
(33) d(y, x O.

Taking limits in (33) as k goes to , and using Propositions 3(iii), 3(v), and 4,
0 lima d(y,x). By Proposition l(ii) y-u- lim(y -x) 0 and the
claim holds.

Take j such that uj O. By Corollary 1, -Vf(u)j -lim Vf(x)j
lima A’(y/x A’(yj /uj ’(1) 0. We have shown that Vf(u)j 0
whenever uj O, and the result is established.

We summarize the results obtained up to now in the following theorem.
THEOREM 1. If there exists p such that L(p) is bounded and x L(p), then the

sequence {xk } generated by MIG satisfies the following:
i) {xk } is bounded.
ii) limk(x+1 x) 0.
iii) If u is a limit point of {x}, then u 0 and ujf(u)j 0 for all j.
Proof. The proof follows from Propositions 3(iii), 4, and 5.
For convex f, the result of Theorem 1 can be improved and weak convergence to

the solution set of problem P can be established. We need first a preliminary lemma.
LEMMA 1. Take g: R R convex and continuously differentiable and {zk}

R+. LetS- {u R u O, ujVg(u)j =0 (1 j n)} and T equal the set of
solutions of min g(x) such that x O, so that T C S. If

i) {zk} is weakly convergent to S,
ii) there exists g* such that g(u) g* for any limit point u of {za},

k+l kiii) zj > zy ff and only ff Vg(zk)j < O,
then {z} is weakly convergent to T.

Proof. By convexity of g, T {u R "U 0, Vg(u) 0, utVg() 0} {u
S’Vg(u) 0}, so it suffices to prove that Vg(u) 0 for any limit point u of {zk}.
Take a limit point u of {zk} and assume that there exists j such that Vg(u)j < O,
i.e., that J {j’Vg(u)j < 0}. Let K (1,...,n}Y and V {x e R "xj 0
for j J}. It follows from (i) that u S and, from the definition of S, that u V.
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Therefore, for all j E K it holds that ?.tj > O, Vg(u)j > O, ujVg(u)j 0 which
are precisely the Karush-Kuhn-Tucker conditions of rain g(x) such that x E V. By
convexity of g, u minimizes g on V. Let B {x e R_’Vf(x)j < 0 for j e J}. By
definition, u B which is open as a subset of R_. Take a subsequence {zek } of {zk }
such that limk_ zek u and {z } C B.

Let p max{q < tk zq B} (set pk 0 ifzq B for all q < t). Then zq E B
for p + 1 <_ q _< g and, using (iii) iteratively,

1 pk4-1(34) zj z) for all j J.

If there exists p such that Pk P for large enough k (i.e., if the sequence {zk } stays
e _> p+lin B for large enough k), then we get 0 uj lim__+ xj Xj > 0 for all j J

(where uj 0 follows from u S and the definition of J), which is a contradiction.
It follows that lim__, pk , so that {zpk } is a subsequence of {z}. By (34), for

uj 0 implying lim_ ~Pk-4-1Pk’4-1 limk zjj J, limk__, zj y 0 and by (i)
P -0 for all j E J. By definitionand condition (ii) of Definition 1, we get limk_ zj

of Pk, we have zp B whenever p > 1. Take a subsequence {zk } of {z}, which
converges, say, to v. (Existence of {zk } follows from (i) and condition (i) in Definition
1.) Since B is open in R, v B and therefore there exists m J such that

(35) Vg(v). > o.

Let W {x e R_ "xj 0 for j e J\{m}}. The Karush-Kuhn-Tucker conditions for
rain g(x) such that x W are

(36) x.>0, Vg(x).>0, xjVg(x)j >0 forjEKU{m}.

We claim that v satisfies (36). Consider first j K. Note that for j J, vj
P 0 so that v V. By (ii) g(v) g(u) =g* Sinceulimk_ z} limk__. zj

minimizes g on V, we conclude that v also minimizes g on V, and therefore it satisfies
the Karush-Kuhn-Tucker conditions for min g(x) such that x V, which are precisely
(36) with j E K. Consider now j m. The first and third conditions, in (36) hold
by (i), and the second by (35). So v satisfies (36) and, by convexity of g, v minimizes
g on W. Since u V C W and g(u) g(v) by (ii), it follows that u also minimizes
g on W, and therefore, it satisfies (36). In particular Vg(u), > 0. Since m J this
contradicts the definition of J. It follows that J 0 and therefore Vg(u) > 0. [

Next we give the weak convergence result for convex f.
THEOREM 2. If there exists p such that L(p) is bounded, and x L(p) and f is

convex, then the sequence {xk} generated by Algorithm MIG satisfies the following:
i) {xk} is bounded.
ii) lim__, (xk+l x) O.
iii) Every limit point u of {x} solves problem P.
Proof. The statement of the theorem just says that {x} is weakl-y convergent

to the set of solutions of problem P. We use Lemma 1 with {z} {x}, g
f. Hypotheses (i) and (ii) of Lemma 1 hold by Theorem 1 and Proposition 3(i),

k+l k krespectively. For hypothesis (iii) of Lemma 1, since xj -xj ak(y- xj) with
+1 k iff ’(y/x) > 0 iff Vf(x)j < 0a > 0 by (20), we have Xj xj > 0 iff y > xj

using Corollary 1 and )k > O.
COaOaRY 2. If f is strictly convex, then the sequence {x} generated by algo-

rithm MIG converges to the solution x* of problem P.
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Proof. Note first that existence of solutions of problem P and strict convexity of
f imply that all level sets of f are bounded, and so the hypothesis that x E L(p)
in Theorem 2 is redundant. By Theorem 2(iii) any limit point of {xk} is a solution
of problem P. For strictly convex f problem P has a unique solution, so there is a
unique limit point and the result follows.

5. The algorithm with regularized line searches. In this section we present
a regularization of the line search in (19) which allows us to establish full convergence
of {xk } to a solution of problem P when f is convex and E , without any hypothesis
on boundedness of the level sets of f. Before presenting this modification of algorithm
MIG, which will be called algorithm RMIG, we need some additional notation.

Given q)l, define q5 as

qS(t) (t 1)’(t).
Although q5 may fail to belong to (I)1, because it may not be convex, de, as defined by
(3) with q5 substituting for , shares most properties of -divergences. Also, since
is convex and (1) 1, we have

(t) qa(t) (1) 5 (t 1)’(t) (t),
which implies d(x, y) <_ de(x y) for all x, y > 0.

RMIG is defined by (14)-(20) except that (19) is replaced by

(37)

where

(as)
with 6 (0, 1).

ak argmin{f(xk + a(yk xk)) +
aE[0,1]

(7 5,kd(yk, xk)

The motivation behind the choice of a linear regularization term is the following.
For z in the segment between x and yk we have

d(x,xk) d((1 -a)x + ayk,x) <_ adv(yk,xk) <_ adi(ya,x)
using convexity of d in its first variable. Note that ade(y,x) is a linear function
of a with positive slope. So we take a linear regularization term; i.e., we minimize
f((1- a)xk + ay) + ac with a e [0, 1]. It can be seen, using (3) and (18), that the
derivative of this function with respect to a at a 0 is a-Akd(y,xk). Since we want
a descent direction, such derivative must be negative and so we take cr 5Akd(yk, x)
with 5 (0, 1). With this regularized line search we prove in this section quasi-Fej6r
convergence of {x} to the solution set of problem P for f convex and E , and
as a consequence full convergence to a solution, without any level set boundedness
assumption.

Possibly the use of era instead of d(x,xk) is not essential and due just to our
proof techniques, but we mention that computationally a linear term is easier to handle
than d(x,x). Note also that adding either a or the restriction of d(x,x) to the
segment does not make the linear search any harder: for convex f the regularized
minimand is still convex, therefore unimodal, and both nonderivative methods (e.g.,
Fibonacci search) and a derivative one (e.g., Newton’s method) are equally easy to
implement with or without the regularization term.

We proceed to the convergence analysis of this algorithm. From now on {xk}
refers to the sequence generated by algorithm RMIG.
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The next proposition extends the result of Propositions 3(i), 3(ii), and 4 to the
sequence generated by algorithm RMIG. Define

(39) () f((1 )x / cya) /

PROPOSITION 6. i) f* <_ f(x+) + (kh)cd(ya,x) <_ f(x),
ii) {f(xa)} is decreasing and convergent,
iii) limk__. (xk+ xk) 0,
iv) E=0 ad,(ya,xk) < .
Proof. i) By (37)-(39), k(a) < a(0), which gives the rightmost inequality.

The leftmost one is trivial.
ii) The proof follows from (i), because akhAkd(yk,xk) >_ O.
iii) Use convexity of d in its first variable, (17), (11), and (i) to get

0 <_ 5do(x+l,xk) 5d((1 ak)x + alcyk,x) <_ 6ad(yk,x)
(40) <_ 5ad,(y, xk) <_ f(xk) f(xk+l).

Since 5 > 0 and the right-hand side of (40) converges to 0 by (ii), we conclude that
limk_ d(yk,x) 0 and the result follows from Proposition l(i).

iv) From (40), okd(yk,xk) <_ (1/5)(f(xk) --f(xk+l)) so that

E akd(Yk xk) < (1/5)(f(x)- lim f(x))
k=0

Next we introduce the concept of quasi-Fejr convergence. This notion was in-
troduced in [5] and discussed for the case of -divergences in [8]. Take (I) and
U R_+.

DEFINITION 2. A sequence {z} C R_+ is said to be quasi-Fejdr conver9ent to
U with respect to d if for each u U there exists a sequence of real numbers >_ 0
suc tato < an (u, z+1) <_ (u, z) + e.

We will use the following result on quasi-Fejr convergence.
THEOREM 3. If a sequence {zk} is quasi-Fejdr convergent to a nonempty set U,

then {z} is bounded and {d(u, za)} is bounded for all u e U. Iffurthermore at least
one limit point of {zk } belongs to U, then {z } converges.

Proof. The proof can be found in [8, Thm. 4.1].
We will prove quasi-Fejr convergence of the sequence {xk} generated by algo-

rithm RMIG to a set which contains all solutions of problem P, not with respect to dv
used in the algorithm but with respect to a specific -divergence, namely
as in Example 2 in 1. We will use the notation instead of 2; i.e., (t) t log t-t+1,
and

n

(41) d(x y) Z(xj log xj
--+yj -xj)

j--1 YJ

is the Kullback-Leibler divergence and has several interesting properties. One of them
is that it can be continuously extended to R R_+; i.e., it admits vectors with zero

components in its first variable. It can be seen that Theorem 3 holds in this case also
for U C R_.

Let T* {xE R f(x) <_ lim_. f(xk)}. T* is well defined by Proposition
6(ii), and contains the solutions of problem P, so it is nonempty. Next we prove
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quasi-Fejr convergence of {xk} to T* with respect to de. We need first a technical
result.

PROPOSITION 7. Take E i and let 0 1/"(1). There exists , > 0 such that
(t 1) 0’ (t) (t 1)’ (t) for all t > O.

Proof. It suffices to prove that , defined as

t i O’(t) i
(t) (t 1)’(t)

is bounded above. Since is trivially continuous at any t # 1, it is enough to prove
that limsupt0 (t) < , limsupt (t) < , limt (t) < . Since ’ is
increasing for all t, negative for t < 1, and positive for t > 1 we have

limsup (t) -lim
t0 t0 t 1

1 0 1
lim sup (t) < lim
t ’(2) tt- 1 ’(2)

<

For t 1, expanding ’ around 1, and using ’(1) 0, "(1) , we get

(t)= ’’’-E (1) <

PROPOSITION 8. # f is convex and e (i.e., ’(t) "(1)logt for all t > O)
then {x } is quasi-Fejdr convergent to T* with respect to de.

Proof. Take z T* and let 0 1/"(1) > 0. Since {f(x})} decreases by Propo-
sition 6(i), we have f(z) f(xk) for all k and therefore

k k(42) 0 O(f(xk) f(z)) 0
k
Vf(x})t(x z) 0 ’(y]/x)(zj xj)

j=l

using convexity of f and Corollary 1. Use now convexity of d in its second variable
and (41) to get

d(z,x+) d(z,x) d(z, (1 ak)xk + a}yk) d(z,z)
ak(d(z,y) d(z, xk))

n

(43) a}zj(log k } } k(x/ + x).
j=l

/x add togetherLet tj y] and (42) and (43)

(t-l-O’(t))e(z, x+1) e(z, x) z(O’(t) ot) + x
j= j=

n n

x(t) 1 0’(t)) _< . (t 1)’(t
j= j=

(44) uakde(y, x),
where we use e in the second inequality and Proposition 7 in the third inequality.
om (44), d(z,x+) d(z, xk)+uakde(y,xk). The result follows from Definition
2 with ek uade(yk,xk) and Proposition 6(iv).
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COROLLARY 3. If f is convex and , then
i) the sequence {x} converges,
ii) {Ak} is bounded,
iii) {yk } is bounded.
Proof. (i) follows from Proposition 8 and Theorem 3, since all limit points of

{xk} belong to T*. For (ii) and (iii) we use the proofs of Proposition 3(iv) and 3(v),
respectively, with a bounded set D containing {x} in place of L(p) in the definition
of #. [

We present next the main result of this section.
THEOREM 4. If f is convex and , then the sequence generated by algorithm

RMIG converges to a solution of. Problem P.
Proof. {xk } converges by Corollary 3(i). Let x* be its limit. By convexity of f it

suffices to check that x* satisfies the Karush-Kuhn-Tucker conditions of problem P,
namely,

(45) x* _> 0,

(46) Vf(x*) _> O,

(47) Vf(x*)x 0 (1 _< j <: n).

Proof. (45) follows from Proposition 2. We look now t (47). We could attempt
a direct proof using the fact that {x} is fully convergent, but we take dvantage of
the proof of Proposition 5, which holds for this case almost verbatim, using Corollary
3 and Proposition 6(iii) instead of Proposition 3(iii)-(v) and 4. The only difference is

that we must use k defined in (39) instead of. Since (c) k(c) + a, we have,
instead of (32) (33) 0 < ’ (a) Vf(xe+)t(y x) + a, implying

(Vf(x+) Vf(x))t(y x) -Vf(z)t(y x)
d(y, x) 5d(y, x)

(1-5)d(y,x) 0

using 5 (0, 1). The remainder of the proof is exactly as in Proposition 5 after (33).
Finally we can establish (46) using Lemma 1 as in Theorem 2, but we prefer to give
a direct proof to show to what extent Lemma 1 simplifies under the hypothesis of
convergence of {x}. Since Vf(x*)y 0, whenever x > 0 by (47) it suffices to prove
that Vf(x*)/ 0 for j such that x 0. Assume f(x*)j < 0 for any such j.
Then there exists k0 such that Vf(xk)j < 0 for k > k0; i.e., we have 0 > Vf(xk)j
Aa k k k k and therefore _k+ k(y/xj), implying ’(y]/x) > 0 so that yj > xy xj xj

* lim k kofor all k > k0. Then 0 xj xj xj > 0, which is a contradiction. (This
corresponds to the case Pk P for large enough k in the proof of Lemma 1.) The
proof is complete.

6. Final remarks. We discuss here three possible extensions of our results,
which hold in fact under weaker hypotheses than those imposed in the previous sec-
tions. We have excluded these extension from our exposition for the sake of clarity,
since they demand more involved proofs, with technicalities which would obscure,
perhaps, more substantial arguments. The first two extensions refer to the class of
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admissible objective functions, which we have assumed to be convex and continuously
differentiable. Both assumptions can be relaxed.

In the first place, all our results hold if we assume that f is pseudoconvex rather
than convex. We recall that f is pseudoconvex if and only if Vf(x)t(y- x) implies
f(y) >_ f(x). The use of convexity in our proofs has been twofold. First we use it
in Lemma 1 and Theorem 4 in the form of sufficiency of the Karush-Kuhn-Tucker
conditions for optimality. This is true for pseudoconvex functions (see [1, p. 152]).
Then we use it in (42) of Proposition 8 to prove that Vf(xk)t(xk- z) >_ 0 for any
z E T*. We claim that this is also true for pseudoconvex f. Assume on the contrary
that Vf(xk)t(z- xk) > 0. Then, by definition of pseudoconvexity, using Propositions
6(i) and (ii) and z E T*

f(z) >_ f(x) >_ f(xk+l) -+- Akakd(yk,xt:) >_ f(x+1) >_ lim f(x) >_ f(z)

so that akd(yk,xk)) 0; i.e., either ak 0 or d(yk,xk) 0. Ifak 0, then

0 < (0) -I[Vf(xk) II 2, implying Vf(x) 0. If d(yk, x) 0, then y xk and
so Vf(x) 0 by Corollary 1. In both cases Vf(x) 0 in contradiction with the
assumption above. The claim is established.

In the second place, we would like to assume just nonemptiness of the subdiffer-
ential of f at any x in its effective domain, rather than continuous differentiability,
among other reasons, to be able to accommodate in our analysis the case of addi-
tional convex constraints besides nonnegativity, because by dropping the continuously
differentiability assumption, such constraints (particularly linear equality constraints)
can be transferred to the objective, in which case MIG transforms an inequality con-
strained problem into a sequence of equality constrained ones, a reduction which has
proved to be quite useful in many instances. Extension of our results to the case of
nondifferentiable f is more complicated. It is possible to go through the convergence
results of 4 with a subgradient of f at x substituting for Vf(x) up to Theorem 1, but
we have no proof of Lemma 1 without differentiability of f and so Theorem 2 does not
hold. The situation is better for the results of 5, because we have full convergence
of {xk} to x*. For the -divergence proximal algorithm given by iteration (7) it has
been proved in [8, Prop. 4.3] that if the sequence {xk } converges to x* and there exists
a solution z of problem P satisfying zj 0 for all j such that x 0, then x* is a
solution of problem P, without assumming differentiability of f. This proof can be
extended to the sequence {xk} generated by algorithm RMIG. Since {xk} converges
by Corollary 3, such a result is enough. The hypothesis on the null components of x*
holds because d(z,xk) is bounded, by Proposition 8 and Theorem 3, for any solution
z, while if xj approaches 0 for some j such that zj > 0 we get de (z, xk) unbounded.
There are several other involved technicalities to be dealt with in the nondifferentiable
case.

The third extension is to admit overrelaxation in (19) or (37), i.e., replace [0, 1]
by an interval [0, k] with k possibly larger than 1. In this case, some restrictions
must be imposed upon to guarantee xk > 0 for all k. One way to incorporate these
positivity-preserving safeguards is the following.

Take (0, 1), a sequence {} C (, 1), and - > 0. Let J(x) {j" Vf(x)j < 0}.
Define after (18)

{ min { } if J(xk) 7/= )
(48) cok jej(xk)

0 otherwise,
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(49) rk
{k

1 +--w
and finally substitute [0, rk] for [0, 1] in (19) or (37). It is easy to check that 1-wk > 0
and that this choice of r guarantees positivity of {xk}. (In [7], we use this approach
in a similar setting.) Regarding the convergence analysis, the situation is to some
extent the opposite to the nondifferentiability extension discussed above: in this case
the results of 4, but not those of 5, hold. For 4, there are only some technical
complications (e.g., - > 0 is required to get {Trk } bounded, which is required in the
proof of Proposition 4). For 5, when x+1 is not in the segment between x and
yk, (43) does not hold and we do not get quasi-Fej6r convergence. The issue of full
convergence under an overrelaxed line search requires further study.

Finally, we present the full form of the algorithms corresponding to the choices
of introduced in the examples in 1.

1. 1 (t) t log t 1,

(50) xj xj Ak / Vf(xk)y
2. 2(t) t log t t + 1,

(51) x+l= x {l+a [exp (-Vf(x)J) 1]}
3. pc(t)= (v/- 1)2,

(52) _+l k [l aVf(x)y(2A + Vf(x)j)
+

Since (i 1, 2, 3) all the convergence results of 5 hold for iterations
(50), (51), and (52) when A satisfies (17) and ak is given by (37). If a is given
by (19), or when the interval [0, 1] in (19)is replaced by [0,k], with as in (48),
(49), the convergence results of section 4 hold for (50), (51), and (52). For (t)

k+i k Vf(x)j). Our analysis does not include 4(t) we

this case, because 4 1, and y given by (18) may fail to be positive. In this
case the positivity-preserving safeguards are always needed and other adjustments are
required. A convergence analysis tailored for this iteration can be found in [7].
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PERTURBATION ANALYSIS OF CONVEX OPTIMAL CONTROL PROBLEMS*

MOHAMMED MOUSSAOUIt ArI ALBERTO SEEGER

Abstract. In this paper we study the first-order behaviour of the optimal-value function associated with a convex
parametric problem of optimal control. A formula for the subdifferential of the optimal-value function is derived
without assuming the existence of optimal solutions to the unperturbed problem. The so-called epsilon-maximum
principle is a key ingredient in the writing of our main sensitivity result.

Key words, optimal control problem, sensitivity analysis, approximate subdifferential, Pontryagin’s principle,
transversality condition
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1. Introduction. The sensitivity analysis of the optimal-value function associated with
a convex parametric program has been the main concern of numerous papers in past decades.
Formulas for the directional derivative and/or the subdifferential of the optimal-value function
have been derived under various types of assumptions. As a standard rule, it is assumed that
the unperturbed problem admits at least one optimal solution. This hypothesis is, however,
quite restrictive in some cases, especially in the context of infinite dimensional programs. For
this reason, Moussaoui and Seeger [MS 1, MS2] have recently developed a sensitivity analysis
theory well suited for dealing with convex parametric programs with possibly empty solution
sets. In a subsequent paper, Seeger [Se1 has applied this general theory to the specific case
of a convex parametric problem of calculus of variations written in the Bolza form

(1.1) { /01 }minimize H(x(O) x(1) a)+ L(t x(t) gc(t) O(t))dt
xX

Here a and 0 are interpreted as perturbation parameters affecting the endpoint cost and the inte-
gral cost, respectively. The sensitivity results obtained in [Se 1] are stated in terms of concepts
such as approximate Euler-Lagrange inclusion and approximate transversality condition.

The purpose of the present paper is to apply the above-mentioned theory to the case of a
convex parametric problem of optimal control. Our work is influenced by [Sel] and can be
viewed as an extension of it. Although it is possible to write an optimal control problem as a
Bolza problem of calculus of variations, we follow, however, a completely different approach.
(See 5 for further discussion.)

Next we describe the basic model of parametric optimal control problem to be considered
in this paper. The control u E U and the trajectory x E X are related by means of the state
equation

(1.2) gc(t) A(t)x(t) + B(t)u(t) + 9/(t) for a.e. t e [0, 1].

The space of controls is defined as

dU=Lp =Lp([O, 1];d) (withl <p<

and the space of trajectories

X A := Ap([O, 1]; n)
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consists of the absolutely continuous functions z [0, 1] I’ whose derivatives belong to

L := Lp([0, 1]; I’). The velocity vector (t) is defined of course for all t E [0, 1] except on
a set of measure zero. In (1.2), the term 9’ E F is regarded as an external perturbation function
affecting the dynamics of the system.

In this work we are concerned with a convex parametric problem of optimal control
written in the form

minimize{J(z, u, a, 0): (z, u) E F(’),)},
where the feasible set F(7) consists of all pairs (Z, u) E X x U satisfying the state equation
(1.2). The cost functional

(1.3) J(x,,a,O) := H(z(O),z(1),oO + L(t,z(t),(t),O(t))dt

involves a perturbation function 0 affecting the integral term and a perturbation vector
c I1k affecting the endpoint term.

The aim of this paper is to study the first-order behaviour of the optimal-value function

(1.4) (a, 0,7) V(o,O,7) Inf{J(x,u,a,O) (x,u) e F(’),)}

around a given point, say, (c0, 00, 70) E k O x F. This point represents the reference level
or nominal value of the parameters. Thus,

(1.5) minimize{J(x, u, a0, 00) (x, u) E F(70)}
is regarded as the "unperturbed" optimal control problem.

There is a long history behind the study of an optimal-value function like (1.4). For
instance, sensitivity results for smooth parametric optimal control problems can be found in
works by Oniki [On] and Tu [Tu, 10], to mention just a few names. Parametric optimal
control problems involving locally Lipschitz data have been discussed by Clarke [C1, C2,
C3], Loewen [Lo], and Clarke and Loewen [CL1, CL2], among others. In such a setting, the
concept of Clarke’s generalized subdifferential is a suitable tool for studying the first-order
behaviour of the function V. In this paper all the data are assumed to be convex, so we will
characterize the subdifferential of V in the sense of convex analysis. The precise definition of
this concept will be recalled in 2. In contrast with the sensitivity results found in the literature,
in our approach the unperturbed problem (1.5) is not required to be solvable. In fact, convex
optimal control problems with empty solution sets are encountered quite often in practice.
The following examples are just academic but serve to illustrate the range of applicability of
our sensitivity results.

Example 1.1. For each 0 L[0, 1] and’), L[0, 1], consider the problem ofminimizing
the cost

t2[u(t) + u(t) + 02(t)] 1/2 dt

among all controls Ul, u2 E L1 [0, 1] and trajectories z A [0, 1] satisfying

gc(t) b Ul (t) / bE u(t) + 7(t)’ for a.e. t G [0, 1],
x(O)--O, x(1)--l.

Here bl 0 and b2 # 0 are two given real numbers. Denote by V(O, 7) the optimal value of
the above problem. Setting the parameters 0 and 7 at the reference level

Oo(t) 0 and 70(t) 0 for a.e. t e [0, 11,



EPSlLON-MAXIMUM PRINCIPLE 409

one gets a nonsmooth convex optimal control problem with optimal value equal to zero. To
see this, consider the minimizing sequence (ulk) uk)) given by

k

u)=
0

for/= 1,2.

However, the optimal value V(00, O’0) 0 is not attained. Observe that the controls

u (t) u2(t 0 for a.e. t e [0, 1]

do not steer the system from x(0) 0 to x(1) 1. How does the function V behave around
(Oo,-o)?

Example 1.2. Consider the problem of minimizing the endpoint cost

H(x(1)) [exp(xl(1)) + x22(1)] ’/2

among all controls u E L1 [0, 1] and trajectories x E A1 ([0, 1]; I2) satisfying

71 (t) --2Xl (t)+ 3x2(t)+ u(t)+ ")/1 (t),
.(t) (t)+ ,(t),
X (0) O, X2(0) O.

Setting the parameter function 7 (71, "Y2) L1 ([0, 1]; ]12) at the reference level

"y0(t) (0, 0) for a.e. t e [0, 1],

one gets a nonsmooth convex optimal control problem whose optimal value V(’70) 0 is
finite but not attained. How does ooe compute in this case the subdifferential of V at q’0?

2. General results on subdifferentials ofoptimal-value functions. As is customary in
the context of convex analysis, we work in the setting of two real linear spaces, say, E and E*,
which have been paired by means of a bilinear form (.,.) E E* . The topologies on
E and .=.* are supposed to be compatible with respect to the pairing (see [Rol, 3] for details).

Given a convex function V .=. U {+o}, the subdifferential of V at 0 E is
defined by

(2.1) OV(o) {7 E Z*" V() _> V(o) + ( 0, 7)for all e E}.

Each element of (2.1) is called a subgradient of V at 0. An equivalent definition of this set is

oV(o) {, e z* v*(,) + V(o) (o,,) o},

where

, e z* v*(,):= Sup {(,,) v()}

stands for the Fenchel conjugate of V.
The set OV(0) reflects the first-order behaviour ofthe function V around the point0 E.

Calculus rules for computing subdifferentials can be found in standard references like Ioffe
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and Tihomirov [IT], Laurent [La], and Rockafellar [Rol]. The next calculus role serves, for
instance, for computing the subdifferential of the optimal-value function

E E - fK()"= Inf {f(z)" Kz }.
zEZ

The elements in the space E are regarded here as parameters. The space Z of minimization
variables is supposed to be paired with another real linear space, say, Z*.

LEMMA 2.1. Suppose that thefollowing general assumption is true:

f" Z I {/o} is a convex properfunction,
(2.2) K" Z E is a continuous linear operator,

fK isfinite at o ,z

Let zo be any element in the solution set

S(o) := {z Z:Kz o, f(z)= fK(O)}.

Then

(2.3) OfK(O) { ..* K*l Of(zo)},

where K* E* ---, Z* standsfor the adjoint operator ofK" Z E.
The above result can be found in Hiriart-Urruty [Hi] and Zalinescu [Za], for instance.

The writing of formula (2.3) makes sense only if an element zo in the solution set S’(0) does
exist, but here we want to evaluate the subdifferential mapping OfK at a point o at which the
solution set is possibly empty. To handle this more complicated situation we invoke a recent
result by Moussaoui and Seeger [MS 1, MS2]. Recall that the e-subdifferential of f at a point
zo Z is the set

Of(zo) {w Z* f(z) >_ f(zo) + (z zo, w) e for all z Z}.

The above set is also known as the approximate subdifferential of f at Z0. The (exact)
subdifferential Of(zo) corresponds of course to the case e 0.

LEMMA 2.2 [MS 1, Thm. ]. Suppose that the general assumption (2.2) is true. Then

(2.4) N U {. Z* K’r/E oS(z)}.
e>0 Kz=o

Observe that if z satisfies Kz 0 and {rl E* K*rl Osf(z)} 0, then z belongs
necessarily to the set

S(o) "= {z Z" Kz o, f(z) <_ fK((O) + e}.

Thus formula (2.4) can also be written in the form

N U
e>o zES()

{7 E* K* Oef(z)}.

For subsequent use we need to adjust Lemma 2.2 to the case in which f is defined as a
sum of two convex functions, say, f and f2. We also incorporate a linear operator R defined
over the space of parameters E and with values in another linear space, say, II. The notation
Im R’= {R E ..} refers to the range of R, and C+/- stands for the orthogonal complement
of (7. The indicator function of the set

K-’(ImR) := {z Z" Kz ImR}
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is by definition

0 ifKzEImR,
Z E Z K-(ImR)(Z):-- +(X) otherwise.

LEMMA 2.3. Let fl, f2 Z -- U {+cx} be two proper convex functions and
K Z -- II and R: --, II be two continuous linear operators. Suppose that the
optimal-valuefunction

e V() Inf__{fl(z)+ f2(z)" Kz R}
zEZ

isfinite at o .=.. Then the subdifferntial OV(o) admits thefollowing inner estimate:

(2.5) OV( o) N U
e>0 Kz=Ro

{R* K*p e 0efl(z) +

Moreover, one can write theformula

(2.6)
e>0 Kz=Ro

ifone adds thefollowing constraint qualification hypotheses:

(2.7) Im R and Im R* are closed sets,

K* ([Im Rl+/-) is a closed set,

(2.9)
(fl + f2 + CK-’(ImR))*(w)

Inf (f(wl) + f(w2) -+- )(-,(imR)((a)3)} forall w Z*.

Proof Denote by 9t the set appearing on the fight-hand side of (2.5), and let r/be an
arbitrary element in Q. To prove that r/ OV(o), it suffices to show the inequality

(2.10) V() > V((o) + ( o, /) 2e for all E and e > 0.

Then fix -E and e > 0. Since r/ f, there exist zs E Z and H* such that

(2.11) Kze Ro, R*pe 7, and K*ps Oefl (zs) + Of2(z).

Momentarily decompose K*qo in the form

K*qo Wl + w2 with o31 e cgsfl (zs) and w2 cO, f2(z).

Now take any z Z satisfying Kz R. By summing up the inequalities

f,(z) > + (z i= 1,2,

one gets

fl(Z) + f2(z) _> fl(z,) + f2(z) + (z- z,, K*p,) 2e,
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and therefore,

y,(z) + y(z) > V(o) + (R Ro, ) 2.

Since z E Z was an arbitrary vector satisfying Kz R, one gets finally

Inf {f,(z) + f(z)} >_ V(o) + (R- Ro, 99) 2.
Kz=R

This completes the proofofinequality (2.10). We prove now the reverse inclusion OV(o) c f.
Take any r/ E OV(o) and e > 0. We need to exhibit a pair (z,) Z H* satisfying
(2.11). Taking into account hypothesis (2.7) and Lemma A.1 (see Appendix), we can write

rl R*q’ for some ’ H*. Since OV(o), this element q’ H* satisfies

(2.12) v* (R*’) + V(o) (o, R*’) 0.

As a matter of computation one has

V*(R*99’) Sup((,n*qo’> Inf {f,(z) + f2(z)}}
.=. Kz=R

Sup Sup {<.R’,W’> fl(z) f2(z)}
EE Kz=R
Sup {(z,K*qo’) fl(z)- f2(z)}

KzImR

[f + f: + -’m]*(g*’).

Here the constraint qualifications (2.7)-(2.9) come into play. In fact, they allow us to write

So we can select -)1 Z*, (,d2 Z*, and q" [Im R] +/- in such a way that

(2.13) K’99’-(M1 -022 K*19tt and fT(l)+ f(2) _< V* (R* 99t) + -.
Independently, we pick up an element z Z satisfying

(2.14) Kz Ro and fl(z) + f2(z) _< Y(o) + .
The combination of (2.12)-(2.14) yields

f

Rearranging terms, one finally gets

[fl*(tdl) + fl(Z) (Z, Odl)] + [f(2) + f2(z)- (Z,2)] + [(Z, 0all + 022) (Ro, 99’)]
_ .

Observe that the last term

(z,w + w2) (R(o, tp’) -(z,K* tp’ w, w2) -(z,K* qo"l
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is equal to zero. Indeed, z and K*q" are orthogonal with respect to the duality product
/’,’) Z Z* . Now, according to the classical Young-Fenchel inequality, the first two
terms enclosed by the square brackets are nonnegative. This implies in particular that

1 E 0efl(Z) and wu

Thus we have found elements z Z, ’ H*, and" H* satisfying Kz
q" [ImR] +/-, and K*(q’-") E Osfl(z) +OfE(z). From the condition q" [ImR]+/-, it
follows that R*q" 0. Setting q ’ ", one sees that the pair (z, q) Z H* solves
the system

Kz Ro, R*-r/, and K* G Of,(z) + Ofu(z).

The proof is complete in this way. [2

Remark 2.1. If ImK C Im R, then K- (Im R) Z and K* (Jim RI +/-) {0}. Thus,
(2.8) holds trivially, and (2.9) takes the simpler form

(fl + f2)*(co) Inf {f’(Wl)+ f(w2)} for allw e Z*.

The above equality holds, for instance, if the function fu is continuous at a point in which f
is finite. See also Attouch and Brezis [AB] and Rockafellar [Ro 1, Thm. 20].

3. Sensitivity results for convex optimal control problems. In this section we study
the first-order behaviour of the optimal-value function

(3.1) (a,O,’y) V(a,O,’y):= Inf{J(x,u,a,O) (x,u) e F(-y)}

around the reference level (a0, 00, 70) ]k O F. We want to characterize the subdiffer-
ential OV(ao, 00, "/0) in terms of the data of our optimal control problem. These data belong
essentially to two different categories. First, one has the endpoint cost H and the Lagrangian
L, that is to say, the terms appearing in the definition of the total cost

/01(3.2) J(z,,a,O) := tI(z(O),z(1),a) + L(t,z(t),(t),O(t))dt.

And second, one has the matrix-valued functions A and B, which appear in the definition of
the feasible set

(3.3)

F(,) "= {(x, u) e X U gc(t) A(t) x(t) + B(t) u(t) + 7(t) for a.e. t [0, 1] }.

The general assumptions on these data are presented next. First, a word on the space
k O F of parameters. The choice of the space O is dictated by the need of manipulating
an integral function of the form

(3.4) IL(x, u, O)"-- fo L(t, x(t), u(t), O(t) dt.

In what follows we suppose that O is a certain decomposable space of measurable functions
0 [0, 1] m (see Rockafellar [Rol, p. 59] for the precise definition of decomposability).
Those not familiar with this concept can retain the particular choice

(3.5) 0 L "= L([0, 1];m) (1 _< s < +c).
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By assumption, the decomposable space O is paired with * by means of a bilinear form
(., .) (9 x O* --) ]. As way of example, the decomposable space (3.5) is paired with
(9* L by means of the bilinear form

/01(o, o(t) o o,

Here r s/(s 1) is the conjugate number of s, and the dot "." stands for the usual Euclidean
product. Concerning the space of functions perturbing the dynamics of the system, we set

F Lp" := Lp([0, l]; ]n).

This space is paired with F* nLq, where q p/(p 1) is the conjugate number of p, by
means of the bilinear form

/01
Since the space of trajectories X A is not decomposable, the integral function (3.4)

is regarded as a function defined over the space Lq x U 19.
The sensitivity results presented in this section rely upon the following basic hypotheses:

(3.6) [ the matrix-valued functions A’[0, 1]--+ Mn,n()and B’[0, 1]--, Mn,d(])
are measurable and essentially bounded;

the endpoint cost function H It ’ k A {+oc) is proper convex(3.7)
lower-semicontinuous;

the Lagrangian L" [0, 1] n ]ld ]lm ]1 [..J {-[--00 } is measurable, and
(3.8) L(t,.,., .)is a proper convex lower-semicontinuous function for a.e. t C [0, 1];

for all (x, u, 0) C L U O, the negative part of the integrand
(3.9) t L(t, x(t), u(t), O(t)) is summable over [0, 1].

Hypothesis (3.9) is introduced to avoid all confusion regarding the sum of +c and -oc. The
integral (3.4) has a classical value, possibly +oe but never -c. We need to take into account
also a constraint qualification condition on the cost functional, namely,

{ there existxEX, uEU, cEI ,and0EO
(3.10) such that H is finite at (x(0), z(1), c)

andlL :L x U x 13 ItA {+oe} is continuous at (x, u, O).

Our first sensitivity result is somewhat standard. It deals with the "easy" case in which
the unperturbed problem

(3.11) minimize{J(x, u,co, Oo) (x, u) F(’0)}

admits at least one optimal solution. Whether an element (flo, uo, A0) belongs to the subdif-
ferential OV(co, 00, 70) will depend on the existence of a "dual" trajectory satisfying a given
set of extremality conditions. The space of dual trajectories is defined as follows:

(3.12) Y := [ A ifp E [1,2] orA 0,

A otherwise.
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The above definition takes into account the choice of the space X A of "primal" trajec-
tories and the matrix-valued function A appearing in the "autonomous" system

gc(t) A(t) oc(t) for a.e. t E [0, 1].

The particular cases p and p 2 deserve special mention since they are encountered
quite often in practice. For these particular choices one has X Y A. Without further
ado we write the following theorem.

THEOREM 3.1. With assumptions (3.6)- (3.10), let the optimal-valuefunction V befinite
at (co, 0o, "Yo) IRk 0 F and (zo, uo) X U be an optimal solution ofthe unperturbed
problem (3.11), i.e.,

(3.13)
20(t) A(t)xo(t) + B(t)uo(t) +’yo(t) r a.e. t [0, 1],

V(ao, Oo,’Yo) H(xo(O),xo(1),co) + L(t, xo(t),uo(t),Oo(t))dt.

Then (/30, u0,,0) IRk O* F* is a subgradient of V at (c0, 00,’Y0) ifand only ifthere
exists a dual trajectory y Y (necessarily unique) such that

(3.14) Ao(t) -y(t) for a.e. t [0, 1],

(3.15) (y(O), -y(1),/3o) OH(co(O), zo(1), oo) (transversality condition),

and

(3.16)
(fl(t) + AT (t)y(t), BT (t)y(t), uo(t)) e OL(t, xo(t), u0(t), Oo(t))

for a.e. t [0, 1] (Pontryagin’s principle).

Proof To prove this result, the reader can adjust the proof of the next theorem, t3

Remark 3.1. The symbol OL stands for the subdifferential mapping of L(t,.,., .) IRn x
IRa IRm __+ IR tO {+oo}. (Subdifferentiation will never refer to the time variable.)

We are ready to state the main result of this paper. Now the existence of an optimal
solution to the unperturbed problem (3.11) is no longer assumed. We emulate the technique
described in Seeger [Sel, 3]; that is to say, we enlarge the subdifferential mappings OH
and OL by introducing a parameter e > 0. The extremality conditions (3.15) and (3.16) are
now written in terms of the enlarged mappings OeH and O(t)L(t,.,., .). Here tr refers to a
nonnegative function with total weight equal to e. More precisely, cr belongs to the set

(3.17) { /o’ }E(e) "= cr L[0, 1]" r(t)dt e, a(t) > 0fora.e.t E [0, 1]

THEOREM 3.2. With the assumptions (3.6)-(3.10), let the optimal-value function V be
finite at (ao, 0o, "Yo) IRk O P. Then the element (flo, uo, ,o) G IRk O* F* is a
subgradient ofV at (co, 0o, ")’o) ifand only iffor all e > 0 there exist a trajectory c X, a
control u U, a dual trajectory y Y (necessarily unique), and a function cr ,(e) such
that

(3.18) gc(t) A(t)z(t) + B(t)u(t) + 7o(t) for a.e. t [0, 1],

(3.19) /o(t) -l(t) for a.e. t [0, 1],
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(3.20)

and

(3.21)

(y(0),-y(1), fl0) e OH(x(O), x(1), co) (e-transversality condition),

(fl(t) + AT(t)y(t), BT(t)y(t), ’o(t)) e O(t)L(t,x(t), u(t), Oo(t))

for a.e. t e [0, 1] (e- maximum principle).

Proof. A trajectory in X A will be represented by an initial point, say, a E Nn, and
a velocity vector, say, v E L. Observe that the linear operator

G: Z-, X,

(a, v) C(a, v) a + v(r) dr

maps Z In L onto the space X. In terms of these new variables, the cost term

becomes

(3.22) H(a, a + Ev, a) + L(t, C(a, v)(t), u(t), O(t)) dt,

where E stands for the linear operator
nE Lp --
v v(r)

If one writes the state equation

gc(t) A(t)x(t) + B(t)u(t) + /(t) for a.e. t e [0, 1]

in integral form, one gets

x(.) x(O) A(T)X(T) dr + B(r)u(r) dT+

The above linear equation can be regarded as an equality

G(a, v) a RAG(a, v) + RBu + RIll
in the space

n7-l {h e Ap "h(O)= 0},

’)
RAX A(T)X(T)dT,

Rnu B(T)U(r)dT,

R’)’ /(r) dr.

where the operators RA X -+ 7-l, RB U --+ Tl, and Rx F -+ 7-/are defined in the obvious
way, namely,



EPSILON-MAXIMUM PRINCIPLE 417

Thus V(a, 0, 7) is the optimal value of the convex parametric program

(3.23)
(a, a + Ev, a) +

r
Lminimize H

(a,v,u) Z U,
M(a, v, u) R7,

L(t, G(a, v)(t), u(t), O(t)) dt,

where M Z x U ---. 7-/is the linear operator given by

M(a, v, u) G(a, v) a RAG(a, v) RBU.

We prefer to write (3.23) in the form

(3.24)

minimizeH(a,a + Ev, a’) + L(t,G(a,v)(t),u(t),O’(t))dt,

(a,v,u,a’,O’) C Z x U x k x O,
Ol Ol,,

0 19,

M(a, v, u) Rz7,

because the later formulation fits exactly into the general scheme of Lemma 2.3. To see this,
just introduce the convex functions fl, f2 Z x U x k x O U {+cxz} defined by

fl(a,v,u,a,O) := H(a,a + Ev, a),

/2(a, v, u, a, 0)"= L(t, G(a, v)(t), u(t), O(t)) dt,

and the linear operators

K Z x U x Ik x O-- I x O x ,
(a, v, u, a, O) H K(a, v, u, a, O) (a, O, M(a, v, u)),

R:It x 0 x F--+Ft xOx,
(, 0,-) R(, 0,-) (, 0,

The remaining part of the proof consists of applying Lemma 2.3 to the particular case

V(o,O, 7) Inf{(fl + fz)(a,v,u,o’,O’): K(a,v,u,o’,O’) R(c, 0,7)},

where the infimum is taken with respect to (a, v, u, at, 0t) C Z x U x IIk x O. If all the as-
sumptions in Lemma 2.3 were fulfilled, then we could assert that (/3o, uo, Ao) E OV(ao, 0o, "7o)
if and only if for all e > 0 there exist

(a, v, u, a’, O’) Z x U x Rk x O and (/3, u,#) k X O* x 7-/*

such that

K(a, v, u, c’, 0’) R(co, 0o, 7o),
(/o, -o, o) R* (/, -, ,),
K*(,v,#) Oe fl(a,v,u,c{,O’) +Oe f2(a,v,u,o’,O’).
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This amounts to saying that for all e > 0 there exist

(a,v,u)ZxU and (f,v,/z)]xO* x*

such that

(3.25)
M(a, v, u) Rr./o,
(o, o, o) R*(, , ),
K* (/, v,/z) O, f (a, v, u, oo, 0o) + O f:(a, v, u, co, Oo).

Our task now is to evaluate the adjoint operators K* and R* and the subdifferential mappings
(ge fl and (ge f2. For the sake of the exposition we divide this task into three steps.

.Step (computation of K* and R*). We start by pairing Z It(n L with the space
Z* A by means of the bilinear form

((a, v), w) a w(O) + V(T) b(’r) dT, (a, v) e Z, w e Z*.

The space 7-/-- {h e Apn. h(0) 0} is paired with 7-/* Lqn by means of

(h, lz) h(T) lz(T) dT, h E 7-l, E 7-t*.

The spaces U Lpd and U* dLq are paired in the usual way, i.e.,

(u, e) U(T) (T) dT, uEU,,EU*.

Similarly, the spaces F L and F* L are paired by means of

(7, ,) (T) ,k(T) dT,

With respect to these pairings, the linear operators K and R are continuous. Moreover, the
adjoint operator K* of K is given by

(3.26)
K* a x O* x 7-/* - Z* x U* x It(a x 0",
(, , ) (w,, t,, , ),

where

(3.27)

w(O) AT(T)#(T)d7,
b,(t) #(t) Ar(T)#(r)dr fora.e.t [0, 1],

e.(t) -B(t)#(t) fora.e.t [0, 1].

The expression of the adjoint operator R* of R is less involved. One has simply

(3.28) R* : x O* x/-/* e x O* x F*,
(, , ) (, , R}),
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where R} 7-/* F* is given by

(3.29) [R} #] (t) #(t) for a.e. t E [0, 1].

Step 2 (computation of 0s fl ). Observe first that the convexity and the properness of the
function fl are ensured by hypothesis (3.7). The function fl is just the composition H o T
of the endpoint cost function H I1V x Itn x Itk I t_l {+o} and the continuous linear
operator

T: Z X U x ]]k N I -- ]n X ]n N ]k,
O + o,).

Since we are working under appropriate constraint qualification hypotheses (cf. [Ro 1, Thm.
19b]), we can apply the general formula [Hi, Thm. 2.2]

Os(H o T)(a, v, u, ao, 0o) T*OsH(T(a, v, u, ao, 0o)).

A simple calculus shows that the adjoint operator T* of T is given by

T* :I x ]r x Itk ---, Z* x U* x k x

( /0(c,e,) c+e+ (T) dT, O,,O

where E L is defined as

g(t) e for a.e. t e [0, 1].

One gets in this way

(3.30)

{( /0 )cOefl (a, v, u, ao, 0o) c q- e -F ’(’r) dT, O, fl, 0 (c, e, fl) osg(a, a + Ev, ao)

Step 3 (computation of ef2). Hypotheses (3.8)-(3.10) imply the convexity and proper-
ness of the function f2. To evaluate the approximate subdifferential of f2, we repwsent this
function as the composition YL of the integral functional IL L U {
and the continuous line operator

P" Z x U x x O L x U x O,
0) 0).

In this case

nImP=XxUxOCLq xUxO.

Hypothesis (3.10) implies that there exists an element in the range of P at which the proper
convex function IL is continuous. Under this constraint qualification hypothesis, one can
write [Hi, Thm. 2.2]

O(IL o P)(a, v, u, ao, 0o) P*OIL(P(a, v, u, ao, 0o)).

Here the adjoint operator P* Lp x x --+ x x x takes the form
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where 6s E Z* is given by

(3.31) 6s(0) s(r) dr,

Hence

s(t) s(r) dr for a.e. t E [0, 1].

(3.32) O f(a,v,u, ao, Oo) {(5,g,O, ): (s,e, ) e O IL(G(a,v),u, Oo)}.

To compute the approximate subdifferential of the integral functional IL, we invoke the de-
composability principle stated in [Bu, Prop. 2.2.1 ]. We are working under hypotheses which
allow us to apply this principle, and so we can write

(3.33)
there exists a E(e) such that

(s, g, ) e O IL(C(a, v), u, 0o) (s(t), t(t), (t)) e O(t)L(t, C(a, v)(t), u(t), Oo(t))
for a.e. t E [0, 1].

Step 3 is thus complete.
Before proceeding to join all the pieces together, we briefly check the hypotheses (2.7)-

(2.9) in Lemma 2.3. First, observe that condition (2.7) holds if Im Rx {RI’ ")’ F} is
closed in 7-/and ImR {R, # # 7-/* } is closed in F*. But one can easily see that Im RI
is the whole space 7-/, and ImR is the whole space F*. Second, condition (2.8) amounts to
saying that M* ([Im RI] +/-) is a closed set in Z* x U*. But since Im RI is the whole space 7-t,
the set M*([Im RI] +/-) reduces to the origin in Z* x U*. Finally, a word on condition (2.9).
As mentioned in Remark 2.1, this condition holds, for instance, if f2 is continuous at a point
in which f is finite. Of course, hypothesis (3.10) takes care of this constraint qualification
requirement.

In short, we are allowed to apply Lemma 2.3. By combining (3.25), (3.26), (3.28), (3.30),
and (3.32), we can assert that (o, vo, Ao) OV(ao, 0o, o) if and only if for all e > 0 there
exist

such that

n(a,v) Z, u E U, t ’*, (c,e) F__. ]ln x ]ln s Lp

M(a, v, u) Riyo,

)o RTt,

w, c + e + g(r) dr + ,
+

e., oo).

Now we write these conditions in full extent by incorporating the information given in (3.27),
(3.29), (3.31), and (3.33). One can assert that (o, uo, o) OV(ao, 0o, "/o) if and only if for
all e > 0 there exist

(a,v) EZ, uV, e’g* (c,e)nxn, sLp, ae

such that

(3.34) M(a, v, u) RI’7O,
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(3.35)

(3.36)

(3.37)

(3.38)

and

A0(t) #(t) for a.e. t E [0, 1],

f01 AT (T) #(T)dr c + e + S(T) dT,

#(t) AT(T)#(T) dT e + S(T) dT for a.e. t E [0, 1],

(c, e, o) C H(a, a + Ev, o),

(3.39) (s(t), --BT(t)#(t),uo(t)) C O(t)L(t, G(a, v)(t), u(t),Oo(t)) for a.e. t C [0, 1].

One obtains in this way a complete characterization of the subdifferential 0V(a0, 00, "Y0).
However, the above conditions are not easy to manipulate, and their meaning is somewhat
obscure. These conditions can be stated in a simpler manner if one introduces a space of dual
trajectories. To this end, it is convenient to inspect closely the following function:

t C [0, 1] y(t) c + [S(T) + AT(T)#(T)] dT.

We regard y as a dual trajectory emanating from the point y(0) c and whose velocity ) is
given by

Observe that

it(t) s(t) + AT(t)tt(t) for a.e. t c [0, 1].

E L ifpe[1,2]orA=0,

L otherwise.

Thus y belongs to the space Y introduced in (3.12). Now from (3.36) one gets

(3.40) [S(T) + AT (T)#(T)] dT= c + e,

and therefore y(1) -e. By using (3.37) and (3.40), one obtains

( /0 )#(t) e c + e + [S(T) + AT(T)#(T)] dT for a.e. t [0, 1],

and thus

#(t) -y(t) for a.e. t C [0, 1].

In short, the elements (c, e) I ]n, _/,, and s E L are related to the dual trajectory
y Y in the manner described below:

(3.41)

c= y(0), e =-y(1),
#(t)=-y(t) for a.e.t e [0, 1],
s(t) (t) + AT(t)y(t) for a.e. t [0, 1].
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Of course, the relation between (a, v) E Z and the primal trajectory x E X is simply

(3.42) a x(0), v(t) 5:(t) for a.e. t [0, 1].

To complete the proof, it suffices to plug (3.41) and (3.42) into the conditions (3.34)-(3.35)
and (3.38)- (3.39).

The e-transversality condition (3.20) and the e-maximum principle (3.21) take various
forms depending on the structure of the cost function H and the Lagrangian L, respectively.
Let us illustrate this fact with the help of two important examples.

Example 3.1 (L does not depend on state variables). If the Lagrangian L is independent
of the vector of state variables, then the e-maximum principle (3.21) decomposes into the
dual-state equation

(3.43) ](t) + AT(t)y(t) =0 fora.e.t [0,1]

plus the differential inclusion

(3.44) (BT(t)y(t),o(t)) e O(t)L(t,u(t),Oo(t)) fora.e.t e [0, 1].

If L is also independent of external parameters, then (3.44) reduces further to

BT(t)y(t) O(t)L(t, u(t)) for a.e.t [0, 1].

The above condition amounts to saying that, for almost every t [0, 1], the control vector

u(t) solves the problem

(3.45) maximize {y(t). B(t)z- L(t, z) z e Id}
within a tolerance a(t). The difference with respect to the classical maximum principle of
Pontryagin is that u(t) does not need to be an exact solution of (3.45).

Example 3.2 (a Mayer problem of optimal control). Suppose that the cost term to be
minimized is simply h(x(1)); that is to say, it depends only on the final state x(1). Consider
also a perturbed and controlled system of the form

 b(t) A(t)x(t)+ B(t)u(t)+ "),(t)
x(O) -0.

for a.e. t [0, 1],

As we have seen in the previous example, the e-maximum principle (3.21) takes here the form

fl(t) + AT (t)y(t) 0

BT(t)y(t) =0
for a.e. t E [0, 1].

In order to write the e-transversality condition (3.20), one has to recognize first the form of
the cost term H. In the present example one clearly has

H(x(O) x(1)) [ h(x(1)) ifx(O) O,

[ +cx ifx(O) = O.

Thus (3.20) reduces to

-y(1) e Oh(x(1)),
x(O) o, e (i.e., y(0) is unconstrained).
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To illustrate how Theorem 3.2 works in practice, consider the specific case of Example
1.2. Here (3.18) and (3.19) take, respectively, the forms

l(t) -2xl(t) + 3x2(t) + u(t), gc2(t) x2(t) for a.e.t E [0, 1]

and

/1 (t) --/1 (t), /2(t) --y2(t) for a.e. t E [0, 1].

The e-maximum principle (3.21) yields simply

O, (t) u (t)
O2(t) -3y (t) y2(t)
yl(t) --0,

for a.e. t [0, 1],

and the e-transversality condition (3.20) reads

(3.46) -(y(1),y2(1)) G Oeh(a:l(1),a:2(1)),
(0) O, 2(0) O,

where h It(2 I is given by

h(l(1),:r2(1)) --[exp(:rl(1))+ z22(1)] 1/2

We can draw a lot of information from the above conditions. Writing e exp(1), we get

x2(t) 0, yl(t) 0, y2(t) y2(0)e-t for all t e [0, 1]

and

A, (t) 0, A2(t) -y2(O)e-t for a.e. t [0, 1].

Plugging yl(1) 0, y2(1) y2(0)e-1, and x2(1) 0 into (3.46), one obtains

(3.47) (0, /2(O)E-1 CQeh(l (1), 0).

Now we take into account the specific structure of h and write (3.47) in the more explicit form

exp

Summarizing, (), A2) E cOV(O, 0) if and only if for all e > 0 there exist Xl e Al-[0, 1], u
L [0, 1], and c I such that

51 (t) --2Cl (t) + Zt(t)
Al(t)--0
A2(t) =ce-t

for a.e. t E [0, 1]

and

exp Zl(1) _< , l(O) ---0,
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This amounts to saying that

for some constant
(A1, A2) E OV(O, O)

AI (t) 0 and for a.e.t E [0, 1].

In the present example, one can also compute OV(0, 0) by evaluating first the optimal-value
function V. As a matter of computation one obtains

e-t72(t)dt

4. Extensions. In this section we explore the case in which the optimal control problem

minimize { J(x, u, a, 0): (x, u) e F(7)}

involves explicit constraints on the control function u U. Such a case is important in appli-
cations and deserves further discussion. In what follows, U,a denotes the set of "admissible"
controls, i.e., those functions u in U such that

(4.1) u(t) ft(t) for a.e.t [0, 1].

The feasible set F(7) is understood as the set of all pairs (x, u) X x Uaa satisfying the
state equation (1.2).

To remain within the realm of convex analysis, we suppose that

(4.2)
is a measurable multifunction with nonempty closed convex values.

In principle, one can take care of the admissibility concern (4.1) by working with the modified
Lagrangian

(4.3) L(t,x,z,O) "= L(t,x,z,O) + n(t)(z),

where bn(t) stands for the indicator function of the set f(t). In this case the e-maximum

principle (3.21) is stated in terms of the approximate subdifferential mapping O,,(t)L. But
since is only an auxiliary tool, we should express O(t) in terms of L and ft. By applying
Kutateladze’s rule (cf. [Hi, Thm. 2.1 ]) on the approximate subdifferential of the sum of two
functions, one gets

(4.4) O(t)L(t, x, z, O) U {O,L(t, x, z, O) + {0} x O:2n(t)(z) {0}}.

Formula (4.4) not only requires an additional constraint qualification assumption but also leads
to the formulation of an e-maximum principle that is very cumbersome and of little practical
interest. For this reason we prefer to avoid the use of Kutateladze’s rule and return to the proof
of Theorem 3.2. In the next result we keep the same assumptions as in Theorem 3.2, except
that the constraint qualification condition (3.10) is replaced with

there existx X, u Uad, a I1t, and0 Osuch thatHis continuous at
(4.5)

(x(O),x(1),a)andlL L’ x U x 0---* U{+oc}iscontinuousat(x,u,O).
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THEOREM 4.1. With the assumptions (3.6)-(3.9), (4.2), and (4.5), let the optimal-value
function V be finite at (ao, 0o, /o) x 0 x F. Then (flo, uo, Ao) O* F* is a
subgradient ofV at (ao, 0o, 3’0) ifand only iffor all e > 0 there exist a trajecwry x X, a
control u U, afunction r U*, a dual trajectory y Y (necessarily unique), andfunctions
cr and in E(e) such that the conditions (3.18)-(3.20) hold, together with the e-maximum
principle

(4.6)

(fl(t) + A(t)(t),B(t)(t) r(t),uo(t)) O(t)L(t,z(t), u(t),Oo(t)) fora.e, t [0, 1]

and the e-normality condition

(4.7) r(t) O(t)ba(t)(u(t)) for a.e. t [0, 1].

Proof We follow the same steps as in the proof of Theorem 3.2, except that now we have
the extra function

f3(a, v, u, a, O)"= (t)(u(t)) dt Fa(u).

One can modify Lemma 2.3 and write formula (2.6) with the extra term Of3(z). Of course
this requires an adjustment in the constraint qualification hypotheses (2.9). This explains why
we have replaced the assumption (3.10) with (4.5).

But as a matter of computation one has

O.f3(a, {0) {0} {0},

with

[_j u*
5()

for a.e. t [0, 1] }.

The rest of the proof is now routine.
Remark 4.1. The e-normality condition (4.7) says that u E U is admissible in the sense

of (4.1) and that for a.e. t E [0, 1], the vector r(t) is 6(t)-normal to f(t) at u(t), i.e.,

r(t) (z u(t)) < 5(t) for all z a(t).

Remark 4.2. An inclusion like (4.6) appears already in a paper by Rockafellar [Ro2, p.
217]. However, that inclusion does not involve parameters and is stated in terms of the exact
subdifferential mapping OL.

5. Final remarks. This paper follows as close as possible the methodology used by the
second author [Se in the context of a Bolza problem of calculus of variations. It is shown in
[Se 1] that if V(a, 0) denotes the optimal-value of the Bolza problem (1.1), then a subgradient
(o, uo) of V at (ao, 0o) is characterized in terms of the e-transversality condition (3.20) and
the approximate Euler-Lagrange inclusion

((t),y(t),uo(t)) O(t)L(t,x(t),gc(t),Oo(t)) fora.e.t [0, 11.
In principle it is possible to write our optimal control problem as a Bolza problem of

calculus of variations (see, for instance, [Ro2, 4] or [IT, Chap. 2]). This can be done by
introducing a suitable Lagrangian , that incorporates the dynamics of the system, that is to
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say, the state equation (1.2). Although this approach seems quite natural, them are several
reasons why we do not recommend it.

(a) First, it is of no interest~ to state the approximate Euler-Lag_range inclusion in terms
of the modified Lagrangian L. One has of course to evaluate Oa(t)L in terms of the original
Lagrangian L and of the data appearing in the state equation. This can be done only at a very
heavy price. One encounters the same kind of difficulties as with the modified Lagrangian
(4.3); in particular, one needs to introduce additional constraint qualification assumptions.

(b) Second, this approach leads to the formulation of an e-maximum principle that is not
as simple as the one established in Theorem 3.2.

(c) Third, one should keep in mind that writing the approximate Euler-Lagrange inclusion
in terms of L is just the st_arting point of an alternative proof. Most of the heavy work is left
in the evaluation of Oa(t)L. It is not without reason that the proof of Theorem 3.2 took us
around five pages.

Finally, we would like to mention that our proof of Theorem 3.2 cannot be obtained from
that of [Sel, Thm. 2] by minor modifications. Our proof contains several steps and results
proper to the framework of an optimal control problem.

Appendix. The following result is probably known, but we have not been able to find it
in the literature. It has to do with the subdifferential of a composite function like

e =_ o

where

(A)
R" E---+ II
’III

is a continuous linear operator,

is a convex function.

The spaces E and II are as in 2.
LEMMA A.1. With assumption (A), let b o R be finite at the point o E E. Then the

subdifferential 0( o R) (0) is contained in the closure oflm R*.
Proof. Take r/E 0( o R)(0), and suppose that r/does not belong to the closure of

ImR* {R* p H*}.

By a separation argument, there exists .=. such that

(,7) > <,R*) forallq e n*.

Thus, R 0 and (, 7) > 0. Since 7 is supposed to be in 0( o R)(0), one can write

(R) _> ’(Ro) + ( o, r/) for all E.

Setting o + t (t > 0), one gets

> +

that is to say, (, 7) < 0. This is clearly a contradiction. 3

The above lemma provides only very rough information on the subdifferential
( o R) (0). However, it does not require any constraint qualification hypothesis.
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Abstract. A classical theorem of Hardy, Littlewood, and Phlya on rearrangements of functions
is used to prove the equivalence of a class of variational problems. As a consequence, solutions are
shortest paths and can be computed numerically via quadratic programming. Applications include
solar cars and reservoirs.
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1. Introduction. During our study of driving strategy for the 1993 Darwin-to-
Adelaide solar-powered car race, we encountered variational problems of the following
form: minimize

/o(1) r(F) [F’(t)]dt

with respect to F, subject to

(2) A(t) <_ F(t) <_ B(t),

(3) F(0) Fo, F(1) F1,

where is a convex function, F is the derivative of F (assumed to exist almost every-
where), A(t) and B(t) are given functions on [0, 1], and F0 and F1 are given constants
satisfying A(0) _< F0 <_ B(0), A(1) _< F1 _< B(1). There are many applications of this
problem.

Example 1. One wishes to travel by the shortest two-dimensional path (t, F(t))
starting from (0, F0) and reaching destination (1, F) while remaining between bound-
aries defined by (t, A(t)) and (t, B(t)). These boundaries might be the banks of a river,
if travelling by boat, or the edges of a track or road or gully, if travelling by land. In
this case

(f) (1 + f2)1/2
and F(F) is the length of path F. Of course, one knows intuitively the solution to
this problem (Figure 1).

Example 2. Replace the traveller in Example 1 by a piece of string, and pull
the string tight. This problem is mathematically identical to Example 1, and one
understands intuitively why the solutions are the same.

Example 3. A solar-powered car has a battery of capacity K which stores electrical
energy perfectly efficiently. The speed of the car is v[g(t)], where g(t) is the power
delivered to the motor at time t, so

(4) v[g(t)]dt

Received by the editors December 15, 1993; accepted for publication (in revised form) October
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FIG. 1.

is the distance travelled in time interval [0, 1].
function, a typical example being

v(g) cg1/3

Here, v is an increasing, concave

for constant c, this implying that the car faces a resistive force proportional to the
square of the speed. Then maximizing the distance travelled is equivalent to mini-
mizing F with -v.

The constraints arise from the battery capacity. Let P(t) be the power generated
by the solar panel, assumed known. Then the energy content of the battery at time
t is

(5) E(t) E(O) + t [P(s) g(s) h(s)] ds,

where h(s) is the power overflow, i.e., the power which is available at the panel but
is rejected because the battery is full and the motor is not drawing enough power to
use this energy. Then the constraints are

(6) 0 <_ E(t) <_ K.

Because h(s) depends on P(s) and g(s), the constraints are not of the form (2). But
putting

f(t) g(t) + h(t) >_ g(t)

implies that

fO fO(8) v[f(t)]dt >_ v[g(t)]dt;

i.e., it is always better to divert the overflow through the motor. Then (6) reduces to

(2) with F(t) f f(s)ds and

B(t) E(O) + P(s)ds,

(9) A(t) B(t) K,

while F0 0 and

(10) F1 E(0) E(1) + P(t)dt.
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Thus the variational problem is of the form (1) to (3).
Example 4. Water flow from a reservoir of capacity K (litres, say) drives a gener-

ator and produces power output II[g(t)], where g(t) is the flow rate (litres per second,
say) of water through the turbine at time t. Due to decreased efficiency of the system
at higher flow rates, H(g) is concave, although it is increasing. Then

(11) lH[g(t)]dt
is the total energy generated during [0, 1]. Putting -II and minimizing F amount
to maximizing the energy output of the system.

Now let P(t) be the rate of input (litres per second) to the reservoir (from runoff
and direct rainfall). If E(t) is the water content of the reservoir and h(t) is the overflow
rate, then we again have equations (5) to (10) and a variational problem of the form
(1) to (3).

Example 5. A commodity, such as salt, is supplied to a stockpile of fixed capacity
and sold at a time-varying, irregular but known rate (on arrival of ships) at a fixed
price per ton. The total cost is the supply to the stockpile, and this cost is an
increasing, convex function of the supply rate. (Higher supply rates are increasingly
costly due to overtime pay and the like.) What is the optimal supply rate? The
mathematical formulation follows previous examples and is left to the reader.

Example 6. Suppose an unknown distribution function F(t) satisfies conditions
(2) and (3) with F0 0 and F1 1. These might arise from a model or perhaps from
confidence intervals constructed from data. Then the maximum entropy (information)
F(t) is the solution of the variational problem with

(f) f log f.

For a related problem, see [6, 3a.6].
Example 7. Make the path in Example 1 as straight as possible in the sense that

[F’(t)]2dt

is minimized, or equivalently

[F’(t)- ’(t)]2dt

is minimized, where

F(t) Fo + (F Fo)t.

Thus one is making the direction as uniform as possible or the route as direct as
possible by penalizing large deviations from the direct route.

The main result of this paper is that the solutions to all these problems are
independent of , provided that it is convex. Consequently the shortest path (Example
1) solves all of them.

For the solar car, this means that, in the sense of Example 7, the power consump-
tion of the motor should be as uniform as possible over time. Similarly, the power
generation in the hydroelectric example should be as uniform as possible, the supply
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to the stockpile should be as uniform as possible, and the probability distribution in
Example 6 should be as uniform as possible.

Another useful consequence follows from Example 7; since the problem with

(f) f2
has the common solution, all such problems can be solved by quadratic programming,
for which very fast algorithms exist. This fact is exploited in our computer program
SOLARMAX, which was used by the Aurora Q1 solar-car team to study optimal
driving strategies for the 1993 Darwin-to-Adelaide solar-powered car race.

Problems resembling Example 1 have, of course, a long history and were the moti-
vating force behind the early development of the calculus of variations. For example,
the problems of Jakob Bernoulli and Fermat take the following form: minimize

o
[F’(t)][F(t), t]dt

subject to fixed F(O) and F(1). Evidently, our problem is broadly of this type if we
take

f 1 if A(t) <_ F <_ B(t)(F, t) oo if not.

However, our task is not to find explicit solutions but to prove the equality of solutions
of a class of problems. Here lies the crux of our problem: to prove that a class of
functionals have their minima at the same point without explicitly knowing that point.

2. Preliminary results.
DEFINITION. A function C is called piecewise hollow (PWH) if there is a finite

set of points 0 < t < < tn < 1 such that C is differentiable and either convex or
concave in (ti-1, ti) (i 1,..., n). We call these intervals of hollowness.

Note that PWH functions are continuous, except perhaps at t1,..., tn, and have
one-sided limits everywhere [3, 3.18].

Assumptions. 1. A, B are PWH.
2. F E ’, the class of absolutely continuous functions on [0, 1].

We use the notation f F for F E ’, which exists almost everywhere (a.e.).
The conditions on A and B are appropriate for our applications and simplify the

proofs somewhat. We now proceed to prove the main result in the absence of one
or other of the bounds A, B and then use these special cases to establish the main
theorem.

DEFINITION. The convex envelope of a function C, denoted Co, is the maximal
convex function not exceeding C. (Equivalently Co is the envelope of convex functions
not exceeding C).

The definition is not vacuous because the set of convex functions < C obviously
has a supremum which is unique. Its convexity is easily proved directly [4, p. 103].

DEFINITION. The concave envelope of C, denoted by Cn, is the minimal concave

function not exceeded by C.
DEFINITION. Let C stand for either A or B. Then C* is given by

C*(t)=C(t) if 0<t<l,

(12) C* (0) F0,
C*(1) F1.
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By A we mean (A*)n, not (An)*. Note that A* _< F _< B* and A(0) Bh(0
F0, A(1) B(1) F1. Further, A,B E $" since they are concave/convex [3,

 30].
DEFINITION. For any function g(t), its (decreasing) rearrangement is

> t},

where re(y) is the measure of the set

{t >

The notion of rearrangement is discussed in [3, 10.12] and [5, p. 15].
THEOREM 1. If A is PWH and B =_ oc,

(13) inf F(F) F(A)
FEb

for any convex . If is strictly convex, A is the unique minimum.

Proof. For notational simplicity, write Q(t) =_ A(t). Form the rearrangements of
f, for any F E , and of Q’; both derivatives exist a.e. Then, using [3, eq. (10.12.2)],
and F ’,

(14) (l(t) Fo + f(s)ds >_ Fo + f(s)ds F(t).

Obviously GI(0) F0, while GI(1) F(1) F1 by a basic property of rearrange-
ments [3, p. 277]. Since f is decreasing, Gl(t)is concave, with G1 _> A* by (14),
whence G1 >_ Q. Because Q’ is decreasing, Q’ Q, so

(15) Q(t) Fo +/o’ Q’(s)ds Fo + Q--7(s)ds

since Q e 9r. From (14) and (15),

f(s)ds >_ Q’(s)ds for 0 _< t < 1,

(16) /01 f(s)ds Q’(s)ds.

So by a classical theorem of Hardy, Littlewood and Phlya [2] (see also [5, p. 15]),

/01 /01(17) [Q’(t)]dt <_ [f(t)]dt

for any F 9r and any convex . Since Q 9r, (14) follows.
To prove uniqueness, suppose F E 9v is any other function with A _< F. Then

clearly the convex combination Fe =- OF + (1 -O)Q, 0 < 0 < 1, is also in 9r and
A _< Fe. Now F is a strictly convex functional if is strictly convex, so F(Fo) <
0F(F) + (1 -0)F(Q) and hence F(Fo) F(Q) < 0{F(F) F(Q)}. But the left side
is _> 0, since Q is a minimum, and 0 > 0, so F(F) > F(Q). SinCe F is arbitrary,
uniqueness follows and the theorem is proved.
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THEOREM 2. If B is PWH and A-

(18) inf F(F)-

for any convex 05. If q5 is strictly convex, B is the unique minimum.

Proof. Let R(t)- BS(t E . Then, as before, for any F E 9c,

(19) Gs(t) (-f’)(s)ds Fo >_ -F(t),

Gs(0)- -F0, G(1)- -Vl, Gu(t)is concave, and G _> -B*. Hence G _> -R,
since the convex envelope of B* is the concave envelope of-B*. So we again get

(20) [-R’(t)]dt < [-f(t)]dt

for any F and any convex 05. Since (-x) is convex if (x) is convex, and R ,
(20) proves (18). Uniqueness follows as above.

3. The main results. To prove our main theorem, we need to suitably charac-
terize the shortest path S(t), which, as mentioned in the introduction, turns out to
give the minimum of F. We call it the "string function," since it is the mathematical
equivalent of a piece of string fixed at P0 (0, F0), threaded through the "tube"
between A and B, and pulled tight at P1 -(1, F1) (cf. Example 2).

DEFINITION. S(t) is the unique solution to the variational problem when (f)
(1 q- f2)1/2.

Clearly, S(t) is the shortest path between P0 and P1 lying between the curves A
and B, because (F) f0111 + fs(t)]/Sdt is the length of F Y. Note that any
F 9c has a length.

It is evident from Theorems 1 and 2 that the minimizing envelope functions
AS, B are the (unique) shortest paths between P0 and P1 above A and below B,
respectively. For A5 minimizes F(F) for F > A and any convex , hence for F .

We must first establish that the definition is not vacuous in general. The existence
of a solution to the shortest path problem is intuitively obvious but requires a little
effort to prove formally. Initially we work with the wider class of functions of bounded
variation, which also have lengths.

LEMMA 1. Suppose F B, the class of functions of bounded variation on [0, 1]
which satisfy (2) and (3), with the length L(F) of F defined as the total variation of
F over [0, 1] [1, g7.3]. Then there is an F. e B which minimizes L.

Proof. Let K be the closure of the subset of the plane lying between A and B. It
is clear that there is at least one path of finite length between P0 and P1 lying in K;
call its length A. Now define

C {F" F I,L(F) <_ }.

The graph of F, (t,F(t)) for t [0, 1], is in K.
By the Hilbert compactness theorem [1, Thm. 7.10] C is sequentially compact,

while L is lower semicontinuous [1, Thm. 7.6]. The lemma now follows from [1,
Thm. 7.1].

Remark. Theorems 1 and 2 also hold in this wider context. (Use the inscribed
polygons whose limits give the variational length L.)
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If in fact /. E $c, then we can take S F., because then L [1, Thm. 9.7].
For general PWH A and B this is not true (see 4). We now prove F. E c for suitable
A and B.

DEFiNITiON. A - B, for PWH A, B, means that A(t + O) < B(t- O) for all
t (0,1).

The next lemma establishes the required properties of F., which, although intu-
itively obvious, need to be deduced from its definition.

LEMMA 2. Suppose A, B are PWH and A - B. Then
(a) There is a finite partition of [0, 1] into intervals Ij such that, throughout any

Ij, either F. A or F, B, or A < F. < B.
(b) If F. A (F. B) throughout Ij, F. is concave (convex) throughout I.
(c) If A < F. < B throughout I, F. is a straight line thoughout Ij.
Proof. Define TA {t: F,(t) A*(t)}. Any t’ TA either is one of the finite

number of points of nondifferentiability of A* or belongs to one of the finite number
of intervals of hollowness of A* by properties of PWH functions. If t, t" Ta are in
the same interval of hollowness, then

(i) A is concave in this interval;
(ii) [t’, t"] c TA.
If t Ta is interior to an interval of convexity of A, we can modify F. into the

straight line between two points on opposite sides of t, keeping above A (by convexity)
and below B, thereby producing a shorter path, contrary to the definition of F.. So
(i) holds, while (ii) follows obviously from the above remark. We conclude that Ta
consists of a finite number of isolated points (which are degenerate intervals) and a
finite number of disjoint intervals each a subinterval of an interval of concavity of A.

Next define T {t: F.(t) B*(t)}. Since A - B, TA ffl Tu {0, 1}. Similar
reasoning shows that TB consists of a finite number of isolated points and a finite
number of disjoint intervals, each a subinterval of an interval of convexity of B.

The set T [0, 1] TA Tu, where A < F. < B, is made up of a finite number
of disjoint intervals (which may have end points in common). Since F. is effectively
unconstrained over each of these intervals, it must be a straight line. This proves
(a)-(c) and hence the lemma.

It is clear that a function with the properties deduced in Lemma 2 is in 9r. So F.
is a solution to the variational problem; its uniqueness follows easily since is strictly
convex here. Hence we may now write S F..

THEOREM 3. If A, 17 are PWH and A - B,

(21) inf F(F)

for any convex . If is strictly convex, S is the unique minimum.

Proof (see Figure 2). Consider the partition {/j} in the preceding lemma for
S, and combine adjacent I’s if necessary to produce a new partition {Jj} with the
following properties. Over J1, S one boundary--say, B--without loss of generality,
and S A at each end of J1. Over J2, A < S < B, so S is a straight line. Over
J3, S A and S- B at each end of J3. Over J4, A < S < B, and so on.

Now choose any other F E 9c. At the right-hand end of J1, F > A- S, while at
the left end of J3, F _< B S. So since F and S are continuous over J2, there is at
least one point in J--t., say--where S- F. Then over the interval [0, %.] we have a
one-boundary problem like that of Theorem 1, because we have ensured that both F
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and S have the same end points. By Theorem 1, then,

(22) +IF’ (s)lds >_ [S’ (s)]ds

for any convex , since we have already deduced that S- A5 over this interval.
Similarly, there will be a t4 in J4 where S F, and then we have a one-boundary

problem like that of Theorem 2 over Its, t]. So

(23) [F’(s)]ds > [S’(s)]ds.

We can continue to produce a finite number of such intervals [t2,t2+2] over
which a result like (23) holds, finishing with an interval [t2, 1]. Combining (22) and
all those other inequalities proves (21), since F is arbitrary. The proof of uniquness
follows that in Theorem 1.

The following functions provide alternative characterizations of S, more analogous
to A and B.

DEFINITION. V(t) is the minimal function that satisfies A* < V < B* on [0, 1]
and is concave on any interval where it is not equal to B*.

DEFINITION. U(t) is the maximal function that satisfies A* < U < B* on [0, 1]
and is convex on any interval where it is not equal to A*.

THEOREM 4. Suppose A, B are PWH and A -< B. Then S- V U.
Proof. From Lemma 2, S is concave when it is not equal to B*, and clearly

A* < S _< B*. So V < S. Now it is an easy deduction from Theorem 1 that S- A
over the intervals J1, Jh,... defined in the proof of Theorem 3, so S V over these
intervals. Again it follows from Lemma 2 that S is convex over the interval J2 U J3 U J4
while V(_< S) is concave unless it is equal to B. But we have just shown that S V
at each end of this interval, so S V throughout. Hence S V on [0, 1]. The proof
that S- U is similar.
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4. Extensions. An extension which sometimes proves useful is the relaxation of
the condition A -</3. Without this condition, F, E 9c may not hold, as is clear from
inspection of Figure 3. However, we can proceed as follows.

Suppose that we allow A B over a finite number of intervals (which can degen-
erate into points) or require only that A(t- O) <_ B(t- 0) and A(t + O) <_/3(t + 0) at
jump points. These restrictions mean that if A, /3 have a jump-point in common the
jumps can partially overlap or even be exactly equal (cf. Figure 3). In this case the

FIG. 3.

string function S(t) is still formally the unique solution, provided that we recognize
that it may be completely constrained at points where A =/3 or where jumps over-
lap. A proof proceeds by breaking up the problem into a finite number of problems
where these constraints operate only at the ends of intervals as before. For example,
if A --/3 over [a, b]c [0, 1] but nowhere else, we get the solution .as S(t) between P0
and (a,A(a)) and between (b,A(b)) and P1, and A(t) over [a, b], provided that A and
/3 have the necessary properties outside [a, b].
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Abstract. It is known that some problems of almost sure convergence for stochastic approxi-
mation processes can be analyzed via an ordinary differential equation (ODE) obtained by suitable
averaging. The goal of this paper is to show that the asymptotic behavior of such a process can be
related to the asymptotic behavior of the ODE without any particular assumption concerning the
dynamics of this ODE. The main results are as follows: a) The limit sets of trajectory solutions to the
stochastic approximation recursion are, under classical assumptions, almost surely nonempty com-
pact connected sets invariant under the flow of the ODE and contained in its set of chain-recurrence.
b) If the gain parameter goes to zero at a uitable rate depending on the expansion rate of the ODE,
any trajectory solution to the recursion is almost surely asymptotic to a forward trajectory solution
to the ODE.

Key words, stochastic approximations, ordinary differential equations, chain-recurrence, neural
networks

AMS subject classifications. 62L20, 34D05, 34C29

Introduction. The classical theory of stochastic approximations, born with the
papers of Robbins and Monro (1951) and Kiefer and Wolfowitz (1952), concerns the
study of stochastic algorithms whose general form can be written as

(1) wn+ -w, =%H(wn,n),

where H Rm Rd -+ R" is a measurable function that characterizes the algorithm,
(Wn}>0 E Rm is the sequence of parameters to be recursively updated, {n}n>0 E Rd

is a sequence of random inputs where H(wn,) is observable, and (%}n>0 is a
sequence of "small" nonnegative scalar gains.

At each time step, the vector is a new observation that causes wn to be updated
to take new information into account. The gain sequence (%}n>0 can be chosen to
be constant or decreasing. In this paper we restrict attention to algorithms with
decreasing gain sequence. More precisely, we shall always assume that {%}n>0 is a
decreasing sequence of positive numbers which satisfies the classical relations

lim % 0

and

% +x.
n>0

To analyze the asymptotic behavior of the algorithm (1) it is convenient to intro-
duce the averaged ordinary differential equation (ODE)

dw
(2) d-- H(w),
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1994. This research was supported by a grant from the Centre National de la Recherche Scientifique
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where

H(w) nlim E(H(w, n)

and E(.) denotes the mathematical expectation.
This method, called the method of ordinary differential equation, was introduced

by Ljung (1977) and Kushner and Clark (1978) and widely studied thereafter. It has
inspired a number of important works, such as the book by Kushner and Clark (1978),
numerous articles by Kushner, and, more recently, the book by Benveniste, Mtivier,
and Priouret (1990). The main idea of the method is to describe the asymptotic
behavior of the algorithm in terms of the behavior of the ODE. For stochastic algo-
rithms having a decreasing gain sequence, the classical result stating the relationship
between the algorithm (1) and the ODE (2) has the following form"

Let w. be a stable equilibrium for the ODE. If {/}n>_0 goes to zero
at a suitable rate and if the sequence {Wn}n>_O enters infinitely often
a compact subset of the domain of attraction of w., then {Wn},_>0
converges almost surely toward w.

This kind of result has been obtained by Ljung (1977); Kushner and Clark (1978);
Mtivier and Priouret (1984, 1987); Benveniste, Mtivier, and Priouret (1990); and
Kuan and White (1992), among others, under fairly general conditions. It relies the
asymptotic behavior of the algorithm with a strong notion of recurrence for the ODE:
the notion of fixed point.

With increasing interest in artificial neural networks and due to some limitations
of the standard backpropagation algorithm, "heuristic" learning rules for feedforward
neural networks have been recently proposed and experimentally studied. The ODE
associated with these algorithms is not given by a gradient vectorfield (as is the case
for backpropagation), and the classical convergence results on stochastic gradient
algorithms cannot be successfully applied. The consideration of these algorithms led
us to formulate the following problem:

Without any particular assumption on the dynamics of H, is it again
possible to describe the asymptotic behavior of (1) in terms of the
asymptotic behavior of (2)?

The main goal of this paper is to address this question.
In 1 and 2 we relate the behavior of the algorithm to a weak notion of recurrence

for the ODE" the notion of chain recurrence. We state a theorem which asserts that
under the assumptions of the Kushner and Clark lemma (1978) the limit sets of the
trajectory solutions to (1) are nonempty compact connected sets invariant under the
flow of the ODE and contained in its set of chain-recurrence.

This result shows that the limit sets of (1) look like the omega limit sets of (2),
and we ask the question of their exact relationship. We address this question in 5.
It is shown that it may happen that the limit set of a trajectory solution to (1) never
coincides with an omega limit set of (2), but that it always does if the gain parameter
goes to zero at a suitable rate depending on the vectorfield H. Our approach, in
this section, is essentially based on "shadowing" results recently proved by Morris W.
Hirsch together with Lq estimates of the distance between the trajectory solutions to
(1) and (2).

In 8 we apply the results of 1-5 to prove some convergence theorems for the
neural network learning algorithms mentioned above.

Main theorems are proved in 4 and 7. Several applications are considered in

3 and 6.
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1. A deterministic theorem. In order to introduce the main result of this
section we begin with a few notations and classical definitions from dynamical systems.

Notation and definitions. Let F be a topological space and R F F be
a continous map denoted by O(t,x) Or(x). The family {Ot}tt is called a flow on
F if it satisfies the group property

O0 Identity,

V(t, s) E R:, Ot o O Ot+s.
Let H denote a continous vectorfield defined on R" with unique integral curves. The
flow of H is the family of mappings defined on F R" by

d
d-() H(()).

A set X is said to be invariant (respectively, positively invariant) under the flow
if for all t E R, Or(X) c Z (respectively, for all t _> 0). In this case we let

denote the restricted flow (respectively, semiflow).
A point x is an equilibrium if Or(X) x for all t R. When is induced by the

vectorfield H, equilibria coincide with zeros of H. A point x is a periodic point if there
exists T > 0 such that OT(X) x. Equilibria and periodic points are clearly recurrent
points. In general, we may say that a point is recurrent if it somehow returns near
where it was under time evolution.

A notion of recurrence related to slightly perturbed orbits is the notion of chain
recurrence. Suppose F is a metric space with a metric d. Let > 0 and T > 0. A
point x is said to be (5, T) recurrent if there exist an integer k, some points yi in F,
and numbers ti, 0 _< _< k- 1, such that

t >_ T; d(yo, x) < 5; d(Ot(y), Y+I) < 5 for i-0,...,k- 1; x Yk.

Intuitively (5, T) recurrent points are points that one would take to be periodic if the
position of points were only known with a finite accuracy 5. If x is (5, T) recurrent
for any 5 > 0 and T > 0, x is said to be chain-recurrent. We denote by CR(O) the
set of chain-recurrent points. If is induced by the vectorfield H, we may also use
the notation CR(H) for CR(O). The set CR(O) has the property to be closed and
invariant.

A subset X c F is said internally chain-recurrent if X is a nonempty compact
invariant set of which every point is chain-recurrent for the restricted flow OIX (i.e.,
CR(OlX X).

For example, if F is compact, Conley (1978) proved that CR(O) is internally
chain-recurrent.

The sets which describe the asymptotic behavior of the orbits of the flow are
the omega limit sets. The omega limit set of w F, denoted by w(w), is the set of
x F such that limk--. Otk (w) x for some sequence tk > 0 with limk tk
If the forward trajectory {Ot(w);t >_ 0} has compact closure, w(w) is a nonempty
compact connected set internally chain-recurrent. The alpha limit set c(w) of w is
defined as the omega limit set of w for the reversed flow {O_t}t_>0.

To recapitulate, if we note Per(O) the set of periodic points (including the equi-
libria) and +(O) [-Jer w(w), the following inclusions hold:

Per(G) C +(0) C CR(O).
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FIG. 1.

EXAMPLE 1.1. Consider the flow on the unit circle S R/2-Z induced by the
differential equation

where f is a 2r-periodic smooth nonnegative function such that

f-l(0)-- {kTr" k e Z}.

See Fig. 1.
We have

Per(O) {0, ’} +()

and

CR(ffp) S1.

Internally chain-recurrent sets are {0}, {r}, and S1. Note that the set X [0, r]
is a compact invariant set consisting of chain-recurrent points. However, X is not
internally chain-recurrent.

A deterministic theorem. To describe the asymptotic behavior of the algo-
rithm (1) we introduce the limit set of the sequence {Wn}n>_o. We denote this limit
set by L({wn}n>_O). it is the set of x R" such that limk_. w, x for some
subsequence (n}k_>0 with limk- nk

The following theorem is a deterministic result that will be applied in 2 to show
that the limit sets of the trajectories solutions to the algorithm (1) have basically the
same properties as the omega limit sets of the trajectories solution to the ODE (2).
The assumptions A1, A2, and A3 of this theorem are the assumptions of the Kushner
and Clark lemma (1978).

We use the following notation:

7"00
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n--1

We let I1.11 denote a norm on Rm.
THEOREM 1.2. Let H Rm Rm be a continuous vectorfield with unique

integral curves. Let {wn}n_>0 be solution to the recursion

(3) Wn+l -Wn /n(H(wn) + tn2c-bn),

where {Yn}n_>0 is a decreasing gain sequence. Assume that
A1) {W}n_>0 is bounded.
A2) lim-_+o bn 0.
A3) For each T > O,

lim / sup
n (:x:) k O

_
T 7"n

_
T}

i "Ui

Then L({w}n>0) is a connected set internally chain-recurrent for the flow induced
by H.

The next theorem shows that Theorem 1.2 gives the best result that can be
expected under the Kushner and Clark assumptions. It justifies the fact that the
chain recurrence is a notion well suited to the description of the asymptotic behavior
of(l).

Assume given a locally Lipschitz vectorfield H R" Rm and a decreasing gain
sequence {y}n_>O.

THEOREM 1.3. Let L C Rm be a connected set internally chain-recurrent for the
flow induced by H. There exist sequences {b}>_0, {Un}_>o, and {Wn}n_>0 such that

(a) Conditions A1, A2, and A3 of Theorem 1.2 are satisfied.
(b) The sequence {wn}_>0 is the solution to (3) and admits L as a limit set.
Theorem 1.3 follows easily from the following proposition (see Benaim and Hirsch

(1995b)).
PROPOSITION 1.4. Let L C R" be a connected set internally chain-recurrent for

the flow induced by H. There exists a continuous function u" R+ - Rm and a point
wo E R" such that

(a) limt--,oo u(t) O.
(b) The solution to the nonautonomous system

dw
d-- H(w) + u(t)

with initial condition w(O) wo is bounded and admits L as a limit set.
To prove Theorem 1.3 we let Wn w(’) and Un u(T), where w(.) and u(.)

are the functions of Proposition 1.4. Then we have

Wn+ Wn "n(-(Wn -- ttn --and Theorem 1.3 follows from Proposition 1.4.
REMARK 1.5. Throughout this paper the process {Wn}n>_O will be assumed to be

bounded. Several conditions ensuring that this assumption is fulfilled are discussed
in the literature on stochastic approximations. They usually rely on the existence of
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some convergent supermartingale for the process (1) (see, e.g., Theorem 5.2, chapter
2, of gevel’son and Has’minskii (1974) or Theorem 8 of Fort and Pages (1994)).

In the spirit of this section, we give a simple condition which is purely determin-
istic.

PROPOSITION 1.6. Assume that H is globally Lipschitz. Assume the existence of
a function V" Rm -- R+ uniformly continuous such that

(i) limllxll_ Y(x) .
(ii) There exist positive numbers 5, r, and T such that

Vx e Rm, Ilxll r V(OT(X)) V(x) -6.

Then conditions A2 and A3 of Theorem 1.2 imply condition A1.
The proof of this result follows easily from Lemma 4.4 and is left to the reader.
Note that if V is smooth, condition (ii) holds if the following more easily checked

condition is satisfied: there exists 5’ > 0 such that for all ]]x]] _> r

{VV(x), <

where V denotes the gradient.

2. Limit sets of stochastic approximation processes. In this section, we
assume that {n}n_0 is & sequence of Rd-valued random variables defined on a prob-
ability space (,9, P). We note $’, the a field generated by {; n _< _< rn} for
rn >_ n. For q E [1, ] we let ]].]lq denote the Lq(t) norm for random variables
(llXIIq E(]IX[I) 1/q) and II.]1 the L()norm ([IXII esssupIIXII).

In applications of Theorem 1.2 to the stochastic approximation (1) one may choose

H(w) lim E(H(w, n)),
n---(x)

and

Un H(wn, n) J H(wn, )#n(d),

bn H(Wn, )#(d) H(wn),

where Pn is the distribution of n. Then we try to verify assumptions A2 and A3 by
use of some regularity properties of H and maximal inequalities for sum of random
variables. Let us mention two examples.

Independent inputs. The first example is a classical Robbins-Monro algorithm
in which the observations are assumed to be independent and identically distributed.
This yields a simple martingale access to condition A3 as in Gladyshev (1965) and
Hall and Heyde (1980).

We let M denote a given subset of Rm (not necessarily compact).
PROPOSITION 2.1. Let {Wn}n>_O be the solution to (1). Assume that

A1) {n}n>0 is a sequence of independent and identically distributed random
variables.
A2) P({wn}n>_O is bounded)= 1 and P(Vn e N, Wn e M) 1.
A3) w H H(w)= E(H(w,o)) is continuous with a unique flow.

There exists q >_ 2 such that
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A4) w IlH(w,0)llq is bounded on M.
Ah) 1+q/2n=o% <

Then the conclusions of Theorem 1.2 hold with probability one.

Proof. To see that, we let bn 0 and un H(wn, n)---(Wn). Then E(un/f
0. For q 2, sumptions A4 and A5 imply 7.]]u] < +, and condition A3
of Theorem 1.2 is a direct consequence of the L2-bounded martingale convergence
theorem. For q > 2, it follows from a result of Mtivier and Priouret (1987, Cor. 11).
(See also Benveniste, Mtivier, and Priouret (1990, Cor. 8, p. 297).) Note that in this
ce the sequence {%.un)no is not necessarily convergent.

Mixing inputs. The following example extends this result to situations in which
the observable inputs are nonindependent and nonstationary random variables which
satisfy a strong mixing condition. Such situations arise naturally in some applica-
tions of feedforward neural networks forecasting, prediction of time series, or chaos
modelling.

Here our approach is motivated by the work of Kuan and White (1992), who have
proved some convergence results for stochastic approximation procedures by using
the theory of mixingales developed by McLeish (1975). Conditions A1-A6 can be
compared with conditions of Kuan and White’s theorems (Thm. 2.2.1 and Cors. 2.2.3
and 2.3.5). The condition A6 gives a generalization which allows a gain parameter
of the order of with < 1. The price for this is a strengthening of the boundness
condition.

For n 0, m 0 define

Cn,m sup P(B/A) P(B) I,

Oln,m sup
{AE’ B’+’

P(B A) P(B)P(A) I,

Cm sup Cn,m,
n>O

Om sup an,m.
n>_0

We shall say that the process (n}n>0 is mixing (respectively, c mixing) if
limn. Cn 0 (respectively, limn-.o an 0). Observe, however, that this condition
is a weakening of the classical mixing (respectively, c mixing) definition (see, for
instance, Billingsley (1968, 20, p. 166)). It would be the same if +’’+m were replaced
by +oJzn+m. This weaker definition is motivated by our use of McLeish’s results (1975).

PROPOSITION 2.2. Let (wn}n>o be the solution to (1). Assume that
A1) (n},>0 is a mixing (respectively, c mixing) process.
A2) (wn},>o is bounded with probability one.
A3)g(w)= limn__.ocE(H(w,)) exists.
A4) There exists a measurable function k(.) such that

Vx, y e RmlIH(x, ) H(y, )]1 <- k()]lx Y]I"

There exists r E [2, c] such that
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Ah) The map w H supn>0 IIH(w,)ll is bounded on any bounded set and

SUPn>_0
A6) (Lr case). If r < x3, Cn O(--) for some > (respectively,n
n 0() for some > ) and

n0

A6’) (L case). If r c, Cn 0(-)for some > 1/2 (respectively,
an O(A) for some > 1) and

’vl+q/2 <in

-’0

for some q E [2, 2 + 1[.
Then the conclusions of Theorem 1.2 hold with probability one.

The proof of this result is given in the appendix (9).
In view of the fact that the assumptions of Theorem 1.2 are the assumptions of

the Kushner and Clark lemma, several other examples of application can be found in
the literature. We refer the reader to the book by Kushner and Clark (1978, Chap. II)
for such examples. In the case where the input process {n}n>0 is a Markov process
or, more generally, a Markov process controlled by the parameter w, condition A3
of Theorem 1.2 can be derived from the analysis provided in the articles by Ljung
(1977) and M6tivier and Priouret (1987, Cor. 11) (see also Benveniste, Mdtivier, and
Priouret (1990, Cor. 8, p. 297)).

3. Applications. In this section we give a few examples to illustrate how results
of 1 and 2 can be used to describe the global asymptotic behavior of stochastic
approximation processes.

In the remainder of this section H is a vectorfield on Rm with unique integral
curves. The sequence {wn}n>0 denotes either a deterministic sequence solution to
(3) under assumptions of Theorem 1.2 or a random sequence solution to (1) under
assumptions of Proposition 2.1 or 2.2. In this last case, all the properties stated below
have to be understood as "almost sure" properties.

Local behavior. First, note that Theorem 1.2 generalizes the classical result
mentioned in the introduction.

An equilibrium w* of H is said asymptotically stable if there exists an open neigh-
borhood U of w* such that

lim (t(w) w*

uniformly in w E U. The domain of attraction of w* is the set of all points whose
forward trajectories are attracted by w*.

PROPOSITION 3.1. Let w* be an asymptotically stable equilibrium of H. Assume
that {Wn}n>_O enters infinitely often a compact subset--say, Q--of the domain of
attraction of w*. Then

lim wn w*.
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Proof. According to Theorem 1.2, L({wn}n>0) f3 Q is nonempty and is contained
in CR(-)NQ. On the other hand, it is not difficult to show that CR(-)NQ {w* }.
Thus {w*} L({Wn}n>_o)NQ and, as L({wn}n>_O) is connected, L({wn}_>0) {w*}.

Gradientlike systems. Let (I) be a flow on a metric space F and A c F be an
invariant set.

A Co map V F R is said to be a Lyapunov function for A if for all x E F the
function t E R+ V(((x)) is constant for x A and strictly decreasing for x A.

If A equals the equilibria set, V is called a strict Lyapunov function and (I) is
called a gradientlike system.

PROPOSITION 3.2. Assume that F is compact. Let A c F be a compact invariant
set and V F - R a Lyapounov function for A. Assume that the cardinal of V(A) is
finite. Then

CR( ) c A.

COROLLARY 3.3. Assume that H admits a strict Lyapunov function and isolated
equilibria. Then {w,}>0 converges toward an equilibrium.

Proof. We apply Proposition 3.2 to the flow induced by H on F L({w}n>0). It
follows from Theorem 1.2 that L({w,}>_0) consists of equilibria. As it is a connected
set and equilibria are isolated, L({w,}n>0) is an equilibrium. El

REMARK 3.4. Note that Corollary 3.3 applies to stochastic gradient algorithms
for which H is the gradient of a cost function C" R" - R,

H(w) VC(w).

In 8 we will give another application of Proposition 3.2 to a class of learning
processes which are not given by a stochastic gradient.

Proof of Proposition 3.2. Let V(A) {Vl,..., Vl}, Vl < v2 < < Vl. Choose
real numbers v, v,..., v such that vl < v < v2 <". < v_l < v < v, and define
Ms {x e F/V(x) <_ v}.

Let As A N V-(vs); As is the largest invariant set contained in Ms- Ms-1.
Indeed, let A C Ms- Ms- be an invariant set and let x A. By a standard theorem
on Lyapunov functions, a(x)U w(x) C h. So Y(a(x)) Y(w(x)) vs, and as V is
strictly decreasing along any trajectory outside A, x is necessarily in

Let T > 0. By compactness of the sets Mj, there exists e > 0 such that

Vx e <

Pick ti > 0 such that

V(x, y) e F x F, d(x, y) <_ 1 V(x) V(y) < .
It follows that any (,T) chain {y0, Yl,... ,Yk} (i.e.,
T) with Yo Mj is included in Mj. Therefore, the set CRj CR(O) (Mj Mj-1)
is invariant. Hence, CRj c Aj and CR(O) C A.

This follows, for example, from Proposition 3.10.
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(a) el (b)

e2

e.

e

FIG. 2. (a) A one-equilibrium cycle. (b) A three-equilibrium cycle.

No-cycle systems. Let be a flow on a metric space F. We say that has
simple dynamics if for every x E F the alpha and omega limit sets of x are equilibria.
This means that every backward and forward trajectory converges toward an equilib-
rium. If is induced by the vectorfield H, we say that H has simple dynamics if OIL
has simple dynamics for each compact invariant set L C Rm.

For a flow with simple dynamics, we say that the equilibrium el goes to the
equilibrium e2 if there exists a nonequilibrium orbit 7 C F such that a(7) el and
w(7) e2.7 is called a connecting orbit. To indicate that el goes to e2, we write
el e2. To indicate that 7 is the connecting orbit from el to e2, we write 7 el -,z e2.

A cycle of equilibria is an union

n

u u)
j=l

consisting of equilibria ej, j 1,..., n, and connecting orbits 7j, J 1,..., n, such
that

(i) 7j ej--z ey+l, j 1,...,n- 1.
(ii) 7n’e el.
REMARK 3.5. A cycle of equilibria is connected internally chain-recurrent (Fig. 2).
PROPOSITION 3.6. Assume that F is compact and has a finite number of

equilibria, simple dynamics, and no cycle. Then CR(O) is the equilibria set.
COROLLARY 3.7. Assume that H has isolated equilibria, simple dynamics, and

no cycle. Then {wn}n>o converges toward an equilibrium.
Proof. We apply Proposition 3.6 to the flow induced by H on F L({wn}>0)

and conclude exactly as in the proof of Corollary 3.3. rl

Fort and Pagbs (1994) recently proved a result similar to Corollary 3.7 by using
the Kushner and Clark lemma. Systems with cycle of equilibria will be considered in

6.
The notion of simple dynamics and no-cycle property can be extended to non-

convergent situations. Denote by :(O) the union of all alpha and omega limit
sets of . Assume that there exist nonempty compact disjoint invariant subsets
Ay c F, j 1,...,n, such that

n

z:() c A U
j=l

If there exists x 9 A such that a(x) c A1 and w(x) C A2, we write A1 "- A2 and
define cycles among the Aj exactly as in the simple dynamics case.
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PROPOSITION 3.8. Assume F is compact and there is no cycle among the Aj.
Then CR(O) c A.

Proof. Let be the topological quotient space obtained by collapsing each Ai to
a point. It is not difficult to check that F is a regular space with a countable basis.
Therefore ^by the Urysohn theorem, is metrizable. Let r denotes the quotient map
7r F F. The flow induces a flow on defined by or roO, which
has simple dynamics, no cycle, and the Aj as equilibria. Therefore, by Proposition
3.6, chain-recurrent points of ( are equilibria. If x E F is chain-recurrent for it
is clear, by definition of chain-recurrence and uniform continuity of r, that r(x) is
chain-recurrent for . Thus CR() c A. D

COROLLARY 3.9. Assume there exist nonempty compact disjoint subsets Aj c
Rm, j 1,..., n, invariant under the flow ofH such that every alpha or omega limit
point belongs to A ]=1A. Assume there is no cycle among the Aj. Then there
exists j e {1,... ,n} such that L({wn}>0) C Aj.

Proof of Proposition 3.6. There are several ways to prove Proposition 3.6.
For example it can be easily deduced from the "filtration theory" exposed in Shub
(1986). Here, for simplicity we decided to deduce it from elementary properties of
chain-recurrent sets. On the other hand these properties are very useful and give a
good understanding of the notion of chain-recurrence.

Let Y C F. The forward trajectory of Y is the set Y. [0, ) ([0, cx) Y)
t > 0; v}.

The omega limit set (respectively, alpha limit set) of Y, denoted by w(Y) (respec-
tively, a(Y)) is defined as the maximal invariant set in clos(Y. [0, )) (respectively,
clos(Y. (-cx, 0])), where "clos" denotes closure.

A nonempty compact invariant set A c X is an attractor if A has an open
neighborhood U in X such that w(U) A or a repeller if a(U) A. An attractor or
repeller is proper provided that it is not open in X.

The following proposition follows from 5 and 6 of Conley (1978, Chap. 2).
PROPOSITION 3.10 (Conley (1978)).
(a) Let N C F be a compact set. Let A c F be the maximal invariant set

contained in N. If A is nonempty and not an attractor, there exists p
ON C F such that the backward orbit 7_(p) c N and a(p) is a nonempty
subset of A.

(b) A internally chain-recurrent set has no proper attractor or repeller.
(c) The chain-recurrent set is internally chain-recurrent.
Let us now prove Proposition 3.6. Let X be a connected component of CR(O).

By assertion (c) of Proposition 3.10, X is internally chain-recurrent. Consider the
flow OlX and let Equ() {e, 1,..., n} denote the equilibria set of .
Since has simple dynamics and no cycle the relation -. induces a partial ordering
on Equ(q2).

Assume e is minimal for this partial ordering. We claim that e is an attractor
for . It follows from assertion (b) of Proposition 3.10 that e is open and closed in
X. Thus X {en}.

It remains to prove that e is an attractor for . Let N be a compact neighbor-
hood of en which separates en from other equilibria. The maximal invariant set in N
is e,; otherwise it would exist a entire orbit disjoint from en inside N. The dynamics
being simple, this orbit would have to connect e to itself. Since we assume that there
is no cycle, this is impossible.

Now we use assertion (a) of Proposition 3.10. If en is not an attractor, there
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exists p E ON with a(p) en, but this contradicts the fact that en is minimal for the
partial ordering -,. E]

Morse-Smale systems. In this subsection we mention briefly an application of
the previous results to a class of stochastic approximation processes and urn models
which have been recently considered by Benaim and Hirsch (1995a). For more details
the reader is referred to that paper.

Assume H is Cr (r _> 1). H is called Morse-Smale if
(i) H has a global compact attractor (i.e., the point at infinity is a source);
(ii) all periodic orbits and equilibria are hyperbolic;
(iii) stable and unstable manifolds of periodic orbits (and equilibria) intersect

only transversely;
(iv) every alpha or omega limit set is a periodic orbit or an equilibrium.

It is known that these conditions imply that there are only finitely many periodic
orbits.

Suppose H is a Morse-Smale vector field. Denote by (H) the union of all
alpha and omega limit sets of H, and by Per(H) the union of all periodic orbits and
equilibria. If H is Morse-Smale, (H) decomposes as

(H) Per(H) A1 IJ... IJ An,

where the A are the distinct hyperbolic periodic orbits and equilibria. On the other
hand, it follows from the transversal condition (iii) that there is no cycle among the
A (see, e.g., Proposition 3.2 of Palis (1969)). Thus, we have the following corollary.

COROLLARY 3.11. Assume H is Morse-Smale. Then L({wn}_>0) is an equilib-
rium or a periodic orbit.

Proof. By Corollary 3.9, L({w}>_0) C A for some i. Since L({wn}n>_O) is
invariant and A is a periodic orbit or an equilibrium, we must have L({w}n_>0)
A. [1

Nonconvergence toward unstable periodic orbits is considered in Benaim and
I-Iirsch (1995a).

Planar systems. For planar systems it is possible to give a complete description
of L({w,},>0). A planar flow is a flow defined on a open subset of R9. The following
theorem is proved in Benaim and Hirsch (1995c).

THEOREM 3.12. Let be a planar flow with isolated equilibria and L be an
internally chain-recurrent set for . Every point x L satisfies one of the following
conditions:

(i) x is an equilibrium.
(ii) x is a periodic point (i.e., x belongs to a periodic orbit).
(iii) There exists a cycle of equilibria in L which contains x.
COROLLARY 3.13. IfH is a planar vectorfield with isolated equilibria, L({wn}n>_O)

is a connected union of equilibria, periodic orbits, and cycles of equilibria.
Using the same kind of result, a Poincar-Bendixson theorem for a class of

stochastic differential equations is given in Benaim (1995b).
4. Proof of Theorem 1.2. We denote by 1A the indicator function of the set

A (i.e., 1A(X) 1 if x e A and 1A(X) 0 if x A).
For any sequence {z}n>0 Rm we denote by Z(.) the function defined for all

t_>0by

Z(t) E Znl[rn’rn+l[ (t)
n>O
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and by Z(.) the interpolated process defined for all t >_ 0 by

Z(t) E [(Z+l-Zn). (t-T) +z] l[,n,,+l[(t).
n>0 ")%

With these notations, the recursion satisfied by {Wn}n>_O can be rewritten as

(4) W(t) W(0) -(W(s))ds + U(s)ds + B(s)ds.

Remark that the assumptions A1, A2, and A3 are equivalent to
AI’) {W(t), t >_ 0} is bounded.
A2’) limt-o B(t) O.
A3/) For each T > 0,

U(s)ds =0.
t-cx \he[0,T] dt

The function t H W(t) is uniformly continous. This follows easily from the integral
formula (4) and conditions A11, A2, A3. This can also be deduced from the Kushner
and Clark lemma (1978) (see Theorem 4.5).

We denote by L(W) the limit set of {W(t), t > 0} and let Q denote a compact
subset of R" which contains {W(t), t >_ 0}.

LEMMA 4.1. L({wn}>o) L(W).
Proof. It is clear that L({wn}n>_O) C L(W). Conversely, let

w, lim W(t),

a limit point of W. Define the map m" R+ H N by

re(t) sup{p e _< t}.

One has limt_+(t- Tml) 0 because limn-+ /n 0. The uniform continuity
of W implies limtk_..+cx (7"m(tk)) w*. This proves the lemma. VI

LEMMA 4.2. For all T > O,

lim sup
t--,+o hE[-T,T]

Ilw(t + h) Oh(W(t))]l O.

For convenience, the proof of this lemma is postponed to the end of the section.
COROLLARY 4.3. L({w}>_o) is internally chain-recurrent.
Proof. Since W is continuous and bounded, L(W) is a nonempty compact con-

nected set.
Let us verify that L(W) is invariant under O. Let p E L(W), p limt__. W (ti)

for some sequence ti oe. Let T E R. If T > 0, then

lim d(OT(W(ti)), W(ti + T)) 0

by Lemma 4.2. Therefore g2T(p) limt-,o W(t + T) L(W). If T < 0, the proof
is analogous.

It remains to prove that L(W) is chain-recurrent for the restricted flow b]L(W).
Here we adopt a method used by Robinson (1977) to show that a diffeomorphism on
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a compact manifold is chain-recurrent on the set of chain-recurrence. Recall that
Q c Rm denotes a compact set which contains {W(t), t _> 0}.

Claim 1. Let n E N, T > 0, p L(W). There exists a finite sequence

n. nn <_ ao ak(,

such that, with the notations

w (a?), 0,...,

and

t an n i 0 k(n) 1i+1 ai

the following hold:
and ,p) <(a) d(y,p) <_ d(yk(n) .

(b) T < t <_ 2T, i= 0,...,k(n)- 1.
n(c) d(t (y), y+) _< , 0,..., k(n) 1.

Proof. Let n N. Lemma 4.2 shows that there exists A > 0 such that for any
t > An and for all 0 <_ h <_ 2T, d(Oh(W(t)), W(t + h)) <_ .

n

and thereAs p L(W) there exists a > sup(An, n) such that d(W(a), p) <_ -Writea+T=kT+r wherekNexists T’ > T such that d(W(a + T’), p) _< .
and 0 < r < T. Then define a a + + ), i 0,

Let Cn {y,i 0,... ,k(n)}, where y is defined as in Claim 1. As Cn is a
compact set, we may extract from {Cn}n>0 a subsequence which converges toward a
compact set C for the Haussdorf metric in Q. It is clear that C c L(W).

Claim 2. Let 5 > 0 and T > 0; then p is (5, T) recurrent for the restricted flow
OIL(W).

Proof. By uniform continuity of the flow on Q there exists a > 0 such that
d(x,y) < a implies d(Ot(x), Or(y)) < /3 uniformly in t e [0,2T]. We may always
assume a < /3. Choose n large enough such that 1In _< 5/3 and d(Cn, C) <_ a.
Then we construct a finite sequence Zo,..., Zk(,) C such that d(Z, y) < a for

0,..., k(n). Then

d(Zo,p) < a + 1In <_ ,

and

d(Zk(n) p) - 1In
_ ,

d(Ot,(Z), Z+) < d(Ot?(Z), Ot?(y)) + d(Ct,(y’), yi+) + d(y+, Zi+)

1
<_5/3+-+a<_5.

n
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Proof of Lemma 4.2.

The Lipschitz case. Here we assume that H is locally Lipschitz. We let L(Q)
denote the Lipschitz constant of H on Q and [IHIIQ the uniform norm of U on Q.
The next lemma proves Lemma 4.2 with an estimate. This estimate will be useful to
prove the main result of 5.

LEMMA 4.4. For all T > 0 and all t >_ 0,

sup
he[0,T]

where

e(t,T) sup
{k; O<_’k-’m(t) <_T+l}

k-1

E ")’i.Ui

i--m(t)

+(T+I) [ sup I]bkl]].{k;0 _<’rk --Tin(t) <_T+ }

Proof. We begin with a simple inequality:

VU, V [Tm(t) Tm(t+T)+l (U(s) + B(s))ds <_ 2e(t,T).

To prove (6) we note that for any u >_ T,,(t) there exists a E [0, 1] for which

(V(s) + B(s))ds a (V(s) + B(s))ds + (1 -c)
(t) ’m(t)

(U(s)+B(s))ds.

As for u, v E [T,(t), Tm(t+T)+l [,

(V(s) + B(s))ds (V(s) + B(s))ds + (V(s) + B(s))ds.
(t) (t)

Inequality (6) follows.
According to (4),

]o
h

W(t + h) Oh(W(t)) -(W(t + s))ds -(Os(W(t))ds
t+h

+ (U(s) + B(s))ds.

Let

A(h) IIW(t + h) (I)(w(t))ll.

Equation (7) implies

(8)

fohA(h) <_ L(Q) A(s)ds + II(W(t + s)) -(W(t + s))llds

t+h

+ (U(s) + B(s))ds
,It
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On the other hand, for any h E [0, T]

IIW(t + h)- W(t + h)ll
t+h

[g(W(s)) + U(s) + B(s)]ds

and inequality (6) implies

(9) IIW(t + h) W(t + h)ll < O/m(t+h)ll-llo / 2e(t, T).

From inequalities (8) and (9), we deduce that for any h E [0, T]
h

A(h) <_ L(Q) A(s)ds + 2e(t, T)(1 + TL(Q)) + TL(Q)%(t)IIHIIQ,

and we conclude by using Gronwall’s inequality. 1"1

The non-Lipschitz case. Here we prove Lemma 4.2, assuming only that H is
continous with unique integral curves. The key of the proof is to use the Kushner and
Clark lemma (1978). Let Ws() be the function defined for any s _> 0 by

vt _> -s, w"(t) w(t + s)

and

vt < -s, w’(t) zoo.

The Kushner and Clark lemma is the following.
THEOREM 4.5 (Kushner and Clark (1978)). Under the assumptions A1, A2, and

A3 of Theorem 1.2, {WS(.)}s>o is relatively compact in C(R,Rm) with respect to
the topology of uniform convergence on bounded intervals (i.e., from every sequence
of the set {W (.)}s>o it is possible to select a subsequence which converges uniformly
on bounded intervals), and the limit of each convergent subsequence is the solution to
the ODE.

What we want to prove (i.e., Lemma 4.2) is equivalent to

(10) lim SUphe[-T,T] IIW(h) h(W’(0))ll-- 0

for all T > 0. Let D denote a distance on C(R, Rm) induced by the topology of
uniform convergence on bounded intervals; then (10) can be rewritten as

(11) lim D(WS(.), (. Ws(O)) O.

Let W* be an arbitrary limit point of {WS(.)}s>o By Theorem 4.5 W* is a solution
to the ODE, and by uniqueness of integral curves W* (t) O(t, W* (0)) for all t. Thus,
W* (.) O(., W* (0)). This proves (11).

5. Lq estimates and shadowing. In this section we consider the following
question:

Given {wn}n>_o, a trajectory solution to (1), does there exist a solu-
tion to (2) whose omega limit set is L({wn}n>_o) ?
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Theorem 1.3 shows that (at least under assumptions of Theorem 1.2) the answer is
generally negative since L({wn}n>0) can be an arbitrary internally chain-recurrent
set. However, it is useful to understand what kind of conditions ensure a positive
answer to this question. A case of particular interest in applications is given by the
following problem:

Assume that each solution to (2) converges toward an equilibrium.
Does every solution to (1) converge also toward an equilibrium?

We saw in 3 several examples for which CR(H) is the set of equilibria and the
theorems of 1 and 2 were applied to answer positively. But it may happen that
CR(H) contains nonequilibrium points (see Example 6.3) and further conditions are
required.

We begin with a simple example.
EXAMPLE 5.1. Consider the recursion which is defined in polar coordinates p >_

0, 0 E R/(2rZ) by

Pn+ Pn n(g(Pn) + l[0.5,3](Pn).n),

On+ On --’n

where (n}n>o is a sequence of independently and identically distributed random vari-
ables with uniform distribution on [-1/2, 1/2], /n for some 0 < c

_
1, and

g R+ R is a smooth function which is zero on (0} (J [1, 2], positive on ]0, 1[,
and negative on ]2, (x)). The ODE associated with this recursion is defined by

dp
d-- g(p)’

dO

The phase portrait of this ODE is given by Fig. 3.
We see that any connected internally chain recurrent set of this ODE is either the

equilibrium Ot2 or a cylinder of periodic orbits

Ca,b {p’a _< p _< b} {0 E R/(2rZ)}, 1 <_ a _< b _< 2.

Assume that the initial condition of the process is not OR2. Therefore, according to
Proposition 2.1, the limit set L((wn}n>_o) of the process has to be a cylinder. In fact,
it is not difficult to show that

(a) if c > 1/2, L({wn}n>_o) is almost surely a periodic orbit L({wn}n>_O) Ca,a
for some 1 <_ a <_ 2;

(b) if < 1/2, i({wn}n>o)= C1,2.
The main reason is that the sum n/nn converges for > 1/2, while

lim supZ/nn -lim infZ’nn +
n n

for a < 1/2 (see, e.g., Neveu (1964, p. 138)).
In case (a) L({wn}n>O) is an omega limit set of the ODE. Case (b) gives an

example .for which the asymptotic behavior of (1) is quite different from the asymptotic
behavior of (2).
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FIG. 3.

Expansion rate. In the previous example, the condition c < 1 means, intu-
itively, that the convergence of (’n}n>0 to zero is not fast enough to ensure the
convergence of (w,}n>o toward the omega limit sets of the ODE. We now formalize
this idea and show that, conversely, if (/}>0 goes to zero at a suitable rate depend-
ing on the expansivity of the ODE, then {Wn}n>_O is in some sense asymptotic to a
forward trajectory of (2).

Here we make crucial use of the ideas and methods introduced by Morris W.
Hirsch in a recent paper (1993). The main idea of what follows is to use a shadowing
theorem proved in Hirsch (1993) together with Lq estimates of the error which is made
when (1) is replaced by (2).

To avoid technicalities, we will assume throughout the remainder of this section
that is a C vectorfield on R" with the point at infinity as a source. By oo as a
source we mean that there exists a bounded nonempty open set U c Rm such that
for all w E Rm

lim d((w), clos(U)) 0

and for some T > 0

T(clos(U)) C U.

Let K denote a nonempty compact set positively invariant under the flow of H.
The expansion rate of H in K is defined in Hirsch (1993) (see also Hirsch and Pugh
(1970)). For convenience we introduce it in a logarithmic form:

lexp(- K)= lim [min lg(I](DOt(w))-lll-i) 1t--,+c LwK t

where D’t(w) denote the differential of t at w. The limit exists by subadditivity.
We call lp(H, K) the "log-expansion rate" of H in K. This real number meures
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the expansivity of the dynamical system induced by H. It is zero if the flow is
isometric, positive if the flow has a tendency to be expansive, and negative otherwise.
Let clos((H)) be the closure of all alpha and omega limit points of the trajectories
solution to (2). As we assume that "" is a source, clos((H)) is a compact nonempty
invariant set. We define the "log-expansion rate" of H as

lexp(H) lexp(H, clos(/:(H))).

This definition makes sense and is motivated by the following important property
(Hirsch (1993))" If L is a compact invariant subset of K containing all alpha and
omega limit points in K, then lxp(H, K) lxp(H, L). Some properties of lxp(H)
are given in 6.

A shadowing theorem. Let {an}n>_0 denote a sequence of nonnegative real
numbers.

Define the "log-convergence rate" of {an}_>0 with respect to the time scale -n
-]i=0 "Yi as

l-(a) lim sup
n---+o Tn

Now consider the same recursion as in Theorem 1.2 in a probabilistic framework:

(12) Wn+ Wn nH(w) + /nUn "J- "nbn,

where {’)’n}n_>0 is a decreasing gain sequence, {Un}>0 and {bn}n>_O are two sequences
of R’-valued random variables defined on the probability space (Ft,9r, P), and H
Rm R" is a C vectorfield with cxz as a source.

Recall that [[’llq denotes the Lq() norm. For each T > 0 and each q e [1, +[
let

sup
k ;O<_’k-Tn <_T}

and

{k ;O<_Tk--Tn <_T}

THEOREM 5.2. Let {Wn}n>_O be solution to the recursion (12). Assume that there
exists q >_ 1 such that

A1) E(sup,>0 II{wn},>011 q) < +cxz.
A2) For each T > O,

1.(3q’T) < min(0, lp(-)),

l-(aq’T) < min(O, lexp(-)),

Then

l(-y) < min(0, lp(H)).
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a) there exists a random vector w such that

lim ]lwn (w’)ll 0

almost surely.
b) If there exists a compact Q c R" such that {w,}_>o remains in Q almost
surely (in which case A1 is obviously satisfied), then the following estimate
holds:

REMARK 5.3. Conclusion (a) of Theorem 5.2 implies that L({Wn}>o) w(w’)
almost surely.

As in 2 we apply the previous result to the stochastic approximation (1), where
{n}>0 is a sequence of random variables defined on (f, ’, 79). Maximal inequalities
for sum of random variables reduce condition A2 to a simple condition on l(-). First
of all, note that for any A > 0,

1

If /n f(n) for some positive decreasing function f with fl+ f(s)ds +cx, then

For example, if

log(f(x))
l(7) lim sup

z-+ fl f(s)ds

n log(n)

then lr(7) 0 for 0 < a < 1 and fl > 0, lr(7) -1 for a 1 and fl 0, and
l(/) -c for a 1 and 0 < fl <_ 1.

Independent inputs. As in Proposition 2.1, we let M denote a subset of R".
PROPOSITION 5.4. Let {wn}n>_o be the solution to (1). Assume that

A1) {n}n>0 is a sequence of independent and identically distributed random
variables.
A2) P(VneN, wneM)=l.
A3) w (w) E(H(w,o)) is C with as a source.

There exists q > 2 such that
A4) E(supn>0 I]{w}>011 q) < +c and w IIH(w, o)llq is bounded on M.
A5) lr(7) < 2 min(0, lezp(H)).

Then
a) The conclusion a) of Theorem 5.2 holds.
b) If M is compact, l({[Iw,- OTn(Wt)l]q}n>_O) 1/2/(7).

Proof. Let b= 0 and un H(w=,) H(w,). As already noted, {Un}n>_O is a
martingale difference. For q 2, Doob’s inequality for L2 martingales gives

2,T <_ C(M) E 72
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where C(M) is a positive constant and m(T) is defined by (5). So

(n2’T <_ [C(M)nT]1/2.
Then/-(o2,T) _< 1/21T() and the condition A2 of Theorem 5.2 is satisfied. For q > 2,

m(’n+T)-I ]l+q/2aqn’T < C(M, T) E 7i
i---n

for some constant C(M, T). This inequality is proved, in a more general context, in
Mtivier and Priouret (1987, Prop. 8). Therefore,

cxq#T <_ [C(M, T)T] 71n/2,

and the result follows. [:]

REMARK 5.5. It i8 interesting to note that the condition A5 of Proposition 5.4
is always satisfied for "Yn n log(n)" For 7n nno’ it reduces to the condition

<_
2ge.(H)

Mixing inputs. In the case corresponding to Proposition 2.2, in which the ob-
servations are given by a mixing process, our approach of condition A2 in Theorem
5.2 is based on some kind of uniform maximal inequalities. Unfortunately, these
estimates depend on the dimension of the parameter space and the condition we ob-
tain presents the "curse of dimensiona]ity." Here we shall assume that {{n}n_>0 is
stationary to facilitate the verification of assumption A2 of Theorem 5.2.

PROPOSITION 5.6. Let {Wn}n>_O be the solution to (1). Assume that
A1) {}>_o is a stationary mixin9 (respectively, a miin9) process.
A2) There exists a compact set Q c Rm such that P(Vn >_ O, Wn Q) 1.
A3) H(w) limn_, E(H(w, ,)) exists.
A4) There exists a measurable function k(.) such that

There exists r E [2, oo] such that
A5) The mapw -+ SUPn>0 I[H(w,n)llr is bounded onQ andsupn>o I[k(Cn)l[r <
+oo.
A6) (Lr case). If r < oo, Cn O(n--) for some > (respectively,

O(n4) >
A6’) (L case). If r oo, Cn O(-W)for some > 1/2 (respectively,

O(n ) > 1).
A7) /(7) < 2(m + 1) min(0, lexp(U)).

Then the conclusions of Theorem 5.2 hold with probability one.
The proof is given in appendix (9).
6. Applications. Here again denotes a C vectorfield with a source.

Convergent systems. We say that H is a convergent system if H admits a finite
number of equilibria {el,... ,e} and

(H) {el,..., en}.
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Equivalently, this means that the flow induced by H on Sm R’tJ {oo} (the com-
pactification of R") has simple dynamics and finitely many equilibria.

Let {A, j 1,..., m} denote the set of eigenvalues of the matrix D-(e). Define

(e) min{Re() j 1,..., m},

where Re denotes the real part. Since e is a fixed point, DOt(e) exp(tDH(e)).
Therefore

lim
lg([(DOt(ei))-l]-l)

and by definition of the log-expansion rate we deduce the following proposition.
PROPOSITION 6.1. If H is a convergent system with equilibria {el,..., en}, then

lp(H) min{(e)" i= 1,..., n}.

COROLLARY 6.2. Let {w,},ko be the solution to (1). Assume that conditions
A1-A4 (respectively, A1-A6, A6’) of Proposition 5.4 (respectively, 5.6) are satisfied.
Assume that the averaged vectorfield H defined by A3 is convergent and that

Vi {1,...,n}, 1=(7) < 2min(0,(ei))

(respectively, l(7) < 2(m + 1)min(0, (e))). Then {W,}nk0 converges almost surely
toward an equilibrium.

EXAMPLE 6.3. Consider the following stochastic approximation process defined
on R2 by

X.+l x. H(x., y., .),
n

y.+ -y. -H(x.,y.,.),
n

where {,}nk0 is a sequence of independently and identically distributed random vari-
ables uniformly distributed on [-1, 1].

H(x,,) ( (x + ))x () + ,
H(, ,) ( (x + )) +() + ,

where f(y) y2. The phase portrait of the averaged ODE is given by Fig. 4.
We see that this system is convergent but admits 1 {(X, y)" X2 + y2 1} a8

a cycle of equilibria. Therefore, the theorems of2 and 3 are not sucent to ensure
the convergence of the process {x,,y,},ko.

The equilibria of this system are e (0,0), e2 (1,0), and e3 (-1,0). A
simple computation shows that 0 and-2 are the eigenvalues of the linearized ODE at
points e2 and ca, and 1 is a double eigenvalue at point e. Thus,

Z(I) 1, Z() Z() -2.

Therefore, according to Corollary 6.2, if e < theFor 7 we have l(7) -.
sequence {x,, y,}nkO converges almost surely toward an equilibrium. Furthermore, a
theorem of Pemantle (1990) can be used to show that this equilibrium cannot be the
hyperbolic unstable equilibrium el.
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FIG. 4.

Globally convergent systems. A convergent system H with one unique equi-
librium (el } is said globally convergent.

The Lq estimate given by assertion (b) of Theorem 5.2 can be used to bound
the Lq rate of convergence of algorithms associated to globally convergent ODEs.
We mention here a corollary based on Proposition 5.4. Other estimates based on
Proposition 5.6 or Theorem 5.2 are possible. Define

p(el) sup(Re(A) j 1,..., m},

where {A{ "j 1,..., m} are the eigenvalues of D-(el).
Note that/(el) _< p(el) <_ O.
COROLLARY 6.4. Let (wn}n>o be the solution to (1). Assume that conditions

A1-A4 of Proposition 5.4 are satisfied and M is compact. Assume that the averaged
vectorfield H defined by A3 is globally convergent and that lr(’) < 2min(0,/(el)).
Then

Proof. Proposition 6.1 and (b) of Proposition 5.4 imply that (w’)[lq) <_
/(el) for some random variable w’ E M. Since H is globally convergent and M is
compact, we have the estimate lr(llr(w’ -elll) <_ p(el). Thus lr(llwn -elllq) <_

For " ’/o"’ and e < 2]f(ell )1 this gives the following estimate: For all i > 0
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there exists n(5) >_ 0 such that

This estimate can be compared with L2 upper bounds given in Eweda and Macchi
(1983) and Benveniste, Mtivier, and Priouret (1990, Thms. 22 and 24, pp. 244, 246).
It is slightly weaker but requires a weaker condition on the vectorfield.

Nonconvergent systems. For a general vectorfield H the log-expansion rate
can be difficult to compute. The following proposition is useful to estimate it.

PROPOSITION 6.5 (Hirsch (1993)).
(a) Let l8(w) be the smallest eigenvalue of the symmetric matrix

l (D-(w) + D-(w)T)
2

where T denotes the transpose operation. Then

lexp(H) >_ min{/s(w) w e clos((H))}.

(b) lexp(-) is invariant by C change of coordinates.
Assertion (a) is proved in Hirsch (1993). Assertion (b) is easy to check from the

definition.
EXAMPLE 6.6. Consider the stochastic approximation process defined in Example

6.3, where the function f(.) which appears in the definition of HI and H2 is now
chosen to be the function f(y) 1. The averaged ODE admits two internally chain-
recurrent sets: the unstable equilibrium Ol and the stable limit cycle S {(x, y)
x2 + y2 1}. By a theorem of Pemantle already mentioned, L({wn}n>O) cannot be
Ot2. Thus, according to Proposition 2.1, L({wn}>o) S.

Note that this result is true for all values of > O. Let us now show how it can be
sharpened by use of the log-expansion rate. To compute the log-expansion rate we use
(b) of Proposition 6.5. In polar coordinates, the averaged ODE takes the simple form

dp p2 dO
d-- p(1 ), d-- 1

from which it is easy to deduce that the log-expansion rate is given as lxp(H)
min {-2, 1, 0} -2. Let On be the angular variable which measures the angle between
the x-axis and the vector (Xn, Yn). If e < 1/4, Proposition 5.4 applies and we deduce the
"asymptotic phase property""

lim 0n -[dog(n)] mod 27r *,

where * is a random variable taking values in [0, 2r].

7. Proof of Theorem 5.2.
LEMMA 7.1. Under the assumptions of Theorem 5.2, the conditions of Theorem

1.2 are satisfied.
Proof. Assumption A1 of Theorem 5.2 implies condition A1 of Theorem 1.2. Now

check conditions A2 and A3. Let {nj}j>_o be the sequence defined by nj m(jT) for
j _> 0, where m(.) is defined by (5). For any integer n E [nj,nj+l[,

IIb ll _< sup IIb ll.
{k; 0_<k-j <T}
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Thus

\nnp \j_p {k;0Tk-nT} jp

Now, assumption A2 of Theorem 1.2 implies

n
q,T < Ce-Ar < Ce-(AT)J

for some constants C, C, A > 0. It follows that

E n>np(SUp
jp

and the Cauchy criterion implies that condition A2 of Theorem 1.2 holds almost
surely.

For A3, remark that for any integer n [nj,nj+l[,

k--1 nj+-i n-1 k-1

with the convention -. Working as previously, we deduce

E sup sup ii N 3q q,T

and conclude exactly as for A2.
The following definitions and theorem are due to Morris W. Hirsch. The main

result of 5 will be derived from this theorem.
Let (E,d) be ametric space and G E E be amap. Let 0 A < 1. A

sequence {Yk}ko in E is called a A-pseudoorbit for G if

lim sup d(G(Ya);Yk+) .
k+

A point Z E is said to A-shadow the sequence {Yk}ko if

lim sup d(Gk(Z);Yk+m)
k+

for some integer m.
The following theorem is a consequence of Hirsch (1993, Thm. 3.2) (more precisely,

a consequence of its proof).
THEOREM 7.2 (Hirsch (1993)). Assume E is a complete metric space. Assume

there exists p, > 0 and p > 0 such that for all 0 p p,

VX e E S(a(X),) C a(B(X, )).

Let {Yk}k0 a A-pseudoorbit for G in E such that

0 < < min(1, #).

Then
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* a) there exists Z E E which A-shadows. b) if Z, Z’ E both A-shadow (Yk}k>o, then there exists natural numbers l, r
such that G(Z) Gr(Z’).

Now we prove Theorem 5.2. Consider the recursion

(13) Vn+l Vn %.(f(vn)H(vn) 4- un 4- bn),

where (Un}n>o and {b,}n>_O are the sequences of recursion (12), v0 is in Lq(fl), and

f is a smooth function which is 1 on a closed ball B(0, r) which contains CR(H) and
is zero outside B(0, r 4- 1).

The proof decomposes in two steps. The first step is to prove that, under the
assumptions of Theorem 5.2, {Vn}n:>0 is asymptotic to a trajectory solution to (2).
The second step is to show that any trajectory solution to (12) is asymptotically a
solution to (13).

Step 1. Let {@}teR be the flow of the vectorfield fH. The set of all and w limit
points for f is the disjoint union of :() and (x Rm; Ilxl[ -> r 4- 1}. Therefore,

lexp(fH) min(0, lexp(H)).

Note u lep(fH). Assumption A2 of Theorem 5.2 allows us to choose two real
numbers u", u’ such that 0 < u" < u’ < and

(14) sup(/r(q’T), lr(aq’T), It(7)) < u".

Because u’ < u, there exists T > 0 such that for all x e Rm and all t _> T

(15) IID@t(x)-ll1-1 >_ e

Let E Lq(gt) and G be the map defined by G(X) T(X). First we note that
G is well defined (G maps E into E). Indeed, for any random vector X 6_. Lq(),

E(iIG(X)llq) E(lIe(X)llqlx B(O,,./x)) + E(lIe(X)llqlx B(O,,./ )).

The first term on the right of this equality is bounded by continuity of the flow and
the second term is finite because G(x) x outside B(0, r 4- 1).

Let # e-u’T. Inequality (15) implies

so, for all X, Y in E,

IIG- (Y) Xll. < #IIY a(X)ll..

Therefore,

B(G(X), #p) C G(B(X, p))

for any p > 0.
In order to apply Theorem 7.2, it remains to construct a A-pseudoorbit for G

in E with 0 < A < min(1,#). With this purpose let V(.) be the interpolated
process associated to the sequence {vn }n>_0 (see 4 for the definition of the interpolated
process) and define Yn V(nT) for all integers n. As vo, un, and bn are in Lq(), a
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simple induction shows that vn is in Lq(gt) for all n. Hence {Yn}n>O is a sequence of
Lq

As is C1, f is Lipschitz and bounded. Let L denote a Lipschitz constant for
f and K denote a bound for IIf-(x)ll. Lemma 4.4, applied to Y and f, gives

(16) IIY((n + 1)T) q2T(Y(nT))ll
_

eL’T[2(nT, T)(1 + TL) + TLK"m(nT)],
where e(t, T) is defined as in Lemma 4.4.

Let A e-’’T. om (14) and (16) {Yn}0 is a A-pseudoorbit for G. As
0 < A < min(1, p), the Theorem 7.2 applies. Thus, there exists Z E such that for
any A < 1 < inf(1, p) and k large enough

(17) IGk(Z) --+l]q
for some integer m. The Borel-Cantelli lemma now implies

lira (Gk(Z) Y+) 0

almost surely. Let Z’= _(Z). We have

(18) lira (G(Z’) Y) O.

For anyt>0, writet=kT+rwithkNand0r<T. Thus

(19) +
Uniform continuity of the flow on [0, T] and relation (18) imply that the first term on
the right of equality (19) goes to zero. The second term goes to zero by Lemma 4.2.
Then

im (Z’) (t) 0
t+

almost surely. This concludes step 1.
The equality (19) also proves part (b) of Theorem 5.2. Indeed, if {w}0 remains

in a compact Q almost surely, the ball B(0, r) can be chosen large enough to contain
Q and {w}0 is solution to (13). The first term on the right side of equality (19) can
be bounded in Lq(), using (17) and the fact that x (x) is Lipschitz uniformly
in r [0, T]. The second term can be bounded in L() by using (14) and (16). n

Step 2. Let x be a vector arbitrary chosen outside B(0, r). For any integer k
define

e B(0, B(0,
with the convention wl x. Let t’ UkeYk. Because CR(H) c B(O,r) and
n({w}e0) c CR(H) almost surely (Theorem 1.2), we have P(’)= 1.

Let {V}nek be the sequence solution to (13) defined by the initial condition
k k Lqv w. As w Lq(), va (). Therefore, we deduce from Step 1 the

existence of a vector Z La() such that

lira (v (Za)) 0

kalmost surely. Define Z 1Z. Because v w on a for n k, we have

lim (Wn OTn (Z)) 0
n

almost surely.
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8. An application to neural network learning. In this section we show
briefly how the previous result can be applied to prove the consistency of some "hy-
brid" learning rules recently proposed in the neural network area.

A feedforward neural network can be seen as a function G I W H O mapping
the Cartesian product of an input space I and a weight space W into an output space
O. The dimension of I and O are the number of input units and the number of
output units, respectively. Without loss of generality we take O c R, I c Rd-l, and
W c R". The function G embodies the network architecture. Given an input x E I
and a weight vector w E W, the network’s output is given as G(x, w). At this level
of description, the form of G is not of particular importance. We only assume that
G is smooth enough. For more details and an in-depth presentation of feedforward
neural networks in the framework of approximation theory we refer the reader to the
excellent book by Halbert White and co-workers (1992).

The goal of learning is to adapt the weight vector w in such a way that the
network realizes some specific relationship between the input space and the output
space. This relationship is generally expressed by an "environmental" probability law
# defined on I O. A "training set" is a sequence {=}n>0 c I O asymptotically
stationary with # as limiting law. We let (Xn, yn), x, is referred to as the "input
vector" and Yn is referred to as the "desired output" or "target." A general learning
rule for feedforward net can be written as (1). The gain 7n is called the "learning
rate" in the connectionist jargon.

The most popular example is the classical "backpropagation algorithm." Given
a pair of input and target (x,y) and weight w, the network error is given as
Er(w, ) e(G(x, w), y) where e: R R H R+ is a smooth "error function" (usually,
e(o,y) (y- o)2). The algorithm is given by (1) with g(w,) -VEr(w,). Here
VEr(w, ) denotes the gradient of the map w Er(w, ). Therefore, assuming that
interchange of derivative and expectation is possible, the ODE associated with the
backpropagation is a gradient vectorfield:

dw
(20) d-- -VEr(w),

where

Er(w) Er(w, )#(d).

Convergence of the backpropagation can be analyzed by using classical results on
stochastic gradients (see, e.g., Nevel’son and Has’minskii (1974). See also Benveniste,
Mtivier, and Priouret (1990, p. 91) for a presentation of the backpropagation as a
stochastic gradient). It is also a direct application of Corollary 3.3 restated here for
convenience.

PROPOSITION 8.1. Let {Wn}n_O be the solution to (1). Assume that the assump-
tions of Proposition 2.1 or 2.2 hold with H given by (20). Assume that critical points

of Er (i.e., the zeros of (20)) are isolated. Then {w,},>_0 converges almost surely
toward a critical point of Er.

"Hybrid" learning rules have been considered by Moody and Darken (1989), Pog-
gio and Girosi (1990), Nowlan (1990), Benaim and Tomasini (1991, 1992), and Benaim
(1995c) among others for neural architectures with "nonsigmoid" units. The main idea
of these algorithms is to train each layer according to different learning rules.

Consider, for simplicity, a single hidden-layer network. (Extension to multilayers
is easy.) Formally, G(x,w) G2(Gl(X, Wl),W2), where w (wl,w2) Rml Rm,
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m + m2 m, G1 Rd-1 RTM -* Rk, G2 Rk Rm -+ R. The integer k is
the number of hidden units, G1 embodies the architecture of the (input-layer, hidden-
layer) subnet and G2 the architecture of the (hidden-layer, output-unit) subnet. The
subnet G1 is trained according to an "unsupervised" learning rule (for example, a data
clustering algorithm (Moody and Darken (1989)) or a maximum likelihood algorithm
(Nowlan (1990), Benaim and Tomasini (1992)), and the subnet G2 is trained according
to a "supervised" algorithm (backpropagation). This leads to an ODE of the form

dWl -VE---(Wl ),(21) d---

(22) dw2
dt

-V2E2(wl’w)

for some smooth functions E1 RTM - R, E2 RTM RTM H R. Remark that such
an ODE is not a gradient vectorfield. It is a cascade of gradients.

It is often assumed that the output unit is linear: G2(G1, w2) (w2, G), and the
performance of the subnet G2 is measured by the squared error function, e(o, y)
(y- 0)2. In that case the equation (22) has the particular form

dw2(23) d--- -A(wl)w2 + B(w),

where A(wl) is the k x k matrix defined by

A(w /G(x, w).GI (x, w)T(dx)

with (.) f #(., dy) and B(w) is the k-dimensional vector

B(w /yG (x, w)#(dx, dy).

PROPOSITION 8.2. Let {Wn}n>_O be the solution to (1). Assume that assumptions
of Proposition 2.1 or 2.2 hold with H given by the system (21), (23). Assume that
equilibria of (21) are isolated. Then L({wn}n>O) is almost surely a connected compact
subset of the equilibria set of H.

Proof. Write wn (Wl,n, W2,n) E RTM X RTM. Proposition 8.1 shows that
{W,n}n>O converges almost surely toward an equilibrium of (21), say, Wl*. Thus,
n({wn}n>_O) {Wl*} n’ for some set L’ C RTM. According to Proposition 2.1 (or
2.2), L’ is compact and invariant under the dynamics

(24) dw2
dt

A(w*)w2- B(Wl*).

Since A(wl*) is a symmetric matrix, any compact invariant set for (24) is contained
in the equilibria set of (24). This concludes the proof.

For the more general system (21), (22), we shall use the fact that L({wn}n>O) is
internally chain-recurrent combined with Proposition 3.2.

PROPOSITION 8.3. Let {Wn}n>O.__be a solution to (1). Assume that assumptions
of Proposition 2.1 or 2.2 hold with H given by the system (21), (22). Assume that
equilibria of (21) and H are isolated. Then, L({wn}n>O) is almost surely a equilibrium
of H.
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Proof. We begin exactly as in the proof of Proposition 8.2. Write Wn (Wl,n, W2,n)
E Rml Rm2. Using Proposition 8.1 we see that L({wn}n>_0) {wl*} L’, where
wl* is an equilibrium of (21) and L C R" is a compact connected set invariant
under the dynamics of

(25) dw.=-VE-(w w.).
dt

Since L({wn}n>_O) is internally chain-recurrent, every point of L’ has to be chain-
recurrent for the flow induced by (25). Since (25) is a gradient vectorfield with iso-
lated equilibria, it follows from Proposition 3.2 that L consists of equilibria. By
connectedness, L is an equilibrium of (25).

9. Appendix.

Proof of Proposition 2.2. We denote by $’ the a field generated by {i; n <_
i<m}forrn_>n_>0andletA’={0,}forn<0.

DEFINITION 9.1. Let {Xn}n>_O be a sequence of random variables belonging to
L2(f). {Xn}n_>0 is said to be a mixingale process if there are sequences of finite
nonnegative constants {cn}n>_0 and {era}m>_0, where lim_,, 0, such that for
all n > l and rn > O

<
b) [IXn E(Xn/’-t-m)[[2 Cn./)m-t-1.

Throughout this section we will only consider sequence of random variables {X}>_0
such that each Xn is measurable 9c@ so that condition b) holds automatically.

The following lemma relates the concept of mixing process to that of mixingale.
It is due to McLeish (1975, Lem. 2.1).

LEMMA 9.2 (McLeish (1975)). Suppose that {n}n>_0 is a mixing (respectively,
a mixing) process. Let {Xn}n_>0 be a sequence of random variables such that each Xn
is measurable and E(Xn) O.

Then, for 2 <_ r <_ +oc, n, rn >_ O,

b) IIE(Xn/  -’ II _< 2(1 / IlXnll, .
REMARK. It follows from this lemma that {Xn}n>_O i8 a mixingale with Cn

IlXnllr and Cm 21m-1/ in the mixing case or Cr 2(1 + x/)c-1/ in the c
mixing case.

The following lemma is the main result of this section. The proof of the lemma
follows closely the proof of McLeish’s Theorem 1.6 (1975), but instead of using Doob’s
inequality for martingales (as McLeish does) we use the Burkholder inequality together
with the ideas involved in the proof of Mtivier and Priouret’s Proposition 8 (1987).
Note that for q 2 the lemma is a direct consequence of McLeish’s Theorem 1.6
(1975).

LEMMA 9.3. Let {Xn}n_>0 be a sequence of real random variables. Let Sn
=0 /k.Xk. We assume that

Xn is measurable
Xn Lq(f)for some q >_ 2;
{Xn}n>_O is a mixingale with sequences {Cn}n>_O and {m}m>_O.

We assume that there exists a positive decreasing sequence {an},>_- such that

Ek>0 b(a- a-!1) <
}-k>0 alk < -t-0.
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Then

E sup [Sm[q <.q/2-D +/2c2

\m<_n i=0

where D(q) > 0 is a constant.
Proof. Let Z,k E(X/J:-k) -E(X/.T-k-l) for i >_ 0, k >_ 0. Let Yn,k

’]=O’YZ,k" Since E(X/J:) X and E(X/JZo-) E(X) 0 for k > i, it is
clear that

k-0 k>0

Thus Sn ’>o Yn,k and by HSlder’s inequality we have

ak
k>_O ak

where q--l"

Observe that E(Zn,/.oo-k) O. So by Burkholder and Rosenthal’s inequalities
(Hall and Heyde (1980, Whms. 2.10-2.12))"

\m<_n i=0

Now, exactly as in Mtivier and Priouret (1987), we shall apply the following
form of HSlder’s inequality:

(28)

for ai >_ 0,/3i R,u > 1,0 < 6 < 1.
Applying (28) to (27))with ai--72,/3i--[ Zi,k [2, u-- 2

, and 6-- q2 we obtain

( ) -(q/2--1) q 1+q/2(29) E sup Ym,k q

_
C(q)T+ Z E(I Zi,k )’i

\m(_n i=O

and by using (26), we deduce

(30) E ( sup Sm
\m<_n

n

(r\ (q/2--1) ,q\ 1+q/2Z(alk)l/lcu)T+ Z a- y E([ Zi,k )7i
k>o k>o

On the other hand we have

E(I Zi, q) _< ]]Z,21]E(I Zi,k

and from the Pythagorean theorem in L2(),
2E(I z, 12) -[IE(X/Zg-k)[l- [[E(X/g-k-)[12
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It follows that

(3)

n
..l-l-q/2

k>o =o

+q/c
k>o i=o

Putting together (30) and (31) and letting D(q) ’.-k>_o(a)l/LC(q) Yk>o k(ak2-1
a-ll) conclude the proof.

From this lemma we shall deduce the following lemma, which is analogous to
Corollary 11 of Mtivier and Priouret (1987).

LEMMA 9.4. Let {Xn}n>_O be as in Lemma 9.3. Then
a) for alI T >_ 0,

E(sup( sup "),iXi <_ Tq/2-1D(q)E "h IIxU211;
i=n i_p

lim ( sup
n-,o \{O<_r-rn <_T}

=0

with probability one.
The proof is exactly the same as the proof of Corollary 11 in Mtivier and Priouret

(1987).
COROLLARY 9.5. Suppose that {n}n_>0 is a mixing (respectively, a mixing)

process. Let {Xn}n>O be a sequence of random variables such that
each Xn is measurable jz and E(Xn) 0;
supn IIX[l < / for some r e [0, /1;
if r < oc 0(-) for some (respectively, an O(A) for some

n=O ")’n <> -2) and 2

o() fo o.if , , o() fo- o.
c ,,1+q/2> 1) and Y’n=o .n < +oc for some q [2, 2/ + 1[.

Then

Ei--n /ixi I) 0;a) limn_.(suPk; O_Tk--Tn_T
k-1

b) there exists a constant D(q, r) such that

q) m(r,+T)-I

<_ rq/2-1D(q, r) E
i--n

where q 2 for r < +c and q E [2, 2/ + 1[ for r

Proof. The proof follows from Lemma 9.2, the remark which follows Lemma 9.2,
and Lemma 9.3 for part (a) and the Lemma 9.4 for part (b). [’1

We are now able to prove Proposition 2.2. Let {wn}n>o be a solution to (1). Let

u,(w) H(w,n) E(H(w,n)),
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Un Un Wn

b,(w) E(H(w, n)) H(w),

We suppose that conditions A1 to A6 of Proposition 2.2 hold. Let K sup, IIk(n)ll,..
We remark that H is K Lipschitz. Indeed, for any x, y,

I[H(x) H(y)II lim IIE(H(x,) H(y, n))ll
n---o

but

by application of Jensen’s inequality. Using the same kind of argument we see that

(32)

(33) I]Un(X) Un(y)II KIIx Yl] + k(n)]]x

Let us now verify the conditions A1, A2, and A3 of Theorem 1.2. A1 is true
by assumption (assumption A2 of Proposition 2.2). The inequality (33) shows that
the sequence {bn(.)}n>0 is equicontinuous, and assumption A3 of the Proposition 2.2
means that {b(w)},_>0 converges to zero for any w e Rm. It follows that {bn(.)}n>_o
converges to zero uniformly on any compact set of Rm, and as {w}n>0 is assumed
to be bounded, {bn}n_>0 converges to zero. This proves assumption A2 of Theorem
1.2.

We now check the condition A3 of Theorem 1.2. Let T > 0 and let

sup
{k, 0<k--<T}

k

i’--n

k

Zn sup
{k, O_rk--Tn_T} i--n

From inequalities (32) and (33) it follows that for any w, w’ e Rd

Thus

k k

+ KIw w’ E "i + [w w’ E "ik().
i-n i---n

(34) 0 <_ sT(w) <_ sT(w’) + TKIw w’ + zTIw w’ I.
Lemma 9.4(b) shows that under the assumptions A1 and A6, A6 of Proposition 2.2,
limn-_, ZnT 0 and limn-o SnT(w) 0 for any w e Rm. From inequality (34) it is
easy to see that {SnT(w)}n>0 converges to zero uniformly on any compact set of Rm
so that limn- sTn (Wn) O. 0
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Proof of Proposition 5.6. Let Q be a compact set. Let en > 0 such that
limn-,+ en 0 and let {B(xi, en)}ieI, be a finite cover of Q by balls of radius en.
From (34), we deduce

sup sT (w) <_ E sTn (xi) + KTen + .nZTn
wEQ iEIn

Therefore, Corollary 9.5(b) implies

(35) (m(7"nT)-I I 1/q

sup STn (w)ll <__ (A.(ln) + Ben) ,:+q/2 -4-KTe,n
iwQ q \ i--n

for some constants A and B depending on Q, q, T, H, and #(In) denotes the cardinal
of In.

Since Q is a compact subset of Rm, the family. {xi}i>0 can be chosen such that
#(In) <_ C.em for some C > 0. Noting that

m(rn+T)-I
..l+q/2 < T/

i--n

inequality (35) gives

<_ (A.C.e-m + Ben)T’),q/2 + KTen.

T a defined in 5Therefore, with Cq

(36)

z-(o,’) <_ sup .(7) ,z-(), -(), z-(7) + .()

)<_sup .() ,z.(), z-()

Now we choose a sequence {en}n>0 such that

/r(e) min sup(/ 1 ){<0} l.r(’) ml

This easily gives

2(1 + m)"

For example, one may choose en ’)’n
1/(2+2m)
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NONLINEAR BOUNDARY CONTROL OF SEMILINEAR
PARABOLIC SYSTEMS*
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Abstract. Nonlinear boundary control problems for a class of semilinear parabolic systems
are considered, from the point of view of semigroup theory. The method is based on some recent
general results on parabolic evolution equations with nonlinear boundary conditions. Existence of
optimal (boundary) controls is proved using the theory of measurable selections and the Cesari
property for multifunctions. Three results are presented covering relaxed controls and controls with
state constraints. This generalizes, in a substantial way, existing results on linear boundary control
problems [M.C. Delfour and M. Sorine, Control of Distributed Parameter Systems, Pergamon Press,
Oxford, 1983, pp. 87-90], [I. Lasiecka, Appl. Math. Optim., 6 (1980), pp. 2ST-3S3], [P. Acquistapace,
et al., SIAM J. Control Optim., 29 (1991), pp. 89-118]. The result presented can be further extended
to differential inclusions. Two examples are presented for illustration.
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Introduction. Boundary control of systems governed by partial differential equa-
tions is one of the most important problems in control theory; see [1]-[7], [11]. In the
case of parabolic equations, both variational and semigroup methods have been suc-
cessfully applied (see, for instance, [4]-[7]). Most of these papers deal with linear
quadratic regulator problems for autonomous and nonautonomous linear parabolic
equations giving feedback controls via the associated Riccati equations.

This paper is concerned with the question of the existence of optimal boundary
controls for semilinear problems with nonlinear boundary operators containing con-
trols. For motivation we present Example 2 (see 3) arising in steel manufacturing,
where specific power nonlinearities appear in the boundary data. Nonlinear bound-
ary control problems are difficult, in general. To the best of the authors’ knowledge,
nonlinear boundary control problems in this very general setting have not been widely
considered in the literature. Some results in this direction are available in [11], where
both identification and relaxed control problems have been considered using different
techniques. Here we prove the existence of optimal boundary controls using selection
theorems for measurable multifunctions by following an approach similar to that in
[2], [12]. In the case of nonlinear problems, the classical technique based on lower
semicontinuity and compactness arguments does not apply unless restrictive assump-
tions are imposed on the nonlinear boundary operator, such as control linearity or
weak continuity. In fact for nonlinear problems, weak compactness of solution trajec-
tories, compact embeddings, and selection arguments have become the standard tools
(see [2], [12], [16], [17]). In contrast for linear problems with quadratic cost, existence
results and necessary conditions of optimality can be obtained simultaneously and rel-
atively easily through the study of Riccati equations [5]-[7]. For nonlinear problems
also, existence of optimal feedback controls and necessary conditions of optimality can
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be obtained provided viscosity solutions of the associated Hamilton-Jacobi-Bellman
equation on infinite-dimensional spaces are better understood. This is a very difficult
problem and not well developed as yet.

In 1, using some recent results of Amann [8], we derive a representation formula
for the solution of abstract semilinear evolution equations with nonlinear boundary
operators containing controls. Since the notation of Amann [8] is rather involved,
we review only some relevant results for the convenience of our readers. Section 2 is
devoted to the question of the existence of optimal boundary controls, which is the
main concern of this paper. Here we present three existence results: Theorem 2.1 for
ordinary controls, Theorem 2.2 for controls with state constraints, and Theorem 2.3
for relaxed controls. We give a complete proof of the first result. In the last section,
we first present an example of a system of second-order semilinear parabolic equations
with nonlinear boundary controls illustrating the applicability of our results. Then we
present a practical example that arises in steel manufacturing.

1. Abstract parabolic systems with nonlinear boundary controls. In
this section, we study a class of abstract evolution equations corresponding to semi-
linear parabolic systems with nonlinear boundary operators containing controls. Based
on the results of Amann [8], we establish a representation formula for the solutions
which is useful from the point of view of control theory.

Throughout this paper all vector spaces are assumed over the complex field.
Let X and Y be locally convex Hausdorff topological vector spaces. We denote

by X’ the dual of X endowed with the strong topology and by (., .}z X’ X --. C,
the corresponding duality pairing. Observe that {u, v/z (v, u x, if X is reflexive.

We write X Y(X -- Y) to denote continuous (dense, compact) embeddings.
If X -. Y and B D(B) c Y --, Y is a linear operator in Y, we define the

X-realization Bx of B to be the linear operator in X given by

D(Bx) {x e D(B) fq X, Bx e X}, Bxx Bx, for x e D(Bx).
In general we denote by (X, Y) the vector space of all continuous linear operators

from X to Y. Moreover (X) .(X,X) and (X, Y) are given the usual norm
topologies if X and Y are normed vector spaces. Further, 2(X x Y, C) denotes the
class of complex-valued bilinear forms on X x Y.

We use the notation of Amann [8]. Suppose W, W1, W#,W are Banach spaces.
W is reflexive, W# W’. OW, OW1, 01W as well as OW#, OW, 01W are reflexive
Banach spaces such that OW# (OW)’. The topological vector spaces mentioned
above satisfy the assumptions (A1)-(A4) of Amann [8] (see also [1, pp. 206-209]).
Formally the system is governed by the following semilinear initial boundary value
problem:

ic + A(t)x f(t, x),
(1.1) B(t)x g(t,x, u), 0 <_ t <_ T =_ I,

x(O) xo,

where x denotes the state and u denotes the control to be defined precisely later. The
basic assumptions are as follows.

The spatial operator and its formal adjoint satisfy the following assumption.
Assumption A1.

(1.2)
A(.) e c([0, T], C(W , W)),
A#(.) e C([0, T], C(W , W#)).
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The boundary operator B(.) along with its complimentary counterpart ?(.), as defined
below, and the corresponding duals satisfy the following basic assumptions.

Assumption B1.

T(.) --(B(.),g(.)) e C([O,T],(WI,OW x 01Wl)),

The operators T(o), T#(*) are retractions such that the following Green’s formula
holds for all u E W1, v E W"

(v,A(t)u) + (e#(t)v,B(t)u)o (A#(t)v,u) + (B#(t)v,e(t)u)o,, t > O.

Define

1/r Ker(T) and l/r Ker(T#),
(1.5) Wt _= Uer(B) and W Ser(B#)#B#

Introduce the operators

(1.6) A(t) A(t)lw$ and A#(t)= A(t)lw

and consider these as (unbounded) linear operators in W and W#, respectively. We
assume that these operators satisfy all the Assumptions AP1-AP3 of Amann [8, 11].

We present some of the relevant assumptions of Amann.
Assumption A2. A(t), t I, is a family of closed and densely defined linear opera-

tors in E W such that there exist constants M0 and a R with p(-A(t)) a / E0,
and II(A + A(t))-lll < M0/(1 + I,kl). It is well known that (see [3]) under this assump-
tion, for each fixed t > O, A(t) is the infinitesimal generator of an analytic semigroup
on E.

In the following we let

Ilxll,t [IA(t)xll, x e D(A(t)), k e Z,

and define Ek(t) (D(Ak(t)), I1.11 , ) if k >_ 0, E _= E0, and let E(t) be the completion
of (E, II" Ilk,t) if k < 0. Moreover we denote by Ak(t) the Ek(t)-realization of A(t)
if k _> 0, and the closed extension of A(t) in Ek if k < 0. Finally we let Ea(t)
(Ek(t), Ek+ (t))a-, k < c < k+ 1, k Z, where (., ")-k are standard interpolation
functors (see [1]).

We denote by As(t) the Ea(t)-realization of Ak(t) for k < c < k + 1 and k Z.
For uniform notation we set

W(t) E,(t) W E(t) (x R, t e I.#1#(t)

Assumption A3. There exists [0, 1] such that

Ez(t) Ez(O) EZ, Ez_(t) EZ_.

Assumption Aa. There exist p E (0, 1) and

a(.) e Cp([O,T],g2(EI#_Z x E, C)), #e [o,
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such that

a(t)(v, u) (v,A(t)u}, (u, v) e Ez(t) E#l_(t),
Observe that EI#_ E#l_(t)is independent oft for E [0, 1] since EI#_Z

(E-I)’ (see Theorem 8.1 of [8]). Also, we assume that a(.) is independent of Z e [0, 1]
(in an obvious sense). The assumptions above imply, in particular, that the following
condition is also satisfied independently of t _> 0.

Assumption Ah. There exists a C such that a p(-A) N p(-A#), where
denotes the resolvent set.

It follows from Theorem 6.3 of [8] that, for 0 < <_ 1, the Dirichlet map
has the following regularity property:

Ro(.) =- (a + A(.),B(.))-l{o}ow-l+2o e C([O,T],(OW-1+2, Wo)).

Further it is clear that R(t) Rz(t)low-+2 /3 < a _< 1, where OW-+2
(OW-, OW)o, 0 < 0 < 1. We now fix for each 0 [0, 1] a closed linear subspace
00W-1+2 of 0W-1+2 such that 00W-1+2 c 00W-+2, for c > /, and that
Rz(t)(OoW-+2) C W, for t e I.

/’2(w- 00W-+2Z C) for eachAssumption 82. [(y, z) --. (g#(t)y, z)o] e ,_ #B# x
/ [0,1]andteI.

Assumption F1. For 0 _</ < c < 1, f e C,-([0, T] x W, W-).
Assumption G. The control space U is a Banach space and

g(.,., .)" [0,T] x W x U -- 00W-1+2
is a map so that, for each u E U,

g(.,., t) e C,I-([0,T] W, (90W-l+2a).

We consider, for each xo e W and u e Loo([0,T], U), the state equation given
by the abstract semilinear initial boundary value problem

(1.9)
ic + A(t)x f(t, x),

t e
x(o) xo.

that
By a solution x of (1.9) on I [0, T] we mean a function x e C([0, T], W) such

(1.10)

T

{-{b,x + a(t)(,x)}dt

T

fo {-(,f(t,x))+ (#(t)(),g(t,x,u)}o}dt + ((0),xo}

for every T’ E (0, T] and every C([0, T’], W{) 0 CI([0, T’], W#) satisfying
0.

LEMMA 1.1 (For proof see Theorems 9.1 and 12.1 of [8]). Suppose ,4,13, f, g satisfy
all the assumptions stated above.
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(a) Then, for each fixed u e U, the mapping F_I, defined by

(1.11) F_ (., $) f($, .).-[--(o -[-- A-I(*))RB(*)g(., *, u),

has the regularity property:
(b) There exists a unique parabolic fundamental solution U-I on E-I for {A-I (t):

t I} and it possesses E as regularity subspace.
(c) For each u e no([O,T],V), an element x e C([O,T],W) is a W-weak

solution of (1.9) on I iff x is a solution of the following integral equation:

(1.12) x(t) U-l (t, O)xo + U-I (t, T)F_I (T, X(T))dT

in C([0, T], W).
The next theorem gives a useful sufficient condition that guarantees the existence

of a solution of the state equation (1.9).
THEOREM 1.2 (For proof see Theorem 12.1 and Proposition 12.6 of [8]). Suppose

the assumptions of Lemma 1.1 hold and further there exists a constant C > O, possibly
dependent on u, such that f and g satisfy the following growth condition:

(1.13) IIf(t,y)IIw$- + IIg(t,y,u)]low-+. <_ c(1 + IIyIIw)

for all (t, y) e graph x(., xo, u), which is the maximal solution of (1.9). Then x(., xo, u)
is a global solution.

2. Existence of optimal boundary controls. In this section we are concerned
with the boundary control problem for the semilinear abstract evolution equation (1.9).
Since our approach is based on the properties of multifunctions, we present below some
basic definitions and facts. Let Z be any locally convex topological vector space and
let c(Z), (cc(Z), cbc(Z), wkc(Z)) denote the class of nonempty closed (closed convex,
closed bounded convex, weakly compact convex) subsets of Z. A multifunction F
mapping a Hausdorff topological space X to c(Y), Y any locally convex topological
vector space, is said to be upper (lower) semicontinuous with respect to inclusion if
for every x0 e X and every open set V c Y satisfying [F(x0) C V] (Y N F(xo) 0),
there exists an open set U c X containing x0 such that [F(x) C Y] (F(x) N Y )
for all x E U. If Y is a metric space with metric d, then one can introduce a metric
dH, called the Hausdorff metric, on c(Y) as follows:

dH(C, D) Max{SupyeDd(C, y), Supzecd(z, D)}

for C,D c(Y). If (Y, d) is complete, then so is (c(Y), dH). F: X c(Y) is said to
be continuous in the Hausdorff metric if, whenever x, x in the topology of X,

Limn-odH(F(xn), F(x)) O.

It is said to be quasi upper semicontinuous if for each x X

d*(F(x),F(x)) Sup{d(y,F(x)),y e F(Xn)} ---* O,

whenever xn x. In [10] quasi upper semicontinuity is called mild upper semicon-
tinuity. More precisely, if Y is a metric space the two notions are equivalent. For
different types of continuity, see [2], [10], [12].
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Now, we introduce the class of admissible controls. Let U be a Banach space and
let wkc(U) denote the class of nonempty weakly compact convex subsets of U.

Assumption U1. (a) U is a separable Banach space; (b) V I -- wkc(U) is an
integrably bounded measurable multifunction, and

b/ad {u "[0, T] ---* U weakly (strongly) measurable such that u(t) e V(t) a.e.}

We consider the following optimal (boundary) control problem which we shall
denote by (e):

Minimize

(2.1)
T

J(u) L(t, x(t), u(t))dt

over all controls u E ’ad subject to the evolution equation (1.9).
We introduce the following assumptions for the function L.
Assumption L. L" [0, T] EZ U Ro R (A (-boo} be a mapping satisfying
(1) (t, e, u) -- L(t, e, u) is Sorel measurable,
(2) (e, u) -. L(t, e, u) is lower semicontinuous for each t e I---[0, T],
(3) u -- L(t, e, u) is convex for all (t, e) e I EZ,
(4) (t)- A([[e[]E + [lu[[v) < L(t, e, u) a.e. with e L(I), A > O.
Now we are prepared to deal with the question of existence of optimal controls

for the problem (P). The following theorem is our main result.
THEOrtEM 2.1. Suppose the hypotheses on A, 13, f,g,L, and U1 hold, A-(t) is

compact for each t I, xo Ea, and g I x E U 0W-1-t-2c is measurable in
the first variable continuous with respect to the last two variables. Suppose also that
the multifunction G given by G(t,z) g(t,z, V(t)) maps I E to cc(OoW-l+2a).
Then there exists an optimal control uo ad for problem (P).

Proof. Note that by virtue of Assumptions U1 and L(4), J(u) > -oc. Let x(u)
denote the solution of the initial boundary value problem (1.9) corresponding to an ad-
missible control u and ,t =_ (x(u), u e b/ad} denote the family of attainable trajectories
of the corresponding control system. Define

=. _= {(u, e

For (u,x) e .., define l(u,x) J(u). Let {un, x} C .. be a minimizing sequence,
that is, limn-.o rl(un, xn)= m inf{r/(u,x): (u,x) e ..}.

We show that, through a subsequence if necessary, xn converges to x* and that
there exists a control u* L/ad such that x* x(u*) and that r/(u*, x*) m. With this
in mind, first we show that the sequence {xn} is compact in C([0, T], E). Theorem
1.2 shows that for every u E L([0,T], U), the controlled system (1.9) has at least
one solution x(., u) C([0, T], E). By virtue of Theorem 8.1 of [8] and a generalized
version of the Gronwall inequality, we can prove that

[Ix(., U)[IC([O,T],E) <_ b <

where b is a constant dependent only on ][X0[[Eo and I[U][Loo([O,T],U). Thus it follows
from growth condition (1.13), and Assumption U1, that there exists a constant b such
that

SuP(llxllc(to,rl,E ),x e X} <_ < o.
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In other words, the solution set A’ is a bounded subset of C(I, EZ).
Take 3’ such that < 3’ < a < 1 + 3’. Let xn =- x(un) be any solution of the

following integral equation"

(2.3) Xn(t) Ul-l(t,O)xo -]- U-I(t,T)F21(T, Xn(T))dT

in C([0, T], EZ). Using the growth assumption on f, g as stated in Theorem 1.2, it
follows from Theorem 8.1 of [8] that

where Ci, C2, C3, Ca, C5 are suitable constants depending only on (a, , 7, a, T, Mo, 5/d).
Then it follows from a slight generalization of the Gronwall inequality that there exists
a constant M* such that

Ilx(t)llE < M*, t e [0, T],

for all positive integers n. Thus the set {x} is bounded in C([0, T], E).
Further, for 0 < t2 < tl <_ T, we have

where 0 < a < c- , 0 < < 3’- . The constant C6 depends on M0 and II x0 liE.,
and the constants C7 and Cs depend on M0 and ess-sup{]lF_l(S,X(S))ll._l,s e
[0, T], n E N}. From this one can easily verify that there exists a constant C9 such
that

IIx.(tl) x.(t2)llEo <_ C9(tl t2).
Since E ---, E (that is, the injection is compact), for each t E I, the set

X(t) {xn(t),n N} is a compact subset of Ez. Summarizing, the family {Xn}
is a bounded and equicontinuous subset of C(I, E) with each t-section, X(t), being
compact. Thus it follows from the Ascoli-Arzela theorem that the sequence {x} is
compact in C([0, T], EZ). Therefore, there exists a convergent subsequence, relabeled
{Xn}, and an x* e C(I, EZ) such that Xn -’+ X* in C([0, T], Ez). Denote by {hn (’) }
the corresponding sequence {g(., x(-), us(.))}. By virtue of the growth condition (see
Theorem 1.2) and the boundedness of the sequence {x} it follows that the sequence
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{h} is contained in a bounded subset of Loc(I, OoW-1+2) C Lp(I, OoW-1+2) for
any p > 1. Since for 1 < p < oc, Lp(I, 00W-1+2a) is a closed subspace of a reflexive
Banach space, there exists a subsequence of {h}, relabeled {h,}, and an element
h* E Lp(I, 00W-l+2a) such that h - h* in Lp(I, OoW-+2).

By the definition of Ez-weak solution, for all t E I and every C([0,T)
o,W#t# C ([0, T’], satisfying have

T

o
{-(o, x} + a(t)(o, x}}dt

T

fo {(o,f(t,x)) + (#(t)o,h(t))o}dt + (o(0),xo).

Letting n oc, through a subsequence if necessary, it follows from the facts
8

x* C([O,T],Ez), the bilinear functional a is continuous, continuity ofthat x -- in
x -- f(t,x), and weak convergence of {hn} to h* that

(2.4)

T

o
{-(o,x*} + a(t){o,x*}}dt

T

fo {(o,f(t,x*)} + (#(t),h*(t)}o}dt + (o(0),xo).

This implies that x* is a weak solution of (1.9) with the boundary data g replaced
by h*. We must show that there exists an admissible control u* such that h*(t)
g(t,x*(t), u*(t)) a.e. and that r/(u*, x*) m. In view of this we note that by Mazur’s
theorem there exists a finite convex combination of {hn} that converges strongly to
h* in Lp(I, 00W-l+2a). In particular, for each integer k, there exists an integer nk, a
set of integers {i 1, 2,..., re(k)}, and {ak,i > 0, i 1, 2,..., m(k)} such that

,()

E ck,i 1, for all integers k,
i=1

,,()

t

and

(2.6) g -- h* in Lp(I, c0W-l+2cz).

Corresponding to the above sequence, define the sequence {tk} as follows

L,+i(t) L(t,x,+i(t), Un+i(t)),
,()

gk(t) =-- E , L+(t).
i=1

Define
g*(t) Liminf_g(t), t I.
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By virtue of Assumption L(4), it follows from boundedness of the set X’ that
Liminftk(t) is well defined on I. Hence by Fatou’s lemma we have

(:.s)

Clearly

e*(t)dt <_ Liminf_. fr tk(t)dt.

Limk-.rl(un+i, x,+i) m,

and hence it follows from (2.7) that

Limk__.o f gk(t)dt m,

which in turn leads to the inequality

(2.9) *(t)dt <_ m.

Again by virtue of Assumption L(4) and boundedness of the solution set X, there
exists a E LI(I) dependent on such that

t*(t) >_ (t)a.e. on I.

This along with (2.9) implies that g* E L (I). Define the set-valued map Q from I E
to 2noow-l+2" \ 0 as follows:

Q(t,z) {(-)’, f) R 00W-1+2 3, _> L(t, z, v), /3 g(t,z,v),v e V(t)},

for t I, z E. We prove that

(2.10) (t* (t), h* (t)) e Q(t, x* (t)) a.e. on I.

By following techniques similar to those in [12, Thm. 3.1, p. 225], we can find a set
I0 c I with Lebesgue measure ,k(I \ I0) 0 such that

(t,(t), h*(t)) e N Otto,(t, N(x*(t))), tIo.

By virtue of convexity and lower semicontinuity of the map v ---. L(t, e, v) and the
assumption that G(t,x) cc(OoW-l+2a), it follows that the multifunction Q is closed
convex valued. Further, it follows from lower semicontinuity Assumption L(2) and
the continuity of the map e ---, g(t, e, v) from E to 00W-1+2, that e ---, Q(t, e) is
quasi upper semicontinuous. A quasi upper semicontinuous multifunction with closed
convex values satisfies the weak Cesari property [10, Thm. 5.5, p. 52]. Thus

(2.11) CeCo(t, N(x*(t))) c (t, (z*(t)), t e Io.

Hence we have (e,(t), h*(t)) Q(t, (x*(t)), t e Io. Since I0 has full Lebesgue measure,
this proves (2.10). From (2.10) and the definition of Q, it follows that, for almost all
t E I, there exists an element g(t) V(t) such that

(2.12)
e,(t) >_ L(t,x*(t), t(t)),
h*(t) g(t,x*(t), t(t)).
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In view of (2.9), (2.12), and the definition of admissible controls, it is sufficient to
show that there exists a measurable substitute for . Define for t E I0 the set-vMued
map

(2.13) A(t) {v e V(t): t*(t) _> L(t,x*(t), v) and h*(t) g(t,x*(t), v)}.

Clearly this set is nonempty. We prove that it has a measurable selection. A general
result in this direction states that a (weakly) measurable multifunction with closed
values, from an arbitrary measurable space to a Polish space, has measurable selections
[9, Thm. 4.1, p. 867]. Since Y(t) e wkc(U) and U is separable, the relative weak
topology on V(t) is metrizable [13, Thm. V.3, p. 434] and with respect to this metric
topology, it is a separable complete metric space and hence a Polish space. Thus
it is sufficient to verify that A is closed valued and measurable. The closedness of
this set follows immediately from the lower semicontinuity of L and continuity of g
in the control variable. Since G is closed convex valued, it follows from convexity of
L (Assumption L(3)) that A(t) is also convex and hence it is a closed convex-valued
multifunction. For the proof of measurability we can follow the same technique as
that in [12, Thm. 3.1, p. 228]. Here we give a simpler and direct proof. Define

(2.14)
Al(t) {v e U: L(t,x*(t), v)- g*(t) <_ 0},
A2(t) {v e U: h*(t)- g(t,x*(t), v)= 0}.

Then clearly

v(t)) v(t)).
We show that each component is measurable. First we show that for any closed subset
E C U, A-(E) _= {t e I: Al(t)V E 0} is measurable. Since U is a separable Banach
space, there exists a countable dense subset E0 of the set E such that

A-(E) =_ {t I: A1 (t) N X - 0}

J {t I’L(t,x*(t),v) <_ g*(t)}.
vEEo

Since g* is measurable and for each v U, t -- L(t,x*(t),v) is measurable, the
union is measurable. By assumption, V is measurable and hence A NV is measurable.
Similarly we can write

[_J {t e v)
vEEo

Hence A2 V is also measurable. Thus t --, A(t) is a measurable multifunction
taking values from cc(U). Hence by the selection theorem mentioned above, A has a
measurable selection u* which is a measurable substitute for . This completes the
proof.

The result of the above theorem can be extended to the case where the control
constraint set is also state dependent (feedback) given by V(t,x). We can prove the
following result.

THEOREM 2.2. Suppose the basic hypotheses on .4, B, f,g hold, A-l(t) is compact
for each t I, xo E,, and i satisfies Assumptions L(1)-L(3) and L(4*) defined
below.
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L(4*) There exists >_ 0 such that (t)- II e IIE <_ L(t, e, v), a.e. for all
v E V(t, e). The multifunction V I E --. wkc(U) is graph measurable and the
set-valued map

Q(t, e) _= {(7,/3) E Ro 00W-1+2 7 >- L(t, e, v), g(t, e, v), v V(t, e)}

satisfies the weak Cesari property.
Then there exists an optimal control uo ad for problem (P).
Remark. Following the same procedure, the existence result presented here can

be extended to relaxed control problems thereby relaxing the convexity assumptions
on L and g. Further the result can be extended also to (boundary) control differential
inclusions. We will provide the details in another paper. Here we present only a brief
discussion.

Let F be a compact Polish space and M(F) be the space of probability measures
on Borel subsets of F. Let ad-denote the class of w*-measurable functions on I [0, T]
with values in M(r) furnished with the Young topology (see [2], [3], [12]). For more
general relaxed controls see [17]. Let

g-I x E x M(F) 00W-1+2

L’IxExM(F)

be maps measurable in t I, continuous in x E, and w*-continuous in # E M(F).
In particular, as a function of It, these maps may be given by

h(t, x, It) Jfr (t, x, ()It(d(),

where ---. h(t, x, ) is continuous and bounded on F, with h denoting either of the
maps g, L.

As in the preceding theorem, define the multifunction G on I E with values

G(t,) { e OoW-+ .( g(t,x,), e M(r)}.

Thus the relaxed control problem (Pr) can be stated as follows: Find u 4ad such
that

J(u) =_ L(t, x, u)dt ---, Inf,

(t) + A-I (t)x(t) :_(t, x(t)), t e I,

where ’-1 is defined accordingly.
Define the multifunction

Q(t,x) {(A,) (,,) t Ro 00W-l+2c,)

_
L(t,x,#),( g(t,x, tt),# e M(r)}.

Now using the weak Cesari property for the multifunction Q and the theory of measur-
able selections, we can prove, as in [2], [12], the existence of optimal relaxed controls
under a much milder hypothesis on L and g.

THEOREM 2.3. Suppose the basic hypotheses on Jr, B, f,g,L hold, A-(t) is com-
pact for each t e I, xo e E, and the multifunction G given by G(t, z) =_ g(t, z, M(r))
mapping I x E to cc(OoW-1+2) is quasi upper semicontinuous. Then there exists
an optimal control uo blad for problem (Pr).
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Now we present a necessary condition of optimality. Let A denote the Lebesgue
measure and M(I, U) denote the space of strongly measurable functions (equivalence
classes) from I to U, furnished with the metric topology

-_- e x: #

Since U is a Banach space, (M, p) is a complete metric space. For admissible controls
we choose

ldad =-- (u e M: u(t) e V(t) a.e.},

where V satisfies Assumption U1.
Assumption C. Let /(t) _-- DF_l(t,x(t),u(t)), (t) =_ Dn(t,x(t),u(t)) denote

the Fr(!chet differentials of FZ_I and L, respectively, along any admissible state control
pair (u,x), satisfying/ e LI(I,(E,E_)), , e L(I,E;).

Following an approach similar to that in [15], [17], using Ekland’s variational
principle with respect to the metric topology p, we can prove the following necessary
conditions of optimality.

THEOREM 2.4. Suppose the assumptions of Theorem 2.1 hold and let (u,x) be
an admissible pair. Suppose f, g, and L are continuously Frdchet differentiable in the
state variable on E and continuous with respect to the control variable on U satisfying
Assumption C. Then .for the pair (u, x) E Mad x C(I, E) to be optimal, it is necessary
that there exists a C(I, E#_) such that

i{<Fz_(t,x(t),
u(t)), (t)> + L(t,x(t), u(t))}dt

<_ (F_(t,x(t), v(t)), (t)) + L(t,x(t), v(t))dt for all v 4ad,

where x is the weak solution of equation (1.9) corresponding to u and satisfies the
adjoint equation - + A_I(t) =/*(t) + L(t), (T) 0,

also in the weak sense.
Note that a pointwise necessary condition of optimality easily follows from (2.15).
3. Examples. In this section we give two examples to demonstrate applicability

of our abstract results.
Example 1 (system of second-order PDEs). The system is governed by a coupled

system of N second-order PDEs with nonlinear interactions both in the interior and
on the boundary of a spatial domain in n-space. This is an appropriate model for
reaction-diffusion processes. Let ft be a bounded domain in R of class C2, that is,
gt is an n-dimensional C2-submanifold of Rn with boundary OFt.

For 1 < p < +c and s R we let Lp =_ Lp(, CN) and set W =_ W(, CN),
Wg(O) W(Ot, CN), where CN is the N-dimensional complex Euclidean space.

We define the operators -DA and -DA# (in the sense of distributions) by

-DA: Wp2 Lp, l<p<

-DA#=-DA" Wp2, - Lp,, p’ p/(p-1),
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where D diag(dl, d2,..., dN)(d > 0, = 1, 2,..., N), A is the Laplacian. Define
the boundary operators B, B# (in the sense of trace) by

By =_ D(Oy/Ou) + b(x)y

B#y =_ D(Oy/Ou) + b(x)y

1 < p <
p’ p/(p- 1),

where b(x)--diag(bl(x),b2(x),...,by(x)), b(x) e Wlq-1/q(o,C1) (i-- 1,2,...,N),
q > max{np, np’}. We set W =_ {y e Wp21By 0}, WB# =-- {y e Wp2,1B#y 0},
and let -DAB -DAIw

We have the following important lemma (see [8]).
LEMMA 3.1. -DAB,-DA#B# are closed and densely defined linear operators in

Lp and Lp,, respectively, and there exist constants Mo > 0 and c E R with

p(DAB) c + Eo, p(DA#B#) c + Eo,
I1( - DAB)-III < Mo/(1 + I,k-
II(A- D#)-II _< Mo/(1 + I,k-

for e c + E0, where p(.) denotes the resolvent set, E0 {z e C*I [argzl _<
7r/2} U {0}, C* _= C {0}.

Define A -DA+ c, A# -DA# + c, A =_ -DAB + c, and A# -DA## + c,
then A(A#) is the infinitesimal generator of a strongly continuous analytic semigroup
{etA} ({etA#}) on Lp (Lp,) and there exist constants M > 0, w > 0 such that

IletAII Me-t, t >_ O,

etA# < Me-t, t > O.

We write A e G(Lp, M, -w) fq 7-l(Lp), A# e G(Lp,, M, -w) fq 7"l(Lp,).
Let E =_ Lp, E# Lp,, 1 < p < +cx, p’= p/(p- 1). Then E# (E)’, A#

(A)’. Let IIXIIk IIAkxlI, x D(Ak), k E Z. PutEk=(D(Ak),ll.ll)ifk_>0and
E is the completion of (E, II" I1) if k < 0.

For k < fl < k+ 1 and k Z, define the interpolation space E
as before and denote by Am the Em-reMization of A.

LEMMA 3.2. The "scale" {(E, Am)" k < fl < k + 1} is well defined, each EZ is
a Banach space, and we have AZ e G(Ez, M,-w) fq Tl(Em), Am
For-cx < < c < +c, we have E ---- E, and for t > O, a < w,

e-tA --e-tAa IE, t >_ O,
_< c(a, Z,

Finally, let {(E,A) R} denote the scale as constructed above starting
with E#, A#. Then we have

(Era)’= E_#m, (Am)’=

Eo E= Lp, E Wm if 1/p < 2 < l + l/p, l<p<+oc,
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Eo# E# Lp,, E Wp2, if 1/p’ < 2 < l + l/p’, p’=p/(p-1).

Let a denote the bilinear form on EI#_ EZ w2-2f Wp2p, x defined by

which satisfies
a(p, y) (, Ay), for (qo, y) El#_f x E,

a((fl, y) (fl, Af-ly), for (o, y) E E#_ E.

LEMMA 3.3. The operator (el, B) e Isom (W2p,Lp Wlp-(1/P)(O)), 1 ( p <
+OC, and (.4, B)- e (Lp x Wlp -(1/p) (Of), Wp2).

Further, for any 0 (0 0 1), (A, B)-1 has a unique extension, which we denote
also by (, B)- e (Lp x W-t-(t/p) (0), W).

Defining Ro (A,B)-t[{o}xw--(/v)(oa) we have Ro (W-t-(t/P)(OQ),
a2O-l-(/p) (0) Ro satisfiesW) and for g p

IIRogllwy <_

We define the admissible controls ad aS follows.
(U2) Let U L(Of), 1 < s < oc, r e LI([0, T],Ls(Oft)), and

v(t)= {, e u" I,lb _< foa Ir(t’)ld}"
Take

bled {u e L(I, U) u(t) e V(t) a.e.}.

Clearly V is a measurable multifunction.
Define

f(t, )(() ](t, , (()), e C((f, cg)), t > O,
(t,,v)() _= 0(t,,(),()), e C(Oa, C), e U.

Define the operators F(t, y) f(t, y) + cy and G(t, y, u) g(t, y, u), where c is
the same constant as in Lemma 3.1. Suppose the operators F, G satisfy the following
conditions.

(F,G) Let p > n, 1 < 2/ < 1 + l/p, then there exists a with 2 < 2a < 1 + lip
such that

F E C,I-([0,T] X E,E.-1)

and for each v U

Cv =- C(.,., v) c= CO,1-([0, T] x EI W2pa-l-1/p(oqa)),
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where C1- denotes local Lipschitz continuity and the Lip-constant for Gv depends only
on Ilvllu. Using the operators defined above, one can write the following controlled
system:

yt D A y f(t,,y),
D(Oy/O) + b()y g(t, , y, u),

in its abstract form

(3.2)
1 + Ay F(t, y),

By G(t, y, u),

As defined earlier, for each y0 E E Wp2, the function y e C([0, T], EZ) is a

E (Wp2Z)-weak solution of (3.2) if y satisfies

T

oo
{-<’ y) + a(v, y)}dt

To {(,F(t,y)} + (loa, g(t,y,u)}o}dt +

for every T’ e (0, T) and every e C([0, T], E#_)NCI((O, T], E#_) satisfying (T’)
0.

Here the duality pairings have the following specific meaning: (9b, y} ((, F(t, y)},
(1o, G(t,y))o, ((0),y0)) is the dual pairing of E_# and E_ (El#_ and E_,
/Vp2-2-I/P’(o-) and Wp23-1-1/P(0’) EI#_/ and EZ_I, respectively)

Further we assume that for each y EZ,

IIF(t,Y)IIE _ <_ KI(1 -4-IlYlIE ),

I]G(t, y(t), K2(1 + IlYlIE ),

where K1 is constant, K2 is only dependent on ]IU]]L([O,TI,U).
Combining Lemma 1.1 and Theorem 1.2, we have the following result for system

(3.2).
THEOREM 3.4. Suppose F, G satisfy all the assumptions mentioned above, yo

Ez=Wp2z (l<2<l+l/p,p>n). Thenwehave

(a) for each y e C([0, T], EZ) C([0, T], W), and u e Nad,

t ---+ F(t, y(t)) e C([0, T], E_l)

and t -- A_RG(t,y(t),u) Aa-IRaG(t,y(t),u) e L([O,T],E-i),

where a is the number appearing in condition (F,G).
(b) y e C([0, T], W2p) is a W2pZ-weak solution of equation (3.2) on [0, T], iff y is

a solution of the following integral equation:

y(t) e-tA-lyo + e-(t-s)A-[F(s,y(s)) + A_lRa(s,y(s),u(s))]ds
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in C([0, T], Wp2z) (1 < 2 < 1 + l/p, p > n).
(c) equation (3.1) has a unique global W2p-weak solution.
The basic assumptions on the cost integrand L are the same as those of Assump-

tion L given for our main existence Theorem 2.1 with reference to E =_ Wp2, U --_

Ls(O).
We consider the optimal boundary control problem (P). Minimize

T

(3.3) J(u) L(t, x(t), u(t))dt

over all controls u E/dad subject to the state equation (3.1) or, equivalently, (3.2).
THEOREM 3.5. Under the assumptions of Theorem 3.4, L, and U2, there exists

an optimal control for the problems (3.2) and (3.3).
Proof. This is a special case of our general Theorem 2.1.
Example 2. In steel factories, ingots are raised to high temperature in a furnace

and then stored in a ceramic kiln for a soaking process for a suitable period of time.
The purpose of soaking is to allow time for the ingots to attain uniform tempera-
ture throughout the body before they are transported to the rolling mills. During
this process heat loss by radiation and convection is controlled by maintaining the
surrounding temperature in the kiln by an auxiliary heat source. Let Fro denote the
interior of the kiln and gt C fo denote the space occupied by the ingot. Loss of heat
by radiation to the surrounding medium Fro \ gt is governed by the Steffan-Boltzman
law. The corresponding control system can then be described as follows:

(3.4)
yt-KAy=O, in (0,T]f,
K(Oy/O) -g(y, u), in (0, T] x 0,

y(0)=y0, in ,
where

(i) for purely radiative heat transfer g is given by

(TE(yg(y, u) aE(7
for 0 _< y _< ’d, 0

_
U

_
/’d,

for 0 <_ u <_ d, Y >_ /d,

(ii) for a combination of radiative and convective heat transfer, g is given by

g(y, u) { (erE(y4 u4) + o(y u))logt
((TE( u4) -- o/(y t))10gt,

for 0 _< y _< ")’d, 0 u

_
d,

for 0 _< u _< /d, Y _> ’d.

The parameters are as follows: K is the conductivity of the ingot material, a is
the Stefan-Boltzman constant, E is the emissivity of the ingot surface, a is the heat
transfer coefficient due to convection, and d is the maximum (attainable) temperature
of the furnace.

(iii) In the case of hydrodynamics of liquid helium, ain [18] has used for g the
function

(,) ( )1o +( )1o,

where/1 and 2 are suitable constants determined by experiments.
Note that only case (i) can be transformed into a problem with control v --_ u4

appearing linearly; whereas cases (ii) and (iii) do not admit such simplification.
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For the state space we choose EZ Wpz so that > (3/p). Given that t has the
cone property, by the Sobolev embedding theorem this last condition guarantees that
Wp2z is an algebra (see [14, Thm. 5.23, p. 115]) and hence for E Wp2z, 4 E Wp2/,

w2-l-1/P(O) also. For admissible controls defineand its trace

V {V e U W2p-l-1/P(O)’v 10, e w  (no \ and 0 <_ v() <_ "Yd a.e.}

and/ad {u L(I, U)" u(t) V a.e.}. In particular we can choose p 4,/ > 3/4.
This also implies that the embedding W2p-I-I/p - Lp(O) is continuous and hence
V c Lp(O). Thus our boundary operator g is locally Lipschitz, satisfies the growth

I/ir2-1-- liPcondition, and maps EZ V to p

The cost integrand may be taken as

L(t, y(t), u(t)) =_ I ly(t, ) yOt, )ld + ]a lu(t, )],d.

Thus all the assumptions of Theorem 3.5 are satisfied, and hence an optimal control
exists.

Remark. We note that g is locally Lipschitz and that the (linear) growth condition
is satisfied because of the physical limitation of the furnace temperature. Hence for
arbitrary time interval I the equations have unique solutions and the optimal control
is defined for the entire interval. If one has to deal with the polynomial growth our
results will apply only for the maximM interval of existence of solutions of the evolution
equations.
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A SIMPLICIAL ALGORITHM FOR COMPUTING ROBUST
STATIONARY POINTS OF A CONTINUOUS FUNCTION ON THE

UNIT SIMPLEX*

ZAIFU YANG

Abstract. A simplicial algorithm is proposed to compute a robust stationary point of a con-
tinuous function f from the (n- 1)-dimensional unit simplex S into Rn. The concept of robust
stationary point is a refinement of the concept of stationary point of f on S 1. Starting from an
arbitrarily chosen interior point v in S 1, the algorithm generates a piecewise linear path of points
in S 1. This path is followed by alternating linear programming pivot steps and replacement steps
in a specific simplicial subdivision of the relative interior of S 1. In this way an approximate robust
stationary point of any a priori chosen accuracy is reached within a finite number of steps. The al-
gorithm leaves the starting point along one out of n! rays. When the path approaches the boundary
of S 1, the mesh size of the triangulation along the path automatically goes to zero. This makes
the algorithm different from all simplicial restart algorithms and homotopy algorithms known so far.
Roughly speaking, the algorithm is a blend of a restart and a homotopy algorithm and maintains
the basic properties of both. However, the algorithm does not need an extra dimension as homotopy
algorithms do. Some examples are discussed.

Key words, robust stationary point, variational inequality, simplicial algorithm, subdivision,
piecewise linear approximation, stability
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1. Introduction. Let the (n- 1)-dimensional unit simplex Sn-1 be defined by

S-1 x E R+1 xi=l
i=1

where R is the nonnegative orthant of the n-dimensional Euclidean space. Let us+
assume that f S-1 - R is a continuous function. Then the stationary point
problem or variational inequality problem for f on Sn- is to find a point x* E S-such that

(x* x) -r f(x*)

_
0

for any point x in Sn-. We call x* a stationary point of f on S-. It is well known
that this problem is equivalent to the Brouwer fixed point problem on Sn-1 (see, e.g.,
Eaves [6]).

To compute a fixed point or a stationary point of a continuous function on
S-1, several simplicial algorithms have been developed (Scarf [17], [18], Kuhn [11],
Eaves [7], Kuhn and MacKinnon [12], van der Laan and Talman [13], [14], Doup and
Talman [4], and Doup, van der Laan, and Talman [5]). Todd [23] and Doup [3] pre-
sented excellent surveys on the development of simplicial algorithms. In a simplicial
subdivision of S-1 such algorithms search for a simplex which provides an approxi-
mate solution by generating a sequence of adjacent simplices. The simplex with which
the algorithm terminates is found within a finite number of steps. The so-called vari-
able dimension restart algorithm, originated in van der Laan and Talman [13], can be
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7, 1994. This research is part of the VF-program "Competition and Cooperation."

Department of Econometrics and Center for Economic Research, Tilburg University, Postbox
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started in an arbitrarily chosen grid point of the subdivision and generates a sequence
of adjacent simplices of varying dimension. When the end simplex does not yield an
approximate solution with satisfactory accuracy, the algorithm can be restarted at
the approximate solution with a finer triangulation in the hope of finding a better
approximate solution within a small number of iterations.

The concept of robust stationary point is a refinement of the concept of stationary
point on the unit simplex and is essentially motivated by economic equilibrium prob-
lems, noncooperative games, as well as biology and engineering applications (see, e.g.,
Myerson [16], Yamamoto [25], van Damme [2]). Because a continuous function from
Sn-1 into Rn may have multiple stationary points and some of them are undesirable
from a point of view of stability, we need to refine the concept of stationary point.

In this paper we propose a simplicial algorithm to compute a robust stationary
point. Starting from an arbitrarily chosen interior point v in Sn-, the algorithm
generates a piecewise linear path of points in Sn-. This path is traced by alternating
linear programming pivot steps, to follow a linear piece of the path and replacement
steps in a simplicial subdivision of the relative interior of Sn-. Within a finite
number of function evaluations and linear programming pivot steps, the algorithm
finds an approximate robust stationary point of any a priori, chosen accuracy. The
path generated by the algorithm corresponds to a sequence of 9-robust stationary
points of the piecewise linear approximation f of f with respect to the underlying
simplicial subdivision, where 0 < _< 1. This simplicial subdivision differs from
other simplicial subdivisions of Sn-. We call it the P-triangulation. When the
path generated by the algorithm approaches the boundary of Sn-l, the mesh size
of the triangulation along the path automatically converges to zero. This makes
the algorithm different from all other simplicial algorithms. Roughly speaking, the
algorithm is a blend of a simplicial restart algorithm and a homotopy algorithm and
maintains the basic properties of both. This can be interpreted as follows. If the
algorithm converges to a solution on the boundary of S’-, it shares the property
with a homotopy algorithm that the variable can be considered as a homotopy
parameter (see Eaves [7]), in the sense that when tends to zero, the mesh size of the
triangulation also tends to zero. However it should be emphasized that the algorithm
does not need an extra dimension which is required by homotopy algorithms. While
the algorithm converges to a solution in the interior of S-1, it behaves exactly as a
variable dimension algorithm does.

Although it may not be apparent from the arguments of this paper, the algorithm
is implicitly related to the procedure proposed by Yamamoto [25] for the determination
of a proper Nash equilibrium of finite-person games. Our algorithm can be seen as
a constructive combinatorial analog of his continuous procedure when the starting
point of our algorithm is chosen to be the barycenter of S-1.

This paper is organized as follows. In 2 we introduce the definition of a robust
stationary point and prove the existence of a robust stationary point for a continuous
function on the unit simplex. In 3 we specify the P-triangulation of the unit simplex.
In 4 we give a detailed description of the algorithm. Section 5 is devoted to some
numerical examples.

2. The concept of robust stationary point. In this section we first give the
definition of a robust stationary point and then show the nonemptiness of the set of
robust stationary points of a continuous function on the unit simplex. Let a function
f Sn- Rn be given and N be the set of the integers { 1,..., n }.
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DEFINITION 2.1. For given 8 > 0 a point x 6 Sn-1 is a O-robust stationary point
off if

(1) x is a relative interior point of Sn-l,
(2) xk <_ Oxl if fk(x) < fl(x), for k, l, 1 <_ k, <_ n.
DEFINITION 2.2. A point x* E Sn- is a robust stationary point of f on Sn-t if

there exist sequences (Ot) ofpositive numbers and (x(Ot)} of O-robust stationary
points x(Ot) of f such that

lim 0 0 and limx(0)-x*.

We remark that if a stationary point x* of f lies in the relative interior of Sn-l,
then x* must be a robust stationary point of f with equal values of the components.
Some examples given in 5 will demonstrate that the concept of robust stationary
point is a refinement of the concept of stationary point.

LEMMA 2.3. Let f Sn-1 Rn be a continuous function. If x* Sn-1 is a
robust stationary point of f, then x* is also a stationary point of f

Proof. We only need to consider two cases. If x* lies in the relative interior of
Sn-l, it implies that f(x*)= fj(x*) for i,j e g. Hence we have

n

(x* x)-f(x*) Z(x xi)fi(x*) 0

for any x Sn-1 which means that x* is a stationary point of f. On the other hand,
if x* is on the boundary of S’-1, there exists a proper subset J of N such that x 0
for j g. It follows from Definitions 2.1 and 2.2 that f(x*) fj(x*) for i,j N\J
and fi(x*) >_ fi(x*) for N\J and j J. Now for given N\J, we have

n

iEN\J jEJ i----1

=0

for any x Sn-1 This also implies that x* is a stationary point of f.
THEOREM 2.4. Let f" Sn-1 Rn be a continuous function. Then f has at least

one robust stationary point in Sn-.
Proof. We first show that there exists at least one 0-robust stationary point, for

0n- and defineany0,0<0<1. Given sucha0,1et6- K

S(O) {x e sn-l[xi >_ , i= 1,...,n}.

It is clear that S(0) is a nonempty, convex, compact subset of Sn-*. We further define
a set-valued correspondence F on S(O) by

F(x) { y e S(O) if fi(x) < f(x) then yi <_ Oy for any i,j }, x e S(O).

F(x) is obviously a closed convex set for every x S(O). Given x S(O) and
i { 1,..., n }, let A(i) be the number of j’s such that fi(x) < fj(x) and let

y 0h(0 0h(l).

Then y’ >_ 5 for 1,..., n. Hence y* F(x) and therefore F(x) is nonempty.
Moreover the continuity of f guarantees that F is upper semicontinuous. Thus F
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satisfies all conditions of the Kakutani fixed point theorem and so there exists
point x(O) E S(0) such that x(O) F(x(O)). It is easily seen that x(O) is a 0-robust
stationary point of f.

So for every 0 < 0 < 1, f has a 0-robust stationary point x(O). Now let us take a
sequence { Ot } of numbers between 0 and 1 converging to zero and a sequence of
robust stationary points of f. Since Sn-1 is a compact set, there exists a subsequence
converging to a cluster point x* Sn-1. It is now clear that x* is a robust stationary
point of f.

In the subsequent sections we will design an algorithm to compute a robust sta-
tionary point.

3. The P-triangulation of the unit simplex. We first introduce some nota-
tion to be used below. Z+ and Z0 represent the set of positive integers and the set of
nonnegative integers, respectively. The ith unit vector in Rn is denoted by e(i), i N.
Moreover, J c N denotes a proper subset J of N. Let v be a point in the relative
interior of S-1. The point v will be the starting point of the algorithm. We rearrange
the components of v in decreasing order to obtain a vector p (p,..., pn)T sn-1
represented by

pi =vj, foriN

Pz >_Pm, forl_<m, and 1, mEN

where (jl, j2,..., j is a permutation of 1, 2,..., n). For t (0, 1], let

p(t) pt- /EPtj-’ for i N,
] jg

and define

pi(0)= lim pi(t)={ 1 for i=1,
t-0+ 0 for 1.

It is readily seen that p (t) _> p2(t) >_... _> pn(t) for t [0, 1].
DEFINITION 3.1. For t [0, 1], the set A(t) is defined by

A(t) x E R x l, Ex <_ Epj(t) for any J C N with k= lJI
iN jJ j--1

It is easily seen that A(0) Sn- and that if v is the barycenter of Sn-, then
A(1) { v }. More generally, for every t e [0, 1] we have that v e A(t) and v is a
vertex of A(1). Moreover A(t) is a polytope for every t e [0, 1].

For J c N and t e [0, 1], we define b(J) and cj(t) by

b(J) E e(j),
jJ

c(t) Epy(t) with/= IJI.
j--1

Let/:= {I= (I,I2,...,I,)lO I C... C Im C N}. We say that I eZ
conforms to J Z, if it holds that every component of I is also a component of J.
For I 2: and a positive integer k, let

F(k, I) { x e A(2-k) b- (Ii)x ci (2-k) for every i e {1, 2,..., m} }.
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e(3)

e(1) e(2)

FIG. 1. The subdivision of S for n 3 and v (1/2, 1/3, 1/6)T.

Then F(k, I) is a face of A(2-k) with dimension equal to n 1 m. For I E 2", let

F(0,1;I)={x x=av+(1-a)z for some zeF(1, I) and some ae [0,1]}
and for k Z+

x=ay+(1-a)z for someyF(k,I),
some z e F(k + 1, I), and some a e [0, 1] }.

Figure 1 shows the subdivision of Sn-1 for n 3 and v (1/2, 1/3, 1/6) T.
For I Z and k Z+, we denote the union of F(i 1, i; I) over i 1, 2,..., k by

’(k, I). We remark that ’(k, I) is not necessarily a convex set. For k Z0, we denote
the union of F(k,k+l;I) over all I e Zby ’(k, k+l). For I e Z, we denote the union
of F(k,k + 1; I) over all k 0, 1,... by ’(I). Notice that the dimension of ’(I) is
equal to t n- m and that the union of ’(I) over all I Z is the relative interior of
Sn-1. A simplicial subdivision underlying the algorithm must be such that every set
F(k, k + 1; I) is subdivided into t-dimensional simplices. Such a triangulation can be
described as follows. For I Z, we denote v(0, I) v and for k Z+, let v(k, I) be
relative interior point (e.g., the barycenter) of F(k, I). For I 27, if I consists of n- 1
components, then F(k, I) is a vertex of A(2-k). For general I e :, let F(k, I(n- 1))
be a vertex of F(k, I), i.e., I(n- 1) has n- 1 components and I conforms to I(n- 1).
Moreover let (J1,J2,...,Jt) "y(I,I(n- 1)) be a conformation of I and I(n- 1),
where t n-m, i.e., J1 I(n- 1), Jk I for k 2,..., t- 1, Jt I, Jk conforms to
J_ and has one component less than Jk- for k 2,..., t. For given k
and "y(I,I(n- 1)), the subset F(k,k + 1;I,’y(I,I(n- 1))) of F(k,k + 1;I) is defined
to be the convex hull of v(k, J1), v(k, J2),..., v(k, Jr), v(k + 1, gl), v(k + 1, J2),...,
and v(k + 1, Jr), so

F(k, k + 1; I, 7(I,I(n- 1))) { x e Sn-1 x v(k,X(?z- 1))+ ceq0 + YI ajqj(a),
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0 _< a _< 1, and 0 <_ Cgt--1

__ __
01

__
1 },

where qo (v(k + 1, J1)-v(k,J)), and for j 1,...,t- 1, 0 <_ a _< 1,

qj(a) a(v(k + 1, Jj+) v(k + 1, Jj)) + (1 a)(v(k, Jj+) v(k, Jj)).

The dimension of F(k,k + 1;I, 7(I,I(n- 1))) is equal to t and F(k,k + 1; I) is
the union of F(k, k + 1; I, 7(I, I(n- 1))) over all conformations /(I, I(n- 1)) and over
all index sets I(n- 1) conformed by I.

Let d be an arbitrary positive integer.
DEFINITION 3.2. For given k E Zo, I Z, and (I,I(n- 1)), the set Gd(k,k +

1; I, /(I, I(n 1))) is the collection of t-simplices a(a, r) with vertices yl,... ,yt+ in
F(k,k + 1;I,/(I,I(n- 1))) such that

(1) yl v(k,I(n 1)) + a(O)d-lqo + --1 a(j)qj(a(O)/d)/(a(O) + kd), where
a (a(0), a(1),..., a(n-2))-7 is a vector of integers such that 0 <_ a(O) <_ d-1
and a(n- 2) a(t) 0 <_ a(t- 1) _<... _< a(2) _< a(1) _< a(0) + kd;

(2) r (rl,..., rt) is a permutation of (0, 1,..., t 1 such that s < s’ if for
some q e {0, 1,...,t- 2}, it holds that 7r q, 7r, q + 1, a(q) a(q + 1)
in the case where q >_ 1, and a(O) + kd a(1) in the case where q 0;

(3) Let be such that ri O. Then

yJ+ yJ + qj (a(O)/d)/(a(O) + kd), j 1,..., 1,

yi+l V(]g, I(n- 1)) + (a(O) + 1)d-lqo
t--1

+ E a(j)q((a(O) + 1)/d)/(a(O) + 1 + kd)
j-’l

i--1

+ Eq ((a(O) + 1)/d)/(a(O) + 1 + kd),
j=l

yJ+ yJ + qj ((a(0) + 1)/d)/(a(O) + 1 + kd), < j <_ t.

The set Gd(k,k + 1;I,7(I,I(n- 1))) is a simplicial subdivision of F(k,k +
1;I,.(I,I(n-1))) with grid size d-1. Moreover, the union Gd(k,k+ 1;I) of Gd(k,k+
1;I,/(I,I(n- 1))) over all conformations 9/(I,I(n- 1)) and I(n- 1) conformed by I
is a simplicial subdivision of F(k, k+ 1; I), and the union Gd(k, k+ 1) of Gd(k, k+ 1; I)
over all sets I Z induces a triangulation of 9r(k, k + 1). Taking the union Gd(k)
of Gd(j,j + 1) over j 0, 1,... ,k- 1, we obtain a simplicial subdivision of A(2-k)
with grid size d-. The union of Gd(k) over all k Z0 is a simplicial subdivision of
the relative interior of Sn- and is called the P-triangulation of Sn-1 with grid size
d-1. Observe that for I Z and k E Z+, the union Gd(k,I) of Gd(i- 1, i; I) over

1, 2,..., k, is a simplicial subdivision of the set ’(I, k), and for I Z, the union
Gd(I) of Gd(k, k + 1; I) over k 0, 1,..., is a simplicial subdivision of the set ’(I).
The P-triangulation of Sn- for n 3, d 2, and v (1/3, 1/3, 1/3) -7 is illustrated
in Fig. 2.

As norm we use the Euclidean norm I1" II in Rn. For a set B in Rn, we define the
diameter of B by

diam(B) sup{ [[y y2][[y,y2 e B}.
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e(1) e(2)

FI. 2. The P-triangulation of Sn-1 for n 3, d 2, and v (1/3, 1/3, 1/3) -r.

Then for given k E Z0 the mesh size of Gd(k, k + 1) is equal to

5k,d sup{ diam(a) a e Gd(k, k + 1)}.

Now we have the following property.
LEMMA 3.3. Let d be a given positive integer. For the P-triangulation of Sn-1

with grid size d-1, it holds that

lim k,d O.

4. The algorithm. In this section we discuss how to operate the algorithm in
the P-triangulation of Sn- to approximate a robust stationary point of a continuous
function on Sn-1. Starting at the point v, the algorithm will generate a sequence of
adjacent simplices of the P-triangulation in the set $’(I) having/-complete common
facets, for varying I E Z.

DEFINITION 4.1. Let the function f Sn-1 R be given. For given I
(I,... ,Ir) : and s t- 1 or t, where t n- m, an s-simplex a with vertices
y,..., y+l is I-complete if the system of linear equations

s+l Q )m (b(Ij))( e )(4.1) Ai
f(yi)

#J1 0 0 1
i--1 j--1

where e is an n-vector of l ’s, has a solution ;, i 1,...,s + 1, #j, j 1,...,m,
*>0, j-1 m.andS* with ) >_ O i l s + l and#j_ ,.

A solution ,k, 1,...,s + 1, #j, j 1,...,m, and * will be denoted by
(,*,#*,*). For s t- 1 we assume that the system (4.1) has a unique solution
with > 0, 1,...,t, and #j > 0, j 1,...,m, and that for s t at most one
variable of (A*,#*) is equal to zero (nondegeneracy assumption). We remark that
this assumption can be dropped if we use the lexicographic pivoting method in linear
programming to solve system (4.1), see e.g., Todd [23].
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The algorithm starts to leave the point v in one out of n! directions. This direc-
tion is uniquely determined by f(v). Because of the nondegeneracy assumption, all
components of the vector f(v) are different. Let (il,..., i,) be a permutation of the
set (1,... ,n)such that f (v) >... > f(v). Then the 0-dimensional simplex { v }
is I-complete with I (I,..., In_1), where I { il,..., ij } for j 1,..., n- 1.

Moreover, { v } is a facet of a unique 1-simplex a in $’(I), where a a(a, r) with
a 0 and r (0). Since for given I 2: an/-complete t-simplex has at most two
/-complete facets and a facet of a t-simplex in 9(I) is a facet of at most one other
t-simplex in ’(I), we obtain that the/-complete t-simplices a(a, r) in 9v(I) deter-
mine sequences of adjacent t-simplices in (I) with/-complete common facets. As
described below, the sequences of the/-complete t-simplices in ’(I) can be uniquely
linked together for varying I : to obtain sequences of adjacent simplices of varying
dimension. Under the nondegeneracy assumption, one of these sequences starts with
a in 9(I) and is followed by the algorithm. Thus, starting at the point v, the
algorithm generates a unique sequence of/-complete adjacent t-simplices in $’(I) of
varying dimension. In this way within a finite number of steps either the algorithm
reaches a point in an (n- 1)-dimensional simplex for which j() () for every
i and j E N, where f is the piecewise linear (PL) approximation of f with respect
to the P-triangulation, or for k 1, 2,... the algorithm finds an/-complete (t- 1)-
simplex in F(k, I) for some I E Z. Suppose the latter case holds, then we have the
following result.

LEMMA 4.2. For k Z+ and I Z, let a with vertices y, yt be an I-complete
(t- 1)-simplex lying in F(k,I). Let (A*,#*,*) be the corresponding unique solution

of system (4.1). Then x -t= Ay is a 2-k-robust stationary point of the PL
approximation f of f with respect to the P-triangulation. Moreover, x is a stationary
point of ] on A(2-k).

Proof. Since I (I1, I2,..., Ira) :, there exist 11 < 12 < < lm such that

I1 { l,...,it },
12 { il,...,it,it+l,...,it: },

={i,...,i },
g\ { i+,..., i }.

Then it follows from equation (4.1) that

(x) (x) , +... +, + *
>+() f () +... + + Z*

> _+() (x) , + Z*
>/(x) o (x) Z*,

where # > 0 for 1,..., m. Now it is not difficult to check that

x <_ 2-kxj whenever j(x) </(x).
This means that x is a 2-k-robust stationary point of the PL approximation f of

f with respect to the P-triangulation.
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Moreover, for each face F(k,I), I E , let F*(I) be the set of all n-dimensional
vectors y such that every point of F(k, I) is a solution of the linear programming
problem

max y-2 subject to 2 E A(2-k).

Then the stationary point problem for f on A(2-k) is the problem of finding a
point x in A(2-k) such that f(x) e F*(I) for a minimum face F(k,I) of A(2-)

mcontaining x. Duality theory implies that F*(I) { y
0 for i 1,... ,m, and 3 e R}. It follows from equation (4.1) that f(x) F*(I).
Hence x is a stationary point of

To extend the domain of the PL approximation f of f, we recall that for a given
positive integer d, the mesh size k,d converges to zero as k goes to infinity. We can
therefore take ](x) to be f(x) if x lies on the boundary of Sn-, since f is a continuous
function. Hence f is also a continuous function from Sn-1 into Rn.

For each t [0, 1/2], let V(t) denote the set of stationary points of f on A(t). We
summarize the following observations from the above discussions:

(P1) For each t E [0, 1/2], the set V(t) is a nonempty closed set.
(P2) For each t (0, 1/2], x e A(t) is a t-robust stationary point of f on Sn-1 if

and only if x belongs to the set V(t).
(P3) For each t [0, 1/2], if x e V(t) lies in the interior of A(t), then all the

components of f(x) must be the same.
The next lemma shows that a 2--robust stationary point of ] on Sn- is an

approximate 2-k-robust stationary point of f on Sn-.
LEMMA 4.3. Let lk,d "-sup{diam(f(a))la Gd(k- 1, k)}. Let x be a

2-k-robust stationary point of the PL approximation f of f with respect to the P-
triangulation obtained by the algorithm, so that x F(k, I) for some I :Y. Then
f(x) lies in the lk,d-neighborhood of F*(I), i.e., there is a y F*(Ik) such that

Proof. Let y,..., yt be the vertices of a (t- 1)-simplex of Gd(k 1, k) in F(k, Ik)
containing x. Then f(x) = Af(yY) lies in F*(I), where ,..., are convex

combination coefficients such that x =1 YJ" Therefore

IIf()- f()ll

f(x))
j--1

< ’llf(yj) f(x)ll
j---1

<_ ,d.

Note that the following inequality also holds:

IIf(z)-- f(z)ll

_
,d, for any z e .T’(k- 1, k). I’!

Next we discuss the case where the algorithm converges to a boundary point of
Sn-. Since Sn- is compact and f is continuous on S-1, the error Tlk,d in Lemma
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4.3 tends to zero as d is fixed and 5k,d goes to zero when k goes to infinity. Let
xk be a 2-k-robust stationary point of ] and let ?k,d be the error in Lemma 4.3.
We can therefore consider xk as an approximate 2-k-robust stationary point of f.
Then the algorithm generates a sequence { xklk 1, 2,... } of approximate 2-k-
robust stationary points of f which therefore has a cluster point x*. For simplicity of
notation we can assume that this sequence itself converges to x*. We are now ready
to state the following result.

THEOREM 4.4. Suppose that for a given positive integer d the vector xk is an
approximate 2-k-robust stationary point generated by the algorithm, for k 1, 2,...,
i.e., for each k E Z+, xk F(k, Ik) with Ik : is a 2--robust stationary point
of . Then the sequence { xkl k 1, 2,... } has a cluster point x* which is a robust
stationary point of f on Sn-1.

Proof. By definition, x* is a robust stationary point of ] on Sn-1. Notice that x*
lies on the boundary of Sn-. We shall demonstrate that for any given e > 0, there
exists a positive integer M, such that for k Z+ with k > M, there is a 2-k-robust
stationary point y e A(2-) of f on Sn- which is in the e-neighborhood of x.

Let

A(t) for t e [0,1/2],U(t) 2(1 t)A(2-1) + (2t 1){ v } for t E [1/2, 1],

and denote the set of stationary points of f on U(t) by Y(t) for t [0, 1]. Observe
that Y(t) V(t) for t e [0, 1/2], and that U(t) is contained in A(2-) for t [1/2, 1].
As t decreases from 1 to 0, U(t) expands from the starting point v to the set A(2-)
and then to the whole set Sn-.

Now we define a function gt (see, e.g., Doup [4] and Yamamoto [25]) from U(t)
into itself by

gt(x) argmin{ IIx + f(x) YlI Y e U(t) },x e U(t).

Since U(t) is a convex set and f is continuous, gt is nonexpansive and hence is a
Lipschitz continuous function. It is readily seen that x Y(t) if and only if x gt(x).
Let

H(x, t) x gt(x).

This is a Lipschitz continuous homotopy defined on S-1 [0, 1] between H(x, 1)
x v and H(x, O) x go(x). Now set

H-(0) { (x, t) e Sn-1 X [0, 1] H(x, t) 0 }.

Let W(t) denote the set of stationary points of f on U(t) for t [0, 1]. Similarly, we
can construct a Lipschitz continuous function with respect to f, i.e.,

G" Sn- x[0,1]Rn,

such that

Set

W(t) { x e n-1 (x, t) 0 }, t e [0, 1].

-1(0) {(X,t)e Sn-1 x [0,1] ((x, t) --0}.
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For each k E Z+, let

k (xk, 2-).
It is clear that lim}_o k . (x*, 0), since limk-.o xk x*. We define

N(e) { (x, t) e Sn-1 [0, 1] [I(X t) --(Z, 8)[[ < for some (z, s) e H-l(0) }.

Clearly, it holds that

IIH()II > 0 for any e S’-1 x [0, l]\N(e).

But N(e) is open, so the set Sn-1 x [0, 1]\N(e) is compact. The compactness means
that the minimum can be attained and for some u > 0

min{ IIH()II I e Sn-1 x [0, 1]\N(e) } > u.

Hence, if Sn- x [0, 1] satisfies

(4.2)

then must be in N(e). Because H is uniformly continuous on S’-1 x [0, 1] and ] is
the PL approximation of f, it follows that

(4.3)

for any (x, t) E Sn- x [0, 1] under the condition that the diameter of simplices
in which x lies is small enough, say, smaller than A > 0.

Lemma 3.3 states that given a positive integer d, as k goes to infinity, the mesh
size k,d converges to zero. It implies that there exists a positive integer M such that
for every k Z+ with k > M, it holds that

Since for any k Z+ with k > M, k G-l(0), i.e., G(k) O, it follows from (4.3)
that

By (4.2) } must be in N(e). This implies that for any k Z+ with k > M, there
is Ck E H-l(0) which is in the e-neighborhood of k. Without loss of generality we
may assume that Ck (yk, 2-}). This is what we claimed.

On the other hand, since limk_o x} x*, it immediately follows that

lim yk x*.

Hence x* is a robust stationary point of f on Sn-1. [:]

In the case where the algorithm terminates with an (n- 1)-dimensional simplex
a with vertices yl ,...,Yn, 2 in__ Ayi is a robust stationary point of f. If the
accuracy of approximation is not satisfactory, the algorithm can be restarted at the
point 2 with a smaller grid size d- to find a better approximate robust stationary
point, hopefully within a small number of steps. Without loss of generality we assume
that the algorithm generates a sequence { h]h 1, 2,... }, where h is the robust
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stationary point of / corresponding to the grid size d for an increasing sequence of
positive integers { dhlh 1, 2,... }. It is readily seen that for every k E Z0, the mesh
size 5a,dh tends to zero as h goes to infinity. Therefore the sequence { 2h h 1, 2,... }
has a subsequence converging to a cluster point x*. Clearly, x* is a robust stationary
point of f on Sn-1.

As described above, starting at the point v, the algorithm generates a unique
sequence of adjacent t-simplices a(a, ) in 9(I) for varying I E Z of varying dimension
t n- m. When, with respect to some a(a, ) with vertices yl,..., yt+ in some
Gd(k,k + 1;I,(I,I(n- 1))) for some k e Z0 and /(I,I(n- 1)), the variable
for some q, 1 _< q _< t + 1, becomes zero through a linear programming (LP) pivot
step in (4.1), then the replacement step determines the unique t-simplex (, #) in
F(k,k + 1;I, 7(I,I(n- 1))) sharing with a the common facet T opposite vertex yq,
unless this facet lies in the boundary of F(k,k + 1;I,/(I,I(n- 1))). If does not lie
in the boundary of the set F(k,k + 1;I, 7(I,I(n- 1))), then (,) can be obtained
from a and r as given in Table 1, where E(j- 1) is the jth unit vector in Rn-,
j 1,...,n-1.

TABLE
Parameters of if the vertex yq of a(a, r) is replaced.

q--t+1

(2, rt, rl) a + E(rl
a(71"1 71"q--2 7rq 71"q--.1 71"q-t- 7rt)

(Trt, 7I’1,..., 71-t- 1) - E()

The algorithm continues with by making an LP pivot step in (4.1) with (f-r (), 1)T,
where is the vertex of opposite the facet -. In the case where a facet T of a sim-
plex in Gd(k,k + 1; I, (I,I(n- 1))) is not a facet of another simplex in Gd(k,k +
1;I,(I,I(n- 1))), lies in the boundary of F(k,k + 1;I,(I,I(n- 1))). According
to Definition 3.2 we have the following lemma.

LEMMA 4.5. Let a(a, 7) be a t-simplex in F(k, k + 1; I, 7(I, I(n 1))). The facet
of a opposite the vertex yq, 1 <_ q <_ t + 1, lies in the boundary of this set if and

only if one of the following cases occurs:
(i) 1 < q < t + l, h + l,

_
h for some h e {0,1,...,t-2}, and

a(h) a(h + 1) in the case where h >_ 1, and a(O) + kd a(1) in the case
where h 0;

(ii) q=t+l,rt=t-1, and a(t-1) O;
(iii) q 1, 1" 0, and a(O) d- 1;
(iv) q t + 1, rt 0, and a(O) O.
Suppose the algorithm generates the simplex a(a, r) as given in Lemma 4.5 and

A becomes zero after making an LP pivot step in (4.1). Then the facet - of a opposite
the vertex y is /-complete. In case (iii) the facet T lies in the face F(k + 1,I) of

F,t+l .iA(2--1) and the algorithm reaches a 2--l-robust stationary point 2 z_,i=2 Ai y
of f lying in F(k + 1, I). If k is large enough, then 2 is an approximate robust
stationary point of f. Otherwise, the algorithm proceeds with a by making an LP
pivot step in (4.1) with (fm(), 1)m, where is the vertex of a opposite the facet -and a in F(k + 1, k + 2; I, 7(I, I(n- 1))) is obtained according to Table 1.

In case (iv) the facet w lies in the face F(k,I) of A(2-k) and the algorithm
continues with by making an LP pivot step in (4.1) with (fro (), 1)T, where is the
vertex of a opposite the facet T and a in F(k- 1, k;I, 7(I,I(n- 1))) is also obtained
from Table 1.
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In case (i) and if h _> 1, the facet T is a facet of the t-simplex a(a, r) in
F(k, k + 1; I) lying in the subset F(k,k + 1; I, /(I,I(n- 1))) with

9(I, I(n 1)) (J1,..., Jh, Jh+l, Jh+2,..., J,),

where Jh+l E Z, Jh+l =/= Jh+l, is uniquely determined by the properties that Jh+l
conforms to Jh, has one component less than Jh, and is conformed by Jh+2. In case (i)
and if h 0, then T is a facet of the t-simplex e a(a, r) in F(k, k + 1; I, /(I, I(n-
1))) with I(n- 1) and defined as follows. Let J1 I(n- 1) (I1,...,In-1).
When J2 (I1,...,In-2), we have [(n 1) (/1,...,In-2,[n-1) with n--1
In-2[.J(N\In-1). When J2 (I2,...,In-1), let i(n- 1) (II,I2,...,In-1) with

1 I2\I1. Finally if J2 (I1,...,Ik, Ik+2,...,/n-I) for some k E { 1,...,n- 3 },
we have i(n- 1) (I1,...,Ik,[k+l,Xk+2,...,In-1) with k+l Ik[..J(Ik+2\Ik+l).
Then (I, I(n- 1)) (I(n- 1), J2,..., J,). In both subcases of case (i) the algorithm
continues by making a pivot step in (4.1) with (f-(), 1) -c, where is the vertex of
the new t-simplex e opposite the facet -.

In case (ii) the facet lies in the set F(k,k + 1; Jr-l) of $’(I). More precisely,- is the (t- 1)-simplex a(a,#) in F(k,k + 1;i,/(i,I(n- 1))), where i Jr-l,
/([,I(n- 1)) (J1,..., Jr-l), and (Trl,..., rt-1). The algorithm now proceeds
by making a pivot step in (4.1) with (-b- (Ih), 0)-, where ih is the unique component
of Jr-1 but not of Jr.

Finally, if through an LP pivot step in (4.1), the variable #h becomes 0 for some
h { 1,..., m }, then the algorithm terminates with the approximate robust station-
ary point 2 Ay of f if m 1 and restarts at the point 2 with a smaller grid
size in case the accuracy is not satisfactory. Otherwise, the simplex a(a, r) is a facet
of a unique (t + 1)-simplex a in $’(I) with I (I1,...,Ih-l,Ih+l,...,Im). More
precisely, e a(a,r) lies in F(k,k+ 1;I,9(I,I(n- 1))), where /(I,I(n- 1)) (7, I),
and (rl,...,rt,t). The algorithm continues by making a pivot step in (4.1)
with (f-c (), 1)T, where is the vertex of e opposite the facet a. This concludes the
description of how the algorithm works in the P-triangulation of S’-1.

5. Examples. Now we give some examples to show the power of the robust
stationary point concept and the algorithm as well. Let us briefly review the standard
model of a pure exchange economy. For details, we refer to Varian [24]. In such an
economy there are, say, n commodities and a finite number of consumers, each having
a vector of initial endowments. Exchange of commodities is based on relative prices.
All consumers exchange goods in order to maximize their utility under their initial
wealth constraints. This economy can be characterized by an excess demand function
z R_\{0} --. Rn which satifies the following standard conditions:

(i) z is a continuous function,
(ii) z(/p) z(p) for any > 0 and p e Rn+\{0} (homogeneity)
(iii) p-z(p) 0 for p e Rn+\{0} (Walras’ law)
The element p* Rn+\{0} is an equilibrium price vector if z(p*) <_ 0 (see Var-

ian [24, p. 321]). Note that homogeneity permits us to normalize the price vectors
to the (n- 1)-dimensional unit simplex Sn-1. Now it is not hard to show that this
problem is equivalent to the stationary point problem on Sn-1. We first present
two examples of such an economic equilibrium model. To keep things simple and
interesting, we shall focus on excess demand functions.

Example 1. There are two goods. The excess demand function is given by z(p)
(pp22(1- p),-pp2(1- p2))-r for p E S1. There are two equilibria (i.e., stationary
points) x (1, 0)-r, y (0, 1) -r. However only x is a robust stationary point. Further,
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e(3)

e(1) e(2)

FIG. 3. The path of the algorithm on S2 for d 2 and v (1/3, 1/3, 1/3) "r

X is more sensible than y in economic terms. We need to give some explanation.
The basic idea of the Walrasian tatonnement process is as follows. Suppose that an
economy is in disequilibrium. Then the Walrasian auctioneer would increase the price
of a commodity if the excess demand of that commodity were positive, and decrease
the price of a commodity if the excess demand of that commodity were negative. A
sensible equilibrium should be stable against some data perturbation. In this example,
suppose that the economy is slightly perturbed away from the equilibrium (0, 1) -.
Then the tatonnement process would lead to another equilibrium (1, 0) -.

Example 2. There are three goods. The excess demand function is given by
z(p) (p2p3,plp,-plp2(1 +p3))T for p E S2. The set of stationary points is {p E
$21p3 0 }. But z only has one robust stationary point: p* (1, 0, 0)-. This fact
is quite surprising. Moreover, the equilibrium price vector p* is also most desirable
from an economic point of view.

Finally, we conclude with two more examples.
Example 3. The function is defined by f(x) (xl + X2, X2 -at- X3, X3 - Xl)T for

x S2. The set of stationary points is

{ (1/3, 1/3, 1/3) -r, (1, 0, 0) -r, (0, 1, 0) -r, (0, 0, 1) -r ).

However, f just has one robust stationary point: (1/3, 1/3, 1/3) -r.
Example 4. The function is given by f(x) (xl- 9x3,-7x3,-9xl- 7x2- 7x3)-for x S2. This example is due to Myerson [16] and is often used in game theory

literature. There are three stationary points: (1, 0, 0)-, (0, 1, 0)-r, and (0, 0, 1) -r. But
f just has one robust stationary point: (1, 0, 0) -. The path followed by the algorithm
is illustrated in Fig. 3 where the starting point is (1/3, 1/3, 1/3) -. The algorithm
converges to the robust stationary point (1, 0, 0)T. At the 13 + 2(k- 1) step for
k Z+, we get the following approximate robust stationary point"

xk=( 1 2-k 2-2k )1 + 2-k + 2-2k’ 1 + 2-k + 2-2k’ 1 + 2- + 2-2k
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e(3)

e(1) e(2)

FIG. 4. The path of the algorithm of van der Laan and Talman on S2 for d 2 and v
(1/3,1/3,1/3) "I-

It is easy to see that for each k E Z+, xk is in fact a 2-k-robust stationary point of f.
By using this example and the same starting point, we also implement the well-known
algorithm of van der Laan and Walman [13] (see also Doup and Walman [4]) based on
the vector labelling and the V-triangulation [4]. No matter how fine triangulation is
employed, their algorithm converges to the stationary point (0, 1, 0) -r, which is not a
robust stationary point. The path is shown in Fig. 4.
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RECIPROCAL REALIZATIONS ON THE CIRCLE*
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Abstract. Reciprocal realizations on a circle are defined. The concepts of minimality, interior
observability, and exterior observability are introduced and related to each other, using geometric
methods. In particular, the concept of a splitting subspace plays a central role.
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1. Introduction. Stochastic models of random phenomena that are spatially
distributed are useful in applications such as image processing and computer vision;
see, e.g., the paper by Levy [3] and references therein. It is often assumed then
that the given object, a random process y, satisfies some strong assumptions about
its dependency structure, e.g., that y is a Markov field. In order to relax these
assumptions we may look for a model where y is the output of some underlying process
x satisfying these stronger assumptions, i.e., a stochastic realization of y.

This is a natural generalization of the idea of state-space modeling of time series
and leads naturally to the question whether it is possible to develop some stochas-
tic realization theory for spatially indexed stochastic processes in the spirit of the
geometric stochastic realization theory of Lindquist, Pavon, Picci and Ruckebusch

Moreover, let us mention that the idea of realizing y as the output of a Markov
field is present in the literaure on so-called hidden Markov models.

In this paper, as a prototype problem, we shall study stochastic processes de-
fined on a discrete circle 1". The circle provides a parameter set that exhibits spatial
properties but still has the advantage, from an analytical point of view, of being one
dimensional.

More specifically, we shall study processes which are outputs of reciprocal state
processes and define reciprocal realizations. Moreover, we shall define stochastic min-
imality, interior observability, and exterior observability for a reciprocal realization
and relate these concepts to each other. Our approach will be geometric in the spirit
of Lindquist and Picci, and the concept of a splitting subspace will play an impor-
tant role when discussing minimality. For reciprocal realizations it turns out that
the concept of minimality is quite subtle, since minimality of a reciprocal realization
and minimality of its corresponding splitting subspaces do not coincide, as happens
in stochastic realization theory for time series.

Reciprocal processes indexed by a discrete set were studied by Levy, Frezza, and
Krener in [4], where they obtained finite-dimensional models for representing a certain
class of Gaussian reciprocal processes. Such a model will be the basic ingredient in
a reciprocal realization. Since our approach is geometric, we shall reformulate in a
geometric language some of the results in [4] as well as add some new results on
reciprocal processes.

Received by the editors April 8, 1994. Accepted for publication (in revised form) November 10,
1994.

Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of
Technology, 100 44 Stockholm, Sweden.
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We shall briefly discuss the construction of reciprocal realizations. For example,
it turns out that when using the models of [4] for representing the state process
of a reciprocal realization, then the realization must be external; i.e., it cannot be
constructed out of the given process y only. However, as will be pointed out, the
theory on the construction of reciprocal realizations is far from complete.

Let us comment on the choice of a reciprocal state process for a realization on the
circle. The reason that the state process x is reciprocal rather than Markovian is sim-
ply that the past and future of x with respect to a point in coincide. Therefore, the
Markov property is not very interesting on l’. A reciprocal process has the property
that, for any interval, the values of the process in the interval are conditionally inde-
pendent of those in the exterior, given the values of the process on the boundary of
the interval. Hence, the reciprocal property is meaningful on 1", and it seems natural
that a state process of a stochastic realization on 1" should be a reciprocal process.

The paper is organized as follows. In 2 we recall and reformulate in a geomet-
ric setting some of the results on reciprocal processes derived by Levy, Frezza, and
Krener [4]. Moreover, we shall add some new results on reciprocal processes. In 3
we introduce reciprocal realizations and analyze minimality and observability with
geometric tools. In 4 we discuss the construction of reciprocal realizations.

2. Reciprocal processes.

2.1. Preliminaries. In this paper we shall investigate random phenomena de-
fined on a discrete circle 1". 1" has T elements and is indexed from 0 to T- 1. All
arithmetics on 1" is to be interpreted modulo T; e.g., we shall identify -1 with T- 1.
The closed interval [s, t] C_ l" will denote the set {s, s / 1,..., t- 1, t}, and the open
interval (s, t) C_ 1" will denote the set {s + 1, s / 2,..., t- 1}.

Since we are interested in stationary processes on 1" which are outputs of systems
with reciprocal state processes, we need first to review some of the theory of reciprocal
processes on . We shall follow Levy, Frezza, and Krener [4] but also add some results.
Moreover, the approach taken is geometric and in the spirit of Lindquist, Pavon, and
Picci [6, 8].

Let H be a Hilbert space. If M C_ H is a closed subspace, we write the orthogonal
projection onto M as EM. If is an n-dimensional column vector with elements
ri E H, we shall say that the vector itself belongs to H, i.e., r/E H. We write EM
for the vector [EM]I,...,EMln] and say that the vectors x [rl, ..., rn]’ and
Y [A1, ..., Am]’ of elements in H are orthogonal if (r], Aj) 0 for all i,j.

If A and B are closed subspaces of H, EAB denotes the closure of the set
{EAb; b B} and A V B denotes the smallest closed vector space containing A
and B. The following lemma will prove useful [5, p. 813].

LEMMA 2.1. Let A and B be closed subspaces of H. Then A EAB((AnB+/-).
The concept of conditionally orthogonal subspaces is of fundamental importance

in stochastic systems theory. We say that the subspaces A and B are conditionally
orthogonal given the space X, which we shall write as A 2_ B IX if for all a A and
b B it holds that (a Eza, b EXb) O, which is equivalent to EAvXb EXb for
b B [5, p. 813]. The following lemma can be found in [5, p. 813].

LEMMA 2.2. If A +/- B IX then A B C_ X.

2.2. Reciprocal families of subspaces. In this paper all processes are zero-
mean vector-valued Gaussian processes. Due to the Gaussian property, conditioning
operations are linear projections onto relevant subspaces. Therefore, it is natural to
analyze processes by means of the subspaces they generate. This way of handling
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processes has the convenient property that any possible linear dependence between
the components of x(t) for a given vector process x is factored out of the analysis. To
this end, we make the following definitions. Let x be an n-dimensional vector process
on . The space Xt generated by x at t is defined as Xt :-- span{xi(t);i 1,..., n}.
Moreover, let [t0,tl] be an interval on T. The spaces Xi[to, tl] and Xe(to, t) are
defined as Xi[to, t] :-- Xto V Xto+ V... V Xt and X(to, t) :--- Xtl V X+I V... V
Xo_ V Xto. Finally, define Xt := Xi[t- 1, t / 1] and X := xe(t- 1, t / 1).

Moreover, we notice that a family (Xt; t E of subspaces generated by a sta-
tionary process with unitary shift U will have the property that UXs X+s for all
t, s E l’. A family of subspaces having this shift property with unitary operator U is
called a stationary family of subspaces.

A process x on is reciprocal if, given an arbitrary interval [t0,t] , the
values of x in the interior and exterior of this interval are conditionally independent
given x(to) and x(tl); see [4, p. 1013]. In the Gaussian case it suffices to deal with
conditional orthogonality, rather than conditional independence.

The family of subspaces generated by a Gaussian reciprocal process will possess
a certain geometric structure.

DEFINITION 2.3. A family {Xt; t } of subspaces is reciprocal iffor any given
interval [to, ti] it holds that X[to, tl] and Xe(to, tl) are conditionally orthogonal given

Xto V Xt i.e.,

(2.1) Xi[to,t] _L Xe(to,t)]X,o V X,.

REMARK 2.4. /f specialized to the interval It 1, t + 1], the condition (2.1)
reduces to Xit +/- X Xt_ V Xt+I and especially for any Xt it holds that Ez
Ex,-vx,+IA.

Given a stationary reciprocal family of n-dimensional subspaces {Xt} we can
construct a vector process {x(t)} such that the components of x(t) form a basis
for X, in the following way. Let the set {r/l,..., r/n} be a basis for X0 and set
x(0) :- [rh,..., r/n]’. Then the process {x(t)} defined as x(t):- [Utr/1,..., Utr/n] is
a basis process for {Xt} in the sense that for every r/ X, there is a unique a E ]Rn

such that ? a’x(t).
The process (x(t)} is clearly reciprocal. In [4] it is shown that a stationary

reciprocal process (x(t)} satisfies the system

(2.2) x(t) F_x(t- 1)+ F+x(t + 1)+ d(t),

where d is a certain noise process of which the covariance structure is entirely specified
by the matrices F_ and F+. The matrices F_ and F+ are determined by the normal
equations

(2.3) [P rl] IF_ F+]

where F is the covariance matrix F := Ex(t)x(t + k)’.
The system (2.3) always has a solution, but the solution need not be unique. The

question of uniqueness is settled by the following lemma.
LEMMA 2.5. The system (2.3) has a unique solution if and only if the vector sum

Xt_ V Xt+l is direct.

Proof. Since the second matrix in the right-hand side of (2.3) is the Gram matrix
of the set {x(t- 1),... ,xn(t- 1), x(t / 1),... ,x(t + 1)}, the conclusion follows. 0
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The process d is constructed as d(t) := E(X)x(t) and therefore has the property
that d(t) is orthogonal to x(s) when t s. The process d is called the two-sided inno-
vation process. The two-sided innovation process of a stationary reciprocal process is
stationary. Moreover, in [4] it is shown that d is locally correlated, i.e., d(t) _1_ d(t + k)
if Ikl > 1.

The following lemma gives a necessary and sufficient condition for the two-sided
innovation process of a reciprocal process to be identically zero.

LEMMA 2.6. The two-sided innovation process d of a reciprocal process x is

identically zero if and only if Xt c_ (Xt-1 V Xt+1).
XProof. The result follows from d(t) E(X;)x(t) x(t)- E x(t) x(t)-

EX-lVX+x(t), where the last equality follows from reciprocity.
If we identify the process x with a vector constructed by the random vectors

{x(O),...,x(T- 1)}, i.e., x’ [x(O)’,...,x(T-1)]’, and make the corresponding
identification for d, the system (2.2) can be written in matrix form as

(2.4) Fx=d.

The matrix F is the block-circulant matrix F circ(I,-F+, 0,..., 0,-F_). We say
that the model (2.4) is well posed if F is invertible.

We shall now introduce a class of reciprocal processes having well-posed models.
This is the class of nonsingular processes, essentially the class studied in [4]. The
family {Xt} of subspaces is nonsingular if the vector sum Xo/X1 /.../XT- is direct.
We say that the vector process {x(t)} is nonsingular if it generates a nonsingular family
of subspaces. Nonsingularity means that for all t E , Xt is linearly independent of

X. Another way of characterizing nonsingularity is that for all t E 1" the components
of d(t) form a basis for (X) +/-, as stated in the following lemma. The proof is simple
and omitted.

LEMMA 2.7. A stationary reciprocal process x is nonsingular if and only if its
two-sided innovation process satisfies E d(t)d(t)’ > O. Moreover, if x is nonsingular
then x is uniquely determined by d.

For reciprocal families nonsingularity is a "local" property, as shown in the fol-
lowing lemma.

LEMMA 2.8. The reciprocal family is nonsingular if and only if Xt ] (Xt- /

Xt+l) 0 for all t .
Proof. If the family is nonsingular it clearly holds that the intersection is trivial.

Conversely, suppose that the intersection is trivial. Suppose, to get a contradiction,
that the family is not nonsingular. Then there is a t such that Xt C]X 0; hence let

Xt C) X and A 0. It now follows that/k EX; EX-Ivx+ i ;k, which is
a contradiction. [:]

EXAMPLE 2.9. Let {x(t)} be a nonsingular stationary reciprocal process on
such that dim Xt n for all t . Since {Xt} is nonsingular, it especially holds
that dim(Xt_ k/Xt+) 2n. Hence, by Lemma 2.5 there is a unique model x(t)
F_x(t 1) + F+x(t + 1) + d(t) satisfied by x. Moreover, x is uniquely determined from
its two-sided innovation process d [4].

Form another process {2(t)} as 2(t)"= Ix(t)’, x(t + 1)’]’. It is easily verified that
is reciprocal.~Since dim(Xt_l~ /t+l) 4n, there is by Lemma 2.5 a unique model

with matrices F_ and F+ However, the model is not well posed, since the inclusion

t Xt / Xt+l

_
Xt-1 V Xt V Xt+l V Xt+2 t-1 /-t+l
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implies that (t) O. Hence, the process is not nonsingular and has a degenerated
but unique model 5c O.

Necessary and sufficient conditions on {Xt} for its corresponding model (2.2) to
be well posed are not known.

From now on in this paper, we shall focus on nonsingular reciprocal processes.
The reason for this is that this is a class of reciprocal processes for which we know
that the model Fx d is well posed. Following Levy, Frezza, and Krener [4], we
normalize the three-term difference equation (2.2) to obtain the symmetric descriptor
model

(2.5) Mx(t) N’x(t- 1)+ Nx(t + 1) + e(t),

where M := D1, N := DIF+, and e(t):= Dd(t).
Letting A be the block circulant A := circ(M,-N, 0,...,-N), the normalized

model can be written

(2.6) Ax e.

It follows that the one-step covariance of the noise e is Ee(t)e(t + 1)’ -N.
Hence, the covariance matrix of e is Eee A, and multiplying (2.6) with e’ from the
right yields

(2.7) Exe’= I.

From (2.7) it follows that e is the conjugate process of x.
In [4] it is shown that the solution x to the system Ax e is a reciprocal process if

A is positive definite and e is a stationary locally correlated process with Ee(t)e(t)’
M, Ee(t)e(t + 1)’ N and Ee(t)e(t + k)’ 0 if Ik t > 1. The solution of the
well-posed system Ax e is also a stationary process. Thus we have the following
theorem.

THEOREM 2.10. The solution x of the well-posed system Ax e on is a
stationary reciprocal process,

Proof. The fact that x is a reciprocal process follows from [4]. To prove stationar-
ity, it is enough to show that the covariance matrix of x is a block circulant. Since the
model is well posed, we have that x A-e and the covariance of x can be written
Exx’ A-Edd’(A-) A-1. The inverse of a block circulant is a block circulant
[1, p. 181]. Hence, A-1 is a block circulant.

We now summarize the results on reciprocal families of subspaces.
THEOREM 2.11. Let {Xt} be a family of finite-dimensional subspaces, with basis

process {x(t)}, such that XtC(Xt- YXt+) 0. Then {Xt} is a stationary reciprocal
family if and only the basis process {x(t)} satisfies the system

Mx(t) N’x(t- 1)+ Nx(t + 1)+ e(t),

where e is a stationary locally correlated process satisfying the necessary condition
Eee A > O, and A circ(M,-N, 0,...,-N).

For a nonsingular stationary family of subspaces the reciprocal property has the
following "local" characterization.

COROLLARY 2.12. A stationary family of nonsingular subspaces {Xt} is recipro-
cal if and only ifX _l_ X X_ / X.
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2.3. An abstract description of F_ and F+. In this subsection we shall
present abstract counterparts of the matrices F_ and F+.

Let {Xt} be a given nonsingular stationary reciprocal family and {x(t)} be its
basis process. For every A E X-1 there is an a E n such that A ax( 1).

We shall now show that F_ is the matrix representation of an operator acting
on X-1 in this basis. By shifting, UA a’x(O). Employing (2.2), we get UA
a’F_x(-1) + a’F+x(1)+ a’d(O). The next step is to project orthogonally onto the
subspace X-1 V X1, which yields

(2.8) EX-lVX1uA a’F_x(-1) + F+a’x(1),

since d(0) _1_ X. Finally, let Ht be the projection onto Xt along X. By applying
H-1 to (2.8) we get II_gX-iVxVA a’F_x(-1).

Motivated by the previous discussion we define the operator A_ X_ --+ X_ as
A_A := H_EX-vXIu for A X-1.

In particular, if we let xk(-1), which corresponds to a being the kth unit
nvector in ’, we get that A_xk(-1) j=l (F_)k,jxj(--1). Hence, F_l X_ X-1

is the matrix representation of the operator A_ in the basis corresponding to x(-1).
Analogously, we define A+ X1 -, X1 as A+A := I]lEX-VxU, for A X1, and

F+ X1 X1 is the matrix representation of A+.
3. Reciprocal realizations. We shall now introduce the main objects of this

paper, namely, reciprocal realizations on .
3.1. Geometric description of a realization. Given a nonsingular stationary

reciprocal process x on we can define a process y as y(t) :- Cx(t). This definition
makes y a stationary, but not reciprocal, process on l’. If C is of full rank, then y will
be nonsingular. However, the stationary process y has a very detailed structure as
the output of a reciprocal process, and it makes sense to say that we have a reciprocal
realization of y. The purpose of this chapter is to derive and discuss properties of
reciprocal realizations. In the next chapter we shall discuss the construction of a
realization, starting from the given process y.

DEFINITION 3.1. The well-posed system

Mx(t) N’x(t-1)+Nx(t+l)+e(t),(3.1) y(t) Cx(t),

where M, N, and e satisfy the conditions of the preceding section, is a reciprocal
realization of y.

We say that the process x is the state process of the realization and that Xt is the
state space. As we will see, though, the relevant splitting subspaces are of the form
Xs V Xt. This differs from Markovian realization theory, where the state space is the
splitting subspace.

We shall now point out that the requirement that the state process x be non-
singular has advantages, as well as shortcomings. As advantages we regard the fact
that nonsingular reciprocal processes are well studied and enjoy well-posed models of
simple structure and that the condition for a stationary family of subspaces {Xt} to
be reciprocal reduces to the simple condition

xt, +/- v

As a shortcoming, we regard the result shown in the next section, that a reciprocal
realization is necessarily external, which follows from the required nonsingularity of
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x. This insight, gained by formulating the realization problem on has motivated us
to further investigate singular reciprocal processes, an investigation currently being
done.

In order to analyze reciprocal realizations with geometric tools, we shall introduce
some relevant subspaces. The space H(y) is defined as the space spanned by y, i.e.,
H(y) :- span{yi(t); t e V, 1,...,m}.

The essence of a realization can now be expressed in a geometric and coordinate-
free form. The state process x of (3.1) generates a stationary reciprocal family of
subspaces {Xt}, and since the family is nonsingular, reciprocity is equivalent to

(3.2) X +/- X) X_l V X1.

On the other hand, given a nonsingular family of subspaces satisfying (3.2) we
can introduce a basis and get a three-term difference equation as

Mx(t) N’x(t- 1)+ Nx(t + 1) + e(t).

Furthermore, by stationarity, it is easily seen that y(t) Cx(t) for some matrix C is
equivalent to y(0) E X0. Hence, an equivalent description of (3.1) is that we have a
nonsingular stationary family of subspaces {Xt} such that

1. X +/- X) X--1 V Xl,

e Xo.
We shall now give an alternative equivalent geometric description of a reciprocal

realization. This description employs the concept of splitting subspaces and opens
the door to the geometric stochastic realization theory as developed in, e.g., [5]-[7].

Recall that, if H1, H2, and X are subspaces of some Hilbert space H, then X is
a splitting subspace with respect to H and H2 if H1 +/- H21X. Moreover, a splitting
subspace X is minimal if there is no proper subspace of X that is a splitting subspace
with respect to H and H2.

We introduce the following subspaces of H(y). Let Is, t] c_ T. The subspaces
Hi[s,t] and He(s,t) of H(y) are defined as Hi[s,t] "= span{yi(k); k e [s,t],i
1,..., m} and He(s, t) "= span{yi(k); k (s, t) c, i 1,..., m}. Note that the relation
Hi[s, t] He(t, s) holds by symmetry properties of .

Note that we can write H(y) as H(y) Hi[s, t] v H(s, t). For a given realization
we see that the condition y(t) Xt implies that Hi[s,t] C_ Xi[s,t] and He(s,t) C_
Xe(s, t). From this we get that

(3.3) Hi[s, t] +/- He(s, t) X v Xt.

Hence, the space X8 V Xt is a splitting subspace with respect to Hi[s, t] and He(s, t).
In contrast to Markovian realization theory on the real line or the integers, we notice
that here the splitting subspace is not a space generated by the state process at a single
point but instead the splitting subspace is the vector sum of the spaces generated by
the state process at two different points in the index set .

We shall now show that the splitting relation (3.3) completely captures our idea
of a realization.

THEOREM 3.2. For a nonsingular reciprocal stationary family of subspaces {Xt}
the following are equivalent:

1. H _L H X_I VX1,
2. e x0.
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Proof. We have already shown that (2) = (1). Suppose that (1) holds. Then by
Lemma 2.2 it follows that H Cl H C_ X-1 V X1, i.e.,

(3.4) y(-1), y(1) e X-1 V Xl.

By shifting (3.4) with U2, we get y(1), y(3)
(X1 V X3). But since the family of subspaces is nonsingular, every sum of the type
X8 V Xt is direct. This implies that (X_ V X1) Cl (X1 V X3) X1, and we conclude
that y(1) E X1, which, shifted, yields that y(0)

In view of Theorem 3.2 we make the following equivalent definition of a reciprocal
realization on .

DEFINITION 3.3. Let {y(t); t 1"} be a stationary process. A nonsingular
stationary family of finite-dimensional subspaces {Xt} is a reciprocal realization of
{y(t); t e V} if

1. X X X_l V Xl,

Ht VZl.

3.2. Minimality and observability. The general goal of state-space modeling
of some phenomena is to achieve data reduction for the behavior of the phenomena.
In order to achieve maximal data reduction, the state space should be minimal.

DEFINITION 3.4. A reciprocal realization of {y(t); t } is minimal if the corre-
sponding reciprocal family of subspaces {Xk} has the property that there is no proper
subspace o C Xo such that {2t} is a reciprocal realization of {y(t); t }.

Due to stationarity, the inclusion )0 c X0 holds if and only if t C Xt for all
te.

Note that from this definition of minimality it does not follow that all minimal
realizations of a given process y have the same dimension.

As previously seen, in realization theory on the relevant splitting subspaces are
of the form X8 V Xt, whereas the definition of minimality is given in terms of the
state space Xt. Clearly, it is natural to try to relate these two concepts of minimality
to each other. In the following theorem we give a sufficient condition for a reciprocal
realization to be minimal.

THEOREM 3.5. Let {Xt} be a reciprocal realization. If there is a T such that
the splitting subspace Xo V X is a minimal splitting subspace, then the realization is
minimal.

Proof. Suppose there is a reciprocal realization {-t} such that )o c_ X0. We
have to show that X0 X0. Since X0 VX is a minimal splitting subspace, it follows
that 0 V) X0 V X. By directness of the vector sums it follows that X
and stationarity implies that )0 X0.

In order to analyze minimality further we shall introduce the concepts of interior
and exterior observability. Fix any interval [0, t] and suppose that y is given on [0, t].
Now let (Xt} be a realization. Clearly, an element in the subspace (XoVXt)H[O, t] +/-

cannot be distinguished from zero by observing y on [0, t] and is therefore called
unobservable. Note that this definition is a special case of a general definition of
observability given in [7].

DEFINITION 3.6. Let [0, t] be an interval. The realization {Xt} is interiorly
observable on [0, t] if (Xo V Xt) N Hi[0, t] +/- 0.

REMARK 3.7. Due to stationarity, we can exploit the translation invariance and
restrict the analysis to intervals of the type [0, t], because on any interval of the type
Is, t] can be shifted onto an interval of the type [0, t].
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By Lemma 2.1 the space Xo V Xt can be decomposed as

Xo V Xt EZVZ’Hi[O,t] (R) (Xo V Xt) N Hi[0, t] +/-.

From this decomposition we read that interior observability is equivalent to the equal-
ity

(3.6) Xo V Xt ExvxHi[0, t].

DEFINITION 3.8. Let [0, t] be an interval. The realization {Xt} is exteriorly
observable on [0, t] if (Zo V Xt) Cq H(0, t) +/- 0.

REMARK 3.9. The situation here is analogous to that of Markovian realization
theory, where it is necessary to introduce the two concepts observability and con-
structibility.

The next theorem states that a splitting subspace X0 V Xt is minimal if and only
if the realization is interiorly and exteriorly observable on the interval [0, t]. The
theorem is a modification of Proposition 1 in [7, p. 273].

THEOREM 3.10. Let {Xt} be a reciprocal realization. The splitting subspace
Xo V Xt is minimal if and only if the realization is interiorly and exteriorly observable

The next theorem states that for a given interval Is, t], all minimal splitting sub-
spaces X8 V Zt with respect to Hi[s, t] and H(s, t) have the same dimension. The
theorem follows directly from a general theorem by Lindquist and Picci [5, p. 822].

THEOREM 3.11. Let Is, t] C_ . All minimal splitting subspaces of the form
Xo V Xt, with respect to Hi[O, t] and H(O, t), have the same dimension.

3.3. An observability matrix. We shall now give an algebraic criterion for a
realization defined by a triplet (M, N, C) and a noise process e to be interiorly observ-
able on [0, t]. Recall that the block-circulant A is defined as A circ(M, -N, 0,..., 0,
-N). Since x- A-le and Eee A, it follows that Exx A-1. Let F := A-1. In
the case that T is even we have that

rr=circ(r0, rl,...,r_l,F, _1,...,F1).
The case of T odd is analogous.

Consider the relation (3.6); since the space on the right-hand side is included in
the space on the left-hand side, the realization is interiorly observable on [0, t] if and
only if the inclusion X0 V Xt c_ ExovXHi[O, t] holds. Equivalently, we require that

xi(O),xi(t) e span{)j(s); s e [0, t],j 1,...,m} for i- 1,...,n,

where )j(s)"= EXVX*yj(s).
The condition (3.7) can be expressed as a rank condition on a certain observ-

ability matrix. To this end, let s E [0, t]; since y(s) Cx(s), we get that )(s)
C EXVXx(s). The projection EXVXx(s) can, with suitable matrices H0 and Ht, be
written as EXVX*x(s) Hox(O)+ Htx(t). The normal equations for determining H0
and Ht are E [x(s)-Hox(O)-Htx(t)]x(O)’ 0 and E [x(s)-Hox(O)-Htx(t)]x(t)’ O.
Taken together we get the following system of equations:

[Ex(0)x(0)’ E x(O)x(t)’][E x(s)x(O)’ E x(s)x(t)’] [H0 Ht] [E x(t)x(O)’ E x(t)x(t)’J
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Recall that Ex(s)x(s / k)’ Fk, which yields E x(s)x(O)’ r’s, E x(s)x(t)’
Ft-8 and E x(O)x(t)’ Ft. Since the process x is nonsingular, the normal equations
have a unique solution for all t E T, and )(s) can be written as

r,]
-1

CF0

.cr 

Stacking all )(s)’s yields

9(2)

CFt
CFt-1
CFt-2

CFo

Lx(t)J

By this calculation we are lead to define an observability matrix, which as shown
can be calculated from the data (M, N, C), for which a rank criterion can be stated.

DEFINITION 3.12. The observability matrix (.9(t) is defined as

o(t) .=

"CF0

cr

cr

CFt
CFt-1
CFt-2

CFo
The condition (3.7) can now be expressed as ker O(t) 0, and we get the following

theorem on interior observability.
THEOREM 3.13. The realization (M, N, C) is interiorly observable on [0, t] if and

only if ker O(t) O, i.e., if rank O(t) 2n.
We conclude this section with a numerical example.
EXAMPLE 3.14. Let T 10 be the length of and let the matrices

M= 4 N= 1
and C= [1 0]I0 1

define a reciprocal realization of a process {y(t)} as in Definition 3.1.
The covariance matrix R Eyy can be computed as

R circ(0.41,-0.08,-0.02,-0.01,-0.002,-0.001,-0.002,-0.01,-0.02,-0.08),

and we conclude that {y(t)} is stationary. It is easy to verify that R- is not a
tridiagonal circulant, and consequently, {y(t)} is not a reciprocal process. Hence, the
dimension of a minimal realization is obviously 2.

The matrix (.9(2) is a 3 x 4 dimensional matrix and its rank cannot be 4, as
required for interior observability on [0, 2]. Hence, the splitting subspace Xo V X2 is
not a minimal splitting subspace.

The observability matrix 0(3) is

0.4136

0(3) -0.0751
-0.0223

L-O.OO67

0.0322 -0.0067 0.01821
-0.0894 -0.0223 0.0615|
-0.0265 -0.0751 0.2074|
-0.0077 0.4136 0.0322J
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and has rank 4. Consequently, the realization is interiorly observable on [0, 3]. If the
realization is also exteriorly observable on [0,3], we can conclude by Theorem 3.10
that Xo V X3 is a minimal splitting subspace and by Theorem 3.5 that the realization
is minimal. Since exterior observability on [0, 3] is equivalent to interior observability
on [0, 7], we need only check that rank (9(7) 2, which happens to be the case, as
computations will show.

4. Construction of reciprocal realizations. The realization problem amounts
to the construction of a stochastic realization of a given process. In this paper the
given process--y, saymis a stationary process defined on T, and the objective is to
produce a reciprocal realization of y, i.e., to find a triplet (M, N, C) and a locally
correlated driving noise process e such that

Mx(t) N’x(t-1)+Nx(t+l)+e(t),(4.1) y(t) Cx(t).

The reciprocal realization problem is equivalent to the following geometric prob-
lem. Given the stationary process y, find a minimal stationary nonsingular reciprocal
family of subspaces (Xt} such that H 2_ H IX_l V X1.

In general, stochastic realization is a two-step procedure. First, we try to find
a model for the process to be realized. In our setting this amounts to finding the
matrices (M, N, C). Unfortunately, this problem, which we shall discuss in the next
subsection, is still unsolved. Second, we must construct the state process x of the
realization. In the following we show that the realization must be external and how
to construct an external realization.

4.1. The covariance factorization problem. A realization (4.1) can be re-
garded as a mapping from the input noise e to the output y, which we can write

(4.2) y We.

Since y(t) Cx(t), we get that y (IT (R) C)x, where (R) denotes the Kronecker
product. Furthermore, x satisfies Ax e, or equivalently, x A-le. Recall that
Exe’ I and Eee= h. Hence, y (IT (R) C)A-e and we define W as

W :- (IT (R) C)A-.
Since the process y is given, its second-order properties are at hand and we let Rk be
defined as Rk :-- Ey(t)y(t + k)’. Moreover, let R denote the covariance matrix

R :- Eyy;

in the case of T even it follows that

R circ(R0, R1,..., R__, R, R’_,..., R).
The case of T odd is analogous.

By straightforward calculations we get

R Eyy WEeeW WAW.
Inserting the expression for W, we get

R (IT (R) C)A-1(IT (R) C’).
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The procedure of going from the given matrix R to the triplet (M, N, C) is clearly
a matrix-factorization problem. Moreover, we see that (M,N, C) are determined by
the covariance data of y. Note that the smallest possible dimension of M is the
minimal dimension of the realization. Necessary and sufficient conditions for a block-
circulant R to admit such a factorization are not known.

Although covariance factorization is an inevitable step in constructing a realiza-
tion we shall not investigate the factorization problem further in this paper but merely
assume that the given process y is such that its corresponding R is factorizable and
that the triplet (M,N, C) is at hand. Let us just remark that the problem, as it
stands, does not seem elementary.

4.2. Nonexistence of internal realizations. If the state process x can be
constructed using only the given process y we say that the realization is internal,
which can be expressed as Xt C_ H(y) for all t E . Otherwise, the introduction of
external random quantities is necessary in order to construct a realization and the
state process will live in a larger space than H(y), and we say that the realization
is external. This larger space containing H(y) V Xo V X1 V... V XT-1 is called the
ambient space of the realization.

For the case of nonsingular reciprocal realizations it turns out that internal re-
alizations can never occur, except for the trivial case where y is already a reciprocal
process itself. This is a consequence of the requirement that the state process be
nonsingular and we give the following theorem.

THEOREM 4.1. Suppose that is y is not reciprocal. Then there are no internal
reciprocal realizations of y.

Proof. To have an internal realization of y we must have a nonsingular reciprocal
family of subspaces {Xt} such that Xt C_ H(y) and consequently, X0 V Xl V... V
XT_

_
H(y). Moreover, the vector sum X0 V X1 V... V XT-1 must be direct.

Now if the given process y is an m-dimensional process, then dimH(y) <_ rnT.
Since y is not reciprocal itself, for a realization it must hold that dimXt > m and by
the directness of the sum it necessarily follows that dim(X0 VX V... V XT-) > rnT.

Hence, the existence of a nonsingular internal reciprocal realization would imply
the contradiction

mT >_ dimH(y) _> dim(X0 V X1 /’’" k/XT_I) > rnT. D

4.3. External realizations. In this subsection we shall show how to construct
external realizations by introducing random quantities that are orthogonal to H(y),
but that will help to span the state process in a realization.

Suppose that we are given the process y, such that its covariance matrix R can
be factorized to give a minimal triplet (M, N, C). The problem is now to construct a
driving noise e, which, fed into the system, gives exactly the process y. Since internal
realizations are impossible, we cannot construct e out of y only but have to introduce
some external random quantities. The explicit construction will now be given.

To make the calculations more transparent we will work with a white driving noise
sequence u instead of e. Hence, let K be a square matrix solution to the equation
K’K A-1. Observe that K is invertible. Define u as u := Ke; then it is easily seen
that Euu’ I. The relation y We is now transformed to y WK-lu. By letting
S := WK- we have the relation

(4.3) y Su.
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if we let S denote the pseudoinverse of S [9, Chap. 6.11] we can define an nT nT
matrix H as

(4.4) II := I- SaS.
LEMMA 4.2. H is a projection matrix.

Proof. We show that H is symmetric and idempotent. SaS is symmetric, which
implies that II is symmetric. Furthermore, H2

SaSSaS I- SaS H, since SaSS
We notice that since H is a projection matrix it is positive semidefinite and thus

admissible as a covariance matrix. We can now characterize all possible white-noise
solutions u to the equation y Su, with y given. Suppose that u is a solution. Then
we have Say SaSu (I H)u, which gives that u Say + Hu. If we define z as
z := Hu, we can write u as u Say + z. The covariance of z is H and z is orthogonal
to y, since E yz SEuuH SH S- SSaS 0. This decomposition suggests
how to construct the driving noise of an external realization.

THEOREM 4.3. Let y be given as in (4.3) and let z be a process on such that
H(z) _1_ H(y) with covariance Ezz’ H. Then the noise (t defined as

(4.5) := Say + gz

will be white and satisfy (4.3) and consequently, defined as := K-lt will satisfy
(4.2).

Proof. Since y is in the range of S and SII 0, we have that S SSay + SIIz
y. Furthermore, E’= SaEyy’(Sa)’+H SaS(SaS)’+H SaSSaS+H SaS+H
I. Hence, is white.

Thus given any process z with the properties of Theorem 4.3, we may choose the
basic ambient Hilbert space to be H H(y) (R) H(z).

5. Conclusions. Results on reciprocal processes, originally obtained by Levy,
Frezza, and Krener [4], are reformulated in a geometric framework. Some new results
on reciprocal processes are added.

A nonsingular reciprocal realization is defined as a system of the following type:

Mx(t) Nx(t-1)+N’x(t+l)+e(t),

where the covariance structure of the driving noise {e(t)} is entirely specified by the
matrices M and N.

The nonsingularity of the state process, expressed as the vector sum X0 V X1 V
V XT-1 being direct, enables the characterization of a reciprocal realization in

a coordinate-free form. With this geometric characterization at hand we can apply
results from stochastic realization theory, as developed by Lindquist, Picci, and others,
to define and analyze minimality and observability of a reciprocal realization.

As it turns out, the requirement that the state process be nonsingular implies
that a reciprocal reMization is necessarily external.

However, under the assumption that the model (M, N, C) is known, we show how
to construct the driving noise of an external reciprocal realization.

The nonexistence of internal realizations, caused by the requirement that the state
process be nonsingular, has initiated research on models for representing reciprocal
processes that are not nonsingular. For example, consider the model

x(t + l) Ax(t) + w(t),(5.1) x(T) x(O),
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where w is a white noise defined on . It is straightforward to show that this model
admits a well-posed solution if and only if A avoids certain eigenvalues on the unit
circle. Moreover, if Q :- E w(t)w(t)’ > 0, it follows, using techniques from [4, pp.
1018-1019], that x is a nonsingular reciprocal process. Moreover, the two models
(A, Q) and (M, N) are related by a certain algebraic Riccati equation. This algebraic
Riccati equation is equivalent to a certain factorization of A in which the factors are
circulants themselves. However, even if Q is only positive semidefinite, the solution
of (5.1) is still a reciprocal process; this was shown in the continuous-time case by
Krener [2]. Hence, this may be a way to bypass the problem of nonsingularity in
reciprocal realization theory on 1".

It should be pointed out, though, that some results in the geometric analysis
seem to depend on the directness of the sum Xo /X1 /X1 /... /XT-1. Hence the
geometric theory also may have to be extended to deal with the nonsingular case.
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1. Introduction. In this paper, we consider directly the following linear evolu-
tion systems on a separable Hilbert space H (the inner product and induced norm in
S are denoted by (., .) and I1" II, respectively):

(Eo) (t) AX(t) + bu(t),

where A is the infinitesimal generator of a C0-semigroup on H and the input element
b is not necessarily admissible in the sense of [7]. Throughout the paper, A and b are
assumed to satisfy the conditions H1, H2, and H3.

Hypothesis H1. The operator A has compact resolvent. We suppose that the
spectrum a(A) {n, n E IN} is simple.

Hypothesis H2. The domain 7:)(A*) of the adjoint operator A* is a Hilbert space
with the graph norm. I)’(A*) is the topological dual of :D(A*). We suppose that b
belongs to T)’ (A*).

Hypothesis H3. The eigenvectors {k; k E IN} of A form a Riesz basis in H.
The biorthogonal sequence correspondingto the eigenvectors of A* is denoted by
{k; k IN} and is also a Riesz basis of H [5, p. 310]. We set bk (k,b), where
(., .) is the classical duality product on (A*) x 7)’(A*). Here, it is defined as the
continuous extension of the inner product on H (H is dense in 7:)’(A*)). We suppose
that bk = 0 for all k IN. Let dn be the distance of {An} to the rest of the spectrum
a(A). We consider the set of disks Dn, n lN centered at {An} with radius 1/2dn. Now
suppose that there exists a positive constant M such that for all (Jje Dj and
all m IN,

+ bn 2

(1) E ) /n
n----1

and

n=l,nm

bn < M < +c.
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The assumptions H2 and H3 allow us to take into account the cases of boundary
control because many linear distributed parameter systems can be formulated in the
form of (Eo) (see [7] and also [19], [15], [16]). In particular, the cases of [21], the
cantilever beam equation with lateral force control [15], [24], or moment force control
[15], heat conduction equations [7], and the wave equation [18] enter the class of the
systems considered here. For each fixed A E p(A*), the resolvent set of the adjoint
operator A*, and all r E H, it follows from the hypothesis H3 that

The condition (1) forces the constant K to be bounded uniformly with respect to
/k [Jye D (see 3). In certain cases, the condition (2) of H3 implies the condition
(1). See the examples in 2.

A closed linear operator A (A) H is called regular spectrM if its resolvent
is compact and its eigenvectors form a Riesz basis of H [20]. Sun has proved in [21]
that under the hypothesis H1, with b H, and a stronger hypothesis than H3, the
following condition is necessary and sufficient for the operator A + b(., h} (h H) to
be regular spectral and to have the spectrum {v; k } assigned:

(3) v-
bk

More results on spectrum assignment via linear feedback at the boundary have been
obtained in [6], [12], [11], [15], and [16]. Notably, Rebarber has shown that for some
cases, it is possible to assign uniformly an infinite number of eigenvalues by unbounded
but admissible linear feedback at the boundary [16]. In [11], Lasiec and iggiani
have given fine sufficient conditions on a(A) and b such that the operator A+ b(., h)U
is regular spectral. In [12], Liu has generalized Sun’s condition to the class of systems
for which the hypotheses H1-H3 are satisfied, with the following condition replacing
those of (1) and (2):

(4) minf >_ I1 and

for some N and > 0. However the latter condition is restrictive in the sense
that it singles out the one-dimensional wave equation and cantilever beam equation
with moment control. The aim of this paper is to expand the result of Sun to a more
general class of systems satisfying our conditions HI-Ha. It is clear that the condition
(4) implies the conditions (1) and (2) of the sumption

In this paper, we do not restrict our study to he ce of admissible input elements
[6], but consider input elements in ’(A*). However, we do restrict our study to the
case of bounded linear feedbacks (BLF): (t) {z(t),h} with h e H. We prove
that under the hypotheses HI-Hg, the condition (a) is also a necessary and sucient
condition for spectrum and Ries basis assignment. On he one hand, after each BL,
the controlled operator A + b{., h} is still regular spectral. On the other hand, given
a set of points satisfying the condition (a), we can compute explicitly the BL which
realizes he spectrum assignment. The main difference between the work of this paper
and that of [6], [12], and [16] is that our condition (heorem 1) is not only sumcient,
but also necessary. The necessary part of the condition may find applications in
controller design for infinite-dimensional linear systems (cf., [14] and [9]). Our results
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also allow us to explain why the system (Eo) cannot be exponentially stabilized by
the BLF laws when it has an infinite number of eigenvalues in e(s) >_ 0 and its
input vector b is admissible in the sense of [7]. However we prove that in some cases,
the uniform assignment of the spectrum can be achieved by BLFs. We should point
out that the construction of BLF laws is simple and systematic as illustrated by our
examples.

The paper is organized as follows. In 2, we present our main result and two
typical examples. Section 3 is devoted to the proof of our main theorem. The last
section contains our conclusions.

2. Main results. As only BLF laws are considered in the paper, the closed-loop
system is governed by the evolution equation (Ec) in the phase space H

(Ec)" (t) AX(t) + b(X(t), hI.
The linear operator A" I)(A) ---. H C :D’(A*) admits the unique extension

e (H, T’(A*))

by continuity because T(A) is dense in H. Accordingly, the linear operator

Ah A + b(., hl I)(A --, )’(A*)

admits a unique extension from H to :D(A*), still denoted by Ah, and for all x E H,
Ahx x + b(x, h).

Define now I)(Ah) {x H;x+ b(x, h) H}. We use here the same definition
for the unbounded linear operator Ah l)(Ah) ---, H as that of [16]. In the following,
instead of directly dealing with Ah, we study the unbounded linear operator Lh
A* + h(., b) because the infinitesimal generation property is equivalent between Ah
and Lh if they are adjoint w.r.t, each other. It is easy to see that (Lh) :D(A*)
from the hypothesis H2 and that Lh is closed because h(., b) is A*-compact [8, p. 194].

LEMMA 1. The unbounded linear operator Ah T)(Ah) H is the adjoint
operator of Lh with the inner product (.,.I on H.

Proof. First, let us prove that for all x H and y :D(A*2),

(5) (y, x) (A’y, x).

Given all x e T(A) and y e :D(A*2), we have

(y, fix) (y, Ax) (y, Ax) (A’y, x) (A’y, x).

Since the domain :D(A) is dense in H and both the injection H T’(A*) and the
operator are continuous from H to T’(A*), the equality (5) is true for all x H
and y T(A*).

Now, for all x e :D(L,) and y e T(A*),

(y, Ahx) (y,x + b(x, hl) (y,x) + (h,x)(y,b)
(y, fix) + (h(y, b), x (A*y + h(y, b), x)
(Lhy, x) (Lhy, x) (y, nx) (y, nx).

With )(A*) dense in (A*), Ahx L,x. This means that Ah D L.
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On the other hand, it follows from the equality (5) that for all x E 7)(Ah) and
all y e T)(A*2), (y, Ahx) (y, Ahx) (Lhy, x). Since A* is the generator of a C0-
semigroup on H, for each y e :D(A*), there is a sequence Yn T)(A.2) such that

Yn -- Y and Lhyn -- Lhy in H as n -- +co. This means exactly that x T(L) and
Ahx Lx. Hence Ah C L. Therefore Ah L.

THEOREM 1. Assume that the hypotheses H1-H3 are satisfied. Then,
1. for every h H, the feedback controlled operator Ah is regular spectral and

the spectrum a(Ah) {vk, k IN} satisfies the condition (3);
2. given a set A {vk, k IN} such that vj vk for j k, there exists an

h H for the operator Ah to have a(Ah) A if and only if the set satisfies
the condition (3). Moreover the feedback is given by

/ 1-I
n=l,nCj

where hj denotes the complex conjugate of hj for j IN.
We should understand that the infinite product in the theorem is the limit of the

sequence in 12

n---1,nj
j--l,2

that is,

lim EIh-J12=0"N--*/x

We will remark that for any set A {vk,k IN} assignable by bounded linear
feedback, there exists necessarily some integer N such that for all k, j > N and
k j, vk vj. The detailed proof and discussion of this result will be given in the
next section. The main idea is to prove that Lh, considered perturbation of A*, is
regular spectral, and that from some rank, the eigenvalues of Lh cn be located in the
disks centered at the eigenvMues of A* with radius 6]b,hn]. Moreover we show that
the corresponding eigenvectors of Lh form a Riesz bis in H. Then the same result
is true for the adjoint operator Ah. It follows from [3] that the controlled operators
Ah and Lh are the generators of C0-semigroups on H. Here we give only two typical
examples to illustrate the application of Theorem 1.

Example 1. The wave equation

utt(x, t) ux(x, t), u(0, t) 0, ux(1, t) r(t)

with the boundary control F(t). Define the Hilbert spaces H W x L2[0, 1] and
W {f; f, f L2[0, 1], f(0) 0} with the inner product

[f2]fl [gl ]} :1 [flx(X)glx(x)Tf2(x)g2(x)]dx.g2 H

Using the techniques of [7], we can formally write the control system on the Hilbert
space H

(t) A(t) + br(t).
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The semigroup generator A T(A) H is skew-adjoint with- 0

and

:D(A) { (fl, f2) e L2[0, i] x L2[0, 1], fl, flz, fizz e L2[0, 1], f2 e W,
f(0) =/1() 0}

and b(x) [0, 6(1 x)]’. By direct computation one can find the following results
Lh=A=-A+h(.,b).
The spectrum a(-A) { i(k + 1/2),k 0, 1,...} and the corre-
sponding eigenvectors

[ 1 ]isin[(k+l/2)x]k(x)= --A 2(k+1/2)
k=0,1,

Since the operator A is skew-adjoint and its resolvents are compact, the elements
{} form an orthogonal basis of H. It is evident that bk (--1)k/2, k 0, 1,
For all j 0, we have

+ ,1 12 1 2 + 1 + 1
j ’"A’n + Aj-A-n (j-n)2r2+

n=O,nej n=l n=O,nej
(j + n + 1)2r2

+ 1
j--1

1 + 1 + 1 1

(j-n)22+ + =-.
n=j+l

(J- n)22 (J + n + 1)2x2
3 k= k2x2 2

The sme result is true for j 0. Hence the condition (2) is satisfied. We show
that in this ce the condition (2) does imply the condition (1). Indeed for each
+A Oj=o Dj, there is an integer mo such that

() e [(o),(o+)]
because the distance dj {m(Aj)- m(Aj+l)l is greater than some constant. Then
for j mo + 2,

I- 1 ()+ [m() -(o + + /e) + (o + + /)- (j + /e)]
e() + (j -mo 1) e() + I o+1.

Forj mo- 1,- ()+ [m()- (too + 1/e) + (o + 1/)- (j + 1/e)]
> e() + (o -j) e() +o 1.
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According to Theorem 1, the spectrum assignable by continuous feedback must
satisfy the condition

I ( + /)1 + I- +( +/) < +.
n=0

Therefore the best stability result achievable by continuous feedback is strong stabil-
ity. However we know that the unbounded feedback F(t) -ut(1, t) exponemially
stabilizes the system [10], [18]. Moreover the resulting operator is still regular spectrM

Example 2. Consider the nilbert spce H W[0, 1] n2[0, 1] with

and the inner product

g2 H

The cantilever beam equation with the moment force control can be formally written
follows [15]

(t) A(t)+ r(t),
where the operator A (A) H is skew-adjoint with

f]=[O 1- o I]
and

/)(A) { (fl, f2); fl e W[0, 1], f2 e W[0, 1], flxxx(1) flxx(1) 0},
and b(x) [0, ’(1 x)]’.

The spectrum of-A is

a(-A) {A+k +i[kr + r/2 + O(e-k)] 2, k 1,...}.
One may find two positive constants M1 and M2 such that bmn= mn with M
m M2 for n e (see [15], [19], and also [24]). The eigenvectors of A form a
Riesz basis of H. Without loss of generality, we consider only the case where j 1.
Then we have

I .1 [(J n)r + O(e-j) + O(e-n)]2 x [(j + n) + O(e-’) + O(-n’)]2

and

]Aj A_I2 {[jr + /2 + O(e-J)]2 + [n + /2 + O(e-n)]2}2

Then we get the following inequality for some fixed number 2:

j--1 n2 +m 1 / /17/2rr2n= (J-n)2(n+j)2+nl-Y/ < ’2
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As in Example 1, the reader can verify that in this case the condition (2) also implies
the condition (1). Following Theorem 1, all set A satisfying

n----c,nO

2

can be assigned for the spectrum of the operator Ah by continuous feedback. This is
why it is possible to assign the spectrum uniformly by continuous feedback [15]. Here
the feedback is simple as given in Theorem 1. For instance, the point set A {v+
-np + A+,p < 1/2,n 1,2,...} can be assigned for the spectrum of the controlled
operator Ah via the continuous feedback of Theorem 1. The resulting semigroup etAb

is exponentially stable. In particular, taking A {v+n -o2 -[-- ):t:n, 0 O E ]P, n
1, 2,...}, we get the controlled semigroup etAh satisfying

lietA II (H) _< Me-ta2

for some positive constant Ms (depending on the constant a), where the decay rate is
arbitrarily fast by increasing the number c2. The feedback that realizes the spectrum
assignment is

3. Proof of Theorem 1. To simplify the presentation, we introduce the fol-
lowing notation. Define the bounded linear functional 9v E :Dt(A*) such that for
all g e T(A*), 9V(g) (g, b). For all e p(A*), the resolvent set of the operator
A*, define the characteristic function Fh()) 1- (R(, A*)h), where h H and
R(A,A*) (- A*) -1. For each A0 e p(A*), the linear functional $" o R(A0, A*) e
(H, ). The complex function Fh()) is analytic on the resolvent set p(A*) (see [6]
for a proof). We set the perturbation operator T h9v which is A* compact [8,
p. 194]. Then the operator A* + T is closed with T(A* + T) :D(A*). The following
result can be proved by direct computation.

LEMMA 2. For all ik p(A*) such that Fh()) O, we have

R(A,A* + T) R(A,A*) + R(I,A*)TR(A,A*)/Fh(A)

and p(A* + T). Moreover the perturbed operator A* + T has compact resolvents.
From this lemma, we know that the spectrum a(A* + T) consists entirely of

isolated eigenvalues with finite multiplicity [8, p. 187]. Now consider the set of disks
bj j IN, centered at {j} with radius -d. It is evident that /j /t 0 for3 3"

j 1. Technically we suppose that [.Jje Dj implies that its complex conjugate- jIN Dj. This assumption is minor because in applications the spectrum a(A)
is usually symmetric with respect to the real axis in the complex plane. Otherwise it
is sufficient to rewrite the condition (1).

LEMMA 3. For each h =1 hyCj, there exists a positive number R1 > 0 such
that the subset in the complex plane

,s’ < R,} U U
j=l
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contains all the spectrum points a(A* + T).
Proof. To prove this lemma, it is sufficient to verify that Fh(A) 7 0 for all A S

(see Lemma 2). From the hypotheses H1 and H2, for each h E H and all

+ hnbn(8) JZ(R(A’A*)h) Z -n"n--1

Since (n +)n=l is a Riesz basis of H, the following is true for some numbers M1,
M>O:
(9) M2 Z IhJl -< Ilhll/-< M22 Z

jElN

It follows directly from (8) that for all A I,Jj=

(10) IU(R(A’A*)h)I -- 2 ]-_ nl
-t- 2 Ihnl 2 - ’"’n=l n>_N1+l n>_N1+l

Using the condition (1) of the hypothesis H3, we can choose a large integer N1 such
that

(11) [hnl2 Z bn 2 1

nN+l nN+l -- n nN+l

(where we have used the fact that A Uje implies that Uye J) and then
choose a positive number R1 large enough so that for all

N IhbnI < 1
(12) IX-n=l

It follows from the conditions (10)-(12) that for all A S,
1

](R(A, A*)h)[ <

that is, Ih()l This proves that a(A* + T) C S.
We let u(A, A*) and u(A, A* + T) denote the algebraic multiplicities of A eigen-

value of A* and A* + T, respectively, and n(A) denote the order of A zero of the
characteristic function Fh(A). (The order of A as pole of the characteristic function
Fh(A) counts as negative and u(A,A*) counts zero if A e p(A*).) In [12], Liu h
proved the following result.

PROPOSITION 1. For all A in the complex plane,

(a) (,A* + T) (a,A*) + ().
LEMMA 4. For each h H, there ezists an integer N such that the infinite

pa of the spectm points {, n N1 } of A* + T are simple and the coesponding
eigen+ectors are given by

(14) Cn bn
Fh(-’)
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R1

FIG. 1. Illustrative distribution of the spectrum.

Moreover the whole spectrum of A* + T satisfies the condition

Vn n
b"n < -00.

n--1

Proof. Consider the disk D(0, R1) centered at zero with the radius R1 defined in
Lemma 3 such that A E D(0, R). For all A E Dj,

-Xll
and

Since lim#+ JAy +, only a finite number No of disks y intersect the disk

D(0, R1). Take the boundary C {; IA- l d/3} of the disk D. Define the
closed curve 0 by the boundary of the union

j=l

(as indicated in Fig. 1). om the proof of Lemma 3, we know that

1
sup I(R(A,A*)h)I .
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From the hypothesis H1, the function Fh(A) has at most No poles in the domain
Applying the Rouch theorem on the functions g() 1 and Fh(A) allows us to say
that Fh(A) has the same number of zeros as poles in , for 1 --Fh(A) .T’(R(A,A*)h).
Then from the identity (13),

E (’ A* + T) No.

That means that the operator A* + T has No eigenvalues (multiplicity counted) in
the region f. By construction, it is also true that for all j > No,

1
sup [9(R(A, A*)h)l <
e 3"

The function Fh(A) has either one pole A--j or no pole in/)j. Applying the Rouch
theorem on the functions g(A) 1 and Fh(A) allows us to say that Fh(A) has the
same number of zeros as poles in the disk Dj. Then from the identity of Liu (13), the
operator A* / T has a simple eigenvalue in Dj for j > No. Moreover this eigenvalue
is either {} or the unique zero v-j = j of Fh(A) in

Actually the simple eigenvalue is situated in a smaller disk contained in j.
Because

lim
Ihjbj O,

’72:
we can take some N1 > No sufficiently large such that for any A with
and any integer n,

(15) sup sup
An-Aj

sup sup
1 1 3
),_ i< supsup 6lhbl <-"

--j>_N1 nj 1- 2

It follows from the definition (8) that for all j _> N1 and all ]A AI 61h b l,
m.

Ih.b.I +I(R(A,A*)h)I<_
n’- n:fij

g:
[hnbnl

n=l,n#j

N 31h,b.I +
n=l,nj

Take an integer N2 so large that

I_hnb,l +n>Na,j IA

31h,,b l +
n>N2 ,nyj

31h b l <
n>N2,nj

Then we can always choose the integer N1 > No so large that for all j >_ N1,

1
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Therefore there is some integer N1 such that for all j >_ N1 and all [A- Ajl 61hjbjl,

2
I.T’(R(,k,A*)h)I <

-3

Applying again the Rouch theorem on the functions g(A) 1 and Fh(,k) and reason-
ing with the identity (13) as above allows us to prove that Ivy Ayl <- 61hjbjl for all
j >_ N1. It follows from the above that

2 N1--1

n--1

Vn ,n "[2
bn -- E 361hjl2

n_N

Now, we compute the corresponding eigenvectors of the operator A* + T:

(16)

Observe that for any eigenvector y, -(y) :/: 0. Suppose that 9(y) 0 for some

j. The only solution of the above eigenvalue equation is vj )j and j Cj. This
implies that $’(y) 0, which contradicts the hypothesis H3. Setting

(17)

m=l

h-- E hm)m,
m--I

we prove that vj ,kj in the eigenvalue equation, that is, ,kj E a(A* + T) if and only
if hy O. Substituting the expression (17) into the equation (16) allows us to obtain
the following:

(18) (j ,km)O, hm.T’(j), m 1, 2,

It is evident that hy 0 if vy Aj. Suppose that hj 0. Then the characteristic
function

is analytic at the point A Ay. This implies that the order n(Ay) of the point A Aj as
zero of the function Fh (A) is greater than or equal to zero. It follows from Proposition 1
that u(Ay, A* + T) >_ 1, or j Aj. In particular, for all j >_ N1, u()j, A* + T) 1.
Now we are interested in the eigenvalue equation only for j >_ N1. For hj O, we
know from the above that vj )j. Then direct computation from (18) leads to

v--) )j hm_

For hj 0 and j >_ N1, vj )y and Fh(,ky) # 0 because u()j, A* + T) 1. One can
find that

bj
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This finishes the proof of Lemma 4. rl

LEMMA 5. For some integer N2 >_ N1, the sequence {1,..., )N2, )N2+l,"" "}
forms a Riesz basis of H.

Proof. Define the linear application A H H by A(i) Cj for 1 _< j _< N2
and A(i) i for j _> N2 + 1. We will prove that the application A as well as its
inverse A- are bounded. Then the above sequence is also a Riesz basis because it is
equivalent to the Riesz basis {i,J e ]hi} (see [5, p. 309]).

+For all g -j= OZj)j E H, using Lemma 4, we get

i= i=N=+ j= i=N=+l m E lN
mTj

g + AA(g),

hmd2m

where

vi-Ai if hi 7 0,

Fh(j)’ if h 0,

and

For hi 0, the function $’(R(A, A*)h) is analytic in/)i" Then

1
sup I.(R(A,A*)h)I <_ sup I.f(R(A,A*)h)l <_ -.,xeb e0

This implies that IF ( )I >_ 2/3 for all , e bj. in particular, >_ 2/3. From
(19), for all j _> N2,

(20) _<

Using the fact (9) that {i} is a Riesz basis, we can obtain the following estimates:

IlzXA( )ll _<

i=N=+l

hm

hm
Vj Jm
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Let us prove that for some integer N2 > N1,

2

M j=

From the conditions (20) and (15), choose an N3 with N2 >_ N1 such that

M2

j-N2+I mj,m>N3 j>N2 ,j Crn

(22) N M-- E Ihl
m>_N3-t-1 j>N2 ,jym

36
)j )m

2

Since from the hypothesis (2)

lim E Ihml2 EN2----*+x
m--1 j>N2,jm

bj 2

we can always choose the N2 _> N1 so large that

M22 + Na

M :i= mCj,m-I

hm
vy )m Ihml2

j>N2,jCm

(1)
2

Aj Am 12
Vj Am

Na
(23) < E Ihml2 E

m=l j :> N2 ,jCm
36 (3)

2

(1)
2

5 -< g

Substituting (22) and (23) into (21) proves that for some integer N2 >
2/3. Therefore the linear operator A and its inverse are bounded. It follows from [5,
p. 309] that the sequence {1,..., N2, j,j >_ N2 / 1} is a Riesz basis of g.

Now let us prove Theorem 1.

Proof of Theorem 1. We take the linearly independent elements {bl,..., bg},
which are the generalized eigenvectors of the operator A* / T corresponding to the
finite set {gl,..., gnu} of the spectrum a(A* + T) in the following sense. Without
loss of generality, we suppose that in the set {gl,..., N2 } there are s distinct eigen-
values {1,..., s} with the respective algebraic multiplicities {u,... ,us} such that

j= uj N2. Then

Ker(l A* T)1 Span{j, j 1, 2,..., ul}

Ker(g2 A* T)": Span{j, j =/"1 -- 1,...,/]1 --/"2},

and so on. We want to prove that the sequence {@,j E ]hi} is still a Riesz basis of H.
Two sequences of vectors {gj, j E IN} and {fj, j ]hi} are said to be quadratically close
if .ier Ilg.i fj ]12 < +oc. It is obvious that the two sequences {,..., CN., j, j >
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N2} and {j,j e ]hi} are quadratically close to each other. A sequence of almost
normalized vectors {gj } is said to be w-linearily independent if the equality

Ecjgj=O for E[c.[
j=l j=l

< +oe

implies that c 0 for all j >_ 1. The Bari theorem [5, Thm. 2.3, p. 317] says that a
sequence of w-linearily independent vectors quadratically close to a Riesz basis is also
a Riesz basis. Since we have already shown that the sequence {1,... ,g.,(bj,j >
N2+ 1 } is a Riesz basis (Lemma 5), we now need only prove the w-linear independence.

The Laurent series of the resolvent R(A, A* + T) at {1,..., 8} takes the form
[8, p. 181]

(24) R(,, A* + T) , rm=l ]D (,, A*
n--1 (’ m nA-1 "4- RO "3

t- T

where the operator Pm is the projector on the subspace Ker(m A* T)/2" and Dm
is the nilpotent commuting with Pm for m 1, 2,... s and R0(X, A* -4- T) is analytic
at v-., j 1,..., s (see [4, p. 2292]). Let {c}__ e and ’=+~ 0. Write

Applying the resolvent operator on the two sides of the last identity, we obtain

N +x
(26) R(A,A*+T) Eajy=- E ,k-j

j--1 j--N2+I

Since P,P, 5,,,Pn, PnDn DnPn D, and Ro(X,A* + T)Pr 0 for all
e p(A* + T) [8, p. 1811,

N2 grn
"4" E ( m)n-tl E OZjj(27) R(,, A* + T)EaOj ,k mj--1 m=l n--1 j=l

Substituting (27) into (26) leads to

(28)

Since the controlled operator A* + T has compact resolvents, its spectrum has no
accumulation point different from o, that is to say, limy_.+ Ivj] +o. So there is
a positive integer 5 such that for all 1 < k < s and all j > N2,
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On the other hand, the sequence (j,j > N2} is a part of the Riesz basis in Lemma 5.
This implies that for all 1 _< k _< s,

2 +o

j>N2

Thus the right side of (28) is bounded on some domain containing 1. By multiplying
the two sides by (- 1)j, j vl,Vl 1,..., 1 and taking the limit for A 1, we
get, successively,

(29) D cuej=0, m=v-l,...,1

and

(3o)
j=l

Since the elements {1,..., 1} are linearly independent, the relation (30) implies
that cU 0, j 1,... ,1. The relations (29) and (30) imply also that for all E
p(A* + T), the right side of (28) is identically zero. Repeating the same procedure for
the other eigenvalues {2, 3,..., s} we can prove that cU 0, j 1,..., N2. Since
the sequence {j,j _> N2 + 1} is part of the Riesz basis, the relation (25) implies
that j 0, j _> N2 + 1. Thus we have proved w-linear independence of the sequence
(j, j E IN}. Therefore, it is a Riesz basis of H. So we have proved that for every
h H, the contolled operator Ah is regular spectral. This result with Lemma 4 proves
the assertion (1) of Theorem 1 and also the necessary part of the assertion (2).

Now let us prove the sufficient part of the assertion (2). Suppose that the given set
satisfies the condition (3). Consider the Hilbert space 2. We show that the element
{h- }=1,2 belongs to 12, where the h’s are given by the infinite products in (7). For
this purpose, we consider the following sequence hN 2

bj ,,j )n

This is a Cauchy sequence in 12. In fact,

j--l,2,...

Since

(3)

1-
)j n_

bn
bn
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we have (see [17, p. 291])

II
nj

Given an e > 0, there is an integer such that

L2

Since the condition (31) is true, the infinite sum

E
nj

1- =AJ n_

converges uniformally with respect to j _< . This implies that the infinite product

converges uniformally with respect to j <_ N. Hence for sufficiently large N and L,
we have

j--1 j=l

2
2

Thus for sufficiently large N and L,

[[hN hLl[. < e.

This proves that the limit h, which is the feedback, belongs to the Hilbert space H.
We must still prove that the controlled operator has the spectrum assigned a(A* +
T) {j}-__. With the feedback element h given in (7) and from the proof of
Lemma 4, we know that the controlled operator A*+T has No eigenvalues (multiplicity
counted) in the region gt and the other eigenvalues are simple and each of them is
situated in the corresponding disk. It is sufficient to verify that the finite part of the
spectrum contained in t is equal to the subset {;j 1,2,...,N0} and the only
simple eigenvalue in the disk /j is equal to j for j > No. Reorder the elements
1, 2,..., No such that vj Aj if some gk E a(A*) for k _< No. From the expression
of the feedback element, hi 0 if vj Aj. So Aj E a(A* + T) with simple algebraic
multiplicity (see Proposition 1). The rest of the spectrum a(A* + T) is equal to the
zero set of the function Fh(A). From Proposition 1 and the hypothesis that vj
for j - n, it is easy to see that each eigenvalue {vj } is of simple algebraic multiplicity.

We claim that imposing the function Fh(A) to be zero on the point j . a(A*)
gives the following unique solution (7) in 12

+ b,h,
Fh(m) 1- E m_’-Xn

n=l
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Without loss of generality, the above equation is equivalent to

(32) hm + E vm m bnhn Vm m
n:m bm "m- An b,

Define the linear operator O, T 12 -- 12 such that

Oh Vm Am
bm

bnhn_ }
+

"m /n
m--1

and

T=I+O.

We shall prove that the operator O is compact and that the operator T is one-to-one.
Then the operator T has a bounded inverse. Set g {(m "m)Ibm}m=+Cxl. Then
the above equation has a unique solution h T-lg. Define also the sequence of
operators Tn 12 12 by

Tr
r, +

im
b,

1’m

bjrj for m <_ n,

for m>n+l.

Using the same argument as that used to prove that O is compact, we can see that
this sequence of operators is bounded. Direct matrix computations (tedious but ele-
mentary) allow us to show that Tn is invertible and that

Tlg_. gmH.m’_.j for rn <_ n,
j#m

gm for rn _> n + 1.

As in the above we can show that

lim T- j
n+

g gm
jm m Aj

m--l,2

By direct matrix computations (which are also tedious) we can prove that the sequence
of operators T-I is bounded. Let us prove that

h= T-lg= lim Tlg.

Since we have the identity

Tlg T-lg TI(T Tn)T-lg,

it is sufficient to prove that for any r E/2,

(33) lim (T- Tn)r O,
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which will be evident in the following.
Now return to proving the compactness of the operator O and the one-to-one

property of the operator T. Take any weakly convergent sequence gk E 2. Then
Ilgkll2 _< M and

Ogk v.
bm

bngn_
m n

m--1

We prove that for every e > 0, there is an N > 0 such that for all k _> N,

In fact,

Note that by hypothesis

lim EN---+cx
m_Nl,mn bm

bm

Therefore there is an integer N1 such that for all m >_ N1 and n - m,

2

Then for all m >_ N1 and n m,

Since the conditions (3) and (1) are satisfied, we can choose an N > N1 such that for
all m > ,

(35)

2

bn 2 +oo

l=/=m

bn

2
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Since the point j__ p(A*), " o R(j, A*) E (H, ). It is implied that the elements
rm {bn/(m An)}+ belong to the Hilbert space 12 The weak convergence of
the sequence gk implies that there is an N :> 0 such that for all k > N

(36)

2

The addition of the inequalities (35) and (36) implies that of (34). Therefore we have
proved that

and, as a result, the compactness of the operator O. Note that for all r E/2,

(T- Tn)r

for m <_ n,

for m_>n+l.

In fact, we have

which tends to zero for n -- +c, for the two terms

-t-o nacx

l>n m>_n+l

2

go to zero for n +cx. Suppose that Tr 0. Then r TI (Tn T)r. Taking the
limit for n --, +cx, we prove that r 0. So the operator T is one-to-one. Finally the
unique solution of (32) is

h T-l {m -m }
+

brn m=

lim rl{rn-’rn}n +x bm m=!

jm
m=l

So we have finished the proof of Theorem 1. D

4. Conclusions. In this paper, the necessary and sufficient condition of Sun [21]
has been generalized to a large class of distributed parameter systems with boundary
controls, which allows us to exploit the limitations imposed by BLF. For example,
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the input vector being admissible implies that {bk} e [22], [25]. In this case,
BLF cannot uniformly assign the spectrum of the systems. We have proved that it is
possible to achieve exponential stabilization of some systems by means of BLF only
(Example 2). For an assignable spectrum set, we have given an explicit feedback law
which realizes the spectrum assignment with the resulting controlled operator being
regular spectral. The paper has also given a systematic method to assign a finite
number of spectrum points. This method could find potential applications in damped
flexible systems as illustrated by [24] (see [19] and [1] for other models). We should
mention that the assumption that the eigenvectors of the operator A constitute a Riesz
basis practically reduces the applications to evolution systems in space-dimension one.

Acknowledgments. The authors would like to thank the referees for their valu-
able suggestions and constructive comments on the paper.
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SUPERIOR INFORMATION IS INSUFFICIENT TO WIN IN GAMES
BETWEEN FINITE AUTOMATA*

VLADIMIR CHERNORUTSKIIt, RAUF IZMAILOV$, AND ALEXEI POKROVSKII

Abstract. A game between two computers is considered: the first computer generates a binary
sequence while the second one tries to predict the next element of this sequence using the previous
elements. Both computers operate with the same pool of strategies, which is the set of all boolean
functions of N arguments. Notwithstanding the asymmetry of the game, it turns out that the value
of the game is zero. An algorithm for choosing an optimal superstrategy for the first computer is
proposed, and several generalizations of the game are considered.

Key words, repeated games, finite automata, information, games on graphs

AMS subject classifications. 90D20, 90D43

1. Introduction. Games with finite automata have been investigated for more
than 30 years starting with the classical works by Tsetlin [8, 9]. The approach consid-
ered here is related to [1, 2, 4]. To describe the model, we start with the description
of the motivating experiment.

In 1960s a group of researchers in Voronezh University (Russia) was carrying
out the following experiments. Participating undergraduate students (later joined
by postgraduate students and professors) were asked to generate sufficiently long
(about several hundred digits) binary sequences. The only restriction was the request
to generate these sequences without using coins, dice, or other deviceswthat was
considered cheating. The elements of each sequence were transmitted one by one to
the input of a computer program specially designed to predict the next element of
the sequence using the already accumulated data on the previous ones. It turned out
that humans could not generate "good" random sequences and a "smart" computer
program predicted from 55% to 80% of elements of any human sequence.

So human intelligence proved to be unable to win against the computer in this
game. But what can happen if two computers play against each other in such a
game? Obviously, the answer depends on the relative "strength" or "complexity" of
the computers and programs involved. But to keep matters simple, let us assume the
game is fair and that both computers are of the same class--there is no advantage
or disadvantage in complexity from either side. What would be the outcome of the
game in this case, and what sort of strategies would be used?

To formalize the problem, consider two players P and S playing the matrix game
with the payoff matrix, known to both players,

-1 +1
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Here P, being the minimizer, plays rows, whereas the maximizer S plays columns.
In other words, S wins 1 if he guesses P’s decision correctly; otherwise S loses 1.
For each player we are interested in the expected value of his gain during an infinite
time. The key features of this game are the description of information accessible to
the players and the extraction of a class of rules available to the players from which
to choose their moves. Such situations are usually called supergames [11], and the
permissible rules are called superstrategies.

Suppose in addition that P has no information about the previous performance
of S, although P knows several of his own previous decisions. Moreover, we assume
that exactly the same previous decisions of P are available to S, so both players
make their choices based on the same amount of information. Similar assumptions
about players’ memory are typical for so-called games with inertia [10]. Thus every
pure superstrategy of player P consists of choosing a rule for processing a sequence of
his preceding decisions. We assume that all realizable rules are deterministic, while
randomization is possible only before the beginning of a supergame, when each player
chooses his superstrategy.

We consider only the case when every pure superstrategy of $ consists of pro-
cessing the available information about the previous moves of P, but not about S. In
other words, P generates binary bits, where every bit is determined by N previous
ones, and S tries to predict these bits, knowing N previous bits in P’s sequence. Both
players can use the same set of programs for processing of previous bits.

Intuitively, the second player should not lose. After all, he has the advantage of
knowing the history of P’s moves, whereas P has no information about the perfor-
mance of S. On the other hand, S has the same complexity as P. Therefore the
question is whether S can use his information edge without using more complex pro-
grams than P? In other words, can an advantage in information be exploited without
an accompanying advantage in intelligence?

In the following sections we address this question and present several approaches.
First, we describe the exact formulation of the game and present the basic result of
this paper, Theorem 1, which gives a negative answer to the question posed above.
Next, we present a geometric interpretation of the game which is used to describe an
optimal algorithm for P, and for other generalizations of the game. Finally, we briefly
outline several related problems which will be probably addressed in future research.
All proofs are collected in the appendix.

2. Model and main result. To describe the game G formally, we fix a natural
number N characterizing the "memory depth" of both P and S: P chooses his next
move as a function of his N previous moves, while S predicts the move of P using
N previous moves of P. The number N is called the dimension of the supergame.
Let J/ be the set {0,1}; the elements of the set /N are the binary representations of
the numbers 0, 1,..., 2N 1. Denote by " the set of all pure superstrategies of the
players. Then $" is a set of boolean functions F JBN - K such that if F E ’, so
also is the negation 1- F E ’. Fix c0 /B

N and superstrategies P, S " of players
P and S, respectively. A realization of the supergame is a pair of binary sequences,

(1) {P(a0), P(cl),...} and {S(a0), (o1),...},

of the players’ moves, where

(2) ck P(ck-1) + (2c_1 mod 2N), k 1,2,
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Consider, for example, N 1: both players "remember" only the last move. In this
case P can use any of three functions P1, P2, and P3 as a generator of his binary
sequence:

PI(O)=O, PI(1)=O,
P(O) 1, P(1) O,
P3(O) 1, Pa(1)= 1.

Actually, P can also use the function Pa, defined by

p (0) 0,

but P4 may be disregarded since the output sequence it generates is the same as one
of the functions P1 or P3. The player S may use four functions $1,..., $4 for his
predictions:

(4)

81(0) O, 81(1) 1,
&(o) o,
s (o) o, o,
84(0) 1, $4(1)= 1;

here function S predicts that the next element of the sequence of P will be the same
as the previous one, while the function $2 predicts exactly the opposite. Each of the
other functions $3 and Sa steadily predicts 0 or 1 without referring to the history of
the game.

Given the superstrategies P and S, the mean payoff V(P, S) of the supergame is
determined by

(5) V(P,S)= lim
1

i--1

where the payoff function r B2 -/B is defined as (a, b) 1 21a b[. Since the
sequences (1) are periodic, the limit (5)exists.

Considering again the same example N 1, the payoff V may be written in the
matrix form

(6)
1 -1 1 -1 )(V(Pi, Sj)) -1 1 0 0
1 -1 -1 1

For any fixed pure superstrategy S. E - of S the equality

holds (if P S,); also

min (V(P, S.)} -1
p-

max (V(P,, S)} 1
S"

holds (if S P,) for any fixed pure superstrategy P, of P. These two relations mean
that the supergame G has no solutions in the class of pure superstrategies.

Therefore, mixed superstrategies (probability distributions p(.) on the finite set

" of pure superstrategies) have to be considered. The choice of mixed superstrategy
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is the choice of a random rule for using pure superstrategies. If mixed superstrategies
Pl (’) and p2(’) are chosen, the payoff V(pl(’),p2(’)) of the supergame is determined

(P(’),P2(’)) E p(P)p2(S)V(P’ S).
P,SE"

So the payoff of the supergame coincides with the payoff of the zero-sum two-person
game [6] with the matrix V {vii}, where vii V(Fi, F). The dimension of the
matrix V is equal to the cardinality of the finite set $’. Therefore, we use the terms
"games" and "strategy" instead of "supergame" and "superstrategy."

The payoff of the game G is nonnegative since the player S can guarantee the
zero result using the mixed strategy of arbitrary pair of functions S and 1 S with
the weights 1/2. For P there is no such simple strategy-provided nonnegative result.
Nevertheless, the following theorem holds.

THEOREM 1. The value of the game ( is zero.
Theorem 1 is the main result of this paper. As we can see from (5), the value

V(P, S) depends on the initial vector a0. However, it will shown further that the
price of the game does not depend on a0. Theorem 1 provides the answer to the ques-
tion formulated in the introduction: an advantage in information cannot be exploited
without an accompanying advantage in intelligence.

3. Geometric interpretation. The following geometrical interpretation of the
game G is convenient. We will follow the terminology in [3]. Denote by F F(N)
the (directed) graph with 2N vertices enumerated from 0 to 2N 1 where each vertex
a is the initial endpoint of exactly two arcs with the terminal endpoints (2s mod 2N)
and (l+(2s mod 2N)) (compare with the realization (2)).

Denote by U U(F) the set of all arcs of the graph F. The arc passing from
the vertex s to the vertex/ is denoted by e (Figure 1). A subset/d C U is called
proper if for any vertex s the set/d contains exactly 1 arc with the initial endpoint s.

We establish a one-to-one correspondence between the set $" of strategies and
the family of proper subsets of arcs. Let a strategy F belong to $’. Then for any
vertex s choose F(s) + (2s rood 2N) and include the arc e in/. Conversely,
if ez E L/, then put F(s) =/3 mod 2. Now it is evident that a choice of the strategy
F is equivalent to the choice of the proper subset/d E 2U(r). If/d is proper, write

/d {e" + 1 2(/ mod 2), e /d}.

Then the set $" is that family of proper subsets b/such that both/d and b/belong to
the family ’.

Fix strategies P, S of both players, and fix an initial point s0 KN. After an
initial period the sequences (1) become periodic. The period of the first sequence
corresponds to a elementary circuit in F. Denote this cycle by C(P, so) and the
number of vertices in the cycle by q(P, so). Then (5) can be rewritten as

(7) V(P, S) [q(P, s0)]- E B(P(s), s(s)).
aec(P,ao)

Note that V(P, S) in (7) depends on s0, but the value of the game does not" it follows
from Theorem 1.

Consider an elementary q-cycle C. That is, a cycle with length q. All the arcs
generating this cycle form the proper subset b/(C) E $-. This defines the strategy F(C)
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( )
N-1

N-2

FIG. 1. Graphs F(N).

that generates the cycle C. Denote by (:(q, N) the set of all different elementary q-
cycles in the graph r(N), and let (q,N) be the number of elements in C(q,N). For
example, Figure 2 shows all six elementary cycles for N 2. In this case.(1, 2)
(3, 2) 2 and (2, 2) (4, 2) 1.

4. Optimal strategies. Let the set " be the set of all boolean functions. Then
an optimal strategy for P may be constructed effectively.

Denote by u(N) the minimal number of active strategies in an optimal mixed
strategy of the player P. As mentioned above, the minimal number of active strategies
forS is2.

THEOREM 2. The minimum number u(N) of active strategies in an optimal
strategy of player P satisfies the upper bound

u(N)<_ (q,N).
ql(g+l)

One of the optimal strategies of P is the mixed strategy consisting of a weighted sum
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11

2)

FIG. 2. Elementary cycles in F(2).

of the functions F(C) generating all the cycles C C(q,N), where qi(N + 1). Every
such function F(C) has the weight 2-(N+)q in the mixed strategy.

Therefore, the optimal mixture of strategies suggested in Theorem 2 prescribes
the weights of the pure strategies to be chosen proportional to the periods of the
binary sequences they generate.

For example, if N 3, the optimal strategy may be constructed with l-cycles,
2-cycles, and 4-cycles (d 1, 2, 4 are the divisors of N + 1). According to Figure 1,
elementary cycles with the corresponding weights shown in Table 1 may be chosen.

For certain cases, an optimal strategy for P may be even simpler, as shown in the
following statement.

COROLLARY 1. If N + 1 is prime, then u(N) _< 2 + (2N+I 2)/(N + 1).
For example, if N 2, P may use only two kinds of cycles: 1-cycles and 3-cycles

(see Figure 2). This is because 1 and 3 are the only divisors of N + 1. Choosing them
with the weights 1/8 and 3/8, respectively, we obtain the results in Table 2.

If " does not coincide with the set of all boolean functions, Theorem 2 is not
applicable. However, P can always choose a "simple" optimal strategy (see [5] for
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TABLE

Period Weight

16
1

16
1

8
1

4
1
4
1

4

Sequence

000000000...

111111111

010101010...

000100010...

001100110...

011101110...

TABLE 2

Period Weight Sequence

1 000000000...

1
1 111111111...

3
2 011011011...

3
4 g 001001001...

details).
LEMMA 1. The set of optimal strategies of P contains a mixed strategy, all

components of which have equal weight.

5. Generalizations. The game G may be further generalized to the game G*.
Maps k k will be called filters and positive functions :/Bk t+ will be
called factors, where/+ denotes the set of nonnegative real numbers. The vectors
of Ktk will be called strategies.

Let the set of strategies $" be a subset of/Bk, and suppose also that it contains
along with any element F (fl,..., f) E k its boolean negation

1-F=(1-fl,...,1-f).

The number k is referred to as the dimension of the game G*. The game (]* is
determined by its dimension k, filter , and factor and the weight vector M
(#l,...,#k) e t_. Given the strategies P (pl,...,P) and S (Sl,...,s), the
payoff is determined by

k

(8) W(P, S) (P)
i--1

where (1 (P),..., Ck(P)) are the coordinates of the vector (I)(P). The values (8) form
the matrix W of the game (*: W (W(Pi,
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The game G* has the following interpretation. Let k cards be given, where each
card i has its own value #. Player P can write 0 or 1 on every card: that is, player
P chooses a binary vector P. We assume that P can be chosen from the set 9r of
admissible strategies. Then this vector P is filtered by the rule (I). Only the cards
with (P) 1 remain under consideration. Player S knows the rule (I), although he
does not know the vector P. He can also write 0 or 1 on every card trying to guess
the vector P. Player S wins (P)# if the ith card remains after filtration, (P) 1,
and his prediction si coincides with p. Otherwise, if pi s, S loses q(P)#. The
game is repeated infinitely.

THEOREM 3. For any filter and any factor the value of the game G* is zero.
Yet another generalization of the game G may be described in terms of the graph-

ical interpretation of 3. Let F be an directed graph with exactly two arcs outgoing
from every vertex. Denote by C(F) the set of all elementary cycles in F and by/)(F)
the set of all proper subsets of arcs. For every cycle C E C(F) and for any set D E 7:)(F)
define the number V(C, D), which equals the fraction d/c, where d is the number of
arcs of D belonging to cycle C and c is the length of this cycle. Enumerating the
sets C(F) and :D(F), one can obtain the matrix V with elements vj V(C,Dj).
Theorem 1 implies the following theorem.

THEOREM 4. The value of the game with the matrix V equals 1/2.
6. Summary and conclusions. We considered a supergame between two com-

puters, where the first computer generates a binary sequence while its opponent tries
to predict the next element of this sequence using the previous elements. Both com-
puters operate with the same pool of strategies, which is the set of boolean functions
of N arguments. Despite asymmetry of the game, it is shown that the value of the
game is zero. An algorithm for choosing an optimal superstrategy to generate the
binary sequences is given.

We have addressed only several issues of this problem. It is interesting and im-
portant to address other open issues here. For example, suppose the players P and S
have different memory capacities. What is the value of the game G in this case, and
what would be the optimal strategies?

Another question is to gain an insight into the main reason for the superiority
of the computer in the experiments described in the introduction: was it human
predictability or the asymmetry of the game (the students were not aware of the
computer predictions)? See [7] for other issues related to these experiments.

7. Appendix.

7.1. Proof ofTheorem 3. We start with some notations and definitions. Nonzero
vectors with nonnegative coordinates will be called positive.

Vectors (1, 1,..., 1) (of corresponding length) will be denoted by I. Denote by
En the 2n 2n-matrix with its ith row being equal to I and all other elements being
zero. Let n-vector A (belonging to /’ or ) be given, and < m _< n. We use the
notations Aim for the mth coordinate of A and AIz..m for the vector (AIz,... ,AI, ).
Given m-vector B, denote by {A, B the concatenation of the A and B" the (n + re)-
vector C such that CI1 A and C1+1 n+, B.

It is sufficient to show (see, for example, [11]) that there exist positive vectors
A and B (weights in the mixed strategies for the players S and P, correspondingly)
such that

(9) WA --0, WTB --0.
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Moreover, further it will be proven that we may assume A I.
Suppose that " k (the maximal set of functions). The relation (9) will be

proved with induction on k. Let k 1. Then the weight vector is M ttl, the
number of strategies equals to 2. Let the factor be determined by the relations

v(0) , v() .
Then four different filters have to be considered:

o(0 ) {(00) (10) }.
Hence only four different matrices W may occur in this case:

(0 0)( 0 0)( 1 10 0 2# 22# 0 0 --2# 2

All these matrices satisfy (9) for appropriate pairs A and B. The sum of columns is
zero, so we may assume A I.

Suppose that (9) holds for all dimensions up to k inclusively. Fix a filter in the
game with the dimension k + 1. Let (#1,...,#k+1) be the weight vector, K 2k+l,
and let (1,..., )g) be the vector consisting of all values of factor , i.e., i (ai)
(where ai E Kk+l). Split the strategy set into four nonintersecting subsets:

{s: sl+, 0, (s)l+ },
J {s: sl+ 0, (s)l+, 0},
J3 {s: sl+l 1, @(S)lk+l 1},
g {S: SI+ , (S)I+ 0}.

Note that the set j0 (J1U J2) consists of all numbers from 0 to K/2-1 (in the sense
of the one-to-one correspondence between natural numbers and elements ofk stated
above). In the same way, the set j1 (Ja U J4) consists of all numbers from K/2
to K- 1. Therefore, the sets j0, j1 can be considered as/Bk. Define two filters 1
and (I)2 as restrictions of on j0 and j1, respectively:

’(s) (<s,0>)l , (s) (<s, >)1 ,
where S 6 k. Consider two games G* of dimension k: the first game is determined
by the filter (I) and the factor (1,..., K/2), and the second game is determined by
the filter @2 and the factor (/(/2+1,...,K); the weight vector (#1,... ,#}) is the
same for both games. Denote by Wl and W2 the matrices of these games. Denote

By definition, the matrix W has the form

+ wr )(11) w= w- w2+

The induction assumption implies that the sum of all the columns of W is zero.
That proves the first equality in (9) for A I. Using the induction assumption
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once again we conclude that there exist positive (2k)-vectors B (b,b,...) and
B2 (b, b22,...) such that WTB W2TB2 0.

Suppose at least one of the numbers

is not equal to zero. Then (2k+l)-vector B (qB,pB2) is positive. Therefore (10)-
(12) imply

(13) WTB --0.

If, on the other hand, both numbers p q 0, then all the terms in (12) equal zero
and (assuming B IB, B2}) we obtain (13). This proves the theorem for " k.

Now let $" /B. Since any element F belongs to $" together with I- F, this
is also true for the set k \ $-. The numbers i and j are referred to as symmetrical
if i + j 2. The game matrix W can be obtained from the above construction by
deleting some rows and columns with symmetrical numbers. It follows that W has
the form of (10)-(11). Thus Theorem 3 remains valid.

7.2. Proof of Theorem 1. We will show that the game G is a special case of
the game G*.

Let k 2N. (N and k are the dimensions of the games G and G*, respectively.)
Consider the graph F(G) corresponding to the game G, and enumerate all its vertices
with the numbers 0,..., k- 1. Fix an initial vertex a0. Now we establish a one-to-
one correspondence between strategy sets ’(G) and 9V(G*). As stated in 3, any
strategy P E ’(G) may be considered as a proper subset of U(F). Let the arc

belong to P and denote P* (p,...,p_) E /k, where p j mod 2. Similarly,
let P* ’(G*) and assume

P={eij" j-(2imodk)+p; 0_<i_<k-1}.

The one-to-one correspondence is established.
As shown in 3, any strategy P -(G) defines the elementary cycle C(P, co)

of length q(P, a0). Choose the weight vector M- I, the factor (P*) ---q-l(p, co),
and the filter (I)(P*)= ((P*),..., Ck(P*)), where

1
i(P*) 0

if the vertex (i 1) belongs to the cycle C(P, co),
otherwise.

These definitions with (7) and (8) imply V W; i.e., the games matrices are equal.
Generally, different initial vertices a0 define different games G*. Nevertheless, Theo-
rem 3 implies that the price of any of these games is zero. This completes the proof
of Theorem 1.

7.3. Proof of Theorem 2. The following frequency vectors are used further.
Consider 2N+l-dimensional vectors and enumerate their coordinates with the corre-
sponding binary (N / 1)-vectors. For example, if N 1, then 2N+l 4 and the
components of 4-dimensional vectors are enumerated by (00), (01), (10), and (11),
correspondingly. Each periodic binary sequence. r defines the following relative fre-
quencies of (N / 1)-words in r. The relative frequency of a word b (bl,..., bg+)
is the limit

lim ( 177 "ffM))U--*cx) ,,F(b,
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where 71"M is the initial segment of rr of length M and F(b, 7rM) is the number of the
words b in rM.

All the sequences r generated by P may be enumerated by corresponding 2N+l-
dimensional frequency vectors p. For example, for N 1 the functions P1, P2, P3
(see (3)) generate three different sequences ri described by their frequency vectors pi:

(00) (01)(10)(11)

7rl 000000... Pl (1, 0, 0, 0),

r 010101... == p. 0, 2’ 2’
0

r3 111111... == P3 (0, O, O, 1).

(4)

The strategies of the player S are described by 2N+l-dimensiOnal payoff vectors s:
if a strategy s predicts the (N+l)-th element dN+l after a series (dl,..., dN), then the
(dl,... ,dN, dN+l)-th coordinate of the vector s is equal to +1 and its (dl,... ,dg, 1-
dN+l)-th coordinate is equal to -1. For example, if N 1, then the strategy $1
repeating the last symbol generated by P is described by the vector (+ 1, 1, 1, +1).
Another available strategy $2 in the case N 1 is described by the vector s2
(- 1, +1, /1, 1) (see (4)). Other two functions s3 and s4 are described by the vectors
(+1,-1, +1,-1) and (-1, +1,-1, +1).

In these notations the matrix of the game is the matrix of all pairwise vector
products (Pi, sj). In the case N 1 this matrix has the same form as (6):

81 82 83 84

1 1 -1 1 -1
2 -1 1 0 0
7r3 1 -I -1 i.

The 2N+1-dimensional vector I is orthogonal to any vector sj (this fact follows
from the definition of vectors sj). If such nonnegative weights { are chosen that

then the mixed strategy of p{ with weights ( (where 1 + 2 +"" 1) has the zero
price for player P. For example, for N 1 the coefficients

1 1 1=, =, a=
may be chosen; then the formulas (14) imply (15) for N 1. Therefore it is sufficient
to indicate an algorithm of choosing the base vectors pi and the weights i so that (15)
holds: in fact, this algorithm provides the way of choosing an optimal mixed strategy.
This is what is to be done next, in the final part of the proof.

Consider a strategy F of P which generates a q-periodic binary sequence r. Then
its frequency vector has 2N+I -q zero components, and all its q nonzero components
are equal to

Let q N+ 1. Consider a N-word b and both possible (N+ 1)-periodic extensions
of this word:

bObObObO.., or blblblbl
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The next step is to demonstrate that each of these (N + 1)-periodic extensions corre-
sponds to some sequence generated by a boolean function of N arguments. The deft-
nition of such function F is straightforward: for any N-word B (bk,..., bk+N-1) in
the infinite (N + 1)-periodic sequence (b) we define F(B) b+N. This way cannot
lead to contradictions: if BI and B2 are two (N + 1)-words in the infinite (N + 1)-
periodic sequence (b) and the first N elements of both words B1 and B2 coincide,
then their (N + 1)-th elements also coincide (since the period of the sequence has
fixed number of O’s and 1’s).

Let dl(N + 1). Then any d-periodic sequence may be generated by some boolean
function of N arguments. Denote by PN the set of all boolean functions generating all
d-periodic sequences. Consider two arbitrary strategies F1, F2 E PN and denote the
frequency vectors of these functions by Pl and p2. Then there are two possibilities:

1. The vectors Pl and p2 coincide.
2. The vectors Pl and P2 have no common nonzero components.

To prove it, suppose that there is a common nonzero component (N + 1) -1 of the
vectors Pl and P2. Therefore two (N+l)-periodic sequences 71-1 and 71-2 share a (N+I)-
word, which means they coincide. Now (15) holds for all distinct sequences p with
periods d (where dl(N + 1)) with the weights d-1.

7.4. Proof of Corollary 1. Using the approach of the proof of Theorem 2 and
the fact N+ 1 is prime, the period d of a d-periodic subsequence of an (N+ 1)-periodic
output sequence may be equal to either 1 or (N+ 1). Hence there are two 1-periodical
sequences (0000... and 1111...) which must be chosen with the weights 2-(N+l), and
other (2N+l- 2)elements are covered by (2N+I- 2)/(N + 1) distinct (N + 1)-periodic
sequences; each of these (N / 1)-periodic sequences has to be chosen with the weights
(N / 1)2-(N+l).

That gives the estimate of Corollary 1.
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A NEW FORMULATION OF STATE CONSTRAINT PROBLEMS
FOR FIRST-ORDER PDES *

HITOSHI ISHII? AND SHIGEAKI KOIKE$

Abstract. The first-order Hamilton-Jacobi-Bellman equation associated with the state con-
straint problem for optimal control is studied. Instead of the boundary condition which Soner
introduced, a new and appropriate boundary condition for the PDE is proposed. The uniqueness
and Lipschitz continuity of viscosity solutions for the boundary value problem are obtained.

Key words, state constraint problem, viscosity solution, comparison principle
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1. Introduction. In this paper we study state constraint (SC) problems for
first-order PDEs. The name, state constraint problems, or state-space constraint
problems, comes from optimal control. In [10] Soner first considered the problem of
characterizing the value functions of state constraint problems in optimal control as
the unique viscosity solutions of the associated Hamilton-Jacobi-Bellman equations.

Let us recall Soner’s formulation. Consider the first-order PDE

(1) H(x, u, Du) 0 in ,
where H" fl x R x Rn R is given by

(2) H(x,r,p) ma{Ar- (g(x,a),p) f(x,a)}.

Here t is a bounded open subset of Rn, A is an index set, A > 0 is a constant, and
g" gt A -, Rn and f" t A - R are given functions.

Equation (1) is the Hamilton-Jacobi-Bellman equation associated with the opti-
mal control problem, where the sets t and A, and the constant A are the state space,
the control set, and the discount factor, respectively, and where the functions g and
f describe the dynamics and the running cost, respectively.

In Soner’s formulation, a function u E C(12) is a viscosity solution of the SC
problem for (1) if

(3)
H(x,u, Du) <_ 0 in ,
H(x, u, Du) >_ 0 in t

in the viscosity sense. We refer to [3] for the definition of viscosity solutions and for
a general scope of the theory of viscosity solutions:

The above formulation (3) does not take into account the boundary behavior of u
as a subsolution of (1), which reflects the fact that uniqueness results for (3) require
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the continuity of the solution u of (3) near the boundary 0. See for this [10], [2],
and [6].

The primary purpose of this paper is to point out that the value function V of
the SC problem in optimal control corresponding to the Hamiltonian H satisfies a
condition on cqg in addition to (3). If we take this boundary condition into account
in the formulation of the SC problem for (i), then this new SC problem for (I) char-
acterizes the value function as a unique solution among (not necessarily continuous)
bounded functions on g under natural hypotheses on g, g, and f. This will be done
in 2 and 3. It will turn out that the additional boundary condition behaves like an
oblique boundary condition. In fact, to show our comparison theorem, we will em-
ploy some ideas from [4], [5], [7], and [8] that were useful to oblique boundary value
problems. We refer to [I] and [II] for other ideas to show comparison theorems for
oblique problems. We also refer to [ii] for a general framework to boundary value
problems for first-order PDEs.

In 5 we also take up the same subject for SC problems with state-space (re-
placing g).

The secondary purpose is to show the Lipschitz continuity of the solution of the
SC problem provided that A is large enough. This result has been proved in [9] via a
direct estimation of the value function and the method here gives a new approach to
the result. This will be dealt with in 4.

Section 6 is devoted to the proof of certain lemmas.

2. New formulation. In this section we introduce and explain our new formu-
lation of the SC problem for (1).

We assume throughout that A is a compact metric space and that

(AI)
g" D x A Rn, f" x A R are continuous,

su, <
aA

Note that the function f g/x A --+ R is bounded and uniformly continuous. We may
assume that g and f are defined on Rn x A and moreover that supaeA
< oc and f R x A -+ R is bounded and uniformly continuous. We use this

convention throughout this paper.
For a given Lipschitz function on R and x E Rn, the unique solution Y(t) of

the initial value problem

dY
d---(t) (Y(t)) for t > 0 and Y(O) x

will be denoted by Y(t; x, ). For any z E D, let A(z) denote the set

{a e A lr > 0 such that Y(t; x, g(., a)) e for x

Here and henceforth B(z, r) denotes the closed ball with center z and radius r. It is
clear that the multifunction x -, A(x) is lower semicontinuous and that A(x) A
for all x E .

In what follows we assume that

(A2) A(z) : O for all z OFt.
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We define the inward Hamiltonian Hn" f R Rn --, R by

Hi(x,r,p) sup {Ar- (g(x,a),p} f(x,a)}.
aEA(x)

Of course, Hi(x,r,p) H(x,r,p) for (x,r,p) e gt R Rn. Moreover, by the
semicontinuity of x A(x) and the uniform continuity of g, f we see that Hi is
lower semicontinuous.

Our definition of solutions of the SC problem for (1) is as follows.
DEFINITION 2.1. We call a bounded function u" -- R a viscosity subsolution

(respectively, a viscosity supersolution) of the SC problem for (1) /f

H, x u Du <_ 0 in 12 (respectively, H(x, u,, Du,) >_ 0 in )

in the viscosity sense. Here u* and u, denote the upper semicontinuous and the lower
semicontinuous envelopes of u, respectively, i.e.,

u*(x) limsup{u(y) y e N B(x,r)} for x e
r$o

and u, -(-u)* on . We call a bounded function u R a viscosity solution of
the SC problem for (1) if u is both a viscosity subsolution and a viscosity supersolution
of the SC problem for (1).

Now we consider the SC problem in optimal control associated with the Hamil-
tonian H given by (2). The value function V gt R of the problem is defined as
follows: For x E and a measurable function c" [0, cw) - A we consider the state
equation

(4)
dX
dt

(t)=g(X(t),a(t)) for t>0 and X(0)=x.

We write X(t;x,a) for the solution of (4) to indicate the dependence on x,a. For
each x E gt define the set A(x) as the set of all measurable functions a" [0, c) --+ A
such that the solution X(t) of (4) stays in f for all t [0, c). It is easily seen that
under assumption (A2), Jr(x) O.

Define the value function V on f by

(5) V(x)= inf
r
/

aeA(x)
e-tf(x(t; x, a), a(t))dt.

THEOREM 2.2. Under assumptions (A1) and (A2), V is a viscosity solution of
the SC problem for (1).

Proof. First of all, we observe that V is bounded on Ft. As in [10] we see that V
satisfies (3) in the viscosity sense. (In [10] it is assumed that V is continuous on t
but this is not assumed here. Accordingly, we have to modify the argument in [10] a

little.)
It remains to show that if 99 C () and if z OFt is a maximum point of V* -99,

then

(6) Hin(z, V*(z),D99(z)) <_ O.

To do this fix any 99 C1() and let z E 0gt be a maximum point of V* -99. We
may assume that V*(z) 99(z) O.
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Fix any a E A(z). Set a(t) a. By the definition of A(z), there is r > 0 such
that

X(t; x, a) e a for x e A B(z, r) and t e [0, r].

It is obvious that if the choice of r is appropriate and if x t B(z, r), then the
restriction al[0,r] can be extended to [0, ) so that the resulting function which we
denote by ax belongs to A(x).

Fix s e (0, r] and choose x gt B(z, ) such that

(7) V(xe) > 99(x) e-tdt.

The dynamic programming principle yields

V(x) <_ e-tf(X(t; x,), a)dt + e-V(X(s; x,

Hence, using (7) and observing that V <_ 99 on t, we get

e-t{f(X(t;x,cx),a) + }dt + e-A99(X(;xe,c)) 99(x)

-t{f(X(t; x, ), a) A99(X(t; x,

+ <g(X (t; x, ), a), D99(X (t; xe, axe))> + e}dt.

Thus, there is y X(t;x,a) with te (0, s) such that

Now, sending 0, we conclude that (6) holds.

3. Comparison of solutions. In what follows we use the condition introduced
by Soner [10] which guarantees the continuity of value functions of SC problems in
optimal control. Let G(x) denote the set {g(x, a) la
let co B denote the convex hull of B. Soner’s condition is stated as follows:

(A3) For each z OFt there are r > 0 and E coG(z) such that

(8) B(x + t, rt) C ft for all x ft g)B(z, r) and 0 _< t _< r.

Let us give a few remarks concerning condition (A3). First, it is obvious that if
(A3) holds, then (A2) is satisfied. Second, if (8) holds for some z 012, r > 0, and

Rn, then we have

B(x t, rt) C c for all x B(z, r) and 0 < t < r.

(See the proof of Lemma 6.3 in 6.) That is, if (A3) holds, then the condition (A3)
with gt and -G(z) replacing and G(z), respectively, is satisfied. Condition (A3)
thus implies that gt is a Lipschitz domain.

Our main result in this section can now be stated.
THEOREM 3.1. Let (A1) and (A3) hold. Let u and v be a viscosity subsolution

and a viscosity supersolution of the SC problem for (1), respectively. Then u <_ v on
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To prove this theorem, we need a few lemmas.
LEMMA 3.2. Let (A1) and (A3) hold. Then there are o E C’I(Rn, Rn), 7o

C(Rn), and ro > 0 such that

(0(x),0(x)) e co{(g(x,a),f(x,a)) a e A(x)} for x e 02

and

B(x + to(x), rot) C for all x O and 0 <_ t <_ ro.

Henceforth we assume that (A1) and (A3) are satisfied and fix 0, 70, and r0 so
that the above conditions are satisfied.

LEMMA 3.3. There is a function C() such that

(o(x),D(x)) _> 1 on 0gt.

LEMMA 3.4. There are w C1( ), constants Ci > 0, 1,2,3, and r > 0
such that

(o(x),Dw(x,y)) <_ 0 for all x e c1 and y e gtNB(x,r),

and for all x, y ,
ix- yl < to(x, y) <_ Clx yl,

max{]Dw(x, Y)I, IDw(x, Y)I} < Clx Yl,
IDw(x, y) + Dyw(x, Y)I <- C31x yl.

We postpone the proof of these lemmas until 6 and here complete the proof of
Theorem 3.1, assuming the validity of these lemmas.

Proof. Let be as in Lemma 3.3 and let # be a constant to be fixed later. Define
functions and on gt by

(x) u* (x) + #(x) and (x) v.(x) + #(x),

so that

Hin (x, t, Dt) <_ 0 on t

and

(9) H(x, , D) >_ 0 on

in the viscosity sense. Here Hin and H are defined by

Hn(x, r, p)
sup {Ar- (g(x,a),p) f(x,a)- A#(x)+ #(g(x,a),D(x))}

aEA(x)

and

H(x,r,p)
max{r- (g(x, a) p} f(x, a) tt(x) + #(g(x a) Db(x))}.
aEA



STATE CONSTRAINT PROBLEM 559

In particular, satisfies

H(x,,D) <_ 0 in 12,

-(0(x), D’5) _< -Au*(x) + ri0(x) #(0(x), De(x)} on 0[2

in the viscosity sense (see Definition 7.4 in [3]). Now fix tt large enough so that

-Au*(x) + rio(x) #(o(x),D(x)) _< -1 on OFt.

Then fi satisfies

(10)
H(x, fi, Dfi) _< 0 in gt,

-(o(x), D,) <_ -1 on OC

in the viscosity sense.
It is enough to show that fi <_ 0 on Ft. To do this we argue by contradiction.

Suppose that max(fi- 0) > 0. Let w e C ( ) be a function as in Lemma 3.4.
Let e > 0 and (x, ye) be a maximum point of the function

(x, ,y) on f x f.

Standard arguments show that (1/e)w(xe, ye) 0 as $ 0. Choosing > 0 small
enough, we may assume that ]xe- Yel -< rl, where r > 0 is from Lemma 3.4. If
x E 0t, then in view of (10) we have either- or H Xe,fi(Xe),

By our choice of w we have

(o(xe), Dxw(x, y)) <_ O.

This means that we always have

H xe,t(xe),-Dw(x Go

By (9) we have

H ye,(y),--Dyw(xe,ye) >_ Go

We proceed as in the standard comparison argument and get a contradiction.

4. Lipschitz continuity. In this section we assume

(A4) sup
aEA

In view of Theorems 2.2 and 3.1 there is a unique viscosity solution u E C(Ft) of the
SC problem for (1) under the hypotheses (A1) and (A3).



560 HITOSHI ISHII AND SHIGEAKI KOIKE

THEOREM 4.1. Let (A1), (A3), and (A4) hold. Set

L1 sup [Ig(.,a)[Ico,l() and )o L1(C2 + Ca)
aEA

where C2 and C3 are constants from Lernrna 3.4. Let ; > )o. Then the viscosity
solution u E C(f) of the SC problem for (1) is Lipschitz continuous on f.

Remark. Loreti and Tessitore [9] have already obtained the above result under a
slightly stronger hypothesis on ft. Their choice of 0 may differ from ours.

Proof. Let 0, 5, H, w, rl, #, and @ be as in the proof of Theorem 3.1. Let
Ci > 0, 2, 3, be constants from Lemma 3.4. We set

/(x, a) f(x, a) + A#(x) tt(g(x, a), De(x)}.
Let A > Ao. We will prove that

() e(x)- e() < (x,)/ o n x, e

and for some a > 0. Observe that the Lipschitz continuity of u is a direct consequence
of (11).

To see that (11) holds, let a > 0 be a constant to be fixed later and (xa, ya) be
a maximum point of the function

(x, ) (x) () (x, )1/ on .
Let s0 211Ullc(-5)/rl. Noting that ((x,y) >_ O, we see that if s >_ So, then

Ix YI -< rl. We assume henceforth that s >_ s0. If x = y, then, as in the proof
of Theorem 3.1, we have

H xa,t(xa), -w(xa,ya)-l/2Dxw(xa, ya)

_
O,

)H Ya,t(Ya),--w(xa,ya)-l/2Dyw(xa, Ya) >_ O.

Using these and still assuming that xa ya, we compute that

-1/2(0 k mi# A((x) (y,)) w(x,, y) <g(x, a) g(y, a), Dw(xa, y,))
a6A

+ (g(Ya, a), nw(x., y.) + nuw(xa, y.)}) ](x., a) + ](y., a)}
> alw(x,y)/ -1/

(,)l/((a_ o)- c),
where

We now fix

L2 sup
aEA

s max{s0, (L: + 1)/(A- 0)}-
We see from the above computation that if x y then w(x,,y) <_ O, which is
impossible by our choice of w, and hence we conclude that x ya. This implies
(11), and the proof is completed.
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5. The $C problem with state-space f. In this section we briefly discuss
the SC problernwith f as its state-space.

We define A(x) for each x E as the set of all measurable functions a" [0, )
A such that X(t; x, ) for all t 0, and the value function V on by

(x) in e-tf(x(t;x,),(t))dt.

Note that A(x) C A(x) and Y(x) V(x) for x e . For m 1, 2,..., we set

A (l,...,,a,...,am) Ii O, ai A, i 1
i=1

and define A(z) for z Q as the set of those (1,...,, al,... ,) e A which
satisfy the following condition: there is r > 0 such that if z, B(z, r) and
0 t r, then x + t =i g(Y, a) e . We set

A= Am and A(z)= Am(z) forzE.
ml

It is clear that A(x) A for x under the sumption (A1). We define Hn
RRRby

m

(x,r,p) sup(Ar-(g(x,a),p)- f(x,a)},
i1

where the supremum is taken over all (,..., m,a,... ,am) A(x). We note that
Hi(x,r,p) U(x,r,p) if x e n.

We have to modify the definition of viscosity solutions. To this end, we change
the definition of upper and lower semicontinuous envelopes. For a bounded function
u" R we define u*,u, R by

u*(x) limsup{u(y) y e B(x, r)} and u, -(-u)*.
r$o

DEFINITION 5.1. A bounded function u" R is a viscosity subsolution
(respectively, a viscosity supersolution) of the SC problem for (1) with state-space

Hin x u Du 0 in (respectively, H x u, Du, 0 in

in the viscosity sense. Moreover, a bounded function u R is a viscosity solution
of the SC problem for (1) with state-space if it is both a viscosity subsolution and
a viscosity supersolution of the SC problem for (1) with state-space .

The following conditions (Ah) and (A6) play the roles of (A2) and (A3), respec-
tively, in the current problem.

(Ah) A(z) # 0 for all z E 0.

(A6) For each z 0 there are r > 0 and (?,... ,m,a,... ,am) A such that if
mwe set =ig(z, ai), then

B(x + tf, tr) C for allxB(z,r) and0tr.
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We can now state the following theorems.
THEOREM 5.2. Let (A1) and (A5) hold. Then the value function V is a viscosity

solution of the SC problem for (1) with state-space
THEOREM 5.3. Let (A1) and (A6) hold. Let u and v be a viscosity subsolution

and a viscosity supersolution of the SC problem for (1) with state-space t, respectively.
Then u < v on .

THEOREM 5.4. Let (A1), (A4), and (A6) hold. Then there is
i > o and if u t -- R is a (unique) viscosity solution of the SC problem for (1)
with state-space t, then u is Lipschitz continuous in

We remark that conditions (A1) and (A6) together imply (A5).
LEMMA 5.5. There are r0 > 0, E C(Rn), and a A, with i 1,...,m,

such that

(l(X),...,m(X),al,...,am) e Am(x) for all x e Ogt

mand such that if we set o(X) Ei=I (x)g(x, a), then

B(x + to(x),rot) C for x O and O <_ t <_ ro.

The proof of this lemma parallels that of Lemma 6.2, so we omit giving it here.
Let C(R), a E A, with 1,..., m, and 0 be as in Lemma 5.5. Set

m

70(x) i(x)f(x, ai).
i--1

If u is a viscosity subsolution of the SC problem for (1) with state-space gt, then it
satisfies

H(x,u*,Du*) <_ 0 in

-(o(x),Du*) <_ -$u*(x) + ?o(X) on OFt

in the viscosity sense. Using this and proceeding as in the proof of Theorems 3.1 and
4.1, we can prove Theorems 5.3 and 5.4 without difficulty. We omit the details.

The proof of Theorem 5.2 is a little harder than that of Theorem 2.2. We may as-
sume that g C(R x A, R) and supA Jig(’, a)[Ico,() < " The key observation
is stated as Lemma 5.6.

LEMMA 5.6. Let (,...,’m, al,...,am) A. Define C’(Rn, Rn) by

m

(x) E "ig(x, ai).
i--1

(1) Then there is a sequence of measurable ak "[0, ) --. {a,..., a,} such that
for each T > 0 and h e C([0, T] A),

(12) h(t, ak(t))dt --* / h(t, a)dt as k
i--1

(2) Fix such a sequence {ak}. Then

X(t;x,a) --, Y(t;x,) as k --, oc,
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uniformly on compact subsets of [0, c).
Proof. We begin with (1). Set

Then, the interval [0, 1) is the direct sum of I1,... ,Im. Define a0 [0, c)
{al,..., am} by setting ao(t) ai if t EIi, with 1,..., m, and ao(t) ao(t k)
if t E [k,k + 1), with k 1,2, Now, define ak [0,x) --, {a,...,a,} for
k 1,2,... by ak(t) ao(kt). It is not hard to see that for each T > 0 and
h e C([0, T] A),

h(t, ak(t))dt --, h(t, ai)dt as k - x.
i.-1

Next, we turn to (2). Fix x R. By virtue of the Ascoli-Arzela theorem, we
can extract a subsequence of {k} along which {X(t;x,a)} converges to a function
Y C([0, c), R) uniformly on compact subsets of [0, c). Now, the sequence
satisfies (12). Therefore,

f0 f0
T

g(X(t; x, (), ak(t))dt -- (Y(t))dt as k --* cx

for each T > 0 along the subsequence. From this it is easily seen that Y(t) is a
solution of

dY
d---(t) (Y(t)) for t > 0 and Y(0) x.

That is, Y(t; x,) =_ Y(t). This implies that

X(t;x, ak) Y(t;x,) as k o,

uniformly on compact subsets of [0, c).
As a consequence of Lemma 5.6, we deduce that under assumption (A5), jr(x)

for all x t.
Outline of proof of Theorem 5.2. We write u V. We shall prove only that if

E C1() and if z 0f is a maximum point of u* , then

H(z,u*(z),D(z)) <_ O.

We may assume that u*(z)- (z).
Fix any (’,..., /,, a,..., a,) e A(z). Define as in Lemma 5.6 and e C(t)

by

m

7(X) if(x, ai).
i--1

We write Y(t; x) for Y(t; x, ) for notational simplicity. We fix r > 0 so that Y(t; x)
for all x N B(z, r) and t [0, r].
Fix s (0, r] and choose xe t B(z, ) such that

u(xe) > (xe) e-tdt.
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By virtue of Lemma 5.6, there is ce E JI(xe) such that

e-at {f(X(t; ae), ae(t)) (Y(t; xe))}dt < e-Xtdt

and such that

e-t { {g(X(t; x, a), c(t))Dqo(X(t; x,

-{{(Y(t; x)), Dqo(Y(t; x))} }dt < e e-atdt.

By the dynamic programming principle, we have

(z) < e-tI(X(t;,), (t))dt + e-X(X(e; x, )).

Combining these, we get

0 < e-at{f(X(t;xe, a),ae(t)) + e}dt + e-e(X(e;xe,ae)) (xe)

e-Xt{(Y(t;z))- X(X(t;z,))+ (((Y(t;)),D(Y(t;))) + as}et.

Thus, there is g(ts; z) and z X(t;z,s) with t e (O,e) such that

-3 < (y) A(z) + ((ye), D(y)).

Now, sending s 0, we conclude that

gin(Z, u*(z),D(z)) O.

6. Proof of lemmas. Throughout this section we assume that (A1) and (A3)
hold. We also assume that g is defined on R A and SUPaeA ]g(., a)]]CO,() < .

The following constructions of and w in Lemm 3.3 and 3.4, respectively, are
similar to those in Dupuis and Ishii [4]. We begin with the following lemma.

LEMMA 6.1. Let z Rn. Let , Rn and r > 0 satisfy

(13) B(x + t,rt) C for all x B(z,r) and O t r,

(14) B(x + try, rt) C a for all x a B(z, r) and 0 <_ t <_ r.

Let + (1 -)r/for some [0, 1]. Then there is s > 0 such that

(15) B(x + re, st) c fl for all x f C B(z, s) and 0 <_ t N s.

Proof. We set

s min{r r }2’2(r+ I([)

and prove (15) for this s.
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Let 0 < t _< s and y E B(x + t, st). For some p E B(0, s) we have

y x + t + tp

(x + t/ + t’p) + t(1 /) + t(1 /)p.

In view of (13) we see that x + t/ + t/p ft. By our choice of s, it is easily checked
that x + t’y + t/p B(z, r). Hence, by using (14) we conclude that y ft. rl

LEMMA 6.2. There are r > 0, Cs C(Rn), and as A, with i 1,...,m,
satisfying s >_ 0 and }-S=l s 1 on Oft such that if we set (x) m

then

and

e coO(x) Ior e 0a,

(16) B(x + t(x), rt) C ft for x Oft and 0 <_ t <_ r.

Proof. By the compactness of Oft, we deduce from (A3) that there are r > 0,
as A, zj OFt, and ")’sj >_ 0, with 1,..., m and j 1,..., l, such that

m

E 3’s 1 for all j and OFt C U B(z, r/2),
i=1 j=l

mand such that if we set (x) Ys=l sjg(x, as), then for all j,

(j(x) e coG(x) for all x e B(zj, r) n a,

B(x + ty(x), rt) C f for all x t C B(zj, r) and 0 _< t _< r.

By a standard argument, we find that there are j C(Rn), with j 1,..., l, such
that Cy _> 0 and supp Cj C Int B(zy, r) for all j and 2= 1 on Oft. Using Lemma
6.1 and setting

m

(x) EE y(x)/sjg(x,
i=1 j--1

we see that ((x) e coG(x) for all x e OFt and that there is s e (0, r] such that (16)
holds with s in place of r. r’l

Proof of Lemma 3.2. Lemma 3.2 follows immediately from Lemma 6.2.
LEMMA 6.3. Let C(R’, R’) and r > O. Assume that (16) holds with these

and r. Then, for all z Of, x B(z, r) and 0 <_ t <_ r,

B(x + t(x), rt) C a if x e

and

(17) B(x- t((x), rt) C ac if x e a.
Proof. Let z Of, x B(z, r), and 0 < t _< r. First we suppose x ft and prove

that

(18) B(x + t((x), rt) C? B(z, r) C ft.
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Suppose that this is not true, and choose p E B(0, r) so that

x + t(x) + tp e B(z, r) A (gt)c.

Then there is T e (0, t) such that x+T(X)+Tp Cggt. It is obvious that X+T(X)+Tp
B(z, r). Hence, noting that

+ t() + tv ( + r() + v) + (t )(z) + (t ),

and using (16) we see that x + t(x) / tp . This is a contradiction, which implies
that (18) holds.

Next we show that

(19) B(x t(x), rt) B(z, r) C if x e c.

It is enough to prove (19) for the case when x ()c. We thus assume that x
Again, we suppose that (19) is not true, and get a contradiction. Now, we have

x- t(x) + tp e B(z, r) gt

for some p e B(0, r), and moreover,

x T(X) + Tp Ot

for some 0 < T < t. Since x ’(x) + rp B(z, r), noting that

( r(x) + p) + (x) + (-),

we see that x Ft, which is a contradiction. [’l

Proof of Lemma 3.3. Let o C’l Rn, Rn) be from Lemma 3.2. By Lemma 6.3,
there is r > 0 such that for all z 0, x B(z, r), and 0 <_ t _< r,

(20) B(x + to(x), 2rt) c t if x e gt,

(2) B(x t(x), 2rt) C Ftc if x e gt.
The following arguments are based on the idea of value functions in optimal

control or the method of characteristics.
For s > 0 we write F8 for the open s-neighborhood of 0t, i.e.,

F8 {x e Rn dist (x, 0Ft) < s}.

We may assume that Io(X)l <_ I for x R’. We fix s > 0 so that s(1/r + 1) <_ r and
so that if x EFr and y B(x, e/r), then Io(Y) o(x)l <_ r.

We write Y(t; x) for Y(t; x,-o) for notational simplicity. Now, we claim that

(22) Y(t; x) (F) for all x Fe and t >_ 2sir.

To show this, we will prove that

(23) x gt r 2t E (0,s/r] such that Y(t; x) Ft,
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(24) x nr st e (O,e/r] such that Y(t; x) E (r) n a,

and

(25) x e fitc n (F)c == Y(t; x) e (F) Vt > 0.

Once we have proved (23)-(25), we can easily conclude that (22) holds.
To prove (23), fix x gtn Fe and suppose that Y(t; x) t for all t (0, s/r].

Fix z e OFt so that Ix- z < s. Then, for all t, T

elt

IY(t; x) Y(r; x)l < Io(Y(s; x))lds <
J0

and hence,

[Y(t;x) zl < /’ + <_ ’ and Io(Y(t;x)) o(Y(T,X))I <_ r.

Thus, setting y Y(s/r; x), we have

elt

x y + (s/r)o(y) + (o(Y(s; x)) o(y))ds
do

e B( + (/)o(), ).

Hence, in view of (20) we see that B(x,s) C gt and therefore that dist (x, 0t) _> s.
This is a contradiction, which proves (23).

To prove (24), let x Ftsn Fe. As above, we find that for some z 0, we have
x e B(z,s) and also Y(t; x) e B(z, r) and Io(Y(t; x))- o(x)l _< r for all 0 <_ t <_ sir.
We have

elt

Y(s/r; x) x (s/r)o(X) (o(Y(s; x)) o(x))ds
do

e B( (/)o(), ),

and hence B(V(s/r; x),s) C Ftc by (21). Therefore we have Y(e/r; x) e an (Fe).
To prove (25), we let x gtcn (Fe) c. Suppose that Y(T; x) F for some T > 0.

We may assume that Y(t;x) gt for all 0 _< t <_ -. Then there is a E (0, T)
such that Y(a;x) 0(Fe) and Y(t;x) Fe for a < Vt < -. We may assume
that T <_ a + sir. Then, for all t e [a,T], IY(t;x)- Y(a;x)l <_ sir and hence,
I0(Y(t; x)) o(Y(a; x) + p)] <: r for all p e B(0, s). Therefore, noting that for any
pE Rn

Y(T; X) + p Y(a; x) + p (T a)o(Y(a; x) + p)

+ {0(Y(a; x) + p) 0(Y(t; x))}dt,

we find that for all p e B(0, s),

Y(T; X) + p e B(Y(a; x) + p (T a)o(Y(a; x) + p), r(T a)).

Since B(Y(a; x),s) C cn Fr, in view of (21) we have

B(Y(T;x) +p,r(T--a))C a for all p e B(0, s),
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and, in particular, B(Y(T; x),s) C c. That is, Y(T; x) e (Fe)c. This is a contradic-
tion, from which (25) follows.

Now we choose h E C(Rn) so that h >_ 0 on Rn, supp h C Fe, and h(x) > 2 for
x E Fe/2. Define v" Fe R by

By virtue of (22) we see that

v(x) h(Y(t;x))dt.

2e/r

v(x) h(Y(t;x))dt.
Jo

It is now easy to check that v C,l(Fe) and that v satisfies

(0(x), Dv) h(x) in F
in the viscosity sense, and as a result

(0(x), Dvl h(x) a.e. in Fe.
By mollifying both sides of this, we conclude that there is a function C(R)
such that (o(x),D(x)} _> 1 on F/2. I-I

We shall work in R2 for a while. Let el denote the unit vector (1, 0) R2. Fix
0 < 5 < p < 1, and set

(26) g U B(te, t) and L U B(tel, pt).
t>_o t>_o

LEMMA 6.4. There is a function v C(R2)CICI’I(R2\ {0}) such that v is convex
and symmetric with respect to the xl-axis,

v(tx) tv(x) for x E R2 and t > O,
v(x) > O if x # O,

and

(27) (q, Dr(x)) < O. for all q K and x Lc.

Proof. Set

= (p [.J +
O<t<5

and

v(x)=inf{t>OlxetK} forxeR2.

We observe that Ke contains the origin as its interior point; is convex, bounded, and
symmetric with respect to the x1-axis; and is the closed s-neighborhood of the convex
set

U B(tel, St).
O<t<5
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Then we have that v is convex and symmetric with respect to the axis x2 0,

Next we must verify that (27) holds. Fix x E Lc. We may assume without loss of
generality that x e O(Ke). Then x tel +p for some 0 t _< 5 and p OB(O, 5t + ).
Suppose for the moment that t 5. Then, IPl <- 52 + p5 pt, and this implies
that x L. This means that t < 5. Therefore, there is > 0 such that

x + K N B(0, r) C Ke.

Fix any q K. If s > 0 is small enough, then we have

x + sq Ke and hence v(x + sq) <_ l v(x).

Thus, differentiating v(x + sq) with respect to s, we conclude that (q, Dv(x))
Proof of Lemma 3.4. Let 0 E C’1 (Rn, Rn) and 0 <: r < 1 satisfy

B(x- to(x), rt) C gtc for all x 0t and 0 _< t _< r.

We shall build a function w C1( ) which satisfies the conditions of Lemma
3.4 concerning w with this 0. To this end we may assume that I0(x)l 1 for
x Fr {y dist (y,i)t) < r}. Moreover, replacing r by a smaller number if
necessary, we may assume that for some s > 0,

B(x to(x), (r + s)t) C gt for all x 02 and 0 _< t _< r.

We setp=r/v/1 r2 andh=p/2, sothatr=p/v/i+p2 and0<5<p< 1.
In the above inclusion, we may assume that s/(1 -s) _< 5/v/i +’52. Let K and L be
the sets defined by (26) with the above 5 and p. Observe that

K (q ,q )llqul <- v/i.. and L (Zl,Z )llz l < P.:: :Zl
/1 p2

By approximating 0, we can choose a function E C(Rn, Rn) and s G (0, r] so
that I(Y)- 0(x)l-< s for all x G OFt and y B(x, s) and I(x)l 1 for all x G Ft. It
follows that

(28) B(x- t(y), rt) c Ft for all x Ogt, y B(x, s) and 0 _< t _< r.

Let v e C(R2) N CI,(R2 \ {0}) be from Lemma 6.4. We define w e C(R2n) by

Ix (x I)

It is convenient to introduce the following notation:
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Note that

(x, ) ((x , ()), I()(x )1),
that if I(Y)I-- 1 then Q(y)" R R is the orthogonal projection onto the orthog-
onal complement to the space generated by (y), and that

x u (x u, (u))(u) + Q(u)( u).

Noting that the function v(zl,z2) is symmetric in the variable z2, we see that
CI(R).

For given x, y E R we write

zl (x y,(y)), z2 IQ(y)(x y)l, and z (zl, z2).

Differentiation gives

Dxw(x y)= 2v(z)Dv(z)(y)+ D2v(z)
Q(y)(x- y)
IQ()(z )1

Dyw(x,y) 2v(z){DlV(Z)(-(y) + R(x,y))

q()(- ) }+ D2v(z)(-I + R2(z, y))iQ(y)(x y)]

provided Q(y)(x-y) # 0, where R (x, y) and R2(x, y) are C functions on R2n with
values in Rn and in the space of real n n matrices, respectively, and moreover, the
estimate

]Rl(x, Y)I + JJR(x, Y)Jl CJx yJ

holds for all x, y R and for some C > 0. Here and later Dv and D2v denote
the first and the second components of Dv, respectively. If, on the other hand,
Q(y)(x- y)= 0, then we have

Dxw(x,y) 2v(z)Dv(z)(y), Dvw(x,y) 2v(z)Dv(z)(-(y) + R(x,y)).

Now, we fix x Oft and y ft so that Jx-yl -< s. We will show that
(o(x),Dw(x, y)) <_ O. If x-y 0, then, trivially, the inequality holds. We shall
assume that x y # 0. We consider the case when z2 IQ(y)(x y)] 0. Observe
that if zl (x y, (y)} :> 0, then by (28) we have

B(x- z(y), rz) B(y, rz) C ftc, which is a contradiction.

Therefore, we have z _< 0 and hence Dv(z) <_ O. We observe that

> (0(x), ()) + (0(x), ()- 0(x)) > - > 0.

Now, we see that (0(x), Dw(x, y)} <_ O.
Next we consider the case when z2 IQ(y)(x y)l =fi O. We set

q (0(),()), q (0(x) Q(y)(x y) ) and q=(ql,q2)
IQ()(z )1
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and note that

(o(x),Dxw(x, y)} 2v(z)(qlDlV(Z) + q2D2v(z)) 2v(z)lq, Dv(z)}.

We now check that q E K. To do this, we recall that 1- _< ql _< 1, and observe that

Q(u)(x }IQ(u)( 

Thus, [q2[ _< (5/v/1- (2)ql and hence q E K. Next, we want to show that z is in
the closure of Lc. If zl _< 0, we have immediately that z e Lc. We thus assume that
z > 0. Observing that if z2/zl < r, then

y x Zl(y) + (Q(y)(y x)) e Int B(x Zl((y), rZl) c c

by (28), we see that Z2/Z1 )_ r p/v / p2 and hence that z is in the closure of Lc.
Now we conclude in view of (27) that (0(x), Dxw(x, y)) <_ O.

Multiplying w by an appropriate positive constant, we may assume that w(x, y) >_
Ix yl 2 for all x, y Rn. It is easy to check that w satisfies the other requirements.

Note Added in Proof. The authors recently learned that results similar to
Theorem 4.1 are obtained in [8, Thm. X.2].
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CONDITIONS FOR ROBUSTNESS AND NONROBUSTNESS OF THE
STABILITY OF FEEDBACK SYSTEMS WITH RESPECT TO SMALL

DELAYS IN THE FEEDBACK LOOP*

HARTMUT LOGEMANNt, RICHARD REBARBER$, AND GEORGE WEISS

Abstract. It has been observed that for many stable feedback control systems, the introduction
of arbitrarily small time delays into the loop causes instability. In this paper we present a systematic
frequency domain treatment of this phenomenon for distributed parameter systems. We consider
the class of all matrix-valued transfer functions which are bounded on some right half-plane and
which have a limit at + along the real axis. Such transfer functions are called regular. Under the
assumption that a regular transfer function is stabilized by unity output feedback, we give sufficient
conditions for the robustness and for the nonrobustness of the stability with respect to small time
delays in the loop. These conditions are given in terms of the high-frequency behavior of the open-
loop system. Moreover, we discuss robustness of stability with respect to small delays for feedback
systems with dynamic compensators. In particular, we show that if a plant with infinitely many
poles in the closed right half-plane is stabilized by a controller, then the stability is not robust with
respect to delays. We show that the instability created by small delays is itself robust to small delays.
Three examples are given to illustrate these results.

Key words, small time delays, robust stabilization, linear distributed parameter systems,
regular transfer functions, dynamic stabilization

AMS subject classifications. 93C20, 93C25, 93D09, 93D15, 93D25

1. The main results. Consider the linear feedback system shown in Fig. 1,
where u is the input function and y is the output function, both Cm-valued. H is
the open-loop transfer function, with values in Cmx’ which we assume to be regular
and in particular well posed. Wellposedness means that H is bounded on some right
half-plane, and regularity means that, in addition, H has a limit at +c along the
real axis (see 2 for more detail on these concepts). The block with transfer function
e-8 represents a delay by , where _> 0. The transfer function of the closed-loop
system is given by

G(s) H(s) (I + e-SH(s)) -1

can be obtained from G by

(1.2) G(s) G(s) [I (1 e-)G(s)] -1

To avoid possible complications with domains of transfer functions, we make the
following convention: If a meromorphic function is defined on some right half-plane
and can be extended meromorphically to a greater right half-plane, we will not make
any distinction between the initial function and its extension. This will not lead to
confusions.
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We say that G is L2-stable if G E H(cmm); i.e., G is a bounded analytic
function on the open right half-plane Co {s E C Re s > 0}. Indeed, as is
well known, this property is equivalent to the one that u L2([0, c), Cm) implies
y e L2([0, c), cm).

H
Y

FIG. 1. Feedback system with delay.

In many engineering applications the aim is to stabilize a plant by a feedback
controller. Here, stability may have various meanings--for example, exponential sta-
bility in the state space. We may think of H as the transfer function of the plant and
the controller connected in cascade, and the stability of the corresponding closed-loop
system implies that GO is L2-stable. However, stability might be lost if tiny (and
often inevitable) delays are present in the feedback loop, leading to the feedback sys-
tem shown in Fig. 1. Indeed, it might be that for arbitrarily small e > 0, G has
poles in Co, which implies that the system cannot be stable in any reasonable state
space sense either. Our aim in this paper is to find conditions on H (necessary and/or
sufficient) for this phenomenon (observed by many authors) to happen.

We say that Go is robustly stable with respect to delays if there is an e0 > 0 such
that for any [0, 0], G is L2-stable. The absence of this property means that
arbitrarily small destabilizing delays can be found for GO

If the transfer function H is meromorphic on the half-plane Co, then we denote
by H the (discrete) set of its poles in C0. (We say that p is a pole of H if p is a
pole of at least one entry of H.) We define

(1.3) -), limsup r(H(s)),
8C0\3H

where r(H(s)) denotes the spectral radius of the matrix H(s). It might happen that
7 cnfr example, if H is scalar and has an unbounded sequence of poles on the
imaginary axis. If GO is L2-stable, then from the formula H Go(/- G)-1 it is
not difficult to see that H is meromorphic on Co. Indeed, for s in the half-plane
where H(s) was originally defined, I G(s) (I + H(s)) -1 so that det(I- G(s))
is not identically 0. Hence, if GO is L2-stable, then (1.3) makes sense. This fact is
used implicitly in the statement of our main result, which is the following theorem.

THEOREM 1.1. Let H be a C’X’-valued regular transfer function and suppose
that G H(I + H)-1 is L2-stable. Let " be defined by (1.3).

(i) If / < 1, then Go is robustly stable with respect to delays.
(ii) If " > 1, then GO is not robustly stable with respect to delays.
The proof of (i) is much easier than the proof of (ii) and is in 6. It is shown in

the same section that (i) cannot be extended to multidelay perturbations. The proof
of (ii) is very involved, so in order to present the ideas clearly, without multivariable
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technicalities, we first give the proof for m 1 in 3 and 4. The multivariable case is
treated in 5. We were not able to prove a general result for the case - 1. However,
trivial examples (e.g., H(s) _-- I) show that Go will in general not be robustly stable
with respect to delays if - 1.

In 7 we show that the instability created by a small delay in the closed loop is
itself robust to small delays.

In 8 we discuss destabilization and robustness with respect to delays for systems
with dynamic feedback. Let P and K be meromorphic functions on Co of appropriate
dimensions such that the products PK and KP exist. We say that K stabilizes P if

[ ]-I P
-K I

is L2-stable. Intuitively, this means that if we connect the plant P and the controller
K in a feedback loop with two external inputs, then all the possible transfer functions
in the loop are L2-stable (see 8 for details).

Let us denote K(s) e-K(s). We say that K stabilizes P robustly with respect
to delays if there is an s0 > 0 such that for any s [0, s0] Ke stabilizes P. Intuitively,
this means that the introduction of sufficiently small delays into the feedback loop
mentioned earlier does not destroy its stability. By a corollary of Theorem 1.1 stated
in 8, if H PK is regular and - is defined by (1.3), then < 1 implies that K
stabilizes P robustly, while 7 > 1 implies that the opposite is true. Let (l denote
the closure of C0. Using the above mentioned corollary and a lemma of independent
interest, we prove (still in 8) the following theorem.

THEOREM 1.2. Let P and K be matrix-valued meromorphic functions on a right
open half-plane containing C. Assume that PK is regular and K stabilizes P. If
P has infinitely many poles in C), then K does not stabilize P robustly with respect
to delays.

Thus, roughly speaking, if a plant with infinitely many poles in C is given, we
cannot find a controller such that the resulting feedback system is robustly stable
with respect to small delays in the loop.

In 9 we give three simple examples.

2. Preliminaries and discussion of earlier results. There are many exam-
ples in the literature of systems described by partial differential equations which are
exponentially stabilized by a feedback but are destabilized by arbitrarily small time de-
lays in the feedback loop. The first example of this sort appeared in Datko, Lagnese,
and Polis [9], where a one-dimensional wave equation with boundary feedback was
studied. The same phenomenon has been subsequently described in many other ex-
amples; see Datko [10], Desch, Hannsgen, Renardy, and Wheeler [13], Hannsgen,
Renardy, and Wheeler [20], Bontsema and deVries [3] and Grimmer, Lenczewski, and
Schappacher [19]. In a more abstract framework, this destabilization by small de-
lays was demonstrated for classes of distributed parameter feedback systems in Datko
[10], [11] and Desch and Wheeler [12]. In these classes of systems the open loop semi-
group is unitary, and only one stabilizing feedback is considered for each given plant,
typically a type of co-located control.

In contrast with the works referred to above, we will take a frequency domain
approach here, which is not tied to a specific form for the stabilizing feedback. Our
approach is similar in spirit to that in the considerably older paper of Barman, Callier,
and Desoer [1]. In that paper, necessary and sufficient conditions were given for a
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class of single-input single-output (SISO) systems to be robustly stable with respect to
delays. The results in [1] are limited by several restrictions, including the requirement
that the open-loop transfer function has at most finitely many poles in the closed right
half-plane. These results were applied to some systems described by partial differential
equations in [3].

A more general class of perturbations of feedback systems, including small delays
in the loop, were considered by Georgiou and Smith [17], [18] (see also Curtain [8]).
Their concept of w-stability is considerably stronger than robust stability with re-
spect to delays; it covers a large class of perturbations which represent high-frequency
modelling uncertainties. The necessary and sufficient criterion for w-stability in [18]
resembles our Corollaries 8.2 and 8.4, especially in the SISO case. For multiple-
input multiple-output (MIMO) systems, there is a curious difference: the result for
w-stability is in terms of the norms of the transfer functions, while our result for
robustness with respect to delays is in terms of their spectral radius. The proof of
destabilization results for w-stability is considerably easier than for robustness with
respect to delays.

We will now recall some concepts and results needed in this paper. We will work
with finite-dimensional input and output spaces, but we mention that these concepts
and results have natural counterparts for Hilbert space-valued input/output functions,
which means operator-valued transfer functions.

Let c E]R. We will use the notation

C {sEC Res>a},

and H(Cpm) will denote the space of all bounded analytic Cpm-valued functions
on Ca. We write H for H. The norm IIGIIo of a function G e H is the
supremum of IIG(s)l over Ca, the matrix norm being defined as the greatest singular
value. After the identification of functions with their meromorphic extensions, which
was mentioned in 1, we have that

H C H if c 5ft.

DEFINITION 2.1. A well-posed cpm-valued transfer function is an element of
one of the spaces H Cp "

Well-posed transfer functions correspond to shift invariant operators on Loc[O
with finite growth bound; see Weiss [32, 3]. In particular, the transfer function of
any abstract linear system is well posed, as follows from [32, Prop. 4.1]. Conversely,
for any well-posed transfer function H we can find an abstract linear system whose
transfer function is H, as follows from results in Salamon [29].

DEFINITION 2.2. A well-posed matrix-valued transfer function H is regular if the
limit lim_+o H() D exists (where is real). Then D is the feedthrough matrix
oyH.

Practically all well-posed transfer functions of interest are regular. (In fact, it is
a nontrivial exercise in complex analysis to construct an example of a well-posed and
nonregular transfer function.) If the transfer function of an abstract linear system is
regular (such systems are called regular), then the system has a simple and convenient
state space representation, like finite-dimensional systems; see [32, 2].

For SISO systems, we will use the term feedthrough value instead of feedthrough
matrix. We introduce a notation for angular domains in C: for any number (0, r],

w() e (0, e (-, )}.
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We will need the following simple fact about regular transfer functions.
PROPOSITION 2.3. Let H be a regular matrix-valued transfer function, with

feedthrough matrix D. Then for any E (0, ),

lim H(s) D.

This follows from Duren [14, Thm. 1.3], after mapping the half-plane onto the unit
disk. It follows also from the results in [32, 5], where Laplace transform techniques
are used.

Remark 2.4. If H and (]e are related as in (1.1) and s > 0, then it is easy to see
that H is well posed (regular) if and only if Ge is well posed (regular). If H and GO

are both well posed, then one of them is regular if and only if the other is. Similar
statements are true for operator-valued transfer functions but are more difficult to
prove; see Weiss [33].

3. Nonrobustness: The SISO case with IDI
_

1. In this section we prove
(ii) of Theorem 1.1 for SISO systems and under the additional assumption that D,
the feedthrough value of H, satisfies ID[ <_ 1. This situation is fairly typical for
transfer functions of unstable vibrating systems. Since we can say slightly more than
what is written in (ii) of Theorem 1.1, we restate the result.

THEOREM 3.1. Let H be a regular SISO transfer function and, for any >_ O, the
function (] be defined by (1.1). Let D denote the feedthrough value of H. Assume
that

(1) GO e H, so that 7 can be defined by (1.3),
(2) >
(3) ID[ _< 1.
Then there exist sequences () and (p,) with

n > O, -,0, Pn e Co, ]Impn[o

and such that for any n N, Pn is a pole of
Proof. From condition (1), using (1.1) we can see that the point -1 has a neigh-

borhood which does not intersect the range of H (regarded as a meromorphic function
on C0). This implies that there exist > 0 and 71 > 1 such that the set

does not intersect the range of H:

(3.1) H(s) $1 V s Co.

Since we may choose 71 arbitrarily close to 1, by condition (2) we may assume

(3.2) 1 < 71 < 7.

The definition of 7 and (3.2) enable us to show that there exists a sequence (z=)
in Co with the following properties:

(a) [z[-, o as n - c;
(b) for any n E N,

[H(z)[ > ;
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(c) for any n E N, H is analytic on the ray

Fn {z,+a ae[0, cx)}

(i.e., there are no poles on these rays).
By Proposition 2.3, for any e (0, ) there exists an re > 0 such that for any s

W() with Isl > re we have IH(s)-DI < "h-1. Using that IH(s)l _< IDI+IH(s)-D
and condition (3), we get that, for s as above, IH(s)l < 1. By property (b) it follows
that the sequence (zn) lies in the set {s e Co lsl _< rv or args >_ }. Here and
in the rest of this proof, the argument of a (nonzero) complex number s is defined
such that args (-,r]. By property (a), for n sufficiently large, IZnl <_ r is
not possible, so that arg znl _> . Since the choice of E (0, ) was arbitrary, we
conclude that

(3.3) nlim Irgzl .
Together with property (a) this implies that

(3.4) lim IIm z,l .
We may assume without loss of generality that for all n N, Im Zn > 0. Indeed,

if such a subsequence does not exist, then a similar argument can be made assuming
that Im z < 0 for all n N.

By property (c), H is continuous on each ray Fn, and by Proposition 2.3, H(s) --.
D as s c on F. Since IDI <_ 1 (by condition (3)), the numbers

max{a e [0, ) IH(z + a)l _> 1 },an
" min{a [a, cx] IH(z, + a)l < 1}an

I!are well defined. (If IDI- 1, then it might happen that an oc.) Put

It II
Zn Zn+an Zn Zn+an
II(It might happen that zn oc.) We will be looking for poles of Ge in the open

horizontal segments (z, z) C F.
and " using property (c) we see that the image ofFrom the definition of zn z,

[Zn, z] through H is a curve Hn contained in { s C 1 _< Is[ _< "1 }. The possibility
that z x is not disturbing since (by Proposition 2.3) H is continuous at infinity
along the ray F. By (3.1) H cannot enter S1, so it is confined to the set

$2 { rei r [1, 1], I1 };
see Fig. 2. Thus we have

(3.5) II c: $2 V n N.

Using (1.1) we see that p is a pole of Ge if and only if

e-ePH(p) -1.

A sufficient condition for this is

(3.6) log H(p) ep -iT,
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,.- log

i !1

where we choose the branch of the logarithm to be log z log Izl + i argz, with
arg z E (-r, r], as agreed earlier, and log Izl

For each s e C0 with Im s > 0, the ray R(s) { log H(s)- es e [0, o)}
intersects the horizontal line L {s C Ims -Tr} in a point w(s) ir. Indeed,
for e 0 the corresponding point of R(s) is above L, while for large e > 0 the
corresponding point of R(s) is below L. Thus we can define the real-valued functions
w(s), e(s) for each s C0 with Im s > 0 such that e(s) > 0 and

log H(s) e(s)s w(s) izr.

A simple computation shows that

(a.s)
arg H(s) + 7r

(3.9) w(s) log IH(s)l
(arg H(s) + zr)Re s

Im s

CLAIM. For all n N sufficiently large, there is a point p, (Z’n, Z"n) such that
o.

Figure 3 is intended to give an intuitive picture of this claim. In this figure we see
the curve log IIn which, according to (3.5), is contained in the rectangle log $2. It is

" is finite The rays R(z), R(z), and R(p) (dottedassumed in the picture that z
lines) and the horizontal line L are marked.

Proof of the claim. We define

Then, as a [-cx3, oo)-valued function, w is continuous on each segment [z, z]. In-
" is finite then thedeed, by (3.5) arg H(s) has no jumps on such a segment. If zn

Itcontinuity of w is clear from (3.9). If zn cx3, then it is easy to see from (3.9) that
lims-o w(s)= -oo, where s e (z, z).
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|ra

FIG. 3. The claim (the existence of pn).

Next we show that for all n N sufficiently large,

(3.10) w(z) > 0 and w(z) < O.

The sequence (zn) shares with (zn) properties (a) and (b) (also (c), but this is not
needed now). By the exact same argument used to prove (3.3), and by the assumption
Im z > 0, we get that

lim argzn-o 2

Hence

(3.11) lim
(argH(zn) / zr)Rezn O.

-o Im zn

On the other hand, it is clear that

(arg H(z) / r)Rez > O.

and " IH(z)l "1 > 1 and IH(z)l 1. ThereforeBy the definition of zn zn,
log [H(zn)[ log-l > 0 and log [H(z) 0. Combining this with (3.9), (3.11), and
(3.12) we see that for all n sufficiently large, (3.10) holds.

Since w(s) is continuous on [z, z], (3.10) implies that for all n e 11 sufficiently
Zlarge there exists p, E (,,z) such that w(p,) 0. (This is indicated in Fig. 3 by

having the ray R(pn) go through -ir.) This completes the proof of the claim.
Returning to the main proof, we may now assume without loss of generality that

t!for each n E N there is a p, (z,zn) such that w(p,) 0. (If not, select an
appropriate subsequence.) We denote an e(p,). By (3.7) (with s Pn) we get
that Pn and an satisfy (3.6), so pn is a pole of G". By (3.8), an > 0. Since
Imp, Imzn, by (3.4) we have IImpn[--, cx). By (3.8) and (3.4) we have an - 0.
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4. Nonrobustness: The SISO case with IDI > 1. In this section we prove
(ii) of Theorem 1.1 for SISO systems and under the additional assumption that D,
the feedthrough value of H, satisfies IDI > 1. Then obviously 7 > 1, so that this
does not have to be assumed. In fact, we will prove a stronger result, in which the
assumption that GO is L2-stable is not needed. We do not even need that H should
be meromorphic on Co.

THEOREM 4.1. Let H be a regular SISO transfer function and, for any >_ O,
the function G be defined by (1.1). Let D denote the feedthrough value of H and
assume that

IDI > 1.

Then there exist sequences (,) and (Pn) with

n > O, en O, Re Pn cx Im Pn oo

and such that, for any n e I, Pn is a pole of G
Proof. If D is not a negative real number, then we define the argument of any

(nonzero) complex number s such that arg s 6 (-zr, r], as in the proof of Theorem
3.1. If D is negative then it is more convenient to change the definition such that
arg s 6 (-, ] (to avoid a jump discontinuity at D). The function log is defined
by log s log Isl + i arg s with log Isl R.

For any r > 0, Br will denote the closed disk of radius r with center in D. Due
to IDI > 1 and the way in which we have defined the function log, we can find a
p > 0 such that (1) Izl > 1 for all z Bp and (2) arg (and hence log) is continuous
on Bp.

The simple inequalities

min (arg z + r) > 0,
z6B

rain loglz[ > 0
zB,

enable us to find numbers 0 < a < such that for any z 6 Bp

(4.1) log [z[
arg z + r

< O, log [z[
arg z + 7r

a 3
>0.

Let e (0, ) be such that < tg. By Proposition 2.3, there exists a a > 0
such that

(4.2) H(s) e Bp V s e W()N C,.

(The notation Ca was introduced in 2.) Let (xn) be a sequence of real numbers with

xn > a and such that xn --* oc. Define

(1 +ia)x,, "z, zn (1 + i)xn.

We will be looking for poles of G in the open vertical segments n, zn).
The remainder of this proof resembles the part of the proof of Theorem 3.1 which

starts after (3.5), so we will be brief. Using (1.1) we see that p is a pole of G if and
only if e-ePH(p) -1. A sufficient condition for this is that (3.6) holds.

For each s 6 Co with Im s > 0, the ray R(s) { log H(s)-s 6 [0, oc)} inter-

sects the horizontal line L {s C Ims -r} in a point w(s)-ir, as explained in
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the previous proof. Thus we can define the functions w(s), e(s) for each s E Co with
Im s > 0 such that e(s) > 0 and (3.7) holds. These functions are given by (3.8) and
(3.9). The following claim is almost identical to the one in the proof of Theorem 3.1.

Z
i/CLAIM. For all n e N there exists Pn n, zn) such that w(pn) -O.

The proof is simpler in this case: By (4.2) and property (2) it is clear that w is
continuous on each segment [zn,z]. Moreover, (3.9), (4.1), and (4.2) imply (3.0),
from which the claim follows.

We return to the proof of the theorem. We denote n e(p,). By (3.7) (with
8 Pn) we get that Pn and n satisfy (3.6), so Pn is a pole of Gn By the definition
of the function e(.), n > 0. We have Re p Xn so that Re Pn - oo. Since Im
Pn > OXn, we also have Im p - oe. Now by (3.8) we have - 0. D

5. Nonrobustness: The MIMO case. In this section we show that the results
in 3 and 4 extend to the multivariable case. In particular, we prove part (ii) of
Theorem 1.1 for m > 1. In order to do this, it is convenient to state some preliminary
facts and results. If V C U C C, we say that V is a discrete set in U if V has no
accumulation points in U. Let 9a denote the ring of holomorphic functions defined
on Ca and 3Via denote the field of meromorphic functions on Ca. The vector spaces
of Cpm-valued holomorphic functions and of Cp’-Valued meromorphic functions
on Ca will be denoted by 9a(Cpm) and :M:a(cPm), respectively. It is clear that
-a(Cpm) -Capxm and V[a(Cpm) lapm. A complex number so e Ca is a
pole of H e 3V[a(Cp’) if and only if so is a pole of at least one of the entries of H.

In the following let H be in 3V[a(cm’). The set of all poles of H is denoted by
H. Moreover, define

(.,/k) := det(AI- H(.)) e

where 3VIa[A] denotes the ring of polynomials over :h4a. Since 3Via is a field, there exist
a unique g E N and unique monic irreducible polynomials (., A) 2VIa[A] such that

II
i--0

Let A(.) 3Via denote the discriminant of (., A) 3VIa[A]. If so n, then it
is not difficult to show that the coefficients of the polynomials (., A) are holomorphic
in a sufficiently small neighborhood of so (cf. Baumg/irtel [2, p. 397]) and hence A(s0)
is the discriminant of (s0, A) e C[A]. Thus (s0, A) has only simple zeros if and
only if A(s0) 0; see, for example, Cohn [7, p. 175]. Since (., A) is irreducible, it
follows that A(s) 0 and hence the set S of critical points of H defined by

H 8 Ca Ai(8 0
i=0

is a discrete set in Ca. We shall need the following lemma from Forster [15, p. 52].
LEMMA 5.1. Let so C, let U C C be an open neighborhood of so, and suppose

that Cl(S),... ,c,(s) are holomorphic functions on U. If A0 e C is a simple zero of
the polynomial

n_[_Cl(80)n--l... -Cn(80) e C[],
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then there exists an open neighborhood V C U of so and a function holomorphic on
V such that (so) o and

+ + o Vs e y.

For so E Ca, E [0,2r), and 0 < a _< oc set F {so + eiCt[O < t < a}. Hence
F is a half-line (a cx) or a line segment (a x) with initial point so.

PROPOSITION 5.2. Suppose that Fel C Ca \ (3H tA CH). /f )0 a(H(so))
(the spectrum of H(s0)), then there exists a region V C Ca satisfying Fcl C V C
Ca \ (H tA I-I) and a function holomorphic on V such that (so) iko and

(s, (s)) det((s)I- H(s)) 0 V s e V.

Moreover, if a cx, then under the extra assumption that the limit

lim H(s) D e C"’

exists, it follows that

lim (s) =" oo e a(D).

The above proposition remains true if F is replaced by more general curves. How-
ever, for our purposes Proposition 5.2 is sufficient.

Proof. Let Ao E a(H(s0)). After a suitable renumbering we may assume that
Co(so, o) 0. Let us first consider the case when a c. Define -(t) := so + et
for t [0, hi. It follows from the assumption that for any t e [0, a] the polynomial
o(’(t),A) C[A] has no multiple zeros. Let n denote the degree of o(" ,A) and
Atl,..., A denote the n different simple zeros of o(q’(t), A) e C[A]. Moreover, for
t E [0, hi let fl3t denote the set of all open balls Bt with center in -(t) such that
Bt C Ca \ (H t2 H) and such that there exist n functions holomorphic on Bt
satisfying (-(t)) A,

(s) # Jt(s) Vs e Bt, Vi, j e n, # j, and bo(S,(s)) =O Vs e Bt, Vi e n_n_,

where n_n_ denotes the set {1,..., n}. By Lemma 5.1 the set fl3t is nonempty, and by
setting t "= UBtBt Bt we obtain the maximal element of 3t. Denoting the radius

of/}t by 0t we claim that

(5.1) 0:= inf Or>0.
te[o,]

Assume that (5.1) is not true. Then there exist numbers tj E [0, a] such that

(5.2) lim Otj 0.
j-*cx

Since a < cx, we may assume without loss of generality that limj__. tj =: t*
[0, a] exists. By assumption 7(t*) Ca \ (H kJ EH) and hence Or* > 0. Using
limj_o 7(tj) 7(t*), we conclude that there exist j0 N and > 0 such that
B(7(tj),5) C [t. for all j _> j0, where B(7(tj),5) denotes the open ball of radius
with center in 7(tj). But this implies that B(7(tj),3 e ft3tj for all j > jo and

therefore B(7(tj), ) C [tj for all j >_ jo (by the maximality of/}tj ). Thus we obtain
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that ytj _> for all j > jo, which contradicts (5.2). It follows that (5.1) holds, and
therefore there exists a largest number m E N such that m <_ a. Setting Tj "-- j it
is clear that

B(/(Tj), 0) C/7-j for j 0,..., m and Fcl C U B(/(Tj), ).
j=o ,m

Let jo E n be such that Ajo Ao A0, and set7"0

:= go
Now So := B(7(0), )D B(’(’I), ) = is contained in Ca \ (H U :H), and hence,
for any s So, the polynomial 0(s, A) C[A] has n different simple zeros, which are
given by 1 (s),..., 7-n (s). On the other hand we have

Co(s, o Vs e So,

and hence there must exist jl n_n_ such that

 0(s) v e ,So.

Setting

(s) := {(s) Vs e B(/(T ), O) and S "= B(/(T),y)D B(’(T2), ) = ,
the same argument can be used to conclude that there exists j2 E n_ such that

(8) 22(8) V8 e 1"

Repeating the above argument shows that there exist m -4- 1 holomorphic functions
j B(/(Tj),O) --, C (j 0,...,rn) such that j+(s) j(s) for all s e Sj :=
B(/(j),0) D B(/(Tj+I),g) (j O,...,m- 1). On the region

v:= U
j=O m

we define a function (s) by setting

{(s) := {j(s) if s e B(/(Tj), ).

By construction is a well-defined holomorphic function on V such that (s0) o
and det((s)I H(s)) 0 for all s e Y.

Let us now consider the case when a cx3. For j E N define Fj :- {s0/
eiCtlO < t < j}. The above construction shows that there exist regions Vj satisfying

F C Vj C Ca \ (3H UgH) and Vj C Vj+ and functions j holomorphic on V.
such that {j(so) k0, o(s,{j(s)) 0 for all s E Vj and {j+l[Vj {j" Hence on
V := Uj= Vi we obtain a well-defined holomorphic function {(s) with the desired
properties by setting

(s) :- j(s) if s e V.
Finally, the last statement in the proposition is a consequence of the fact that the

eigenvalues of H(7(t)) are continuous in t; see Kato [21, p. 106]. El
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The next result extends Theorem 3.1 to the multivarable case.
THEOREM 5.3. Let H(s) be a cmm-valued regular transfer function and define

for any >_ 0

(5.3) G(s) := H(s)(I + e-eSH(s)) -1.

Let D E Cmm denote the feedthrough matrix of H and assume the following:
(1) GO e H(cmxm),
(Z) limsuplsl_.,eCo r(H(s)) =: /> 1,
(3) r(D) <_ 1.
Then there exist sequences (n) and (p) with

>0, Cn-0, p

and such that for any n N, Pn is a pole of
Remark 5.4. (i) Since r(H(s)) is not defined, if s is a pole of H, condition (2)

in the previous theorem should be formulated more precisely as

lim sup r(H(s)) =" , > 1.
Isl-., eCo\H

TO simplify the notation, we make the convention that if s H, then r(H(s)) 0.
(ii) Suppose that limt,t0 H(# + iw) =- H(iw) exists for almost all w JR. (For

example, this is the case if H E H(cmxm).) Then condition (2) in Theorem 5.3 is
satisfied if

(5.4) lim ess sup{r(H(iw)) lwl > } > 1.

Under the extra assumption that H(iw) is almost periodic, (5.4) holds if

esssup{r(H(iw) lw e I} > 1.

For the proof of Theorem 5.3 we need the following simple lemma.
LEMMA 5.5. Let the set A c Co be discrete in Co. Then for any > 0 and, there exists Yo ] such that

lYo l <_ and {x + iyo lx
Proof. It is easy to see that A is countable, so we can choose y0

such that Y0 Im A.
Proof of Theorem 5.3. As in the SISO case it follows from the assumptions (1)

and (2) that there exist constants ? > 0 and "1 E (1,’) such that the set

does not intersect a(H(s)) for all s Co \

(5.5) a(H(s)) r’} S1 q} V 8 e C0 \ S.
Since ’1 < "f, by assumption (2) there exists a sequence (sn) in Co \ n such that

Isnl oo and r(H(sn)) > for all n e N. It is obvious that we can find numbers
6n (0, 1) such that the vertical segment Jn "= [Sn i6, S + i6n] is contained in
(0 \S and

r(H(s)) >_ Vs E Ugn.
nEl
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It follows from Lemma 5.5 that there exists zn E Jn such that the ray

+al e

does not intersect the set 3H U EI:

# VnEN.

Using assumption (3) it can be shown as in the SISO case that

(5.7) lim

Again, without loss of generality, we may assume that Im z, > 0 for all n N.
By construction we have that r(H(z)) >_ 1 and hence there exists AN a(H(zn))
such that IAI _> ffl > 1. Since (5.6) holds, an application of Proposition 5.2 shows
that for all n N there exists a region Vn satisfying F, C V C C0 \ (iII U EIq) and
a function holomorphic on V such that (z) An and

Moreover, by Proposition 2.3

lim H(s) D,
Isl-o, sr

and hence we obtain by Proposition 5.2 that

lim n(s) =" F C

exists and n a(D). As a consequence of assumption (3) we have that 15 1 _< 1.
Therefore the extended real numbers

" cx3.) Settingare well defined. (If r(D) 1, it might happen that aN

and "zn =ZnA’an Zn =Zn+an

(where zn o0 is possible), we will be looking for poles of G in , z). Notice that
z tta sufficient condition for p n, Zn) to be a pole of (] is that

log,(p) ap = -ir.

By (5.5) it follows that for all n E N

(5.8)

It follows that logn and arg (where log and arg are defined as in 2) are continuous
functions on [zn, z]. For s [zn, z] define

n,(s) := {log,(s)- eslz e [0, o)}.
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Then for each n e N and s e [zn,z] the ray Rn(s) intersects the line L {s e
C lIm s -Tr} in a point wn(s)-iTr. Thus we can define functions w, en [zn, z]

such that en(s) > 0 for all s e [z, z] and

logan(s) en(s)s wn(s) iTr Vs e [Zn,Z], Vn e N.

As in the proof of Theorem 3.1 it follows that for all sufficiently large n there
exists Pn e (Zn,Z)such that Wn(p)= 0. Thus, by (5.9)

logn(P, en(p)pn -iTr

Finally, it is clear that

argn(Pn) + 7r

ImPn

The sequence (arg n(Pn)) is bounded, and by (5.7), we have that Im p Im Zn --* c
as n --* c. Therefore we obtain from (5.10) that limn--.en(pn) 0. Setting
n en(Pn) it follows that Gem has a pole in Pn E Co. [’l

Along the same lines a multivariable extension of Theorem 4.1 can be obtained.
We state this result without proof.

THEOREM 5.6. Let H be a cmxm-valued re9ular transfer function, and for any
>_ 0 let G be defined by (5.3). Let D denote the feedthrough matrix of H, and

assume that

r(D) > 1.

Then there exist sequences (n) and (pn) with

sn>0, n--+0, Repn--+cx, Impnc

and such that for any n N, p is a pole of G
Combining Theorem 5.3 and Theorem 5.6 yields part (ii) of Theorem 1.1.

6. Robustness of stability. So far we have proved only part (ii) of Theorem
1.1. In this section we conclude the proof. In fct, since for part (i) of Theorem 1.1 the
wellposedness and regularity assumptions re not needed and we obtain additionally
uniform boundedness for the matrices Ge, we restate our result.

THEOREM 6.1. Suppose G H(Cmxm) and denote H G(I- G)-1 (80
that H e 0(Cx)). If

(6.1) limsup r(H(s))< 1,

then there exist numbers o > 0 and M > 0 such that G(s) e
H (Cm m) and IIG II M for aZZ

Remark 6.2. Suppose that H H(CX). Then, as is well known,

liraH( + iw) =: H(iw)
0

exists for lmost all w . It is easy to show that r(H(s)) is a subharmonic func-
tion on C0. Using standard results on subharmonic functions (see, for example,
Nrasimhan [25, p. 227]) it is not difficult to prove that

e C0} e
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As a consequence, (6.1) will be satisfied if esssup{r(H(iw) lw e 1} < 1.
The proof of Theorem 6.1 requires some preparation. If H E :M:0(Cmxm) and so

is a pole of H, then trivial examples show that r(H(s)) does not necessarily blow up
as s so. However, the next lemma reveals that this phenomenon cannot occur if
H(I + H)-1 is L2-stable.

LEMMA 6.3. Let U c C, suppose GO is bounded and holomorphic on U, and
denote H Go(/- G)-1. If supsev r(H(s)) < c, then supsv

Proof. Assume the claim is not true; i.e., there exists a sequence (sn) in U such
that limn-o IIH(sn)l] oc. Using Cramer’s rule and the boundedness of GO on U,
it follows that

lim det(I G(sn)) O.

Now (G(sn)) is a bounded sequence in Cmxm, and hence we may assume without
loss of generality that limn-o G(sn) =: DO Cmxm exists. From (6.2) it follows
that 1 G a(D). This in turn implies that there exist eigenvalues An a(H(sn)) such
that limn-o[An/(1 + An)] 1. But this leads to a contradiction, since the sequence
(An) is bounded by assumption.

Proof of Theorem 6.1. Step 1: For > 0 set

(6.3)

By (6.1) there exists R > 0 and q e (0, 1) such that

(6.4) r(H(s))_<q<l VseC0R.

Combining (6.4) and Lemma 6.3 shows that H(s) is bounded on C0.
Step 2: We claim that there exists a number L > 0 such that IIG(s)]l _< L for all

_> 0 and for all s E C. Suppose the claim is not true. Then, since by Step 1 H(s)
is bounded on C0R, it follows from Cramer’s rule that there exists a sequence (sn) in

C0 and a sequence (n) of nonnegative numbers such that

(6.5) lim det(I + e-e"s"H(sn)) O.

Now (H(sn)) is a bounded sequence in Cmx’ and le-sl _< 1 for all n e N, and
therefore (as in Step 1) we may assume without loss of generality that the limits
limn-o e-s --: d and limn-o H(sn) E exist. Using (6.4) and the fact that
[d[ _< 1 we see that r(dE) < 1. On the other hand it follows from (6.5) that -1
a(dE), a contradiction.

Step 3: Choose e0 > 0 such that for any s Co with Is[ _< R and any [0, e0]

1

The identity Ge(s) G(s)(/- (1- e-es)G(8))-1 shows that, for all s and as
above, ][G(s)[[

_
21[G[[.

Combining Steps 2 and 3, we obtain that G H(Crem) and IIGII
_
M

for all e [0, e0], where M "= max(L, 211Gll).
Theorem 6.1 deals with delay perturbations of the form e-s. A natural question

to ask is whether it remains true for multidelay perturbations of the form diag_<j_<m e-s),
where e

_
0, j 1,..., n. The answer is no, as the following example shows.
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Example 6.4. Consider the transfer function H(s) D, where D is given by

-1 1/2

The matrix D is nilpotent; i.e., a(D) {0} and hence G(s) H(s)(I + H(s)) -1 _=

D(I + 0)-1 belongs to H(C22). Moreover

limsup r(H(s)) r(D) O,
Islo,seCo

and thus, by Theorem 6.1, GO is robustly stable with respect to delays. Setting
A .= diag(1,-1), a trivial computation shows that a(AD) {-1, 0}. Therefore,

2r/n and 2 r/n, it follows thatdefining ’= :=

det(I + diag(e-in, e-ine)D) det(I + AD) 0 Vn e N.

As a consequence, for all n E N, p, in is a pole of the closed-loop transfer function
2Gn with multidelay en (el, en), defined by

Gn (s) := H(s)(I + diag(e-e8,e-8)H(s))-1

In order to give a sufficient condition for robust stability in the presence of mul-
tidelay perturbations, set

:= {diagl<j<_m(Sj) lsj e C} C Cmxm

and define the structured singular value #z(M) of M Cmxm with respect to A by

1
#z(M) "=

min{llAiii A e A, det(I- MA) 0}

unless no A Zk makes I- MA singular, in which case #,(M) := 0 (cf. Packard
and Doyle [26]).

THEOIEM 6.5. Suppose GO H(Crem) and denote H Go(/- G)-1 (so
that H E :Mo(Crr)). If

(6.6) lim sup #, (H(s)) < 1,
Isl-, seCo

then there exist numbers 5 > 0 and M > 0 such that

(6.7) Ge(s) := H(s)(I + diagl<j<m(e-eaS)H(s))-1 e H(Crem)

and [IGII < M for all e (E Em) e m satisfying I[EII <
Using standard properties of structured singular values [26] the proof of Theorem

6.5 is a straightforward extension of the proof of Theorem 6.1 and is therefore left to
the reader.

Condition (6.6) holds if

(6.8) limsup IIH(s)ll < 1
I1o, 8Co
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is satisfied. Equation (6.8) is not necessary for robustness with respect to multidelay
perturbations, as the following simple example shows.

Example 6.6. Let hi, h2, and h3 be in H with Ilhlllo < 1, IIh311o < 1 and

If we define

limsup Ih2(s) > 1.
Isloc, sCo

0 h3

then it is clear that limsuplsl_,seo IIH(s)ll > 1, so (6.8) is not satisfied. Since

e-28)H(s)) (1 + e-18 e-.2 ,e2) e,det(I + diag(e-1, hi (s))(1 + h2(s)) V (1

it follows that, denoting (1, 2) R,
inf inf ]det(I + diag(e- -e,e )n(s))] > 0.
eR sCo

Let G be defined by (6.7). Using Cramer’s rule we obtain that G H(C2x2)
and supe }[G][ < ; in particular, we have robust stability with respect to

multidelay perturbations.
It seems to be a difficult open problem whether the condition

limsup p(H(s))> 1
Isl, seCo

implies lack of robustness with respect to small multidelay perturbations.

7. Robustness of instability. Given a transfer function H of size m x m, we
have shown in the previous sections that, under certain conditions, there exists a
positive sequence (s) with Sn 0 such that the closed-loop transfer function G
has at least one pole in C0 for all n N. In this section we show that this property
is robust in the following sense: For any n N there exists 5n (0, Sn) such that for
any m+ with (sl,...,) Une(Sn- , + 5n)m, G (defined by (6.7))
has a pole in C0.

In the following we shall need the notion of a right-coprime (or left-coprime)
factorization of a matrix-valued meromorphic function.

LEMMA 7.1. Suppose H (cpxm). Then the following statements hold:
(i) H admits a right-coprime factorization over ; i.e., there exist matrices

g e a(cpxm), D, Y e a(CX), and Z e a(Cmxp) such that

H ND- and XN + YD I.

The matrices N and D are unique up to multiplication from the right by a unimodular

factor. A number so E Ca is a pole of H if and only if det D(so) O.
(ii) H admits a left-coprime factorization over 9; i.e., there exist matrices N

-c(Cpm), b, ]r e c(Cpxp), and f( e c(Cmxp) with

H= D- and fV +D I.

The matrices 1 and J are unique up to multiplication from the left by a unimodular

factor. A number so Ca is a pole of H if and only if det/)(so) 0.
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(iii) If H ND-1 is a right-coprime factorization over Ka and H b-11 is a
left-coprime factorization over 9<, then the zeros of det D and det D in C. coincide
(counting multiplicities).

Proof. It is well known that the ring 9<a is a Bzout domain; i.e., every finitely
generated ideal is principal (see, for example, Narasimhan [25, p. 136]). Now
is the quotient field of 9<, and statements (i) and (ii) follow from Vidyasagar [31,
p. 330]. Statement (iii) is proved in [31, p. 76] for rational matrices. An inspection
of the proof in [31] shows that it only utilizes the fact that the elementary divisor
theorem holds for the ring of stable rational functions; i.e., any matrix with stable
rational entries is equivalent to its Smith form. Since this is also true for the ring
(see [25, p. 139]), it follows that the proof in [31] carries over to matrices with entries
in :M:.

If f E (l:o and V c Co is compact, let Z(f, V) denote the number of zeros of
f in V, counting multiplicities. Moreover, if "y [0, 1] --. C is a closed curve and
a e C \ "7([0, 1]), we denote the winding number (index) of /around a by ind(’7, a).

PROPOSITION 7.2. Let H be in ([0(Crnm) and suppose that H(s)(I + H(s)) -1
has at least one pole in Co. Then there exists > 0 such that ( defined by

G(s) H(s)(I + diagl<_j<m(ens)n(s))-I
has at least one pole in Co for all l 011, lm) cm satisfying IIlll < 6.

Proof. Let H ND-1 be a right-coprime factorization over 9<o and so Co be
a pole of H(I + H)-1. Set V :-- {s C Iso s[ < } and choose > 0 such that

(7.1) V C Co and Z(det(D + Y), OV) # 0 V s e OV.

Let /y [0, 1] --, C be the continuous parametrization of OV given by t -. so + oe2it.
For / (r/1 /m) E cm set

N(s) := diagl<j<m(eVS)N(s),
Fv(t := det[D(’Iy(t)) + Nv(’y(t))]

It is clear that

(7.) lim | sup IFo(t)- F,(t)l] 0.
v/--*0 ]

Now it follows from (7.1) that

inf Iro()l > o,
tel0,1]

and therefore we may conclude, using (7.2), that there exists 6 > 0 such that

(7.3) inf IF,(t)l > 0 for all /e C such that ] < 6.
e[o,1]

Choose g E Cm with IIg < 6, and define the map

h: [0, ] [0, ] c, (, ) r,().
Then A is continuous and, by (7.3), 0 h([0, 1] x [0, 1]). ivially, it holds that

h(, 0) r0() v e [0,1],
h(, 1) r,() v e [0,1],
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and furthermore we obtain for all T E [0, 1] that

A(0, ) r(o) r() h(, ).

Thus we have shown that F0 and F are homotopic in C \ {0}, and therefore (cf.
Rudin [27, Thm. 10.40]) it follows that

(7.4) ind(r0, 0) ind(r,, 0).

Using the principle of the argument we obtain

(7.5) Z(det(D + N), Y) ind(F, 0) ind(F0, 0) Z(det(D + N), V).

Now, so E Y c Co is a pole of H(I + H)-1 or equivalently det(D(s0) + N(so)) 0,
and thus, by (7.5)

(7.6) Z(det(D + N), V) Z(det(D + g), V) -- 0.

It is easy to see that Gu N(D + Nv) -1 is a right-coprime factorization over 90,
and thus it follows from (7.6) that G has a pole in V c Co. [:1

Combining Proposition 7.2 and Theorem 5.3 we obtain the main result of this
section, a "robust" version of Theorem 5.3.

THEOREM 7.3. Let H(s) be a Cmm-valued regular transfer function and, for
(el,... ,m) ( R, Ge be given by (6.7). /.f the conditions (1)-(3) of Theorem 5.3 are
satisfied, then there exist sequences (,) and (5,) with , > O, O, 5n (O,n)
and such that G has poles in Co for all [Je(n 5, + 5n)".

It is clear that Theorem 5.6 can be strengthened in a similar way.

8. Dynamic output feedback. In this section we apply our results to systems
with dynamic output feedback. In particular we show thatroughly speaking--for
a plant with infinitely many unstable poles there does not exist any stabilizing (dy-
namic) output feedback compensator such that the stability of the closed-loop system
is robust with respect to small delays.

DEFINITION 8.1. If P ([a(CpXm) and K /[a(CmXp) for some a I, we
say that g stabilizes P if det(I + P(s)K(s)) 0 and

(8.1) -K I e H(c(m+P)(ra+P)).

It follows from a well-known formula of Frobenius (see Gantmacher [16, p. 73])
that K stabilizes P if and only if det(I + P(s)K(s)) 0 and the transfer function

(8.2) F(P, K)-- ( g(1-1- PK)-1 -KP(I -t- KP)-1 )PK(I + PK)-1 P(I + KP)-1

is in Hc(c(m+p)x(m+P)). Note that F(P,K) is the transfer function from (u, u2)
to (yl, y2) of the feedback system shown in Fig. 4, if we take there s 0. If K e
H(cmp), then K stablizes P if and only if P(I + KP)-1 H(CP’). The next
result follows trivially from Theorems 5.3 and 5.6.

COROLLARY 8.2. Let P and K be matrix-valued transfer functions of size p x m
and m )< p, respectively. Suppose that PK is regular, and for >_ 0 set Ke(s) "=

e-SK(s) and define

( K(/+ PK)-1 -KP(/+ KP)-1 )(8.3) F(P’ K):= PK(I + PK)-1 P(I + KP)-
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Then, if K stabilizes P (i.e., F(P,K)E H(C(m+P)(m+P))) and

limsup r(P(s)K(s))= limsup r(K(s)P(s))> 1,
Isl--,o, seCo Isl---,, sCo

there exist sequences (,) and (Pn) with

,>0, ,0, pneCo, [Imp,}--,o

and such that for any n E N, Pn is a pole of PK(I + PKg.)-1 and hence of the
overall closed-loop transfer function Fe-(P, K).

Ul
K P

y2

FIG. 4. Feedback system with plant, compensator, and delay.

The feedback system corresponding to Fe(P,K) is shown in Fig. 4; in particular
we have that (yl,y2)T Fe(P,K)(ul,u2)T. It is clear that F(P, Ke) is L2-stable if
Fe(P, K) is. Conversely, under the assumptions that P and K are well posed and P
stabilizes K, it is easy to show that Fe(P, K) is L2-stable if F(P, Ke) is.

In order to apply Theorem 6.1 to systems with dynamic output feedback we need
the following lemma.

LEMMA 8.3. For some a E ]R let P and K be in 3V[,(Cvxm) and /[a(cmxp),
respectively, and suppose that K stabilizes P. If U C Co and

sup IIP(s)ll o or sup IlK(s)ll ,
sEU sEU

then it foos that SUpsev IIP(s)K(s)ll .
Proof. From the assumption that K stabilizes P it follows that the entries of P

and K belong to the the quotient field of H; i.e., they can be written as the fraction
of two H-funetions. Moreover, it follows from Smith [30] that P and K both have
right- and left-eoprirne faetorizations over H. This means in partieuiar that there
exist matrices Nv, Dp, -v, Iv, NK, D, X, and YK with entries in H satisfying

pp + bp]Yp I,
XKNK + YKDK I.

Moreover, since by assumption the closed-loop system is stable, it follows trivially that
I stabilizes PK. Therefore, using again the result in Smith [30], we conclude that

If PK is well posed and P stabilizes K, then Lemma 8.3 shows that P and K are well posed.
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PK admits a right-coprime factorization over H; i.e., there exist matrices N, D, X,
and Y with entries in Ha such that

(8.4) PK ND-1 XN + YD I

It is well known (see Vidyasagar [31, p. 364]) that closed-loop stability is equivalent
to

(s.5) inf Idet([gp(s)DK(s)+/,(s)_NK(s)) > 0.
sECo

Let us assume that supEu IIP(s)ll-- oc. Then there exists a sequence (sn) in U such
that limn__. IIP(sn)ll x, and hence, using the boundedness of/),(s) and/,(s),
we obtain

(8.6) lim det(D,(Sn)) O.

Realizing that

det(/)pDK + pNK) det(/)p)det(DK)det(I + PK)
det(/),) det(D) det(D + N)det(D)

and combining (8.5)-(8.7) we see that

(8.8) lim det(D(sn)) O.
n---,o

Moreover, using (8.4), it follows that

(8.9) det(XPK + Y) det(D)

Finally, (8.8), (8.9), and the boundedness of the matrices X(s) and Y(s) imply that
limno IIP(sn)K(sn)ll x and thus supseu IIP(s)K(s)ll cx. With a similar
argument we can prove the claim if we assume that supseu

COROLLARY 8.4. Let P E :M:(Cpxm) and K E 9V[a(Cmxp) for some a IR. If
F(P, K) H(C(m+p)x(m+p)) and

(8.10) limsup r(P(s)K(s))< 1,

then there exist numbers So > 0 and M > 0 such that Fe(P, K) H(C(m+p)x(m+p))
and liFe(P, K)llo <_ M for all

Proof. For > 0 let Gg be defined by (6.3). Combining (8.10)1 the fact that
PK(I + PK)-I’ E H(CpxP), and Lemma 6.3, we see that there exists numbers
R1 > 0 and L > 0 such that

IIP(s)K(s)]l _< L1 V s e C0R1.

Hence we obtain using Lemma 8.3 that

(8.11)
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where L2 and R2 are suitable positive constants. By Theorem 6.1 there exist numbers
el > 0 and M1 > 0 such that

(8.12) IIPK(I + PK)-IlIo <_ M Ve e [0,1]
and so

I[(I + PK)-]lo _< 1 + M V e [0,].

Therefore, and by (8.11), there exists/t:/2 > 0 such that

(8.13) [[K(s)(I + P(s)K(s))-ll[ <_ h:/2 Vs e Con Ve e [0, eli

Setting L "= K(I + PK,)-1, we have Lo E H(Cmp) and PLo e Hc(CpXB).
Choosing 2 e (0, 1] such that for any s e Co with Is] _< R2 and any

1
I1 e-Sl <_

211PLol]
and realizing that

L(s) Lo(s)[l (1 e-e)P(s)Lo(s)] -1,

we obtain that for all s and e as above

(8.14) [IL(s)ll <_ 2

Combining (8.13) and (8.14) shows that

(8.15) I[K(I + PK)-II[ <_ M2 V e [0,2],

where M2 := max(/t:/2,2[[L01[o). Finally, using similar arguments, it can be shown
that

I[KP(I + Kp)-I[Io
_
M3 V e [0,3]

and

liP(/+ KeP)-1

where M3, M4, e3, and e4 are suitable positive numbers. The claim now follows from
(8.12) and (8.15)-(8.17).

Using Corollary 8.2 and Lemma 8.3 it is easy to give the proof of Theorem 1.2.
More precisely, we prove the following result which is slightly stronger than Theorem
1.2.

THEOREM 8.5. Let P ([c(Cpxm) and K ([c(Crep) for some a , and
suppose that PK is regular. Then, if K stabilizes P and limsuplsl_,seCo liP(s)[[-
oc, there exist sequences (en) and (pn) with

en > 0, Sn ---’ 0, Pn E Co, IImpn[ "-+ oc

and such that, for any n N, Pn is a pole of PK(I + PKe)-1 and hence of the
overall closed-loop transfer function Fe(P,K) given by (8.3).

Proof. Since limsuplsl__.oc, seco I[P(s)ll- c and K stabilizes P, it follows from
Lemma 8.3 that limsupll_..oc,eco [[P(s)K(s)l cx). Now, by assumption, PK(I +
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PK)- H(CPP), and hence an application of Lemma 6.3 and .Corollary 8.2 yields
the claim.

The following remark shows that for a large class of transfer functions which are
bounded at high frequencies there always exists a stabilizing compensator such that
the stability of the closed loop is robust with respect to small delays.

Remark 8.6. Define 9" [.Ja<0H + spu, where spu denotes the ring of
strictly proper totally unstable rational functions, i.e., fftsp :- {f e C(s) f(oc
0 and f(s) : x) for all s e C \ cl). Note that if P e ’P m, then

limsup IIP(s)ll <
Isl-,o, sCo

which implies in particular that P has at most finitely many poles in C1. The ring 9"
contains the so-called Callier-Desoer ring of transfer functions (cf. Callier and Desoer
[4],[5]). It is known that for any P E 9"pm there exists a strictly proper rational
compensator K such that F(P, K) E Hc(c(m+P)(m+P)); see Logemann [24] and the
references therein. Combining this result with Corollary 8.4, it follows that for any
p pm there exists a compensator K mp and a number 0 > 0 such that
F(P,K) H(C(m+p)x(m+p)) for all e [0,e0].

Remark 8.7. We claim that the conclusions of Theorem 8.5 do not remain true if
the assumption limsuplsl_,o,seco IIP(s)ll- cx) is replaced by the weaker assumption
that there exist a sequence of poles of P in the open left half-plane going to cxz
tangentially along the imaginary axis. To this end let P be the transfer function of
the following neutral system:

&2(t) &2(t h) 1

x (t)

0 ) (Xl(t) 1
_o

1 1
P(s)

s + ls(1 e-h) + a

where a, h > 0. It is shown in Logemann [23] that P E H. Trivially, for any com-
pensator K H satisfying IIPKII < 1 the closed-loop transfer function Fe(P, K)
is in H(C22) for all >_ 0. However, using Rouch’s theorem, it is not difficult to
show that there exist a sequence of poles Pn C \ C of P and numbers n N with
g oc as n --. c such that

27r
limo IP -i-l o,

9. Examples. In this section we illustrate Theorem 1.1 with three examples.
Example 9.1. In this example we analyze the robustness with respect to delays

for a damped wave equation. For x (0, 1) and t > 0 we consider the following
system:

(9.1) wtt(x, t) w(x, t) + 2awt(x, t) + a2w(x, t) O,

(9.2) w(O, t) O, w(1, t) u(t),
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(9.3) y(t) kwt(1, t)

We assume here that the viscous damping parameter a is nonnegative and the bound-
ary damping parameter k is positive. It is known that the feedback control

(9.4) u(t) -y(t)

exponentially stabilizes the system (see, for instance, Chen [6]). Hence, if the transfer
function of (9.1)-(9.3) is denoted by H, then it follows that H(I + H)-1 E H. An
easy computuation shows that H is given by

H(s)
8 -[- a 1 -[- e-2(s+a)

In Datko, Lagnese, and Polis [9] the robustness of the closed loop system (9.1)-(9.4)
with respect to small delays was analyzed. We will obtain frequency domain versions
of their results, using Theorem 1.1. We need to compute , as defined by (1.3) for this
system.

CLAIM.
e2a + 1

q, limsup IH(s)l ]ge2a---’---"

Proof. The following simple estimates are clear for Re s > 0:

[1 e-u(s+")] _< 1 + e-’ [1 + e-2(s+a)[ >_ 1 e-a
8

8q-a

These estimates show that /<_ k(e2a + 1)/(e2- 1). To obtain the opposite inequality,
let Sn (I/n) + i(2n + 1)r/2 for n E N. Then

k8n 1 + e-2/ne-2a
lim H(sn) lim

n----oc n--,o 8n a 1- e-2/ne-2a
e2a + 1

k
e2a,_ 1

This shows that />_ (e2a -- 1)/(e2a 1), completing the proof of the claim.
Let us apply Theorem 1.1 to this system. We consider two cases.
Case 1" k _> 1. In this case q, > 1 for any a >_ 0, so the transfer function

H(s)(I + e-SH(s)) -1 has poles in Co for arbitrarily small > 0.
Case 2" k < 1. In this case - > 1 if and only if

If a satisfies this estimate, then the same conclusion as in case 1 holds. When

1 l+k
a > In

1_---,
the delayed feedback system is L2-stable for all sufficiently small delays.

Example 9.2. We consider the following first-order neutral system:

it(t) aic(t h) -bx(t) + u(t)
y(t) cic(t- h).
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Here a _> 1, b > 0, c E , and h > 0. We consider the feedback u(t) -y(t), so the
free dynamics of the closed loop are described by

it(t) + (c- a)2(t h) -bx(t)

This system is exponentially stable if Ic- a < 1. The open-loop transfer function is

H(s)
-hs8C

s(1 ae-Sh) + b"

H is clearly well posed and regular with feedthrough 0. If a > 1, then the equation
1-ae-Sh 0 has a zero at s log(a)/h, which is in C0. Hence, by a result in Salamon
[28, p. 160], the characteristic equation s(1 ae-h) + b 0 has infinitely many zeros
in 0. (This follows also directly from the periodicity of 1- ae-h and an application
of Rouch’s theorem.) As a consequence "), x > 1, so the closed-loop stability is
destroyed by arbitrarily small delays. If a 1, then the equation 1 -e-h 0 has
a zero at s 0. It is easy to see that H(s) has no poles in C. However, as shown
in Logemann [23], we have that limsup_ IH(iw)l c. Hence c > 1, and so
the closed-loop system is not robustly stable with respect to delays.

Example 9.3. In this example the input space and the output space are 2. We
consider two coupled vibrating strings, one with spatial extent 0

_
x _< 1 and the

other with spatial extent 1 _< x _< 2. Each string satisfies the damped wave equation

wtt(x, t) wxx(x, t) + 2awt(x, t) + a2w(x, t) 0, x e (0, 1) t2 (1, 2),

where the viscous damping parameter a _> 0. At the linkage we assume the displace-
ment is continuous, so

w(1- t)=w(1+ t)

and we set the discontinuity of the vertical tension force equal to a control variable:

wx(1-,t) wx(l+,t) ul(t).

We take the right endpoint fixed, and at the left endpoint we set the vertical tension
force equal to another control variable, leading to

0, t)

We take one observation proportional to the velocity at the linkage, and the other
observation negatively proportional to the velocity at the left endpoint, leading to

y(t) kwt(1,t),

for kl, k2 _> 0. Let u(t) [ul (t), u2(t)]T and y(t) [yl (t), y2(t)]T
function H for this system can be computed to be

The transfer

8
H(s) s+a

kl e-4(s+a) 1
2 e-4(s+a) -- 1

(e-(s+a)(e-2(s+a) l) )k2 e-4(s+a) + 1

kl
e-(S+a)(e-2(+a) 1)

e-4(s+a) + 1

k2
e-4(s+a) -- 1
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TABLE
Values of " for given values of a, kl, and k2.

(kl,k2) a .1 a .25 a =.5 a 3 a 10
(.1, .1) .7562 .3146 .1755 .1005 .1’
(.1, .5) 2.7790 1.1714 ’.6881 .5003 .
(.1, 1) 5.3112 2.2513 1.3426 1.0090 1’
(.5, .1) 1.7647 .7348 .4120 .2508 .25
(.5, .5) 3.7810 1.5730 .8777 .5024 :5
(:5 1) 6.3051 2.6337’ 1.4992 1.0016 1’
’(1, .1) 3.0278 1.2673 .7274 :5006 :5
(1, .5) 5.0410 2.0957 1.1633 .5351 .5003
(1, 1) 7.5621 3.1461 1.7553 1.0049 1

Clearly, H is regular with feedthrough matrix

0 k2

It is not hard to show that for any values of a >_ 0, kl > 0, k2 >_ 0, a q-kl -q-k2 > 0
the closed-loop transfer function H(I+H)-1 is in H((:22). In the case when a 0
this follows also from the fact that the closed-loop semigroup is shown in Liu, Huang,
and Chen [22] to be exponentially stable.

There are some values of kl, k2, and a where no further computation needs to
be done in order to apply the results in the preceeding sections. If kl > 2 or k2 > 1,
the spectral radius of D is greater than 1, so Theorem 5.6 implies that there exists

Sn $ 0 such that G(s) H(s)(I + e-SH(s))- has poles Pn e CO such that
the real and imaginary parts of Pn go to infinity as n goes to infinity. Another
simple cse is when a 0 and k + k2 > 0. In this case G is stable and H has
poles at s i(1 + 2n)/4 for all integers n. Thus we obtain from Lemma 6.3 that

limsupll,eco r(H(s)) , and hence, by Theorem 1.1, G is not robustly
stable with respect to delays.

In the case where a > 0, 0 < k < 2, 0 < k < 1 we need to compute T. First
note that is the same for (s) "= ((s + a)/s)H(s) as it is for H(). To compute
the spectral radius of H(s), we need to compute the eigenvalues of n(s). These are
found to be

,(,, , a) + 1 4(+) 1 (,,, a)
4 1 + ca(+) 4(1 + e4(s+))

where

(1,, , a) ( ) +1(+) 4(+)( + 11 +4)
+16kk2e(+) + eS(+)(kl 2k2).

Since (kl, k2, s + i, a) (kl, k, s, a) and is in H(C22), we obtain, using
Remark 6.2, that

Z imu (()) su (()) su(()) su (()).
Isl,sCo sCo w 0<w<

Thus, computing 7 is a fairly straightfoward numerical problem. Using Mathematica,
we obtain Table 1, giving values of 7 for some values of kl, k2, and a. As we see
from the table, the possibility of robustness increases as a increases and decreases as
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kl and k2 increase. Note that the last column, with a 10, is almost the same as
that obtained by taking the limit of / as a - x, which is easily computed to be
max{k2, kl/2}. Thus, for large values of the viscous damping coefficient a, robustness
is determined in a simple way by k and k2.

Acknowledgments. We would like to thank Bengt Mrtensson (Bremen) for a
helpful discussion on Example 6.4 and Fabian Wirth (Bremen) for some useful remarks
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GENERALIZED DISCRETE-TIME RICCATI THEORY*
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Abstract. A Riccati-like equation, termed the generalized (discrete-time) algebraic Riccati
equation, which incorporates as special cases both the standard and the constrained discrete-time
algebraic Riccati equations, is introduced and investigated under the weakest possible assumptions
imposed on the initial data. A complete characterization of the conditions under which such an
equation of general form has a stabilizing solution is presented in terms of the so-cMled proper de-
flating subspace of the extended Hamiltonian pencil. An evaluation of an associated quadratic index
along constrained stable trajectories is given in terms of the stabilizing solution to the generalized
Riccati equation. Possible applications of the developed theory range from nonstandard spectral and
inner-outer factorizations to H2 and H control in singular cases. The results exposed in the present
paper are the discrete-time counterpart of those stated in the authors’ previous paper concerning the
generalized (singular) continuous-time Riccati theory. The results could be also seen as an extension
to singular cases of the usual discrete-time algebraic Riccati equation theory (of indefinite sign).

Key words, generalized Riccati equation, extended Hamiltonian pencil, proper deflating sub-
space, Kronecker canonical form, constrained dynamics with quadratic cost
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1. Introduction. In the past decade the topics on the Riccati equation theory
have been continuously enlarged. Thus the usual field consisting of standard Riccati
equations (control and estimation) encountered in the linear quadratic theory [5],
[19] has been considerably increased by considering those Riccati equations which
are typically used for game theoretic situations (see, for instance, [3], [5], [25]). The
unorthodox cases, such as those regarding the constrained Riccati equation used for
nonstandard inner-outer factorization (see [6], [14], [15], [26]), must be also seen as
significant factors that prove the progress in the field.

Among the paths that have been explored in this area, a relevant one is that based
on the Popov-Yakubovich-type approach in conjunction with the matrix pencil theory
(see [11], [12], [13], [16], [17]). The present paper contains the discrete counterpart of
the theory developed in [17] and presents a unified approach of the various cases in
which discrete-time Riccati-like equations are involved. As we shall see, the results
obtained in the continuous case [17] cannot be entirely transferred to the discrete case
and there are many situations when significant differences occur.

The main tool used in the paper is based on the notion of the so-called proper
deflating subspace of the extended Hamiltonian pencil (EHP) (for EHP see, for in-
stance, [16]). In fact the significant differences between the continuous and the discrete
cases have their origin in the differences that occur in the intimate structure of the
corresponding EHPs.

Subsequently the following notations will be used. The open unit disk and its
closure in the complex plane will be denoted by DI(0) and DI(0), respectively. R
and R"n will be used to denote the real n-dimensional Euclidean space and the
ring of real rn n matrices, respectively. R(A) will stand for the field of rational
functions over R. Any matrix of full column (row) rank will be called monic (epic).
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The spectrum of a square matrix A will be denoted by A(A). For the transpose and
the Moore-Penrose pseudo inverse of a matrix A we shall use the notations AT and
A#, respectively. By A-T we denote (A-1)T, if A-1 exists. Script capital letters will
be used for subspaces in Rn. If Y c R and AYc Y, write AlY for the restriction of
A to 12. The image and the null space of a matrix A will be denoted by ImA and ker A,
respectively. Strict equivalence of two matrix pencils AM N and A2/- will be
denoted by AM N AM N and means the existence of two constant nonsingular
matrices H and Z of appropriate dimensions such that H(AM- N)Z AM N.
By/2(N; Rr) we shall denote the Hilbert space of norm-square-summable Rr-valued
sequences. Here N stands for the set of positive integers. The inner product in
/2(N; R) will be denoted by (, }. Irrelevant block entries of a matrix are denoted by
X.

2. Definitions and basic notions. Any triplet E (A,B,P), where A E
Rnn B anm, and P R(n+m)(n+m) with

[ L]P- L
QT

R pT,

will be called a Popov triplet. Such a triplet expresses synthetically a tandem which
consists of a linear (discrete-time) system ax Ax + Bu and an associated quadratic
cost criterionyk=0 T T T TWk Pwk, Wk Ix} U}] Here a stands for the unit shift operator,
i.e., (crx)k

DEFINITION 1. Let E be a Popov triplet. The algebraic equation

ATXA X + Q(1) LT + BTXA R + BTXB F V O,

where X Rx,V Rx is monic with r _< n, r unfixed, and F such that
(A + BF)V VS for an appropriate matrix S Rrxr will be termed the generalized
discrete-time algebraic Riccati equation (GDTARE).

A quadruple (r,X, V, F) for which (1) holds and vTxv vTxTv will be called a
solution to GDTARE. A solution to GDTARE will be called stabilizing if, in addition,
A(S) c DI(0).

Remark 1. If (r, X, V, F) is a stabilizing solution to the GDTARE, then ImV
is a stable (A, B) invariant subspace. Indeed, we have directly from Definition 1 that
(A + BF)]2 c 12 and A((A + BF)II2)

Remark 2. If V is invertible, we may assume that V I and (1) becomes

ATXA X + Q + (ATXB + L)F 0,
LT -t- BTXA + (R + BTXB)F O.

In this case a stabilizing solution reduces to a pair (X, F) satisfying (2) with X XT

and A + BF stable. For X XT the system (2) can be rewritten

(3) ATXA X FT(R + BTXB)F + Q 0,
LT + BTXA + (R + BTXB)F 0

or as

(4) ATXA X (ATXB + L)(R + BTXB)#(BTXA + LT) + Q O,
ker(R + BTXB) C ker(ATXB + L).
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The form (3) is the discrete counterpart of the form encountered in [1] and [20],
while the form (4) is known as the constrained discrete-time algebraic Riccati equation
(CDTARE). (See [14] for the continuous-time case and [15] for the discrete-time case.)
If, in addition, R + BTXB is invertible, (2) reduces to the well-known discrete-time
algebraic Riccati equation:

ATXA X (ATXB + L)(R + BTXB)-X(BTXA + LT) + Q O.

Note that no assumption on the inertia of the symmetric matrix R or on the invert-
ibility of A are made.

For earlier works on existence, convergence, and numerical solution of Riccati
equations in such standard cases as, for example, the control and estimation Riccati
equations, refer to [2], [19], [21]. A very good survey of the progress in the field of the
Riccati equation, including the indefinite-sign case, can be also found in [5].

With the above definitions we can now state the following proposition.
PROPOSITION 2.1. If (r,X, V, F) and (r, f(, V, ) are two stabilizing solutions to

(1), then VTXV VT

Proof. We may write (A + BF)V VS and (A + B)V V with both
and A() in DI(0). From (1) we have ATXAV XV + QV + LFV + ATXBFV
ATX(A + BF)V XV + QV + LFV ATxvs XV + QV + LFV 0 and thus

(6) VTATXVS vTxv + VTQV + VTLFV O.

Again using (1) we also have

vTT(LT + BTXA)V + vTT(R + BTXB)FV

that is,

vTTBTx(A + BF)V + vTTLTv -[- vTTR,FV O,

vT-TBTXVS + vTf:TLTv -- vT-TlzFV O.

Adding (6) and (7)yields

(8) TvTxvs- vTxv + VT(LF + TLT)V + vTTRFV + vTQv O.

A similar procedure applied to (1) for J and / instead of X and F, respectively,
yields

(9) sTvTv- vTv + vT(Lp + FTLT)V + vTFTRV + VTQV O.

As vTv vTff(.Tv, we get, by transposing (9),

(10) TvTf(vs- vTv + vT(TLT + LF)V + vTTRFV + vTQv O,

and subtracting (10) from (8)we have

(II) T(vTxv vT2v)s (vTxv vT2v) O.

Hence, as both A() and A(S) are in Dl(0), the Stein equation (11) has a unique
zero solution, and consequently vTxv vTv. []
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Let E be a Popov triplet and associate with it the discrete-time linear system

(12)
ax Ax + Bu,
A Qx + ATaA + Lu,
v LTx + BTaA -- Ru.Let w IxT )T uT]T E Rn Rn Rm. Then for v 0, (12) can be written in the

descriptor form Maw Nw, where

I 0 0 A 0 B
(13) M- 0-AT 0 N- Q -I L

0 -BT 0 LT 0 R

M, N 6 R(2n/m) x (2n+m).
DEFINITION 2 (see [13], [15]). The matrix pencil AM-N with M and N defined

via (13) is called the EHP associated with .
As we shall see in 3, the EHP introduced by Definition 2 will play a crucial role

in studying the GDTARE. In order to investigate the EHP let us briefly recall some
geometric notions intimately related to the general matrix pencil theory, which have
been introduced and studied in [13], [17], [22], [26].

DEFINITION 3. Let AM- N with M,N apxq be an arbitrary matrix pencil. A
subspace 2 C Rq of dimension p will be called a proper deflating subspace to the right

(14) NV MVS

and

MV is monic,

where V 6 Rqxp is any basis matrix for )3 and S is an appropriate p x p matrix. A
subspace W C Rp of dimension a is a proper deflating subspace to the left if

(15) WN TWM

and

WM is epic,

where WT Rpa is any basis matrix for V, and T is an appropriate a a matrix.
A proper deflating subspace to the right is said to be stable (antistable) if A(S) c
DI(0)(A(S) C C- DI(0)). A proper deflating subspace to the left is said to be stable
(antistable) if A(T) C DI(0)(A(T) c (3- DI(0)). A proper deflating subspace to the
right (left) is said strictly stable if A(S)(A(T)) is in DI(0) {0}.

For deflating and reducing subspaces of a matrix pencil see also [4], [7], [8], [10],

Recall from [9] that any matrix pencil is strictly equivalent to the Kronecker
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canonical form

AI- J
AE- I

where L E Rex(e+l) 1 vr (LT R(v+l)xE v,j 1,...,vt) are the right
(left) Kronecker blocks with e _> 0(j _> 0) the right (left) Kronecker indices and
V.r(Vt) the number of right (left) Kronecker blocks, respectively; J is in the real Jordan
canonical form; and E is block diagonal, each block consisting of units placed on the
first upper diagonal and zeros in the rest.

Let n "= Ei=lei n := Ej=I?j and let nf and n be the sizes of J and E
respectively. Then nf equals the number of finite generalized eigenvalues and n
equals the number of infinite generalized eigenvalues. Clearly

rankl() (AM N) n + nt + nf +n _< min(p, q).

Now write ni n + n / n, where n (n)-) is the number of finite generalized
eigenvalues inside the unit disk (outside the closed unit disk) and n is the number
of finite generalized eigenvalues placed on the unit circle. Also write n}- ni + r0,

where r0 is the multiplicity of the generalized eigenvalues located in the origin and
is the number of nonzero generalized eigenvalues in DI(0).
THEOREM 2.2. 1. A matrix pencil has a stable (antistable) proper deflating

subspace to the right if and only ifn +n > 0 (n +n > 0). Moreover the maximal

dimension of a stable (antistable) proper deflating subspace is nr + n] (n + n] ), and
such a dimension can be effectively attained.

2. A matrix pencil has a stable (antistable) proper deflating subspace to the left if
and only if nt + n] > 0 (nz + n] > 0). Moreover the maximal dimension of a stable

(antistable) proper deflating subspace is nz + n7 (nt + n;), and such a dimension can
be effectively attained.

3. A matrix pencil has a strictly stable proper deflating subspace to the right (left)
if and only if nr + t > 0 (n + t > 0). Moreover the maximal dimension of a

strictly stable proper deflating subspace to the right (left) is nr + (nt + t]), and
such a dimension can be effectively attained.

The proof runs similarly to that given for Theorem 1 in [17] by changing the role
of C- and C+ with DI(0) and C- (0). Here C-(C+) stands for the open left
(right) half of the complex plane.

3. The EHP. Using Theorem 2.2 some remarkable properties of the EHP will
be emphasized.

PROPOSITION 3.1. If the EHP has a strictly stable (antistable) proper deflating
subspace to the right, then it has an antistable (strictly stable) proper deflating subspace
to the left of the same dimension.
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Proof. Let

v v, vZ vZ

be monic and such that (14) holds, with A(S) c DI(0)- {0} and MV monic. Then
making (14) explicit, we have

AV1 + BV V1S,

(6) QVI V2 + LV3 -ATV2S,

LTv1 -- RV3 BTV2S

with

MV -ATV2 0 -AT V1

BTV2 0 BT V2

monic. By transposing (16) and then interchanging the first two equations, one obtains

sTv2TA + vITQ + V3TLT S-T sTv2T

VT S-(-VfA vTBT),

SV}B + VI + V} O,

where S is clearly nonsingular. Thus if we define

(19) w.= [s7 v1

then (15) is fulfilled with T S-T. Moreover from (17) it follows that [v1Tv2T]T
must be also monic; otherwise the left-hand side of (17) is not monic, which yields a

contradiction. Hence

(20)
VTAT VTBT 0] [STVT

S[V( Vl 0],
-sv o]

where (19) and the second equation in (18) have been used. But the rightmost term
in (20) is clearly epic (as [vITV2T] is epic and S nonsingular), and consequently WM
and W are epic. Thus (19) defines, via 142 ImWT, an antistable proper deflating
subspace to the left of the same dimension as Y. For the parenthesized text the same
scheme of proof works. [3

Remark 3. It has been shown in [17] that in the continuous-time case Proposition
3.1 can be stated in the "if and only if’ form; that is, the proposition is also true if in
its statement the order of the words right and left is changed. In the discrete-time case
such a scheme does not work. To be more specific, assume that for W [W1 W2 W3]
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epic, (15) is fulfilled, with A(T) C C- D1 (0), and WM is epic. Then it can be easily
checked that

V W1TTT

is monic and (14) is fulfilled for such V with S T-T. Hence A(S) c DI(0) and S is
nonsingular. Moreover, since WM is epic, it follows that [W1 T-IW2 0] is epic.
Thus

(21) MV= 0-AT W2TT-T TT

0 -BT wIT
where the last two matrices in the right-hand side of (21) are clearly both monic.
Hence the whole right-hand side of (21) is monic, provided that

0 -AT
0 -BT

is also monic. But this clearly happens if the pair (A, B) has no uncontrollable modes
in the origin. Thus we can conclude that the converse of Proposition 3.1 is also true if
the minor hypothesis on the pair (A, B) is in addition assumed to be true. Notice also
that if the EHP is regular, then the converse of Proposition 3.1 is true (see Remark 4
in [17]).

Now introduce the discrete-time Popov function

(22) II() [BT(-I- AT) -1 I] LT R I

associated with E (see [16]). Let p rankt()II(A). Then we have the main result of
this section.

THEOREM 3.2. For the EHP the following hold:
1. n <_nt.
2.
3. rankp()(AM- N) 2n + p.
4. n_>p+0.
5. n+ n] <_ n, and the equality holds if and only if n O, n nt, and

n p + ro.
Proof. 1. Using 3. of Theorem 2.2 followed by Proposition 3.1 and then 2. of

Theorem 2.2, we get n + t}- _< nl + n}-. Using 1. of Theorem 2.2 followed by
Proposition 3.1 and then 3. of Theorem 2.2, we have that n + n}- _< nt + fi}-. By
adding the above two inequalities, 1. follows.

2. The following identity can be +asily checked:

(23) -M N In 0 0 (AM N)T I, 0 0
0 0 i. 0 0

This shows that ,k is a nonzero generalized eigenvalue for the EHP if and only if - is
a generalized eigenvalue for the EHP.
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3. By simple computation we may write the identity

0 0]o-)BT(I-/AT)-1 Im

0 I- ,kAT 0 0
0 0 n() o

0 --(/l- A)-IB "]
In -(I )AT)-I(L + Q(AI A)-IB) ]o

which proves assertion 3.
4. The following identity can be directly checked:

(24) (M- AN)S()) G())A(AM N)TH(,),

where

0 0 ]():= 0 0
0 0

0
()

0 0](1 A)Q(I- AA) -1 0
(1 ))LT(I- AA)- Im

o o ]H(A) := In 0 (A- 1)(I- AA)-IB
0 0 I.

Clearly G() and H() are regular at 0 (i.e., without null poles and zeroes). Denote
by nK() the number of null zeroes of the rational matrix K(). Using the Smith-
McMillan form of a rational matrix it can be easily seen (see also [26]) that

(25) rt,k(),M_N)T 7C0 + rankR()(AM- N) 7o + 2n + p,

where assertion 3. has been used. As both G(A) and H(A) are regular at 0, with (24)
we get that

nA(AM-N)T

_
riM-AN - n.=.(),),

and since n() 2n and n nM-AN, we obtain with (25)

(26) ro + 2n + p _< n + 2n.

From (26) the conclusion follows immediately.
5. Since rank,()(AM N) nr + n; + n}- + n- + n + no nr + n; + }- +

ro + n- + n + n always, it follows from 1., 2., and 3. just proved above that

2n + p >_ 2n + 2n + ro + p + n, from where n _> n + n}- and the equality holds if

and only if n.f O, n nl and n ro + p.
COROLLARY 3.3. The maximal dimension of a stable proper deflating subspace

to the right of the EHP does not exceed n.

Proof. This follows directly from assertion 4. of Theorem 3.2 combined with 1.
of Theorem 2.2.
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Remark 4. If the EHP is regular, then assertion 4. of Theorem 3.2 reads n
7to / m, and thus the result stated in Proposition 3 in [13] is recovered. Indeed, (24)
can be rewritten as

where

0 0 ]0 0
0 0

Using arguments similar to those for assertion 4. in Theorem 3.2 we get

n _< r0 + n_(,) r0 + m.

Since the EHP is regular, rank(AM- N) 2n +m 2n + p and consequently m p.
Hence the conclusion follows by using assertion 4. in Theorem 3.2 in conjunction with
the above inequality. [I

Remark 5. Unlike the continuous case, where the corresponding assertions 1. and
4. stated in Theorem 3.2 are always expressed via equalities (see Theorem 2 in [17]),
the discrete case is quite different. This is emphasized by the fact that sometimes 1.
and 4. become strict inequalities, as is shown below.

Example. Let the Popov triplet be defined as n m 1, A 0, B 0, Q
0, L 1, R 0. Then (see (13))

M= 0 0 0 N= 0 -1 1
0 0 0 1 0 0

and by elementary row and column operations we get

A 0 0]AM- N 1 0 0
0 0 1

So nr 0, nz.- 1,n 1,r0 0 (in fact nf 0), and p 0 because of II(A) 0
(see (22)). Hence n > nr and n > p + r0. [!

Now a remarkable property of the stable proper deflating subspaces will be pointed
out.

PROPOSITION 3.4. Let be any stable proper deflating subspace to the right for
the EHP and

v vZ vZ

be any basis matrix for it. Then

(27)

Proof. The proof runs similarly to that in [13].
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Suppose temporarily that the pair (A, B) has no null uncontrollable modes. Then
we are in the position to formulate the following unicity result.

PROPOSITION 3.5. Let be a stable proper deflating subspace to the right of
maximal dimension, i.e., dim Y n + n} > 0, and let

be any basis matrix for V. Then

(28) 1)’= Im [ V1IV2 C R2n

does not depend on the choice of the maximal stable proper deflating subspace , i.e.,
it is uniquely determined.

Proof. Let

(29) Va -Q -I L

0 a-J0
where V is clearly monic, as has been shown in the proof of Proposition 3.1 (see (17)).
Then the EHP (13) can be written as

(30) M= [ / 00]
and [O] is monic. From (14) we get

(31) [ll)+
where obviously (see Definition 3)

N= ( D

(32) [ /
is monic and

(aa) A(S) c DI(0).

If/ := Va?#, where ?# is any left inverse of ? (? is monic), then (31) finally yields

(34) 0 + DF G

Note now that if E I and G 0, then (34) with (33) expresses the usual condition
that V (defined by (28)) is a stable null output (A,B) invariant subspace of the
system (ft.,/), ,/)). Clearly ) C R2n is of maximal dimension since otherwise (34)
would hold for a monic V with the rank greater than nf + n-, which contradicts
the maximality of 12 c R2n+m. As is well known, such a subspace is unique (see
[27], [23]). Generalizing the above notion, we shall say that l;, satisfying (34) with
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(33), is a stable null output invariant subspace of the generalized descriptor system
representation (M, N), with M and N written as in (30). Based on similar arguments
as above, P is of maximal dimension. As in the usual case, mentioned above, such
a subspace is the supremal one of the family of subspaces with the properties (32),
(33), (34) and consequently is unique (see Appendix A). []

DEFINITION 4. The EHP is said to be dichotomic if n O, nr nt, and
n p + ro.

We have immediately the following proposition.
PROPOSITION 3.6. The EHP is dichotomic if and only if it has a stable proper

deflating subspace to the right of dimension n.

Proof. Only if: According to 5. of Theorem 3.2 we have nr + nf n. Following
1. of Theorem 2.2 a stable proper deflating subspace of dimension n for the EHP
exists.

If: Following 1. of Theorem 2.2 we have n <_ n + n. Hence by 5. of Theorem
3.2 the equality holds, and n 0, nr n, and n p + r0.

DEFINITION 5. Let be any stable proper deflating subspace to the right of
dimension a and

be any basis matrix for it. We call disconjugate if V1 is monic.

Note that

a) The notion of disconjugacy is well defined since Corollary 3.3 asserts that the
number of columns of V1 does not exceed n.

b) The notion of disconjugacy is independent of the choice of the basis matrix V
for the (stable) proper deflating subspace. Indeed, if [1T 2T 3T]T is another
basis matrix, then clearly V VG for an appropriate nonsingular a a matrix
G. Hence iYl VIG and the conclusion follows. Based on Proposition 3.6 we can
introduce the following definition.

DEFINITION 6. A dichotomic EHP is said to be disconjugate if it has a disconju-
gate (stable) proper deflating subspace to the right of dimension n.

Remark 6. According to Proposition 3.6 the dichotomy of the EHP implies the
existence of a stable proper deflating subspace to the right of dimension n. Hence
in accordance with Corollary 3.3 such a subspace is of maximal dimension. If

is any basis matrix for ), then, following Proposition 3.5, ) Im[VITV2T]T is unique.
Consequently the disconjugacy is checked by checking the invertibility of V1. If V1
is singular, there is no other basis matrix V with V1 nonsingular because of the
uniqueness of ]). Thus we can effectively check the disconjugacy of a dichotomic
EHP.

4. Main result. Now we are ready to state and prove our main result.
THEOREM 4.1. The GDTRE (1) has a stabilizing solution (r, X, V, F) if and only

if the EHP has a disconjugate proper deflating subspace.
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Proof. If: Let l; be any disconjugate proper deflating subspace of dimension r
with basis matrix

v vZ vZ

Then equations (16) are fulfilled for S E Rrr stable since disconjugacy presupposes
the proper deflating subspace to be stable (see Definition 5). Let X "= V2V# and
F := V3V#, where V1 is any left inverse of V1, which is monic because of disconjugacy.
Then (16) provides

(35)
(A + BF)V1 VS,

(Q x + LF)V --ATXVS,
(LT -t- RF)V1 -BTXVIS.

By eliminating VIS in the first two equations (35), equation (1) with V V is easily
obtained. This, together with the first equation in (35) and Proposition 3.4, which

implies (see (27)) vTxvI vITV2VV1 vTv2 v2Tv1 vIT(VIT)#v2Tv1
vITXTV, prove the if part.

Only if: Let (r, X, V1, F) be a stabilizing solution to (1). Then by taking

v. xv
V3 FV1

it can be easily checked that (16) holds, i.e., (14) holds and MV is monic since V1 is
monic as follows from

MV -ATV2
--BTV2

From Theorem 4.1 we immediately derive the following corollary.
COROLLARY 4.2. The CDTARE (3) (or (4)) has a stabilizing solution if and only

if the EHP is disconjugate.

5. Constrained dynamics with quadratic cost. Let F, be a Popov triplet
and associate with it the following:

1) the linear (discrete) system

(36) ax Ax + Bu

and the quadratic cost

(37) J E Uk LT R Uk
k--O

with xk and uk linked by (36);
2) the GDTARE (1) written in explicit form, for V VI:

(38) (ATXA X + Q)V1 + (ATXB + L)FV1 O,

(39) (LT + BTXA)V + (R + BTXB)FV1 O.
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Assume that the GDTARE has a stabilizing solution (r,X, V1,F); that is, (38) and
(39) both hold

(40) X1 := vTxv1 vTxTv x
and

(41) (A + BF)V1 VlS
with S E Rrxr stable. Following Remark 1, Yl ImV1 is a stable (A,B) invariant
subspace of dimension r. Hence, for any initial condition placed in V1 and an appro-
priate control input u E/2(N; Rm) we can force the system (36) to have its evolution
entirely contained in 11 and exponentially approaching zero as k approaches infinity.
Thus we can write

(42) Vla AVI + Bu.

In this section, we shall evaluate, in terms of the GDTARE (1), the quadratic cost
(37) along the trajectories described by (42) with u /2(N, Rm), i.e., along those
trajectories located in V1 and which exponentially approach the origin. To this end,
let us introduce the following notations:

(43) Q1 vTQv1, L1 VTL F1 FV1.
With (43) and (41), (38)and (39) become

(44) ATXV1S XV1 2t" QV1 + LF1 O,

(45) LT1 + BTXV1S + RF1 O.

Premultiplying (44) by VT and taking into account the transpose of (41) we get

(46) sTxIS FITBTxV1S X1 + Q1 + LIF1 O.

Premultiplying (45) by F1T one obtains

(47) FITL + FTBTXVIS + FTRF1 O.

With FITBTXV1S substituted from (47) in (46) we have further

(48) sTxIS X1 + Q1 + L1F1 + FITLT + FTRF1 O.

Remark 7. Let V1 be nonsingular. Then without loss of generality we may take
V1 I in (38), (39), and (41), and (48) becomes

(49) (A + BF)TX(A + BE) X + Q + LF + FTLT + FTRF 0

with A + BF stable. But (49) is exactly the "closed loop" form of the (constrained)
Riccati equation.

Now we are ready to state the main result of this section.
PROPOSITION 5.1. Suppose that the GDTARE has a stabilizing solution. Then

the quadratic cost (37) evaluated for those pairs (, u) /2(N; Rr) x/2(N; Rm) linked
by (42) has the expression

(50) g 0TxI0
where o "= (0). If the "positivity condition" R + BTXB >_ 0 holds, then the min-
imum of J over u is attained (nonuniquely) for u FI. Such a feedback provides
also stabilization with respect to the stable (A, B) invariant subspace ])1.

Proof. See Appendix B for the proof.
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6. Conclusions. Necessary and sufficient conditions for the existence of the sta-
bilizing solution to the GDTARE have been given. These conditions are expressed
in terms of the disconjugcy of proper (stable) deflating subspaces associated with
the EHP. The basic results concerning the CDTARE, intensively used in nonstandard
factoriztions, re esily recovered nd enlarged. An evaluation of the quadratic index
along constrained stable trajectories was also given in terms of the stabilizing solution
of the associated GDTARE. Based on the above results, a numerically reliable method
for computing the stabilizing solution of the GDTARE and CDTARE is proposed in
[22]. The method uses the algorithms for computing the generalized Schur form of a
singular pencil developed in [7], [8] and the refinements in [4]. Applications of the de-
veloped theory can be found in [18] and in a forthcoming paper dealing with singular
H2 optimal control.

Appendix A. Supremal stable null output invariant subspace of the
generalized descriptor system representation. Let (M,N) be a matrix pair
defined by

(A.1) M= G 0 C D

and termed a generalized descriptor system representation. Assume that [Ea] is monic.
DEFINITION A1. A subspace 12 C Rn is called a null output invariant subspace

of the system pair (M,N), represented by (A.1), if

A
G ]2+Im[ B

The famil of all sch sbspaces will be denoted by I(M, N).
Clearly

(A.a) G V is monic

for any basis matrix V of and I(M, N) 7 0 because it contains R.
Note that
a) If E I and G 0, then the usual definition of the null output (A, B) invariant

subspace encountered in [2a] and [27] is recovered. It corresponds to the usual system
representation az Az + Bu, Cz + D.

b) If G 0, then the above notion is adapted to the usual descriptor system
representation Ez Az + B, C’z + D.

As has been noted in the previous sections, the notion introduced by Definition
A1 is associated with the (discrete) Hamilonian systems (12) (with v 0), which
simultaneously incorporates both forward and backward time evolutions.

Let 12 C I(M, N), with diml2 p, and V Rrx be any basis matrix of 12. Then
(A.2) is equivalent to

A

for adequate S ROXO and H Rrxo. Since V is monic, let

(A.5) F HV#,
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where V# is any left inverse of V. Then (A.4) reduces to

(A.6) C + DF V= GV S,

which is also equivalent to

(A.7) C + DF
"p c G 12

and where (A.3) automatically holds.
Let F(M,N,];) { F (A.7) is true }. Clearly ]2 c I(M,N) if and only if

F(M, N, ]2) 0.
In order to emphasize the structural aspects related to Definition A1, we have to

perform several strict equivalence operations on the (singular) matrix pencil AM- N.
Let F1 E F(M, N, 1;), define the nonsingular matrix

[/n 0](n.8) Zl-- F1 Irn

and consider the strict equivalent pencil AM1 N1 AM- N defined via

G 0 C+DF1 D

Introduce now the nonsingular matrix

V W 0 V 0(A.10) Z2= 0 0 I, 0 Im

where W is any completion of V (which is monic) up to a nonsingular matrix I7"
IV W]. Consider the decomposition

(A.11) D =Im D NIm GV
(gIm /)

and introduce the nonsingular matrix

EV E1 ](A.12) Q2- GV al

EVwhere the completion [Eli of the monic matrix [av] (see (A.3)) is chosen such that

(A.13) Im /) ] cIm[ E1
G1 ]"

Let now IM2 N2 AM1 N1 be defined as M2 Q2MIZ2 and N2 Q2NZ2.
Then according to (A.6), where F F1, (A.11) and (A.13), we get

n--p rn P n--p rrtl rn2

(A.14) M2= Ip x N2= x B1 0
0 x 0 0 T 0 D1
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where D1 can be chosen to be monic as easily can be remarked. It can be also easily
checked that for

(A.15) 23

the strict equivalence AM2 N2 ,M.23 N223 preserves the structure of (A.14)
if and only if

F3,11 F3,12 ](A.16) F3= 0 F3,22

as follows from the fact that DIF3,21 0 4= /73,21 0 since D1 is monic. Note now
that with (A.8), (A.10), and (A.15) we have

ZZ2 [ I 0 " 0

where FI}- FI? + F3, i.e., F F1 + F3?-1. Thus F {F1 + F3?-1 "F3 of the
form (A.16) } and for any F1 for which (h.6) holds, i.e., determined via (A.5).

Remark A1. Equality (A.17) shows that any successive product of matrices of
type (A.8) and (h.10) reduces to the product of two matrices of type (A.8) and
(A.10). In the usual cases this expresses the well-known feedback and coordinate
changing operations. [:]

Since M2 N2 /M-N, (A.14) shows that A(S) is a subset of the set of finite
generalized eigenvalues of the pencil AM-N, and we shall write A(S) A((M, N)I;).

DEFINITION A2. ; E I(M,N) is said to be stable if A((M,N)]];) is located in
DI(0).

Let Is {; ; E I and stable}. Since if;1,;2 I(M,N), then ; +;2
I(M,N), as directly follows from (A.2), we conclude that I(M,N) has a (unique)
supremal element denoted ;* supI(M, N). Following a scheme of proof similar to
that in [27] we have that lira ;k ]2" for the sequence ; defined by

(A.18) G+= C G G+Im 120= k>0

We are now interested in finding )2 := supIs(M, N). To this end consider the struc-
ture (A.14), where p dim;*. For the pair (S, B1) apply the controllable decompo-
sition, that is,

where (q11, Bll) is controllable. Let

(A.20) Q3
T 0

Z30 I+_ 0 I+,_
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and consider ,M3 N3 AM2 N2 with M3 Q3M2Z3 and N3 Q3N2Z3. Then

Ipl 0 X 0 Sll S12 x Bll 0
(A.21) M3= 0 Ip2 x 0 N3= 0 $22 x 0 0

0 0 x 0 0 0 x 0 D1

Now, following the same argument as in [27], we have

(A.22) ]2* D Vs* {S111ImB11} @

where <S111ImB11> is the controllable subspace of the pair (S11,B11) and X-($22) is
the stable subspace of $22, i.e., X-($22) ker #-(A), where #(A) #-(A)p+ (X) is
the factorization of the minimal polynomial #(A) of $22 with respect to the unit circle.
Here the roots of #-(A) are in DI(0).

Appendix B. Proof of Proposition 15.1. Suppose the GDTARE (1) (or equiv-
alently the system (3S)-(39)) has a stabilizing solution (r,X, V1,F). Then using (41),
(42) becomes

(B.1) via v s{- BFI +
and premultiplying both sides of the above equation by v1TxT we get (see (40))

(B.2) Xx X,S{- v,TXrBF, + vTXrBu.
Now we are ready to evaluate the quadratic cost (37) for those pairs ({, u)

/2(N; Rr) x/2(N; RTM) linked by (42) (or equivalently (B.2)). First we can write

uk L1Tk--0

L1
u/: I [ {k ] /[ I [ LQ1 L1

where x VI{ and (43) have been used. Then with (48) and (45), we have the
evaluation

u LT1 Lll []--{TQI{+2uTLT{+uTRuRu

{T(--SrXIS +X LIF1 F1TLT FTRF_)cs + 2uT(--BTxvIs- RF1){ + urRu

U( I R S V X B)fl +   FI (B XV S + RF1) 

--2uT(BTXVIS + RF1){ + uTRu- {TFTRF__
TsTXIS-t-{TXlnt_2rsTv1TxrBFI 2uTBTXVlS+(u FI)TR(u FI)

T(B) (_(asc)TXl TF1TtTxv -+- ?I,TBTXV1)S -+- Xl -1- 2T ooTv1TxTBFI

-2uTBTxvIs q- (u- N{)TR(u- Flsc)
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-()xs + FITBXVS uBXVIS +XI+ (u FI)R( FI)

() _({)T(x + VlrXrBFI{ glrXrBu) + {rFlrBrXlqS{ urBTXVS{

+{Tx{ + (U- FI{)TR(u- F{)

T TFTBTx -Va VS{) uTBTx VS{)--(a{)TXla{ + { X{ + + + (1/lo"{"

+(u- Fl{)rR(u- F{)

(=1) _(a{)Txa{ + {TXlCs + {TFTBTX(BF1 Bu) + uTBTX(Bu BFI{)

+(u- F,{)TR(u- F{)

--(acs)rXlaCs + rXl{ -Jr- {TFTBTXBF{ {TFTBTXBu uTBTXBFi{

-t-UTBTXBu + (U- F{)TR(u- F{)

--(O’)Tx10" q- TxI nt- (u- FI{)TR(u- FI) q- (u- FI{)T(BTXB)(u- FI{)

(B.3) T T BTXB)(u--(O’)TxIo’ + Xl -i- (- FI) (R q-- FI).

As e/2(N; Rr), then (,Xl) (T,Zl(7) 0TxI0 Hence it follows from (B.3)
that

(B.4) j__ T0 Xl0 q- (u FI, (R q- BTXB)(u FI{)}.

From (B.4) the conclusion follows immediately.

Acknowledgments. After the review process was completed, Dr. Martin Weiss
drew our attention to the fact that the absence of null uncontrollable modes for the
pair (A,B) is in fact not necessary for proving that the disconjugacy of a maximal
proper deflating subspace to the EHP does not depend on the particular choice of the
maximal proper deflating subspace. Moreover, the proof of Proposition 3.5 can be
considerably simplified.
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APPROXIMATION OF THE ZAKAI EQUATION FOR NONLINEAR
FILTERING*

KAZUFUMI ITO

Abstract. In this paper we consider numerical approximations of solutions to the Zakai equation.
Time discretization based on the implicit Milshtein and Euler methods and Galerkin approximation
in the spatial coordinates are investigated. Convergence and rate of convergence of approximation
methods are established.

Key words. Zakai equation, numerical approximations

AMS subject classifications. 60H15, 65M10, 93Ell

1. Introduction. In this paper we consider approximations of solutions to the
Zakai equation of the form

(1.1) dp(t) / A(y(t))p(t) dt B(y(t))p(t) dy(t), p(O) Po e L2(Rd),
where p(t) p(t,x) is the nonnormalized conditional probability density function
appearing in nonlinear filtering problem as follows. A signal process x(t) E Rd satisfies
the Ito stochastic differential equation

(1.2) dx(t) g(x(t), y(t) dt + a(x(t) dwl (t), x(O) x,

and the observation process y(t) Rp is given by

dy(t) h(x(t)) dt + b(y(t)) dwl (t) + dw2(t), y(O) O.

The dependency of the drift term g on y accounts for output feedback of the observa-
tion y(t). Let (,’, P) be the probability space with an increasing family of sub-a-
algebras {’t} of " is right continuous and complete with respect to the probability
measure P. Assume that wl (t), w2(t) are ’t-adapted independent Wiener processes
with covariance I and R, respectively. The initial condition x is a Rd-valued, 0-
measurable random variable with probability density po(x). Suppose b(y) 0; then
the signal process and the observation process are uncorrelated. Assume that the
functions g, a, h, and b are bounded and that g, a, and b are Lipschtz. A core of the
Zakai theory (e.g., see [Be], [Pa], [Ro]) is that the conditional expectation of (x(t))
based on the observations {y(s), 0 _< s _< T} is given by

(1.4) E [(x(t))ly(s 0 < s < t] f (x)p(t,x) dx

The Zakai theory is based on the change of probability measure [Be], [Ro]. Let
be a stochastic process defined by

(t) exp h*(z)D(y)-l(b(y) dl(S) -t-

-21footh*(x)D(y)-h(x)ds)
Received by the editors August 30, 1993; accepted for publication (in revised form) December

12, 1994. This research was supported in part by Air Force Office of Scientific Research grant
AFOSR-90-0091 and National Science Foundation grant DMS-8818530.

Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC
27695-8205.
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where D(y) R + b(y)b(y)*. Define a probability measure/5 on (ft, 9v) by

dP

Then the observation process y(t) becomes an t-adapted Wiener process with co-
variance D on (ft, $’, /5). Henceforth, / denotes the expectation with respect to/5.
The linear operators A A(y) and B B(y) appearing in (1.1) are defined by

(1.5)

where

-A=-x a,J-x x-x(a)

0
Be= hD-l

1 1 0
c ab*D-1, a -aa + -cDc and a g ai,J.Oxj

As in [Be], [Pa], [Ro] we employ the variational formulation of (1.1). Let H L2(Rd)
and V HI(Rd), and V* denotes the strong dual space of V. H* is identified with
H so that V C H H* C V*. We define the inner product (., .) of H by

(, ) (x)(x)dx.

The dual product of V* V is denoted by (., .}. Let Hk(x), k >_ 0, be the Hermite
polynomials on R. Then a family of functions

d

(1.6) ek(x) I-Iexp(-x/2)H,(x),
i--0

k (kl,...,kd) E Nd

forms the orthogonal basis of L2(Rd). If for E V we define

kEJ

where J [0, n]d e Nd, then
,ev

Then we have that for

(1.7) (A, } lim (An, )= lim (AoV-a, V)= (AoV- a,
where A0 denotes the symmetric matrix {ai,j } on Rd. We assume that there exists a
constant c > 0 such that

(1.8) x*Aox >_ a lx[ 2 for allxRd y Rp

Hence A A(y) .(V, V*), and if aa* is coercive uniformly in x and y, then there
exist positive constants p and/ such that
(1.9)

1 1
(A(y), ) ]B(y)]) + p I1/ -> / I1/ for all E V and uniformly in y,
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where I 1 /and IB01 f(B)D(y)(B)* dx.
An outline of our paper i8 a8 follows. In 2 we consider an approximation scheme

(2.1) in which the backward Euler scheme is used to discretize (1.1) in time and the op-
erators A, B are approximated by a sequence of stable and consistent approximations
(see (A1)-(A3)), and its convergence properties are established. For the uncorrelated
case a higher-order approximation based on the Milshtein scheme [Mi] is discussed in

3. The convergence rate of both schemes is established in 4. In 3 we also consider
the robust form of the Zakai equation for the uncorrelated case. Finally, we apply our
results to the spectral method based on the Hermite polynomials.

We refer to [BGR], [FL], [Pi] for time-discretization schemes for the Zakai equa-
tion. In [BGR], [FL] the operator splitting method is used to split up the deterministic
and stochastic evolutions (see also 3). Numerical experiments based on the methods
described in this paper will be reported in a forthcoming paper.

2. Implicit Euler approximation. In this section we consider the following
approximation method of (1.1); for n m N the sequence {Pm,} is generated by

(2.1) pk pk-1 +/ (nn(yk_l) + pi)pa )ppk-1 zt gn(yk_l)pk-l(yk Yk-1),

where A T/m, Yk y(kA), and the pair of linear operators (An(y), Bn(y)) satisfies
the approximation conditions:

(A1) IAn(y)O[y <_ /10Iv and [Bn(y)OIH <_ , 10Iv uniformly in n and y e Rp,

(A2)
1 1

for all E V and y Rp,

IAn(y)- A(y)Olv. / IB(y)- B(Y)OIH 0 s n --+
(A3) for all V and y Rp.

For ease of presentation A(yk-1) and B(y_) will be denoted simply by A nd B,
respectively, throughout the paper. Similarly, the dependency of (A,B) on y(.)
will be suppressed and understood from the context of our discussions. Let S
( x [0, T], B, dP dr). Then we hve the convergence theory.

THEOREM 2.1. Assume that a family of linear operators (An, Bn) and initial
conditions p satisfy the conditions (A1)-(A3) and ]p- POOH 0 as n , respec-
tively. Then the sequence {p,} generated by (2.1) with initial conditionp converges
to the unique solution p(t) of (1.1) as m, n in the sense that the function p,n(t)
defined by

Pro,n(t) P,n on [kA, (k + 1)A)

converges to p(t) strongly in L(S; V) and weakly star in L(O,T;L2(,H, dP)).
Proof. We prove the theorem in two steps. First we show convergence of the

sequence {p} generated by

(2.2) pk pa-1 + (A + pI)pk Appk- + Bp-l(yk yk_)

to the unique solution p(t) of (1.1) provided that (1.9) holds. Define a linear operator
Ap by A + p I. Then from (1.9) J (I + Ap)- (V*, V). Thus, given V-valued
random variable x, the equation

(2.3) x + Ap px + Bx Ay
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has a unique solution 5 J((1 + Ap)x + Bx Ay)), where Ay Yk Yk-1 is a Rp-

valued random variable with mean 0 and covariance AD that is independent of x.
Multiplying (2.3) by 5,

(5- (1 + Ap)x, 5)+ A <Ap]c, 5> (Bx Ay,

Completing the square,

1
( I1 ( + p) Ixl# + I ( + p)xl# + <A,, > (Bz, ).

Let z (1 + Ap)x + Bx Ay. Then 5 Jz and

]Jz-zl 15-(l+Ap)x-BxAyl2H

15- (1 + Ap)Xl2H 2 (Bx Ay, 5- (1 + Ap)x) + IBx/XyIH.

Note that E (Bx Ay, x) 0 since x and Ay are independent. Hence, combining the
above equalities, we obtain

1
(2.4) (/l[ (1 + Ap) 2 ,lX[2H) + A (Ap5, 5} -]BXl2D <_ 0.

Setting 5 pk and x pk- in (2.4) and multiplying it by (1 + Ap) -2k, it follows
from (1.9) that for k _> 1

c-k/ (]pkl + A IBpl) + A/c-k/ Ipkl/ <_ c-(k-’) (P, (Ipk-ll + A IBPk-ll)),

where c (1 + Ap)2. Summing up this in k, we obtain

m

k=l

Thus, for Ap sufficiently small,

m

/lpl/+/ c-k IPkl e2T (IPl + IBpl).
k=l

Let A be the Laplacian and pO (I- A A)-po. Here, for x E H, we have

I(I--,kA)-lx--xlH0 and AIB(I-)A)-lxI-0

as A --. 0. Define a function p(t) by

px(t)=pk if te [kA,(k+l))), k>_0.

Then from (2.5) we obtain

(2.6) sup / IP(t)l / / IP(t)l dt < e2pT (Ipl / A IBpl),
te[0,T]

and thus p(t) L2(S; V)f3 L(O,T;L2(f;H)) uniformly in A > 0. Consequently,
there exists a subsequence of {p}, which will be denoted by the same symbol, such
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that p --+ p weakly in L2(S; V) and weakly star in L(0, T; L2(Ft; H)), where p(t) E
L2(S;V) f3 L(O, T; L2(,H)) can be chosen to be progressively measurable. Note
that

(A,(( + )) A,(()))()[.

< M y(k + s) y(k)2 p(k) <Mp(k)2
v

for s (0, ) and some constant M > 0. Similarly, we have

k (B(u( + )) (()))()l Mk >()15.
Thus we have
(.7)
App,(t) App(t) weakly in L(S; V*) nd Bp(t) Bp(t) weakly in L(S;(R,H)).

om (2.2) we have

f[tl] [tl]p(t) -pO (App(s + ) pp,(s))ds + Bp(s) dy(s).
JO

Thus, for almost all (t, w), a continuous modification of p(t) in H (see [KR, Thm. 3.2])
satisfies

Define

T

S, e(t) (2(App(t + A)- App(t), p(t + ,) p(t)} -[Bp(t + ) Bp(t)lD) dt,

where e(t) c-k on [(k- 1)A, kA), k 1. It then follows from (1.9) that

(2.9) S e(t) p(t + ) -p(t) dt.

Setting 2 p and x pk-1 in (2.4) and multiplying it by c-k (1 + Ap)-2, we
obtain for k > 1

c-k(pk+ [Bpk]2)--ck-l([pk-l]+ [pk-l2)+c-k (2(Appk,pk}--]gpk[) O.

Summing up this in k, we obtain

(2.10) c- ipx(T) ([pO + k Bp) + T 0,

where T is defined by

Tx ea(t) (2{Aopx(t + ), pa(t + )) -IBpx(t + )1) dr.

On the other hand, it follows from (2.8) and the Ito lemma (Thm. I.a. in [KR]) that

(2.11) e-or Ip(r)l IPol + e-ot (2{Aop(t), p(t)} -p(t)l )dr O.



APPROXIMATION OF ZAKAI EQUATION 625

Note that leA(t) e-2pt -- 0 as A -- 0, uniformly on [0, T]. Hence, since from (2.7)
T

liminf S e-2pt (-2 (App(t), p(t)) + ]Bp(t)])dt + liminf T _> 0,

it follows from (2.10) that

T

e2p(t-8)(--2 (App(t), p(t)}+lBp(t)12D) dt+lpol2H--e-2pT limsup >_ 0.

Combining (2.11)- (2.12), we obtain

e-2pT ( Ip(T)I2H --limsup / Ip(T)I2H) >_ O.

Since p.x (T) converges weakly to p(T) (without loss of generality),, Ip(T)12H lim inf / IPX (T)I -< 0,

and thus we have

Moreover, from (2.9)

Suppose there exist two solutions p(t), /5(t) L(S; V) to (2.8) satisfying p(0)
/5(0) p0. It then follows from the Ito lemma that

lp(t)-(t)l+ e-28(2(Ap(p(s)-(s)), p(s)-$(s))-lB(p(s)-$(s))l)ds 0

for t E [0, T]. Hence from (1.9) / Ip(t) -5(t)l 0 on [0, T], and thus (2.8) has a
unique solution. Since the above arguments do not depend on T > O, p(t) converges
strongly to p(t), a unique solution of (2.8) in L2(f; H) everywhere on [0, T]. Hence
p(t) converges to p(t) in L2(S; V) and strongly in L2(f, H) everywhere on [0, T].

Next we show that if for each n, pn(t) is the solution to

pn(t) pr Apn(s) ds + Bp(s) dy(s)

then pn(t) converges to p(t) strongly in L2(S; V) and L(0, T; L2(;/-I, d/5)) as n -. It follows from the Ito lemma that

, Ipn(t) -p(t)l + e(t-), (2(A(p(s) p(s)) + Ap(s) App(s), pn(8)

From (A1) we have

(Ap(s) App(s) p(s) -p(s)} < Ip,(s) p(s)[ + - [Ap(s) Ap(s)lW
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and

It thus follows from (A2) that
(2.13)

E Ipn(t) P(t)l + e2p(t-s) Ipn(S) p(s)l ds <_ e2pt/) IP

/o )+ + +

It then follows from (A1) and (A3) that IA’p(s)- App(s)l. and IB’p(s)- Bp(s)12D
converge to zero as n --+ oo, almost all (t,w) and are uniformly integrable. By
Lebesgue-dominated convergence theory,

T
e2p(T-t) (IAp(t) App(t)l. + IBp(t) Bp(t)lD) dt

converges to zero as n oc. Thus it follows from (2.13) that p,(t) converges to p(t)
strongly in L2(S; V) and L(0, T; L2(ft; H, d/5)) as n -- oc. Hence, combining the
two steps we obtain the desired convergence. 13

3. Uncorrelated case: Milshtein approximation and robust form. In this
section we consider the case when b(y) 0. Then B E (H) is given by (B)(x)
h(x)(x). Here, without loss of generality, one can assume that R I and thus D I
on Rp. First, we consider the time discretization of (1.1) based on the Milshtein
approximation of the Ito stochastic integral:

1pk pk-1
__
A (A + pI)pk Appk-1 zr- Bpk-1Ayk + - BBpk-I(Ay A),

where A A(yk-1), B B(y-I), and Ayk y(kA)- y((k- 1)A). The last term in

(3.1) is understood as

p

E B,Bi((Aye)2 -/k)
i=1

for E H,

where (Bi)(x) hi(x)(x). Note that Bi is self-adjoint and commutes with By for all
i, j. As shown in the next section, the Milshtein scheme (3.1) provides a higher-order
approximation than the Euler scheme (2.2). Assume that x is a V-valued random
variable and x and Ay G Rp are independent. Then the equation for 2 V

(3.2)
1c x + , (A + p I) ,p x + Bx Ay + -BBx (Ay2 ,)

has a unique solution 2 Jz, where z (1 + ,kp)x + Bx Ay + 1/2BBx (Ay2 A).
Multiplying (3.2) by 2 and completing the square, we obtain

1
(1 + Ap)2 Ixl / (1 + )p)xl + , (Ap2, c} (, c),



APPROXIMATION OF ZAKAI EQUATION 627

where Bx Ay + 1/2BBx (Ay2 A). Then

I&z zl 12 (1 + Ap)x 1H

I- (1 + Ap)x[ 2 (, .- (1 + Ap)x)+

Note that E (, x) 0 since x and Ay are independent and that

IIH IBx AyIH + 1
-BBx (Ay2 ,X)

( 1 )= IBXIH + A IBBxIH
Hence, combining the above equalities, we obtain

1 ( 1 )

_
(3.3) (/ Il/- (1 + ,kp) 2 IXl2H) + X (Ap&, c> - IBXIH < ,X , IBBxIH
Setting pk and x pk-1 in (3.3) and multiplying it by (1 +/p)-2k, it follows
from (3.1) and (1.9) that, for k _> 1,

(3.4) 1

where c (1 + Ap)2. Summing up this in k, we have

m

c- (Ipl + , IBP’IH) + c-" Ipl
k=l

1 12
m

_< (Ipol / ) IBpol) -+- AIB, Ac-k Ipk-le
k=l

Thus, for/p sufficiently small,

m. *cm-k eg.PTIpl / Ip’l < / ([Pol + A IBpol),
k=l

where we assume that fl _< 2AIBI e. Define a function p(t) by

px(t)=pk if te[kA,(k+l)A), k>0.

Then from (3.4) instead of (2.10) we have

m

1,XlBle ,xc_, ip_112c-’ E Ip,(T)I (IPol + 9 IBpol) + T, _< H,

k=l

where the right-hand side converges to zero as - 0. Thus, using the same arguments
as in the proof of Theorem 2.1, one can show that p(t) converges to p(t) strongly



628 KAZUFUMI ITO

in L2(S; V) and weakly star in L(O,T;L2(f,H)). Hence we obtain the following
theorem.

THEOREM 3.1. Assume that b(y) 0 and that a family of linear operators
(An, Bn) and initial conditionsp satisfy the conditions (A1)-(A3) and IP--POlH -- 0
as n --, oc, respectively. Then the sequence {pkm,n} generated by

1 Bn(3.5) pk pk-1 + ; (An + p i)pk )ppk-1 + Bnpk-1 Ayk + - Bnp- (Ay iX)

converges to the unique solution p(t) of (1.1) as m, n oc in the sense that the
function p,,n (t) defined by

Pm,n(t) Pk,n on [k,, (k + 1),), k _> 0,

converges p(t) strongly in L2(S; V) and weakly star in L(O, T; L2(f; H, dP)).
Remark 3.2. Consider the approximation scheme based on the Trotter product

formula (e.g., [BGR], [FL], [Pi]):

(3.6) pk pk-l + , (A + p i)pk ,ppk- + exp B Ay -BB I

where/3(t) (exp(B Ayk BB) I)p- satisfies

(t) pk-1 fk Bp(s)dy(s), t >_ (k- 1),.

For the scheme (3.6), in steps (3.1)-(3.3) is defined by

Note that

B-- (exp(BAyk-- B) -I) pk-1

(t)- pk- Bpk-Ayk + ft-1) B((s) --pk-1)dy(s),

where x pk- in (3.2). Hence

I1 -< A(1 + M/k)/ IBxl 2

for some M > 0 independent of A > 0 and x E L2(Ft;H). Thus exactly the same
arguments as above are applied to show that Theorem 3.1 also holds for the sequence
generated by (3.6)

Next we consider the robust form of (1.1) in which the Ito stochastic differential
equation is transformed into an ordinary partial differential equation with random
coefficients [C1], IDa], [Be], [ao]. Define a function r(t) by

?(t, x) exp(-h(x)*y(t)).

Then r/(t) satisfies

1
dr(t, x) -lh(x)12rl(t, x) dt h(x)rl(t, x) dy(t).
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If we define a function q(t) by q(t,x) (t,x)p(t,x), then it follows from the Ito
stochastic differential rule (e.g., see [KR]) that q(t) satisfies

d 1
(3.7) -q(t) + A(-lq(t)) + -lhl 2 q(t) O, q(O) po e H.

The weak or variational form of (3.7) is given by

-q(t), + (Ao(Vq(t) + q(t)V) q(t), V V) + (Ih q(t), ) 0

for all g, where (t,) h()*(t) is a pathwise continuous random function.
Define a sesquilinear form on V x V by

1
(t, ,) {A0(V + CVX) he, V CVX} + (Ihl2,

Then there exist functions M(t,w) and p(t,w) such that

lit(t, ,)1 <- M Ilvlly, , E V,

Re

for almost all (t, w). Hence the standard theory of the parabolic equation in [Li], [KR]
shows that there exists a pathwise unique solution q(t) L2(0, T; V)gl Hi(0, T; V*)
C(0, T; H). Let us consider a full approximation scheme of (3.7); i.e., a sequence of
functions {qk} that takes values in a finite dimensional subspace Vn of V is defined
by

+ (Ao(Vqk + qkVxk aqk, V- CVXk) + ([h[2q, ) 0

for all Vn, where A Tim and Xk x(kA). Assume the approximation condi-
tion:

for each in V there exists a sequence of function cn in Vn such that -y 0

Then it is easy to prove (e.g, see [Li] and Theorem 2.1) that the function q(t) defined
by

qk+ q
+ (t on (k +

converges to q(t) almost surely in L2(0, T; V)H(O, T; V*)C(0, T; H) as m, n .
4. Convergence rate. In this section we establish convergence rate of the time

discretization schemes (2.1) and (3.1). Assume that g g(x) does not depend on
y. First we consider the scheme (2.1). For k 0 define the approximation error

e) A(p(t) -p(t))dt + p(p(t)) p(t-l)),
--1

(4.1)

B(p(t) p(t-l))dy(t),
--1
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where p(t) is the unique solution to (1.1) and tk k,. Then since (1.1) is equivalently
written as

(4.2) p(tk) p(tk-1) + Ap(t) dt Bp(t) dy(t),

the error function 5pk pk p(t satisfies

(4.3) 5pk 5Pk-1 + (A + pI)p phpk-1 + Bhpk-1Ay + ek,

where A T/m, Ayk y(t)- Y(tk-1), and {pk} is the approximate sequence
generated by (2.2). Note that (hpa_, e2)) 0. Thus, multiplying (4.2) by @k and
using exactly the same arguments as in the proof of Theorem 2.1, we obtain

where c (1 + Ap) 2. Since Bi (V, H) it follows from (1.9) that there exists an

> 0 such that

2(A,)-(l+e)Bl [ for allCeV.

Note that

(1)Since 2 (pk, e(k1)) <_ IPkl + -lek I* we have

4c (l@k-xl/+ A [Bpk-l[) + - V*
(1)+ 1+- 1:)1H"

Multiplying this by c-k and summing it up in k,
(4.4)

(4j--1 "=

1) 2

V*

for 1 <_k<_m.
THEOREM 4.1.

regularity:
Assume that the solution p(t) of (1.1) satisfies the following

(4.5) IBp(t)l <_ M1 and
T
N IAp(t)I dt <_ M1

for some M1 > O, independent of t E [0, T]. Then

k

j=l
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for l <_ k <_ m and some M2 > O.
Proof. Note that p(.) satisfies

p(t) p(s) + Ap(T) d" Bp(T) dy(T)(4.6)

for s _< t. Thus,

IP(tk) --P(t)l _< 2It- tl ft
t tk. IAp(T)I dT + 21DI IBp(T)I dT

for t _< tk. From (4.5) we have ,lp(tk)-p(t)l <_ 2MI(I+IDI)It-tl. It then follows
from (4.1) that there exists a constant M2 > 0 such that

V*

1 + / le(k2)l/ < M2AA

for 1 _< k _< m. Hence the theorem follows from (4.4).
Next we discuss the convergence rate of the Milshtein scheme (3.1) for the uncor-

related case. In this case the approximation error e(2) is defined by

(4.7) B(p(t) P(tk-1) Bp(tk-1)(y(t) Y(tk-1)) dy(t).
--1

Note that

1(yi (t) yi (tk_ dyJ (t) -5, ((Ayi)2 A)

since we assumed that R I. Thus, the error function 5pk pk p(t) satisfies
(4.S)

1
5p --Spk_ + (A+ p I)Spk ApSpk_ +BSpk_ Ayk + BBSpk_ ((Ayk)2 )

where {p} is generated by (3.1). Note that (Spk-, e2))= 0. Multiplying (4.8) by
Spa and using exactly the same arguments in 3, we obtain

(4.9)
+ 4 < H

where BSp_ Ayk + BBSp_ ((Ayk)2 A). Here

(Pk-1, e1)) Pk-1, A(p(t) p(t)) Bp(t) ((t) (t))dt
--1

+(p(tk) p(t-l)) Bp(t-l)).
Assume that the solution p(t) of (1.1) satisfies the following regularity:

(4.11) IBp(t)l N Ma and lAp(t)l Ma
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for some M3 > 0 and all t E [0, T]. it then follows from the proof of Theorem 4.1 that
Ip(t) -p(s)l2 _< M3 It sl for t >_ s. From (4.6) we have that for t _> s

(4.12)
/) [p(t) p(s) Bp(s) (y(t) y(s))[ _< 2M3 [t sl 2 + [B(p(T) p(s))[ d-

8

_< M It- sl 2

for some M > 0. Hence it follows from (4.10)-(4.12) that

4cA3
(4.13) 2(1 zt- )p)_ (Pk-1, G(k1)) I p -ll + fl (IAlc(v,v. + p)2M2.

It follows from (1.9) that there exists an e > 0 such that for A sufficiently small

for all E V.

Note that

From (4.7) and (4.12) we have

(4.14) /) le(k2)l _< M21B[2Aa.
Since

Ikl2H A IBpk_ll2H + -it follows from (4.9), (4.13), and (4.14) that

, ([pkl2H + A(1 + e)IBPkl2H) + IPkl
1 + e A2IBI2/ IPk-ll + M4AacE (lP-ll + A(1 + e)IBPk--[2H) + 2’

for some M4 > 0. Multiplying this by c-k and summing it up in k, we obtain

(4.15)
k

Ac-IpkI < M41 e-eoT AzIpkI2H +
j=l

2/9

for 1 _< k _< m, where we assumed that 2(1 + e)AIBI < ft. Hence one obtains the
error estimate.

THEOREM 4.2. Assume that the solution p(t) of (1.1) satisfies the regularity
(4.11). Then rate of convergence of the Milshtein scheme (3.1) applied to the uncor-
related case is the first order in the sense of (4.15).

Remark 4.3. The regularity assumptions (4.5) and (4.11) of the solution to (1.1)
can be verified under certain smoothness assumptions on the function g, a, h, and b
and the initial condition P0 (e.g., see [Ro]).
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5. Hermite polynomial-based spectral method. In this section we discuss
the so-called spectral method [GO] based on the Hermite polynomial to approximate
the solution to (1.1). Consider the orthogonal functions ek(x), k >_ O, of L2(R):

ek(x) exp(--x2/2)Hk(x),
where Hk(x) is the normalized Hermite polynomial of degree k, i.e., the original
Hermite polynomial divided by .. A family of functions {e} has the orthogonMity

(, ) ,
and satisfies the recursive formula

+ +() ()- _().
The differential rule is given by

1

since H(x)= Uk- (x). The Gauss quadrature rule is given by

f(x)e-: dx wf(x),
i=1

where the equality holds for all polynomials of degree up to 2m+ 1 and the quadrature
points x and the weights w are determined (e.g., see [G]) as follows. Let J be the
symmetric tridiagonal matrix with zero diagonals and J,i+ , 1 i m- 1.
Then (xi} are eigenvalues of J and wi equal to (vi), where (vi) is the first element
of the ith normMized eigenvector of J.

nFor a > 0 let Ca(x) i=l ek (xi/a) for k (kl,..., kd) e gd and g [0, n]d c
Nd. The Galerkin approximation of (1.1) involves representing the approximate s
lution pn(t,x) by

(t,x) (t)(x), e R,
kK

and projecting the equation (1.1) onto Vn span{k, k K} in the sense that

(p(t) Po, ) + (Ap(s), ) ds (Bp(s), ) d(s),

for all V. Define a pair of linear operators (A, B) by

(, )= (, )+ (h, )
for all , e V, where A0 a,, a and c are defined in (1.6). Then p(t, .)
satisfies

where p is the orthogonal projection of0 onto V of H. Condition (A2) follows from
(1.9) since the left-hand side of (A2) is the restriction of (1.9) onto V. Condition
(Aa) follows from the fact that IP-l 0 as n , where P is the orthogonal
projection of V onto V. Hence heorems 2.1 and a.1 are applied to the Galerkin
approximation bed on the Hermite polynomials.
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OPTIMALITY CONDITIONS
FOR A CONSTRAINED CONTROL PROBLEM*

GIANNA STEFANIf AND PIERLUIGI ZEZZA
Abstract. This paper is devoted to the study of necessary or sufficient second-order conditions

for a weak local minimum in an optimal control problem. The problem is stated in the Mayer form
and includes equality constraints both on the endpoints and on the state-control trajectory. The
second-order conditions are stated through an associated linear-quadratic problem.

Key words, optimal control, second-order conditions, necessary and sufficient conditions, state-
control constraints

AMS subject classifications. 49K15, 49K27, 93C10, 93C50

1. Introduction. This paper is devoted to obtaining necessary or sufficient op-
timality conditions for an optimal control problem in the Mayer form which is char-
acterized by the presence of two types of equality constraints. The first one concerns
the endpoints of the trajectory, and it is a finite-dimensional constraint, while the sec-
ond one is a time-dependent state-control constraint and it can be regarded as being
infinite dimensional. We look for necessary or sufficient second-order conditions for
a weak local minimum in the framework of extremal problems, that is, our approach
is to transform the original optimal control problem into an abstract constrained op-
timization problem in the Banach space E R x L, which is the space of the
couples (initial condition, control). The transformed problem is the following:

Minimize 0(e)

subject to

=o,

where X -= ()1,... ,p)-/), the i’s are scalar functions, and has range in an
infinite-dimensional space F. The optimality conditions are obtained by studying the
range of the map (0,..., Cp) + E - Rp+I F locally around a reference
admissible point . In fact is a local constrained minimizer if and only if locally
the range of : does not intersect the vertical line below 0(). These results (Lemma
4.3 and Lemma 4.5) are expressed by the first and second derivatives of ; and X-
In particular in the normal case, when the multiplier A0 corresponding to the cost

0 is positive, the second-order conditions depend on the hessian of : while in the
abnormal one they depend only on the hessian of X (see Remark 4.6). Recall that the
hessian is the restriction of the second derivative to the kernel of the first one modulo
the range of the first derivative.

A crucial role will be played by the assumptions on the constraints. We assume
that the reference point is a regular point for the infinite-dimensional constraint , i.e.,
D() is onto (Assumption 2.4 and Lemma 5.2). This assumption allows us to reduce
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the constraint to a finite-dimensional one (see Lemma 4.2) and it ensures that the
multiplier associated with the state-control constraint belongs to L. This is the only
rank assumption we make and unlike many authors we do not make any controllability
assumption on the linearized problem. We prove that the controllability assumption
is equivalent to the regularity of the constraint X at the reference point (Lemma 5.4).

In our approach the regularity assumptions on the data (Assumption 2.2) are
in some sense minimal to obtain the C2 dependence of the flow of the differential
equation from the control in the appropriate function spaces. This is needed to prove
the smoothness of the function . In this setting we determine that the multiplier
belongs to L for a problem whose data have a t-dependence that is only locally
bounded and measurable while other authors [9] assume a continuous t-dependence.
We should mention that in [9] a maximum principle is derived, while we are interested
in second-order necessary or sufficient conditions and we obtain only the weak version
of the maximum principle.

In stating the second-order necessary conditions (Theorem 2.5), we assume that
the dimension of the space of the multipliers which satisfies the first-order conditions
is 1. The case when there are independent multipliers satisfying the first-order condi-
tions has been addressed by some authors [4], [18] while studying the case of inequality
finite-dimensional constraints. In the case studied here we show (Corollary 4.4) that
the second-order necessary conditions are trivial when there exist independent mul-
tipliers, in the sense that they are satisfied for every cost. Also in the case when
the space of multipliers has dimension 1 we have to distinguish between the so-called
normal case when the reference point is regular for the constraint X and the abnormal
one. In this last case, although the cost does not appear in the necessary conditions
we still have some information on the constraints (see Remark 2.7).

To derive the sufficient conditions it is crucial to consider different norms on L,
because a coerciveness condition on the second derivative is needed but it cannot be
imposed on L endowed with its norm because it is not isomorphic to a Hilbert space
(see, e.g., [3]). The possibility of considering the Lp norms is suggested by Volterra
expansions which give us the ith derivative of the flow of the system in an integral
form which is defined on L (Theorem 3.3). The regularity Assumption 2.2 needs to
be strengthened to achieve the needed regularity with respect to the required norms
(Theorem 3.5), it cannot be weakened as is shown by Example 3.6. In the statement
of the second-order sufficient conditions (Theorem 2.6), we need not assume that the
space of multipliers has dimension 1. Also for the sufficient conditions the abnormal
case has a special meaning: it means that the reference point is an isolated admissible
one (Remark 4.8). Theorem 2.6 gives full information in the normal case and also when
there are independent multipliers. Many authors, see, e.g., [3], assume controllability
of the linearized system, which implies normality but which is not equivalent to it.

Most of the literature addressing state-control constraints considers the case of
equality and inequality constraints, so that it is difficult to compare those results with
ours because of the constraint qualification assumptions. For example, some authors
impose a constraint qualification assumption that cannot be satisfied by pure equality
constraints [10].

The Russian school uses a different approach which obtains powerful abstract
results (for a survey see [8], and also the recent book [1] in Russian). An application
of this theory to control problems with mixed equality and inequality constraints is
stated but not proved in [11]. The same results are quoted in the survey paper [8]
where, in the supplement to Chapter VI, it is said that "the derivation of the conditions
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is very special and difficult." This survey paper does not contain the proofs and it
again quotes [11] and Osmolovski’s thesis [12]. In any case the methods used should
be completely different from ours because the results for the equality case are derived
from those in the case of mixed equality and inequality by adding an extra inequality
constraint. It is our opinion that it is interesting to have a clear and readable proof of
the results which also gives an explicit expression of the infinite-dimensional multiplier.

Other authors have addressed the same problem, i.e., to obtain stability results
for the numerical solution of optimal control problems. In [3], sufficient conditions for
weak local optimality are stated in a problem with equality and inequality constraints
on the control but mixed state-control constraints are not considered. Moreover they
assume that the reference trajectory satisfies the maximum principle.

Riccati-type techniques are used in [19] to prove sufficient conditions for weak
and strong local minima for a problem in the calculus of variations with separate
constraints on the endpoints but without other restrictions on the control. While
preparing this revised version, a further paper by Zeidan has been published [20],
where Riccati-type techniques are used for control problems with fixed initial point
equality constraint on the final one and mixed state-control inequality constraints.
The specific constraint qualification assumption used does not allow the inclusion of
equality constraints.

We have studied separately the reduction to the accessory problem and the non-
negativity (coercivity) of the corresponding quadratic form. Preliminary results con-
cerning second-order conditions have been presented in [14], [15], while an extension
of the conjugate point theory which applies to the accessory problem is in progress
[17] and it has been presented in [16].

This paper is organized as follows. In 2 we state our main results. In 3 we
derive the regularity properties of the flow of the control system. In 4 we prove the
abstract lemmata from which, in 5, we derive the proofs of the main results.

2. An optimal control problem. Let us first introduce some notation and
definitions needed to properly describe the problem, the assumptions, and the main
results.

X, Y, Z are Banach spaces with norm I1" II. Let ’ X -- Y be a C2 map; we write
D(x) for the ith Frchet derivative of the map evaluated at the point x E X. By
definition D

_ , De(x) E :(X, Y), and D2(x) e/2(X, Y). For F :2(X, Y)
and :(Z, X) we write

(r (R) r( z)

IfX =_ X1 x... x Xs, with X1,..., X8 normed spaces, we denote by D(x) the Frchet
derivative of with respect to the ith variable and by D2j(x) =_ D o Die(x)
(X X, Y).

The next definition describes the main regularity assumption which is a strength-
ening of the usual Carathodory-type assumption. This hypothesis will be used to
ensure that the solution of the system (1) depends regularly on the control. Its role
is explained in 3.

DEFINITION 2.1 (see [5]). Assume that X, Y are finite-dimensional vector spaces.
We will say that the map G" R X -- Y is quasi-Ck if it satisfies the following:

(i) for each t R the map x H G(t, x) is Ck,
(ii) the maps DG are locally essentially bounded and measurable in their vari-

ables, for i 0,..., k.
Moreover we will say that the map G is uniformly quasi-Ck if
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(iii) the map DG is continuous in x uniformly with respect to t in any compact
interval J, i.e., for all xo E X, e > O, there exists > 0 such that

lix xoll <_ 5 ]lnG(t,x) ne(t, xo)l] <_ , a.e. t J.

Property (ii) implies that for any compact interval J and any point x0 X there
is a neighborhood L/of x0 and a constant h > 0 such that

lIDk2G(t,x)ll <_ h, x e bl, a.e. t e J.

Therefore, from the intermediate value theorem it is easy to prove that if a function
is quasi-C then it is uniformly quasi-C-.

Since we are interested in local properties, we could assume that the domains of
all the maps are not the whole space but just open sets; we prefer the above notation
to emphasize the space where we are working.

On a given interval J [t0, t], let us consider the following optimal control
problem:

Minimize a0((t0), (t

over all satisfying the following control problem with constraints"

(1) (t) F(t,(t), u(t)), a.e. t J,
a((to),(t)) O, i 1,... ,p,

a(t, (t), u(t)) 0, a.e. t e J,

where the data satisfy the following regularity assumptions.
Assumption 2.2. The map F R Rn Rm --, Rn is quasi-C2, the map

a R Rn Rm --* R is uniformly quasi-C2, and the maps ai R’ R --, R,
0,...,p, are C2.

By Assumption 2.2, equation (1) has uniqueness of solutions so that we can
identify a couple (, u), satisfying equation (1), with the couple (x, u) given by the
initial condition and the control which will always be our control variable. Hence, we
will minimize on the space

RL(J,Rm),

which is a Banach space with the topology T induced by the norm

On this space we will also consider other topologies, namely Tp, p _> 1, will be the
topologies induced by the norm II(x, u)[Ip =_ Ilxll + IlUllp, where I1" lip denotes the L
norm. Pointwise equalities between functions in Lp spaces are always assumed to hold
almost everywhere.

We are now interested in necessary or sufficient conditions for a weak local mini-
mum.

DEFINITION 2.3. A reference couple (xo, t), satisfying the above constrained
control system, is a weak local minimizer for the optimal control problem if it is a
local constrained minimizer in R L (J, Rm) with respect to the T topology.

In the following we will consider a given (x0, ) which satisfies the constraints and
we denote by the corresponding solution of (1) and by Xl the endpoint value (t).
We denote by the evaluation along the reference objects and by - the transpose.
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An assumption which will play a crucial role concerns the infinite-dimensional
constraint a, and it corresponds to the regularity of this constraint at (x0, ); see
Lemma 5.2.

Assumption 2.4. The constraint a satisfies the following rank condition at (x0, fi)

det (D3&(t)D3&(t)-) >_ k > O,

for some positive k E R.
This assumption allows us to reduce the set of constraints to a finite-dimensional

one so that we can give an explicit (through the data) expression of the modified
Hamiltonian associated to the constrained problem. Let

A(t) =_ D2/(t), B(t) =_ D3/(t), C(t) =- D2&(t), D(t) =_ D3&(t).

For the sake of simplicity we will denote by V the derivative with respect to the
coupled variables (x, w) e Rn Rm, so that, for example, V&(t)= (C(t),D(t)).

The second-order conditions will hold on the space of critical directions, i.e., the
space of couples (x, u) which satisfies the following system obtained by linearizing (1)
and the constraints along the reference trajectory:

(3) L(t) A(t)L(t) + B(t)u(t), L(tO) x,

(4) C(t)L(t) + D(t)u(t) O,
(5) Da(xo, xi)(X,L(t)) O, i 1,... ,p.

We denote the solutions of equation (3) by L(’,x, u). Assumption 2.4 ensures the
existence of a right inverse of D(t) which can be taken as

D(t) =_ D(t) (D(t)D-(t))-
The next theorems are our main results and give first- and second-order necessary

or sufficient weak optimality conditions for this kind of constraint. The results are
expressed through the Hamiltonian 7-/: J x (Rn)* Rn Rm ---+ R modified to take
into account the infinite-dimensional constraint and defined by

7-l(t,w,x, w) w(F(t,x, w) B(t)D(t)a(t,x, w)).

The first result concerns necessary optimality conditions which are derived under two
main assumptions. The infinite-dimensionM constraint is regular (the rank condition)
and the multiplier associated with the finite-dimensional part (cost and endpoint
constraints) is unique up to a positive constant.

THEOREM 2.5. Assume that
(i) F is quasi-C2, is uniformly quasi-C2, and the a, i 0,... ,p, are C2;
(ii) the rank condition det (D(t)D-(t)) >_ k > 0 is satisfied.

Assume that (xo, t) is a weak local minimizer for the optimal control problem; then
there exist (A0,..., Ap) 0 with o >_ 0 and a solution of the adjoint equation
(7) satisfying the transversality conditions (8):

(7) ib(t) D37-l(t, p(t), (t), t(t)),
P

(8) (-p(to), p(tl )) E AiDai(xo, Xl
i--0
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such that

(9) DaT:/(t) DaT-l(t, (t), (t), t(t)) O.

Assume moreover that
(iii) the above multiplier ) is unique up to a positive constant.

(x, u) satisfying the linearized system (3)-(5) we have
Then for each

p

E AD2a(x’xl)((X’L(tl’x’ u)))2

+ x, > O.

In the literature the case when the assumption (iii) is dropped has also been
considered [4], [18]. Their results specialized to our case give trivial conditions in
the following sense. They would say that for each critical direction (x, u) there is a
multiplier such that (9) and (10) hold. It is a consequence of Corollary 4.4 that this is
true independently from the cost and it depends only on the existence of independent
multipliers.

The second result concerns second-order sufficient conditions and it does not
require the uniqueness of the multiplier. It is stated under stronger regularity as-
sumptions on F.

THEOREM 2.6. Assume that
(i) F and are unifoly quasi-C2 and the ai, i 0,...,p, are C2,
(ii) the rank condition det (D(t)D(t)) k > 0 is satisfied,
(iii) there exist (0,..., Ap) 0 with o 0 and a solution of the ad-

joint equation (7) satisfying the transversality conditions (8) for which the first-order
conditions (9) hold te,

(iv) there is g > 0 such that for each (x, u) satisfying the linearized system
(3)-(5) one has

p

E AiD2ai(x’xl)((X’L(tl’x’
i=0

+ V27(s)((L(S,X u) u(s)))2ds > gll(x,u)ll 2;

hence, as a result, (xo, t) is a weak local minimizer for the optimal control problem.
Remark 2.7. Although Theorems 2.5 and 2.6 are stated without any normality

assumption, the abnormal case, i.e., 0 0, has a particular meaning. Let us first
remark that the multiplier is normal and unique if and only if the point (Xo, fi) is
regular for the constraints and if and only if the input-output system

i(t) (A(t) B(t)D(t)C(t))(t) + B(t)(Id- D(t)D(t))u(t), (to) x,
yi(t) Da(xo, xl)(x, (t, x, u)), i 1,..., p,

is controllable at time t (see Lemma 5.4), that is, the input-output map (x, u)
(y(t),... ,yp(tl)) is surjective. The second-order necessary conditions are stated
under the assumption that there are not independent multipliers A. Hence, if the
point (x0, fi) is not regular for the constraints, the multiplier is abnormal and the
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statements do not involve the cost a0 so that they concern mainly the constraints.
Nevertheless if (10) is not satisfied then, for the reference point to be an extremum for
a cost a0, it is necessary to have independent multipliers A satisfying the first-order
conditions.

The codimension assumption does not play any role in the sufficient conditions
but if Theorem 2.6 holds for an abnormal multiplier, then the reference point (x0, fi)
is an isolated admissible point (Remark 4.8).

Finally let us remark that from the proof of Lemma 3.1 in [15] it follows that if
Assumption 2.4 is not satisfied then the codimension of the closure of the range of ’is infinite. Consequently, by using the Hahn-Banach theorem, we can prove that the
space of multipliers is infinite dimensional and they belong to the dual of L.

3. Properties of the flow. This section is devoted to the study of some local
properties of the flow of (1). We denote by (t, s,x, u) the solution of system (1)
at time t with initial condition (s) x and control u. For a fixed reference initial
point x0 and reference control function , let the corresponding solution of (1), (.)
(’, t0, x0, fi), be defined on the compact interval J.

For more details on the properties of the flow described below we refer to [5] where
complete proofs are given. If we assume that F is quasi-C2 then there is an open set
19() C R R Rn L(J, Rm) where the flow of system (1) is defined, namely

" 79() R’, (t, s, x, u) (t, s, x, u).

(.,s,x, u) is a locally Lipschitz map and we look at its restriction to any compact
interval J as an element of the Banach space L(J, R). There is a neighborhood
V of (x0, fi) E Rn L(J, R") such that J {to} V c_ T)() and the flow of the
system, which can be seen as the map

(1) " R n(J, R") -. nc(J, R) (x,u) (., to, x, u),

is C2. When it is clear from the context, we will drop the variable denoting the initial
time and we will write (t, x, u) instead of (t, to, x, u).

In [15] we describe the second-order Taylor approximation of the map F. with
respect to u. The results therein are based on [6], [7], [13]. Here we are going to
give the approximation with respect to both variables and a sharper estimate of the
remainder.

To simplify the computations, we consider the system pulled back by the reference
flow which is suitable for studying the system in a neighborhood of the reference
trajectory. Let -y" :D() f be the flow of the reference time-dependent vector field
(t, x) -. F(t, x, (t)). If we define

o(t, to, , u) -r(to, t, (t, to, , + )),
O(t,x, w) Da/(to, t, /(t, to, x))[F(t, /(t, to, z), (t) + w) F(t, /(t, to, x), fi(t))],

then a(., to, x, u) is the solution of

(12) &(t) (t,a(t), u(t)), a(to) .
Although this pull-back system is easier to handle, we have lost some regularity. If
F is (uniformly) quasi-C2 then is not necessarily (uniformly) quasi-C2 in both
variables. Nevertheless it is (uniformly) quasi-C, and the second derivatives with
respect to w are (uniformly) quasi-C.
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Notice that (I)(t, x, w) is defined for t E J and (x, w) in a suitable neighborhood
of (x0, 0) E Rn Rm. For this new system the reference control function is zero,
and the reference control vector field (t, x) (I)(t, x, 0) is identically zero, so that the
reference trajectory t - (t) is constant, equal to x0. Moreover by taking a suitable
neighborhood ]/Y of (x0, 0) in Rn L(J, R") as the set of admissible couples, all the
trajectories remain close to the reference constant trajectory x0. The corresponding
ttow will be denoted by

E: 142 C Rn x L(J,Rm) --. L(J, R).

We are now going to define a linear-quadratic system which gives the second-order
approximation of the flow of (12):

&L(t) D3(t)u(t), aL(to) x,

&Q(t) V2(t)((aL(t), u(t))) 2, aQ(to) O.

The above system is a cascade of integrators whose solution has components rL(t x, u)
and aQ(t, x, u). We write x in the second argument of aQ because we want to recall
that the initial condition of (TL is x, while the initial condition of aQ will always be
zero.

We are now going to express the second derivative of the flow of (12) by means
of the solutions of the above linear-quadratic system (13).

THEOREM 3.1. Let F be quasi-C2 then the second-order expansion of the flow of
(12) at (xo, O) can be written as

1
to, + + x, + x, +

where

Proof. Let us first take the second-order approximation of (I) with respect to
w Rm,

02(t, y, w) D30(t y O)w + 1-D]3(t, y, 0)(w)2

2

and consider the corresponding differential equation

(14) u(t)).

By taking the approximate flow we may lose some properties of the original flow;
for example, the new flow may not be uniquely defined, as is shown by Example 3.2.
We want to prove that

(15)

for any solution a2 of (14) with initial condition x0 + x. Let us prove that (15) holds
for any sequence (xs, ui) e Rn L (J, Rm) converging to zero. Using the notation
as(t) a(t, xo + xi, us), a(t) a2(t, xo + x, us), we have

Ilai(t) a(t)l <_ II((s, aS(s), us(s)) 02(s, a(s), us(s))llds
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Set h(s) [(s, a(s), u(s)) 2(s, a(s), u(s))/[[(x, u)], then there are O(s) e
[0, 1] such that

1
(16) h(s) []D]3O(s a(s), O(s)u(s)) D]3O(s a(s), 0).

Thanks to their definition, the h’s are integrable. Moreover from (16), since D]3O is
quasi-C, then {h} is a bounded sequence converging pointwise to zero. Therefore the
L norm of the integral of h tends to zero by the Lebesgue theorem on dominated
convergence. om the above estimate, since is quasi-C, we deduce

liar(s) a(s)l
ds + h(s)ds.]a (t) a(t) < Hi(x,)] (,)

By the Gronwall inequality we obtain (15).
Volterra expansions will give us the approximation of a2. For any scalar C2 map

p and any vector field h we define the new function h.p: y Dp(y)h(y). Let us
denote the derivatives of as time-dependent vector fields by

D(t, , o) ((t)(), (t)()), D](t, , 0) ((t)()),=

The g’s are quasi-C and the gij’s are quasi-C. We will first take the expansion of
the flow of a2 with respect to u and then take the expansion with respect to x. Set
y x0 + x and let p be a coordinate function. Then

i=1

i,j=l

p(y)+ u(s)(g(s), p)(y)ds
i=1

+ (((("(. ol((llee.
i,j=l

If we proceed before, we can estimate the remainder in the expansion to obtain

+]m 1]
m

o((tll ( (l((l.o(le + (l(l((l.ol(e
i=1 i,j=l

+ ((((.(. ol(lee + (t, ,,
i,j=l
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where IR(t,x, u) <_ o(ll(x, u)ll2). Let us now take the expansion with respect to x:

p(xo + x) p(xo) + np(xo)x + S(x) with IS(x)l o(llxl12),
gi(s) p(xo + x) g(s) p(xo) / D(gi(s) p)(xo)x + T(s, x)

with IT(s,x)l <_ o(llxll ). Then
m

i----1

E ui(s)(gi(s), p(xo) + (x. gi(s). O)(xo))ds + W(t, x, u),
i--1

with IW(t,x, u)l <_ o(ll (x, u) ll2 ). Combining all the previous estimates we obtain for
the second derivative

The next example shows that the approximating flow may not have uniqueness
of solutions.

Example 3.2. Let us consider

(I)(y, w) (y + w) yZ;
(I) is quasi-C2. For the reference control u 0, the reference vector field is also zero
and the second-order approximation is

1 7 4 14
2(y, w) D2O(y, O)w + -D20(y 0)w2 -yw + -y1/2w2,

which is not Lipschitz continuous with respect to y at y 0, and the corresponding
flow, defined through

7 ] 14 1/2tu2t(2(t) a2 (t)u(t) + -a2 T2(t0) x
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does not have a unique solution at x 0.
Let us now express the results of Theorem 3.1 for the original system (1). Let

A, B be the matrices describing the linearized system introduced in 2 and consider
the following system:

(17)
L(t) A(t)L(t) + B(t)u(t), L(tO) X,

Q(t) A(t)(t) + V2(t)((L(t), u(t))) 2, Q(to) O.

We denote by L(t, x, u) and by Q(t, x, u) the solutions of the above system, following
the notation used for the solutions of (13).

Theorem 3.1 is equivalent to the following theorem.
THEOREM 3.3. Let F be quasi-C2, then the second-order expansion of the flow

of (1) at (xo, t) can be written as

where

(t, o + , + ) (t) + (t, ,) + (t,,) + n(x, )(t),

Proof. Since (t,x, t + u) (t, to, a(t, to, x, u)) then

D..(xo, t)(x, u)(t) D37(t, to, xo)DE(xo, O)(x, u) (t),
D2(xo, t)((x, u))2(t) D233(t, to,xo)(DE(xo, O)(x, u)(t)) 2

+ D33(t, to, xo)D2E(xo, 0)((x, u))2(t).

The maps FL(t) D37(t, to, xo), FQ(t) D2337(t, to, xo) satisfy the following differ-
ential system:

c(t) A(t)rc(t), r(t0)= d,

(t) A(t)r(t) + D(t) (R) re(t), r(t0) 0.

Moreover from 7(to, t, 9/(t, to,xo))- xo one can derive

D37(to,t, 7(t, to, xo)) rl(t),
D]a/(to, t, /(t, to, xo)) (R) re(t) -rl(t)r(t).

Hence D.=.(xo, t)(x, u) is the solution of the system

L(t) L(t)aL(t) + rc(t)&c(t) A(t)L(t) + rcD3(t)u(t).
Taking into account that D3((t) F-l(t)D3F(t, 7(t, to, xo), t(t)), we determine that
the first derivative of E is L as expressed in (17). D2.=.(xo, )(x, u) is the solution of
the system

Q(t) Q(t)(aL(t))2 -- 2rQ(t)(dL(t), aL(t)) + L(t)(:rQ(t) -- rL(t)Q(t)A(t)FQ(t)(a(t)) + D:(t)(r(t)a(t)) + 2FQ(t)((t), a(t))
+ A(t)r(t)aQ(t) + r(t)hQ(t)
A(t)Q(t)+ D2(t)(L(t))2 + 2FQ(t)((t), a(t))+ F(t)Q(t).

Since
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D]38(t F-1(t)D3F(t, "y(t, to, xo), t(t))

and

DaZ(t)(aL(t), u(t))
-F-1(t)FQ(t)(aL(t),F’1(t)Da(t)u(t)) + F71(t)D]a(t)(FL(t)aL(t), u(t)),

then

2FQ(t)(L(t), aL(t)) + FL(t)Q(t)
2FQ(t)(D3(t)u(t), aL(t)) 2FQ(t)(aL(t), F-1(t)D3(t)(u(t)))
+ D3(t)(FL(t)aL(t), u(t))+ D3_f’(t)(u(t)) 2

2D223[(t)(L(t), u(t))+ D3fi(t)(u(t))2.

Thus we obtain the second derivative of "
Q(t) A(t){Q(t) + D2f(t)({L(t))2 + 2D223/(t)(L(t), u(t)) + D233(t)(u(t))2,

which is equivalent to the expression in (17). [:l

Remark 3.4. It is important to notice that the first and second derivatives of the
flow of (12), at a given point, are defined and continuous also on the larger spaces
Rn x i(J, Rm) and Rn L2(j, Rm), respectively.

The next theorem states the smooth dependence of the derivatives of the flow of
(12) with respect to the point (x, u).

THEOREM 3.5. Assume that the map F is uniformly quasi-C2; then the maps

D.. R L(J,R") L: (Rn x LI(J, Rm),L(J,R)),
D2.=.. Rn LOO(j, Rm) __+ 2 (Rn L2(j, Rm),L(j, Rm))

are continuous on a neighborhood of (xo, ,).
Proof. We notice that for the solution of a linear system

(o(t) A(t)o(t) + f(t), o(to) y

if ]IA]] _< L then there is M > 0 such that

(18)

Let (x, u) and (2, fi) (x + Ax, u + Au) be two points in a neighborhood of (xo, )
and let i Di.=.(x, u) ((y, v)) and rli -= Di.=.(2,t)((y,v)) for i= 1,2.

By the previous results we have

(t) A(t) (t) + B(t)v(t), (to) y,

2(t) A(t)2(t) + H(t)((t), v(t)) 2, 2(to) 0,

l (t) A(t)rh (t) + B(t)v(t), 71(to) y,

/2(t) fi(t)rI2(t) +/(t)(r/l(t), v(t)) 2, r/2(t0) 0,

where H, H are the second derivatives of F evaluated along the corresponding solu-
tions of (1). We investigate the behavior of ei i i i 1, 2, as follows:

l(t) A(t)el(t) + (A(t) A(t))r?l(t) + (B(t) B(t))v(t), el(to) 0.
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Applying (18) first to rh and then to el we obtain

(19)

where l(AX, Au) 0 as II(Ax, Au)ll -. 0 thanks to the regularity assumptions on
the data.

With

2(t) A(t)e2(t) + (A(t) fi(t))?2(t) + H(t)( (t), v(t))2

(t)( (t) (t), (t)), (to) o,

let us estimate e2. By (18) we have

(20) II(,v)ll < M(IIII 2 + Ilvll 2 22) -< Mj. (Y, v)112.

Since an analogous estimate holds for rh, we can estimate the forcing term involving
r2. For the other terms

from estimates (19) and (20) and taking into account the uniform continuity of IIVFII
with respect to t. Applying (18) we obtain

where 2(Ax, Au) 0 as II(x, u)ll - o. This ends the proof.
The assumption that the vector field is uniformly quasi-C2 is essential to obtaining

the smoothness of Theorem 3.5. For the sake of simplicity we give a first-order example
where a flow whose first derivative does not have the required continuity properties
corresponds to a quasi-C vector field.

Example 3.6. For t E [0, T], let us consider the following control system:

Take (x0, ) (0, 0) to obtain - -1/2t2 as a reference trajectory. By taking the se-
quence {wn l/n} it is easy to check that the nonlinear function (t, w) -. -t cos(w/t)
is quasi-C but not uniformly quasi-C1. The first derivative of the flow of this system
at (xo, t) is clearly L(t, x, u) x, and if we take the derivative at a 5-neighboring
point (0, us) we obtain

(t) sin (ut) ) (t), (0) 0.

Let us compute the error

f0 sin (u(s))(s)ds..el(t_. V
8
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Choosing u(t) tp[o,6](t), where p is the characteristic function of the set I, we
obtain

sin(l) v(s)ds, if t _< 5,

sin(l) ] v(s)ds, if t >_ 5.
J0

We want to show that

lim sup
[[el[ O.

5--,0 v i[V[]l

To do this let us take

to obtain

if t<_5,el(t) sin(l), if t >_ 5,

so that

lim
Ilel[l sin(l) : O.

a--,o Ilval]l

4. Abstract optimization results. In this section we state some abstract re-
sults which will be applied to obtain necessary or sufficient conditions for our orig-
inal optimization problem. Let us first transform the control problem described in

2 into an abstract problem on the Banach space E Rn L(J, Rm). Define

=-- (0,...,p):E -- Rp+I as

i(x, u) ai(x, (tl, x, u)), i 0,..., p,

and E - F =_ L(J,Rr) as

(x, u)(t) a(t,(t,x, u), u(t)).

The study of the problem will be pursued through the analysis of the range of the
map

;(T):E--ZRp+I

The first component of ; is the cost and it has a special role. For this reason we
decompose in the direct sum of two components: the cost 0 and the constraint

X =- (1,..., Cp) + . We indicate with zo the unit vector of the cost axis, i.e., the
vector in Z which has the first component equal to one and all the others equal to
zero. A point e (x, u) E E satisfies the constraints if and only if it has an image
on the straight line through the origin, parallel to zo. These points will be called
admissible. The point e is said to be regular for the constraints X if and only if Dx(e)
is onto. An element A E Z*, called multiplier, is said to be normal if and only if
Azo - 0, that is, its cost component A0 is not zero.
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An admissible reference couple
_

(x0, ) is a weak local minimizer for the
original problem if and only if there exists a neighborhood (9 of in E such that

(21)

The properties of the range of ; will be described by the first and second derivatives
at the reference point E E, which will be denoted by

The same notation will also be used for other maps. The main assumption we will
make on the function is as follows.

Assumption 4.1. The map ; satisfies
(i)) is a C2 map,
(ii) ’ is onto and it has a continuous right inverse F E.

Rp+ILet us consider a complement Z2 of Im [Ker’ Y in When Zo Y, Z2
will be chosen so that zo E Z2. We denote by pl, p2 the projections from Rp+ onto
Y and Z2, respectively. There exists a continuous right inverse of ’ defined on Y
with values in Ker ’. Let Rp+ --+ Ker’ be such an inverse extended zero to Z2
so that ’ Pl and Iz 0. The choice of Z2 implies that

(22) either zo

Notice that if Z X Y then we consider X, Y as subspaces of Z. From this point
of view we consider zo as an element of R, Rp+I or Z.

In the following lemma we describe some properties of ;’.
LEMMA 4.2. If Assumption 4.1 is satisfied, then

(i) Im ’ is closed in Z and it has Z2 as a finite-dimensional complement,
(ii) the map Z E defined as

+ +

is such that Iim :, is a continuous right inverse of ’ and Iz O,
(iii) for A Z* let A Aip,+. Then A’ 0 if and only if

Proof. If we define P2" Z --, Z2 as

+

then P2 is a continuous projection.
Let us show that Im)’ Ker P2. By definition P2’ p2 (’ ’’). Part (ii)

of Assumption 4.1 implies that E Ker’ @ Im, hence Id ’ is the projection
onto Ker’ and we obtain

p2lKe , 0.

P2 (Y ’w) 0, then there exists e e Ker ’On the other hand if P2(Y +w)

’such that ’e y ’w. Hence (e + w) ’e + ’w +’w y + w, and
statement (i) is proved.
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Since p2 0, from the definitions of P2 and of ) it follows that P2 0.
Moreover

Recalling that ’ 0, we obtain that ))) ), which is equivalent to (ii).
Set A A + ,

A’--0 A--AP2 Ay+Ow=Ap2(y-

The last equivalence implies that Ap2 and statement (iii) is easily verified.
Let P2 Z - Z2 be defined as in Lemma 4.2 and define Z Im , P Id-P2.

With this notation

’ P, P1 .
If we set Ker: E0, then E1 Im is a topological complement of E0, and
E E0 @ E. For i 0, 1, denote by Hi the canonical projections onto Ei so that

The next lemma gives necessary conditions for (21) to hold under the assumption
that codim Im) 1, hence this lemma gives necessary optimality conditions for our
problem.

LEMMA 4.3. Assume that the map ( satisfies Assumption 4.1 and that
1. there exists a neighborhood 0 of such that (21) holds,
2. codlin Im 1;

then there exists a nonzero multiplier A Z* such that
(i) h:’= 0,
(ii) Azo >_ 0,
(iii) A)"(e)2 _> 0 for all e Ker X’ Ker )’ @ RXzo.
Proof. (21) can be written as (-1(0) O) {() azo: a > 0} . The

implicit function theorem applied to yields that there is a neighborhood ; of 0
in E0 and a C2 map : 12 --. E such that, for a possibly smaller O, b-(0)O
{ + v + (v): v e 1)}. Moreover Dp(0) 0, D2(0) -". If we let (I)(v)
( + v + (v)) then (21) is equivalent to

(23) (I)(V) {($) azo" a > 0} 0.

Notice that (I) DO(0) iEo and without loss of generality we may assume that

(24) (I)" D2(I)(0) p2(I)’’.

In fact on E0 we can make the local change of coordinates given by/3 Id- 2
to obtain

(O o )’ (I)’, ((I) o )" p2((I) o 3)" p2(I)’’.

By Assumption 2 and Lemma 4.2 there is a nonzero A (RP+)*, unique up to a
nonzero factor, such that

(/)[Ker ’ O.

Without loss of generality we may assume that AZo is either one or zero. If we define
A AP2, we have that A;’ 0 and A:"= A("-’") A(I)", moreover Azo is
either one or zero. Let us consider these two cases separately.
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Case I" Azo Azo 1. In this case Zo Im)’. Hence by (22), p2 ZoA and
Ker X’ Ker )’. By contradiction assume that there is eo E Ker ’ Ker’Ker ’such that

A"(o) "(o) -2.

We want to show that this contradicts (23). Let H (Rp+I) c Eo and, locally
around zero, define p" R x H x R --+ Rp+I by

[(o +) ()]5
1

p(, e, ) p(, )

’ +"(o),
ife 0,

if e=0.

Decompose H as H K Rzo and define, for e > 0, p K x R2 --+ Rp+I by

We have

pe(e, a, b) ’e 4- azo + -eA"(e 4- azo + beo)22.

1-[(e(e + azo + beo)) (e})] pe(e, a, b) + o(e).

For e sufficiently small let us now define the homotopy h [0, 1] x K x R2 Rp+I

@’K @ Rzo @ R2 by

h(t, e, a, b) p(e, a, b) + t o().

By the assumptions there is such that A"(-Zo+eo)2 O, so p(O, -1, ) -zo.
Moreover we obtain

Dp(O,-1, b)
o o )eAO"(-zo + eo, eo)

Since the quadratic form AO" is not degenerate on Span{eo, zo} then AO"(-Zo +
beo, eo) , O. Hence there is , such that for e <

and there is r > 0 such that if IIf[I <- r, then

O"(eo) > O.

For ( - 0 we obtain p(e, c) po(e, c)+ o(e2), so p is continuous with respect to
e. By (24) po(0, 1) -zo. It is easy to check that Dpo(O, 1) is an isomorphism so
that by standard arguments of degree theory, we determine that, for e sufficiently
small, Imp contains a ball with center at -zo and radius r. As a consequence (]3)
contains () -e2zo, which is a contradiction.

Case II: Azo A.o 0. In this case Zo 0. Let 2 be such that p2 2). If
AO"()Zo)2 0 then we may assume that it is negative. Assume by contradiction
that there is eo E Eo such that
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For Ilfll II(e, a, b)ll r we obtain the following estimate:

IIh(t, e,- + a, g + b)) + zoll lip,(e,- + a, + b)) + t o(e) + zoll

( I1()11) > 0>2
for e sufficiently small. Using the homotopy invariance property of the Brower degree
(see [2]), the above inequality implies that the degree of the maps he(l, .) and he(0, .)
on the ball B(r, (0,-1,)) with respect to Zo is the same. Since the second map is a
local homeomorphism these degrees are not zero; therefore () ezo e (I)(;), which
contradicts (23).

To end the analysis of this case let A(I)(zo)2 0 and assume by contradiction
that there are co, fo E E0 such that

"(eo) > 0, "(0) < 0.

Let us prove that this contradicts (23). With the same notation as in Case I define,
locally around zero, p" 1;t x H 1 --. Rp+I by

i [(0 + i0 +) ()]
( , ) p(, )

1 ,,’e -t- 5(1 (ceo / fo)2,

ife 0,

if e=0.

By (24) p is continuous with respect to e and po(e,c) ’e + 1/2A(I)"(ce0 + fo)22. By
the assumptions, there exists such that A’(eo + f0)2 0. Moreover for the same
reasons as before A("(eo + f0, co) 0. We have that po(0, ) 0 and

Dpo(O, e) |
0\

o )"(eeo + io, e0)

Reasoning as in Case I we obtain a contradiction to (23).
If we drop the assumption codim Im: 1, the statement of Lemma 4.3 could

be false but one can obtain the following trivial corollary.
COROLLARY 4.4. Assume that the map satisfies Assumption 4.1 and that

there exists a neighborhood 0 of such that (21) holds. Then for all e Ker X’
Ker: @ RXzo there exists a nonzero multiplier A Z* such that

(i) h:’ 0,
(ii) Azo :> 0,
(iii) h:"(e)2 _> 0
Proof. If codim Im; 1 we can apply the previous Lemma 4.3. If it is greater

than one then we can consider the space 2 spanned by Im; and "(e)2. Take a
nonzero multiplier which is zero on 2 to obtain the statement.

To state conditions sufficient for (21) to hold, we now consider the Banach space
E endowed also with another, possibly different, norm I[" 112. We denote by r the
topology under which E is a Banach space and by T2, the other.

The next lemma provides an abstract framework to prove sufficient conditions
for weak local optimality for our optimization problem. Let us emphasize that it
is necessary that the completion of Eo under T2 be a Hilbert space, otherwise no
continuous positive quadratic form on (Eo, ’2) could be coercive.

LEMMA 4.5. Assume that E Z satisfies Assumption 4.1 and
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1. :D: (E, T) - ((E, T2), (E, T2)) is continuous.
Assume moreover that there exists a multiplier A E Z* and K > 0 such that

2. AD2; (E, T) -, 2((E, T2),R) is continuous,
3. Af:’ 0,
4. Azo _> 0,
5. A:"(e)2 >_ Klle[122 for every e Ker X’= Ker :’ R:zo.

Then there exists a neighborhood O of in (E, v) such that

:(0) {(g) azo: a > 0} O.

Proof. Let us prove the statement by contradiction. Assume that there exist
sequences {ai} C R+ and {ei} C E such that

and :( + el) :() azo.

There are 0i [0, 1] such that

PI((( + e) ()) ’ei + P(D(( + Oe) (’)e -aPzo.

Hence applying ) we obtain

;)’ei Hei -aZo ((D( + Oe) Di())ei.

Let us consider two different cases. If Azo 0, then by assumption 4 we can
assume that Azo 1 and by (22))zo -0. Then assumption 1 yields

(25) IIYI eill2 O.

Moreover, using assumptions 3 and 5, for suitable [0, 1], we obtain

(26)

1 1
2 A(( + ei) ())Ile ll2 ai-’- IJe [12

2

1

Let us examine the three addends in (26). From assumption 1 evaluated at we also
have that H0 is continuous with respect to T2. By (25) and assumption 2 the second
and the third addend tend to zero. Since K and ai have the same sign it follows that

which together with (25) yields a contradiction.
If Azo 0, then assumption 1 yields

IIlel --aiZo + oi



654 G. STEFANI AND P. ZEZZA

with

From this equation one can deduce that fi -ai:Zo + H2ei ei oi E Ker X is
such that

IIAII .(28) [leg[i 2
is bounded.

Moreover, using assumptions 3 and 5, for suitable 0 E [0, 1], we obtain

(29)

By (27), (28), and assumption 2 the second and the third addend in (29) tend to zero,
SO

which together with (27) yields a contradiction.
Remark 4.6. It is important to emphasize the difference between the normal case

(Azo = 0) and the abnormal one (Azo 0). In the normal case Ker :’ Ker X’ and
the second order optimality conditions concern the quadratic form X[Ker:’ which

depends only on the hessian of :. In the abnormal case A (Rp F)* and the
quadratic form is AX[Ke x’ which depends only on the hessian of the constraints X. In
this last case the optimality conditions essentially give information on the constraints.

The next remarks explain the difference between these two cases.
Remark 4.7. Lemma 4.3 is stated under the assumption that codim Im: 1

so that in this case a normal multiplier corresponds to a regular point and the
optimality conditions directly involve both the cost 0 and the constraints X. When
the multiplier A is abnormM the cost does not appear in the optimality conditions.
The information we have is that if AXIKe , is indefinite, then cannot be an extremum
for any cost satisfying codim Im( codim Im X 1.

Remark 4.8. If the multiplier in Lemma 4.5 is abnormal then the sufficient
conditions hold true for any cost so that the point is isolated among the admissible
points.

In the normal case the coerciveness of A;" is assumed on Ker: Ker X’. We
have seen in Remark 4.8 that, in the abnormal case, if one imposes the coerciveness
on Ker X’ the sufficient conditions hold only at isolated points. One could think that,
in this case, the coerciveness has to be imposed on Ker, which is smaller, but this
is not sufficient for optimality as is shown by the following example.

Example 4.9. Let us consider the following function ;: R2 R2, defined as
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10All the smoothness assumptions are verified and we have ;1 (0 o) so that

Eo=Z.--span {(01)}, El=Zl=span {(10) }.
By taking A (0, 1) E (R2) * we obtain Im ;’ Ker A. Since A;" (R) Ho is the
restriction to Eo of the quadratic form -2 02) then h;ie , is coercive, while studying
the image of ) by the image of straight lines through the origin we have

{
and the image contains the whole y-axis.

5. Proof of the main results. In this section we suppose that our main As-
sumptions 2.2 and 2.4 are satisfied. Necessary or sufficient conditions which charac-
terize a weak local minimum of the optimal control problem will be deduced from the
abstract results described in 4.

For the derivatives at our reference point E E, we will use the same notation as
in 4. Moreover let a =_ (Co,..., an), a’- Da(zo, xl), and a"- D2a(xo, xl).

Since in the definition of a Nemytskii-type operator is involved, we introduce
a specific notation for the superposition operator and we state some of its properties.
Let X, Y be finite-dimensional vector spaces. If # J X --. Y, we denote by
/5" L (J, X) --. L (J, Y) the superposition operator

so, for example, (x, u) 5 o ((x, u), u).
LEMMA 5.1. Assume that the map # is uniformly quasi-C2, then the operator fit

is C2. Moreover the operator

Df n(J,X) --, ((L(J,X), Tp), (L(J, Y), Tp))

is continuous for 1 <_ p <_ oe and

D2fit n(J,X) - 2((L(J,X),T2), (L(J,Y),T))
is continuous.

The proof of the above lemma is a straightforward consequence of the regularity
assumption on the map #.

Let us describe some properties of the infinite-dimensional constraint that are
needed to apply the results obtained in 4. Under our assumptions the map 1 admits
a continuous right inverse and we can apply Lemma 4.2.

LEMMA 5.2. If the smoothness Assumption 2.2 is satisfied then is a C2 map
and g2’ E L(J, Rr) is given by

(30) 2’(x, u)(t) C(t)n(t,x, u) + D(t)u(t),

where L is the solution of the linearized system (3) and C, D are defined in (2).
Moreover 21 is onto and it admits a continuous right inverse 9 if and only if

Assumption 2.4 holds. For w e L(J, Rr), 2w is given by the output of the system

(31) (t) (A(t) g(t))(t) + B(t)D(t)w(t) (to) 0

w(t) (0, D(t)(w(t) C(t)(t))),
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where D D’(DD-)-1 and K BDC.
Proof. The smoothness of follows from the properties of the flow and of the

superposition operator described in Lemma 5.1. The proof of the other statements of
this lemma is not significantly different from that of Lemma 3.1 in [15].

LEMMA 5.3. If the smoothness Assumption 2.2 is satisfied, then the map . sat-
isfies Assumption 4.1 and

(32) :’(x, u) a’(x,L(t,x, u)) + C(.)L(.,x, u) + D(.)u(.).

Proof. The smoothness of is a consequence of the properties of the flow and the
chain rule so the statement is a consequence of Lemma 5.2.

LEMMA 5.4. If the smoothness Assumption 2.2 and the rank Assumption 2.4 are

satisfied then the following statements are equivalent:
(i) (x0, t) is a regular point for the constraint X,
(ii) the input-output system

(33) i(t) (A(t) B(t)D(t)C(t))l(t) + B(t)(Id- D(t)D(t))u(t), (to) x

yi(t) Dai(xo, x)(x,l(t,x,u)), i= 1,...,p,

is controllable at time tl, i.e., (x,u) (yl(t),...,yp(t)) is surjective.
Proof. Applying (iii) of Lemma 4.2 to X we determine that (x0, ) is regular for

the constraints if and only if the map (,..., )lger, is onto. The properties of
the right inverse give that Id- b2 is the projection onto Ker so

Im (lKer, Im (Id

Let us first compute 9. By Lemma 5.2 and by (32) we have that, for w

w is given by

(t) (A(t) g(t))(t) + S(t)D(t)w(t), (to) O,
L(t) A(t)L(t) + B(t)D(t)(w(t) C(t)(t)), L(tO) O,

W a(X,n(t)).

Taking the difference between the two above differential equations we can immediately
verify that --L is a solution of a linear differential equation with zero initial condition
and hence it is zero itself. Thus

(34) w a(x, (t, O,w)),

where is defined in (31). Let us set pi(x, u) =_ ((x,u)- ’(x, u)), for
1,..., p. Then from (30) it follows that we can define pi through the following cascade
of systems:

L(t) A(t)L(t) + B(t)u(t), L(tO) x,
(t) (A(t) K(t))(t) + B(t)D(t)(C(t)L(t) + D(t)u(t)), (to) O,

pi(x, u) a(x, L(t) (t)).

Setting r] L one can readily verify that pi(x, u) a(x, r(t,x, u)), where r is
defined in (33).

In the following lemma we describe some relations linking the adjoint covector,
the Hamiltonian, and the ranges of : and
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LEMMA 5.5. For ) = (0,...,p) E (Rp+I) we have that AlKer’ 0 if and
only if there exists a solution J (Rn) of the adjoint equation (7) satisfying the
transversality conditions (8) such that

D4TI(t, (t), (t), t(t)) O,

where the Hamiltonian TI is defined in (6).
If we define A Z* as A(y + w)= A(y- ’bw), then

A"((x, u))2 Aa"((X,L(t,x,u)))2

+ V27:t(s)((L(S, x, u), u(s)))2ds.

Proof. Using the same arguments as in Lemma 5.4, one can show that AiZer’0 if and only if A!(Id- !) 0. From the proof of Lemma 5.4 it follows that

ik’(Id ’)(x, u) ika’(x, (tl,x, u)),

where is defined in (33). Therefore we have

]Kerb’ 0 ,Dla(xo, xl)x -+- AD2a(xo, xl)(tl,x, u) 0, ’(x, u) e E.

To express the above relations by means of the appropriate Hamiltonian let us denote
by gt the solution of the matrix equation

t(t) (A(t) g(t))(t), (to) Id.

Then r(tl,x, u) (tl)(X + ftt -l(t)B(t)(Id- D(t)D(t))u(t)dt), so that equation
(36) is equivalent to the system

(37) ADa(x0, x) -iD2a(x0, x)(tl),
(38) ikD2a(xo, x)(tl)-l(t)B(t)(Id- D(t)C(t)) O.

If iS(t) is the solution of iS(t) -D3’l(t,p(t),(t), t(t)) -p(t)(A(t)- K(t)), which
satisfies p(t) AD2a(xo, xl), then (37) is equivalent to the transversality condition
(8). Taking into account the definitions of B, C, D, and the Hamiltonian ?-/, it follows
that condition (38) can be expressed as

(t)Da(t) (t)B(t)D(t)Da&(t) Da(t) 0.

This ends the first part of the proof.
From the definition of A it follows that A)" A("- ’"). Since

"(X,U) a"((X,L(tl,x,u)))2 + D2a(xo, xl) Q(tl,x,u),
"(x, u)(t) V2&(t)(L(t,x, u), u(t)) 2 + D2&(t)Q(t,x, u),

then by (34), A)" an be written as the output of the following cascade of systems:

L(t) A(t)L(t) + B(t)u(t), L(tO) x,
Q(t) A(t)Q(t) + V2[(t)((L(t), u(t)))2, Q(to) O,

(t) (A(t) K(t))(t)
+ B(t)D(t)[V2&(t)((L(t), u(t))) 2 + C(t)Q(t)], (to) O,

(" ’")(x, u) )a"((X,{L(ti)))2 + XD2a(xo, xl)[{Q(tl) (tl)].
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If we define zQ(t) Q(t) (t), then one can readily verify that it is the solution of

kQ(t) (A(t) K(t))zQ(t) + H(t)((L(t), u(t)))2, zQ(to) O,

where H(t) V2/(t) B(t)D(t)V2&(t). Therefore we obtain

A)"((x, u))2= Aa"((X,L(tl,x, u))) 2 + AD2a(xo, xl)zQ(t,x, u).

Writing zQ explicitly by means of the fundamental matrix gt, substituting 5, and
taking into account the expressions ofH and -/, we easily obtain the second statement.

Proof of Theorem 2.5. If (x0, ) is a weak local minimizer, then is not
locally onto at that point and the same holds for )’. Lemma 4.2 (i) yields that
codim Im)’ dim Z2. Since Z2 is a complement of ImlZr" then there exists

A (A0,..., Ap) : 0 such that A iZer’ 0 and we can always take A0 >_ 0. Lemma
5.5 proves the first-order conditions (9).

The uniqueness of A up to a positive constant and Lemma 4.2 imply that the
~l!codimension of Im)’ is one. Therefore Lemma 4.3 applies and AXIKe, _> 0. Since

(x, u) Ker X’ if and only if (x, u) satisfies the linearized problem (3), (4), (5), then
from (35) we obtain the second-order conditions.

Proof of Theorem 2.6. To prove the theorem we only have to verify that the map
satisfies the assumptions of Lemma 4.5. Let A be the one given in (ii) of Theorem 2.6
and define A E Z* as in Lemma 5.5. Then A;’ (Id-) 0, so assumption
(3) in Lemma 4.5 holds. From Lemma 4.2 we obtain

)(y + w) (y ’w) +

By (31) the map belongs to (Lq(J, Rr), (E, Tq)), for all q
((E, Tq),Rp+I) and is a linear map between finite-dimensional vector spaces,

((E,T),(E,7)), for all q _> 1. Denoting by 2 E L(J,R") the
projection on the second factor, we can write D: De + DO o (DE, 2); there-
fore by (i) in Theorem 2.6, Theorem 3.5, and Lemma 5.1, we can deduce that
(D(’(E,) --. ((E, T2), (E, 72)) is continuous. Assumption (1) of Lemma 4.5 is
verified.

By definition AD2) ,(D2- ’D2)). D2’(E,T) --+/:2((E, T2),R) is
continuous by Theorem 3.5. Again using the results in Theorem 3.5 and in Lemma 5.1
it is not difficult to prove that D2 D2 (R) (DE, r2) + D(D2E, 0) is a continuous
map from (E, To) to 2((E, T2),LI(J, Rr). From the regularity properties of and

’ discussed above, we obtain assumption (2) of Lemma 4.5. Finally (iii) of Theorem
2.6 and Lemma 5.5 imply assumption (5) of Lemma 4.5, which now yields the desired
result.
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THE EFFICIENCY OF SUBGRADIENT PROJECTION METHODS
FOR CONVEX OPTIMIZATION, PART I: GENERAL LEVEL

METHODS*

KRZYSZTOF C. KIWIEL?

Abstract. We study subgradient methods for convex optimization that use projections onto
successive approximations of level sets of the objective corresponding to estimates of the optimal
value. We present several variants and show that they enjoy almost optimal efficiency estimates. In
another paper we discuss possible implementations of such methods. In particular, their projection
subproblems may be solved inexactly via relaxation methods, thus opening the way for parallel
implementations. They can also exploit accelerations of relaxation methods based on simultaneous
projections, surrogate constraints, and conjugate and projected (conditional) subgradient techniques.

Key words, nondifferentiable (nonsmooth) optimization, convex programming, relaxation
methods, subgradient optimization, successive projections, linear inequalities, parallel computing
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1. Introduction. This is the first of two papers in which we study various mod-
ifications of Polyak’s [Po169] subgradient projection algorithm (SPA) and the recently
proposed level method of [LNN95, LNN91] for solving the convex program

(1.1) f* min{ f(x) x e S}

under the following assumptions. S is a nonempty compact convex subset of ]RN; f
is a convex function Lipschitz continuous on S with Lipschitz constant Lf; for each
x e S we can compute f(x) and a subgradient gf(x) e Of(x) of f at x such that
Igf(x)l <_ Lf; and for each x e ]RN we can find Ps(x) argmin{Ix YI’Y e S}, its
orthogonal projection on S, where I" denotes the Euclidean norm.

If f* is known, the simplest version of the SPA generates successive iterates

(1.2) Xk+l PS(Xk k(f(xk) k 1, 2,...,

until gf(xk) O, where X E S and tk are scalars in the set of admissible stepsizes

(1.3) T [tmin, tmax] for some fixed 0 < tmin

_
tmax < 2.

It has the following efficiency estimate for any (absolute) accuracy e > 0"

(1.4)
k > CSPA(min, tmax)(diam(S)Lf/e)2

(SPA(min, max) 1/[tmin(2 max)] and

min{f(xj)’j=l’k}-f* <e,

min cSPA (’,’) CSPA (1, 1) 1,

where diam(S) supx,yes Ix- Yl denotes the diameter of S. This estimate (see
5) seems to be a folklore result, but it is less well known that it is optimal in a
certain sense [LNN95, NeY79]" if S is a ball and N >_ (diam(S)Lf/e)2/4, then for any
method that uses at most (diam(S)Lf/e)2/4 objective and subgradient evaluations,
there exists a function for which this method does not obtain an accuracy better than
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12, 1994. This research was supported by Polish State Committee for Scientific Research grant
8S50502206.

Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland (kiwielibspan.waw.pl).
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We present three schemes for estimating f* in (1.2) that extend the ideas in
[KAC91, KuF90, LNN95]. Two of them employ an overestimate D >_ diam(S), which
replaces diam(S) in (1.4); the third does not involve D but is much more difficult to
implement.

To enable faster convergence, we give algorithms that use projections onto suc-
cessive approximations of level sets of f derived from several accumulated subgradient
linearizations of f or their aggregates (convex combinations) as in descent bundle
methods for nondifferentiable optimization [HUL93, KIT85, Lem89]. Such algorithms
provide freedom to trade off storage requirements and work per iteration for speed of
convergence.

In the accompanying paper [Kiw96] we discuss implementations of such algo-
rithms, based on accelerations of the relaxation method for linear inequalities [Agm54,
MOS54], and provide a unified perspective on various modifications proposed in the
literature.

In effect, we show that several versions of subgradient projection methods share
efficiency estimates similar to (1.4). Since this estimate cannot, in general, be im-
proved uniformly with respect to the dimension N by more than an absolute constant
factor, all these methods are optimal in the sense of [NeY79]. We note, however,
that this estimate can be attained only for really large N. We may also expect that
for "most" functions encountered in applications, the methods should be much more
efficient than the worst-case estimates suggest. Indeed, preliminary numerical expe-
rience with the level method of [LNN95] has been very encouraging. Yet this method
is not readily implementable because it requires unbounded storage (at least of order
k(N + 1) at iteration k). Thus the main aim of our work has been to derive methods
which have comparable efficiency but are more easily implementable.

We may add that the alternative extension [Kiw95] of the level methods of
[LNN95, LNN91] is less suitable for parallel computing.

The paper is organized as follows. In 2 we introduce a general relaxation level
algorithm. Its efficiency is analyzed in 3. In 4 we extend the nested ball principle of
[Dre83]. Some useful modifications are given in 5 and 6. Two alternative techniques
for generating lower bounds flow via fixed level gaps and full model minimizations are
described in 7 and 8, respectively. Dual level methods are the subject of 9.

We use the following notation. We denote by (., "/and I" I, respectively, the usual
inner product and norm in ]RN. B(x, r) {Y IY- xl - r} denotes the ball with
center x and radius r _> 0. For e >_ 0, the e-subdifferential of f at x is defined by
Of(x) {p e ]aN f(y) >_ f(x) + (p, y- x} -e Vy E ]RN}. We denote by Of the
ordinary subdifferential Oof. The natural logarithm with base e is denoted by ln(.).
We let 1" k denote 1, 2,..., k. For brevity, we let a/bc a/(bc). The convex hull is
denoted by co.

2. The relaxation level algorithm. In this section we describe our first mod-
ification of the SPA. As in [BaS81, KAC91, LNN95], when the optimal value f* is
unknown, it may be replaced in (1.2) by a variable target (level) value

fow) tCfow + (1 tC)fup

where 0 < t < 1 is fixed, fukp minj=l:k f(xj) is an upper bound on f*, and the
lower bound flow <- f* is chosen to ensure fev --’ f* as k --* c. Thus we obtain the
subgradient projection level algorithm (SPLA)"

(2.2) xk+l Ps(x tk(f(xk) fev)gf(xk)/Igf(xk)12), tk e T, k 1, 2,...
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if gf(xk) 0, then, of course, the method stops with an optimal xk in S*
ArgminS f. To get some feeling about possible updates of flow, it is instructive
to consider first the following ideal bisection method (cf. [MTA81]). Let flev)

< f  ev}"
ALGORITHM 2.1 (ideal level method for (1.1)).
Step O. Choose 0 < a < 1, z E S, and flow _< f*. Set k 1.

kStep 1. Set fup- f(z), flev by (2.1), and the optimality gap Ak fup- flow.
Step 2. If (f, lev) N S q}, go to step 4.
Step 3. Find zk+ flev) n S, set Jlow flow, increase k by 1, and go to

step 1.
Step 4. Set zk+l z Jow fev, increase k by 1, and go to step 1.

Clearly, the method produces fow <- f*, fup f* <- Ak, and Ak+ <_ max{a, (1-
a)}A for all k. The crucial property is that/:(f, fev) N S q) implies fev < f*"

To make Algorithm 2.1 implementable, we need a submethod for finding a point
in :(f, kflev) S or detecting that /:(f, flkev)n S q}. For this kth set intersection
problem, an iteration of the successive projections method [GPR67] of the form &+
Ps(Pr.(f,lv)(xk)) can be implemented approximately as follows: letting ](.;y)
f(y) + (gi(y),. y) denote the linearization of f at any y e S, with f(.; y) _< f(.) and
f(y; y)= f(y) by convexity, we have

and

(2.4) :(f, kf,ov) { z u) < f, ev VU e S }.

We may use some accumulated linearizations fJ (.) ](.; xJ), j _< k, in the kth model
of f,

(2.5) ]k(x)--max{ff(x)’jeJk} with keJc{l’k},
and let

(2.6) xk+l Ps(xk -- tk[PE(]k,flkev) (xk xk]),
where we have underprojection if tk < 1 or overprojection if tk > 1. For instance,
(2.6) gives (1.2) when flkev f*, jk {k}, and (]k, flev)is the halfspace Hk

{x fk(x) <_ fkev } given by the inequality of (2.3) most violated at xk; of course,
PHk (x) xk--(f(x) flkev)g$(x)/Igl(xk)l 2. This is just an iteration of a relaxation
method for solving the inequalities of (2.4), followed by a projection on S. As for (2.2),
flow may be increased to flev when it is discovered that these inequalities do not have
a solution in S. Hence we shall exploit the fact that certain versions of successive
projections methods can detect in finite time that a given set intersection problem
is unsolvable (although they need not find a solution in finite time when it exists).
As will be seen below, the main idea of such methods is to reduce the distance of
the iterates from S*. They may be painfully slow, even in the most favorable case of

fke f*, when only one inequality of (2.3) is considered at a time. To accelerate
convergence, we may use a larger J, i.e., a tighter approximation ] of f.

To illustrate these facts we need a result of Agmon [Agm54]. Given a closed convex
set C C ]1:y and an admissible stepsize t T, we define the relaxation operator

(2.7) nc,t(x) x + t(Pc(x) x)
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FIG. 2.1. Illustration of the, Fejdr property2 of xk+l xk + tk(yk --xk) with yk =. pHk(Xk)
when xk+ E S. By Pythagoras theorem, rk+ -Ixk+l -ykl2 r -lyk -xkl2, where xa+l _yk
(tk--1)(yk--xk), so r+ --r--tk(2--tk)lyk--xkl2. Clearly, B(xk,rk)NHk C B(xk+,rk+)NHk.

(where Pc(x) x if C O) that has the Fejr contraction property

]Y 7Pc,t(x)l 2 < lY x] 2 t(2 t)lx Pc(x)l

<- ly 1 Smin(2 tmax)d(x) Vy E C,x E lRN,
where de(x) infyec Ix Yl. Indeed, if y e C, P Pc, and z x + t(P(x) x),
then

ly 1 ly xl + (tiP(x) x[) 2t (y x, P(x) x)
lY xl + (tiP(x) xl)2 2t (P(x) x, P(x) x)

2t (y P(x), P(x) x)
-< lY x] 2 t(2 t)lP(x) xl 2 <_ lY xl tmin(2 tmx)lP(x) 1

from the projection property (y P(x),P(x) x> >_ 0 and (1.3). Note that tmin(2
tmax) in (2.8) can be replaced by minteT t(2- t).

Figure 2.1 illustrates the Fej6r property of (2.2) with Hk (fk, flkev). For moti-
vation, we now state some facts that will be proved later. Suppose we have generated
some rk

_
ds.(xk) (starting, e.g., from rl D _> diam(S)) so that B(x, rk)NS* .

If fv -> f*, then S* c Hk, so setting y PHk (xk), finding rk+ from

(2.9) r r t(2 t)ly xl,
and applying (2.8) twice, as in the proof of Lemma 3.2 below, we deduce that S* N
B(xk,rk) C S* B(xk+,rk+l). Thus we improve our localization of the solution
(since rk+l < rk due to xk H from f(xk) > flev). On the other hand, if ta(2-
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2 then flkev < f* (by contradiction), so we may increase flkow to fkev(x >
and reset rk+l to D. To sum up, if fkv _> f*, then progress towards the solution is
measured by the magnitude of dHk(Xk), otherwise dHk(Xk) may be used to shrink
until fkev < f* is discovered; thus dH (x) should be as large as possible in both cases.

Hence the algorithm may be accelerated by choosing a smaller (] fev) to produce

dn(],i,ev)(xk > dH(Xk). However, a large jk in (2.5) would create difficulties with

storage and work per iteration. This raises the following basic questions. Is it possible
to select jk so that ]k approximates f tightly in the region of interest without J
becoming inordinately large? Can we reduce J by replacing some ff with their
convex combinations, i.e., by aggregating some constraints in (?k, flkev)? Should
not (]k, fkev be augmented with some inequalities related to S? Instead of finding

P(],fv)(xk), can we perform several "simpler" projections (possibly inexactly and

in parallel) and combine their solutions? Our partial answers to these questions
will involve a combination of some quite technical properties of relaxation methods.
For instance, note that, in view of the outer projection in (2.2), r+ in (2.9) could
be further reduced by d(zk), where z xk + t(yk- xk). In fact more than
two successive projections could be employed to reduce rk+l. We shall need rather
abstract notation to make such concepts precise.

Let 5s denote the indicator of S (hs(x) 0 if x E S, c otherwise) and fs f
the extended objective. Let ]k maxj=l: fJ denote the kth "best" model of f (which
we would not like to store). Note that ] ] + 5s is the largest convex minorant

of fs compatible with the accumulated information about f. Clearly, fk, ]k, ]k, and
] belong to the following set of admissible models of fs"

(2.10) { : IRN --. (-c, ]" is closed convex and (x) _< f* Vx E S* }.

At iteration k, we may choose a model ck e such that Ck >_ fk (to exploit the
latest subgradient information) and a stepsize tk T. Then the iteration

(2.11) x+ Ps(T(k,fiv),t
is a generalization of (2.2) and (2.6), which have fk and Ck ]k, respectively.
This notation is convenient for the implementations discussed later, in which each
Ck may be the maximum of several accumulated linearizations fJ, j <_ k, or their
convex combinations, possibly augmented with 5s or its convex minorants. It will
also prepare ground for extensions which use several models from at each iteration
for successive or parallel relaxations. (For the first reading, one may assume Ck fk.)
We should, of course, ensure that( kfev) in (2.11). (Detecting this may require
calculating inf ck approximately.) Since, by (2.10),

(2.12) 0 S* C (, fev) if e and fev -> f*,

:(, flkev means that we may repeat (2.11) with fev increased to a new value
by increasing fkow to the old value of fkev. Note that :(k kfv) cannot occur in
the simplest method (2.2), for which the test based on r must be employed.

We may now state the first general subgradient projection algorithm with re-
laxation and target level updating. Its notation is slightly redundant, being geared
toward subsequent convergence proofs and modifications.

ALGORITHM 2.2.
Step 0 (Initialization). Select an initial point x S, a final optimality tolerance
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opt -- 0, a level parameter 0 < t < 1, and stepsize parameters 0 < tmin

_
tmax < 2.

Choose D >_ diam(S) and fllow <_ f*. Set Pl 0 and fup . Set the counters
k 1, 0, and k(0) 0. (k(1) will denote the iteration number of the/th increase

Step 1 (Objective evaluation). Calculate f(x) and g(xk).
Step 2 (Level update). Set fp min{f(xk),fu-}, fv by (2.1), and the gap

Step 3 (Stopping criterion). If min{Ak, Igs(x )l/D} terminate.
Step 4 (Projections). Perform (2.11), checking if it is well defined, as follows:

(i) Choose an admissible model such that fk and a stepsize t e T.
(ii) If (k k p(,fiev) , go to step 5. Otherwise, set yk iie)(xk), Zk

X + tk(y X), X+ Ps(zk), p t(2 tk)y xk] 2, and p ]x+ zk2.
(iii) if Pk + P + P > D2, go to step 5; otherwise, go to step 6.
Step 5 (Update lower bound).

(i) Choose lower bound ]w e [max{fow fkev}, f*] (e.g., fowk max{fowk
k+l k k kfv})" Set Jlow A, fow"fow, Pk+ 0, and k

(ii) If k eopt, terminate; otherwise, continue.
(iii) Set x+ xk (null step), k(1 + 1) k, and increase k and by 1. Go to

step 2.
k+l k k k kStep 6 (Serious step). Set ow fow, fow fow, Ak, and Pk+

Pk + P + P. Increase k by 1 and go to step 1.

A few comments on the method are in order.
At step 0, flow may be obtained, e.g., from a relaxation of (1.1) or from the

relations

f* _> min fl _> f(x) igs(  )l diam(S) _> f(x1) Ig$(x
S

since f(.) >_ fl(.)__ f(xl)+(gf(x),._ x} >_ f(x)_]g$(xl)ll._xl by the Cauchy-
Schwarz inequality. In many applications one may find a "simple" set (e.g., a box
or a ball) that contains S; the diameter of this set may serve as D. (Choosing flow
and D when f is strongly convex on S is discussed in [KAC91]; see also [KuF90].)
In general, the algorithm should perform better the closer fow and D are to f* and
diam(S), respectively.

Note that the f-evaluation at step 1 is skipped if xk xk- after a null step at
step 5, i.e., if k k(1) + 1. The current number of f-evaluations is k 1.

Step 3 is justified by the optimality estimates (2.14) and and the fact that f* >_
f(xk) [gf(xk)[ diam(S).

Step 4 performs the two successive relaxations of (2.11), unless an exit to step 5
occurs with fkev < f*. (The empty intersection test of step 2 in Algorithm 2.1 is done
in two separate tests in step 4 of Algorithm 2.2.) The exit from step 4(ii) is justified by
(2.12) and from step 4(iii) by Lemma 3.3, which formalizes our argument concerning

2 D2(2.9). Specifically, with r Pk, step 6 replaces (2.9) by r+ r p p,
whereas steps 0 and 5 ensure rk(1)+l D.

Let us split the iterations into groups K0 {1: k(1)- 1} and gt {k(/): k(l+ 1)-
1} if _> 1. Each group Kt ends by discovering that the target level is unattainable.
Then an increase of the lower bound reduces the gap between the bounds by at least
a fraction of a < 1. The remaining level and gap decreases within each group occur
only when the objective improves, with the lower bound staying fixed. These simple
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properties of the method may by derived inductively from the following observations.
By construction, fukp > fukp low flow >-- flow, fup- flow, and
Ak fukp fow, SO the gaps /ka _< Aa overestimate the optimality gap

(2.14) fukp f* min{ f(xJ) j 1" k } f* <_ iXa <_ Aa

a(z)and ATM _< Za _< Aa for all k. In fact, if k(1) < k < k(1 + 1), then fkow Jlow

(= fow if/=- 0); therefore, the level flkev aflow + (1 a)Aa cannot increase:

k(l)+ > flJv > fkev if k(l) < j < k < k(1 + 1)ev

and Ak =/k if k(1) < k < k(1 + 1). Hence ]kow and /a only reflect the improvement
in fow and Aa at iterations k k(/+l), _> 0. Then at step 5, ]ow >- feva fup_Aak
implies /k fukp ^kfow --< A" Thus we have the useful relations

(2.16) Ak>_k>_k(l+)/ if kEKtandl>_0,

(2.17) k(z) _< tA1 if _> 1.

3. Efficiency. Our aim is to show that the SPLA of (2.2) has the following
efficiency estimate for any e > 0:

(3.1a)
(3.15)

k > CSPLA(tmin, tmax, )(DLf/e)2 = min{ f(xJ)’j 1" k } -/* < e,

CSPLA (tmin, tmax, t) 1/tmin (2 tmax)g2(1 t2),
min CSPLA(’, ", ") CSPLA(1, 1, 1/X/) 4,

and to establish a modified form of this estimate for Algorithm 2.2. We assume, with
no loss of generality, that the tolerance opt 0 and that the algorithm does not

terminate, i.e., Aa >_/,a > 0 for all k.
We start by showing that each first relaxation at step 4 provides a significant

growth of Pa related to Fejr contractions. Note that with Hk {x" fa(x) <_ fkev }
we have

(3.e) dc(xk) >_ dHk(Xk) (f(xk) flkev)/[gf(xk)l if C C Ha.
LEMMA 3.1. If (k kfiev) # at step 4, then p >_ train(2 tmax)(aAa/LI)2.
Proof. Use (3.2) with L(a a Hk (from Ca fk,fev) C >_ ), Ig(xk)l <_ ni, and

f(xa) -fke >_ fkup- (fukp- tSAk) aAk (from f(xk) >_ fukp); recall step 4 and

LEMMA 3.2. Suppose y (k, fke N S for iterations k k" k2 that do not
execute step 5 (i.e., y is a common point of all the sets involved in the successive
relaxations (2.11) at step 4 for such k). Then

(3.3)

k2

p=+ p, [t(2 t)ly x[ + ITM zkl 2]
k=kl

< x
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Proof. Fix k e [kl, k2]. Use (2.8) with C (k, fv), t= tk, and x xk and
next with C S, t 1, and x zk to get

_<

(3.4b) p lxTM z]2 ]y- zk] 2 --]y x+]2.

Add the inequalities above to get pk+ pk p + p ]y- x] 2 -y xk+l] 2.
Adding these inequalities for k k:k2 yields (3.3).

The next result validates the test at step 4(iii) for increasing fw at step 5. Recall
that k(1) is the iteration number of the/th increase of fw; these quantities change
only at step 5, nd we always have k(1) < k (cf. step 0). Note that Lemma 3.2 assumes
that step 5 is not executed, but this is to be proved for the lemma below.

LEMMA 3.3. If fv f* at step 4, then step 5 is not entered and

(3.5)
di m(S) D Vy

Proof. First, suppose k > k(1)+ 1. Since fv -> f*, (2.12) and (2.15) imply that
the assumptions of Lemma 3.2 hold for any fixed y E S*, kl k(1) + 1, and k2 k- 1.
Then, due to the rules of steps 5 and 6, (3.3) becomes

(3.6) Pk <_ ]Y xk(l)+l[ 2 --[Y xk[ 2.

Adding (3.6) to (3.4) we get (3.5), noting that pk + P + Pks <_ lY Xk(l)+ll2 <-- /2;
i.e., no null step occurs. Next, if k k(1) + 1, then p 0 (cf. steps 0 and 5), so (3.6)
holds again and the conclusion follows as before. D

We may now estimate the rate of decrease of the gap Ak within each group K.
LEMMA 3.4. If k(1) < k < k(1 + 1) and A > O, then

(3.7) k k(1) <_ ()Lf/tAk)2/tmin(2 tmax).

Proof. Note that AJ _> Ak for j 1" k because AJ never increases. By the
rules of steps 4 and 5, we have Pk+ <_ D2 (otherwise k(1 + 1) k would occur, a

contradiction) and

k k

D2
_

Pk+l E PJ tmin(2- tmax) E (t/kJ/Lf)2
j=(t)+ j=k(t)+_

tmin(2 tmax)(Ak/nf)2(k k(1))

from Lemma 3.1. Rearranging, we get (3.7). []

At step 2, let n k- and a denote the total numbers of f-evaluations and
lower bound increases, respectively. In (3.8) below we in fact relate n to the gap/k.

LEMMA 3.5. If k >_ > 0 for some k Km and m >_ O, then n k -m
and

(3.8) k <_ m + (DL]/)/e(1 g2)tmin(2 tmax).

if additionally A

_
DLf, then m <_ -ln(DLf/e)/ln() and

(3.9) k <_ (DLI/e)2[1/2(1- 2)tmin(2- tmax)- 1/2e ln()].
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Proof. (i) Let K(e) {1" k}. Since /k >_ e > 0 and Ak+l </k < Ak for all k,
use (2.16) and induction to obtain Ak >_ /’-t for all k E K R K(e) and 0" m.

(ii) Let c (DLf/t)2/tmin(2- tmax). By (i) and Lemma 3.4, IKt g K(e)l <
1 + c2(m-t)/2 for l= l’m and IKo F] K(e)I < c2m/e2. Since 0 < < 1, we get (3.8)
from

m m

IK K(e)[ <_ rn + -(c/e)(m-) <_ m + c/e2(1 2).
/=0 /=0

(iii) If A _< DLf and m > 0, then (2.17) yields e _< 7k(m) <_ m[gLf, so m <_
ln(DLi/)/ln() in (3.8). Thus, to get (3.9), it suffices to prove that ln(t)/ln() <_

-t2/2e ln() for all t > 0. Indeed, t2 2e ln(t) > 0 for all t > 0 (minimize it!). El
We may now state our principal result. Notice that, in view of (2.13), we may

always ensure that A < L3L by taking fllow >_ f(x1) -Ig(xl)lD, and recall (2.14).
THEOREM 3.6. If A < DL], then the following efficiency estimate holds for

each > 0:

(3.10b)
(3.10c)

/C > CRLA(tmin, tmax, t)(DLJ’/e-)2 = fukp f, <_ fi, k <
CRLA(tmin, tmax, m) 1/tmin(2 tmax)t2(1 m2) 1/2e ln(),

rain CRLA (’, ", ") CRLA (1, 1, 0.677653...) 4.49950.

Proof. This is an immediate consequence of Lemma 3.5. El
Let k kXrec e {xj }j=l be such that f(Xrkec)= fup (-- minj=l:k f(xJ)), for all k.
COROLLARY 3.7. If eopt e > 0 and A < DLj,, then the algorithm will

terminate with k f,f(Xrec) _< +e in k l + k, iterations after n l +nki f-
evaluations, where k and n k- m satisfy the bounds of Lemma 3.5. El

For completeness, we include an asymptotic result.
THEOREM 3.8. If the algorithm does not terminate, then fup, fow, and

converge to f*, and Ak and converge to zero as k --, cx. Moreover, {Xrke}
converges to S*.

Proof. Since / > 0 never increases, zk $ 0 either by (2.17) if --, oc or by
Lemma 3.5 otherwise. (Then rn would be bounded in (3.8).) Hence the facts that
Ak+l /k nk and max{Iflkow f*l, Ifup f*l, Iflkv f*l} --< Ak for all k imply
the first assertion. The second one follows from k f,f(Xrec) --* the continuity of f
and the compactness of S. El

Remark 3.9. In view of the preceding results, we again emphasize the crucial
role of p tk(2- tk)d(,ii)(xk in our efficiency analysis. The algorithm may

be accelerated (locally) by choosing and tk to generate a large p. (In fact we

should try to increase the less easily manageable quantity p +p instead of just p.)
Our efficiency estimates are best when tmin tmax 1; also tk 1 maximizes each
p. However, as in other relaxation methods, other choices of tk may be preferable in
practice.

4. The nested ball principle. We shall need the following reformulation of
2 /)2Lemma 3.3 in terms of rk pk. It generalizes similar results of IGor81, Tel82]

obtained for classical relaxation methods.
LEMMA 4.1 (the ball induction principle). If flkv >_ f* at step 4, then

S* n B(x, r) c S* n B(z, (r p)l/2) C S* I’l B(x+1 rk+l).
Proof. Letting y e S*, use (3.4) and (3.6). El
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The following result extends one of Drezner [Dre83] (nd simplifies its proof).
2 p orLEMMA 4.2 (the nested ball principle). If (D- Iz- x(t)+ll)2 > r

2 p Ps at step 4, then fv < f*.(D -Ix+ xk(1)+ll)2 > rk

Proof. For contradiction suppose fkev >_ f*. Let x xk(t)+l, z zk, (r
p)/2, and y S* B(x, D) B(z, ) (cf. Lemma 4.1). Suppose D > + Iz x I. By
construction, (3.4a)and (3.6), ly-zl 2 <_ ly-xl2+2-D2 <_
with Iz-xl 0 due to < D, so ly-zl >_ (D2-2-1z-xl2)/21z-x > contradicts
y B(z,). HenceD_<+lz-x and, since ]z-x _< Iz-yl+ly-xl -< +D,
we have ID -Iz xl <_ . Next, obtain the same inequality with z x+ and

(r p pks)/2 to get a contradiction.

Lemma 4.2 says that for each group there is a growing ball B(x(t)+,[9- r)
such that if x enters this ball then fev < f*" Hence Lemma 4.2 may be used at step
4(iii) to detect fev < f*" Following [Dre83], one may argue that the conditions of
Lemma 4.2 will be activated earlier than the usual condition r < p + p. Indeed,
r decreases from D to zero, whereas usually Ix+ -xk(t)+l < D, e.g., if D is a
generous overestimate of diam(S).

5. Simple modifications. We shall now describe some simple modifications of
Algorithm 2.2.

At step 5(iii) one may set xk+l k i.e each group Kz may start from the bestXrec
kpoint found so far (if gf(Xrec) is stored). Alternatively, as in [KAC91], x+1 could

be chosen arbitrarily in S, but then step 1 would have to evaluate f and gf at this
point, leading to a slight deterioration in efficiency estimates such as Lemma 3.5 and
Corollary 3.7 (where we would have n k).

By suppressing null steps in our notation we may express the efficiency estimates
in terms of the number of f-evaluations alone (as is customary in, e.g., [NeY79]).

THEOREM 5.1. Suppose step 5(iii) sets fow flow and p 0 without increasing
k. Then the total number of f-evaluations always equals k, and the ejficiency estimate

(3.1) holds.

Proof. For contradiction, consider the unmodified algorithm. At step 0 set n 1
and x. At step 6 set n+ x+ and A /k, and increase n by 1. Then at
steps 2 and 6 we always have n k- for the current values of k, and n, and at
step 2n--n. Suppose Azn _> e > 0 for somen k-lk at step 6. ByLemma
3.5 and (3.1b), we have n <_ CSPLA(tmin, tmx,)(Dnf/)2. Hence, for any > 0,
(3.1a) holds with k and {xJ}= replaced by n and {2J}j--1, respectively. It remains
to identify {n} with the sequence {xk} generated when step 5 does not increase k.

We conclude, in particular, that by letting f at step 4, we obtain the
simple SPLA of (2.2) that enjoys the efficiency estimate (3.1). One must, however,
be cautious in interpreting such results, because Algorithm 2.2 could loop infinitely
between steps 2 and 5.

COROLLARY 5.2. Suppose eopt > 0 and step 5(iii) sets fkow ^kflow and p 0
without increasing k. Then the algorithm will terminate with f(Xrkec) _< f* +eopt after
k 1 + kop iterations and f-evaluations, where

]Qopt - CSPLA(tmin, tmax, t)(DLf/opt)2

with CSPLA given by (3.1b). Moreover, (3.1) holds for any e > opt.
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Proof. Arguing by contradiction, use Theorem 3.8 to deduce that any loop be-
tween steps 2 and 5 must be finite when %pt > 0, nd then apply Theorem 5.1.

As in [KAC91], let us consider setting fev fukp kA at step 2, where
[;min, max] for some fixed 0 < tmin mx < 1. We only require to produce
flkev

_
flke if k > k(1)+ 1 (e.g., let k E [gk-l,gmax] for such k). Then, as before,

the level can increase only after the lower bound increases (i.e., (2.15) holds). Clearly,
we must replace by max in (2.16) and (2.17), and by gmin in Lemmas 3.1 and 3.4.
Similar replacements should be made in the remaining efficiency results. For instance,
(3.10b) becomes

RLA(tmin, tmax min tmax) 1/tmin(2 tmax) 2 2tmax) 1/2e ln(;max),tmin (1

where again the "best" gmin gmax 0.677653. We conclude that this modification
cannot improve the preceding efficiency estimates. It may, however, be useful in
practice to choose small sk at initial iterations in order to reduce the dependence on

flkow until it is improved.

6. Using the known optimal value. Let us now consider the case when f* is
known.

THEOREM 6.1. If flow f*, then =_ 0 and the following efficiency estimate
holds:

(6.1a)
(6.1b)

Moreover, one may use 1 and flev =- f*, in which case (6.1) reduces to (1.4).
Proof. Use (2.1), (2.12), and Lemma 3.3 to deduce that step 5 cannot be entered

(i.e., l--0) and flev >- fw f* for all k. Next, invoke (3.5) in the proof of Lemma
3.4 in order to replace D by diam(S) in Lemmas 3.4 and 3.5. Finally, observe that
m and (1 2) may be dropped from (3.8) to give (6.1), since m 0 and k <_ c/e2
in part (ii) of the proof of Lemma 3.5, which remains valid even if 1 because no
summation is required.

We conclude that if f* is known then step 5 and the tests of step 4 may be
omitted, so that D is not required. Moreover, setting fev f* (-- 1 in (6.1)) gives
the "best" efficiency estimate (1.4). In particular, (1.4) holds for for the simplest
method of (1.2) (using ck =_ fk at step 4), as well as for Polyak’s accelerated method
from [Po169] (with Ck _= ]k; cf. (2.5)).

Remark 6.2, Note that, by Lemma 3.3, fkow f* ensures Fejr monotonicity
Ix*-xk+l[ <_ Ix*-xl for all k and x* E S*. Hence one easily checks that diam(S) and

Lf in (6.1) may be replaced by D* Ix*-xl[ and L} sup{[g/(x)l’[x*-x <_ D*}
for any x* e S*. Thus one may get an efficiency estimate even for unbounded S if S*
is nonempty! Also Fejr monotonicity and Theorem 3.8 imply that {xk } converges to
an optimal point. (Let x* be a cluster point of {Xrec}.) The question whether {x}
converges for other level controls is left open for future research.

The same argument also shows that if we chose fow > f*, then either termination
would occur with fup _< flow + eopt or (6.1) would hold with f* replaced by fllow (as
if f were replaced by max{f, f]low}).
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7. Level control via frozen level gaps. In Algorithm 2.2 we have fukp- flkev
tcAk; i.e., the desired objective reduction is a fraction of the current gap. An alterna-
tive technique consists in freezing the level gap Aev fup fv at Ak() between
iterations k(1) and k(l + 1) that increase the lower bound.

Thus we modify Algorithm 2.2 as follows. Step 2 sets flkev fukp Alev, with
Ak+l Aev

Ak+l A,k whereas step 6 sets levAe cA1; step 5 sets "-’lev
It is easy to check that the relations that ensure (2.14) continue to hold, whereas

k+l__ k k(2.15) follows from the fact that fup fup, while Alev a/a(t) if k(1) < k

_
k(1 + 1)

and E 0, where 0 A. Next, for k k(1 + 1) at step 5 we have w f
lev SO

Zk(t+l) _< Akev a/k(t) if k(1) < k <_ k(l + 1) and _> 0

and (2.17) follow by induction. Notice that the algorithm may also go to step 5 from
step 2 if fv -< fw. In other words: each group Kz ends by discovering that the target
level is unattainable (and possibly that the lower bound may be increased). Then the
level is raised by setting the level gap to a fraction of the "true" gap (between the
bounds). The remaining level reductions within each group occur only when the
objective improves, with the level gap and the lower bound staying fixed.

The efficiency analysis for the modified algorithm is similar to that for Algorithm
2.2, so we shall only indicate changes. Lemmas 3.2 and 3.3 remain valid. In Lemma
3.1 we may replace aAk by Aev (using f(xk) flkev >_ fukp- fup + Alkev Alkev), SO

(3.7) is replaced by

/Alev) /tmin(2 tmax) if k(l) < k < k(l + 1) and Alkev > 0.(7.2) k-k(1) <_ (DLf
In part (i) of the proof of Lemma 3.5 refer to (7.1) (instead of (2.16)) to get Alkev _>
e/a"-t-1 for all k E K N K(e) and 0: m, and use this relation and (7.2) in part
(ii) to get the previous bounds. The remaining convergence results of 3 are easy to
verify.

Another interesting modification is described in the following theorem.
THEOREM 7.1. If we set opt and Aev e for a given e > 0 (and possibly

fow -cx)), then the modified algorithm will terminate with fukp- f* <_ e and l= 0
at iteration k 1 + k, where

k

_
(DLI/e)2/tmin(2- tmax).

Proof. If step 5 is not entered for k 1" ke then (7.2) with Alkev e and 0
implies (7.3). Iteration k k/ 1 terminates at step 2, or at step 5 with/k _< Aev e

(cf. (7.1)). [:]

A result essentially equivalent to the above theorem is given in [KuF90] for the
simplest case of -_- f at step 4. A comparison with all the preceding efficiency
estimates (especially Corollary 5.2) suggests that, for a given accuracy eopt > 0, the
strategy of Theorem 7.1 yields the best estimate. We believe, however, that in practice
a "small" Aev eopt might result in a slow "short-step" method, whose behavior
would be close to the worst-case estimate even for "well-behaved" objectives. On the
other hand, one may set Aev to an estimate of f(x) f* (if any), so as to exploit
any extra information at initial iterations; once a "reasonable" fkow is obtained then
a switch to the original level strategy of Algorithm 2.2 may occur. (A similar idea is
used in [LNN95].)
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8. Level control via full model minimization. As in [LNN95], the best un-
derestimate of f* at iteration k is given by ]kmin mins ]k with ]k maxj=l:k fJ. Let
us, therefore, consider a version of Algorithm 2.2 in which step 2 sets fkow ?kmin, step
4(i) chooses Ck _< fk, and steps 4(iii) and 5 are deleted because D is no longer required
for updating fow. (Note that/:(k, flev)k 0 at step 4(ii) due to flev > fminVk >_ inf
by (2.1).)

rk+ > fow A+Since ]k < max{k, fk+i} k+ < f, we still have low
and (2.14) for all k. Next,

(8.1) Ak < aAJ if > flev and j < k,kmin J

since then > fup aAJ > fukp aAJ by (2.1) with Ak fukp- fmin"kmin Vk

THEOREM 8.1. The following efficiency estimate holds for each e > 0:

(8.28) k > CLNN(tmin, tmax,)(diam(S)L$/e)2 = fukp- f*

_
/kk < ,

(8.25) CLNN(tmin, tmax g) 1/tmin(2 tmax)t2(X /2),
(8.2c) min CLNN(’, ", ") CLNN(1, 1, 1/X/) 4.

Proof. (i) Suppose Ak _> e > 0 for some k. Let us split K(e) {1" k} into
groups/;/t, l= l"m as follows. Let/(1) k. For l= 1,2,..., set/t {k _< (1)"
Ak _< A()/a} and (1 + 1) min{k k /t} 1 until/c(1 + 1) 0, and then set
m 1. By construction, Ak _> e/at- for all k /t {(/+1)+1: (/)} and/= l’m.

(ii) Fix 1 _< _< m and let z E ArgminS ]/(). By (i) and (8.1), aminf(l)
_

flkev for
all k E/. Hence, since ]k are nondecreasing and <_ ]k, we have )t (bk, flev)k
at step 4 for all k /. Therefore, ]/] <_ (diam(S)Lf/aA(t))2/tmin(2- tmax).by
Lemmas 3.1 and 3.2, as in the proof of Lemma 3.4, with kl (1 + 1) + 1, k2 k(1)
andy=tS.

(iii) Let c (diam(S)nf/t)2/tmin(2- tmax). By (i) and (ii),
m m

_< _<
l--1 1--1

Theorem 8.1 subsumes a result in [LNN95] obtained for Ck ] + iS and tk 1.
Thus it shows that the good efficiency estimate for the level method of [LNN95] comes
from level control, rather than from full projection subproblems.

It is easy to verify Theorem 3.8 and Corollary 5.2 (with D dicta(S)) for the
modified method. Moreover, we may consider setting fk fukp akAk, where
[/min, ;max] (0, 1). Then (8.2) involves LNN(min, max, gmin,/max) 1/min(2
tmax)g2min(1 g2max) where again the "best" groin gmax 1/X/. To check this,
replace a with amax in (8.1) and part (i) of the proof of Theorem 8.1 and with tmin
in part (ii).

Although it eliminates the need for , finding ]mkin minsmaxj=:k fJ may
require too much storage and work per iteration when k is large. Let us therefore
consider the following partial model minimization strategy. At step 2 find mkin
min ] (cf. (2.5)) and set fmkin max{]kmin fkmi-nl}with, fnin0 flow)’1 If flevk < fmink,
go to step 5, choosing ]lkow fmin" Clearly, the efficiency results of the preceding
sections remain true. Although this technique does not eliminate the dependence on
D in theory, we believe that when ]k are chosen "rich enough," it will ensure better
performance in practice. Also note that, to save work, mins ]k need not be found
exactly.
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9. Dual level methods. We shall now show how to use dual (e-subgradient)
techniques for constructing models of f that generalize those in [KuF90, LNN95].
In the simplest case such models are aggregate linearizations of f that are convex
combinations of the ordinary linearizations fJ. We shall later relate them to surrogate
inequalities used in relaxation methods. We start with an abstract framework that
will cover several examples motivated by the the following representation:

O]k(Xk) ( jegkE AJg/(x) JJ >- O,j E jk, JeJkE 1,

Ay[/k(Xk) ff(xk)] <_e }.jjk

DEFINITION 9.1. Let # > 0 be an additional fixed parameter associated with
Algorithm 2.2. At step 4 let (k denote the set of all closed proper convex functions
Ck. ]RN

__
(-oo, oo] that satisfy

(9.2) c t:( flev) and dL(,/v)(Xk >_ ttaAk/Li if flkev >_ f*.

LEMMA 9.2. Let 0 < # <_ 1 and #g > 0 be additional fixed parameters associated
with Algorithm 2.2. At step 4 let (PE,g denote the set of all functions of the form

+ (-oo, oo]
convex, e ( if flkev >_ f*, p e Oek(xk) satisfies ]pk <_ Ll/#g and ek e [0, max]k
with

(9.3) (max (xk) Ap -}- (1 e)(fup flev) (xk) flev #egik"

Suppose step 4(ii) uses such a Ck (although it need not majorize f). If flev _> f*
then S* C (, flkev ), y PL(,Iev)(xk) x -(k(x) -ek flkev)Pk/Ipkl 2 and

(9.4)
k 2 2p/tmin(2 tmax)

_
d(k,fv)(Xk) (k(xk) k flev)

>_ (##aaAk/L/)2,

whereas if ( k f, k kflev)= q)’ then flev < Moreover,, C if -.Proof. Suppose flev k f*. Let x S*. By construction and (2.10), Ck(x)
k(x) <_ f* yield S* c :(k, flev) = q}" By (9.3), p 0 would imply f* _> (.)
k(xk) -ek >_ flkev + #aAk > flev, a contradiction. Thus yk_ xk _(k(x
flev)P/Ipkl 2. Since (xk) -flkv (k(x) --ek- flev _> #aAk from (9.3)and
Ipkl <_ Ly/#a by the choice of p, we have (9.4), which yields (9.2) if # ##g. I’l

Let us consider efficiency before examples. The preceding proofs hinge on
only (eft (2.15) and the proof of Lemma 3.3), so (I) is admissible if fkv < f*.
(This is used in [Kiw96, 6].) Hence step 4 may use any Ck e (I)k,, U (I)k with

# ##a > 0. Then, comparing (9.2) and (9.4) with Lemma 3.1, we see that only the
first terms of the constants in all the preceding efficiency estimates and the right side
of (7.3) need be divided by #2; of course, Ae replaces aAk in (9.2), (9.3) and (9.4)
for the frozen level gaps of 7.
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kAs in 8, suppose flow fmin at step 2, step 5 is deleted, and step 4 chooses

k <_ ]k and ek as in Lemma 9.2. Then Theorem 8.1 holds with CLNN divided by
#2 #2, since #g 1. (In part (ii) of its proof use (9.4) to replace a by a.)

It should be clear that, as in 5 and 8, we may use variable ak E [amin, amax]
and #,k e [#min, 1] C (0, 1] in (9.3). Then the efficiency constants are divided by
(mn):.

For choosing (k in Lemma 9.2, note that any k e (I) such that fk <_ k <_ ]k
is admissible. Indeed, fk(x) ]k(xk) f(xk) yield emax _> 0 in (9.3), and we may
always ensure [pk <_ Ly because gy(x) e Ok(x) has [gi(xk)l <_ LI. In view of
Remark 3.9, to enlarge p in (9.4), we may let

(9.5) p arg min{ Ip[2/2 p 0,k(xk) }.

For example, if we use ]k and (9.1), then pk may by found by quadratic pro-
gramming (QP). Since there is no need to solve (9.5) exactly, iterative QP methods
(e.g., parallel relaxation-type methods) and various heuristics may by employed to
save work. Note that (9.5) minimizes the denominator in (9.4) with a fixed numer-
ator. An alternative construction is described in the following lemma (in which one

may assume k ] for the first reading). It implies that we may use convex combi-
nations of linearizations with quite arbitrary weights without destroying the preceding
efficiency estimates. Possible advantages of such combinations are discussed later.

LEMMA 9.3. Let k maxiEik eki, where [I[ < oc, each is an ane function
the fo (x) (x) + (p,,x-x) with [p[ L/, and ifof

fv f*. Suppose(x) > fv, i C {i e I (xk) v}, I {i e k
() (x)} 0, > 0 fo i e i, = o fo i e , E ,
(;,) E, ,(p,, 4() ()), a (.) () + (;,. ). g
fv f*, then dz(,f,)(x) iei Ai((x) -v)’/nf, whereas if pk O,
then flv < f*. In particular, e ,, if Aj ,aA/((xk)- fev) fo0
j e ik, e.g., if Aj , and $(xk) fu.

Proof. Suppose fv f*, x e S*, and j e ik. By construction, a(xk)
fv E, ,(() flev) iei Ai((xk) -ev) > 0. Hence with

(xk) k(x)- ek, pk 0 would give f* iei Ai(x) (x) ek(xk) >
fv, a contradiction. Thus dn(,L)(xk (k(xk) fv)/[pk[ i Ai(k(xk)
fv)/[p[, where [p[ iei Ai]p,[ Lf/,g. Recall Lemma 9.2 and (2.1) to
complete the proof.

Supposing fv f*, let us now compare the dual approach based on (9.4) (and
possibly (9.5)) using yk pn(,i)(xk) with a primal one that employs k directly
to find

(9.6) 9a P(6k,l,.,,)(xk) argmin{ Ix xk12/2 k(x) <_ flkev }.

LEMMA 9.4. We have [y- k[2
_

lY- xk[2- I]k- xk[ 2 and lY- yk[2
_

lY-
Xk[ 2 [y Xk[ 2 for all y e .(k, x[2 x 2

_
yk 2fev), where ]y -[ ].

Moreover,

[0, (x) v) ; e 0$() }sup{ (4() -,- f,ev)/l e
(9.7)

i al,
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with the supremum attained at some k and k if k is polyhedral or inf k < flkev"
Proof. The first assertion follows from (2.8) and Ck _< Sk. Hence, recalling (9.4),

Ik xk majorizes the left side of (9.7). To establish equMity, suppose initially that

k is polyhedrM or inf k < fv" Then, by the Krush-Kuhn-cker conditions for

(9.6), there exist 0(k) and a multiplier 0 such that x -.
Clearly, () flv and > 0 because xk (, fev)k (k, fv) (k k).
Letting k(.) ()+ (k,._ } and k k(Xk)- k(Xk) k(Xk)- fv-
]2, we get (9.7). In the general ce, replace flv in (9.6) by t > fv so that
the Slater condition holds, define (t), (t), and (t), as above, and let t fv with

In view of Remark 3.9, the first bound of Lemma 9.4 is, in generM, better thn the
second one. On the other hand, (9.7) says that the dual approach can, in principle,
be good the primM one if (9.5) is used with a carefully chosen e. Thus such
bounds seem to favor the primM approach. However, they are locM and the duM one
may employ inexact QP solvers, so it may be easier to implement.

Choosing (e,pk) (k,k) to solve (9.7) gives an "optimal" dual method that
does not need > 0 in (9.3) if Sk f nd k O. It is, however, more difficult to
implement than the equivMent primal method that my solve (9.6) via QP when k
is polyhedral.

We may add that [LNN95] employs ?k, tk 1, fv ]in and constant, (0, 1) and 1, whereas [KuF90] proceeds as in Theorem 6.1 with 1
and k f without specifying any models of f (but p 1 may severely restrict the
choice of p; cf. (9.3)).
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THE EFFICIENCY OF SUBGRADIENT PROJECTION METHODS
FOR CONVEX OPTIMIZATION PART II: IMPLEMENTATIONS

AND EXTENSIONS*

KRZYSZTOF C. KIWIELt

Abstract. In the first part of this paper we studied subgradient methods for convex optimization
that use projections onto successive approximations of level sets of the objective corresponding to
estimates of the optimal value. We presented several variants and showed that they enjoy almost
optimal efficiency estimates. In this part of the paper we discuss possible implementations of such
methods. In particular, their projection subproblems may be solved inexactly via relaxation methods,
thus opening the way for parallel implementations. We discuss accelerations of relaxation methods
based on simultaneous projections, surrogate constraints, and conjugate and projected (conditional)
subgradient techniques.

Key words, nondifferentiable (nonsmooth) optimization, convex programming, relaxation
methods, subgradient optimization, successive projections, linear inequalities, parallel computing

AMS subject classifications. 65K05, 90C25

1. Introduction. This is the second of two papers in which we study variants
of Polyak’s [Po169] subgradient projection algorithm (SPA) and the level method of
[LNN95] for solving the convex program

(1.1) f* min{ f(x): x e S}

under the following assumptions. S is a nonempty compact convex subset of ]RN; f
is a convex function Lipschitz continuous on S with Lipschitz constant Lf; for each
x E S we can compute f(x) and a subgradient gf(x) Of(x) of f at x such that

Ig](x)l <_ L]; and for each x e IRN we can find Ps(x) argmin{Ix- YI’Y S},
its orthogonal projection on S, where I" denotes the Euclidean norm. The SPA
generates successive iterates

x+ P8(x -t(f(x) f*)g2(xk)/Ig2(xk)12 for k 1,2,...,

where x S and tk are stepsizes in T [tmin, tmax with 0 < tmin _< tmax < 2.
In part I [Kiw96] we gave efficiency estimates for three schemes for estimating

f* in (1.2), stemming from [KAC91, KuF90, LNN95]. Moreover, to enable faster
convergence, we studied algorithms that use projections onto successive approxima-
tions of level sets of f derived from several accumulated subgradient linearizations of

f or their aggregates as in descent bundle methods for nondifferentiable optimization
(NDO) [HUL93, Kiw85, Lem89].

In this paper we discuss possible implementations of such algorithms that provide
freedom to trade off storage requirements and work per iteration for speed of conver-
gence. Their projection subproblems can be solved efficiently even in the large-scale
case by a variety of methods, especially those that can benefit from parallel computa-
tion; see, e.g., [AhC89, BET89, IDP91, Kiw95, Loll88, Oko92, Spi87, Tse90a, Tse90b,
YAM92] and the references therein. The ability to use inexact projections makes such
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12, 1994. This research was supported by Polish State Committee for Scientific Research grant
8S50502206.

Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland (kiwiel@ibspan.waw.pl).
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algorithms very attractive in large-scale applications. In contrast, the existing bun-
dle methods (cf. [Kiw89, SCZ92]) employ nonstrictly convex quadratic programming
(QP) subproblems, and it is not clear how to solve such QP subproblems exactly via
parallel computation.

It is fruitful to view subgradient methods as extensions of relaxation methods
for linear inequalities [Agm54, Gof78, MoS54]. Motivated by possible applications to
the subgradient methods of this paper, we have introduced in [Kiw95] several paral-
lelizable relaxation methods. Here we provide a unified perspective on acceleration
techniques for such methods, including simultaneous projections [Tod79], surrogate
cuts [BGT81, GOT82, Oko92], surrogate constraints [YAM92], conjugate subgradients
(CSs) [CFM75, KKA87, Shc92, ShU89, Sho79], and projected (conditional) subgra-
dients [BAG79, KiU89]. In contrast to their usual interpretations, we show that such
methods hinge on implicitly generated affine (or polyhedral) models of f. Explicit use
of such models allows various modifications and extensions that seem more efficient.
It turns out that some of these methods are simplified versions of others that trade
speed of convergence for ease of implementation. Further, our framework shows how
to modify their models to account for the constraint x E S. For instance, it suggests
the following simple modification of (1.2) (proposed independently in [KiU93, Kiw93]):

xk+l arg min{ Ix xk12/2 f(xk) + (gf(xk),X x} <_ f*,x e S },

which seems to be more efficient in general [KiU93].
The paper is organized as follows. In 2 we extend the level algorithm of [Kiw96]

and give conditions that allow efficient implementations via general relaxation and
QP methods discussed in 3 and 4, as well as "cheap" surrogate projection methods
developed in 5. Extensions of conjugate subgradient implementations are given in

6. In 7 we argue that subgradient relaxation should also include inequalities related
to S. Finally, we have a concluding section.

We use the following notation. We denote by (., .} the usual inner product in

IRN. For e _> 0, the e-subdifferential of f at x is defined by Of(x) {p IRN

f(y) >_ f(x) + {p, y x} e Vy e IRN}. (f, c) {x f(x) <_ a} is the (-level set
of f, and diam(S) supx,yes Ix Yl is the diameter of S. Given a closed convex set

C c ]RN and a stepsize t T, the relaxation operator 7c,t(x) x + t(Pc(x)- x) has
the Fejr contraction property [Agm54, Kiw96]

(1.4) lY- Tc,t(x)l 2 <- ]Y- xl 2 t(2 t)d(x) Vy e C,x e ]RN,

where de(x) -Ix- Pc(x)l. We let 1" k denote 1, 2,..., k. For brevity, we let a/bc
a/(bc). The convex hull is denoted by co.

2. The generalized relaxation level algorithm. We start by presenting an
extension of Algorithm 2.2 from [Kiw96].

ALGORITHM 2.1.
Step 0 (Initialization). Select an initial point x S, a final optimality tolerance

opt

_
0, a level parameter 0 < a < 1, and stepsize parameters 0 < train

_
tmax < 2.

Choose D >_ diam(S) and flow <_ f*. Set pl 0 and fup c. Set the counters
k 1, 0, and k(0) 0. (k(1) will denote the iteration number of the/th increase
of kflow

Step 1 (Objective evaluation). Calculate f(xk) and gf(xk).
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Step 2 (Level update). Using the current lower bound flkow on f*, update the
upper bound fukp min{f(xk), fukp-1}, the gap Ak fukp- flkow, and the target (level)
Sv Su ,

Step 3 (Stopping criterion). If min{Ak, Igs(x)l/D} < opt, terminate.
Step 4 (Relaxations). Let fk(.) f(xk) + (g$(xk),. xk).

(i) Find z e ]Rg and p _> 0 such that p > train(2 tmax)dc2.($k,$,v)(xk) and

(2.) ly zl _< ly 1 p Vy e s* if flev >- S*;

if flkev < S*, then zk and p are arbitrary (even p o is admissible). If Pk +P > D2

or it is discovered by another test that fv < f*, go to step 5.
(ii) Find xk+l e S and p _> 0 such that y- x+l2 M ]y- zl2 p for all

y E S. If Pk + P + P > D2, go to step 5; otherwise, go to step 6.
Step 5 (Update lower bound).

(i) Choose a lower bound Sow e [max{fw, Sv}, S*] (e.g., Sowk max{Sowk
ck+l k fp "ky}). Set ow Yo p+ 0 and flow"

(ii) If k eopt, terminate; otherwise, continue.
(iii) Set xk+ xk (null step), k(1 + 1) k, and increase k and by 1. Go to

step 2.
+ SwStep 6 (Serious step). Set ow fow fow and p+

p + p + p. Increase k by 1 and go to step 1.

We need only discuss possible implementations of step 4. First, as in [Kiw96], we
may choose a stepsize t T and an admissible model ck of f in the set

{ : ]RN -- (-oc, oc]’ is closed convex and (x) < f* Vx e S* }

such that >_ f, discover that fev < $* if (, fev) , and otherwise set
yk pc(k,Lv)(xk), zk xk + t(y_ Xk), X+ ps(zk), p t(2- t)ly- zl,
and p Ixk+x zk] 2. (Then xk+ Ps(c(,yv),t (xk)), and p and p stem

from Fejr estimates; cf. (1.4).) For instance, we may let be the kth polyhedral
model of f

]k(x) max{ if (x) j e jk } with k e Jk C {l" k};

e.g., jk {k} yields the subgradient projection level algorithm (SPLA):

z+ ps(x t($(z) (x-fev)gy(xk)/lgy )1) fo k ,2,

Alternatively, for the dual level methods of [Kiw96, 9], we may choose Ck E

O U O,,g and replace f with at step 4(i), where # > 0, 0 < #, _< 1, and #g > 0

are additional fixed parameters, and k and k,,g are defined as follows. Ok denotes

the set of all closed proper convex functions Ck. IRN (-0(3, o] that satisfy

(.3) S* c/:(k, fev) and dL(,y,ov)(X) >_ #nA/Ly if fiev _> $*.

O,,Ook denotes the set of all functions of the form Ck(.) k(xk) ek + (pk,. Xk),
where k. ]Rg (-o, cx] is closed, proper and convex, k e if fkv > f*, pk e
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0ekk (Xk) satisfies Ipkl < L$ Ittg, and eke [0, k k $ kemax] with {[max (xk) flev ek
In particular, we may choose k ]k, ek e [0, ekmx] and

(2.4) pk arg min{ Iple/2 p O,kk(xk) },

using

X: [](x) f(x)] < }’jEJ

Remark 2.2. For the methods from [Kiw96, 8], which use fkev mins ] with
]k maxj=:k fJ, S* in (2.1) should be replaced by {y S" ]k(y) <_ flkv}. It is easy
to verify all the efficiency results of [Kiw96] for such modifications. (Hint: let y S*
in [Kiw96, Lem. 3.2], with S* replaced by (]k, kfev) in [Kiw96, 8].)

3. Using general relaxation methods. We now show how to implement step
4 via general relaxation methods for linear inequalities; see, e.g., [AhC89, Kiw95] and
the references therein.

Suppose Ck is polyhedral, so that (k, flkv) has the form {x" (a, x} _< b, E I}.
Let C {x" (a,x) <_ b}, i e I. Given a starting point 1 NEC, many relaxation

methods attempt to find a point in NC via the iteration 2+1 ’eI 7c,(),
n 1, 2,..., where the weights >_ 0, I, satisfy - 1, and 0 < _< 2. By
(1.4),

ly c,,{ (m)l < ly 1e h(2 h)d2C (,n) Vy C

multiply this by ], sum over i, and use -] 1 and the convexity of 12 to get

12y ; TCc,, () -< ly 2nl2 (2 )Ed2c, (hen) Vy NiC.

nd2In other words, letting thn n(2--) - C(n), we have the Fejr estimates
n--12112- lY-212 >- --d= J Vy NC. Therefore, if we start from 21 P($,f,v)(x

n--1and terminate for any n >_ 1, then z 2 and p d(,$)2 (x) + -.j= j will

satisfy the requirements of step 4. (In particular we may stop if Pk q-P > D2 for such

p.) Moreover, p may be increased by using more refined Fejr estimates to replace
with some larger quantities [Kiw95]. In fact [Kiw95] shows that other relaxation

methods have much better Fejr estimates; hence they could provide more efficient
implementations of step 4(i).

Similar ideas may be used for implementing step 4(ii) via finite iterative methods
that do not necessarily compute xk+ as the projection of z onto S; see [KuF90] for
details.

It is worth observing that many relaxation methods are highly amenable to par-
allel computation; see [AhC89, Kiw95]. Since we do not require exact projections,
various heuristics may limit the work spent on relaxations.



SUBGRADIENT PROJECTION METHODS II 681

4. QP-based implementations. We shall now discuss possible implementa-
tions of our methods that employ subgradient selection and aggregation. These two
techniques have proved to be highly useful in implementations of other NDO bundle
methods; see, e.g., [Kiw85, KIT89, Kiw90] for details.

First, we describe subgradient selection. If Ck ]k and (, flkv) then

(4.1) yk argmin{ Ix xk12/2 ff (x) <_ flev,J e jk }.

Denote the Lagrange multipliers of (4.1) by , j e jk. Let k {j e jk.A > 0}.
By the Karush-Kuhn-Tucker (KKT) conditions, if we select Jks
J, then Js may replace J in (4.1) without changing its solution. This suggests that
only the linearizations fJ, j E J, that have contributed to yk should be retained for
the next iteration. Moreover, many QP methods will automatically produce Ikl _< N.
Hence we may choose j+l js t3 {k + 1} such that ]J+ll -< N + 1. Storing the
subgradients gJ gf(xJ) for the representation ff f(xk) + (g,.-x}, we do not
need x to update ff(xk+l) ff(xk) + (gY,x+1 xk } for j e Jsk. Thus the required
storage is of order (N + 1)2 (plus the QP workspace).

Since subgradient selection may require excessive storage for large N, we now
turn to subgradient aggregation, in which aggregate linearizations are produced recur-
sively by taking convex combinations of the "ordinary" linearizations. Suppose
max{/k k-1} for some affine Ck- e CO{ff k-1 Dk-1 )k-1}j= of the form (.) (xk) +
{g-,._ xk} (0 f). Let us add to (4.1) the constraint Ck-l(x) _< flkev with

Lagrange multiplier . Equivalently, in terms of d
j e jk, and a flkev- k-(Xk), we must find

(4.2) dk argmin{ Id12/2"(g d} <_ a, j (g-I

Letting/kk ’jej ,k + , we define "normalized" multipliers A/Ak, j

A/A that form convex combination. Then, by the KKT conditions,
dk k k k k--Asg where g Ejejk ig3 + _k-1

g O(yk). (Incidentally, 8 > 0
because y : x due to f(x) > fev.) Defining the next aggregate linearization

(.) Ck(yk)+(g,._yk), we observe that Ck -,.yejk ff+jk-1 e co{fJ}=
and yk p(,fv)(xk). In effect, embodies all the past subgradient information

that determined yk. (Equivalently, this amounts to replacing the constraints of (4.2)
by their convex combination with normalized multipliers.) With such motivation, the
next iteration may use k+1 max{]k+1, Ck} with jk+l containing k + 1 and, e.g.,
all but one of the elements of jk to ensure bounded storage.

An alternative selective aggregation consists in aggregating just two linearizations.
Specifically, if we pick i, j e jk with )k, > 0, replace fJ with (k fi + fj)/(k +
/k), and drop i from jk, then the solution of (4.1) is unchanged and the new fJ
(fj

_
]k). In other words, we may replace fJ with the aggregate of fi and fJ and

destroy f to make room for the next fk+l. (Here aggregation limits only the loss of
information necessary to ensure bounded storage. In other bundle methods [Kiw85],
it is crucial for convergence.)

Remark 4.1. The simplest case of aggregating just two linearizations, i.e., jk
k-1{k} in (4.2), may be handled analytically. Suppose gk and g are independent (the

other case involves projecting on one halfspace only). Then one of the following three
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cases may arise: --akk/Igal2 and 0 (if a(ga g _< al ); 0 and

=-allg-l]2; or

(4.3a)

(4.3b)

k-1In particular, if c 0, then either dk -aga/Igal2 if {gk g } >_ 0 or

(4.4)
k-1 k-l[2k-l}g / and (d -1 -,g }=0 if (gC,g }<0,

k-1 k-1 k k gk dk-1 d- 2-d /Ak (gk } 1/idk-where g- -d /As if k > 1 so that
and (dk, dk- } 0 if (g, dk-l} > 0. Hence subgradient aggregation is related to the
CS techniques of [CFM75, ShU89]; see 6.

Let us now describe subgradient selection for the dual methods of [Kiw96, 9].
Let A, j e J, denote a solution to (2.4) using (2.5) for ]. As in the primal

case, if u {j e Jk’A > 0} C jk C jk, then Jsk may replace jk in (2.5) without
changing pk, and we may select jk+l jk U {k + 1}. Again, many QP methods will
ensure I.]kl <_ Y + 1, and the required storage is of order (N + 2)2.

Aggregation is natural in the dual methods, since they produce an aggregate
linearization Ck (from ) that determines y. Specifically, employing max{]k,
-} in (2.4) to find , we may choose+ max{]k+,k} with jk+l containing
k + 1 and all but one of the elements of jk to ensure bounded storage.

The following (primal) pairwise projections strategy generalizes one in [KKA87].
Having several fJ, j E jk, let Ck max{fk, fj} for E jk chosen to maximize the
resulting lyk- xk[ when {k,} replaces jk in (4.1). For example, use the formula
(cf. (4.3))

idl [(igl)e 2(g j 2 if Ai,,g Ig l (ge > O.

Such may be included in jk+. Alternatively, if ]k(yk) > flkev, we may replace fk by
the aggregate linearization of fk and f, pick such that ff(yk) > fv, and recompute
yk. Of course, more than two constraints can be used at a time, and projections may
continue until yk becomes almost feasible in (4.1). Moreover, if N >> IJkl, then
maintaining a matrix of inner products between gJ, j jk, allows us to compute
pairwise projections without additional expensive inner products; cf. (4.3). One may
use Lemma 9.4 in [Kiw96] to show that pairwise projections are essentially equivalent
to the surrogate method $2 of [Oko92] applied to the inequalities ff (x) <_ fv, J jk,
starting from x. (The remaining surrogate methods of [Oko92] are obtained by using
triples of inequalities and successive aggregation.)

Remark 4.2. It is worth observing that step 4 may perform several relaxations
using the accumulated linearizations. Specifically, at step 4(iii), instead of going to
step 6, we may return to step 4(i) to choose any Ck for the next relaxation with Pk
replaced by pa + p +p and xk by xk+ (the replacement being justified by Remark
2.2); any number of such returns can occur, and all but the final one may skip the
projection on S by setting x+ z. For example, suppose J is so large that we do
not want to solve (4.1). Then, until yk becomes almost feasible in (4.1), each execution
of step 4 may use Ck max{f, k-1}, where Argmaxejk fJ(xk) and Ck- is
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the current aggregate linearization; i.e., it may solve (4.2) with jk replaced by {}.
Alternatively, {} may be replaced by some larger set for which the solution of (4.2) is
"cheap"; cf. 5. The dual methods can be used iteratively in the same way. In other
words, we may attempt to accelerate our algorithm by performing extra iterations on
models of f to exploit more fully the accumulated information about f and hence to
reduce the number of f-evaluations at the cost of more work per iteration.

5. Relaxation with surrogate inequalities. This section introduces "cheap"
QP-based implementations by extending the framework of deep surrogate cuts of
relaxation methods for linear inequalities [BGT81, GOT82, Tod79].

We need additional notation. For any set ,4 C ]RN, lin,4 denotes its linear span
and cone jr {a a i=l Aiai ai E J[, Ai > 0, n < oc} denotes its convex conical
hull. We let Jr- {x" (x, y} _< 0 Vy E Jr} and ,4+ -jr- denote its negative and
positive polar cones, respectively. For a matrix A ]I:nn aaij and denote its ijth
element and ith column, respectively. Given a set Z c {1" n}, Az denotes the matrix
with columns ai, 2?. For a given b ]R, bz denotes the vector with elements
bi, i Z. Matrix inequalities hold componentwise. A is called a Stieltjes matrix if
aij aji _< 0 Vi j, i,j l’n, and A-1 _> 0.

Given A ]Nxm and b IRm, consider the system of linear inequalities
bi, 1" m, having a (possibly empty) solution set P {x" ATx
0 for 1" m. Then each inequality defines a closed halfspace Hi
and P im__l Hi is a convex polyhedron.

Remark 5.1. We are mainly interested in the case where P E(]k kflev), but
to compare the convergence results of [Kiw96] with those for relaxation methods
[Gof81, Tel82] one may observe the following. If P = q), then 7) Argmin f, where
f maxi=l:m((ai, .} -bi)+ has a subgradient gf(x) a if (hi, X} -bi f(x) > O,
gf(x) 0 if f(x) 0, satisfying Igf(x)l <_ nf := maxi=l:m lail. In this case we may
let flkev --= f* 0 in Algorithm 2.1 and proceed as if S were lRN, replacing diam(S)
in [Kiw96, Eq. (1.4)] by Ix* -xll for any x* e P; cf. [Kiw96, 6]. Then the SPA of
(1.2) describes the maximal residual version of the relaxation method; the maximal
distance version corresponds to dividing each a and bi by [ai[ initially.

In classical versions of relaxation and ellipsoid methods for finding a point in
given a current point 2 P, one finds the next point 2 by projecting 2 on the halfspace
Hi that is furthest from 2, since for faster convergence one wishes to maximize 12- 21.
By combining inequalities one can sometimes obtain halfspaces that are further from

If A ]R, a AA, and b bTA, then the surrogate inequality (a,x} <_ bx is
valid (ATx

_
b = ATATx

_
ATb). The deepest surrogate inequality that maximizes

the distance ((aX,2}- b)+/[al from 2 to g), {x "(a,x} <_ b} corresponds to

e Argmax{TA/]AA[" A _> 0},

where := AT2 b 0 (2 P). Clearly, if P q}, then HX is the unique halfspace
containing P that is furthest from 2, and H {x" (,x- 2 >_ 112}, where
Pp(2)-2 (s_ince for any halfspace H Pp(2), dH(2) < dp(2) unless PH(2) Pp(2)).
Of course, d solves the QP problem

(5.2) arg min{ Id[2/2 ATd <_ - }.

By duality, we may equivalently find its (possibly nonunique) Lagrange multiplier
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=+A- {a. ATa<_ -}-- Pv(O) Po(O) PT:’(&) 5c

FIG. 5.1. Illustration of orthogonal surrogates.

vector

(5.3) e Arg min{ IA[2/2 TA. X > 0 }.

Indeed, by the KKT conditions, and satisfy (5.2)-(5.3) iff -A, AT <_ --,
>_ 0, and iT(AT+) 0. Hence T 112 and (aX,2}-I12 iTAT&--

5cTA + bTi bx, so (hi,X} <_ b iff (, x >_ I12, and PHx (2) P,(2). (We
may add that the optimal values in (5.1) and (5.3) are infinite iff 7) 0. Since the
objective of (5.1) is positively homogeneous, the deepest cut can also be found by
solving min{IAA TA 1, >_ 0}, max{TA" IAAI 1, >_ 0} or min{IAAI/TA
i Ai 1, >_ 0}. We note that (5.1) is a special case of [Kiw96, Eq. (9.7)], whereas
the restricted variant (2.4) does not seem to have been considered explicitly in the
context of linear inequalities.)

Of course, finding the deepest surrogate inequality via (5.1)-(5.3) may be~ too
expensive, except when A is orthonormal and >_ O, in which case d -AA and

by (5.3). In the general case, we may project on a surrogate 75 (x" QTx <_ c}
of :P, where QTx

_
c is a surrogate of ATx

_
b (so that 7) C 75) and Q is orthonormal.

As in [BGT81, GOT82, Tod79], it is convenient to work with a subset of inequalities,
indexed by 2- C {1" m}, say, that satisfy the obtuse angles condition (a, aj } <_ 0
Vi = j, i, j E 2". Taking { 1: m} first for simplicity, we now show how to construct
suitable surrogates via orthogonalization (see Figure 5.1).

LEMMA 5.2. Let 4 {a}n=l C cone4, rh rank A, and 6 ATA. If
(ai, ay} < O Vi # j, i,j l’m, then

(i) C contains an orthonormal system Q {q}i=1 such that lin C lin Q and
A QR, where Q IRN is orthonormal and R IRmxm is upper triangular, with
rii >_ 0 and rij < 0 for l"h, j + l"m. Q and R can be found via the Gram-
Schmidt orthogonalization: set ml O, and for j 1: m set (ty aj -i= qi}
rjy I(Jl, riy (aJ,qi} for l:my, riy 0 for > my, j, qJ (tJ/I(tY[ and
my+ mj + 1 if (1y O, mj+l rrtj otherwise. (The final mm+

(ii) C+NlinCC Q+nlinQ=Q+nconeQ=coneQcC.
(iii) If rank A m, then R- >_ 0 and G-1 >_ 0; i.e., is a Stjelties matrix.
(iv) If rank A m, then R is the unique Cholesky factor of having a positive

diagonal, Q AR- and 7) c {x QTx
_

c}, where c-- R-Tb. In particular,
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each inequality (qJ,x) <_ cj is a surrogate of the system (qi,x) <_ ci, l"j 1,
(aJ,x) <_ bj, and hence a surrogate of the (possibly stronger) system (ai,x) <_ bi,
i=l.j.

Proof. (i) If (j {qi m}i=l C Cj cone{ai}_l1, then aj C yields (aj qi) <_ 0
for 1" mj, so J cone({aJ} U Qj) C Cj+I and Qj+l c Cj+I. The rest follows by
induction.

(ii) a E Q+ C lin Q a Eil (a, qi}q with (a,q) 0 for i= 1"
a cone Q, since a =1 Aq iff A (a, q) for 1" . Clearly, Q C cone Q C C
and C+ C Q+.

(iii) If m, then rii > 0 for 1" m, so R and G RTR are nonsingular.

Sincer 0fori<j ifRu vO, thenuOfromu (v j=i+l rijuj)/rii,
m,..., 1. Hence R-1 0 and -1 R-R-T O.
(iv) The uniqueness of R is well known. Use (QT, c) R-T(AT, b) and (qJ, cy)

j-1[(aj bj)-Ei=l rij(q ci)]/rjj, j 1,..., m, with R-T 0 and rij 0 by (i) and (iii),
to get the desired conclusion, noting that ATx b R-TATx QTx R-Tb c.

The next result helps in selecting subsets of inequalities for which the projections
For Z c Az {x" bz}, 9z

{d’Ad -gz}, and Gzz AAz. If Pz O, let d(z) Pz(0), so that d(z)
from

LEMMA 5.3. SupposeZ C {l"m}, (ai,a} 0 Vi j, i,j Z, and gz O.
Then

(i) If rank Az lZ, then (z) -Azz, where z Ggz O, and

(5.4) (z) arg min{ d2/2 Ad -z }.

Moreover, for {i" i > 0} and each j Z, j > 0 if gj > 0; if gj j O, then
ajZA2; andAj=Oif j=O andaJZ

(ii) If rankAz [Z[, j {l:m} Z, A}aJ O, fl ZU {j}, and either > 0
orgj=O andz>O, then rankAj=lfl 0 Pj0.

(iii) rank Az IZ] Ad < 0 for some d.
(iv) If gz > 0 and Pz O, then rank Az IZI and z gz > O.

(v) If Gzz RTR is nonsingular, where R Nzl x z is upper triangular,
Q AzR-1, and a R-Tz, then d(z) -Qa and z R-la in (i). Moreover,
if rii > 0 for i= 1" IZI and {d" QTd --a}, then D z, d(z) P(O) and

QTd(z) -a.

Proof. (i) Replace {l:m} with Z in Lemma 5.2 to get 6 0. Hence z
Ggz 0, and letting d -Azz we have Ad -gz, so (5.4) holds with
by the KKT conditions. Since G 0 is positive definite, it has a positive diagonal,
so j > 0 ifgj > 0. Next, suppose gj 0 and let J =Z{j}. Ifj 0, then
0 -j (aJ,d) -Eie2i(aJ,a} with i > 0 and (aj,a} 0 imply aJ
Conversely, if a Z Aj, then after symmetric permutations we have

0 la1 and
0 la1-0.

(ii) If rank A2 , then-A2 2. If rank A2 Zl, then a lin z.
Since a (conez)-, Lemma g.2(ii) applied to z yields -a cone Nz; i.e.,
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there exists Az >_ 0 such that -aJ AzAz. Thus if Ad <_ -z for some d, then

-izAzd > 0 from _> 0, so Dj because AzTz _> 0 > --y if
j > 0, whereas Az > 0 -j if j 0 and z > 0, with Az = 0 due to aj O.

(iii) For "=," choose sz > 0 and 3 -Az6sz to get dd -sz < 0. For
"=," suppose A < 0. Replacing 2 by 2- if necessary, we may assume z > 0.
Since t E Tz for large t > 0, Tz - 0. For any i E 2-, rank A{} 1, since a - 0. If
: c 2-, rank A2 I:1, j e 2- \ :, and 5 " t2 {j }, then rank A
replaced by ’, since j > 0 and T. D T2 = . Hence, by induction, rank Az 12"1.

(iv) Combine (iii) and (i), noting that z > 0 if z > 0.
(v) Clearly, d(z) -AzAz -QR(RTR)-Iz -Qa. Suppose r > 0 for
1" I:1. Apply Lemma 5.2(iii,iv) to Az and c R-Tbz to get :Dz c from a

R-T(ATz- bz) QThc- c, with a R-Tz >_ 0 since R-1 >_ 0 and z >_ 0. Hence,
replacing (Az,z) by (q,a) in (i), we have P(0) -Q(QTQ)-a -Qa
and QT(z =-a.

Lemmas 5.2-5.3 extend some results of [Tod79] in a way that is useful for algorith-
mic developments. For example, consider the following extension of the simultaneous
projections method of [Tod79] for solving a possibly inconsistent system ATx

_
b.

PROCEDURE 5.4 (for finding a point in {x" ATx
_

b}).
Step 0 (Initialization). Select 2 6 IRN, a feasibility tolerance tol _> 0 and

such that dp() _</ if :P = }. Choose I C {1: m} such that rank Aio IIl and
(a,a} <_ O Vi C j, i,j I, e.g., I=). Sett51=0andn=l.

Step 1 (Constraint evaluation) Calculate sn AThen- b and in such that s..n

max/8.
Step 2 (Stopping criterion) If s.n < tol terminate.

Step 3 (Selection). Set in-1 {i e In-l" <a",a} <_ O,s >_ 0} and In

in-lt2{in}. If desired, repeat the following for some e {l’m} \In" if A.a <_ 0 and
either sn > 0 or sn 0, and A.a 0 and either 8inn > 0 or rankAx,u{} IInl + 1,
then augment In with i.

Step 4 (Relaxation). Print ":P -" and terminate if rank Az. < IInl. Otherwise
set n PPx-(2n) 2n AI-A. with A. -ffnlin8n. Choose a stepsize n e T
and set 2n+Z 2n + t-n(n 2n) and #n+l n -- n(2Step 5 (Infeasibility detection). If thn+l > b2 or (/- In+l- 211)2 >/2_ 5n+1,
print "P " and terminate.

Step 6. Increase n by 1 and go to step 1.
If P = , we may identify Procedure 5.4 with a version of Algorithm 2.1 that

minimizes f max=l:m(<a,.>- b)+ using fkev f* 0; cf. [Kiw96, 6] and
Remark 5.1. In particular P c Px c {x "(a,x} <_ b} corresponds to Ck e ,
and step 4 may be validated by applying Lemma 5.3 inductively at step 3 to get
rank Az. IIn if :P = . Hence if :P , then Procedure 5.4 shares the convergence
properties of Algorithm 2.1 from [Kiw96, 6], as well as those of classical relaxation
methods [Agm54, Gof81, MOS54, Tel82, Tod79], such as linear rate of convergence
and possible finite termination. The infeasibility test of step 5 is justified similarly as
for Algorithm 2.1; cf. [Kiw96, 4]. Note that step 3 may include in In several with

n 0 from n n-- It is natural to8in O; e.g., In- if n- 1 and sx_
choose In as large as possible, although one need not insist on maximality. Of course,
in practice detecting rank AI, < IInl will require tolerances tuned to the factorization
of A.

Remark 5.5. By using the Gram matrix ATA one may avoid expensive
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scalar products in updating 8n without forming n; cf. [Tod79]. Specifically, let
n+ 8 nII An and81 ATyc --b, 1 0 m, I"n+l (1- n)8n, 8i

+1 + nAn with Ap 0 and I {1: m} I for all n, so that n

_
A

and y= jAY for all n.

Remark 5.6. If we compute the Cholesky factorization AAI RTR, then An
can be found by solving the two systems RTa s and RA a; cf. Lemma 5.3(v).
To save work, R and a may be updated when I changes. However, as with normal
equations for least-squares problems, one may need to employ iterative refinement to
improve accuracy in the presence of rounding errors. Alternatively, one may use any
stable method for computing the "skinny" QR-factorization A QR, where Q is
orthonormal, so that AA RTR. The classical Gram-Schmidt process may fail
due to rounding errors, but reorthogonalization can ensure higher accuracy. Moreover,
by Lemma 5.3, dn n satisfies

" arg min{ [dl/2 Ay. d -s. },

and this equality QP problem can be solved via many well-known methods. All these
aspects are treated in depth in, e.g., [Bj590, Fle87, GMW91, GVL89].

Remark 5.7. Suppose step 3 of Procedure 5.4 chooses In In-1 A {in} with

si_ 0. (Recall that s_l 0 if n-1 1 and n n-1.) Let rh [In]
and let e denote column of the x identity matrix, so that s sV e

Then, using RTa s and RA a as in Remark 5.6 we have a s e/r
and only the system RA s e/r must be solved. This system may be used
even if si_ 0. Specifically, decreasing s to with i- 0 and
corresponds to setting Pp(2), where P {x Ax bi + s }
satisfies PI c pn {X (ain,x} bin}, 8o the efficiency results remain true. This
simplification is used in [Ceg92] when n- < 1. It may, however, result in slower
convergence, since pn can be much bigger than P. (The method of [Ceg92] scales
the constraints of (5.5) before computing R, but dn is not affected.)

Remark 5.8 Using dn -AA and RA s e/r as above, for the QR-
factorization A QR we have n -s q/r where we may take r

-1and q q/]q[ for q a =1 (ai, qi}qi as in Lemma 5.2. Thus only Q could
be updated by computing some elements of R QTAI. However, using Q instead of
R would require more storage and work if N, and could be less accurate without
reorthogonalization.

We may add that the idea of using the obtuse angle property to identify cheap
projections has wider implications. (A cheap projection requires only the solution of
one or two linear systems in contrast to combinatorial QP.) For instance, it may be
employed to accelerate general projection methods for convex feibility problems; see
[Kiw95].

Let us now show how to employ Procedure 5.4 as a subroutine for implementing
step 4 of Algorithm 2.1; cf. 2 and 3. Suppose Procedure 5.4 is called to find a
point in P E(] 0). Then it mayfv), starting from 2 x (with eto
be exited at any iteration 1 also at step 6. Specifically, in view of [Kiw96,
4], we may take rk (D2- pk) /2, and step 5 may use the additional test
(D- ]2n+- x(t)+[)2 > r- +1. Upon termination at step j, say, set z
n, p n ifj 2, p ifj 4 or 5, and zk 2n+ and p n+l if
j 6. Then zk and p satisfy (2.1) (cf. [giw96, 4]). The easiest way to ensure
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athat p >_ tmin(2-tmax)d($k,$,v)(xk consists of taking il e Argmax s/I at step

1, since then I -211- d,xl (21) _> d($k,iiv)(Xk ). (In fact the usual choice yields

--flev)/maxjeg IgJl, and this suffices; el. [Kiw96, Lem. 3.1].) Thus,
if desired, only one iteration of Procedure 5.4 may be executed, but more iterations
will yield better zk and p for Algorithm 2.1. Note that if step 6 always exits, then
we may set n k and 2n xk at step 0, terminating with xk+ 5ck+ at steps 4 or
5 or zk k--I and yk k at step 6.

Remark 5.9. As in 4, the final An may be used for subgradient selection or
aggregation. Note that selective aggregation corresponds to dropping from AI one
column aggregated into another, thus retaining the crucial property (a, aJ} <_ 0 Vi j
in the new In (in contrast to total aggregation that replaces one column by a convex
combination of all columns). Of course, the final In may become the initial I on the
next call to Procedure 5.4, and the final matrix factorization should be used in a hot
start, e.g., if only flkev has changed. We may add that most matrix factorizations can
be updated to reflect selective aggregation.

Remark 5.10. The following modification is useful when ^k kT’ ,(f fl..e.) Unless

flkev f* is employed, it suffices to discover that fkev <_ f*, since then fo+w flev
can be used without impairing the preceding efficiency results. To this end, step 3
may choose any In such that in In n > 0, and (a aJ) < O Vi # j i,j In8i
Indeed, suppose flkev > f*. By [giw96, Eq. (2.1)], ]k(X*) < f* for ny x* e S*, and
since ]k maxjej ff and (a, .) b ff (.) flev for suitable and j, we have

(a’,z*)- b, <_ ]k(X*)- fkv < 0 <_ S (a’,hcn} --b, Vi e In, so A(x* -c) < 0
and rank Az IIn] by Lemma 5.3(iii). Therefore, if rank Az < IIn] is revealed by

ck+l kany factorization then flkev < f and Algorithm 2.1 may set ow flev"
Extending [Shc92], we now describe an orthogonal surrogate projection (OSP)

version of Procedure 5.4 that sets n p(&n) for 5n {X "(qJ,x} < cj,j e n},
where each inequality is a surrogate of ATx <_ b (so that P C hn), the system
QJ’ {qJ}jeJ" is orthonormal, and ,in C {l’n} Here AT- x < bi,,_ is replaced

in_

by the accumulated surrogates (qJ,x) <_ cy, j n-1, at step 3 in constructing the
new surrogate (qn, x) <_ Cn via orthogonalization as in Lemma 5.2. Specifically, at step
0 set 0 0. At step 3 set -1 {j e ]n-1 (ai, qi) _< 0} and n jn-1 U {n}.
At step 4 set

(5.6a) (ln ai E <ai’ qY>qY 0 and qn n/ln if (n 0,

print "P 0," and terminate if n 0; otherwise set a-jn- (1 n-lz(Tn--1jn_l,

(5.6b) (Cn a’)- [(bi sn" )- E <ai qJ>(cJ (rY)]j-i

n -Qa, and n , +0n, and choose tn < 1. Here Q2 [Q_, an], where
Q2_ is the N ]n-] orthonormal matrix corresponding to

To validate this modification, suppose P , Q_ is orthonormal, a_
T x < c_ is a surrogate of ATx < b, so thatQi n_ C_ > 0, and Q_

P c Pn 2n + , where n {d" QI_T d _< -ajn_l, (a, d) _< -s, }. Also
s > 0 and TQ_a* 0 by construction. Hence, replacing z by n # 0 in Lemm
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5.3, we deduce that rank[Qjn_l, aCn] rh-= J/n I, so n 0 and by construction
[Qj._I,a] Qj.R, where Qj is orthonormal, rjj 1 and rj (aC-,qj} 0,
j 1"- 1, r nl, and the remaining rcy 0. Then by (5.6), (qn,x} c

T {aC,x} < bc. (and hence of ATx < b) with ais a surrogate of Q._x c._,
(qn,n} Cn > O, and R-T[(a._)T,sn n]T ffnn Therefore, since n -Q.a2.,n
we deduce from Lemma 5.3(v) applied to that Qd -a.,
(5.7) n C n := { d’Qjd -a } and p(n)= Pg()"

Thus n Ppn (n) Pgn (2"), where P. c {x" (ai", x} E bi. } and n n + n.
Using Qd -a.,+ n + nn, and {n 1 gives a: Q2n+I c.

T nffn + tnQnn (1- {n)ff. 0. Also Qnx Cn is 3 surrogate of ATx b.
Hence one may use induction to show that this OSP version shares the convergence
properties of the original one.

Note that if {n--1 1, then a 0 and d% _anqnn -8 qn/InIas
in Remark 5.8. Thus " is the projection of n on the "orthogonalized" surrogate
(qn, x} Cn. Also the preceding validation would go through if, to save work, we

increased c._ by a._ 0, i.e., enlarged Pn to get a._ 0 and -s,. q"/"]
as in Remark 5.7.

Step 3 could construct more than one surrogate. Specifically, if s > 0 and
Q.a 0 for some i, then step 3 could append to Qx c2. another surrogate
derived from (hi,X} bi and Q.x c. as in (5.6), and this may be repeated for
other violated constraints. Again, Lemma 5.3 validates this extension.

To improve accuracy, iterative refinement of the form n n+Qn(Cn-Qnn)
or n n + Q2. (a. -Q2n) may be used at some iterations, and an should be
reorthogonalized with respect to Q._; see, e.g., [Bj590, DGKS76].

When the OSP procedure is called repeatedly with P (]k, kflev), we may
generate a vector 82- > 0 recursively via n (1 jn- (ain,qJ)j)/]nI. Then,
by induction on the surrogate construction (5.6), there exist k 0 such that

n n

(5.8) (qn,c.) j(a,bi) and 5n k . 1/[n[ > 0,
j=l j=l

so dividing by n yields ((qn, .}_ Cn)/n e co{(ai, ")- bi}= e co{ff}ej flay,
k+land hence co{(qJ,cj)/j}ie2, e co{(ai, bi)}=. Thus, when fv changes to Jlev on

the next call then fk+l k n
lv flev)C2, should be added to c. and a.. If xk+l n

(e.g., due to xk+l Ps(2n)), then a. Q21- c. must be recomputed for
2 x+1 Alternatively, using T T (X nQ2.x c. Q. + a2. we may update

a. a. + Q2(x+- n) (then c. is not required). Next, dropping j with

a < 0 from n, if any, a hot start can proceed as if 0 were ". Note that Remark
5.10 holds for the OSP version with AI. replaced by [Q._, a-] (since ATx < b

T 2n--c._ by (5.8)).Qn-IT x* --Cn_ < 0 <__ an--1 Qn-1
Remark 5.11. By the preceding argument, the surrogate linearizations

(5.9) ?(.) (<q,.} cy)/j + fv (<qY,’- n} + a)/j +fv, J E 2n,

satisfy ] E co{ff}yej C . Hence they may be used as any other linearizations
of f. For instance, no additional storage is required if, at step 6, ] replaces the
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fJ corresponding to (a, .}- b. Also
j e n, since n PO(&n) with n (d" (qJ/hj,d) -a/hj,j e fin), whereas

a are Lagrange multipliers for n po (n)in (5.7). Thus A can be used for
selective aggregation as in Remark 5.9, and normalization of the aggregated column
ensures orthonormality of the new

Remark 5.12. Consider the simplest case where step 6 always exits, so that we
may letn kandn xk SupposeP=(k kfv) with max{fk Ck-} as for
(4.2), where- is the previous aggregate satisfying -(2n) flv, so that a hot
start occurs from n- {n 1} using n--1

k-11/n-] and ffnn_ 0. Assume (g,g) < 0. By simple calculation, either infeasi-

bility is detected at steps 4 or 5, or step 6 terminates with n _(f(xk)_fv)4n/]n]2,
where n g (gk,g g has ]n gk (g g }g- (use

nqn n s/] and s? f(xk)-fv). Also, since an 0, then --fin fin zn zn n--1
k-1aggregate of f and - coincides with in. Note that for (g g } 0 we

would get n gk (aS if Ck fa), and that if we had -(n) > flay, then the
same formulae would hold if we set n

Cn--1
and Ck would be produced via the original version of Procedure 5.4 restarted from
A- b- - fev" (Use a 0 in (4.3)-(4.4) to get

r+ if tk < 1 (cf. Lemma 6.1(v)).and dk .) We add that (x+) > v
We may add that the method of [Shc79, Shc92] corresponds to a version of Algo-

rithm 2.1 that attempts to solve the inequality f(x) O. It sets fv fw 0 and
finds x+ &2 via one iteration of a simplified OSP version of Procedure 5.4 that
starts with xk and f(x) 0 appended to the accumulated surrogates and exits
at step 6 unless infeasibility is detected earlier, in which case it terminates. First, it
sets tn 1 for all n, whereas our OSP version allows smaller stepsizes that may be
useful at initial iterations. Second, it expresses d% as d% -]52q/(hn,q}, where
5n s ai/ai2 so -s q/On from (ai,) ]n2 by orthogonality. (In
fact it replaces ai by 5n in calculating qn, but this does not affect Qj.) Third, it
does not compute cj and 5j, thus preventing iterative refinement and hot starts
that would be necessary for handling the additional constraint x S (except when
S is a fiat [Shc87]). Fourth, both methods should cope with the instability of the
Gram-Schmidt process. Periodic resets to ) (n) recommended in [Shc87, Shc92]
slow down convergence. It seems better to employ iterative refinement and reorthog-
onalization in computing qn. To sum up, our method appears competitive with that
of [Shc92]. Finally, note that such methods project on sets P that may or may not
be larger than PI with I (ij)ej. Thus it is not clear whether our OSP version
could compete with, e.g., a Cholesky-based implementation of Procedure 5.4. We
note that encouraging numerical results were obtained in [Ceg92] by a method that
combines greatly simplified versions of Algorithm 2.1 and Procedure 5.4 for solving a
consistent inequality f(x) S O.

6. Conjugate subgradient techniques. In this section we use the dual frame-
work of [Kiw96, 9] for extending some CS techniques; see, e.g., [Br93, CFM75,
KiA90, SaK87, SKR87, ShU89, Sho79].

First, we identify surrogate linearizations of f that may be generated via CS
methods.

LEMMA 6.1. Let 0 < 1. Suppose iteration k-1 provides an ane model k-
g f8 # the fok-(.) k-1 (xk) + (g-1,. xk) with k-(xk) fiv such that



SUBGRADIENT PROJECTION METHODS II 691

e if fv >-- f*" Let k-1 )k-1 ._ fev_)k-l(xk) denote a shifted version of
such that (pk- (x kflev" The corresponding current modelsof fs are given by
max{fk, k-1} and k max{fk, k-1 }. Next, let k f(xk) + (,._ xk}
a(g-l,._ xk} be the current CS model of fs, where gk + kg-i for
0 such that I71 <- Igkl/#, and let k (fk + kCk-1)/(1 + k) denote another

CS-like model of f8 that is a convex combination of fk and -1. Finally, let
arg minx_>0 Igk + g- If flev >_ f* then

(i) ck-l,k-1 e (I), ,k e (I) and k,k e k (cf. (2.3)). In particular,

and d(,,l,,)(xk > d(, (xk) > d : (xk),I) (I,I)
k-i 2 2 gkI2 k-1)2/Ig-12-1 /Ig Moo, = -(g 9(ii) k=(gk--g )+

k-1

Igkl/Ig-lI.

d(,y,) (x).
k-1(iv) If (g g } < o and then &(4 (x) &(a,y,.)(x),y)

(v) Ck(xk+l) k f if t 1 and Ck(x) > fv; e.g., k, , k, or
at step 4.
Conversely, if k , or and (k,fv) then:*’S* flev<f

f*Proof. (i) Let x Since Ck-(x) + (g-,x* x) -(x*) and

f(x*) f*, we have (g-,x*-xk) f*--Ck-(Xk) 0 and (x*) f(x*)+
/ev)/(g- x* xk) f*. Next, d(5,iiv)(Xk (f(xk) k aAk/(gk]/p)

aAk/LI, while k(x) (xk) + (,x- xk) with k(xk) fiv [f(xk) fv +
Z(-l(z) ev)/(1 +) and (ga + g-)/(1 +) yield d($,i)(xk)
[I(x) + Z((x) flev)]/, so the conclusion follows from - Ck-,
f k k, and k k.

k-1(ii) Solve min0 ]gk+ Zg-2 and use ]k] ]gk] + k]g .
fv)/]l.(iii) Invoke (i) with ]k] ]gk] and d(i,iv)(Xk (f(xk)

k-1 k-1 2(iv) Use ]]2 gk]2 (gk,g)2/g and 0 in (4.3)-(4.4) to get

(f(x) k 2 dk k (xk) --xk with Ja-fe)/g and =-Akg P(5,I) (k} in

(a.).
(v) Using (1.4), x+ Ps(zk), xk e S and tk 1, we get x+-x

zk x tyk_ Xk ]yk_ Xa[. But yk pn(,i)(xa) with Ck(Xk) > fv, so

fv (u) (+).
Lemma 6.1 suggests the following CS implementation of Algorithm 2.1. Let 0 <

p 1 and f. At iteration k 2, let - - and with k 0
such that gk/p if Ck-(Xk) flv, and k 0 (k fk) otherwise. Then by
induction, as in [Kiw96, 9], we see that only the first terms of the constants in all
the efficiency estimates and the right side of (7.3) in [Kiw96] need be divided by 2,
with 1 if k 2k Vk; of course, Av replaces aA in Lemma 6.1 for the frozen
level gaps of [KIT96, 7].
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Note that by construction, dk (f(xk) k -k dk-1flev)g/l[2, and if = 0, then

k-l/ k-1dt:-l/Idk-ll -g Ig I, so if/k /k and (gk dk-l) > 0, then gk--
(gk, dk-1}dk-1/idk-112 and (dk, dk-l} 0. These CS relations correspond to those
of the methods in [Br93, CFM75, ZiA90, ShU89, Sho79], which set fv f* and

t 1 k+l < k /hen hk(xk+ltk

_
1. Incidentally, when k _< and flev --Jlev, " --Jlev j, Lemma

6.1(v), so such methods can skip computing k-l(xk) (>_ f*); this is the main reason
k-1for choosing tk _< 1. Usually 3k _< 2/k is advocated; with the choice of

from [ShU89], the direction dk simply bisects the angle between -ga and d-1 and
in this sense is an average direction. Since [y yk[2 _< [y xkl2 d(k,fiv)2(Xk)
ify e S* yk p(k (xk) and flkv > f* Lemma61(iii) augments the usual’flev)
angle-based motivation for using instead of fk, while Lemma 6.1(iv) complements
results in [KiA90]. In particular, the CS implementation with/k /k corresponds
to the simplest OSP implementation of Remark 5.12 with k-1 replaced by k-1 to
zero its ann_l and n obtained by orthogonalizing gk and g-.

Lemma 6.1 says that we may easily improve classical CS techniques by taking
Ck k, k, or instead of Ck k to increase dE(,flv)(xk); cf. [Uiw96, Rem. 3.91.
In particular, k is a convex combination of fk and k-1, and other such combinations
could be developed as in [Kiw96, 9]. It seems, however, that
is preferable anyway. First, Lemma 6.1 and [Kiw96, Lem. 9.4] show that k is best
in terms of efficiency estimates. Second, the resulting choice of a-1 k-1 and
k max{fk, a-1} corresponds to the aggregate subgradient implementation of 4,
which, in contrast to the other CS choices, does not require tk 1 and does not need
to resort to the poorest model Ck fk when ck-l(xk) < flev or (gk,g-l} >_ O.
Third, it involves little additional work (cf. (4.3)). Last, but not least, it is simpler
conceptually. Incidentally, the choices of Ck k and may be compared in
dual terms by noting that k argmaxz>o(f(xk) k-1 kfev)/Igk +g
Argmax([Ak(f(x) -1 -flev) - (k (xk) Ikgk )g
0 + 1), where the second maximum (-- dn(5 (xa)) can be much greater.,fo)

An obvious extension of the CS techniques is to take Ck max{fk, k} or

max{fk, k} to increase dz(,fv)(Xk ). Further, more than one CS step can be made
as in Remark 4.2.

7. Constraint modelling. Since Algorithm 2.1 minimizes f on S, Ck should
be chosen to model the extended objective fs f / s and not just f alone, where
5s(x) 0 ifx S, 5(x) c ifx S. Failure to do so may result in severe
deficiencies, as shown in the following simple example.

Example 7.1. Let N 2, S [0, 1] [0, 1], and f(x) xl + x2, where 0 < e < 1
is a small parameter. Then S* { (0, 0)}, f* 0, diam(S) x/, and Lf x/’l + 2.
Let x (1, 0) and tmin tmax 1. The following facts are easy to verify by
induction. The SPA (1.2) generates xk ((1 + e2)l-k, 0) and f(xk) e(1 + e2)l-
Vk; i.e., its convergence is linear but very slow for small . The situation is even slightly
worse for the SPLA (2.2) with fow f*, which yields xk ([1 ae2]/(1 + e2)k-1,0)
Vk. In contrast, Algorithm 2.1 with flow f*, D >_ x/ and Ck fk + 5S gives
x ((1 a)k-, 0) Vk; i.e., it is much faster for typical a, independent of e. In fact
for a-- 1 (cf. [Kiw96, Thm 6.1]) it terminates with x2 S*, being equivalent to the
iteration (1.3).

Example 7.1 and [Kiw96, Rem. 3.9] suggest that the following modification of
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(2.2),

(7.1) xk+l argmin{ Ix xk[2/2 f(xk) lev,X

should be more efficient in practice. Supposing S is a box of the form [xlW,xUp],
let x() argminxes{[X- xk]2/2 -t- (gk,Z)} V >_ O. Then zk+l x(), where

_> 0 solves the equation h(g) f(xk)
max{min[xw,xi gg], xp}, i- 1" N, and h is nonincreasing and piecewise linear,

is easy to compute.
Of course, projecting on S is easy only if S is simple enough, e.g., a Cartesian

product of boxes, simplices, balls, ellipsoids, cylinders, etc. Additional linear con-
straints may complicate the projections; e.g., for Ck ]k + 5S we must find

(7.2) y arg min{ [x xk[2/2 fJ (x)

_
fkev j e g, x e S }.

Fortunately, accurate projections are not really necessary. For instance, (7.2) can be
implemented approximately by projecting cyclically on .(]k, fkev and S as in Remark

4.2, possibly with inexact projections on (]k, fkev being performed via the methods
of 4, 5 and 6. Also if S is polyhedral then (7.2) is just (4.1) augmented with the
inequalities of S, so it can be solved approximately by several steps of these methods.

It is crucial to observe that even if S is not polyhedral, it may still be linearized
via inequalities generated in the course of calculations. First, such inequalities may
be recovered geometrically by noting that S C ?-Ik {x (zk-1 xk, x xk <_ 0}
from xk Ps(z-l). Hence we may replace S in (7.2) by S Njej-J with

J C {2: k}. Second, similar inequalities may be generated analytically if S {x
F(x) <_ 0} say, where F lRN ---, ]R is convex, and we can find its linearization
/(.; x) F(x) + (gF(x),’-- x} with gF(x) e OF(x) for any x. Then we may use
7-fk {x ’(x;xk) <_ 0} as above. In other words, we may accumulate T/J for the
model 5s of tis in the same way as we use fJ in the model ]k of f, so that f + 5s is
approximated by Ck ]k + 5S, with 5s <_ 5s from S C Sk. To save storage, some
of the inequalities defining Sk may be aggregated as in 4.

The following observation is useful for the dual models of 2. If we take k
]k + S for a polyhedral S {x (aS,x} <_ b,i l’m}, say, then Okk(Xk)
{0e’ fk(xk) + Oe"s(xk) t

__
t!

__
k, t, t!

__
0} with

i=1 i=1

so p argmin{Ipl/2"p e 0k(:ck)} of (2.4) can again be found via QP using
(2.g). Next, letting I {i {i,x) bi} and {x" {a,x) _< b,i e I},
consider the simpler model fk+ ek. Clearly, qk _< fs, q(x) f(x) and
O(x) 9 + O5(z) for n e >_ 0; i.e., p does not depend on ek. Hence
by [Kiw96, Lem. 9.4:], k 0 gives the "optimal" dual method with d k xk

(f(xk) k 12 (xk) x if p-fev)P /IP P(,fiv) 0; otherwise flke < f* by

[Kiw96, Lem. 9.2]. (Thus it is not suprising that this dual method behaves like the
primal one in Example 7.1.) Additional insight may be gained as follows. The cones
C cone{ai}iei and C- {x" (aS,x} <_ 0,i e Ik} provide the classical orthogonal
decomposition

g Pc(g) + Pc-(g), Pc(g) 2_ Pc-(g) Vg e IRN,



694 K.C. KIWIEL

since Pc-(g)= argmin{Ix- gl2/2"Akx <- 0} has multipliers

AI e Argmin{IAkAi -gl2/2 Ar >_ 0}

satisfying Pc(g) AIAI and AkAPc-(g) 0 by the KKT conditions, so for
g _gk

pk _gk ps(x)(_gk) p,l.s(x)(_gk),

where Afs(xk) 058(xk) C and Ts(xk) C- are the normal and tangent cones
to S at xk, respectively. Hence _pk and dk are feasible directions for S at xk. Thus
if tk is sufficiently small, then zk xk + tdk E S, so that one may take xk+l z,
skipping its projection on S. This motivates a similar technique in [KiU89] (with
flev f*), but small stepsizes may yield slow convergence.

Of course, if S is not polyhedral, then the preceding construction may employ its
accumulated approximation Sk. A simple but useful example is given in the following
lemma.

LEMMA 7.2. Suppose ?_/k {x: l(ak, x- Xk)
_

0} is a nontrivial outer ap-
proximation to S at x; e.g., ak zk- -xk 0. Let / argmin>0

o < < + +
xk} f(xk) + (gs,’- xk} is a valid linearization of fs, i.e., f e Ok, satisfying
k f,fs (x <_ Vx* S., and d(f,fv) (xk) >_ dz(f,iv) (xk), with strict inequality if

0 < "k < 2k. In particular, if (gk,ak} < 0 and /k k --(gk,ak}/lakl 2, then
a

Proof. Clearly, f(xk) f(xk) and fk(x) >_ f(x) Vx e S C ?-Ik, so f(x*) <_ f*
if x* S*. As for the rest, solve min>0 Igk +akl2 and use d(I,Ii)(xk (f(xk)

In view of Lemma 7.2, we may replace gk with g Ofs(xk), a conditional
subgradient of f on S. In general, fs is a worse model of fs than f + 5k, but it
may be easier to handle.

We now extend the average direction strategy (ADS) of [ShU89].
LEMMA 7.3. Suppose t <_ 1 and Ck k Ok, where

xk) is the CS model of Lemma 6.1. Let Ck k(Xk+l + (g,._ Xk+l), where

gk = +’k(zk-x+1) for some /k _> O. Then Ck(xk+l) >_ flkev and

if flkev >_ f*. Moreover, if / / "--1912/(k(xk) --flkev)tk, then k --g//k,
where k Xk+l Xk iS the actual direction of motion which includes the effect of
the projection operation. In particular, if 0 and Ck is used to define the next
)k+l k+l with +1 [gkTll/l^k+liyb [, then +1 gk+l Igk+llk/lkl; i.e., the
move yk+l xk+l --(f(xk+l) Slev 1/ occurs along the average direction

of _gk+l and .
Proof. If fkev _> f* and x* e S*, then k(xk+l)+(,x*--xk+l} k(X*) <_ f* by

(2.3) and (zk--xk+l,x --x+1 } <_ 0 because xk+l Ps(zk) and x*
f*, while Ck(xk+l) Ck(Xk+l) >_ fev by Lemma 6.1(v). Next, suppose "k .
Then z xk =--tk(k(xk) fkev)/l12 yields --g//kk zk _xk (Zk_xk+l) .
The rest follows by construction.

Lemma 7.3 suggests the following ADS version of the CS implementation from
6. Let 0 < # _< 1. At iteration k, let 1 fl ifk 1, otherwise use k-1 to
find Ck k with >_ 0 such that I1 <- Igkl/t if )k-l(xk)

_
flkev, and k 0
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otherwise; in both cases choose /k >_ 0 to construct Ck as in Lemma 7.3. In other
words, instead of using k-1 -1, the ADS version modifies Ck- to include
the effect of the projection operation. Clearly, the ADS version shares the efficiency
estimates of the CS one’s. On the other hand, the ADS version of a similar method
in [ShU89] (with k "k) performed better than the standard CS version of [CFM75]
(corresponding to in Lemma 6.1). (By the way, the ADS version was not
validated theoretically in [ShU89].) We note, however, that the arguments of 6 that
favor k max{fk, ck-} versus k hold also for this modified form of ck-.

8. Conclusions. We have extended various acceleration techniques for subgra-
dient methods, such as surrogate constraints, deepest surrogate cuts, simultaneous
projections, orthogonal surrogate projections, CSs, and projected (conditional) sub-
gradients. We have also proposed to use subgradient aggregation and parallel projec-
tion methods for implementing our methods in the large-scale case.

Of course, some of our ideas have been inspired by other popular approaches
[AHKS87, BaS81, HWC74, KKA87, SES86, ShM88, ShU89] and may in turn be used
to modify the methods given in these papers. For example, the concept of relying on
subgradient aggregation to provide some "conjugacy" (cf. 4, 6, and 7) would enable
the method of [ShU89] to use "deeper cuts," thus enabling faster convergence. We
hope, therefore, that this paper will contribute to the development of other subgra-
dient methods.
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GENERAL OPTIMALITY CONDITIONS FOR CONSTRAINED
CONVEX CONTROL PROBLEMS*
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Abstract. In this paper we investigate some optimal convex control problems, with mixed
constraints on the state and the control. We give a general condition which allows us to set optimality
conditions for nonqualified problems (in the Slater sense). Then we give some applications and
examples involving generalized bang-bang results.
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tions
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1. Formulation of the problem. Let V c H c V compactly and densely
be Hilbert spaces; A(t) V - V’, B U V’ be linear bounded operators (U is
another nontrivial Hilbert space); and L L2(O,T; H U) --, IR, l" H --, IR be
convex, continuous mappings.

We consider the following optimal control problem:

(P) Min { L(x, u)+ l(x(T)) }

subject to

(1.1) x’(t) + A(t)x(t) Bu(t) + f(t) a.e. in ]0, T[,

(1.2)

where

(1.4)

Ix, u] E D C A’ L2(0, T; U), closed convex subset,

A’ L2(0, T; V) gl W1’2(0, T; V’),
f e L2(0, T; V’),
L is coercive in the sense

2c (a generic constant) > 0 such that
2V[y, u] e L2(O, T; H x U) L(y, u) > C

Vz e V t - A(t)z is V’-measurable on ]0,T[, and

(1.5) Sa S > O Vz e V (A(t)z,z}yy, +alIzll2H >_ lIzll
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We assume the initial condition x(O) x E H, and the possible final restrictions are
included in the definition of D. The evolution equation (1.1) has a unique solution
x E X’ for any u L2(0, T; U) by theorem 4.5 in Barbu and Precupanu [3, Chap. 1].

Moreover, by condition (1.3), it is a standard argument to show that (P) has
at least one optimal pair (denoted Ix*, u*]) in D if some admissibility assumption is
fulfilled:

with

Ix, u] e D such that T(x, u)= 0

V[x, u] e X L2(0, T; U) T(x, u) x’ + A(t)x- Bu- f.
The problem (P) is a generalization of the Bolza optimal control problem studied

by Barbu and Precupanu [3, Chap. 4] both with respect to the cost functional and
with respect to the form of the mixed constraints. The continuity hypothesis on L and

is quite restrictive, but as we keep the constraints separate (i.e., we do not include
them into the cost via the indicator function of D), then the class of examples is very
large.

For state-constrained control problems, one usually assumes a Slater-type interi-
ority condition. In the general setting of (1.2), it takes the form

(,S) [2, ] feasible for (P) such that e int { y e X l[y, ] e D} in C(0, T; H),

and it has very severe implications for the set of possible applications.
It is our main concern to weaken this classical qualification constraint. Namely,

instead of (,S), we shall suppose that

(/) 4 C D bounded in C(0, T; H) L2(0, T; U)
such that 0 int T(4) in n2(0, T; Y’).

Let us first notice that 0 appears naturally in (7-/) since the problem constraint is
expressed as T(x, u) 0. Moreover, the elements (pairs) of the set A/ need not be
feasible for (P).

We first compare the two conditions (,S) and (); the following proposition proves
that (,S) is always stronger than

PROPOSITION 1.1. ($) = ().
Proof. Thanks to (,S), (1.1), and (1.2) we have

(1.7) 2’ + A(t)2 Bt + f, 2(0) x a.e. in ]0, T[.

Let p > 0 and L2(0, T; V’) such that IIIIL2(O,T;V’) 1. We denote by x the
solution of

(1.8) x + A(t)x Bt + f + p, x(O) x a.e. in ]0, T[.

Taking the difference between (1.7) and (1.8), we get that

with k independent of . Then, if p is small enough, (,) gives [x, fi] D for all
e n2(0, T; V’) such that ]l[[n(o,T;y,) . Here we set

M conv({ [x,fi]l e L2(0, T;V’), II]IL2(O,T;V,)= 1 }),
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where conv(E) is the convex hull of the set E, and the proof is complete.
Remark 1.1. Assume that U C V continuously and B U --, V is the canonical

injection. Then one makes an interiority assumption with respect to the control of
the type

3 [, ] feasible for (P) such that
(:Y) Int { u e V l[, u] e D } is nonempty in L2(0, T; Y’).

This again implies (T/) by an argument as above. In this case the Slater condition
need not be fulfilled; that is to say, the condition () is strictly weaker than

Condition () or its weaker variant (’) from 3 may be mainly compared with
Zowe and Kurcyusz’s [18] condition in the mathematical programming theory. This
was previously used in abstract control problems by 51tzsch [16], [17], combined
with interiority-type assumptions at the level of applications. In the examples of 3,
we show that the interior of the constraint set may be empty even in the uniform
topology, but the argument still applies.

In the recent work of Barbu and Pavel [2] another case of empty interior con-
straints is discussed for optimal control problems governed by periodic evolution
equations and by a different method. Our approach is based on the penalization
of the only state system rather than of both the state system and the constraints (as
in Bonnans and Casas [8]); the constraints are kept explicit throughout the proof.
This is quite a classical philosophy in connection to Lagrange multipliers techniques
(see, for instance, the monograph of Tikhomirov [15]). In the setting of partial differ-
ential equations, it has been extensively exploited in books by Lions [12] and Tiba [14,
Chap. 2] in connection to nonlinear singular control problems. Recently Bergounioux
[5, 6] has applied this method to control problems with state constraints governed by
elliptic systems, and Bergounioux, MnnikkS, and Tiba [7] have studied some exam-
ples of parabolic control problems. Applications of the obtained optimality system to
augmented Lagrangian algorithms were also indicated.

Finally, we point out that the technique used in the next section makes evident
with full accuracy the relationship between the operator T and the set D of con-
straints.

2. The optimality system. We define the penalized problem as follows:

Min Le(x, u) + l(x(T)) + u u*ll dt
(P)

+ IIx’ + Ax- Bu- f]], dt

over M1 Ix, u] D. It should be noted that the first imegral is an "adapted" penaliza-
tion term according to Barbu [1], while Le and l are the Moreau-Yosida regularization
of the convex mappings L and 1.

Remark 2.1. Let us briefly recall the Moreau-Yosida regularization. Let f be a
proper, convex mapping on a Banach space X. For any > 0, the Moreau-Yosida
regularization of f is

Vz e X fs(z) inf 11- 11 + I() I e X

A thorough study of the properties of L and l may be found in Barbu and Precupanu
[a, Chap. 2]. We shall recall some of them when needed in the text.
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The existence of a unique optimal pair [xs, us] is obvious. We also denote

rs 1-j-i(x’s + Axs Bus f) e L2(0, T; V),

where J V V is the canonical isomorphism.
PROPOSITION 2.1. We have

(2.1) xs --* x* strongly in A’,

u --+ u* strongly in L2(0, T; U),

(2.3) ers is bounded in L2(0, T;V).

Proof. The optimality of the pair Ix*, u*] and the properties of the convex regu-
larized mappings give

Ls(xs, u) + ls(xs(T)) + - I[us u*[[ dt + -e + A(t)x Bus- fll,dt
(2.4)

< Ls(x*, u*) + ls(x*(T)) < L(x*, u*) + l(x*(T)).

With the coercivity assumption (1.3), the relation (2.4) gives

ls(xs(T)) + - Ilus u*ll dt + -e IIxs + A(t)xs Bus fll,dt < c.

Moreover ls is lower bounded by an affine mapping uniformly with respect to s > 0
so that- Ilus u*ll dt + -e IIxs + A(t)xs Bu fll,dt <_ c + c IIx(T)IIH.

As the initial condition is contained in D and the dependence from the right-hand
side as defined by (1.1) is sublinear, then we see that (us) is bounded in L2(0, T; V),
xs is bounded in ,, and e1/2rs is bounded in L2(0, T; V).

We denote by [2, fi] their weak limit on a subsequence. Since

xs + A(t)xs Bus + f + eJ(rs)

we can pass to the limit and [?, g] is an feasible pair for (P). We have

1
Ls(xs us) L((I + OL)-l(xs us)) + -ll[xs us]- (I + OL)-l(xs, us)ll 2HxU

where I is the identity in H x U. Coming back to (2.4), we get easily that Ls(xs, u)
is bounded, so (I + OL)-I(xs, us) [, g] weakly in L2(0, T; H x U) by the above
formula. Taking into account the weak lower semicontinuity of L and we can pass
to the limit in (2.4):

L(&, fi) + l(&(T)) + - IIt- u*ll dt < L(x*, u*) + l(x*(T)).
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Then fi u*, x*, and we have (2.2) and (2.1) by a strong convergence criterion
in Hilbert spaces.

PIOPOSITION 2.2. We have the following first-order optimality condition:

(VLe(xe, ue), [xe, ue] Ix, Ul)L.(O,T;HU + (Vle(xe(T)),xe(T) x(T))H
(2.5) fo fo+ (u u, ue u*} v dt (x’ + Ax Bu f, J(re))y, dt <_ 0

for any Ix, u] in D. (Here V denotes the Gdteaux derivative.)
This is a standard result in the optimization of convex differentiable function-

als (see, for instance, Lions [11, Chap. 1]) and J(r) plys the role of a Lagrange
multiplier.

Proof. We make feasible variations in x nd u:

Le(xe, ue) + le(xe(T)) + - Ilue u*ll dt + - Ilxte + Axe Bue fll, dt

<_ Le(xs, us) + le(xs(T)) + - ]lus u*ll] dt + - Ilxts + Axs Bus fll, dt,

where xs xe + s(x xe), us ue + s(u ue), s e ]0, 1], and Ix, u] e D arbitrary.
Moving all the terms to the left-hand side, dividing by s > 0, and letting s tend

to 0, we obtain

(vne(x, u), [xe, u] Ix, U]>L2(O,T;HU + (VI(x(T)),x(T) x(T)>H
(2.6) T rT

+ ]o (ue u, u U*}v dt fro (x’ + Ax Bu f J(re), J(re)), dt 0

for any [x, u] in D. Then (2.5) follows from (2.6) since sJ(r)[[(O,T;y, O. (We
have also used the properties of J(r).)

Remark 2.2. The condition (2.6) is also sufficiem for optimality in (P). We can
reexpress (2.5) as

(vn(xe, ue), [xe, ue] [x, U])L:(O,T;HU + (Vle(xe(T)),xe(T) x(T))g
(2.7) T T+ {u ,u u*) d {x’ + Ax eu ,)v,v d 0

for any Ix, u] in D.
Now we define the simplified adjoint system

A(e.s) - + () VL(x )

(2.9) pe(T) Vl(xe(T)),
where A* denotes the adjoint operator of A.

Multiply (2.8) by xe x for any x in A" such that x(0) x, and integrating by
parts we get

(VxL(xe, ue),xe X)L2(O,T;H (--Pe + A*pe,xe x)H dt

(2.1o)
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Replacing (2.10) in (2.6), we obtain the equivalent form

(2.11)

for any Ix, u] in D.
Taking in turn u ue, x xe, a short computation provides the following

decoupled system:

T

(Xte X’ -- Axe Ax,pe + re)y,y dt <_ O,

T

{ue u, ue u*)v + (VuLe(xe, ue), ue U}L.(O,T;U)dt

(ue u, B*J(re)}u dt <_ 0

for any Ix, u] such that Ix, u] e D and [x, u] e D.
Remark 2.3. The relations (2.8)-(2.9) and (2.12)-(2.13) give the optimality con-

ditions for the problem (Pe) in a more usual form. In particular, if D K Uad (i.e.,
the constraints are separate) and if Af(ue) denotes the normal cone to the control
constraints set at ue, that is,

Af(u) { z e L2(0, T; U) (z, ue UlL.(O,T;U) >-- 0 Vu e Uad },

then (2.13) becomes

VLe(xe,u) + ue- u* + Af(ue) B*J(re),

which is a standard form of the Pontryagin maximum principle (Barbu and Precupanu
[3, Chap. IV] and Wiba [14, Chap. II]).

PROPOSITION 2.3. On a subsequence, we have

(2.14) Vle(xe(T)) w e Ol(x*(T)) weakly in H,

(2.15) VLe(xe, ue) (Wl, w2) e OL(x*, u*) weakly in L2(0, T; H U),

(2.16) Pe --* P* strongly in C(0, T; H),

where p* is the solution of the simplified adjoint system

(217)
dp*

A’p*d--- + =Wl,

(2.18) p* (T) w.
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Proof. We have VLe(xe, ue) E OL((I+eOL)-I)(xe, ue). With an argument similar
to the one in the proof of Proposition 2.1, it yields that (I / OL)-1)(xe, ue) strongly
converges to Ix*, u*] in L2(0, T; H U). As L is continuous, it is everywhere sub-
differentiable and OL is locally bounded. Then VL(xe, ue) is bounded in L2(0, T; H
U) and (2.15) is a consequence of the demiclosedness of maximal monotone operators.

The argument is the same for relation (2.14), and (2.16)-(2.18) may be obtained
by taking the limit in (2.8)-(2.9). [:!

PROPOSITION 2.4. Under hypothesis (7-l), (re) is bounded in L2(0,T; V) and
re r* on a subsequence weakly in L2(0, T; V).

Proof. We use the relation (2.7) and take test functions [x, u] E c D such
that

for any L2(0, T; V’) such that IIIIL2(O,T;V,) 1 and for some p > 0.
boundedness of jP[ and Propositions 2.1 and 2.3 allow us to infer

T

p (,re)v, xvdt <_ c,

where c is an absolute constant independent of > 0 and . El
We finally have the following theorem.
THEOREM 2.1. If the pair [x*, u*] is optimal for the problem (e), then

(2.19)
T

(X*’ X’ "+" Ax* Ax, p* + r*)v,v dt <_ 0,

The

T

B*J- dt < 0u,

for any Ix, u] such that Ix, u*] e D and Ix*, u] e D.
Moreover the inequality summing (2.19) and (2.20) is valid for any Ix, u] e D; it

is also sufficient for the optimality of Ix*, u*].
Proof. The necessity has been established with the previous sequence of proposi-

tions. Let us prove the sufficiency of the condition. Let Ix, u] be any feasible pair for
(P) and add (2.19) and (2.20):

T

(x*’- x’+ Ax*- Ax,p*+ r*)u,udt + (w2,u* U>L2(O,T;U

Bu*- Bu, r*)v, xv dt <_ O.

As Ix, u] is feasible, we get

T

(X*!
X p* dt < 0(W2, U* U)L2(O,T;U -- + Ax* Ax, )y’y

Integrating by parts and taking in account the adjoint equation, we obtain

(w2, u* u) L(O,T;U) + (wl, x* x) L(O,T;H) + (W, X* (T) x(T))H <-- O
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The definition of the subdifferential achieves the proof. [:]

Remark 2.4. To get a better insight into the relation (2.19), let us assume that
D K Uad (closed convex subsets in appropriate spaces). Let r* be in X (regular-
ity). Then (2.19) can be written as follows:

(2.21)
T

(OxL(x*, u*) + A*r*,x* X}yy,T
*! dt

+ IOl(x*(T)) + r*(T),x*(T) x(T)lH < 0

by partial integration and for any x in K. If we consider the evolution system, which
gives the adjoint equation of Barbu and Precupanu [3],

dr*
dt + A*(t)r* +O1g(X*) -OxL(x*,u*) a.e. in ]0, T[,

(2.23) r*(T) e -Ol(x*(T)),

(where 1K is the indicatrix function of K), then (2.21) is as a weak variant of (2.22)-
(2.23). In particular, when no state constraints are imposed, one may easily infer that
p* -r*. We see that condition (7-/) yields the existence of a Lagrange multiplier,
while (S) ensures better regularity properties for it (Barbu and Precupanu [3]).

Remark 2.5. The form of the optimality conditions may also be compared with
the works of Bonnans and Casas [8, 9]. Basically, we decouple the influence of the state
constraints from the adjoint equation and put it as an independent inequality (2.19).
The remaining simplified adjoint system (2.17)-(2.18) just performs the necessary
integrations by parts in order to reexpress the gradient of the cost functional, and it
is identical to the case without any state constraints (Lions [11]). This also avoids the
delicate analysis of adjoint systems with measures as data, which is necessary when
the classical approach is used (Casas [10]).

3. Some applications. Let W C L2 (0, T; V) continuously, densely be a Banach
space. We replace (7-/) with the weaker variant

bounded in C(0, T; H) L2(0, T; U) such that
0 E Int T(AA) in the W topology.

Since condition (7-/) is used only in the proof of Proposition 2.4, then Propositions
2.1-2.3 remain valid. We also ask the following pairing compatibility condition, which
is automatically fulfilled in many examples:

T

(3.1) (v,W)wxw, <v,W)vxv,

when both terms have sense. We keep the notations of the proof of Proposition 2.4.
Condition (7/’) yields that

(3.2) P <,re>wxw, < c;

that is, (re) is bounded in the "larger" space W’ instead of L2(0, T; V). Let r* denote
a weak * cluster point for this set.

THEOREM 3.1. The pair [x*, u*] is an optimal pair for (P) /f and only if

(3.3)
T

<X*t
X<W2, U* U> L2(O,T;U "4- + Ax* Ax, p*)y, x y dt

<x’ + Ax Bu f, r*)wxw, <_ 0
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for any Ix, u] such that T(x, u) e W.
Proof. Necessity is a direct consequence of (2.7) and (3.2) since one may pass to

the limit in all the terms if T(x, u) E W.
For the sufficiency we notice that any feasible pair for (P) satisfies T(x, u) 0 e

W. Then (3.3) may be used, and only the first two terms will remain. The proof is
completed as in Theorem 2.1. [:]

Remark 3.1. In applications, T(x, u) e W may be valid for any pair Ix, u] D,
or this may be equivalent to a regularity condition which is possible to include in the
definition of the state and control spaces. See [9] for the details of this technique in a
different setting.

3.1. A first example: Empty interior constraints. We analyse in some de-
tail the following example of optimal control problem governed by a parabolic partial
differential equation

(PP)

subject to

( 1/ ) N/u }Min - (y- Zd dx dt + dx dt

Ot
Ay= f + u inQ=f]0,T[,

(3.5) y(x, t) 0 on 5] 0ftx]0, T[,
(3.6) y(z, O) yo(X) in ft

and the constraints

(3.7) e(x, t) <_ y(x, t) <_ g(x, t) a.e. in Q,
(3.8) a(x, t) <_ u(x, t) <_ b(x, t) a.e. in Q.

Here gt is a smooth, open, and bounded domain of lRn; Zd L2(Q); N >_ 0; Yo
L2(Ft); f, a, and b are in L(Q); and e and g in C(Q). We denote

K { y L2(O,T;Ho(fl))3 WI’2(O,T;H-I(Ft)) e <_ y <_ g, y(.,O) yo },

Uad={uL2(Q) a<_u<_b a.e. inQ},

D= K Uad,

which are closed convex sets. One has to assume the compatibility condition

e <_ yO <_ g in ft

and some admissibility hypothesis. We ask

(t) 2a > 0, 2fi e Uad such that e _< Y(fi a) _< Y(fi + a) _< g in Q,

where Y is the solution operator u - y defined by (3.4)-(3.6). By comparison,
implies that the pair [, Y(fi)] is feasible for (PP). However, this is not an interiority
assumption since e may be equal to g in some points. For instance, we may allow
e(x, t) g(x, t) 0 on the border of the domain. Moreover, the mappings + a,
need not belong to Uad, which may also have a void interior, i.e., a b on some subset.
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Remark 3.2. A stronger variant of ($) is that there exist two controls , feasible
for (PP), which can be "strictly separated." It means that ($) is stronger than the
standard admissibility assumption but weaker than the hypothesis of existence of two
feasible pairs (with this separation property). As ($), in turn, yields (7-/’), this gives a
hint on the generality of the hypothesis (?-/’). Moreover (7-/’) requires that the problem
(P) is nontrivial; that is, the set of admissible pairs is "rich."

In order to apply the abstract theory, we take the spaces V Ho(gt), H U
L2(); the operators A(t) Y -- Y’, A(t)z -Az, B" H V’, B i, the
canonical injection; and the mappings -0 and

L(y, u) - (y- Zd)2 dx dt + -The hypothesis (7-/’) is a clear consequence of ($) with W L(Q) by fixing

ye y(ue)= Y( / ), e w, IIlIw-- x.

Again a comparison argument shows that [y, u] E D for any as above, and we can
choose in (?-/’) the bounded set

M conv{ [y{,u]l e W, ]]]lw 1 }.

Then relation (3.3) may be rewritten as

(3.9)
u) dx dt +/(y*’- y’ A(y* y))p* dx dt

f

(y’ Ay u- f,r*)wxw, <_0

for any y in K, u in Uad such that T(y, u) W L(Q).
Note also that, since f W, Uad C W, the last condition (T(y, u) W L(Q))

is equivalent to a regularity condition on y y’- Ay L(Q), which is satisfied by
y*.

Here [y*, u*] is the optimal pair of (PP), and p* satisfies

-p*- Ap* y* Zd in Q,
p* 0 on E,

p*(T) 0 ingt.

Choosing in turn u- u* and y- y* in (3.9), we get

(3.10)
Vy E K such that y’- Ay L(Q) (y*’ y’- A(y* y),p* + r*)wxw <_ O,

(3.11) Vu e Uad <Nu* r*, u* Ulww, <_ O.

The relations (3.10) and (3.11) represent the decoupled form of the optimality condi-
tion (3.9) and may be compared with (2.19) and (2.20).

Now we are going to use these above relations to get some more precise information
about the optimal pair. Let us define the sets

Q { (, t) e ) *(, t) (, t) }, Q, { (, t) e Q u*(, t) a(, t) },
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Q=Q-(QuQg)

Thanks to (3.4)-(3.6) and the Sobolev embedding theorem, we infer that y*
if yo is regular. Then Qe and Qg are closed sets and QO is an open subset of Q. Let
d E T(Q) be a test function with compact support supp d c QO. By the continuity
of y*, e, g and the compactness of supp d, one can find p > 0 such that y* +pd and
y* pd remain in K. Obviously, they are also regular, and we can use them in (3.10)
as test functions to infer

+ r*
Od

,-ff Ad
wxw’

=0

for any d :D(Q) with compact support in QO. Taking in account this relation and
the equation satisfied by p*, we see that there exists a distribution j e T)I(Q) with
support included in Q- QO such that

(3.12)
Or*

Ar* + j y* Zd in T’(Q).Ot

The previous equation is another familiar form of the adjoint system for state con-
12’l’P(Q) for p > 1 ifstrained control problems. In particular, it shows that r

Zd belongs to Lp(Q). Then r* C(Q) by the Sobolev theorem if p is big enough.
We are now prepared to give a result on the structure of the optimal pair of (PP),

which may be termed a generalized bang-bang result (TrSltzsch [16]). We suppose
from here that N -0.

COROLLARY 3.1. We have

,o c_ { (, t) * (x, t) z(x, t) }
t2 { (x, t) u* (x, t) a(x, t) } 2 { (x, t) u* (x, t) b(x, t) }.

Proof. Choose u u* in Q- QO so that (3.11) yields

Vu e Uad fQo r* (u* u) dx dt >_ O.

Since r* C(Q), obviously

QO { (x, t) e QO r* (x, t) > o }
{ (, t) e Q *(, t) < o } { (x, t) e Qo * (x, t) o }

and (3.13) shows that u* b on the first set and u* a on the second set. If the
last set has positive measure, then (3.12) and the maximal regularity of r* on QO give
that y* Zd on this subset.

Remark 3.3. Taking into account the definition of QO, we see that at least one
from y* and u* equals the extremal values e, g, a, b, or Zd in any point of Q. A
similar analysis may be pursued when N > 0, but the structure of the optimal pair
will be more complicated.

3.2. A second example: "Bottleneck" problems. We examine "bottleneck"-
type problems, which were introduced by Bellman [4] in connection with some models
for industrial production processes. They were discussed by a different approach in
the work of Miric [13].
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We assume that the state equation and the cost functional are the same as in the
previous example, with f E L (Q), yo E Wo’()NW2’(), yo >_ 0 a.e. in t, but
the constraint has the form

(3.14) lYl-< u a.e. in Q.

This is equivalent to -u _< y _< u, so the set D defined by (3.14) is convex.
Remark 3.4. If f _> 0, the maximum principle gives y _> 0 (with (3.4)) and the

constraint (3.14) is equivalent to

(3.14’) 0_<y_<u a.e. inQ,

which is the original form considered by Bellman [4]. We also emphasize that the
boundary condition (3.5) shows that the feasible pairs are not in the interior of D even
in the L(Q)-topology; that is, Slater-type conditions cannot be valid in (3.14).

Now take fi set, c > 0, and , the solution of (3.4)-(3.6) associated with . If
( is great enough, then f+ >_ 0 a.e. in Q and >_ 0 a.e. in Q by the maximum
principle. Let w--ce - >_ 0 a.e. in Q. We notice that w satisfies

(3.15)
in Q,
on E,
in .

Let us denote by yV the solution of (3.4)-(3.6) associated with v (so that yO is associ-
ated with v 0). By comparison, it yields that w >_ fl_yO; that is, t-a+y >_ f] >_ O.
There is some constant m such that -m <_ yO <_ m a.e. in Q. Then if a > 2m is large
enough, we have

(3.16) 0 <_ )

_ - rn a.e. in Q.

The pair [), ] is feasible and (3.16) shows that hypothesis (’) is satisfied. Indeed
we take

{ [u’, v e }, n+2p>
2

where BLp(Q)( )) is the LP-ball centered in with radius and > 0 is small.
By the continuity with respect of the right-hand side and the Sobolev embedding
theorem, we can choose A such that

that is, A/[ c D. Moreover T(A/) BLp(Q) (O, A) and (T/’) is fulfilled in LP(Q). If
n 1, we may take p- 2 and even condition (7-/) is fulfilled.

Remark 3.5. We also notice that for the "linear" constraint (3.14), a simpler
argument may be used. For instance, we may define the new control function

and D may be reexpressed in the "decoupled" form

y>_0, <_0a.e. inQ.
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The same substitution may be performed in (3.4)-(3.6) and in the cost functional so
that the penalization method from 2 may be used directly.

Finally, we prove that a generalized bang-bang result also remains valid in this
case under some regularity assumptions.

COROLLARY 3.2. Let N be equal to O, and assume that y*, u* exist and are
continuous functions on Q. Then

(3.17) Q= { (x,t)e Q lly*(x,t)l-u*(x,t) }{ (x,t)e Q y* (x, t) Zd(X, t) }.

(The two sets above need not be disjoint. The first one corresponds to the case where
the constraint is active.)

Proof. As hypothesis (7/’) is fulfilled, Theorem (3.1) gives the existence of r* E
Lq(Q) where + 1 and

(3.18) Q(y*’ y’ A(y* y))p* dx dt -/Q(y’- Ay u f)r* dx dt <_ 0

for any [y, u] e D such that T(y, u) e LP(Q).
Here we used that N 0 and p* is given by

-p*’- Ap* y* Zd in Q,
(3.19) p* 0 on ,

p*(T) 0 in .
Let Q* c Q be the open set defined as follows:

Q* {(x,t) e Q lly*(x,t)l < u*(x,t)},

where the constraint is inactive. First we take test pairs of the type

[y, u] [y* :t= Add, u*] e D,

where d e T(Q), supp d C Q*, and Ad > 0 is a small constant given by the Weierstrass
theorem applied to the continuous functions lY*I, u* on the compact set supp d such
that

ly*(x,t) =1= Add(X,t)l <_ ly*(x,t)l + Adld(x,t)l <_ u*(x,t).

Thanks to (3.18), we obtain after a short calculation that

(3.20) fQ(d’- Ad)(p* + r*) dx dt 0

for every d E T)(Q) with compact support in Q*. Then, we may find a distribution
j :D’(Q) with support in Q- Q* (active constraints set) such that

(3.21)
Or*

y* 7:)’0-- -b Xr* + j Zd in (Q).

This follows from (3.19) and (3.20) and implies a local regularity property for the
IIr2,1,2Lagrange multiplier r r* loc (Q*) since Zd L2(Q).

Now let us take the test pairs

[y, u] [y*, u* =l= Add] D,
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where d, "d are as above. Again, by (3.18) we get

r* dx dt O.

Multiplying (3.21) by d, we infer

Q JQ r* (d’ Ad) dx dt 0d(y*-Zd) dx dt (r*’ + Ar*,d}v,(Q)(Q)

for any d E T(Q) with support in Q*. This proves that y* Zd in Q*, and the proof
is complete.

Acknowledgment. The second author thanks the Alexander von Humboldt
Foundation for their support.
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STOCHASTIC APPROXIMATION METHODS FOR SYSTEMS OVER
AN INFINITE HORIZON*

HAROLD J. KUSHNER AND FELISA J. V/ZQUEZ-ABAD$

Abstract. The paper develops efficient and general stochastic approximation (SA) methods
for improving the operation of parametrized systems of either the continuous- or discrete-event
dynamical systems types and which are of interest over a long time period. For example, one might
wish to optimize or improve the stationary (or average cost per unit time) performance by adjusting
the systems parameters. The number of applications and the associated literature are increasing
at a rapid rate. This is partly due to the increasing activity in computing pathwise derivatives and
adapting them to the average-cost problem. Although the original motivation and the examples come
from an interest in the infinite-horizon problem, the techniques and results are of general applicability
in SA. We present an updating and review of powerful ordinary differential equation-type methods,
in a fairly general context, and based on weak convergence ideas. The results and proof techniques
are applicable to a wide variety of applications. Exploiting the full potential of these ideas can
greatly simplify and extend much current work. Their breadth as well as the relative ease of using
the basic ideas are illustrated in detail via typical examples drawn from discrete-event dynamical
systems, piecewise deterministic dynamical systems, and a stochastic differential equations model.
In these particular illustrations, we use either infinitesimal perturbation analysis-type estimators,
mean square derivative-type estimators, or finite-difference type estimators. Markov and non-Markov
models are discussed. The algorithms for distributed/asynchronous updating as well as the fully
synchronous schemes are developed.

Key words, stochastic approximation, ordinary differential equation method, weak convergence,
recursive optimization, Monte Carlo optimization, discrete-event dynamical systems, piecewise de-
terministic dynamical systems, stationary cost problems

AMS subject classifications. 62L20, 93C40, 93E25, 90B25

1. Introduction. The paper is concerned with efficient and general stochastic
approximation (SA) methods for parametrized systems of either continuous or disc-
trete event dynamical systems that are of interest over a long time period. For exam-
ple, one might wish to optimize or improve the stationary (or average cost per unit
time) performance by adjusting the systems parameters. The number of applications
and the associated literature are increasing at a rapid rate. Although the motivation
and examples come from an interest in this infinite-horizon problem, the techniques
and results are of general applicability in SA. Basic techniques for such problems have
appeared in [2, 22, 27]. These techniques are still fundamental for applications to to
the general problems of current interest. Exploiting their full potential can greatly
simplify and extend much current work. We present a full development of the basic
ideas in [22, 27] and related works in a more general context, with the particular goal
of illustrating their breadth as well as the relative ease of using them in particular
applications.

To fix ideas, let denote an adjustable parameter of a dynamical system and
x(-, 0) the associated system state process. For a cost rate c(O, x), define CT(O, x(0))
Ef[ c(O,x(t, O))dt/T and C(O,x(O)) lim CT(O,x(O)). We wish to minimize C(O,x(O))

Received by the editors February 23, 1994; accepted for publication (in revised form) May 12,
1995.

Applied Mathematics Department, Brown University, Providence, RI 02912. The research of
this author was supported by NSF grant ECS-9302137, AFOSR contract F49620-92-J-0081, and
ARO contract DAAL03-92-G-01157.

Dpartement d’Informatique et Recherche Oprationelle, Universit de Montreal, Montreal, PQ,
H3C 3J7, Canada. The research of this author was supported by NSERC grant WFAO139015.

712



STOCHASTIC APPROXIMATION 713

by the dynamic adjustment of the parameter , using estimates of the derivatives made
from measurements of the sample path. Indeed, much of the recent interest in SA
methods has been motivated by the increasing availability of good estimators of the
derivatives of objects such as CT(,x(O)), say, of the infinitesimal perturbation anal-
ysis (IPA) or related types [13, 14, 18, 34, 42, 45] or of the mean square derivative
type [5]. With en a step-size parameter and 9, the nth estimate of the parameter,
the basic SA algorithm is n+l n "+-enYn, where Yn is the measurement used for
the current update. One is concerned with the asymptotic properties of the sequence
gn. The ordinary differential equations (ODE) method shows that the asymptotic
proper.ties can be characterized in terms of the limit properties of the solution to an
ODE t? g(t?), where, loosely speaking, g(t?) is the stationary mean value of Yn given
that the parameter value is always fixed at . Thus the individual Yn themselves need
not be (asymptotically) unbiased estimators of the gradient at the current parameter
values. The fact that the estimators are taken over a finite time interval but one
actually wishes to use them effectively for the infinite-time problem has led to various
ad hoc approaches, often driven by the proof technique. One technique was to let the
successive estimation intervals go to infinity. It will appear from the results in 3-5
(a direct consequence of the results in [22, 27]) that to get the desired limit result one
generally need not reinitialize the estimator periodically nor let the intervals go to
infinity. One basically does what is more natural: keep the successive updating time
intervals bounded and appropriately update the estimator without "reinitializing" it.
The proofs of such results are the essence of the "local averaging" intuition in the
ODE method, initiated by Ljung [33], although the techniques used here are quite
different.

The paper is not concerned with optimization per se but rather with getting the
appropriate ODE for the SA algorithm of interest and in showing the great flexibility
in the algorithms that one can use and analyze. For the optimization problem, one
generally needs to show that the solution of the ODE converges to the desired point,
and this requires a closer look at the right-hand side of the ODE. In some cases, this
involves showing that the right side of the ODE is the negative of the gradient of a
desired cost function with a particular structure. Indeed, in 7 and 8, we show that
the right side is indeed the negative of the gradient of the desired ergodic cost. But in
any application, one needs first to characterize the correct ODE and then to analyze
the limits of its solutions. The latter job is highly problem dependent.

One can try to prove that the convergence either is with probability one (w.p.1)
or is in a weak (or generalized distributional) sense. Our framework for getting the
asymptotic properties is that of weak convergence. This allows the use of what might
be the simplest mathematical techniques and conditions. For example, for the SA
with decreasing step sizes 0 < en --+ 0 satisfying en cx, no additional conditions
need be imposed on the en. Conditions of the often used type [2] eln+ < x for
some a > 0 are not needed. The sequence of estimators need only be uniformly
integrable, and no additional moment conditions are needed. The weak convergence
technique correctly identifies the places where the process spends either almost all or
all of its (asymptotic) time, and gives us a fairly complete stability structure of the
algorithm.

For the decreasing step-size algorithms, the difference between the probability-
one and the weak convergence results is not as great as what one might at first
suppose. Indeed, known results show that under quite weak additional conditions,
probability one convergence follows directly from the weak convergence results, and we
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now comment loosely on this. Suppose that the ODE is locally asymptotically stable
about a point 0* with open domain of attraction F. The ODE method associated
with the weak convergence approach quite generally allows us to show that some such
set F is entered infinitely often. Then, under very weak conditions, one can appeal
to existing applications of large deviations methods to SA’s to get probability one
convergence. This idea is fully developed in [9]. Among other things, it is shown
in this reference that one gets probability one convergence with the only additional
requirement on the step-size sequence en is that it satisfy

for each i > 0. That is, we need only that en < cn/logn, where c - 0. The
conditions on the noise process in [9] are satisfied by the usual processes that are
not too "heavily tailed," and for such processes these probability one convergence
results might be about the best now available. The main point is that once the weak
convergence results are available, probability one results follow directly from existing
works under broad conditions, and the basic weak convergence techniques are very
much simpler than those required for probability-one convergence.

It is worth noting that in applications, probability-one results might be of illusory
advantage over weak convergence results. The algorithms generally have stopping
rules and, when these are applied, one generally has only probabilistic or distributional
information about the last iterate.

We are also concerned with constant step size cases where one can only use weak
(and not w.p.1) convergence ideas. Indeed, in problems of tracking time-varying
systems one must use constant step sizes. In adaptive problems in communication
theory and signal processing, constant step sizes are the common practice. Even
if the problem is such that decreasing step sizes can be used, one often lets them
be constant due to robustness considerations. Indeed, in practice one often prefers
algorithms which get to a neighborhood of the desired point quickly, and this argues
for a constant step size.

The development in the paper requires only some of the elementary concepts
from the theory of weak convergence. These are reviewed in 2. Perhaps the only
required nonelementary fact concerns the use in Theorem 3.1 of random variables
which are measure valued. Our application of this concept is straightforward, since
for our purposes the important facts concerning such random variables are determined
by their mean values and will be implied by the conditions imposed on the "noise"
terms. The concept of measure-valued random variables allows us to deal more easily
than in the past with unbounded noise.

The basic result of the paper is Theorem 3.1. It is basic in that it lays out
the fundamental ideas of the averaging method, and most subsequent results can be
derived by mild modifications of the technique of that theorem. The theorem is for
the constant-step-size case. But, as seen in 4, the case where en 0 differs only in
the way certain terms are grouped in the proof. In Theorem 3.1, we have tried to use
conditions that are fairly general. Since one’s imagination in constructing algorithms
is endless, no set of conditions is "completely general." But it will be seen that the
conditions used are quite minimal, and allow the few basic ideas to be exposed. The
first basic idea is to repose the problem as a "martingale problem," which allows us
to replace the noise terms by appropriate conditional expectations given the past,
and greatly facilitates the averaging. Then we are confronted by the fact that the
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noise at step n can depend on the values of the state at that time as well as at
previous times. In Theorem 3.1, this is handled in a convenient way (coming originally
from [27]) by the use of a Markov model for the joint (noise, state) process, and
imposing appropriate weak continuity conditions on the transition function. (Non-
Markov models are treated in Appendix 1, but the Markov assumption in Theorem
3.1 is quite powerful, since the state space can be a complete separable metric space,
thus allowing convenient "Markovianizations.") In doing the local averaging to get the
appropriate ODE, these weak continuity assumptions allow us to average as though
the state did not change. They facilitate the use of the appropriate (mean) ergodic
theorems for the noise processes which, for the purposes of averaging, can be assumed
to evolve as though the state did not change. These few basic and powerful ideas
underlie all the results and are widely adaptable. The averaging idea of Theorem 3.1
is like that in [27] but is somewhat more general, particularly in the treatment of
unbounded noise.

Section 3.2 concerns the asymptotic points of the algorithm, and in Theorem
3.2 they are identified with the two-sided invariant set (in the sense of dynamical
systems theory) of the ODE. The other parts of 3 concern the simplifications when
the basic observation has an "additive" character or the problem has a regenerative
structure and one wishes to update at the regeneration times. This "additivity"
property is common to numerous applications, as seen in 6-9. In general, updating
at regenerative intervals, even if the process has a regenerative structure, is not needed
and might not even be a good idea. More will be said about this later. It is certainly
inadvisable when the regenerative periods are very long. In 4, we make the few
necessary changes when the step sizes n go to zero.

Section 5 gives the simple alterations when the iterate is to be confined to some
constraint set. It was noted in [25] and elsewhere subsequently that the ODE for the
constrained problem follows directly from that for the unconstrained problem by use
of a simple decomposition of the iterate into the sum of the unprojected value plus an
"error." The "error" is easy to treat since it is what brings an infeasible point back
to the constraint set. The unprojected values are treated as for the unconstrained
algorithm. So, under appropriate conditions on the constraint set, the constrained
problems are easy extensions of the unconstrained problem.

Section 6 formally introduces the application of Theorem 3.1 and its extensions
for use on systems whose performance function involves a stationary average. The
basic heuristic illustration is for a system where an IPA- or mean square derivative-
type estimator might be used and we wish to minimize a stationary cost. The right
side of the limit ODE is the negative of the derivative of the stationary cost with
respect to the adjustable parameter. All of this is a consequence of the basic theorem.
Many authors [6, 7, 16, 32, 34, 45] consider finite-horizon gradient estimators. They
reset the estimation (reset the accumulator, to use current jargon) at the start of each
observation interval, whose length becomes large as n --. x. It will be seen that quite
often one does not need to let the observation intervals become large nor to reset the
estimator. Indeed, these latter techniques are frequently adopted just because it is
under those conditions that the authors have proved their convergence results.

To illustrate the basic simplicity and power of the approach, in 7 and 8 we
have chosen examples of current importance and on which much work has been done.
Each example is typical of a large class of great current interest and illustrates the
application of the methods to that class. The problem of 7 concerns the optimization
of a single queue with respect to a service time parameter. This problem has been well
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studied and is typical of the use of IPA in many discrete event dynamical systems.
The problem in 8 concerns the optimization of an "unreliable" manufacturing system
via the choice of suitable production rates and thresholds and is typical of many
applications to piecewise deterministic systems. In both cases, the general techniques
discussed here are relatively quick to apply and yield good results for many forms of
the algorithms and under conditions which are weaker than those generally used. The
power of the approach allows much flexibility in the SA algorithm.

In 9 we apply the ideas of 3 to a stochastic differential equation (SDE) model,
where the sample derivative is obtained from the equation for the adjoint or mean
square derivative. This is just the SDE analogue of the IPA-type estimator and has
been in use for a long time. In such examples one often has the problem of proving
stability of the derivative estimators, and there is no regenerative structure to help.
When stability can be proved, the results are exactly as for the discrete-event and
piecewise deterministic dynamical systems cases; one need not restart the estimator
nor let the estimation periods increase with time, each of which might not be good
practice. In the limit one gets the basic ODE, whose right side is the negative of the
gradient of the stationary cost with respect to the parameter. When stability of the
mean square derivative process cannot be proved, one can use various forms of finite
differences. For example, one might use one continuous run either with the parameter
being perturbed over successive intervals of, say, fixed length, or with the use of
independent samples for the positive and negative perturbations. In the former (one
sample) case, it is noteworthy that we can often get something close to the desired
limit ODE. Either finite difference method can be employed when the functions in
the cost or dynamical equation are not smooth (say, the cost involves the indicator
function of some event) or when we do not know the model well enough to even try
to compute a pathwise derivative.

The appendices contain various extensions. Appendix 1 uses a perturbed test
function type method (of the type used in [23]) to avoid the Markov assumption. In
Appendix 2, we illustrate the use of a method with which one can sometimes avoid the
use of occupation measures in the argument of Theorem 3.1 and which is adaptable to
many uses. Appendix 3 contains the few additional details when one wishes to work
within a regenerative context but possibly update at rather arbitrary random times
during the interval as well as at its end. Appendix 4 contains the essential ideas for
dealing with a decentralized algorithm, where the different processors update on their
own (asynchronous) schedule, with possible delays in communication. Using simple
time-change arguments (extensions of the type first used in [30]), we show that the
proof and the end results are essentially as for the basic synchronized case, except
for some notational changes. This approach generalizes the results in [40]. Thus, the
described approach efficiently encompasses a very diverse group of algorithms and
applications.

Although the essential ideas are all in Theorem 3.1, the paper is long because we
wish to show the great flexibility of the ideas and how to extend them effectively in the
many possible (not entirely obvious) directions which are of increasing current interest
and to properly illustrate their practical use via concrete applications to important
problems.

We note that the convergence can generally be accelerated using the iterate av-
eraging methods initiated by Polyak and discussed in [29, 36, 46, 47].

2. Some background on weak convergence. The methods of the theory of
weak convergence are powerful and widely used tools for problems concerning approx-
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imations and limit theorems for random processes [3, 10, 22]. They do for random
processes what the central limit theorem and the law of large numbers do for se-
quences of vector-valued random variables. Because they are averaging methods for
random processes evolving on different time scales, they are natural methods for SA
and have been widely used. Only the basic definitions will be given, since the ideas
will be used in a simple way. Further information for those interested can be found
in the references.

Let {Xn, n < oo} be a sequence of random variables with values in a complete
and separable metric space (CSMS) S. In this paper, S will generally be either some
Euclidean space Rk, a space of functions representing the paths of the SA process, or
a set of probability measures, as specified below. We say that {Xn, n < oo} converges
weakly to a random variable X and write Xn X, if for each continuous and bounded
real-valued function f(.) on S we have Ef(Xn) El(X). Thus, weak convergence is
an extension of the concept of convergence in distribution of a sequence of real valued
random variables to more general spaces. If P and P, resp., are the measures of Xn
and X, resp., we also say that Pn P. The sequence {X, n < oo} is said to be tight
if for each 5 > 0 there is a compact set K C S such that P{Xn { K} < 5 for all n.
Equivalently, a set of measures {Pn, n < oo} on the Borel sets of S is said to be tight
if P{S- K} _< 5 for all n. Tightness implies the existence of a weakly convergent
subsequence [10, p. 104].

The Skorohod representation. Since weak convergence is a generalized distri-
butional convergence, it does not depend on the actual probability space that is used.
it is often more convenient in the analysis to work with w.p.1 convergence rather than
with weak convergence directly. The Skorohod representation [10] guarantees that we
can choose the probability space so that w.p.1 convergence holds if weak convergence
does, as follows. Suppose that X = X weakly. Then we can find a probability space
with random variables {n, n < OO},) defined on it, where .J7n (resp., J) has the
same measure as X (resp., X) and on which )n ) w.p.1 in the topology of S
[10, p. 102]. We will use the Skorohod representation where convenient.

The path spaces. Define Dr[0, oo) or Dr(-oo, oo), where Dr(I) is the space of
Rr-valued functions on the interval i which are right continuous and have left-hand
limits (and are continuous at t 0 in the case of Dr[0, oo)). The topology will be
that of uniform convergence on finite intervals, making both spaces into CSMSs.

Notation on interpolated processes. In the SA algorithms that we study, we
will have recursions of the form X+ X / eX, where X is a sequence of Rr-
valued random variables. We are interested in studying the limit behavior as e -. 0
and n -- oo. The piecewise constant interpolation of Xn on (-oo, oo) is defined as

X(t) X for t e [en, e(n + 1)) and X(t) X for t < 0. For t _> 0, let It] denote
the integer part of t. Then,

[t/]-I

x (t) x(o) + t >_ o.
i=0

X(.) is a random process with paths in Dr(-oo, oo). We also view it as a random
variable with values in Dr (-oo, oo). We will also use shifted processes, as follows. Let
q be a sequence of integers such that eq oo as e --. 0. Then X (eq +-) will also be
of interest, since the "tail" of the original process is now in the "vicinity of the origin"
for large eq. We will be interested in the limits of the X(.) as e - 0. For notational
simplicity, we henceforth write [t/e] simply as tie in the limits of the sums.
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Next, let Q be a sequence of positive numbers which goes to zero and such that
n--1-j ej cx. Let Xi be a sequence of Rr-valued random variables. Define tn ’i=0 i,

re(t) max{i ti _< t}. With X(0) given, define the interpolation X(.) by X(t)
X(0) for t _< 0, and for t _> 0,

,(t)-I

x(t) x(o) +
i--0

The shifted processes xn(t) X(t 2_ tn) will play an important role since they bring
the tail of X(-) to the forefront. The following result will be used. It is not hard to
prove directly and follows from [3, Thm. 15.2].

LEMMA 2.1. Suppose that {X, > 0, n < x} and {Xn, n < x} are uniformly
integrable and {Xn}, {X,} are tight. Then {X(.), > 0}, {X(eq + .), > 0}, and
{Xn(.), n < x} are tight and any weak limit has Lipschitz continuous paths w.p.1.

Random measures. The treatment of the unbounded noise case (which is
generally the situation in the problems of interest here) will be simplified and extended
(over that in [22, 27]) by the use of random variables which are measure valued. The
concept will be used in a rather simple way and all that we need to know will now be
stated.

Let P(S) denote the set of probability measures over the Borel subsets of S. The
Prohorov metric [10] will be used on this space. An important point is that under this
metric P(S) is a CSMS, since S is [10, p. 101]. Convergence Pn - P in this topology
is equivalent to weak convergence of {Pn, n < c} to P [10, p. 108].

Now let {Rn, n < cx} be a sequence of random variables whose values are points
in P(S). By definition, {Rn, n < c} converges weakly (as a sequence of random
variables) to the measure-valued random variable R if EF(R) - EF(R) for each
bounded and continuous real-valued function F(.) on P(S). The function/ defined
by R ERn is a measure in :P(S). We will need the following important fact

LEMMA 2.2 (see [24, pp. 14-15]). The set {Rn, n < } has a weakly convergent
subsequence if {R,, n < cx} is tight.

This characterization in terms of the mean values is of great help, since the
mean values {Rn, n < c} are much easier to deal with. Recall that the sequence
{/, n < x} is tight if the associated sequence of random variables is tight. Let
f(-) be a bounded, continuous, and real-valued function on S. The function defined
by Ff(P) f f(x)P(dx) is real valued, bounded, and continuous on P(S). Thus,
if Rn = R then Ff(R) Fy (R) in distribution for each f(.). If the Skorohod
representation is used, then we can say that w.p.1 for each such f(.)

(2.3) Ff(Rn) --
3. The basic SA algorithms. The section contains several parts. Section 3.1

gives the main convergence theorem from which all others will be derived. Section 3.2
concerns the limit points of the ODEs which characterize the asymptotics of the SA.
In many cases, the observation has a certain decomposition property which simplifies
the verification of the assumptions, and this is exploited in 3.3. A simplified result for
regenerative type processes, where we update at the end of the regeneration intervals,
is in 3.4.
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3.1. The canonical algorithm. Let e > 0. We will develop the basic ideas for
the algorithm

(3.1) n+l

where Y, is a sequence of Rr-valued random variables. The proofs of subsequent
results for other SA forms will be more or less simple variations of the proof for (3.1).
We next state the conditions which will be needed. The conditions seem to be nearly
minimal and will be illustrated in the examples in 7-9.

Let B be a sequence of nondecreasing sequence of sigma-algebras where B mea-
sures at least {, Y, < n} and E be the expectation conditioned on B. Write
EY, n. Then the Yn defined by Yn + Yn are B-martingale differences.
Generally, B will measure "all the information" which is used to get the {Y, < n}.
Suppose that

{Y,, n < cx, > 0} is uniformly integrable.

Suppose that there is a process {, n < c} which takes values in some CSMS and
measurable functions G(.) such that we can write

(3.3) /" Gn(n, n)"

Assume that

(3.4) the set {, 0, e > 0, n < cz} is tight.

Tightness of {, e > 0, n < cx} holds if a projection algorithm is used (5). Otherwise
a stability argument might need to be used. Suppose that for each e, 0, n there is a
transition function P(., .It?) such that P(., AI. is measurable for each Borel set A in
the range space of and

(3.5)

By this Markov assumption, E is the expectation conditioned on (0, ). For each
fixed , let there be a transition function P(, .It?) such that

(3.6) Pn(, .10) = P(, .10) as n cx, e -* 0,

where the limit is uniform on each compact (0,) set; i.e., for each bounded and
continuous real-valued function f (.),

f()P(, d[O) -- f f()P(, d[O)

uniformly on each compact (0,) set. Assume

P(, .10) is weakly continuous in (0, ).

For each fixed 0 the transition function P(., .10) determines a Markov chain and we
let {n(0)} denote the associated random variables. Let #(.[0) denote the invariant
measures under the transition function P(, .10). Suppose that

(3.s) {#(.[0), 0 e O} is tight for each compact O.
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Henceforth, let q be a sequence of integers such that

(2.n’ either q _= 0
or q --,

Suppose that there is a continuous function G(.) such that for each ti > 0

(3.9) limlimsup P{IG(9,) G(9, )l _> 5} 0

and that for each compact 0-set O there is K0(O) < oc such that for all stationary
processes {n()}

(3.10) sup EIG(9 y(O)) < K0(O).

Finally, we assume either (3.11a)or (3.11b)"

(3.11a) For each O, #(.[O) is unique.

There is a continuous g(.) such that for each 9 and initial condition 0(O)

N-1

(3.11b) lim
1

N - E Ea(O,n(9))--g(9).
n--O

Under (3.11a), define

g() / G(, )p(dlt).

Define the continuous parameter interpolation 0(.) by 0(t) 0 for t E [He, He +
e), n >_ 0. For t < 0, set 0(t) .

THEOREM 3.1. Assume the conditions (3.2)-(3.11). Each subsequence of{O(qe+
), e > 0} has a further subsequence which converges weakly to a bounded solution (.)
o
(3.12) g(9)

on [0, cx) if q 0 and on (-cx, cx)) if eq cx. Also, g(.) is a continuous function
of O.

Remark. We note that in current applications it is often the case that the P and
the G do not depend on either e or n. See the examples in 6-8. A way of avoiding
the Markovianization is described in Appendix 1. Condition (3.11b) is often much
easier to check than is uniqueness of the invariant measure. In typical examples where
one uses some sort of weak sense derivative or an IPA-type estimator, it is equivalent
to the asymptotic consistency of the estimator under fixed , as will be seen in the
examples in 6-8. This is a minimal condition. The ability to use such a condition
is basically a consequence of the "martingale problem" formulation used in the proof.
it is exploited in the use of conditional expectations in the expressions from (3.17)
on.

The basic idea in the proof is to first replace the Y by its conditional expectation,
given the past. Then use a piecewise constant approximation to the state process, and
finally exploit this last approximation via an ergodic condition. The type of continuity



STOCHASTIC APPROXIMATION 721

and uniform integrability conditions required seem rather weak and have their roots
in the basic references [22, 27].

Remark. If Y can be represented as g(0) plus a "martingale difference" plus a
term which goes to zero in mean as e -- oc and/or n -+ cx, then the proof becomes
nearly trivial since no averaging needs to be done. The difficulties arise when the
conditional expectation (given past data) of Y, depends on the past, and this holds
true in many important cases. The basic structure and motivation of the proof are
analogous to those of [22, 27], but many of the details are different. Here there is
a smoother development of the unbounded noise case under weaker conditions. The
proof also provides a simpler way of characterizing the limit points (see Theorem 3.2)
and dealing with the other extensions. In order to simplify the notation, we use qc 0
in the proof. The details are exactly the same for the general case.

Proof. Part 1. A continuity result. Until the last part of the proof, assume
(3.11a). Let f(.) be bounded, continuous, and real valued. Given 0 E Rr, let n be
a deterministic sequence tending to 00. We have

/f()]J(d:’On)’-" / If f()P(’ d’On)]
Now as n --* oc P(,.10,) converges weakly to P(,.lOo) uniformly on each com-
pact (0,) set by (3.7). Using (3.8), extract a weakly convergent subsequence of
{#(.IOn), n < oc} and denote the limit by/5(.). Then

which implies, via uniqueness, that/(.) #(.100). This argument yields the continuity
of f f()lz(dlO).

Part 2. A martingale problem representation. By (3.1) and (3.3)
tic-1 tl-I

o (t) + +
i--O i=O

First, we show that the martingale term (the one on the right) goes to zero as
0. This would be easy if the uniform integrability in (3.2) were replaced by square
integrability, since then the martingale would be square integrable and its variance at
t would be bounded by e2(t/e)sup.n var(hYn) O(et). Hence the term would have
the zero process as a weak limit. We get the same result by a truncation argument, as
follows. For large positive B, let I,B be the indicator function of the event that Yn
does not exceed B in absolute magnitude. Then use YIn,B in lieu of Y,, as follows.
Define 5Y,,B and/,S by

YI,B EYI,B + SY,B, V V,I, +/3,.
We have sup,n E[/3,]- 0 as B - cx by the uniform integrability. Since

v’/-I YB contributes nothingare bounded, for each B < ec the martingale term e z-,i=0

to the limit by the "square integrability" theory. Now the uniform integrability (3.2)
yields

lira sup E[EY,I, G(O, )[-- 0.
B nc

If, for a sequence Zn,E[Zn[ 0, we say that it converges in mean to zero.
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These results imply that (3.13) can be written as

0 (01 + a;(o.;, C) +
j=O

where Ip(t)l 0 in the mean uniformly on each bounded t-interval. Now the uniform
integrability (3.2) and the form (3.1) imply that {(.), e > 0} is tight and that any
weak limit has Lipschitz-continuous paths w.p.1 (see Lemma 2.1).

The conditions seem to be weakest if we work with a "martingale problem" for-
mulation, and we proceed to do so. Now, with a slight abuse of notation, let e index
a weakly convergent subsequence of {0(.), e > 0} with limit process denoted by (.).
Let t, T be arbitrary positive numbers; q be an integer; si, i <_ q, be nonnegative num-
bers no larger than t; and h(.) be a bounded, continuous, and real-valued function of
its arguments. As is common in weak convergence-type arguments, we will show that

(3.15) Eh(O(si), i <_ q) O(t + T) O(t) g(O(u))du O.
Jt

By the arbitrariness of the h(.), q, t, T, Si, (3.15) implies that O(t)-(0) f g(O(u))du
is a martingale (with respect to the filtration which it generates). Since EIp(.)l 0
and {G(0,),e > 0, n < cx} is uniformly integrable, the form (3.14) implies that
the martingale has zero quadratic variation; hence it is constant. Since it takes the
value zero at t 0, it is identically zero w.p.1. Thus, the theorem will be proved once
(3.15) is proved.

Part 3. Approximating the G(.). By the properties of p(.), we can write

(t+)/-

(3.16) Eh(O(s,),i <_ q) O(t + T) O(t) -- E G;(O;,;) 0
j=tl

as e --. 0. We proceed to rearrange the terms in (3.16) so that efficient averaging
methods can be used. Let n --, be a sequence of integers such that 5 en -- 0
and T is an integral multiple of 5. Without loss of generality and for notational
simplicity, suppose that t is also an integral multiple of 5. By collecting terms in
groups of size n and using the freedom that we have with taking the conditional
expectations given "past data" inside the brackets in (3.16), we can write the left side
of (3.16) as
(3.17)

{ t+r-5 [ 1 ln+n-I ] }Eh(e(si),i <_ q) e(t - T) e(t) E e E EelneGje(;, ;)
l:lhe--t ne j--lne

For a real-valued function f(.) and x > B > 0, define fB(’) by fS(X)
min[f(x), B] for f(x) >_ 0 and by f(x) max[/(x),-B] otherwise.

By the uniform integrability (3.2), given any p > 0 there is B < cx such that
we can use G,B(. while changing the expectations of the absolute values of the
summands in the brackets of (3.17) by at most p. Continuing in the bracketed term,
first replace G(9,)with G,B(9, plus a small error term. Then use (3.9)(which
also holds for the B-truncated functions) to replace G;,B(0;,;) with GB(0;,;) plus
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a small error. Finally, use the (uniform in compact (0, ) sets) continuity of GB(., ),
(3.4) and the fact that (in probability, uniformly in l)

(3.18) sup 10n,+j 01 --+ 0 as e --+ 0
j<_n

to justify replacing 0 by 0etn, (plus a small error term), yielding that (3.17) equals
(3.19)

t+r-, I
Eh(Se(si), i <_ q) 8"(t + T) 8(t) E ee E E,,GB(8,,, {)

l:l=t j=ln

modulo an error pi which can be made as small as desired in mean value by choosing
B large enough and then e small enough. The sum in (3.19) can be written as

G(s)ds, with the obvious definition of (.) as the process which is constant
on intervals [la, (l + 1)), as defined2 by the bracketed term.

The weak convergence arguments in the next parts will show that

Eh(O(si), i < q)G(s) Eh(O(si), i <_

where gB(O) f GB(O, {)#(d{lO). This will imply that the outer sum in (3.19) can be
replaced by ftt+rgs(O(s))ds in the limit as e -+ 0. These results will yield that

(3.21) gB(8) + PB,

where E f IpB(s)lds 0 as B oo. The proof under (3.113) will then be completed
in part 5 by showing that we can let B oo. Part 6 will deal with (3.11b).

Part 4. Averaging out the . To complete our program, we need to average out
the { terms in (3.19). Define the measure-valued random variable (an average of
conditional probabilities)

1 ln+ne--1

(3.22) R(l, ., ")
n ln. ln. },

j=ln

and recall that the Ezn, is the expectation conditioned on (Ozen, {Zen, by the Markov
assumption. The inner square bracketed term in (3119) can now be written

(3.23) R(l, e, d{)GB(Otm ).

The set of measure-valued random variables {R(/, e, .), < oo, e > 0} is tight, since
the mean values are just

I ln+n,--I

/(/’ e’ "1 n- E P{ "}
j--ln

9. We note here that the major problem in averaging the inner square bracket is in showing that
the {{ in the inner sum in (3 19) can be replaced by {j(O _), all of which have the same value ofn
O as .n argument, so that some sort of ergodic theorem or averaging principle can be used to get
the ultimate averaged limit. Recall that {i(O) is the Markov chain with fixed parameter O. This idea
is basic to all of the averaging methods. The continuity (3.7) of the transition function is the basic
property that is used. Various alternatives will appear in the appendices.
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and the tightness of {/(/, e..), >_ 0, e > 0} is just the tightness of {,
and this latter sequence is tight by assumption (3.4) (see Lemma 2.2). We will char-
acterize the limits of weakly convergent subsequences of {R(1, e, .), < c, e > 0} as
measures whose values are (w.p.1) just the invariant measure #(.10) with appropriate
values of 0. Now we follow the ideas in the development in [22, p. 110], except for the
use of the random measures in place of their pointwise values. (We note that the use
of random measures here greatly simplifies the treatment of the unbounded noise case
over that in the references.)

Fix s > 0, and let le be such that s C [/ee, lee+6e) for all . Let f(.) be
a bounded and continuous real-valued function of . Using (3.8), extract a weakly
convergent subsequence of {R(/e, e, .), Oe(.), > 0}, and index it by e(p),p oo. The
proof will show that this further subsequence is irrelevant, due to the uniqueness of the
#(.]), and that we can let e(p) . We also suppose that the Skorohod representation
is used so that the convergences are w.p.1 in the appropriate topologies. Denote the
limit by (/(.), (.)).3 Define me(p) -le(p)ne(p). Note that me(p) o as p --, oo. We
can write

f (d)f() lim f R(le(p), e(p), d)f()
d d

(3.24) 1
lim / P{(P) e d]Oe(p) .e(p) }f()me(p) "me(p)p--*o: Tie(p) j--me(p)

The first equality follows from the definition of the weak limit. The second follows from
definition of R(le, e, .). Continuing, we use the one-step transition function P(P)(.) to
rewrite the right side of (3.24) as (minus the first term of the sum)
(3.25)

me(p) ...-ne(p)

lim
1 //p’te(p) d,,e(p) d.,Oe(p)t:e(p)}P(P)(,dl)f([vj--1 j--1 me(p) "me(p)P he(P) j=me(p)+l

Condition (3.6) yields

lim f P(P) (, dl)f( f P(, dl)f( =_ ](, ),
p,n

and the limit is uniform on each compact (, ) set. By (3.7), the right-hand side is
continuous. By using these facts and the fact that the limit 0(.) is continuous, we can

concentrate the measure of in (3.25) at e(p) without affecting the limit With thisme(p)

replacement, (3.25) can be written as

lim f n(le(p), e(p) d)[(Oe(p) )J\ me(p)P J

which by the use of the weak convergence of {Re(P)(le(p), e(p), "),"me(p)
as p--. oe equals

(3.26) J l(d).(O(s),) / / (d)P(,d,,O(s))f(,).

3 Strictly speaking, when taking limits of {/(/(p), e(p), .),Oe(P)(.),p < cx)} and using Skorohod
representation, the probability space might be different from what was used when we got the original
weakly convergent subsequence with limit 0(.) in part 2. But since {0e(p) (.), p < cx} is a subsequence
of {0e(.), e > 0} and all that matters are the distributions of the resulting limits anyway, we write

0(.) for the limit as p cx) for notational simplicity and without loss of generality.
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Let w denote the canonical probability space variable. Equating the right side of
(3.26) with the left-hand side of (3.24) yields that (w.p.1) each sample value
must be an invariant measure for the transition probability P(, .10(s,w)). By the
uniqueness of the invariant measure, /(.) #(.10(s)) w.p.1, and the subsequence of
{R(l, e, .), e > 0} which is used is irrelevant. This implies that the limit in (3.23) is
gB(O(s)) w.p.1, which yields (3.20).

Part 5. Replacing gB(’) by g(.). The results of the previous parts imply that
we can replace the square bracketed term of (3.20) by (3.19) by gB(O(s)) and that
(3.20), (3.21) hold. We need only show that we can let B in (3.21). We can let
B and replace gB(’) by g(.) if G(0, .) is (.[) integrable for each 0, the integral
is bounded on each compact set, and

f f
uniformly on each compact 0 set. But this follows from (3.10) and the monotone
convergence theorem.

Part 6. Using (3.11b). If we drop the uniqueness condition, then the subse-
quence (p) might be important. However, note that the above proof established
that, whether or not there is uniqueness,

for some invariant measure, which might depend on (w, s). But (3.11b) implies that
the right-hand side equals g(O(s)) for the function g(.) defined there.

3.2. Limit points and nonunique invariant measures: Limit points of
(3.12). We use some elementary facts from the theory of differential equations. Given
an ODE f(x), x e R, with continuous f(.) and a bounded solution x(.) on [0, ),
let L denote the set of limit poims of the path x(-). Define an invaant set M for the
ODE as follows. For each y M, there is a solution y(.) to the ODE on (-,
such that y(t) M for all t and y(0) y. Then [15] L is a compact invariant set. We
can now state the following result.

THEOREM 3.2. Assume the conditions of Theorem 3.1. The limit points of (3.12)
are contained in the largest bounded invariant set M of & g(x). Now let eq
and Oe(eq + .) (.) as e O. Then, w.p.1 for each t e (-, ), O(t) e M.

Remark. The last assertion holds since the solution is defined on the doubly
infinite time interval. If the ODE has a unique stationary point , then the last asser-
tion implies that O(t) for all t. Appropriate perturbation schemes will guarantee
that the iterate won’t get stuck at a maximum or at a saddle point. Reference [1]
shows that the set of limit points are confined to the set of chain recurrent points,
which might be smaller than the largest bounded invariant set, but the conditions are
stronger.

Nonunique invariant measure. Suppose that (.) is not unique and (3.11b)
cannot be verified. We might still be able to get a useful result. Let V(O) denote the
(convex) set of invariant measures under 0. The proof of Theorem 3.1 can be easily
modified to get the following theorem.

THEOREM 3.3. Assume the conditions of Theorem 3.1 except for (3.11). Then
w.p.1 and for almost all t, the theorem holds with (3.12) replaced by
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3.3. "Atomic" increments. Return to the basic algorithm (3.1). in many
applications the Y-variables have an additivity property which can simplify the ver-
ification of the conditions and which we now explain and exploit. Define q 0 and
suppose that we update at the increasing random times q, n 1, Let ke(n) be
the last time of updating before and including time n. By additivity, we mean that
the observations can be divided up such that the algorithm can be written

(3.29)
qn+l --I

On -{- e y/e,
-"qn

where the Y obey the conditions of Theorem 3.1. At each instant in the interval
[q, q+l) the value is used to get ye. From the point of view of the convergence
theory, one can just as well update in "real time" and use the modified algorithm

(3.30) 0+1
where (,,.. s used o e F. uppose ha +i- is bounded b some consn
independenl of e, . Then he conditions of Theorem 3.1 uaranee ha i conclu-
sions hold for he 8A (3.30) and similarl for
are unbounded, hen in order for he wo ime scales of (3.29) and (3.30) o be com-
patible, we need in ddiion ha he conditions of Theorem 3.1 hold for he original
alorihm, in particular ha [+ -]/e be uniforml (in , e) injectable.

The advantage of his "aomic" decomposition is ha i makes i easier o verif
he conditions on he Markov chain 4 for (3.30) hn for (3.39), since he ransiions
are viewed "more Iocall."

.4. Updain a reneraion imes. upposeh he problem hs sruc-
ure ha allows g() o be estimated reenemivel. When g() is he derivative of
C(), a coninuousl differeniable, "sionr cosC function of resenemive pro-
cess, an excellen reamen of he regenerative estimation of he derivative is in [14].
We mih wish o use SA o minimize C(). In particular, suppose ha will be
updated a he end of each new regeneration intervals and ha here are F which
are "nearl" unbiased estimators of g() and which depend on daa in regeneration
intervals [ + I, + ] onl. Be (3.1) be used. Define

G(O) E[YJIO O, O,i < n] E[YJIO 0].

Assume that {0, e > 0, n < } is tight, {Y, e > 0, n < } is uniformly integrable,
and, for each > 0,

(3.31) limlimsup P{G(O) g(0)] } 0.
n

Then a simpler proof than that of Theorem 3.1 says that the conclusions of Theorem
3.1 hold (and similarly for the other theorems). The proof is simpler since there is
no need to introduce or the averaging measures. We note that sometimes the
minimization of an average cost per unit time can be reduced to an SA iteration
where we update at the end of each k intervals for some integer k. See, for example,
2.2 of [32]. The results of Theorem 3.1, as expanded in Appendices 3 and 4, show
that it is not necessary to use regeneration intervals as the basis for updating. Indeed,
updating only at the ends of these intervals might be a poor idea in practice in general,
despite the fact that the proofs are simplified. For network problems, a regeneration
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interval-based approach would be a handicap, since the intervals would generally be
very long. The situation is even worse if the processing is distributed (Appendix 4).
The same point was made by [35].

4. Time-varying gains en -’* 0. Suppose that the positive real numbers en go
to zero such that

--0

and

(4.1b) either E [en+l- en[ < oc or n/En+l 1.
n

These Ej could actually be random if they are nonanticipative and satisfy (4.1). The
SA algorithm is

(4.2) {gn+l n nt- nYn

Let Bn be a sequence of nondecreasing sigma-algebras measuring at least {00, Y, <
n}. Write En for the conditional expectation given Bn. The 5Yn defined by Y,
EnYn + 5Yn are Bn-martingale differences. As for Theorem 3.1, suppose that there
is a process {n, n < c} taking values in a CSMS and functions Gn(’) such that

n--1EnYn Gn(O,,,). Define tn =o ei. Following the definition (2.2) for t >_ 0,
define O(t) n on [tn, tn+l) and set O(t) Oo on (-oo, 0]. Define on(t) O0(tn +t).
Thus 0(0) 0.

Theorems 3.1-3.3 readily lead to the following theorem.
THEOREM 4.1. Assume the conditions of Theorem 3.1 with (4.1), (4.2), and the

following replacements. Equations (3.2)-(3.6) and (3.10) hold with the superscript e
dropped. Use limsuPn in (3.9). Then {0’(.),n < oo} is tight and the limit of any
weakly convergent subsequence satisfies (3.12) on (-oo, ca) w.p.1. Also, w.p.l., for
all t, O(t) M, the largest bounded invariant set of (3.12). If (3.11) is dropped, the
the conclusions of Theorem 3.3 still hold. The obvious analogue of the results for the
"atomic" increments formulation also hold.

Remarks on the proof. Again, the general structure is similar to that used in [28]
but with differing details. The proof is essentially the same as those of Theorems
3.1 and 3.3. The only difference concerns the way the terms are grouped, i.e., the
analogy to the arrangement in (3.17). For simplicity, let t _> 0, T > 0. Define rn(t)
max{j > n’tj t <_ t}. The following expression replaces (3.16)"

mn(t+’)--I ](4.3) Eh(On(s),i <_ q) O’(t + T) O(t) E ej(Gj(O,j) + 5Y) O.

The martingale term

mn(t+’)-I

j=m,(t)

goes to zero as n --. c by a bounding argument of the type used in Theorem 3.1 and
1+5the fact that e --. 0. Note in particular that no condition of the form e
J

< oc
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for 5 > 0 is needed. It is only required that en 0. Indeed, if the {Y,, n < c}
were uniformly square integrable, then the variance of the martingale term would

x-mn(t+’)--be O(1) -mm:(t+)-l(t) e2 and this goes to zero if Q 0, since =m(t) e T. In
general, one uses uniform integrability to the same end as in part 2 of the proof of
Theorem 3.1.

We now comment briefly on the appropriate grouping of the terms. The 5 used
for the grouping in (3.17) is replaced with a sequence of positive numbers 5n 0
which satisfy limn sup{j/Sn: j n} 0. Define m(n, O) n. For each n, define an
increasing sequence of integers m(n,/), 1,..., by

m(n,l)=min j" e lS
in

Thus
m(n,l+l)--i

E ej
j--m(n,l)

For each n, we will arrange the terms in groups of successive sizes re(n, + 1)
m(n, l) as follows. Suppose, for notational simplicity, that both t and t +T are integral
multiples of 5n. The changes for the general case should be obvious. Now, analogously
to what was done in part 3 of the proof of Theorem 3.1, replace the sum of the ejGj
in (4.3) with

(4.4) E 5n - E,(n,t) E eGi(Oi,)
l:lS=t j=m(n,l)

Then argue that the Gj (0,) in the sum on the right can be replaced by G(Om(,t),)
plus an arbirarily small (in the mean) error for large B, n. Define the measure-valued
random variables R(1, n, .) by

m(n,l+l)-i
1

e
=m(n,t)

Thus, as in part 4 of the proof of Theorem 3.1, we approximate the bracketed term
in (4.4) by

n,

Next consider the analogue of the factorization taking the sum on the right side
of (3.24) to that in (3.25). The analogue of (3.25) (before extracting the convergent
subsequence and without the limit) is

m(n,l+l)-I

jP{Oj-1 e dO,

_
e dlOm(,), (,)}Pj_ (,

Analogously to part 4 of the proof of Theorem a.1, we can fix at 0(,) and replace
P(-) with P(.) to get the representation

R(l, n, d) / f()P(, dlOm(,) ),
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where ej-1 replaces ej in the definition of R(.). By either option in (4.1b), this
replacement does not affect the limit.

5. A constrained algorithm. Let H be a closed set in Rr. Let IIH(x) denote
the closest point in H to x. The following development is a slight extension of [22,
pp. 111-114]. Define the projected form of (3.1) as

(5.1)

Rewrite (5.1) as

+ +
where z is the "correction term." The decomposition (5.1) is the key to the analysis
and first appeared in [25]. Under (3.2), the sequence {z, e > 0, n < oc} is uniformly
integrable. Let q be a sequence of integers satisfying (3.8’). The proof of Theorem 3.1
yields immediately that the limit of any convergent subsequence of {(q+ .), e > 0}
as e --+ 0 has the form

(.2) ()+ z,

V"q+t/- for t _> 0, andwhere f z(s)ds is the limit of the process with values e ,--,n=q Zn
with the obvious change for t < 0. Thus the only problem concerns the characterization
of z(.). By the uniform integrability, (z(.), 0(.)) are Lipschitz continuous w.p.1 (Lemma
2.1). Clearly, z(u) 0 on any interval (t, t + T) in which O(u) E H, the interior of H.
To proceed, we need to specify H more fully, and we assume either of I or II below.

i. Let qi(’),i 1,...,p, be continuously differentiable real-valued functions on
Rr, with gradients qi,x(’). Without loss of generality, let q,x(x) 0 if q(x) O.
Define H {x: qi(x) <_ 0, i 1,...,p} and assume that it is nonempty. Define A(x),
the set of active constraints at x, by A(x) {i: qi(x) 0}. Define C(x) to be the
closed convex cone generated by {y: y qi,(x), A(x)}. Suppose that for each x
with nonempty A(x), the set {qi,(x), A(x)} is linearly independent.

II. H is an Rr--dimensional connected surface with a continuously differentiable
outer normal. In this case, define C(x), x H, to be just the linear span of the outer
normal at x.

THEOREM 5.1. Assume the conditions above and the conditions of Theorem 3.1.
Then the conclusions of Theorem 3.1 and Theorem 3.2 hold with (5.2) replacing (3.12)
and z -C(O(t)), where the limit points of (5.2) replace M. If (3.11) is dropped,
then the the conclusions of Theorem 3.3 still hold. The same conclusions hold for the
constrained form of Theorem 4.1.

Proof. The basic proof is a straightforward extension of that of Theorem 3.1. To
characterize z(t) we use the fact that if for any (t, x), O(t) x, then z/ is in a small
neighborhood of-C(y) for some y near x when e is small. Then use the fact that
C(x) is upper semicontinuous in the sense that if Ns(x) is a 5-neighborhood of x,
then

r]>o UyeNe(x)C(y) C C(x);

i.e., the set of active constraints at x contains that for points very close to it. [:]

Note. If, under I, there is only one active constraint (say, i) at t, and g(O(t))
points out of H, then the right-hand side of (5.2) is just the projection of g(O(t)) onto
the boundary surface.
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6. Applications of Theorem 3.1: Introduction. As they are stated, the
results in 3-5 do not explicitly deal with the optimization of an average cost over
an infinite interval. In the examples in the remaining sections, we show that they are
very powerful tools for proving convergence for just such problems. Three canonical
examples of optimization will be described in detail. All use some approximation to a
gradient search procedure. We will use constant step sizes as in Theorem 3.1, but the
extensions to the decreasing step-size case will follow immediately from Theorem 4.1.
Note that the constant step-size case e e has applications in tracking and adaptive
control also. The examples concern the minimization of a stationary average cost
associated with the path of a dynamical system. This section deals with a general
discussion of the issues. Section 7 concerns a discrete event dynamical system example
and an IPA-type estimator [13, 18]. Section 8 concerns a "piecewise deterministic"
example, also using an IPA-type estimator and involving a problem in manufacturing.
The third example involves a stochastic differential equations model. The examples
are illustrative of many others using various methods of estimating derivatives.

Let us consider a canonical continuous time model in a rather informal way, since
we wish only to illustrate the basic ideas in an unincumbered way. The general con-
siderations hold also for discrete-time models, as will be seen in the next two sections.
Among the points to be clarified is the so-called resetting of the IPA "accumulator."
It will be seen that it is often neither necessary nor desirable. The basic ideas are in
[22, 27], but their full potential has not been realized in the literature.

Suppose that for fixed parameter 0, x(., 0) represents the dynamical state process
of the system. In order to fix ideas, let x(., 0) be defined by the SDE

dx(t, O) b(x(t, 0), O))dt + dw.

For the sake of simple notation, let both x and 0 be real valued and the function b(.)
be smooth enough so that the following calculations make sense. We return to this
example in a more thorough way in 9. For initial condition x(0, 0) x(0), fixed
parameter 0, and cost rate c(O,x(s, 0)), define the average cost per unit time on [0, T]
by

lf0TCT(O,x(O)) E- c(O,x(s,O))ds.

Suppose that CT(O, x(0)) is continuously differentiable with respect to 0 with gradient
CT,o(O,x(O)). Suppose that for each 0 the limit C(O) limTCT(O,x(O)) exists and
does not depend on x(0). Suppose that the pointwise limit of CT,o(O,x(O)) exists and
is denoted by 0(0). Then 0(0)= Co(O).

We wish to use SA to minimize C(O). A common procedure for updating 0 via
gradient seach is based on the consistency of CT,o(O,x(O)); i.e., it is a good estimator
of Co(O) if T is large. Pursuing this idea, let us update the parameter at times
nT, n 1, 2,..., as follows. Letting 0 denote the nth choice of the parameter, use it
on [nT, nT + T) to get an estimator Yr of--CT,o(O,x(O, nT)). Then use

(6.1) 0n+l --On
Let x(.) (with x(0) x(0)) denote the actual physical state process with the time
varying 0 used, i.e., on [aT, nT + T) xe(t) x(t, 0) with the "initial condition" of
x(., 0) at time nT being

(6.2) x(nT, 0) x(nT).
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Continuing, suppose that ]Yr is an unbiased estimator of-CT,o(O,x(nT)). This
is equivalent to "restarting" the estimation procedure anew at each nT with initial
condition x(nT). To see what the limit ODE for (6.1) might be, proceed purely
formally, let x(nT) and apply Theorem 3.1 to get

(6.3) 0 / CT,o(O, )#(dlO).

The right side of (6.3) would not be close to -C0(0) unless (at least) T is large. For
this reason, it is often suggested that T depend on either or both e, n and go to infinity
as one or both of these quantities goes to its limit. In [41], there are conditions for
the convergence of the right side of (6.3) to -C0(0) for Markov chain models.

Before showing how to improve (6.3), let us look at a typical procedure more
closely. In order to get a (pathwise) gradient estimator one generally introduces an
auxiliary process y(., 0). For IPA estimators [13, 18, 32], this would be the pathwise
derivative of x(., 0) with respect to 0; for likelihood ratio estimators [32, 37, 38] this
would be the score function which keeps the information on the derivative of the mea-
sure. Other methods such as smoothed perturbation analysis and rare perturbation
analysis [4] use auxiliary information that represents the difference between the path
x(., ) and a perturbed one. See also the discussion of mean square derivatives and
finite differences in 9.

For the model used in our illustrative example, the appropriate y(.,/9) process is
the mean square derivative defined by xo(t, O) y(t, 0):

9(t, o) o), o) +  o(x(t, o), o)

with initial condition y(0,0) 0. Define z(.,0) (x(., 0), y(., 0)) -The estimator of
CT,o(O,x(O)) has the form

A(O,z(s,O))ds,

where

+  o(o, o)).

Let z(.) (x(.), y(.)) be the actual process with the time-varying parameter
used. Then the formal procedure leading to (6.3) would use

1 nT-t-T A(O, ze(s))ds,(6.4) ’-- T nT

where on [nT, nT + T) we have y(t) y(t, 0) with initial condition y(nT) O.
Now consider an alternative where x(.) is as above but y(.) is not reset to zero

at times nT. Use y(0) 0 and on [nT, nT + T) use y(.) y(.,O) with initial
condition at nT defined recursively by

(6.5) y(nT) y(nT, 0).

Then with the new definition of z(.), use the estimator

1 fnT+T A(O,z’(s))ds.(6.6) Yn- T nT
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Note that in general (6.6) would not be an unbiased estimator of-CT,o(O,xC(nT))
due to the "memory in its "initial conditions."

Now define the process zC(nT), and assume the conditions of Theorem 3.1.
Then the ODE which characterizes the limit behavior is (3.12), where

a(o, ) -E[YI ,O 01.
By the definition of the invariant measure, we then have

(6.7)
n

g(O) =_ / G(O, )p(d10) lim
1

EG(O, (0))
n n

i=1

where i(0) is the stationary process under 0. Under either (3.113) or (3.11b), the
limit on the right side is the same if we used the process n(0) with initial condition
0(0) (x(0), 0). Thus, with this new initial condition (6.7) equals

(6.8) lim
nT ,k(O, z(s, O) )ds lim CT o(O, x(O) -Co(O).

This is what we want since it yields the gradient descent ODE

(6.9) -Co(O)

in lieu of the "biased" (6.3). In the parlance of the literature (e.g., [32]), (6.9) results
when we do not reset the "accumulator." While there has been some discussion of
this preferable alternative, proofs and a clear understanding were lacking. In the next
three sections, the details are filled in for three classes of applications.

7. A discrete example: A GI/G/1 queue. We consider the problem treated
in [7, 11, 31, 32]. The model is a single-server queue with a renewal arrival process
and general service time distribution, which is parametrized by 0 > 0. For notational
simplicity, we suppose that 0 is real valued, but the development and results are the
same in general. For fixed 0 let X(O) denote the sojourn time of the ith customer
and K(O) be a bounded real-valued function with a continuous and bounded gradient.
The cost of interest is

N
1

(7.1) C(O) lin -- EXi(O) + K(O) ’(0) + K(O),
i--1

and we wish to use SA to get the minimizing 0. Again, we suppose that the parameter
0 is bounded. Indeed, the parameter might have to be restrained to some particular
interval [0_, 0+] in order for the assumptions below to hold, and we assume that this is
done. The example is widely studied, but the conditions used here are about as simple
as one can expect. The structure of the problem is similar (from the point of view of
SA) to those arising in other applications to single queues (and even for some network
problems). For example, consider the multiclass problem [34], admission control [42],
flow control in a closed network [43], routing in an open network [40], and routing in
a closed network [17]. Appendix 4 discusses the decentralized case that is of interest
in network models.

Fixed 0-process: Application of IPA. We proceed to make the usual as-
sumptions to assure that dXi(O)/dO exists and can be estimated via IPA. Define the
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parametrized service time distribution F(.I), and suppose that it is weakly continuous
in . Define the inverse function F-I(.IO) by

[0,

and assume that it is differentiable in 0 for each X, with a bounded and continuous
(uniformly in X) derivative denoted by F-(XI0). For fixed 0, let {(0),i
denote the sequence of service times and define Xn(0) F(n(O)I0) and the derivative
Zn( F0"I(Xn({9)I). Let Q(0) denote the queue length and T(0) the (residual)
time until the next arrival, all taken just after the departure of the ith customer.
Then Xn(O) (Qn(O),T,(0)) is a Markov process. Define the cost for the first N
customers, initialized at an arbitrary initial condition, as

(7.2)
N

Cg(, Xo) ON(, XO) + K() -EEX(O) / K().
i--1

Suppose that the busy periods have finite mean length for each fixed 0. Let Z(0)
denote the sum of the IZy(0)l in the nth busy period. Suppose that

(7.3) sup EIZ(O)l < c.

Remark on (7.3). In many cases where IPA can be applied, the is a scale
parameter of the service distribution. Then we have the form
n(O) 0F-I(Xn(O)I1), and Zn(O) n(O)/O, where the Xn(0). Letting N(0) denote
the number of services in a busy period, Wald’s identity yields EIZ,(O)I EZ,(0)
EN(O)EZj(O). If the system is stable, then EN(O) < oc and (7.3) holds.

Continuing, consider the estimator

(7.4)
m

2m(0)= 1 E E Zy(0)
m

i= j=(o)

where v(0) is the index of the first arrival in the busy period in which customer
arrives. If Q0 0, then (7.4) is an unbiased estimator of the derivative of (m(0, x0),
where x0 is the state at time zero. It is an asymptotically consistent estimator in that
[13] for each initial condition

(7.5) E2,(O) o(0).
Henceforth, just to simplify notation and not have to worry about the possibly sepa-
rate indices for arrivals and departures, we suppose that the queue starts empty. The
conditions and results are the same in general.

The estimator for the SA. We wish to use SA to minimize the cost (7.1) via
use of the IPA estimator. Suppose that the parameter is updated after the departure
of each successive group of N customers. We use the "customer number" instead
of real time. For fixed 0, the estimator used on the nth interval (the departures
InN + 1, nN / N]) is to be

nN+N

i--nN+l j=v (0)
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Recall that VnN(O is the index of the first arrival in the busy period in which arrival
(equivalently, departure) nN occurs. Let Dn(O) denote the number of departures
from the (nN / 1)st to the end of the busy period in which departure nN occurs. It
is zero if the nNth departure ends a busy period. Now, to separate the "past" from
the contributions over [nN / 1, nN + N), we split Yn(O) by defining

nN

’09) E Zj 09), "past"
j=v,()

nN+N

i=nN+l j=vi(O)V(nN+l)-I

Zj(t), "future,"

nNTN vi(8)V(nN+l)-I

i=nN+l j--vi(O)

Then

IY, (O) A, (O) + B,(0).

We can write

B(O) Dn(O)(O)/N.

Following the basic framework of 3, define the Markov chain {n(O) (Q(O), ruN(O),
Cn(0)). Define Gi(.) by

ao(O,,(O)) E,An(O), G(O,{,(O)) EnD,(O)/N,

where E denotes the expectation conditioned on all the systems data up to and
including the time of the nNth departure. It is equivalent to conditioning on ().

The functions Gi(., ) are continuous in , uniformly in each compact (, ) set by
the continuity assumptions made on the distribution of the service interval and the
derivative of its inverse. In preparation for the conclusion of the SA argument, note
that (and define G(.) by)

Ene’n(O) Go(O,n(O)) -Jr"

and that

n

lim-lEEG(O,n(O)) lim
1 nn --S Zj(O) =(o(0)

i= i= j=v(o)

for each initial condition.

The SA problem. For the actual physical system with the time-varying param-
eter, let denote the actual service time of the nth customer and Z the derivative
of the inverse function, using the parameter 0 for nN + 1 <_ j <_ nN + N. Let v
be the index of the first arrival in the busy period in which customer i departs. Let
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T[ be the residual time to the next arrival and Q the queue length, all taken at the
time of the ith departure. To update 0 we use the estimator

1?n
nN+N

i’-nN+ j=v

The SA algorithm is

(z.8)

Now define

nN

J-- nY

and define A,B analogously to what was done for the fixed 0 case. Then

A + Bsen and (QN, ’;N, Cn) is a Markov chain. We can write

(7.9) EY, Go( ,, n) " GI (On n)n a(O n)

In this example, the P in (3.5) does not depend on e,n. Thus, (3.6) holds.
Assumption (3.7) follows from the assumptions on the service time distribution. Also,
the G in (3.9) does not depend on e, n. Assumption (3.11b) follows from (7.6).

We need conditions which guarantee (3.2), (3.4), and (3.8). Define Z to be the
sums of ZI over the nth busy period. Suppose that

(7.10) {Z, e > 0, n < oc} is uniformly integrable,

(7.11) sup E(O) < E[ interarrival time].

By (7.10), (3.2) holds for 17,. The 0 are bounded and tightness of {, e > 0, n < c}
follows from (7.3)and (7.11). Condition (3.8) follows from (7.3)and (7.11), and (3.10)
is a consequence of (7.3). Now the convergence to the ODE

-Co(O)- Ko(O)

projected onto [0_, 0+] follows from Theorem 3.1. The case en -+ 0 follows from
Theorem 4.1.

Remark. We note that the updates need not be at regular intervals. If the in-
terupdate times are bounded, then the end result is the same. Unbounded interupdate
times might conceivably be of future interest, but at the moment it is hard to imagine
an application in which it would be allowed, but with suitable conditions on the in-
crements between updates we get the same result. If the estimator were reset at each
nN, then the 1 in (7.8) is replaced by A and the Co(O) in (7.12) would be replaced
by the biased quantity f N,O(O, x)#o(dxlO), where tt0(.10) is the invariant measure of
the x,(0) process defined above (7.2).
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8. An example from manufacturing: A piecewise deterministic prob-
lem. We now consider an interesting example from [44]. The reference considers a
manufacturing system with two unreliable tandem machines and is typical of many
applications to production rate scheduling problems. Let i(t) denote the indicator
function that machine is working, and assume that these processes are indepen-
dent renewal processes. The production rates ui(.), 1, 2, of the machines can be
controlled, subject to the machines’ working and to upper bounds fi on the rates.
Machine 1 feeds into machine 2 via a buffer for surplus inventory, and the demand
rate for the output of machine 2 is fixed at d. The dynamical state is the current
inventory level x(.) (xl(.),x2(.)). The inventory of machine 2 can be negative
(backlog). The reference assumes that the inventory process defined below satisfies
a Harris recurrence condition, but we will not need to suppose that. The dynamical
state equation is x(0) 0 and

l(t) tl (t) u2(t), 22(t) u2(t) d.

The control problem is actually more conveniently formulated in terms of the
surplus variables, defined by

(t) (t) + z (t) f0 Ul(S)ds, s2(t) x2(t).

They consider control strategies of a threshold type on the si(.). (Their thresholds
B1, B2 are the 01,02 here.) In order to illustrate our method, we shall focus on one
of their strategies, called the surplus control. Loosely speaking, for this control the
production rate is held at the maximum value if the surplus is less than the threshold
and tries to stay at the threshold if it ever reaches it. If (during the transient initial
period) the surplus on some machine is higher than the threshold, then production on
that machine is zero. For notational simplicity, we suppose that the initial surpluses
do not exceed the thresholds. The surplus process si(.) evolves with deterministic
slopes (fii, 0, or -d) which correspond to maximum production rate minus demand,
production rate equals demand, and no production, and these change at random times
which depend on the values of the renewal a(.) and state processes s(.). With minor
exceptions, the assumptions used here are implied by those in [44]. The ai (.) processes
do not depend on the thresholds. It is assumed that the maximum production rates
satisfy fil > fi2 > d. Also, it is supposed that 01 > 02 _> 0, with each threshold subject
to an upper bound, and that the SA algorithm is constructed to guarantee this.

DEFINITIONS (the fixed 0 processes). Henceforth, for the fixed 0 processes, we
write the state and surplus variables as x(., 0), s(., 0), resp. For fixed thresholds 0, the
control is such that the surplus processes are defined by

(8.1) l(t,O) (tl d)I{81(t,o)<ol} dI{8(t,o)>o} if al(t) 1,
-d otherwise,

(s.e)
(2 d)I{s2(t,o)<02} dI{82(t,o)>o}

if a2(t)= 1 and (sl(t,O)

_
s2(t,O)or cl(t)= 1),

-d otherwise.

The dynamics are such that 81(t, 0) 82(t 0)

_
0 if this condition holds at time zero,

which we suppose. (The condition will eventually hold in any case.)
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The system just described is an example of a piecewise deterministic control
system [8, 16], where x(., 0) is piecewise linear, with the intervals being random. In
[44], the interval distributions are exponential so that the state process is Markovian.
For cl > 0, c2

=e > 0, the cost rate of concern is

+ +

Actually, the reference starts with (x) cx + cz + cx, but in the derivative
calculations switches to c(.). The two cost rates are equivalent, with appropriate
definitions of the coefficients.

The thresholds are adjusted via an SA algorithm using IPA-type derivatives of
the cost with respect to the 0, with the aim of minimizing the cost function

(8.3) C(0) l c(s(t,O))dt,

where we suppose that the limit exists for each in the desired range. The reference
[44] derives auxiliary processes yi)(t, ), which is the pathwise derivative of sj(t, )
with respect to Oi. We now describe these derivative processes.

The (IPA) derivative processes. The following results are taken from the
reference, with only the terminology changed to bring it into line with our own.
Define the random time T() inf{t > 0: s (t, ) }. Then

yl) (t, O) I{tr(O)}.

Define the random times r(O) recursively by r(O) r(O) and

r(O) min{t r-(O) s(t,O) sz(t,O)},

r(O) min{t r(0): s=(t, 0) 02}.

Then the pathwise derivative of the surplus process at machine 2 with respect to O
is

k=l

Note that at most one of the indicator functions in the sum can be positive at a time.

Clearly, the expression for (t,O) implies that y2)(t) 0. Define the additional
random times 7(0) recursively by 7(0) 0 and

7(0) min{t 7-(0) s2(t,O) 02},

7 (0) min{t 7(0)" 81 (t, 0) 82(t O)}.

Then the pathwise derivative with respect to 02 of the surplus process at machine 2
is

k=l
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Again, at most one of the indicator functions can be positive at a time.
Let z(.,/9) (x(., 0), y(.,/9)). Define Yn(0) (Yn (0), Yn2(0)), where

1 [nT+T A,(O,z(t,O))dt,(8.4)

where

+

(8.5b) 0)) (t, c;v (t,

Then Y(0) is an unbiased estimator for --CT,O, (0, x(0)).
The SA updates will be at times nT, n 1,..., for some T > 0. Below, we will be

concerned with the set (s(nT, 0), y(nT, 0), a(uT)). For a general renewal process, this
set is not a Markov process. To Markovianize, we augment it by adding the residual
times until the next change of values of the 81 (’), 82(.) after nT. Let n(0) denote the
consequent quadruple.

To minimize work, we suppose that for each initial condition the limit

(8.6) -lim
1 f0

M

M -- E,k(O, z(O, t))dt

exists for each value of interest and is continuous in 0. Define it as g(O). These
conditions are weaker than those in the reference. Then C0(0) -g(O). In any case,
these conditions amount to nothing more than asymptotic consistency, and are a
minimal condition for the convergence. Define G(,O) E[Yn(O)ln(O ]. Then
G(.) is continuous and bounded. The limit (8.6) is the same as

lim
1

EG((r(O),O).
n It

i=1

In order to prove the tightness of {s(t)}, we need the following conditions. Let
pi be the stationary probability that machine i is working. We suppose that

(8.7) 2P2 > lPl > d;

i.e., the average maximum possible production rate for machine 2 is greater than that
of machine 1, which is greater than the demand rate. Also, suppose that, where Et
is the expectation given (ci(v), v _< t, i 1, 2,

(8.8) Et[ai(v) pi]dv O(1),

where O(1) means that the term is bounded uniformly in all variables. Loosely speak-
ing, (8.8) is equivalent to the expectation of the time to the next change in the a(.)
being uniformly bounded, conditioned on the current data. This is certainly not a
strong condition.

THE SA ALGORITHM. Fix T > 0, the time interval between parameter updates.
Let se(.) denote the actual surplus process with the time-varying parameter. Define
ye (.) as the derivative process with the random times determined by the actual time of
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the associated events in the true physical process. It is not reset at each nT. Then set
z(.) (x(.), z(.)). Let Y be (8.4) with z(.) used in lieu of z(.,). The algorithm
is now (3.1).

Convergence of the SA. Condition (3.2) holds since the Y are uniformly
bounded. Tightness of all the components of the Markov chain (as needed for (3.4))
follows once tightness of {s(nT), e > 0, n < c} is shown. This will be discussed
at the end of the section. The P(.) and G(.) do not depend on n or e. The weak
continuity of the transition probability is a consequence of the basic structure of the
problem. In particular, of the continuous effects of the threshold variations and the
monotone nature of the evolution of the residual times. Finally, (3.11b) holds by
assumption (8.6). Thus, the conclusions of Theorem 3.1 hold, and the extensions of
Theorem 3.1 can also be readily handled. Theorem 3.1 asserts that the limit ODE is

g(0) for the function g(0) defined above. The reference [44] presents numerical
data which implies that the cost function has a unique minimum and that their SA
converges nicely.

The requirements are generally much weaker than those in the reference, and
we do not need to restart the estimator periodically or let T --. c as e 0. Some
other references concerned with the use of SA in related manufacturing problems are

[6, 39, 16, 45]. In [16], another interesting work on the same subject, they use an SA
with gains n -- 0 and an IPA-type estimator where the estimation intervals go to
infinity as n - cx. They do not "reset the accumulator." The conditions used here
are simpler whether or not the step size is constant. The paper [19] was one of the
early works which attempted to improve the operation of a production line subject
to random breakdowns using IPA-type estimates, and dealt with a production line in
an automobile factory. Some of the background analytical work is in [20].

Tightness of {s(t), small e > 0, t < o}. Let Bt denote the minimal sigma-
algebra measuring {a(v), v _< t, 1, 2_} and Et the associated conditional expecta-
tion. We define a differential operator A and its domain.

The real-valued functions f(.),g(.) of (t,w) will be measurable with f(t),g(t)
being Bt-measurable. Suppose that for each T < ec,

sup E[g(t)[ < cx, limsupsupE
Etf(t + 5)- f(t) < c,

t_T 60 t_T

lim E
50

Etf(t + ) f(t)

Then we say that fi.f(.) g(.). The process f(t)- f g(v)dv is a martingale [21], [22,
3.2.2].

The s(t) are bounded above by the upper bounds to the thresholds. Thus the
tightness problem concerns the probability of large negative excursions. We will work
with altered processes, which provide the appropriate bounds from below. First we
work with s (t). To get a lower bound, we can suppose that 0,n O. Let ql (t) be the

process (8.1) with 01 0. Then lq21(t)2/2 q(t)(l(t), which is ql(t)[lal(t)- d].
To help in averaging the term with the a (t), define

1 (t) ql (t).l ft Et[Ol (V) pl]dV.
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We have

1(t) -ql (t)fi[ (t) pl] -- O(1).

Define Q (t) q(t)/2 + (t). Then

(8.9) AQ(t) q(t)[p d] + O(1).

By (8.7), filp-d > 0. Thus there are ki > 0 such that for q _< -kl, we have
the right side of (8.9) less than -k2. This implies that when ql <_ -k, Q (.) has
the supermartingale property (until it hits the interval [-k., 0]). These considerations
and the quadratic dependence of Qi (t) on q (t) imply the tightness of (Q1 (t), t < x}.
The tightness of (qi (t), t < oo (hence of (si (t), small e > 0, t < cx} follows from this
tightness and the quadratic dependence of Q (t) on q (t).

The tightness of the (si(t)} is proved in the same way. By the above results, it
is sufficient to prove tightness for s(t) s(t) instead. Again, this can be done by a
bounding argument. We have si(t si(t >_ O. Thus, we need to be concerned with
large positive excursions of this difference. We start by fixing the thresholds at the
upper bound for s and the lower bound for s. Once these thresholds are fixed, their
actual values do not affect the result, so we can set them equal to zero without loss of
generality. Let qi(.) denote the new processes with the thresholds fixed at zero. One
starts the argument by using a tentative Liapunov function (for the variables with the
thresholds fixed at zero)" (q(t)- q2(t))2/2. One bounds the derivative from above.
Then introduces a function 2(’) whose purpose is analogous to that of c (.) above.
We omit the rest of the details due to lack of space. But by an argument similar to
what was done for ql (.) above, we get the tightness under the conditions (8.7), (8.8).

9. A continuous time SDE example: The system. We continue the dis-
cussion of the SDE model of 6 but with more detail and a more general system. We
start by using the mean square derivatives and then discuss finite-difference forms.
The finite-difference forms can be advantageous. One can use them without know-
ing the exact model and for more general cost functions. They can also be used for
discrete-event systems in the same way. Let 0 be real valued (for notational simplicity
only) and x E Rk. Let b(.) be a Rk-valued and continuously differentiable function
of (x,O) with bounded x and first derivatives, a(.) a continuously differentiable
matrix-valued function of x with bounded first derivatives, and let the fixed state
process satisfy the SDE

dx(t, ) b(x(t, ), O)dt / a(x(t, O))dw(t),

where w(t) is a standard vector valued Wiener process. Define the auxiliary process
y(t, O) by

(9.2) dy(t, ) = bx(x(t, 0), O)y(t, O)dt + be(x(t, 0), O)dt + (a, y)(t, O)dw(t),

where the vector (a, y)(t, O)dw(t) is defined by its components

E oaij(x(t, )) yp(t, O)dwj(t), 1,..., k,
j,p

OXp

The y(t, O) is the pathwise (mean square) derivative of x(t, O) with respect to 0. This
"pathwise derivative" for the SDE was in use [12] long before its analogue for the
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discrete case was developed. Define z(., 0) (x(., 0), y(., )). Let c(-, .) be a bounded,
real-valued, continuously differentiable function of (0,x) with bounded derivatives,
and define CT(O) f[ C(, X(8, O))ds/T as in 6.

The SA procedure. Use the method of 6, where we update at intervals nT, n
1,..., with 0 being the parameter value used on JuT, nT + T). Use (3.1) with x(.)
again defined as the state process with the time-varying parameter used. Define y (.)
as above (6.5) (i.e., it is never reset), and define ze(.) (x(.), y(.)). Define

cz, (0, x(s))y;(s) + co(O, x’(s)) ds.(9.3) Y T T

We assume the following conditions.

(9.4) The process {z(nT, 0)} has a unique invariant measure for each 0.

(9.5) {z(nT), 0, e > 0, n < cx)} is tight

(9.6) {Y, e > O, n < o} is uniformly integrable.

(9.7) (z(0, 0):/9 e (9 compact, z(., 0) stationary } is tight.

Condition (9.4) implies that the limit C(O) of CT(O, x(0))) exists and does not depend
on x(0). Under these conditions, Theorem 3.1 and its extensions hold. Thus (6.9) holi:ls
for algorithm (3.1). An SA procedure using mean square derivatives was used to good
practical effect in [5, 26]. There is an analagous result under (3.11b).

Finite-difference methods. The main difficulties in applications concern the
verification of the various conditions on the y processes. This was an unresolved
issue in [5]. These difficulties can be alleviated by using a finite-difference method
rather than the derivative y’(.) process. We will discuss two forms of the finite-
difference method. The first is the more traditional, using separate runs for the
different components of the difference. The second combines these runs into one
"concatenated difference" and provides a useful alternative since it can be used on
line. There is an obvious analogue for discrete-event systems.

A finite-difference alternative: Simultaneous runs. Tightness and unique-
ness of the appropriate invariant measure are often much easier to prove if a finite-
difference method is used in lieu of the estimator (9.3), since then the troublesome
y’(.) process does not appear. We retain the conditions of the last part, with the
exception of those concerning the y process. We also let c(.) be simply bounded and
continuous. Given a finite-difference interval 59, replace the integrand in (9.3) with

(9.8) c(O + 60,x(s,O + 0)) c(O 60,x(s,O 6 t))

Here we use two separate simulations, one for {0 + g0} and one for {0 -0}. We
thus run two processes x’,+(.) defined by x’,+(0) x(0), and on [nT, nT + T) set
x"+(.) x(.,O =l= 0) with initial condition at nT defined recursively by x(nT, O +
0) xe’+(nT). Generally, one would want to use the same Wiener process to drive
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the two processes. This (common random variables) form often yields essentially the
same path properties as does the use of the derivative process.

Under the given conditions, Theorem 3.1 yields that the limit ODE is

1 /[c(O + 50, )#(dlO + ) c(O 5 )#(dlO(9.9)
280

where #(.10) is the invariant measure of {x(nT, O)}, and with the analogous formula
for the multidimensional 0 case. Due to the additive way that the two terms appear
in (9.8), we do not need to have a unique invariant measure of the pair {z(nT, 0 +
60), z(nT, 0- 60)} for each 0 but only of {z(nT, 0)} for each 0.

The finite-difference approach can be either easier or harder than the pathwise
derivative approach. The order of the SDEs to be solved in each case is the same.
If a(z) actually depended on x, then the pathwise derivative procedure cannot be
conducted "on line," since we need to know the Wiener process to get y(., 0). If a(x)
does not depend on z, then the equation for y(., 0) or (.) is linear in the y variable
(but with time varying coefficients) and it is simpler to solve. The procedure can
then be done "on line," at least in principle. An additional point to be kept in mind
is that any simulation can only approximate the solution to (9.1) and (9.2). Thus,
there is the additional question concerning the relations between the estimators for
the approximations and those of the original model. See [26] for some results on this
important problem. Finally, the finite-difference method can be used for cases where
the c(.), b(.) are not smooth, e.g., where c(.) is an indicator function of a event of
interest.

Finite differences with only one run. Alternatively to the traditional simul-
taneous run method discussed above, a single run can be used to get a good estimate
of he desired quantity and will be useful when the optimization must be done "on
line," where simultaneous runs might not be possible. Let T > 0 and 60 > 0 be
given. For the "one run" method, we use 0 + 0 on the interval [2nT, 2nT + T) and
then 0 50 on [2nT + T, 2nT + 2T). Let x(.) denote the actual process with the
O 4-50 being used on the appropriate alternating time intervals. The appropriate
fixed 0 process, which we call &(-, 0), uses parameter value 0 + 50 on [0, T) and then
alternates between 0 50 and 0 + 50 on successive intervals of width T. We use

Y 2T68
[c(O + 68,x(nT + s)) c(O O,x(nT + T + s))] ds.

The analysis follows the lines of Theorem 3.1, but the limit form will be slightly
different from that above. It is worth commenting on the differences between the
simultaneous and single run cases since they are of practical importance and of in-
terest in related algorithms. The main additional problem is due to the fact that the
transition function for the fixed 8 process depends periodically on time.

Let n+ (O) (2nT, O) and (O) c(2nT + T, O). Suppose that the stationary
processes exist and are unique, with invariant measures p+(.10) and #-(.10), resp.
Define

G+(O’)-
2ThO E[c(O+50, x(s,O+hO))lx(O) =]ds,

G- (0,
2ThO

E [c(O O,x(s, 0 O))lx(0) ] ds.
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The right side of the limit ODE is

(9.10) g(O) f [G+ (0, c)#+ (d10) G-(0, c)-(dCl0)]

Let PT(, "10 / 0) denote the transition function for the process x(nT, 0 + 60). Note
that

(9.11) #-(dlO) f+(dIO)PT(, dlO + 50).

Thus, as tiO 0, the #+(.10) converge weakly to #(.[0), and so do the #(.10+/-ti0). Thus
the/z+(.10) become closer to the/(.10 +/- ti0), which are the measures in the right side
of (9.9). This line of reasoning suggests that the one sample procedure might be quite
reasonable. The obvious form of (3.11b) can replace the assumption of uniqueness of
the invariant measures.

To better understand the above "one-run" procedure, one needs to compare it
to an alternative one-run procedure, say where we restart the process each T units
of time at some fixed initial value, still using the 0 +/- ti0 on the alternate intervals.
(assuming that such restarts were possible in the application). This would yield a
right side of the form (9.10), where the #+ are replaced by the measures concentrated
on the fixed initial values. We expect that this "restarted method" would be much
inferior to the original procedure, since the /+(.10) defined above would be much
closer to the desired values #(.18 +/- i0), particularly for large T. The situation would
be a little more complicated if 0 were vector valued, but the general idea is the same.
Analogous remarks can be made on the use of finite differences for discrete-event
systems.

Appendix 1. Non-Markov models. Consider the algorithm (3.1). Suppose
that due to the nature of the correlations, there is no convenient Markov chain {, n <
oc} for each e. For example, the service or interarrival intervals in a queue might be
correlated in a "non-Markovian way." The first-order perturbed test function methods
of [22] are often very helpful in such circumstances, and we will outline the general
idea in the context of Theorem 3.1.

For each e > 0, {Y,, n < oc} denotes the observation sequence, and the uniform
integrability (3.2) is assumed. The On will be assumed to be in a compact set to make
the development simpler. For fixed parameter 0 and each integer m we define the
fixed 0 process {Yjm(o),j

_
m}, and define vim(o) Vie for j _< m by supposing that

after time m the sequence evolves as though the parameter were held fixed at 0. This
process is the analogue of the fixed 0 Markov chain of 3. The key to the development
is to work with an appropriately chosen "perturbed" 0, which differs only slightly
from 0 and for which the theorem can be proved. Suppose that there is a continuous
function g(.) such that for each large T1 < T2 < (x) and m < T1/e., the sum defined
by

(A1.1)
T/

j--m

goes to zero in mean, uniformly in m <_ T/c as c 0. The convergence of (AI.1) is
a condition on the "mixing rate" of the noise process.
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Define 5fn 5frO(Sen). In the analysis, gen 8 + 5f(0) replaces . We lso
need the continuity condition that

T2/e

(A1.2) E [m(0 + 5) g(0 + 5)] E [m(0) g(O)] 0

in the mean, uniformly in m T/e as 50 0.
We have the following theorem.
THEOREM AI.1. Let qe satisfy (3.8’). Then, assuming (3.2) and the conditions

conceding (AI.1) and (A1.2), {Oe(eqe + .), e > 0} is tight, and the limit of any weakly
convergent subsequence satisfies (3.12). If eqe , then the conclusions of Theorem
3.2 hold.

Proof. The propf is much simpler than that of Theorem 3.1. Again, for simplicity,
we let q 0. Let (.) denote the continuous parameter interpolation (interval e) of
the sequence defined above (A1.2). {(.)} is tight. For notational simplicity, let
e index a weakly convergent subsequence. Let h(.), s, t, be as in Theorem 3.1 with
t + T T, and suppose for notational simplicity that e indexes a weakly convergent
subsequence. By the definition of conditional expectation,

(t+r)/e-1

(Al.a) Eh(e’(s), <_ q) ’( + r)- () E(e+" e)- O.
m=$/

We have

(A1.4) eEmYm + fm+l 5fm]Em m+l 8m Em
The last term on the right equals

[a(o)- , r(o)] +w
where

Hence, we can write (A1.4) as eg(On + eW[n. By definition,

yjm+l e(+1) j>_m+l.

Therefore, if the Yn were bounded (so that m+ -8m] --+ 0 aS e --+ 0 uniformly in
(m,w)), we could use (A1.2) to get that EIW&] -+ 0 uniformly in m’me <_ T as
e -+ 0. Then, (A1.3) would imply that

(,+r)/-I

(A1.5) li.mEh(Se(si),i < q) 8"(t + r) Be(t) e g(en O.

The theorem would follow from this last equality, analogously to the situation in
Theorem 3.1. If the Yn are not bounded, use the uniform integrability (3.2) to bound
them for the purposes of the proof. For B > 0 define Y. to be Y, but withn,,B
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the components truncated at +B. Define as follows. Let / 0/. Then, for

(t + T)/e _> m _> t/e, set m+l m^e
_
Yn,B" Now proceed with replacing 0,

but continuing to use the original definition of W. The result is (A1.5) plus an error
which goes to zero as B --. c. E]

An interpretation. Refer to the example in 7. Fix the parameter at 0. Suppose
that Yn() is the IPA estimator on the interval InN, nN + N) without "resetting the
accumulator." Then

Y0(o) +... +

is an unbiased estimator of the derivative of the cost on [0, nN]. Suppose that for
each fixed 0, the system is stationary. The condition (AI.1) is close to the assumption
that

n--1

(A1.6) -1 EYe(O) - g(0)
n

i:0

for each initial condition, the only difference being in the conditioning data. Suppose
that the mean cost per unit time on [0, T] converges as time goes to infinity. This
convergence and the convergence of the mean value of the left side of (A1.6) to g(0)
imply (the closed graph theorem) that g(0) is the derivative of the mean ergodic cost
at . Analogous comments apply to the example of 8.

The extensions of Theorem AI.1 are handled analogously to the way that the
extensions of Theorem 3.1 were handled; e.g., for the analog of Theorem 3.3, replace
the T2/( in (AI.1) by ran(T2) and e by m. The general scheme is very flexible and
allows many variations. More background and examples satisfying the conditions is
in [22].

Appendix 2. An alternative averaging method. Return to (3.17) and the
problem of replacing (, 0) by (j(On),On)in

(A2.1)
lne-Fne -11

ne
j=lne

n --1

EnGj(O’) n ln ln+j(Oln+j,ln+j)
j=O

We present an alternative approach which avoids the use of the occupation measure
R(1, e, .) but involves some other conditions. The method relies more heavily on
continuity properties. Only a brief outline will be given, but the main idea should
be clear. The sequence of integers n might be different here than in Theorem 3.1.
Continue to assume (3.2)-(3.5), (3.8), and (3.10). Suppose that Pn(, .]0) is weakly
continuous in (0,), uniformly in (e, n) and in each compact (0,) set. Let G(,)
be continuous in (0, ), uniformly in (e, n) and in each compact (, ) set.

Due to the tightness (3.4), the uniform integrability (3.2) and the assumed uniform
0 continuity of the G (.), we can suppose (as in Theorem 3.1) that the Y are truncated
and that in the interval [t, t + T] of concern (see proof of Theorem 3.1) the 0 take
values in some compact set. Thus we can suppose that 10+1 -0[ O(e) for all j of
interest. For notational simplicity, we will not use the truncation notation.

Define

P{d,dOl,O} P{en+ e d,O+ e dOl,O}.
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Writing out the conditional expectation EG[+j (0n+j, +y) in (A2.1), we have

f Pi {dl, d011tn 0ln }
Fiend+j_1 {dj dOj lj_ Oj-1 }Cllen +j (Oj j ).

Let en --. 0. Now, using the uniform weak continuity of the P, the uniform continuity
of the G, the tightness (3.4), and the fact that

0sup 10tn+j ln, l’-’O,

we can work backwards in the above equation, successively concentrating the measure
of OelneWj at 0e and ultimately yielding the representation

f Pn (n, dl I0)."
Plen+j_l (j-1, djIO)a+(O,) +p(, j).

The error term satisfies IP (e,j)l _< p(e, n), where p(e, ne) depends on the moduli
of continuity and

(A2.2) p(e,n) 0

as e - 0 for each constant n m. Consequently, there are n o such that (A2.2)
holds for this sequence. The above discussion and the proof of Theorem 3.1 imply
that the conclusions of Theorem 3.1 will hold under the additional condition that
there is a function g(.) (which must be continuous by the above arguments) such that

(A2.3)
1 ln+ne-1

Ene
j=ln

EnGj(O, (0)) ---, g(O)

in mean for each O, as c, e O, and n
An advantage of this averaging approach is that it can be used for grouping terms

when the dependence of G} on e, j does not vanish for large j and small e.

Appendix 3. Arbitrary updatings within a regeneration period. This
appendix illustrates the possibilities when updates are made after "partial" obser-
vations. It is intended to be suggestive and is a little vague. To ensure that the
"partial" observations fit together properly, additional conditions are needed. Recall
the example of 7, where we updated after each N departures. Owing to the regener-
ation stucture of the problem, one could have updated at the end of each regeneration
period if the conditions of 3.4 held. These two approaches yield two different time
scales in which to get the limit results. The g(.) functions would be different in the
two cases but are related by the constant, which is the mean length of the renewal
period. The results are equivalent since the two ODEs have the same asymptotic
behavior. As seen in 3 and in the examples, there is no need in general to update at
the end of regeneration periods. Indeed, even if the problem admits of a regeneration
model, for general problems the intervals might be excessively long. If the problem
has the "atomic increment" property of 3.3, then the regenerative structure does
allow a rather arbitrary method of updating, within the intervals. By a regeneration
process, we mean that for each fixed 0 the process is regenerative and that for the
physical process with the varying 0 the conditional distribution of functionals of the
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intervals n, n / 1,... given the past depends only on the parameter value at the start
of the nth interval. We will work within the regeneration setup but wish to update at
arbitrary intervals (random times). This falls easily and naturally into our framework,
as will now be shown. Only a brief outline will be given.

The basic algorithm is still (3.1). The updating times within the regeneration in-
tervals can be chosen rather arbitrarily, subject to the mild conditions below. But we
always update at the end of each regeneration interval. This last condition is not nec-
essary but does simplify the discussion. Otherwise the groupings of the terms would
be more involved. Let N denote the number of updatings in the nth regeneration

n-1N..interval, n 1, 2, Define M --0 and M i=1 , n > 1 We now state the
basic redefinitions and assumptions. They are essentially copies of those of Theorem
3.1. But since the estimation process begins anew at the start of each regeneration
interval, the assumptions concern what happens within the intervals.

Let Nn < oc w.p.1 for all e > 0, n < oc. Let Y,j,j 0,...,N- 1 denote
the observations in the nth regeneration interval. We update after each observation.
Hence there will be N updates in the nth interval. Due to the assumption of a
regenerative structure, the {Y,i,m >_ n,i >_ 0} are conditionally independent of
{ m,, m < n, _> 0} given ,, the parameter value at the start of the nth interval.
For j > N, set Y,,j O. or each e > 0,n >_ 1, let B,j be a nondecreasing
sequence of sigma-algebras measuring at least {0, Yr,, i < j}, with E, denoting
the associated conditional expectation. Assume

(A3.1a) }j=0

is uniformly integrable for each K,

(A3.1b) E ]YLjl o as K
NAK

Remark on (A3.1) for the example of 7. Return to the physical problem of 7.
Suppose that there is an integer M such that we update at least after each new M
departures but otherwise use the updating model of this section. Let R denote the

n--1number of customers in the nth regeneration interval, and set Q i= Ri. We
have

g-i R

i=0 i=1 /=1

Condition (A3.1a) holds if {Z,e,l} is uniformly integrable. Condition (A3.1b) holds
if

lim E IZ+,I=O
i=KAR I=1

where the limit is taken on uniformly in (n, e).
he 8A algorithm and nterpolaton. Now define 0, 0+. The algo-

rithm within the ngh interval is

(A3.2) 0,+1 = On,j" + eYn,j," j < Nn."
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Define the interpolated process (.) by (.) on the interval [en, en + ),
Oe(t) , t _< 0. Thus, we update the parameter at arbitrary times but define the
interpolation Oe(.) by the values of the parameter at the end of the regeneration
intervals only. This makes the scaling easier, allows a nicer representation of the limit
ODE, and yields the desired limit points of the algorithm. Assume that

(A3.3) {/; e > 0, n < oc} is tight.

Analogous to the situation in Theorem 3.1, suppose that there are random variables

{,j; e > 0, j < cx)} and measurable G,j(.) such that for j < N

E,jY,j G,j (O,j, ,j).

The values of ,y for j >_ N are irrelevant, and one can use any convenient one. Let
G,j(.) be continuous, uniformly in e,n,j and on each compact (,) set. Assume

(A3.4) (,y; e > 0, n < oc, j < oc} is tight.

Suppose that there are transition functions P,j(.) such that P,j(.,A[.) is mea-
surable for each Borel set A and that

(A3.5) P,j(,j,,j+I e .lOb,j)= P{n,j+ e "IOM Y’ k < j}n,k

Let P,y(, dlO be weakly continuous in (0, ), uniformly in e, n, j and in each com-
pact (,) set. Now for each n,e and , P,y(.IO),j >_ O, defines a nonhomogeneous
"fixed " Markov chain. Let {,y(O),j 0, 1,...} denote the random variables of
this chain.

Assume that there are continuous functions g(.) such that

N-I
E

j=O

Define /. Let there be a continuous function g(.) such that for each > 0

(A3.7) limlimsup P{Ig+(t)) g(t)l k 5} O.
n

THEOREM A3.1. Assume the conditions of this section. Then the conclusions of
Theorem 3.1 continue to hold .for (.) and (eq + .) and similarly .for Theorems 3.2,
3.3, 4.1, and 5.1.

Proof. Only a few basic remarks will be made. The assumption (A3.1) allows the
set of observations in an interval to be truncated to and well approximated by some
finite number K and guarantees uniform integrability of the set of those truncations.
By (A3.1) and following the scheme in Theorem 3.1, for n > 0 we can write

(A3.8)

where, for each t, supe,n:en<_t EIpI - o as e - 0. Indeed, (A3.1) implies the tightness
of {(.),(eq + .), > 0} and the fact that any weak limit will have Lipschitz
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continuous paths w.p.1.
the fact that

The assumed uniform 0 continuity of G,j(.), (A3.1), and

sup 10,y 0_11 --, 0
j<N

(in probability, uniform in i) as e 0 imply that we can replace the O,j in (A3.8)
^ without affecting the limit.with 0i_

The only remaining problem concerns the fact that the distribution of the (,j in
(A3.8) depends on all the 0,k, k < j. But the representation (A3.5), condition (A3.1),
and the asserted uniform continuity of the P..,, Gi,j can be used to show that ,j can

be replaced with ,j(_l) without changing the limits. Finally, (13.6) and (13.7)
are used to complete the proof of the analogue of Theorem 3.1. The analogues of the
other theorems will then follow. D

Appendix 4. Distributed/asynchronous updating: A network exam-
ple. We will discuss a useful canonical form for a SA procedure that operates in a
decentralized way and where different components of the iterate might be updated at
different (random) times. Some components might be updated much more frequently
than others. This is typical of a growing number of applications. One example is given
below. Owing to this asynchronous behavior between the components, one needs to
work with interpolated processes in an appropriate real time scale. Heretofore, the
interpolations were based on the iterate number. But now, due to the possibly dif-
ferent times and frequencies of updating of the different components, one needs to
use a common time scale for all the components, and this will be an appropriate
"real" time scale. The general idea of the proof is just that of Theorem 3.1. The
main added feature concerns the difference in the time scaling of the interpolations.
Working directly with the iterates can lead to a notational nightmare. We avoid the
need to deal directly with the possibly different and random interpolation intervals
by using appropriate rescaling. This puts the problem into a framework where the
previous results can be directly applied. The result is a simplification and extension
of the results in [30, 40], where the ideas of time scaling first appeared. The central
idea of the rescaling is easier to see if we start with a centralized and synchronized
updating and interpolate in real time. This will be done in the subsection below. The
general result for the decentralized problem is in A4.2.

14.1. A synchronized updating: Real time scale. Assume the conditions
of Theorem 3.1. The algorithm is

0,+ :On
Then Theorem 3.1 holds for the interpolations {0(.), O(eq + .)}.

Now let us rewrite the interpolation in real time. Let 5T, denote the time interval
between the nth and (n + 1)st updating. Let B be a nondecreasing sequence of
sigma-algebras such that B, measures at least {0, Y, 5-, < n}. Let E, denote the
associated conditional expectation. We keep the same framework as in 3. Suppose
that there is a Markov chain (, and a continuous and strictly positive function u(.)
such that E,ST, u(O,,(,). Assume the tightness condition (3.4), the uniform
integrability condition (3.2), and

(A4.1) {STy, n < oC} is uniformly integrable.
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Also suppose that there is a continuous and bounded function (.) such that

(A4.2)
1

Eu(O, (0)) --, (0)
n

i-o

for each and initial condition.
Define

n--1

i--0

N(t) e[ number of updatings by time

Let T(-) be the interpolation of {T,n < X} defined by Te(t)= ’, on [en, e(n + 1)).
Note that T(.) is the inverse of We(.) in the sense that N(T(t)) ne for t E
[ne, ne + e) and

(A4.3) -(t) inf{s N(s) >_ t}.

Define e(t) Oe(N(t)). This is the interpolation in the real time scale, not the
iterate time scale. The weak convergence and characterization of the ODE for the (.)
are now easily done. In all cases we suppose that the original sequence indexed by e
converges weakly. Otherwise take appropriate subsequences. By the above conditions
and the proof of Theorem 3.1, (Te(.), 0e(.), We( ), 0e(.)) = (T(’), (’), g(" ), (’)), where

(A4.4) (t) O(N(t)) and T(t) (O(s))ds.

From the positivity of fi(O) and the "inverse" definitions of N(.) and. T(.), it follows
that N(.) = N(.), where g(T(t)) t. Taking derivatives, we get N(T(t))-(t) 1.
Call s (t). Then using (A4.4), the slope of N(s)is g(s) 1/t(O(T-l(S)))
1/fi((S)). Therefore

ds
(A4.5) g(t)

(O(s))

By Theorem 3.1, 0(.) satisfies g(O). Recall that

(A4.6) (.) Oe(Ne(.)) O(N(.)) =_ (.).

Thus, using the fact that N(T(t)) t, we can write

(A4.7) )(t) [(N(t))]l(t) g(O(N(t)))/(O(t)) g((t))/((t)).

Thus, the proof is just Theorem 3.1 plus a time change argument. The purpose of
the time change argument is to avoid dealing with random interpolation intervals and
the interaction of the Yn and the 5Tn. It exploits the convergence of both the "time"
processes and of the original interpolation (.).

Remark. The above argument is for processes that start at time zero with limits
defined on the interval [0, cx). Suppose that we wish to get the limit on (-c,) of
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(T +.), where T is a sequence of real numbers tending to infinity. The T is simply
the replacement for the eq in Theorem 3.1. Then the analysis is the same as above,
except that the initial condition of the interpolation is

e(T) O(N(T()) ON(T)/,
the values of the parameter at increasingly large iterate numbers, and the uniform
integrability and tightness conditions must reflect this change. In particular, we need
tightness of

(A4.S) {w(t)/+, ON(t)/+; , n, t}

and uniform integrability of

(A4.9) {Y[w(t)/+n, 5TW(t)/+n; e, n, t}.

Since all sorts of dependencies among the two sequences Y and 5T, can be con-
structed, little can be said without further assumptions. But a casual examination of
some simple cases suggests that (A4.8) and (A4.9) are not very restrictive.

A distributed and decentralized network model. We work with one canon-
ical model in order to illustrate some of the possibilities and minimize notation. To
simplify the notation, some of the conditions will be less general than can be handled
by the introduced technique. The basic work is in setting up the notation for the vat-

ious time scales. Basically the general method uses the idea of the above subsection
separately on different parts of the problem, as will now be seen.

Let 0 (01,... ,OK), where the 0a are the scalar components of 0. Consider a
system with K controllers, each of which is responsible for the updating of one compo-
neut. We wish to minimize a function F(.) which takes the form F(O) -z=IK FZ (0)
for real-valued and continuously differentiable FZ(.). Let F(O) OF(O)/O0a. In
our model, for each a subsystem produces a sequence of estimates Vz,a,n n 0
which it sends to node a for help in estimating F at whatever the current value of
0 is. It also sends the current values of its own component 0n.

Example. An important class of examples that provides a guide to the devel-
opment are the problems of optimal routing in queueing networks. Let the network
have K nodes, with the K vector of routing parameters, where 0 is the component
associated with the ath node. Let FZ(O) denote the stationary average queue length
at node under parameter value 0. We wish to minimize the stationary average num-
ber of customers in the network F(0) FZ(0). The problem arises in control of
telecommunication networks and has been treated in [42, 40]. The comroller at node
a updates the component 0 of 0, and it does so based on both its own observations
and relevant data sent from other nodes. In one useful approach, called the surrogate
estimation method in the above references, each node estimates the sensitivity of
the mean length of its own queue to variations in external inputs to that node. Then
one uses the mean systems flow equations to get acceptable estimates of the F(O).
These estimates are transmitted to node a for use in estimating the derivative of F(O)
with respect to 0a at the current value of 0 and then updating the value of 0. After
each transmission, new estimates are taken and the process is repeated. The method
gave good results in simulations.

The times required for the estimation intervals can depend heavily and randomly
on the node. They might be functions of the number of service completions or simply
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deterministic time intervals. The nodes would transmit their estimates in an asyn-
chronous way. Thus the SA is both decentralized and unsynchronized. In general, Oa
would be a vector of routing probabilities. For simplicity of notation, we shall consider
only scalar components. The extensions to the vector case are straightforward. In a
typical application of SA, each time a new estimate of F(0) (at the current value of
) is received at node c, that estimate is multiplied by a step-size parameter and sub-
tracted from the current value of state component . This "additive" structure allows
us to represent the algorithm in a useful decomposed way by writing the current value
of the component as the sum of the initial value plus K terms. The th such term
is the product of an appropriate step-size times the sum of the past transmissions
from node to node of the estimates of F() at whatever the operating values of
the parameter were when the estimates were made. in the development below, this
decomposition is formalized and provides a useful simplification.

We shall now return to our general model. The time for transmission of infor-
mation can have bounded delays, and these delays cause no problems in the analysis.
But only to simplify notation, we work under the assumption that there are no delays
and that the parameters are updated as soon as new information is available. The
reader can fill in the few additional details for the delayed case. We are reluctant to
try a very general development since the entire field of decentralized/asynchronous
optimization is in its infancy, and one expects many new models and methods for
estimation to appear in the next few years. But the methods employed would be
fundamental to any extensions.

Notation. Let T: denote the interval between the nth and (n + 1)st transmis-
sions from to a. Define

n--1

,n e E i,i’
i=0

times the real time required by the first n transmissions from to a. Define

N’(t) e [number of transmissions from to c to reach real time t/e].
-, with interpolation intervals e and initialLet T’ (t) be the interpolation of the

condition zero. Analogously to the situation in the last subsection, N, (.) and Tff’ (.)
are inverses of one another.

The SA algorithm. The notation is a little complex but very natural. It en-
ables us to carry over the results of Theorem 3.1 to a much more complex situation
via several time-change arguments and thus saves a great deal of work over a direct
analysis. Let (.) {(.), < K} denote the interpolation in the real time (times e)
scale. As mentioned in the discussion of the example, it is convenient to separate (.)
into components which come from the same node. This suggests the following decom-
posed representation for the SA algorithm. For each a, fl, let c(.) be a continuous
and bounded real-valued function and define the sequence , by

(A4.10)

The role of the c (.) functions is to partially compensate for the fact that the frequency
of the intervals between updates might depend on 0, a, , and will be further com-
mented upon at the end of the section. In many cases, we would use c(0) 1. Note
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that by the definitions " Z,",TF,n is the state value at the time of the nth transmission
from node/ to node a. indeed, we can write

(A4.11) "(r"(t)) O’e(t) where 0"(t) 0,’ for t e [ne, (n + 1)e)

We can now define the actual interpolated iterate in the appropriate real time scale
in terms of the components as

K

(A4.12) (t) (0) + "(t), "(0) 0.
B=I

It will be shown that the proofs are just adaptations of the argument in the last
subsection to the vector case. It will be seen from the argument that all sorts of
groupings and variations can be added to the format.

Assumptions. Let B be a nondecreasing sequence of sigma-algebras which mea-
sure at least the initial conditions and all the data transmitted by all the nodes up
to real time t. Let Z,e

,,/,.
Z,eE,n equal the expectation conditioned on B’ Thus, E,n can

be interpreted the expectation conditioned on the information which is available
at the time Z,’ of the nth transmission from fl to a. We next give the conditions onn
the interupdate intervals. We suppose that for each a, fl, e there is a Markov chain
{g," } whose transition functions satisfy the obvious analogue of (3.5) and
continuous functions u (.) such that

(A4.1z) {STy,,, a, , e, n} is uniformly integrable,

(A4.14)

Let there be fixed 0 Markov chains {,n(0)} with transition probabilities satis-

fying the analogues of (3.6)-(3.8). Let there be continuous functions fi(.) such that
for each initial condition and each 0

N-1

(A4.15) lim
1

N ’ E Eu(O’,n(O))
i=0

We also need that

(A4.16) infu(0, ) > 0.
0,

Let there be uniform integrability of

(A4.17) ,V, n}

and tightness of

(A4.18)

Define C(.) in the usual way:

E,y, C ’(O(T,n) )+ error,--,n- ,,, o,ln small
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where the small error goes to zero in the mean as e 0 and n cx. Suppose that
there are continuous functions g(O) such that for each initial condition and each

N

(A4.19) lim
1

N ’ E EG(O,,,(O)) g(O).
n’-I

The above conditions are for starting at time zero. If we wish to work with
(T + .) as in the first subsection, then we need to shift the indices analogously to
what was done there.

Remark. In the case of the example mentioned above, the assumptions on the
interupdate intervals are obviously satisfied if the nodes compute the estimators at
constant intervals but also in many cases where (for example) either a fixed number
of service completions or perhaps a "local" regenerative approach is used for the local
estimation. Note that the chains are "local" in the sense that they can depend on the
pair a, . Thus, we work with each pair separately, which can give a simpler chain
than what would appear if we treated all the pairs simultaneously. Equation (A4.16)
is used to guarantee that {N,(.), e > 0} is tight and has continuous limits.

THEOREM A4.1. Every subsequence of (.) has a further subsequence that con-
verges weakly.to a solution of the ODE:

=1

Comments. Now we see the use of the c(-) functions as a way of dealing
with the variable (). For the example, the g(O) are supposed to be approxima-
tions to the F(O). The proof of the theorem uses the ideas of the previous sub-
section. The Z, vZ,{Oh (.),.a (.)} is tight, and all weak limits have Lipschitz-continuous
paths w.p.1. Also, {N,(.)} is tight, and all limits have Lipschitz-continuous paths.
Thus, {,(.), (.)} is tight and has Lipschitz-continuous limits. Let ((.), (.), (.),
T(.),N(.)) denote the limit processes. We have T’(.) T(.), where

T(t) (O(T(S)))ds.

In the centralized case of the previous subsection, the argument of the reduces to
just O(s). Also N,(.) N(.), where

dsY(t) 5((s))"
The form of the algorithm (A4.10), the weak convergence of ( (.), T’(.)) to ((.), (.)),
and Theorem 3.1 yield that

(t) c((w(t)))g((w(t))).

The theorem follows by writing the expression for O(t) and using the fact that
N(T(t)) t.

Remark. Note the great advantage in using the rescaling idea. It allows us to
separate the intervals form the values of the updates in the analysis and permits
a result under quite weak conditions with minimal new work. It is a technique of
considerable utility. The analogues of Theorems 3.2, 4.1, and 5.1 also hold.
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INFINITE-DIMENSIONAL CONTINUOUS-TIME LINEAR SYSTEMS:
STABILITY AND STRUCTURE ANALYSIS*
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Abstract. The question of exponential and asymptotic stability of infinite-dimensional continuous-time state-

space systems is investigated. It is shown that every (par)balanced realization is asymptotically stable. Conditions
are given for (par)balanced, input-normal, or output-normal realizations to be asymptotically and]or exponentially
stable. The boundedness of the system operators is also studied. Examples of delay systems are given to illustrate
the theory.

Key words, linear infinite-dimensional systems, balanced realizations, stability, Hankel operators, semigroups
of operators
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1. Introduction. For a finite-dimensional linear system with transfer function G, there
are standard ways to obtain a minimal, i.e., reachable and observable, state-space realization:

k(t) Ax(t) + Bu(t),

y(t) Cx(t) + Du(t).

This realization is unique in the sense that every other minimal realization is equivalent to it.
The spectrum of the state propagation operator A is precisely the set of poles of the transfer
function G(s) C(sI A)-IB + D, which is proper rational. Hence the realization is
exponentially stable if and only ifthe poles of G are all in the open left half plane. Furthermore,
exponential stability of the system is equivalent to asymptotic stability.

This paper is concerned with the question of stability for infinite-dimensional systems.
If the transfer function G is not rational, then we have an infinite-dimensional system of
the above form, where the system operators A, B, and C are usually unbounded oper-
ators. In general, it is no longer true that all observable and reachable realizations are
equivalent. The correspondence between the spectrum of the realization and the singular-
ities of the transfer function does not necessarily hold. In general the exponential stability
of a system cannot be determined by the location of the singularities of the transfer func-
tion (see, e.g., [18]). Also asymptotically stable systems are typically not exponentially
stable.

There have been attempts to extend the results for finite-dimensional systems mentioned
above to the infinite-dimensional case by restricting the transfer functions to a certain class. For
example, Curtain [4], Yamamoto [29], and several other authors considered the equivalence
between input]output stability and internal stability. We refer to [4] and [29] and the reference
therein for the work in this direction. Inevitably, the stronger the results are, the smaller the
class of transfer functions is.

Here we present another approach. Instead of putting too stringent restrictions on the
class of transfer functions to be studied, we restrict the class of realizations to (par)balanced
realizations and the closely related input-normal and output-normal realizations. These types
of realizations have been advocated by several authors [20], 13], 14], [30]. They were intro-
duced in the finite-dimensional case as a means to perform model reduction in an easy fashion
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research was supported in part by NSF grant DMS-9304696. The research of the second author was supported in part
by Texas Advanced Research Program grant 00974103.
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[20]. Glover, Curtain, and Partington 14] derived infinite-dimensional cominuous-time bal-
anced realizations for a class of transfer functions with nuclear Hankel operators. Young
[30] developed a general realization theory of balanced realizations of infinite-dimensional
discrete-time systems. The results were generalized to the continuous-time case by Ober and
Montgomery-Smith [23]. The results by Young were also used by the authors to conduct an
analysis of the stability and structural properties for infinite-dimensional discrete-time systems
in [24].

In this paper we extend our analysis in [24] to the continuous-time case. The exponential
and asymptotic stability properties of parbalanced, input-normal, and output-normal realiza-
tions are studied in detail. It is shown that all parbalanced realizations are asymptotically
stable. For a subclass of transfer functions--namely, strictly noncyclic functions--results
that are reminiscent of the finite-dimensional case are obtained. For this class of transfer
functions the location of the singularities of the transfer function determines the exponential
stability properties of parbalanced systems. The stability properties of parbalanced realiza-
tions are studied without the explicit presentation of the realizations. Structural properties of
the realizations are also analyzed. In particular the boundedness of the system operators
of the input- and output-normal realizations is investigated.

Most of the results presented in this paper are in terms of the properties of the transfer
functions and the Hankel operators with the transfer functions as symbols. This may there-
fore be regarded as expressing the internal properties of a system in terms of input/output
properties. Related topics can be found in Dewilde [7], where systems with strictly non-
cyclic transfer functions are studied from an input/output point of view. We also refer to
Baras, Brockett, and Fuhrmann [2], [3], [11]. For realization theory of nonrational trans-
fer functions, Fuhrmann 11] and Helton 16] reference for transfer provide general refer-
ences.

Our main tool is a bilinear map that maps discrete-time systems to continuous-time sys-
tems. This bilinear map is routinely used for finite-dimensional systems to translate discrete-
time results to continuous-time results and vice versa. In [23] properties of this bilinear map
were studied for infinite-dimensional systems (see also 11]). Some continuous-time ques-
tions, however, such as exponential stability, cannot be directly answered by simply applying
the bilinear transform to a discrete-time result. In such cases a more detailed study of the
problem is necessary.

The contents of the paper can be summarized as follows. In 2 we review the set-
tings of infinite-dimensional continuous-time systems we will deal with. We restrict our-
selves to so-called admissible systems. We relate continuous-time systems to discrete-time
systems in 3, using the above-mentioned bilinear map. As Hankel operators play an im-
portant role in our approach, we discuss Hankel operators in 4 in both the discrete- and
the continuous-time case. Concrete constructions of the continuous time restricted and
*-restricted shift realizations are given in 5. They respectively represent the classes of
input-normal and output-normal realizations and are intimately related to Hankel opera-
tors and translation semigroups. In 6 we establish the asymptotic stability of all par-
balanced continuous-time realizations. Conditions for input-normal or output-normal real-
izations to be asymptotically stable are also given in terms of the cyclicity of the transfer
functions. The topic of 7 is exponential stability. Necessary and sufficient conditions are
given for the input- and output-normal realizations to be exponentially stable. These con-
ditions are based on the spectral properties of the transfer functions. They also hold for
parbalanced realizations as long as the transfer functions are strictly noncyclic. In 8 we
investigate when the system operators are bounded, and finally some examples are given in

9.
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The following symbols are used:

D

U,YDx
U,YCx

D(A) c_ X
(D(A), I1’
(D(A) (’), II,
O(z)
Gc(+Oo)

HK

(z)

L(U,Y)
L(a)
LHP
P+

RHP
S
S*
S(Q)
S(Q)*
a(A)
crp(A)
or(Q)
cr.(G)
TLDU,v

TLCU, v

XvY
(F, G)L = ir
(F, G)R IU

the open unit disk,
the unit circle,
the complement of (0D) U
admissible discrete-time systems (3),
admissible continuous-time systems (3),
the domain of an operator A on X,
the space D(A) equipped with norm IIx 112A Ilxll 2 + IIAxII 2,
{fl f’(D(A), I1" Ilz) --> C, antilinear, bounded},
I[Gd(1) Gd(ZX)], Z ]]), for Gd TLDU’r

lim r G(r),
the Hankel operator with symbol K,
{FI F W --+ L(U, Y) analytic, supzew IlF(z)ll
or RHP,
{fl f D --+ Y analytic on D and suP0<r<l
f f RHP --+ Y analytic on RHP and

SUPx>0 f_ IIf(x + iy)ll2dy <
(K())*,
the Laplace transform (3),
{AI A U -+ Y a bounded operator},
f f L ---> Y square integrable on A }, A

the open left half plane: {s C Re(s) < 0},
The orthogonal projection of L2y(A) onto Hy(W); A
orA=i,W--RHP,
the orthogonal projection of Hy(W) onto X

__
Hy(W); W

or RHP,
the open right half plane: {s C Re(s) > 0},
the forward shift: (Sf)(z) zf(z) for f Hy(),
the backward shift: (S*f)(z) z-[f(z) f(0)] for f H2(),
Px SIx, the compression of S to X, where X H2y(D) 0 (QHZy(D)),
S*IH()e(QH2(D)), the restriction of S* to Hy2(D) 3 (QHy2(D)),
the spectrum of an operator A,
the point spectrum of an operator A,
the spectrum of an inner function Q 6 H(W) (Lemma 7.3),
the set of points in C where G has no analytic continuation (7),
{Gd[ Gd De --> L(U, Y) has a reachable and observable admissible
realization},
{Gel Gc RHP -- L(U, Y) has a reachable and observable
admissible realization},
closed linear span of subsets X and Y of a Hilbert space,
F and G are weakly left coprime (3),
F and G are weakly right coprime (3).

2. Admissible continuous-time state-space systems. The main aim of this section is to
briefly set out the notation and introduce the most important system theoretic concepts for this
paper. More details can be found in [11], [23], [27], and [6]. In the first subsection, admis-
sible continuous-time systems are discussed. Input-normal, output-normal, and parbalanced
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realizations are defined in the second subsection. It is these classes ofsystems that are being an-
alyzed in detail in later sections. What is meant by system equivalence for infinite-dimensional
systems is defined in the third subsection.

2.1. Admissible continuous-time systems. It is well known that if A is the generator of
a strongly continuous semigroup of operators (etA)t>_O with domain of definition D(A), then
D(A) is a Hilbert space with inner product induced by the graph norm

IIxlI2A --IIxlI2x + IIAxlI2x, x D(A).

Since IIx IIa Ilxll for x E D(A), we can embed X in D(A)’, the set of antilinear continuous
functionals on (D(A), I1" a ), by

X --+ D(A) (’),
x (y (x, y)).

Note that D(A)’) is a Hilbert space with norm Ilfll’ := supllxllA<l ]f(x)]. Since (., .) is linear
in the first component, the embedding E is linear. By the above, we have the rigged structure

D(A) X c__ D(A) (’).

If (A, D(A)) is the generator of a strongly continuous semigroup of contractions (etA)t>_O on
a Hilbert space, then the adjoint (A*, D(A*)) of (A, D(A)) is the generator of the adjoint
semigroup er-tA)t>O* (see [26]). Hence, we have similarly that

D(A*) c_ X c_ D(A*)0.

We are now in a position to define admissible continuous-time systems.
DEFINITION 2.1. A quadruple of operators (At., Bc, Cc, D.) is called an admissible

continuous-time system with state space X, input space U, and output space Y, where X, U,
and Y are separable Hilbert spaces, if

1. (Ac, D(A)) is the generator ofa strongly continuous semigroup of contractions on
X;

2. Bc U -+ (D(A*)(’), I1" I1’) is a bounded linear operator;
3. C. D(Cc) --+ Y is linear with D(Cc) D(Ac) + (I Ac)-1 B,.U and

CclD(A (D(Ac), [l’llac) -- Y is bounded;
4. Cc(I Ac)-1Be L(U, Y);
5. A, B, and C are such that lim s Cc(sI A,.)-1B,. 0 in the norm topology;
6. De L(U, Y).

We write CVx ’r for the set ofadmissible continuous-time systems with input space U, output
space Y, and state space X.

By the resolvent identity, part 4 ofthe definition implies that G (s) :- Cc (s I A)-
L(U, Y) for all s RHP and G is analytic on the RHP. The function G,. is called the
transfer function of the system, and (Ac, Bc, C,., Dc) is called a realization of G.

2.2. Duality, observability, reachability, and parbalanced realizations. In order to
define observability and reachability for continuous-time systems we need to introduce the
notion of the dual system of an admissible continuous-time system.

yDEFINITION 2.2. Let (Ac, Bc, Cc, Dc) CUx Then the dual system (A,., , C, D,.) of
(Ac, Bc, C, De) is given by

1. (Ac, D(Ac)) (A*c, D(A*c)), the adjoint operator of (Ac, D(Ac));
2. t" Y --+ D(A)(’; y /(y)[.] (y, Cc(.))
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3. (fc D(C-c) -+ U, D((fc) D(A-c) + (I -/c)-1 lcY, where cXo is defined by

(u, CfcXO) Bc(u)[xo],

((fcXo, u) (Yo, Cc(l Ac)-lBcu),
xo e D(A*c), u e U,

x0 (I Ac)-l/yo, Yo e Y, u e U;

4.16c := D*c Y-+ U.
It canbe directly verified that the dual system (Ac,/, 6rc,/5c) ofan admissible continuous-

time system (Ac, Bt., C, D) is admissible. If the continuous-time transfer function G(s)
RHP L(U, Y) has an admissible realization (A, B, C, D), then the dual system (Ac,
Bc, Cc, D) is a realization of the transfer function G(s) := (G(g))*, s e RHP, i.e., for all
s RHP,

((s) (G(g))* C(sl )-1 q_

The definition of observability and reachability of admissible continuous-time systems is
now given.

u,YDEFINITION 2.3. Let (At,, Bc, C, D,) Cx then the operator

Oc D(Oc) --> Ly([0, x)),

X (CcetAx)t>O

is called the observability operator ofthe system (At,, Bc, Ct., D), where

D(Oc) {x X CcetAcx existsfor almost all [0, oo), and CcetAcx L2r,([0, oo))}.

We say that (A, Bt., C, Dr.) has a bounded observability operator if D(Ac) c_g_ D(O) and
Oc extends to a bounded operator on X. This extension will also be denoted by 0.

If (A, B, Cc, D) has a bounded observability operator O such that Ker(Oc) {0},
then the system (A, B, Cc, D) is called observable.

Let (a-c, B-c, C, i) be the dual system of(ac, B, C, Dc). Ifthe observability operator
0- of(a-o , C, D-) is a bounded operator on X, the adjoint ofO is called the reachability
operator, denoted by, of(Ac, B, Co De), i.e.,

IfTc exists and range() is dense in X, the system (A, Bc, Cc, Dc) is said to be reach-
able. [3

The set of all reachable and observable continuous-time systems with input space U,
u,Youtput space Y, and state space X is denoted by LCx We mainly deal with this set of

systems.
The reachability Gramian VV and the observability Gramian Jl of a continuous-time

system with bounded reachability operator 7 and bounded observability operator Oc are
defined to be

W, .= J* x---> x,
,a/It, := OOc .x -+ x.

When ]/Yr. AA and the admissible system is observable and reachable, we say that the
system is parbalanced. A reachable and observable admissible system is said to be bal-
anced if V A// and /Y has a diagonal representation with respect to an orthonormal
basis of the state space. If ]/Vc I, then a reachable and observable admissible system is
called input-normal. If A/It. I, then a reachable and observable admissible system is called
output-normal.
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2.3. System equivalence. The concept of an equivalent state-space transformation of an
admissible continuous-time system is slightly more complicated than in the discrete time case
as the system operators are in general unbounded.

Two systems (Zic Bi C., Dic) E CU’Y 1 2, are called equivalent if there exists aX
boundedly invertible operator V L(X1, X2) such that

((ZZc, D(AZc)), BZc, (C2c, D(CZc)), DZc)
((VAV-1, VD(A))), VBlc, (Clc V-l, VD(Clc)), Dlc),

where

is given by

[BZc(u)l(x) (VB)(u)[x] Bl(u)[V*x], u U, x e D(AZc*) (V*)-ID(A)*).
If V is a unitary operator, then the two systems are said to be unitarily equivalent.
We have the following results concerning equivalent systems.

CU’YPROPOSITION 2.4. Let (aic B{. ci Di) x, 1, 2, be two equivalent systems such
that

((A2c, D(A2c)), B2c, (C2c, D(C2c)), D2c)
((VAV-1 VD(A)), VB (Clc v-1 VD(C)), D)

with V L(XI, X2) a boundedly invertible operator. Then
1. both (Z, BJ, CJ, DI) and (Z2, B2, C2, D2) realize the same transferfunction.
2 if(Z) BI C D) CU’Y hasobservabilityoperatorOandreachabilityoperatorT,Xl

then the observability and reachability operators of(a2 B2, C2 D2) Cv’Y
x2 are respectively

OV-1 and

Proof The proof is straightforward. [3

Thus equivalent systems have the same transfer function as well as the same observability
and reachability properties. Moreover, it can be seen that unitary equivalent systems have the
same Gramians. Hence unitary equivalence preserves parbalancing.

We point out that for an admissible system ((A D(A))) B C DI) Cv’r and aC’ Xl
unitary operator V X -+ X2, the system

((A2 D(A2c)) B2c (C2c D( 2Cc)), D2c)
((VA)V-1, VD(A))), VB, (C)V-1, VD(C)), Dc)

is also admissible, where VB) is defined as above Therefore ((A), D(A))), B), Cc, Dlc) and
(Ac2, B2, C, D) are unitarily equivalent.

The class of continuous-time transfer functions that we are interested in are those that
have reachable and observable continuous time realizations on some state space X, where X
is a separable Hilbert space. This class will be denoted by TLCv,r, where U and Y are the
input and output spaces, respectively. We characterize those transfer functions in terms of
their Hankel operators in 4.

3. Connection between continuous- and discrete-time systems. What is essential in
our development is to relate discrete-time systems to continuous-time systems using a gener-
alization of the well-known bilinear transformation for finite-dimensional systems. Thereby
it is possible to carry some of the results in [24] for discrete-time systems over to continuous-
time systems. It should be noted, however, that not all results of discrete-time systems can
be translated to the continuous-time case in this way. For example, under this bilinear map
an exponentially stable continuous-time system does not necessarily correspond to a power
stable discrete-time system.



INFINITE-DIMENSIONAL SYSTEMS 763

3.1. Admissible discrete-time systems. We recall [24] that an admissible discrete-time
system with input space U, output space Y, and state space X, with U, X, and Y being separable
Hilbert spaces, is a quadruple of operators (Aa, Ba, Ca, Da) that satisfy the following:

1. Aa L(X) is a contraction and -1 cp(Aa);
2. Ba L(U, X), Ca L(X, Y) and Da L(U, Y);
3. the limit limr>l,rl Ca(rI + Aa)-1Ba exists in the norm topology.

U,Yv,r For (Aa, Ba, Ca, Da) Dx the functionThe set of all such systems is denoted by Dx

Gd(Z) Cd(ZI Ad) -1 Bd -1- Dd e ---> L(U, Y)

is called the transferfunction of (Ad, Bd, Cd, Dd) and (Ad, Bd, Cd, Dd) is called a realization
of Gd. Evidently, the transfer function Gd is analytic on De and at infinity.

U,YFor (Ad, Bd, Cd, Dd) Dx its observability operator Oa D(Od) -+ H2r is defined
as

((QdX)(Z)--Z(CdAndX)Zn’n>O xGD((Qd)’={xIZ(CdAndx)ZnGH2y}"n>o
If D(Oa) X, Oa is bounded and Ker(Oa) {0}, then the system (Aa, Ba, Ca, Da) is
said to be observable. The system (Aa, Bd, Ca, Da) is said to be reachable if its reachability
operator Ta D(d) --> X defined by

N
Z IN 0, 6 U} can be extended to a bounded operatorwhere D(a) {--_,,=0 un un

with range dense in X. The set of all reachable and observable discrete-time admissible
systems with input space U, output space Y, and state space X is denoted by LDxU’r. The set

U,Yof all discrete-time transfer functions that have realizations (Aa, Ba, Ca, Da) LDx for
some state space X is denoted by TLDU,r. A characterization will be given of this class of
transfer functions in the next section.

For (Ad, Bd, Ca, Dd) LDx’r, we define its reachability Gramian kVa X -- X as

WdX d*dX, x X,

and its observability Gramian J/ld X --+ X as

:4dX OOdX, X X.

IfWd Wld and (Ad, Bd, Cd, Dd) is reachable and observable, then (Ad Bd, Cd, Dd) is said
to be a parbalanced realization. If the Gramian of a parbalanced realization has a diagonal
representation with respect to an orthonormal basis, the realization is said to be balanced.
If Wd I, then the reachable and observable admissible system is called input-normal. If
.AAd I, then the reachable and observable admissible system is called output-normal.

3.2. Bilinear transform. In the following theorems (see [23]) we introduce the map
U,Y U,YT Dx --> Cx which transforms discrete-time systems to continuous-time systems.

Throughout the rest of this paper T will denote this map.
U,YTHEOREM 3.1. Let (Ad, Bd, Cd, Dd) Dx ;then T((Ad, Bd, Cd, Dd)) :-- (Ac, Be, C.,

U,YD.) Cx where the operators Ac, B, C., and D are defined asfollows:
1. ac :-- (I + Ad)-l(Ad-- l) (Ad-- I)(I + Ad)-1, D(Ac) :--- D((I + Ad)-I). It

generates a strongly continuous semigroup ofcontractions on X given by pt(Ad), > O, with

qgt(z) et’+
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2. The operator Be is given by

Be := /(I + Ad)-1 Bd U

u b.---->

D(A*c)(’)
,/-(I + Ad)-1 Bd(u)[x]

/ < Bd(u), (I + A})-I(x) >x

3. The operator Ce is given by

Ce D(Cc) "-+ Y,

x limx v/Cd(.l "k- Ad)-lx,
>1

where D(Cc) D(Ac) + (I Ae)-1BeU. On D(Ae) we have

CcID(Ac) %/Cd(I t_ Ad)-1.

4. De "= Dd limz--,1 Cd()I -+- Ad)-lBd.
Moreover, let the admissible discrete-time system (Ad, Bd, Cd, Dd) be a realization of the
transferfunction

Gd Ie ---> L(U, Y)

i.e., Gd(z) Cd(ZI Ad)-1Bd + Dd for z ]Ie. Then

(Ac, Bc, Cc, Dc) T((Ad, Bd, Cd, Dd))

is an admissible continuous-time realization ofthe transferfunction

+ s) RHP --+ L(U, Y).Ge(s) Gd
1 s

The inverse map is considered in the next theorem [23].
U,Y T_ITHEOREM 3.2. Let (Ac, Be, Cc, Dc) Cx ;then ((Ac, Bc, Cc, Dc)) "--(Aa, Ba, Ca,

U,YDa) eDx where the operators Aa, Ba, Ca, and Dd are defined asfollows:
1. Aa :-- (I+Ae)(I-Ae)-,andforx D(Ac)wehaveAax (I-Ac)-(I+Ac)x.
2. Ba := ./(I ac)-l Bc.
3. Cd :-- Cc(I Ac) -1.
4. Da :-- Cc(I Ac)- Be + De.
Moreover, let the admissible continuous time system (Ae, Be, Cc, Dc) be a realization of

the transferfunction

Gc RHP --> L(U, Y)

i.e., Gc(s) Cc(sI Ac)-lBe + Dcfor s RHP. Then

(Aa, Bd, Ca, Dd) T-1 ((Ac, Be, Cc, Dc))

is an admissible discrete-time realization ofthe transferfunction

Gd(Z) "=Gc( z-z+ 11)" ]]])e ’--> L(U,Y).
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We recall that two discrete-time systems (Adi Bdi Ccli Ddi) E D’r (i 1 2) areX
equivalent (unitarily equivalent) if there is a bounded operator (a unitary operator) V from X1
onto X2 such that

(Adl, Bdl, Cdl, Ddl) (VAd2V-1, VBd2, Cd2 V-l, Dd2).

In [23] it was shown that T preserves (unitary) equivalence of systems and respects duality of
systems.

Note that in the previous two theorems the state spaces for the continuous- and discrete-
time realizations are the same. As will be seen in later sections for continuous-time systems it
is more natural to work on a different yet unitarily equivalent state space that is a subspace of
Hy2 (RHP). Here we point out the equivalence of the Hilbert spaces Hy2 (D) and Hy (RHP),
where Y is a separable Hilbert space (see [25, Thm. 4.6]).

PROPOSITION 3.3. The spaces H2y (D) and H2y (RHP) are unitarily equivalent by the map

The inverse of V is given by

W1" Hy(RHP) --->

(Wf.(o = fe(ol := ( + of. i -,
The next result shows that observability and reachability properties as well as the Gramians

are preserved under T. This implies that the transformation preserves parbalancing ofsystems.
This result is the translation of a result in [23] to the frequency domain.

Y U,YTHEOREM 3.4. Let (Ac, Bc, Cc, Dc) cUx and (Ad, Bd, Cd, Dd) Dx be such that

(Ac, Bc, Cc, Dc) T((Ad, Bd, Cd, Dd)).

Then
1. (At., B., Cc, D.) is observable (reachable)ifandonlyif(Ad, Bd, Cd, Dd) is observable

(reachable). In fact, ifO (T) and Od (Td) are the observability (teachability) operators
of(Ac, Bc, Cc, Dc) and (Ad, Bd, Cd, Dd), respectively, and ifeither (A, B, Cc, Dc) or (Ad,
Bd, Cd, Dd has a bounded observability (reachability) operator, then thefollowing relations
hold:

glOdX 0cx, X X (’.dg-lu "]P.c.,-lu, u HZu(RHP))
where V1 H2y ([) n2y (RHP) and V2 H() --> H2v (RHP) are unitary transfor-
mations as defined in Proposition 3.3:

ff--(1 +s) l-s), flHv2(I), and f E H2u(ID), l 23 l+s

and is the Laplace transform.
2. If the reachability Gramians W and /d (observability Gramians A/t and ./d) of

(Ad, Bd, Cd, Dd) and (Ac, Bc, Co, Dc) are defined, then

2c Wd (Mc Md).
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Proof In [23] a "time domain" version of this result was proven. The presem result
follows from the result in [23] by applying the z-transform (respectively, Laplace transform)
and using the unitary transformation of Proposition 3.3. q

Therefore if Gg(z) G,( z-z.--), then Gg TLD’v i.e., G has a reachable and observ-

able discrete-time admissible realization, if and only if G. TLC,, i.e., if and only if G
has a reachable and observable continuous-time admissible realization.

The combination of Theorems 3.1, 3.2, and 3.4 gives us an effective machinery to trans-

form discrete-time results to the continuous-time case. Before doing this, we need to study
Hankel operators which will be important in the analysis of parbalanced, input-normal, or
output-normal realizations treated in the sequel.

4. Linear systems and l-lankel operators. In the study of discrete-time systems Hankel
operators on H2(]) play an important role 11]. Given a discrete-time transfer function, a
Hankel operator can be associated with it in a natural way. The so-called restricted shift
realization of the transfer function is constructed by using the range of the Hankel operator
as its state space (see 11], [30], [24], and 5 below). When the Hankel operator is compact,
a balanced realization can be obtained whose Gramians have diagonal representations with

diagonal entries equal to the singular values of the Hankel operator [30]. In the continuous-
time situation Hankel operators on H2(RHP) will be of equal importance. We therefore
examine the relationship between discrete-time Hankel operators and their continuous-time
counterparts.

4.1. l-lankel operators and realizability. Let G be analytic on )e and at infinity so
that Gh(z) z-l[Gd(Z-1) Gd(OC)] is analytic on D. We define the operator Ha),
D(H,) -- Hr2(D) by

(Ha),Df)(z)- P+adJf (f D(Ha))),
where D(Ha,D) {f H2 (D) f polynomial, G-Jf has nontangential limit inD almost

everywhere (a.e.) at OD with limit in L2r(OI)} and (Jf)(z) f(1/z). The operator Ha
is called the Hankel operator with symbol G-. If D(Ha,) is dense in H(D) and Ha_,
extends to a bounded operator on H2 (D), this extension is also called the Hankel operator
with symbol G- and is denoted by Ha; .

The following lemma [24] relates te existence of a reachable and observable realization
of a discrete-time transfer function G, to the boundedness of the Hankel operator Ha_,.

LEMMA 4.1. The transferfunction G, is in TLD:’r i.e., G, has an admissible reachable
and observable realization if and only if (i) G, is analytic on De and at infinity, (ii) the
limit lira r6]R G,t(r) exists in the norm topology, and (iii) the Hankel operator Ha is

r<-l,

bounded.
We analogously define Hankel operators for continuous-time transfer functions.
DEFINITION 4.2. IfG. is an L(U, Y)-valuedfunction analytic on RHP, then the operator

H II-I , D H II41 --+ H, RHP

f - P+Mc,cRf,

where

Rf (s) f(-s),

MGc is the multiplication operator by

P+ is the projection on Hy(RHP),
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with D(HGc,RHP) {f e H2u(RHP) frational, GcRf has a nontangential limit in RHP
ona.e, onithatisin L2r(i)}, iscalledtheHankeloperator HGc,RHP with symbol Gc. [3

If D(Hc,RHP is dense in H2u(RHP) and Hc,RHP extends to a bounded operator on

Hu2 (RHP), this extension is also called the Hankel operator with symbol Gc and is denoted
by Hc,RHP.

If it is clear from the context that the Hankel operator is defined on RHP, we will drop
the subscript RHP and write H instead of HG,RHP.

It is important in our context that Hankel operators defined on the disk are unitarily
equivalent to Hankel operators in the right half plane in the following way (see, e.g., [25,
Thm. 4.6]).

PROPOSITION 4.3. Let Vu and Vy be the unitary operators defined in Proposition 3.3.
1. Let Gd 6 TLDU’Y and Gc TLCv’Y. If

or equivalently

Gd(z)=Gc(z-z+ll) forz ]]e,

Gc(s)--Gd for s RHP,
-s

then the Hankel operators H6, and HVc,RHP are unitarily equivalent, i.e.,

n,e Vrn,,V1,

where G-)(z) z-l[Gd(z-1) Gd(O)] (z
2. Let Kd H,r)() and K Hu,r (RHP) be such that

ZE,Kd(Z)- Kc 1 + z

or equivalently

Then

and

1 --s)Kc(s)= Kd
l + s

s6RHP.

Vy(KdH](]]))) KcH](RHP), Vy ((KdH]())-t-) (KcH2u(RHP))-t-

VI(KcH](RHP)) KdH](]I)), V ((KcH2u(RHP))+/-) (KdH](D))-L.

Proof The proposition follows from direct verification.
Using this proposition we can give a characterization for a continuous-time transfer func-

tion Gc to be in TLCU’Y, i.e., to have an observable, reachable, and admissible continuous-time
realization.

COROLLARY 4.4. Thefollowing two statements are equivalent.
1. Gc TLCU’Y, that is, Gc has a reachable, observable, and admissible realization on

some Hilbert space.
2. Gc(s) is analytic on RHP, the limit limre,r+ Gc(r) exists in the norm topology,

and the Hankel operator H6 H2u(RHP) ---> H(RHP) is bounded.
Proof This follows from Theorem 3.4, Proposition 4.3, and Lemma 4.1. ]
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4.2. Range spaces of Hankel operators and factorizations of transfer functions. It
is known that the orthogonal complement,

(rangeHc) +/- H(RHP) ) rangeHc,

of the range of the Hankel operator H is invariam under any multiplication operator with
symbol in H. Hence by Beurling’s theorem, the subspace (rangeHc)+/- is either {0} or
QHZr(RHP), where Q H(RHP) is a rigid function. A rigid function is a function
Q 0 such that Q(iy) is for a.e. y a ]R a partial isometry with a fixed initial space (see, e.g.,
11, p. 186], and [15]). In particular, inner functions are rigid functions.

Using the above-defined notions, we introduce the concept ofcyclicity of continuous-time
transfer functions, which relates Hankel operators with their symbols. The discrete-time case
was studied in, e.g., Fuhrmann [11]. A general study of strictly noncyclic transfer functions
can also be found in Dewilde [7].

DEFINITION 4.5. Let Gc Hv,r (RHP). Then Gc is called
1. cyclic if(rangeH,Ri4p) +/- {0};
2. noncyclic if (rangeHc,R/4e) +/- QH2r(RHP), where Q H(RHP) is a rigid

function;
3. strictly noncyclic if (rangeHa,li4p) +/- QH2r(RHP), where Q H(RHP) is an

innerfunction. [3

Evidently in the scalar case Gc is strictly noncyclic if and only if it is noncyclic.
In the sequel it will be seen that the cyclicity of the transfer functions has much to do with

the stability and other properties of their realizations. Here we present more information on
cyclicity of H transfer functions.

DEFINITION 4.6. Let G be in HL(v,y)(RHP). Then the L(U, Y)-valued function
defined on LHP is called a meromorphic pseudocontinuation of bounded type ofG if

1. is ofbounded type, i.e.,

where F is a L(U, Y)-valuedfunction and h is a scalar-valuedfunction and both functions
are bounded and analytic in LHP.

2. G and have the same strong radial limits on iN, i.e., for a.e. y IR

lim (x -t- iy) lim G(x + iy). U
x<0,x-+0 x>0,x--->0

The following proposition summarizes the connection between discrete- and continuous-
time transfer functions in terms of cyclicity, meromorphic pseudocontinuation of bounded
type, and factorizations. We refer to 11] for a discussion of these concepts for discrete-time
transfer functions, which are analogous to those that have been defined here for continuous-
time transfer functions.

PROPOSITION 4.7. Let Gc TLCU’, Gd TLDtL’, and set G-(z) Z-I[Gd(Z-1)
Ga (cx)]. Assume that

Ga(z) Gc (Z- ll+ (z tE ]]])e),

or equivalently

l+s)Gc(s) Gd
1- s

(s RHP).

Then
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1. G is strictly noncyclic (cyclic, noncyclic) ifand only ifGc is strictly noncyclic (cyclic,
noncyclic).

2. Let Qd,1 Hr)(D), Qd,2 Ht)(D), Qc,1 Hr)(RHP), and Qc,2
Hf(v(RHP) be inner functions. Let Fd, L(Y,U) (]])), Fd 2 - nL(U,y) (]), Fc -Hr,r (RHP), and Fc,2 Hv,r (RHP). Assume

1-z
_Gc(1)*Qc,1 i+ z D,Fd’l(Z) Fc’l 1 AI-z

(1-) (1-Z)Gc(1),, ziFd,2(zl Fc,2
1+

ac,2
l +z

Qa,i(z)=Qc, +
z6II), i=1,2,

or equivalently

(1-;) (1-s) sRHP,F,., (s) Fa,1
1 -t-

-I- Ga(o)* Qa,1
1 + s

(i-;) ( )F (s) Fa + + Qa,
1- s

Ga(c)*, s . RHP,
l+s

s6RHP, i= 1 2.Qc,i(s) Qa,i
1 +

Then Gc can befactored on iN as

Gc-- Qc, lFc*,l Fc*,2Qc,2

ifand only ifG- can befactored on 0 as

G-(z) Qd, I(Z)(ZFd, I(Z))* (ZFd,2(Z))* Qd,2(Z) (Z 0]).

n (I). Let Fa (Fc) be a L(U, Y)-H (RHP) andG (,r)3. Assume that Gc (,r)
valued analyticnction in e (LHP) and ha (hc) be a scalar-valued analyticnction in e
(LHP), both bounded, such that

1[ (i-Z) (l-z)] ZeFa(z) Fc Gc(1)hc i + zZ +Z

hd(Z) hc
1 ’+ Z

z e,

or equivalently

Fc(s)
l+s (I-s) (l-s)+ Gd(o)hd s LHPFd

l+s l+s

1 --s) s LHP.hc(s) hd
1 + s

Then G-) has a meromorphic pseudocontinuation - ofbounded type in ]])e, which is given
by

ha
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ifand only ifG has a meromorphic pseudocontinuation rc ofbounded type in LHP which
is given by

he

Proof The results can be directly verified. [q

The next theorem provides some convenient ways to determine whether a transfer func-
H (RHP) and F 6tion is cyclic, noncyclic, or strictly noncyclic Note that Q 6 L(Z,Y)

H (RHP) are said to be weakly left coprime if QHz2 (RHP)vFHu2 (RHP) Hy2 (RHP)L(U,Y)
where v denotes the closed linear span. In this case we write (Q, F)L Iy. If two functions
Q1 HL(X,y)(RHP) and F1 H(u,z)(RHP) are such that and/ are weakly left

coprime, where 01(s) (QI())* and/l(S) (Fl(ff))* (s RHP), they are said to be
weakly right coprime, and we denote this by (Q1, F1)R IV (see Fuhrmann 11]).

H (RHP) with finite-dimensional U and Y. Then theTHEOREM 4.8. Let Gc L(U,Y)
following statements are equivalent:

1. Gc is strictly noncyclic.
2. Gc has a meromorphic pseudocontinuation ofbounded type on LHP.
3. On iN thefunction G can befactored as

Gc- QF- FQ2,

where Q1 and Q2 are inner.nctions in HLy)(RHP) and Hv(RHP), respectively. The

functions F1 and F2 are in Hc (RHP) andH (RHP), respectively, and the coprime-L(Y,U) L(U,Y)
hess conditions

(Q1, F1)R Iv, (Q2, F2)L Iu
hold. Ifpart3 holds, then QIH2v(RHP) (rangeHac) +/- and 02Hu(RHP) (rangeHc)+/-,
where O2(s) (Q2(g))* and c(S) (Gc(5))*.

Proof. Analogous results are shown in 11 for discrete-time transfer functions. Thus the
theorem follows from Proposition 4.7.

The factorization in the theorem is Fuhrmann’s generalization of the Douglas, Shapiro,
and Shields factorization [8] to matrix-valued functions. For a given function, part 2 of the
theorem may be easy to check. For example, the function e-us R(s) is strictly noncyclic, where
c > 0 and R(s) is any rational function in H(u,r)(RHP). This is because e R(s) has a
meromorphic pseudocontinuation of bounded type on LHP of the form F(s)leaSh (s), where
if al an denote the poles of R(s), then,

h(s)
(S al) (s --an)
(s -k- al)’’’ (s + an)’

and F(s) h(s)R(s). Part 2 of the theorem also gives the following corollary.
COROLLARY 4.9. Under the assumption of the theorem, G Hv,r (RHP) is strictly

noncyclic ifand only ifr (r,vH (RHP) is strictly noncyclic. [3

4.3. Hankel operators with closed range. Similarly to Theorem 4.8, the following
theorem (see 11]) gives necessary and sufficient conditions for the Hankel operator to have
closed range.

THEOREM 4.10. Let Gc HL(U,y)(RHP) with U and Y finite dimensional. Then the
Hankel operator Hc has closed range ifand only ifoni thefunction Gc has thefactorization

Gc(s)- Q(s)F(s)*,
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where Q Hy)(RHP), F Hy,u)(RHP), and the equality

WQ + VF Ir

holds for some W Hr (RHP) and V H(u,r)(RHP); that is, Q and F are strongly
right coprime. In this case

H (H(u)(RHP)) 2 2H(F)(RHP) ( QH,(y)(RHP). [q

This section essentially established that the unitary equivalence of the spaces H:(D) and
H:(RHP) implies the unitary equivalence of the Hankel operators H6 and H6c, where

Ga(z) Gc( z-1z-)’ z 6 D. Therefore the spaces rangeHa) and rangeHa are unitarily
equivalent. As a consequence, the discrete-time transfer function Gel and the continuous-time
transfer function Gc have the same cyclicity properties.

These results will be repeatedly used in the next section when we obtain the restricted shift
realization ofa continuous-time system by applying the bilinear map in 3 to the corresponding
discrete-time system.

5. Continuous-time shift realizations via a bilinear transformation. As a direct ap-
plication of the bilinear transformation T given in 3 the continuous-time restricted and
*-restricted shift realizations can be obtained from the corresponding discrete realizations.
These realizations can be further analyzed via the connection between continuous and discrete-
time transfer functions shown in 3 and 4.

Restricted and *-restricted shift realizations are central to the development here since
they serve as prototypes of output-normal (respectively, input-normal) realizations. It will
be shown in Proposition 6.2 that each output-(input-)normal realization of an admissible
transfer function G is unitarily equivalent to the restricted (*-restricted) shift realization.
The concrete representations of the continuous-time shift realizations obtained in this sec-
tion will allow us to analyze input- and output-normal realizations in some detail in later
sections.

Another important result of this section is Proposition 5.11, in which the state spaces
of the restricted shift realizations for strictly noncyclic transfer functions are characterized
through the inner factors in the Douglas-Shapiro-Shields factorizations of the transfer func-
tion.

5.1. Discrete-time shift realizations. We first recall the discrete-time restricted and
*-restricted shift realizations of a discrete-time transfer function (see 11], [30], and [24]).

THEOREM 5.1. Let Gel TLDU’r. Then Gel has two state-space realizations:
(Acl, Bcl, Col, Dcl) with state space Xcl and (Acl,,, Bcl,,, Col,,, Dcl.,) with state space Xcl,,, i.e.,

for z [e

Gcl(Z) Ccl(zI Acl) -1Bcl + Dcl Ccl,,(zI Acl,,) -1Bcl,, 5-

They are given in thefollowing way:
1. The state space Xcl is given by Xcl rangeHei

_
Hrz(D), where

andH6 is the Hankel operator with symbol G-). The operators Acl, Bcl, Col, and Dcl are given
asfollows:
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(Adf)(z) :-- (S* f)(z) f(z) f(0)
feX, zeD,

(Bdu)(z) "---G(z)u, u U, z D,

Caf:--f(O), fX,

Odu :--Gd(-[-OO)u, U U,

where S is the Oorward) shift operator (Sf)(z) zf(z), f H2r(D), z D.
The realization (Ad, Bd, Cd, Dd) is called the restricted shift realization of the transfer

function Gd. It is admissible, observable, and reachable, and the observability and reacha-
bility operators Rd and Od are, respectively,

Od IX, R= H6).
2. The realization (Ad,,, Bd,,, Cd,,, Dd,,) is given as follows: The state space Xd,, is

given by Xd,, rangeH0a with

Cd(Z) (Gd())* and 5k(z) =1 (d ()--Gd(OO)) z6D
z

The operators Ad,,, Bd,,, Cd,,, and Ca,, are defined as

Ad,, Px., SIx,,,

Bd,, U Xd,,; u - PXd,,U,

.L (Z-(Z))*X(z)dz PYnGaXCa,, Xd , -+ Y x gTu
D

(Hax)(O),
Dd,. Gd(+O0),

where Y is considered a subspace embedded in Hr2(D)" Y {Yo + 0z + 0z2 + Yo
y} c_ H(D), and Px., and Pr are orthogonal projections from H2r(D) onto Xd,, and Y,
respectively.

The realization (Ad,,, Bd,,, Ca,,, Dd,,) is called the *-restricted shift realization of the

transferfunction Gd. It is admissible, observable, and reachable, and the observability and
reachability operators Od,, and 7P,.d,, are, respectively,

Td,, ex,, H2v(D) -+ X, and Od,, H) Ixa,, H)]x.,. [3

5.2. Continuous-time restricted shift realization. Now we apply T to the realizations
given in the theorem to get the continuous-time realizations. We need some simple lemmas.

LEMMA 5.2. For any x H2r(D), liturgy, r>-X, r--l(1 d- r)x(r) 0 in the norm ofr.
For any f H2r(RHP), limr, r-++ f(r) 0 in the norm of Y.

Proof For x 6 Hrz(D) and z 6 D we have x(z) Yn>_O z Xn where 2n Y and

En>_0 II-n 2 IIx 1122(). Thus

IIx(z)ll _< Iznl IInl[ _< Iznl2 [lnll 2
n>0

(1 -Iz[)-1/2(1 -t-Izl)-l/2llxll.
Hence limr>_l, r-+-l(1 q- r)x(r) O.
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Now for f Hr2 (RHP) and any s RHP, it is shown in [22, p. 254] that

IIf(s)ll _< 3(Re(s))-x/2,

where 6 is a constant depending on f. Thus the lemma is proven.
LEMMA 5.3. With the notation of Theorem 5.1 we have

1. range(I + aa) {xl x(z)
(l + z)h(z)

(z I3), h Xa}
andfor x range(/+ Aa) the limit limr, r>-l, r--*-I X(F) exists;

x(z) + x2. [()I -t- Ad)-lx](z)
1 + )z )(1 + )z)

where x Xd, ) IDe, Z ;
3. Cd(LI-lr-ad)-ax--x(--), )GIDe, X EXd;

x(z) + -x(-1) x e range(/+4. [(I + Aa)-lx](z)
1 + z z

where x(-1) limre, r>-l,r--I x(r).
Proof. 1. Since range(/+ Aa) {x + Aaxl x Xa} {x(z)-x(0) + x(z)l x Xa} we

have the equality in 1. If x range(/+ Aa) then x(z) (l+z)h(z)-h(O) for some h Xa. By
Lemma 5.2,

(1 + r)h(r) h(O)
lim x(r) lira h(0).

rlR, r>-l, r--I relR, r>-l, r--I r

2. First we show that for x Xd and . 6 IDe, the element

z 1
x(z) +1 + Lz L(1 + z) (1) (z)x(z)x =e+  +Zz

is in Xa. Take any y in the invariant space H(I3) O Xa. Since 1_ 6 HOO for ) 6 I)e, we
z+)

have z-y H]()@ Xa. Therefore,

P+ 1..q_zX(Z) y x,
Hy(]I)) Z + -Y O.

This shows that P+ (l@xzX(Z)) Xa. Since Ad is a contraction, (LI + Aa)-1 is a bounded
operator on Xd for ) 13e. Then the equality in 2. follows from the equality

(;I + Ad) 1 +)Z x(z) +
)(1 + ZZ)

x x(z).

3. Using 2. and the definition of Ca we get 3.
4. If x 6 range(/+ Aa), then by 1. and its proof there exists h Xa such that x(z)

(l+z)h(z)-h(O) and limr, r>-l, r----I x(r) h(0). Set

x(- 1) lim x(r) h(O).
rN, r>-l, r---I

We have

Z

l+z [ 1
x(z) + -x(--1) h(z),

z
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which is in Xd. Note that 1 ap(Ad). Thus (I + Ad)-1 is defined on range(/+ Ad). The
equality in 4. then follows from

( I x(-1)l) (l+z)h(z)-h(O)z
x(z) + [(I + Ad)h](z)(I + Ad)

1 + z z z

LEMMA 5.4. Let f L2y(i). Then in L2y(i) norm,

s s
lim f-- lim f=0.
n-+cxz n + s no n s

x(z).

Proof Since IIn-f(s)ll2y IIf(s)ll for any s 6 iI andn > 0and

lim
s

f(s)
nWs

2

for a.e. s 6 i, the lemma follows from the Lebesgue dominated convergence theorem. [:]

LEMMA 5.5. Let Gc TLCv’r. Set X- rangeHa andD- Px{] u U}. Then
the map

is well defined and the map

is injective.

M1 "79 Y,

PXl- [(c(1) ((cx)lu

M2" X --+ X,

f w- Pxfl+s

Proof Assume Px T-u’ px ]__47.uz
H2y(RHP) 0 X. Therefore, for any f H2y(RHP),

Ul--U2Then Px ul-uz O. This shows that
l+s

1 + s H2RHP, 1 --{- s H2RHPv u

]Ul U2

l+s
, P+[Gc Gc(+Cxz)]f(-s))

__--(Ull+s---U2 [Gc(s)-Gc(+Cxz)]f(-s))
=([Gc(s) Gc(+cxz)]*ull W u2’ f(-s))

([dc(s) dc(cx)lull s
u2 f(s)).

Hence [((s) ((1)] u’-uz 0. So we have [(s) (1)](Ul u2) 0. Taking the limit1--s
on the real line, we get

[c(1) (c(+Cx)l(ul u2) 0.

This shows that indeed M1 is well defined.
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To show that M2 is injective, assume Px hl(s) h2(s)Px-i--, hi, h2 E X. ThenPx h(s)-h2(s)l+s
0. Hence

By Lemma 5.4, we have

hi(s) h2(s)
1 + s

E H fg X.

l+shl(s)-h2(s)

H(RHP)
lim--Sn--,xn--S

lim (hi h2) (hl h2) 0.
n- l +s/n l +s

Hence limn+ 1+, hlO.-h2’)_ hi h2 in Hr2 Note that Hv2 O X is an invariant spacel+s/n l+s

and in 6 H for n > 0. So l+s h(s)-hz(s) LI2
1+./--i--- --r X, and hence hi h2 G Hr O X.

Since h h2 G X, we therefore have h h2 0. This shows that M2 is injective.
We will need the following result on the reproducing kernel in HZ(RHP) (see, e.g., 10]).
LEMMA 5.6. For f HZ(RHP), u U, andc RHP thefollowing hold:

( u ) =2rc(f(ot),u),

( u ) =27r(u,f(ot))t;.s---’ f

We are ready to present the continuous-time restricted shift realization using the bilinear
transform T. For a continuous-time transfer function G. we first realize the discrete-time
transfer function Ga defined by

Ga(z)--G(z-z+il)
in terms of the restricted shift realization. Applying T to this discrete-time realization we
obtain a realization of G with the same state space. Then we use a unitary transformation to

get the continuous-time restricted shift realization with state space ran--6H
THEOREM 5.7. Let Gc TLC’v. Then Gc has a state-space realization (A, Bc, Dc,

U,YC) Cx which is given in thefollowing way:
1. The state space is given by

X--rangeHc,,/4e

___
H2(RHP).

2. The semigroup (eta)t>_O corresponding to the realization is given by

etAc’. X X,

f (etz f)(s) P+et f(s).

The infinitesimal generator (Ac, D(A)) ofthe semigroup (eta)t>_O is given by

Ac D(Ac) --+ X,

f - (Af)(s) sf(s) lim r rf(r).

The domain D(Ac) is dense in X, and we have

{ 1
[h(s)-h(1)]" (sRHP) hEX}D(A,.) f f(s)

1- s
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The domain ofthe adjoint A* ofthe operator Ac is

h(s)
(s6RHP), h6X}D(A*c) f] f(s) Px

and

h(s)
A*f f hfor f (s) Px-f + s

D(AS).

On/2-1(X) c__ LZv([O, +x)) the semigroup is given by

etAc /-1 (X),

(etAc f)(’C) PLz([O,+))(f (’c + t))>_O.

3. The input operator is given by

D(A*c)(’)
Bc(u),

wherefor u U and x(s)= Px h(AO- D(A*),l+s

1(1[Bc(u)l(x)
j -1 s

[Gc(s) Gc(1)lu, (1 A*c)X)

(u, (Hdch)(1)}U
4. The output operator is given by

Cc D(C) D(Ac) -t- (I Ac)-1BcU
x - lim r rx(r).

5. Thefeedthrough operator is given by

Dc U --+ Y,

u Gc(+cx)u "= lim r6l Gc(r)u.

The realization (Ac, Bc, Cc, Dc) ofG is called the restricted shift realization.

Proof These results are obtained by applying the map T of Theorem 3.1 to the restricted
Z--1shift realization (Ad, Bd, Cd, Dd) of Gd(Z) Gc( y-f ), (z De), with the state space then

transformed by the unitary operator V Vy defined in Proposition 3.3.
1. Let (Acl, Bcl, Ccl, Dcl) T((Aa, Be, Ce, De)) and

(Ac, Bc, Cc, Dc) (VAcl V-1 VBcl CV-1 Dcl)

1-z ]])),We usethe following notation: Gd(Z) [Gd()--Gd(OO)]- 2[G.(]-)-Gc(1)](z
Xd rangeHa), and (t (Z) e z+l, > 0. Then by Proposition 4.3 X VXd, and qbt(Ad) is
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the semigroup of contractions on Xd with infinitesimal generator (Ad I)(Ad -i- i)-1 Acl
(see [28, p. 141]). Specifically, for x Xd we have

t -z
(Ae)x P+dt x P+ / x P+e 1. x.

Thenit is easyto see that A. VAV- generates the semigroup ofcontractionsV(Aa) V-on X. If we extend the unita transfoation V H() H(RHP) naturally m

V :L2(0) L2(iR),

xe (Uxe(,l- (l+,xe
we still have a unita transfoation. Moreover, by considering zy for n Z and y Y we
can show that

VP P P v,

where P" L2(0) H2()and pttP L2(i) H2(RHP)are the ohogonal
projections. From this it follows that for f 6 X,

1--Z 1--a

f P+ VetV f- p+et,Let& f Vt(Ad)V f VPe V- P

Clearly, D(Acl) range(Ad+l), andbyLemma 5.3 range(Ad+I) (+a)x.(a)Tx(O)[x Xd }.
Since D(Ac) VD(A) and x(0) 2(Vx)(1) for x Xd, we have

D(Ac) Vrange(Ad + I) V
(1 + z)x(z) x(O)

x Xd

1--s

V
(l+z)x(z)-x(0)

Ix Xd 1-sZ l+s

2,f(1)
+s if X

_--{f(s)l_s-f(1)lf6X}.
For x D(Acl) range(Ad + I) the limit limrz, r>-l, r-,-1 x(r) exists by Lemma 5.3.
Denoting it by x (-1) and using Lemma 5.3, part 4, we have

(acx)(z) [(ad I)(aa + l)-x]()

( z [ 1 ]) (1-z)x(z)-2x(-1)
x(z)+ -x(- 1)(Ad l)

+ z Z l + z

From this we obtain, for f D(Ac) VD(Acl),

(Acf)(s) (VAcl V-l f)(s) V ((1-z)(V-lf)(z)l+z-2(V-If)(-1))
sf (s) lim rf (r),, r-+o

where we have used the fact that for f D(Ac)

(V-If)(-1) - lrim (1 + r)f(r)= lirm rf(r).-- q-o
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Now we show the form of Ac*. Recall that Ac* is the generator of the strongly continuous
semigroup (e Ac),. Let

D(A)- {fl f(s) Px

and

,f

h(s)_ for some h 6 X /
l+s /

X

f h f Px-14- s

By Lemma 5.5, the operator , is well defined.

that

For f D(A) andg D(Ac) there are v and w inX such that f Px and
-0(1) By the definition of A and ,, we have A.g w and Af v It then follows1-s

v ,v --(g,(Acg, f)-- w, PXl+ 1-s

This shows that D(A)
_

D(A*c) and/] AIo(A). On the other hand, we clearly have

(I ,)D(A) X and hence

(I A*c)D(A X.

Let x 6 D(A*). Then there exists x 6 D(A) such that

(I-A*c)X --(I-A*c)X.
Since A* is the infinitesimal generator of a semigroup of contractions, the number 1 is not in
the spectrum of A*. Thus we must have X X. This shows that

D(A*c) c_ D().

Therefore D(Ac*) D() and hence Ac* .
2. For the operator B. we first compute BI, following the definition of T"

Bci ,qf(I 4- Ad)-iBd U -+ D(A*c)(’),
u v-- x/-(I + Ad)-1 Bd(u)[’],

"= < Bd(u), (I + a)-l(.) >xd

Note that V* V-a, (I + a)-1 1/2(I a*a), and

1 Gc(s)- G(1)
(VBdu)(s)- u (s RHP).

h(s)Thus for x Px T- D(A’c) c_ X, we have (I Ac*)X h and

(Bcu)(x) (VBcl)(X) (BclU)(V*x) /-(ndu, (I 4- A*d)-lV-lx)xd

(,v/(VBdu, V(I 4- A*d)-lV-1x)x VBdu, -V(I A*cl)V-Ix
X

1--<vn,.. (. A*clx
2
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(Gc(s)-Gc(1) u (I *Ac)x
x

1-s x

Since (He,.)* H&, we have

(Bcu)(x)
l + s’

By Lemma 5.6 the right-hand side is Vc-(u, (H&.h)(1))u.
3. To compute C. we use Lemma 5.3, part 3, to get

Cd(.i _+_ Ad) lx() AeDe.

So for x e D(Ccl) D(Acl) + (I Ac)-BcU we have

C.x lira C(I + Ad)-lx
X>I

1 1
-x(-) i>_ x(>.

The existence of the limit for x e D(A.) follows Eom Lemma 5.3, pa 1, because D(Ac)
range(Ae + I). For x (I Ac)-BU we have that the limit

lim Ce(l +

also exists by the admissibility of G,, since (I A.)Bcu B,u Gu (see [23]).
Now it can be verified that VD(C.) D(A) + (I Ac)-BU, i.e., VD(C) D(Cc).
Hence we get, for f e D(Cc),

Cf _CclV_lf =lim
lSX f(1-:)l+

v/ lim (1 + r)f(r) lim rf(r).
r r

Finally, the obvious expression Dc Gc(ec) can also be verified as follows:

Dcu Dcu Ddu- lim Cd(I + A)-IBu
A>I

Gd(cx)u lim Cd()l + Ad)_lGu Gc(1)u lim
l G (1)>1 .>1 --’ "

[ ()+ll)-G(1)lu-limGc(’+l )Gc(1)u 1}(-1) Gc , >, )-i

Gc(+ec). V1
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Regarding the expressions for the operator Bc in the theorem we have the following
corollary.

COROLLARY 5.8. Bcu X, (u U)ifand only if[Go- Gc(+Cxz)]u X (u U). In
this case

(cU)(S)

In particular, if G,. satisfies

[Gc(s)- Gc(+x)]u (u a U).

+cx

sup IIG,(x + iy) Gc(+Cx)ll2dy
x>O

where for s RHP the expression IIGc(s) G.(-+-)II denotes the operator norm of the
operator Gc(s) G,(+cx) L(U, Y), then Bcu X and

1
(B.u)(s) _,=--[Gc(s) Gc(+Oc)]u

for any u U.
Proof First we assume that [G,. G,.(+cxz)]u 6 X (u 6 U). Define F(s) G.(s)

G.(+). Then Fu X. It follows from the formula for D(A) that

[G(s)-G,(1)]u
1 -s 1-s

[F(s)u- F(1)ul 6 D(A)

and hence for x 6 D(A),

[c()](x) i[Gc(s) G.(1)lu, (I AS)XlHzr(RHP
1 ((i A.)

l s

1
[G,.(s) Gc(1)]u x

1-s 1-s r 1--r

1 1
([G.(s)- Gc(+oc)lu, x)- (Fu, x).

Here we have used the definition of Ac and the fact that the limit lira r Gc(r)u exists,
which follows from the admissibility of Gc. Thus we have shown that Bc(u) X and
Bc(U) Fu for any u U.

On the other hand, if B,.(u) X, (u U), then there is fu X such that [B(u)](x)
(f,, x) for any x 6 X. Therefore

1 ( 1
[Gc(s)-Gc(1)]u, (I-A*c)X)=(fu, x)(xX).

This shows that 1_-1 [Go(s)- Gc(1)]u e D((I A*)*) D(I A) D(Ac). So there is
h 6 X such that

1 h(s)-h(1)
[Gc(s)-Gc(1)]u
-s 1 -s
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Hence G,.(s) G,.(1) h(s) h(1). Since lim s h(s) 0 (see Lemma 5.2), we have

G. G.(+cx) h E X.
To complete the proof of the corollary, it suffices to show that the condition that G is

analytic for Re(s) > 0 and satisfies

sup IlGc(x + iy) Gc(+Cxz)ll2dy < cx
x>0 ec

implies that [G. G,.(+oe)]u E X for any u 6 U.
Again let F(s) Gc(s) G,.(+oc). We have the equality of Hankel operators:

HG,. HF.

The assumption on G,. implies that Fu LZv(iI) for any u 6 U. Now we show that in
LZy (iI) norm

n
Fu- lim HFU

n--+ cx n + s

and hence Fu 6 X rangeHF. The proof will then be complete.
Consider

Fu HF u
n + s I(iN)

S
P+Fu

n-s

S

gt s
Eu

By Lemma 5.4, we have limn_, FullL(iN) O. Therefore

--s
lim P+ Fu O.
n--+cx g/ S

So we indeed have Fu limn__, HF nsu, converging in Lzv(iIR) norm.

5.3. Continuous-time ,-restricted shift realization. If we apply the map T in The-
orem 3.1 to the *-restricted shift realization of Gd(z) G,.( z-1z-Tf) and then transform the
state space by the unitary operator of Proposition 3.3, we obtain the *-restricted shift realiza-
tion of G Alternatively, we can find the restricted shift realization of the transfer function
(f,, E TLCr,U first, and then the dual system of this restricted shift realization will be the
*-restricted shift realization of Gc.

THEOREM 5.9. Let Gc TLCU’r. Then Gc has a state-space realization (A,,, Be,,,
U,YCc,,, Dc,,) 6 Cx which is given in thefollowing way:

1. The state space is given by

X, rangeHd,.,/He c_C_ HZ(RHP),

where Jc(S) (G(g))* for s RHP.
2. The semigroup (etac,*)t>_O corresponding to the realization is given by

et Ac,,

f (eta,* f)(s) Px, e-ts f(s),

where the operator Ac,, has domain

D(Ac,,) Px, i-(s h(s)" h X,
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andfor f (s) Px,-i--sh(S) E D(Ac,,),

Ac,,f--f-h.

On -1(X,) c_ L([0, cx)) the semigroup is given by

eta /- (X,) /- (X,),

f - (etaC,* f)(s) Pc-(x),f(s t).

3. The input operator Bc , U --+ D(A* (’) is given by

B()

with

[Bc,,fu)]fx) l+s
u’ (1- ,,)x

1(1)l+s
u’h

"v/(u, h(1))t:, x
h(s) -h(1)

4. The output operator has thefollowingform"

Ifx Px, h-- thenl+s

ED * *(ac,,), h X

and ifx Px, -74-2’ then

A -1D(Cc,) D(A,,c) + (I ,,c) Bc,,U

h(s)
hX, +ex, is=Px,

l+s

C,,x - HG,.h (1)

Cc,,X -[G(1) G(+cx)lu.

5. Thefeedthrough operator is given by

Dc,," U Y,

u + Gc(+Cx:)u lim r G(r)u.

The realization (Ac,,, Bc,,, C,,, Dc,,) ofGc is called the *- restricted shift realization.

Proof Let (A, B, C, D) be the restricted shift realization ofthe transfer function c(s)
(G(g))*. Take (Ac,,, B,,, Cc,,, Dc,,) to be the dual system (,,/, ,/)) of (A, B, C, D).
Then (Ac,,, Bc,,, Cc,,, D,,) is a realization of G (see Definition 2.2). We show that
(A,,z B,,, C,,, Dc,,) obtained this way has the expressions as given in the theorem. Notice
that A A* i.e. A,, A*

1. By Theorem 5.1 the state space of the realization (A, B, C, D) is rangeHc. Thus the

dual system (,,/, ,/) has the same state space. That is,

X, rangeH6c.
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2. The semigroup generated by A is defined as

etaf P+etsf (f E X,).

It is easy to verify

That is,

By Theorem 5.1,

etA* f (etA)*f Px, e-t’ f (f e X,).

etAc,*f Px, e-tsf (f e X,).

h(s)lh X,}O(Ac,,) D(A*) Px,
1 s

1
h(s) D(Ac,,),Ac ,f f h for f (s) Px, + s

and Ac,, is well defined.
3. By the definition of the dual system (Definition 2.2), we have

/}" U --+ D(A)(’); u w--> /}(u)[.] (u, C(.)).

For x(s) 1-_ [h(s)- h(1)] 6 D(A) (h X,), we have

(u, Cx) lu, limrx(r)l/()[x] /(u, h(1)).
\ /reN

2(RHP)"By Lemma 5.6, /-(u, h(1))v -(-f--u, h)H
v

4. Now we compute C,.,, ’. Again use Definition 2.2"

D((;) D(.) + (I )-[U D(Ac,,) + (I Ac,,)-1Bc,,U,

and x0 is defined by

(y, dxo) B(y)[xo],

(;xo, y) (uo, C(I A)-IBy),

Since by Theorem 5.7

( h(s) ED(Ac,*))B(y)[x] -(y, (HGch)(1))y x Px 1 + s

we have

xo D(Ac,,)

xo (I Ac,,) -I Bc,,uo, uo U, y Y.

x0 [Gc(1) Gc(+Cxz)luo for xo (I Ac,,)-lBc,,Uo.

From Lemma 5.5 it follows that ( is well defined for x D(Ac,,).
Note that C(I A)-1 By [(c(1) c(+Cxz)]y. Thus

h(s)
E D(Ac,,).dx v/-(Hach)(1) for x- Px i +s



784 RAIMUND J. OBER AND YUANYIN WU

uoNow we show that (I At.,,) 1B.,,uo Px, 7-" Let x D(A,,). Since by

Theorem 5.7 (I A* )-Ix x-x(l we havec,, 1-s

((I Ac,,)-IBc,,Uo, x) [(I Ac,,)-lBc,,Uo](x)
[B.,,uol((I A,,)-lx)

--[B"*u](x-x(1))l-s
X PX, x

l+s l+s

u0This shows that (I Ac,,) -1 Bc,,Uo Px, -s" Hence, to sum up, the operator C,,, (
is defined in the following way:

D(C,.,,)=Px, 1+ [hX, +Px,
l+s

If x Px, thenl+s

and ifx=Px, 1--, then

Cc,,x ,/(Hc,.h)(1),

C,.,,x -[Gc(1) Gc(+oe)lu.

Note that by Lemma 5.5 Cc,,X is also well defined for x 6 Px,{ 1-. u 6 U}.
4. It is straightforward to get

De,, D* ((Gc(+O))*)* Gc(+Cx). [-]

Note that the restricted and *-restricted shift realizations of admissible transfer functions
in H are well posed in the sense of Curtain and Weiss [5] and Salamon [27]. Indeed we
have the following corollary concerning the reachability and observability of the restricted
and *-restricted shift realizations.

COROLLARY 5.10. 1. The reachability operator ofthe restricted shift realization is given
9y

R.c" L2v[O, +cxz -+ X, f t- HG RHP ff_,L
The observability operator ofthe restricted shift realization is given by

Oclx X -- LZr[0, +cx), x - -lx.

2. The reachability operator ofthe *-restricted shift real&ation is given by

7-4.c., L2u[O, +cxz -+ X, f - Px, f

The observability operator ofthe *-restricted shift realization is given by

Oc,, X, L2r[0, +cx), x - ff.,-1HGc,RHpX.

Here denotes the Laplace transform.
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Proof This follows from Theorem 3.4 and Theorem 5.7 U
We categorize the state spaces of the restricted and *-restricted shift realizations here for

later use.
PROPOSITION 5.11. Let X and X, be, respectively, the state spaces of restricted and

*-restricted shift realizations ofGc TLCu, Y. Then
1. if G,. is cyclic, then X H2r(RHP) and X, H(RHP);
2. if G is noncyclic, then X H2r (RH P) 0 O 1H2r (RHP) and X, H2v (RHP) (3

Q2H2(RHP), where Q1 HLy)(RHP) and Q2 HL()(RHP) are rigidfunctions;
3. ifGc is in Hc(x,r)(RHP), is strictly noncyclic, and hasfactorization Gc Q1F{

P02, where 01 Hcr)(RHP) and Q2 H(c)(RHP) are inner, al and F are left
coprime, and Q2 and Fz are also left coprime, then X H(RHP) 3 QIHr(RHP) and
X, H(RHP) QzH(RHP).

Proof This follows from Definition 4.5 and Theorems 4.8, 5.7, and 5.9.

6. Continuous-time input-normal, output-normal, parbalanced realizations and
their asymptotic stability. Recall that a reachable and observable admissible system
(Ac, B., C, D) is said to be input-normal if Vc I. It is output-normal if A/[ I.
The reachable and observable admissible systems are said to be parbalanced if

Here W,. and A//c are, respectively, the reachability and observability Gramians of the system.
Given a transfer function G. 6 TLCU’ r, by Corollary 5.10 the restricted and *-restricted
shift realizations are examples of, respectively, output-normal and input-normal realizations
of G,.. Proposition 6.2 shows that up to unitary equivalence all observable input-normal and
reachable output-normal realizations of an admissible transfer function G are up to unitary
equivalence *-restricted and restricted shift realizations, respectively.

In this section we establish the existence of a parbalanced realization for any G 6

TLCu,r and study the stability properties of input-normal, output-normal, and parbalanced
realizations.

A parbalanced realization of a continuous-time transfer function Gc TLCu’Y can be
obtained from the map T in Theorem 3.1 applied to a discrete-time parbalanced realization
of the corresponding discrete-time transfer function Ga. The existence of parbalanced real-
izations was shown by Young [30]. In [23] Young’s results are cast into the continuous-time
situation and the following theorem is proven.

THEOREM 6.1. 1. For Gc TLCu’r, there exists a parbalanced realization
(Ac, B., C., Dc) CUx ’r of Gc. The state space of this realization is given by the closure
ofthe range ofthe Hankel operator with symbol G, i.e., X rangeHac. If(A-c, B-c, (f,., 15c)
is another parbalanced realization of Gc with state space X, then (Ac, Bc, C, Dc) and
(c, 1ffc, (c, 1.) are unitarily equivalent.

2. If in addition G(s) is continuous on the extended iN (i.e. on iN tO {icx}) and is
a compact operatorfor each s iN, then there is a basis of X rangeHcc on which the
Gramians of the above realization have a diagonal matrix representation with its diagonal
consisting of the Hankel singular values of G. We will call this realization a balanced
realization ofGc. [3

6.1. Characterization of the realizations. Concerning the equivalence of different re-
alizations, we have the following proposition.

PROPOSITION 6.2. 1. Any two input-normal (output-normal) realizations ofGc TLCU,Y

are unitarily equivalent. Hence every input-normal (output-normal) realization of G is
unitarily equivalent to the *-restricted (restricted) shift realization ofGc.
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2. An input-normal realization and an output-normal realization of Gc TLCU’Y are
equivalent ifand only ifthe Hankel operator HG,, has closed range.

3. All reachable and observable admissible realizations ofG, are equivalent ifand only
ifthe Hankel operator HG has closed range.

Proof Analogous results in the discrete-time case are shown in [24] (see Theorem 3.1,
Corollary 3.1, and Proposition 4.1 therein). Applying Theorem 3.1, Theorem 3.4, and Propo-
sition 4.3 to these results we have the proposition. 71

A consequence of the proposition is that the study of input-normal (output-normal) real-
izations reduces to the study of the *-restricted (restricted) shift realizations. This point will
be used repeatedly.

Part 2 of the proposition shows when the state-space isomorphism theorem holds. Note
that the Hankel operator Hc to have closed range is a very strong condition. This condition
can be stated in terms of the Douglas-Shapiro-Shields factorization of the transfer function
G,, (see Theorem 4.10 and [11]).

6.2. Asymptotic stability. Now we turn to the study of stability properties ofcontinuous-
time systems and use the classes Ci, to describe different asymptotic stability properties of
systems [28].

DEFINITION 6.3. Let (etZ")t>_O be a semigroup of contractions on the Hilbert space H.
Then

1. (etZc)t>0 CO. iflimt_ eta"h --Ofor all h H,
2. (etA")t>_O C.o iflimt-+ etZh --Ofor all h H,
3. (etZ")t>_O C1. iflimt__, etZ"h Ofor all h H,
4. (etZ")t>_O C.1 iflimt-+eta*h Ofor all h H.

Wefurther set

Cij Ci. A C.j, i, j O, 1. [3

The notions of stability that we consider are the following.
U,YDEFINITION 6.4. A continuous-time system (At., Be, C., Dc) Cx is

1. asymptotically stable iffor all x X,

etA’x 0

as -+ cx, i.e., (eta)t>_O Co.;
2. exponentially stable if

co "-inf{o 6 IK[ there exists M > O such that [[eta"[[ <_ Met (t > 0)}
<0.

The number co is called the growth bound ofthe semigroup. [3

We comment that the asymptotic and exponential stability of a system is preserved by
system equivalence. Moreover, iftwo systems are unitarily equivalent, they will have the same
growth bound.

An important result in [28, Prop. 9.1, p. 148] implies that a continuous-time system is
asymptotically stable if and only if the corresponding discrete-time system is asymptotically
stable.

U,Y U,YPROPOSITION 6.5. Let (A, B, C, D) Dx and (A, B, C, D) Cx such that

(Ac, Be, Cc, Dc) T((Ad, Bd, Cd, Dd)).

Thenfor all x X,

lim ]lAx]]- lim I]etA"x]l
n-- (x) t--o
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and
lira II(A*)nxll- lira IletA*xll.

rt---- oQ

Therefore, the study of asymptotic stability of a continuous-time system reduces to the
study of the asymptotic stability of the corresponding discrete-time system.

Now we state the main result ofthis section, which asserts that any admissible parbalanced
realization of an admissible continuous-time transfer function is asymptotically stable.

THEOREM 6.6. Let Gc TCU’r. Let (Ab, Bb, Cb, Db), (Ai, Bi, Ci, Di), and (Ao, Bo,
Co, Do) be, respectively, a parbalanced, an input-normaL and an output-normal observable
and reachable realization ofG Then

1. (a) (etAi)t>0 C= C.o,
(b) (etAi)t>_O Coo ifG{ is strictly noncyclic,

_L(C) (etAi)t>_O C10 ifG is cyclic,
2. (a) tAo(e )t>_o Co., i.e., asymptotically stable,

(b) (eta)t>_O Coo ifG is strictly noncyclic,
(C) (eta)t>_O C01 if Gc is cyclic,

3. (etZb)t>_O COO.
Proof The corresponding asymptotic stability results for discrete-time systems were

obtained in Theorem 3.2 and Theorem 4.2 of [24]. Hence, combining those theorems with
Proposition 6.5 and part of Proposition 4.7, we have the theorem. q

Since by Proposition 6.2 all reachable and observable realizations of G are equivalent
when the Hankel operator HG,. has closed range, and equivalent realizations have the same
asymptotic stability properties, the theorem has the following corollary.

COROLLARY 6.7. If the Hankel operator HG,. has closed range, then all reachable, ob-
servable, and admissible realizations of Ge. are asymptotically stable. [3

7. Spectral minimality and exponential stability of input-normal, output-normal,
and parbalanced realizations. This section aims to examine the exponential stability of
continuous-time input-normal, output-normal, and parbalanced realizations of certain classes
of transfer functions. The results are mainly based upon a detailed spectral analysis of
input-normal and output-normal realizations. While the asymptotic stability properties of
continuous-time systems can be obtained directly from the discrete-time case as we did in the
previous section, exponential stability properties of continuous-time systems do not follow in
the same way. However, we can relate the spectrum of the discrete-time system to that of the
continuous-time system and thus establish the exponential stability results.

Recall that a continuous-time system (A, Be., Cc, D) is exponentially stable if

inf{o 6 1 there exists M >_ 0 such that ][etA‘‘ _< Met for >_ 0} < 0.

The following proposition gives an interpretation of the growth bound of a semigroup in
terms of the spectral radius of the semigroup (see, e.g., [21, p. 60]).

PROPOSITION 7.1. Let co be the growth bound ofthe semigroup (etZ")t>0 and r(etA’) the
spectral radius ofe A, then

r(etac) eCOt

for > O. q

Note that it follows from this proposition that equivalent systems have the same growth
bound.

7.1. Spectral analysis. Thus we have to investigate the spectral properties of a
continuous-time linear system (Ae., B., C, De.) in order to study its exponential stability.
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The way we do this is to relate the spectral properties of (Ac, Bc, Cc, De) to those of the
corresponding discrete-time system (Ad, Bd, Cd, Dd). First we have the following relation
between a(Ad) and a(Ac).

PROPOSITION 7.2. Let A be the infinitesimal generator ofa semigroup of contractions
and Ad the co-generator such that A (Ad I)(Ad + i)-1. Then

s6Crp(A)rp(Ac)
z 4- 1

z rp(Ad) and Cp(Ad)
1 --s

s6r(Ac)
z 4- 1

z c(Ad), Z :/: --1 and r(Ad) \ {--1}
--s

Proof First note that 1 r(Ac) since etA‘: is a semigroup of contractions and that by
Theorem 3.1,

Acx (Aa I)(Ad + I)-x (Ad + I)-l(Ad I)x for x D(Ac),

where D(Ac) range(Ad + 1). Hence the following relations hold:

(7.1) (sI Ac)(Ad + I)x [sl (Ad l)(Ad + l)-X](Ad + I)x

[s(Ad 4- I) (Ad l)]x

1 +SI_Ad) x(l--s)
1--s

x Xd, s5 1;

(7.2) (Ad 4- I)(sI Ac)x (Ad 4- I)[sI (Ad I)(Ad 4- I)-X]x

l+SI--Ad) x,(l--s)
1--s

x D(Ac), s # 1.

The equations (7.1) and (7.2) show that

l+s
S Crp(Ac)rp(Ad)

1 S

Now if l+s cr(Ad), i.e., if I Ad)-1 exists and is bounded, then

(11 )-1 (114-s)(Ad 4- I) + s
I Ad I Ad

--s --s

-1

(Ad 4- I).

Thus by (7.1) and (7.2)

(7.3) (sI Ac)-lx (1 s)-l(Ad 4- I) Sl Ad X
1--s

1 + s
I Ad)(1 s)- ] s

-1

(Ad 4- I)x, x D(Ac).

So (sl Ac) -1 is bounded and densely defined, i.e., s a(Ac). Hence

l+s
(7.4)

1 s
s cr(A.)} c_ o’(Ad).
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On the other hand, ifs # ands or(At), then (sl Ac) -1 is a bounded operator. It is easy
to verify in this case that

)-1 (1 -s)2 -s1 + s
I Ad x (sI Ac) 121 X X D(Ac).

1--s 2 2

In fact from (7.3) we have

(1+ )[(l-s)2 1-Sl] x
s
I Ad (sl Ac)-1 + 21-s 2

(1-s)22 (ll_s+S I Ad) (sI Ac)-lx -+-
1--s (l +Sl--Ad)x21--s

(1 s)2
(1 S)-1 (Ad + I)x + 1--S(ll+Sl--Ad)x2--s
x, x D(At.).

Similarly,

(SI Ac)-1 + 22
x I--Ad x--x,

--S
x e D(Ac).

l+sThus o" (Ad). So we have

l+s
(7.5) s

1 s (Ad)] or(At).

Combining (7.4) and (7.5) we have that

l+s
a(At.)- s"

1-s cr(Ad)]-- { z-1Z+I
Z e cr(A,),z 5/: -1},

which implies

l+s
cr(a) \ {-1}-

1-s

In our application of the proposition, At. is the state propagation operator of a continuous-
U,Ytime system (A, Bt., Ct., Dr.) Cx and Ad is the state propagation operator of the corre-

U,Ysponding discrete-time system (A, Bd, Cd, Dd) Dx which is related to (At.,
by

(Ac, Be, Cc, De) T((Ad, Bd, Cd, Dd)),

where T is the bilinear mapping in Theorem 3.1.
A powerful tool in spectral analysis is the spectral mapping theorem for Co operators (see,

e.g., [22, p. 74]). A contraction W L(M), where M is a separable Hilbert space, is called
a Co operator, denoted W 6 Co, if there exists no subspace V 6 M such that W Iv V --+ V
is unitary and if there exists an inner function m 6 H(J) such that m(W) 0. The least
common divisor of all such inner functions is called the minimal function of W, denoted
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mw, which is still an inner function such that mw (W) 0. Note that if W is a Co operator,
W is unitarily equivalent to a left shift S* restricted to a left invariant space of the form
Hy2 (D) @ QH2(D), where Q is inner (see, [22, p. 72]). It can be seen that minimal functions
are the generalizations ofminimal polynomials ofmatrices. As in the matrix case, the spectrum
of a Co operator is given by the "zeros" of its minimal function in the following sense (see
[22, p. 72]).

LEMMA 7.3. IfW Co, then or(W) c(mw) and rp(W) cr(mw) fq I, wherefor an
innerfunction Q Hr, (]I)), Y is a Hilbert space, and the spectrum of Q is defined as

or(Q)= .]Di lim inf inf IIQ()ylI=0
8--+0 I-Xl< Ilyll-I

ID yY

Given a Co operator W and a function 4 6 H (]D), the operator

q(W) :-- lim ck(rW)
r<l, r--+l

is well-defined. The following theorem relates the spectra of these two operators (see [22,
p. 74]).

THEOREM 7.4 (the spectral mapping theorem). Let ck H (D) and W Co. Then

r(g(W))_{CI zeinf(Ick(z) l / lmw(z)l) O}
where mw is the minimalfunction of W. F]

7.2. Spectral minimality. We are going to use these results to transpose the spectral
properties ofthe discrete-time input- and output-normal realizations to those ofthe continuous-
time case. First we recall the discrete-time results. Assume that the input and output spaces
are of finite dimension. If the transfer function Gd is such that G- is strictly noncyclic,
then Ga has a pseudomorphic continuation of bounded type to the unit disk D (see 11]).
Take this continuation as the definition of Gd on D, wherever defined. Consider the analytic
continuation of the extended Gd. Let (Gd) be the set of points at which Ga has no analytic
continuation. We are interested in the relationship between cry, (Ga) and cr (Ad). The following
theorem shows ors (Ga) cr(Aa) for input-normal or output-normal realizations. If G, is not
strictly noncyclic, the spectrum of Ad can also be characterized (see [24] and 11]).

THEOREM 7.5. Let Ga TLDU,Y with U and Y finite dimensional and let
(Aa,o, Bd,o, Ca,o, Da,o), (Ad,i, Bd,i, Cd,i, Dd,i), and (Aa,b, Bd,b, Cd,b, Dd,b) be, respectively,
an output-normaL an input-normaL and a parbalanced realization ofGd.

1. If G-) is in HLy) (]D) and strictly noncyclic, then (Aa,o, Ba,o, Ca,o, Dd,o), (Ad,i, Bd,i,
Cd,i, Da,i), and (Ad,b, Ba,b, C,b, Dd,b) are spectrally minimal, i.e.,

(Ad,o) ff(Ad,i) cr(Ad,b) Crs(Gd).

In this case A,,o, Ad,i, and Aa,o are all Co operators and have the same minimalfunction--say,
m. Moreover, ifGc(eit) Q l(eit)(eit F1 (ei))* is the Douglas-Shapiro-Shieldsfactorization
of G,t (see Theorem 4.8)and a(eit) Qz(eit)(eitFz(eit)) * is the factorization ofa, then
thefollowing equalities hold:

or(m) O’s(Ga) (or(Q1))* cr(Q2)

Crp(ad,o) {L 6 IDI KerQl(,k)* - {0}},
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and

Crp(Ad,i)-- {) E ]]3)1KerQ2()) 5 {0}},

where (or(Q1))* {l L E cr(Ol)} and

if(Q/) {) G D liminf inf IIQi()yl] 0} (i 1, 2).
D yY

2. IfG is noncyclic but not strictly noncyclic, then

cr(Ao) r(Ai) .
3. If G-) is cyclic, then

crp(Ao) II), ffp(Ai) r(Ao) cr(Ai) D

Corresponding to this theorem we have the following continuous-time analogue. For a
strictly noncyclic continuous-time transfer function G we define rs (Gc) similarly as in the
discrete-time situation. Specifically, Gc has a pseudomorphic continuation of bounded type
to LHP (see Theorem 4.8), which is taken to be the definition of Gc on LHP. We consider
the analytic continuation of the redefined Gc and denote by cr.(Gc) the set of points in the
complex plane at which G,. has no analytic continuation.

We note that results in part 1 of the following theorem can be found in the thesis by
Gearheart 12] and a paper by Moeller 19].

U,YTHEOREM 7.6. Let G TLC’v and let (Ac,o, B,.,o, C,o, D,.,o) Cx be an output-
normal realization with U and Y finite dimensional. Then

1. if Gc is in H,v)(RHP) and is strictly noncyclic with factorization G. Q1F,
where Q1 Hv)(RHP) is inner and Ol and F1 Hv,)(RHP) are weakly coprime,
then ) q cr(eac,), IZl < 1, ifand only iffor

wn log . + 27rni,

a l(wn) is invertiblefor all n Z and

sup Q (Wn)-111 < <.
--c<n<cx

Forl&l 1, ) cr(eAC,) ifandonlyifthereexistsa6 > OandM > Osuchthat Ql(tOn)-1

existsfor all n Z and Q (S)- is bounded by M in the neighborhood ofeach point w.
For the point spectrum, we have

crp(eAC,) \ {0} {e- s RHP and KerQx(s)* # {0}}.

2. under the same assumptions on G as in 1., we have

cr(A,o) {-g" s or(Q1)} r.(Gc)

rp(Ac,o) {-g" s RHP and KerQ(s)* - {0}}.

3. ifGc is noncyclic but not strictly noncyclic, then

cr(Ac,o) the closed left halfplane.
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4. ifGc is cyclic, then

cr(eAc,o) ,
cr(Ac,o) the closed left halfplane,

Crp(eAc,) \ {0} ]]3) \ {0},

rp(Ac,o) LHP.

Proof Without loss of generality we may assume that (A.,o, Be,o, Cc,o, D,o) is the
restricted shift realization. We write (A, Bc, C, D) for (At,o, B,o, C,o, D,o). Let Gd(z)

Z--1G z- for z 6 De and let

G-(z) z-l[Ga(z-1) Ga(cx)] z-1 Gc
1 +

Suppose (Aa, Ba, Ca, Da) is the restricted shift realization of the discrete-time transfer func-
tion Ga. We use the mapping T defined in Theorem 3.1.

1. The formula for cr(eAC) can be found in [19] in the case 0 < I-I < 1. If I)1 1 or
) 0, see 12].

For the formula of Crp (e&’) see the proof of 2. below.
2. Note that by Proposition 4.7 Gax is also strictly noncyclic and has a factorization

1--ZGa- Q&IF* where ad, l(Z)-- Ql(1--z)and Fa, l(Z)= FI( l-z1--z) The spectra of Qa,1 andd,l’
Q are related as

1--s
o’(Od,1)

1 + s
Is cr(Q1)},

and the sets Crs(Ga) and Crs(G.) are related as

l+s }ors (Ga)cr..(G,.) s
1 s

Then the equalities about cr(Ac) and cr,,,(G.) follow from Proposition 7.2 and Theorem 7.5.
Similarly the expression for Crp (At,) also follows from Proposition 7.2 and Theorem 7.5.

The point spectrum Crp (eAc) can be obtained by the general formula (see [26, Thm. 2.4,
p. 46])

Crp(etA’) \ {0}- e%(tA’).

3. This also follows from Proposition 7.2 and Theorem 7.5.
4. We offer a direct proof here, although the result again follows from Proposition 7.2

and Theorem 7.5.
If Gc is cyclic, then the state space is Xc Hr(RHP). It is easy to see that for any

/z6LHP >0, andy6 Ywehave Y-Y- 6X.--H2r(RHP) and

et et
y H(LHP)= (H(RHP))+/-,

where the orthogonal complement is taken in L2y(iR). Therefore,

et&. l et" [ et# et et# ] et#
y=P+y--P+ y+ y y.
s-Ix s-Ix s tx s lz s-Ix

Hence et O’p(etA"). This shows that Op(etAC) \ {0} ]]]) \ {0} and hence cr(etAc) ].
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Also for any/z 6 LHP and y 6 Y we have h s-,Yl--- H2(RHP) and

y h(s)-h(1)

s-/z 1-s

Hence -- 6 D(Ac). Using the definition of Ac we have
s--/z

y sy ry y
A. lim

Therefore/z 6 Crp (Ac). This shows that ap (Ac) LHP and hence cr (A) LHP.
For input-normal realizations we have results analogous to the results above. The proof

is similar to the proof of the previous results.
u,YTHEOREM 7.7. Let Gc TLC’r andlet (Ac,i, Be,i, Cc,i, Dc,i) Cx be an observable

input-normal realization with U and Y finite dimensional. Then
1. if Gc is in HL(x,rl(RHP and is strictly noncyclic with c QzF, where Q2

H (RHP)areweaklycoprime, then) r(eac,i),HL:) (RHP) isinnerand Q2 and F2
I1 < 1, ifand only iffor

Wn -log . + 2toni, n Z,

Q2(wn) is invertiblefor all n Z and

sup IIO2(tn) -111 < .
For IZl 1, fy(eac,i) ifand only if there exists a > 0 and M > 0 such that Q2(wn)-1

existsfor all n Z and Q2(s) -1 is bounded by M in a neighborhood ofeach point wn. As
to the point spectrum, we have

rp(eAt’i) \ {0} {e s RHP, KerQ2(s) : {0}}.

2. Under the same assumption as in 1., for the generator Ac,i we have

cr(ac,i) {-)" . G o(Q2)} cr,(Gc),

rp(ac,i)- {-s s RHP, KerQz(s) -f: {0}}.

3. IfO,. is noncyclic and range(Hoe) (Q2H2u(RH p))_t_, where Q2 is a non-inner rigid
function, then

r (Ac,i the closed left halfplane.
4. IfG is cyclic, then

r(ea,i) ,
cr (A,i the closed left halfplane.

crp(eA’,’) \ {0}- ,
The following proposition gives the spectral properties of parbalanced realizations in the

case of strictly noncyclic transfer functions.
PROPOSITION 7.8. lfG Ht:,r(RHP) is strictly noncyclic withfinite dimensional U

and Y, then

cr(Ac,o) cr(Ac,i) cr(Ac,b) crs(Gc),

where (A,.,, B,, Cc,, D.,) is a parbalanced realization ofG.
Proof The analogous results in the discrete-time case are proven in [24, Cor. 4.3]. Since

cr,(G,) {z-14-f[ z rs(Ga) z -1} where Ga(z) G,( z-1z- )’ (z Ill)e), the statement
follows from Propositions 4.7 and 7.2 and Theorem 7.5. [3
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7.3. Exponential stability. Before we can give a criterion for the exponential stability of
input- and output-normal realizations, we need some results concerning the relation between
the spectrum of a semigroup and the spectrum of its generator. The following lemma can be
deduced from [9, p. 622] (see also [21, p. 84]).

LEMMA 7.9. Let etA be a strongly continuous semigroup ofoperators on a Hilbert space
X with infinitesimal generator A. Ifty(etA) {) I,1 <_ eat (t > 0), then r(A) c_ {s
Re(s) <

Note that in particular if Iletall <_ Meat for some M > 0, then r(eta) <_ eat and hence
or(A) c_ {s Re(s) < or}, where r(eta) is the spectral radius.

It is well known that in general the converse of the lemma is not true (see [21, Chap.
A-III]). However, the converse can be proven in some particular cases.

PROPOSITION 7.10. Let eta be a strongly continuous semigroup of contractions on a
Hilbert space X with infinitesimal generator A. Let Ad be its co-generator; that is, Ad is a
contraction with -1 cr (A) and

Ax (Aa I)(I + Ad)-lx (x E D(A) range(/+ Aa)).

Assume that A is a Co operator with minimalfunction m. Then o’(etA)
___

{) Il eat}
(t > 0), ifand only ifr(A) {s Re(s) < or}. Here is a real number.

Proof The necessity part follows from Lemma 7.9.
Now assume r(A)

___
{s: Re(s) < o}. Since cr(etA) {: I)1 _< 1}, we may assume

By Lemma 7.3, we have cr(Ad) cr (m). On the other hand Proposition 7.2 shows that

l+s
cr(ad) \ 1--1}-

1- s

Since or(A)

___
{s Re(s) < o}, we have

c / + s
cr (Ad) {-1} Re(s) <or}.

Thus

c / + s
if(m) {-1}

Let 1-sl+s Then Re(s) < ot if and only if 1 2---2--d < 1 + 2_-2-g. This shows that

or(m) c_ " I 2-0e 2

Therefore if 6 and I 2___1 > _+_2___,a then or(m). Hence there exist 81 > 0 and
82 > 0 such that

Im(z)l >_ 81 for any z 113 satisfying Iz- l < 82.

Now for each > 0, let u(z) etz’ Then u 6 H(II) and etA u(Ad). Using the spectral
mapping theorem (Theorem 7.4) we have (note again that if l+s then Re(s) < c if and
only ifl- a_--1 _< 1 + _-z-d)
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cr(etA) o’(u(Aa))

C{)v" inf{lu()-)vl+lm()l}-0}
!
)v inf
/ I- 2--1 -<1-t__{lu() Zl + Im()l} 0}

C{," 1-2-l-<l+2--inf
)v inf {letz-r )vl} 0

I- 2_-- I_< 1+ 2_-

closure etg4-r I 2 o 2 ot

closure{e’t Re(s)

{)v. IZl e’*t}, (t > 0).

This completes the proof, fi
We are ready to show when an input- or output-normal realization is exponentially stable.

For exponentially stable realizations we also characterize the growth bound in terms of the
analyticity of the transfer function. The results remarkably resemble the related results for
finite dimensional systems.

THEOREM 7.11. Let Gc be in H(,y)(RHP) with finite dimensional U and Y. Then an
input-normal or output-normal realization of G is exponentially stable if and only if G is
strictly noncyclic and there is c < 0 such that Gc has analytic continuation on Re(s) > c.

In this case the growth bound is given by

w inf{ot Gc has analytic continuation on Re(s) > c}.

Proof We prove the theorem for output-normal realizations. The proof in the input-
normal case is exactly the same. For output-normal realizations, it suffices to prove the result
for the restricted shift realization.

Thus we assume that the restricted shift realization (A, B, C, D) of G is exponentially
stable. Hence there are oe < 0 and M > 0 such that

IletAll Me’t for >_ 0.

Then by the remark after Lemma 7.9 r(A) {sl Re(s) < or}. As o < 0, from Theorem 7.6
it follows that G has to be strictly noncyclic since otherwise r (A) LHP. Now applying
Proposition 7.8 we have

cr,,(Gc) or(A) c__ {s Re(s) < c}.

Hence Gc has analytic continuation on Re(s) > or. This also shows that

inf{c’ G has analytic continuation on Re(s) > c’}

is not greater than the growth bound of (A, B, C, D).
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Conversely, assume that G is strictly noncyclic and there is c < 0 such that G. has an
analytic continuation on Re(s) > c. Let (A, B, C, D) be the restricted shift realization of

Z--1Gc and (Aa, Ba, Ca, Da) be the discrete-time restricted shift realization of Ga(z) Gc(T4-f).
Note that (A, B, C, D) T((Aa, Ba, Ca, Da)).

Again by Proposition 7.8 we have

o-(A) , (Gc).

Therefore r(A) c_ {s Re(s) < o}. Note that Ga is also strictly noncyclic. It follows from
Theorem 7.5 that Aa is a Co operator. Now we can apply Proposition 7.10 to get

a(etA) {): I.l ea’}

This shows that r(etA) < eat Thus by Proposition 7.1, (A, B, C, D) is exponentially stable.
This also implies that the growth bound of (A, B, C, D) is not greater than

inf{od G,. has analytic continuation on Re(s) > c’}.

The proof is now complete.
The following proposition shows that for strictly noncyclic transfer functions parbalanced

realizations have the same exponential stability properties as input- and output-normal real-
izations.

PROPOSITION 7.12. Let G,. H(u,,)(RH P) be strictly noncyclic with U and Y finite
dimensional and let (Ac,o, Bc,o, Cc,o, D,o), (Ac,i, Bc,i, Cc,i, Dc,i), and (A,,, B.,b, Cc,b, D.,,)
be, respectively, an output-normal, an input-normaL and a parbalanced realization of G.
Then thefollowing are equivalent:

1. (A,o, Bc,o, C.,o, D.,o) is exponentially stable with growth bound
2. (A.,i, B,i, C,i, D,i) is exponentially stable with growth bound
3. (A,, Bc,, C,, D,.,b) is exponentially stable with growth bound
Proof By Theorem 7.11, 1. and 2. are equivalent. Hence we need only to prove the

equivalence of 1. and 3. Assume that 1. is true. Then there exist M > 0 and ot < 0 such that

IletAc,ll Meta (t > 0).

From the remark after Lemma 7.9 it follows that r(A.,o) c__ {sl Re(s) < o}. Since now by
Proposition 7.8 r(Ac,) cr(A.,o) we have

a(Ac,,) c_ {sl Re(s) <_ or}.

Let Aa, (I + Ac, (I A,.,b)- be the propagation operator of the corresponding
discrete-time parbalanced realization of Gd(z) G,.(z-z---f) (z 6 ]e). That is, Ad, is the

co-generator of the semigroup etAc,b Note that G is strictly noncyclic. By Theorem 7.5 Aa,9
is a Co operator. Therefore it follows from Proposition 7.10 that

r(etA’.) C {,k: Il eat}

This, by Proposition 7.1, shows that (Ac,, B,, C,b, Dc,) is exponentially stable with growth
bound no greater than c and hence no greater than the growth bound of (Ac,o, B,.,o, C,o, D,o).

If we assume 3., a similar argument will lead to 1.
If the Hankel operator HGc has closed range, then by Proposition 6.2 all reachable, ob-

servable, and admissible realizations of G are equivalent. Hence we have the following
corollary.
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COROLLARY 7.13. Assume that the spaces U and Y arefinite dimensional and the Hankel
operator Hc has closed range. Then a reachable, observable, and admissible realization
of G is exponentially stable if and only if there is a number ot < 0 such that G is strictly
noncyclic and can be analytically continued to the halfplane {sl Re(s) > }. The growth
bound ofthese systems is inf or. [3

8. Boundedness of the system operators. We have seen that for an admissible
continuous-time transfer function Gt.(s) there are always output-normal, input-normal, and
parbalanced realizations with well-defined bounded observability and teachability opera-
tors. In this sense those realization are well posed. As expected for all infinite-dimensional
continuous-time realizations, the propagation, input, and output operators ofthose realizations
are in general unbounded. The input operators are defined in such a way that the range may
not be contained in the state space. In this section we are going to investigate when those
operators are bounded. We will use the specific form of the restricted and *-restricted shift
realizations obtained in 5.

8.1. Boundedness ofAc. First we have the following lemma which shows that the input
and output operators are bounded when the propagation operators are.

YLEMMA 8.1. Let (Ac, Bc, Cc, Dc) be an admissible system in C’ If Ac X -- X is
bounded, then C L(X, F) and Be can be considered as an operator in L(U, X).

Proof. By definition CclOAc) (D(A), I1" lilAc) -- Y is bounded. Now that Ac is
bounded, D(Ac) X. Hence for any x X D(Ac),

Ilfcxll IICclDCA)II (llxll 2 + IIAcxll2) 1/2

IlfcloA.)ll (Ilxll 2 + IIAcll 2 Ilxl12) 1/2

IlCclO<Acll(1 + IIAcll)l/=llxll.

So Cc L(X, Y).
For B we know that Bcu D(A*) (’) and by definition Bcu (’) b u for any u 6 U and

some fixed number b > 0. By the Riesz representation theorem, there exists Xu D(A*) X
such that

IIBcull (’): Ilxu lid:

and for x D(A*) X,

(Acxu, A*cx ((1 + AAt,)xu x)(ncbl)(X)- (Xu X)A* (X X)+ * *

Therefore Bcu (1 + At,A*)xu X and

IIBcull I1(1 + AcA.)xll

II1 + At.A*cll IIx, II1 + AcA*cll IlXulIA:

+ AcA ncu (’) 1 -+- AcAc* b u II.

Hence Bt. L(U, X). 71
Now we give a necessary and sufficient condition for the propagation operators in the

input-normal and output-normal realizations to be bounded.
THEOREM 8.2. Let G be in HLV,r)(RHP) with U and Y finite dimensional and let

(At., Be, Ct,, Dr,) be an input-normal (or output-normal) realization ofGt,. Then A is bounded
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ifand only if Gc(s) is strictly noncyclic and analytic at infinity. Here analyticity at infinity
means that G is analytic at the origin.

Proof Since all output-normal (input-normal) realizations are unitarily equivalent to the
restricted (*-restricted) shift realizations, we prove the theorem for the restricted shift realiza-
tion and *-restricted shift realization. Let Gd (z) G(z-z-"’) (Z ]1])e) and (Ad, Bd, Cd, Dd) be
the restricted realization of Ga on Xa range(Ha)). Then Ac V (Ad I)(Ad -t- i)-1 v-l,
where V is the unitary operator defined in Proposition 3.3.

If G(s) is strictly noncyclic and analytic at infinity, then Gt(z) is strictly noncyclic and
analytic at 1. Hence by the spectral minimality ofthe discrete-time restricted shift realization
(see [11])-1 cr(Aa); i.e., (Ad + I)- is bounded and so Ac V(Ad I)(Acl + I)-Iv-1
is bounded.

Conversely, if Ac is bounded, then (Ad+i)- --1 (I- V-AcV) is also bounded and thus
-1 o’(Ad). By Theorem 7.5 Ga has to be strictly noncyclic since otherwise a(Aa) lI.
Also Ga(z) Ca(zI Acl)- Ba + Da is analytic at 1. Therefore Gc(s) is strictly noncyclic
and analytic at infinity.

Exactly the same argumem can also be applied to the *-restricted case. [3

Regarding the boundedness of a parbalanced realization, we have the following.
COROLLARY 8.3. Let G. Hu,y)(RHP) be strictly noncyclic with finite dimensional

U and Y and let (A,o, B.,o, C,o, D.,o), (Ac,i, Bc,i, Cc,i, Dc,i), and (Ac,b, B,b, C,b, D,) be,
respectively, an output-normal, an input-normal, and a parbalanced realization ofG. Then
the boundedness ofone ofAc,o, Ac,i, and A., implies the boundedness ofthe other two.

Proof By Theorem 8.2, it suffices to prove that the boundedness of A,o implies and
is implied by that of A.,. We do this by connecting the continuous-time and discrete-time
systems as in Theorem 3.1.

Assume that A.,o is bounded. Then, as in the proof ofTheorem 8.2, -1 r(Aa,o). Since

G. and hence G- are strictly noncyclic, r(Ad,o) r(Ad,b). Thus -1 r(Aa,) and hence
A, (Aa, I)(Ad,b + i)-1 is bounded. The same argument can also go the other direction,
and the result is proven.

8.2. Boundedness of Bc in output-normal realizations. We now consider the bound-
edness of the input and output operators. First we recall that for the input operator B. of the
restricted shift realization with state space X, we have that B.u X (u U) if and only if

[G.(s)- G.(+cx0]u 6 X (u 6 U),

and in this case

1
(B.u)(s) [G.(s) Gc(+)]u

(see Theorem 5.7 and Corollary 5.8).
PROPOSITION 8.4. Let G. TLCU’r.
1. The input operator of an output-normal realization of G. is bounded if and only if

there is M > 0 such that

sup [][G,(x + iy)- Gc(+Cx)]ull2dy < (Mllul])2 for any u e U,
x>0 c

where M > 0 is a constant.
2. The output operator of an input-normal realization of G. is bounded if and only if

there is M > 0 such that

sup II[,.(x + iy)- d,.(+ec)]vllady <_ (MIIvll) for any v Y.
x>0 (x
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sup II[G.(x + iy) Gc(+c)lllZdy
x>0

then the input operator ofany output-normal realization and the output operator ofany input-
normal realization are bounded Ifin addition the Hankel operator Hc has closed range, then
both the input and the output operators ofany output-normal, input-normal, andparbalanced
realizations are bounded

Proof. 1. It suffices to prove the result for the restricted shift realization of Gc. Let Bc be
the input operator of the restricted shift realization (see Theorem 5.7).

Assume

sup II[Gc(x + iy)- Gc(+C)]ullZdy < (Mllull)z for any u U.
x>0 x

This condition implies that [Gc Gc(+Cx)]u X for any u 6 U because as in the proof of
Corollary 5.8 we have in L2(iR) norm

Gc(s) Gc(n) n
[Gc- Gc(+Cx)]u lim u lim Hac u.

n--->c 1 sin no n + s

Hence (Bu)(s) [Gc(s) G(+)]u (u U) and IIB.ull Mllull.
Conversely, if B is bounded, then there is M > 0 such that Bcu M llu II. Also

Bu X for any u U. By Corollary 5.8

1
(Bcu)(s) [Gc(s)- Gc(+)lu (u e U).

Thus we have

sup II[ac(x + iy) ac(+)]ull2dy llBcull 2 < MZllull 2.
x>0 z 2

2. Similarly we only need to prove the result for the *-restricted shift realization. Since
the *-restricted shift realization of G is the dual of the restricted shift realization of G,., the
result follows from 1.

3. First note that

sup II[Gc(x + iy) Gc(+x)]ll2dy <
x>0

if and only if

sup IIc(X
x>0

Clearly these conditions imply

sup II[Gc(x + iy)- Gc(+Oc)]ull2dy < (Mllull)2 for any u U
x>0 x

and

sup II[.(x + iy)- c(+)]ulledy <_ (llull)2 for any u e U
x>0 x
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for some constants M < ec and A < cx. Hence by 1. and 2. the input operator of any output-
normal realization and the output operator of any input-normal realization are bounded. If in
addition Hcc has closed range, then by Proposition 6.2 all reachable and observable admissible
realizations of Gc are equivalent. Thus all have bounded input and output operators.

The following corollary gives a simple condition for the input operator ofan output-normal
realization and the output operator of an input-normal realization to be bounded.

COROLLARY 8.5. Let Gc Hv,r (RHP) be analytic at zx. Then the input operator of
the output-normal realizations and the output operator of the input-normal realizations are
bounded.

Proof. Let Fd(z) Gc( -zT) G(x). The analyticity of G,. at cx means that Fd and
F(z) HF(z)+z are both analytic at -1. Hence (v,r) (D) and for any u U,

Fa(z)
u

l+z
Mllullg,

Fd(Z)where M SUpzll II,r. Applying the unitary transformation V in Proposition 3.3,
we have

Since the analyticity of G,, at cxz implies the analyticity of , at ec, we have similarly

II(d.- d.())yll/-/2(/-/p) 2/-MllYlI (y 6 Y).

By Proposition 8.4 it follows that the input operator of the restricted shift realization and
the output operator of the *-restricted shift realization are bounded. This proves the corol-
lary.

8.3. Boundedness of Cc in output-normal realization. Now we consider the bounded-
ness of the input operator of the *-restricted shift realization and the output operator of the
restricted shift realization. We present here results for noncyclic scalar transfer functions.

It is well known that a scalar inner function qd Ha(D) admits a factorization of the
form qd(z) )]d(Z)Sd(Z), where . is a complex number, IZl 1;

is a Blaschke product, and

n otn Z
B(z) I-I,=lanl 1-nz

[ fo2Zr ei-+-Zdlzd(O)]Sd(Z) exp eiO----_ z

is a singular inner function with/Zd a finite singular positive measure on the unit circle 0D (see
17]). Here we take to be when O/n 0. Ahem and Clark 1] have proved the following

theorem.
THEOREM 8.6. Set X H2 (II3) 0 qdH2 (]I3) and denote the compressed shift operator on

X by S(qd) := Px.Zlxd. Then thefollowing statements are equivalent.
1. For every x X the nontangential limit ofx(z) exists at -1.
2. Px 1 6 range(/+ S(qd)).
3. For thefunction qd

1 -[O/n[2 f2 dlzd(O)
and,:Z_ I1 +ot, 2 <

l1 at- eilJ0 O.
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Furthermore, ifone ofthese conditions hold, then there exists afunction k X such that the
nontangential limit ofany x X at -1 is

x(-1) := lim x(z) (x, k). [
zI

nontangential

This theorem can be cast into left invariant spaces on the right half plane. Let qc be an
inner function in H(RHP). Then qc has the form qc(s) )dt.(S)Sc(S), where/3 is a
Blaschke product on the right half plane,

and

11_/3nZl s-iBe(S)
n:l

,c(S) e exp dlx(y)
y+is

is a singular inner function with/x a finite singular positive measure on iR and a > 0 (see
[17]). Here I1-,1

_t, is taken to be 1 if/3n 1. Let V be the transformation defined in Proposition
3.3. Applying V to Xd in Theorem 8.6, we obtain the following theorem.

THEOREM 8.7. Set X H2(RHP) ( qcH2(RHP) and 79 {Px h
1- h 6 X}. Then

thefollowing statements are equivalent.
1. For every f X, the limit

existsfor any > O.
2. Px1-- 79.
3. For the innerfunction qc,

a O, Rein < ec,
n=l

lira sf (s)
Re(s)>O

Re(s)>Isl

and v/1

Moreover, ifone ofthe statements holds, then there exists k X such that

sf(s) (f, k) (f e X).lim
s-x),Re(s)>O
Re(s)>tsl

1--ZProof. Let qd(Z) qc(-f-) (z II)). Then qd admits factorization as in Theorem 8.6:
qd(Z) M3d(Z)Sd(Z). It can be easily seen that the Blaschke products 13d(Z) and/3(z) can

1-,. that the functions Sc(S) and Sd(Z) are related bybe related by/n l+ot"-"’

(1--;) (s RHP),St.(s) Sa
1 +

with a -/xa({-1}); and that the measure/z is the measure/za transformed by the bilinear
transformation

1-z
s OD\{- 1 -+ iIR.

l+z
1-lot, 12Hence the condition -nC__ I+otn 12 < OO is equivalent to

Ren <
n=l
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and the condition fr I+ei[ < (X) is equivalent to

a O,

This shows that condition 3 of Theorem 8.6 and condition 3 of Theorem 8.7 are equivalent.
Let V be the unitary transformation defined in Proposition 3.3. Then V(H(II)

fgqaH2())=H2(RHP)fgqcH2(RHP), g(range(I + S(qa)))--{Px h H2-s h (RHP)
gqcHZ(RHP)} =/9, and

1
PHZ(RHP)gqcHZ(RHP) + S

**/-V PH2(I)gqaH2(D) 1.

Therefore condition 2 of Theorem 8.6 and condition 2 of Theorem 8.7 are equivalent.
Finally, forx 6 HZ(I)fgqdH2(ID),wehave f Vx HZ(RHP)gqcHZ(RHP) and

lim x(z) lim x(z) lim sf(s)
ZED,Z----I Zel,z----I Re(s)>0

nontangential -z>, +

for any > 0. This completes the proof.
If in the theorem we replace qc by qc(S) q.(g) and H2(RHP) 9 qH2(RHP) by

HZ(RHP) (9 (lcHZ(RH P), then we have the results to be true for the space HZ(RHP)
q,.HZ(RHP) while condition 3 of Theorem 8.7 remains unchanged in terms of a, ’s and
the singular measure #.

These results can be immediately used to show the boundedness of the output operators
of output-normal realizations and the input operators of input-normal realizations.

COROLLARY 8.8. Let Gc HC(RHP) be a scalar noncyclic transferfunction admitting
thefactorization Gc qf*, where q H(RHP) is innerandqc and f HC(RHP) are
weakly coprime. Assume q has decomposition as in Theorem 8.7, and set X HZ(RHP)
qcH2(RHP). Then thefollowing statements are equivalent:

1. The output operator C,. ofthe restricted shift realization of G,. is bounded.
2. The input operator B,. ofthe *-restricted shift realization ofG is bounded.
3. One ofthe statements in Theorem 8.7 is true.
Hence the output operator ofevery output-normal realization and the input operator of

every input-normal realization are bounded ifand only if one of the statements in Theorem
8.7 is true.

If in addition the Hankel operator HG has closed range, then both the input operator
and the output operator of every reachable and observable admissible realization ofG are
bounded.

Proof First assume one and hence all of the statements in Theorem 8.7 to be true. We
prove 1. and 2.

By Theorem 5.7, the output operator of the shift realization of G is given by

Cc D(C) D(Ac) + (I A)-1BcU c_ Xc -+ Y,

x- limr, rx(r),

where X,. H2(RHP) 3 q,.HZ(RHP). Now by Theorem 8.7 there exists k Xc such that

Hence

lim rx(r) (x, k) (x X,.).
r6

Ccx / lim rx(r)
ll

for any x e D(Cc), and it follows that Cc is bounded: IlCcll --Ilkll.
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To show the boundedness of the input operator Bc,, of the *-restricted shift realization we
use the expression of Bc,, as given in Theorem 5.9: The state space is Xc,, H2(RHP) 0
cH2(RHP) and

Bc,," U --+ D(Ac*,,)(’),
u - B(u),

(Ac ,),u (1 Ac,,)x xD *[Bc,,(u)l(x)
1 + s

where the operator Ac , has domain D(Ac ,) Pxc,, h
TgT h 6 Xc,,}. Here U C. Since

by Theorem 8.7 we have Pxc., 7-47 D(Ac,,), it follows that

1 ( 1 A*)x)u, (1- c,,[Bc,,(u)l(x)
1 + s

1 + s
u’ (1 A*c,,)x

b/, X(1 Ac,,)Pxc,, 1 + s

(I Ac,,)Pxc.,This shows that Bc,,(u) Xc and Bc,,(u) -f-u for u 6 C. Hence Be is

bounded: Ilnll < l[(I Ac,,)Pxc.,
Now we assume 2. and prove that this implies 3. As in the above, Xc,, H2(RHP)

cH2(RHP) and

1([B,,(u)l(x) Pxc,, 1 4- s
u (1-A**)x) (x D(A*c,))C,

where D(Ac,,) Px,, h
y- h 6 Xc,,}. As Bc,, is assumed to be bounded, for any u 6 C

there exists k(u) Xc,, such that

[Bc,,(u)](x) (k(u), x)(x e D(A*c,,)).

,)x (Ac,,). This shows thatHence (k(u) x) (Px,, y-g-;u, (1 A for any x D *

u , ,) { h heXc,].Px,, + s
D((1- Ac,,) =D(1-Ac,)=D(Ac,,)= Px,, l + s

Thus statement 2 in Theorem 8.7 is true ifthe space X is replaced by Xc,, and the inner function
qc is replaced by c. By the remark following Theorem 8.7, we know that the statements in
Theorem 8.7 are true for X and qc.

Finally, we show that 1. implies 3. Let (Ac, Bc, Cc, Dc) be the restricted shift realization
of Gc qcf* and assume that Cc is bounded. Denote by (,c,/c, tic,/)c) the dual system
of (Ac, Bc, Cc, Dc). Then (fi,c,/}c, 0c,/)c) is the *-restricted shift realization of 0 cf*
with state space X H2(RHP) qH(RHP), and

/c Cc*.
Hence/}c is bounded. By the preceding proof, statement 2 in Theorem 8.7 is true for the space
X and the inner function qc. This completes the proof, r]



804 RAIMUND J. OBER AND YUANYIN WU

8.4. Boundedness of Be, Cc for parbalanced realizations. To conclude this section
we show some results on the boundedness of the input and output operators of parbalanced
realizations.

PROPOSITION 8.9. Ifthe output operator ofan output-normal realization ofGc TLCv,r

is bounded, then the output operator ofa parbalanced realization ofGc is bounded.
Proof Consider the discrete-time transfer function Gd(z) G,.( z-1z-C-f). Let

(Ado, Bdo, Cdo, Ddo) be the discrete-time restricted shift realization of Gd with state space X
and (At.o, Bco, Coo, Dco) T((Ado, Bdo, Cdo, Ddo)) be the continuous-time restricted shift
realization of G,. with the same state space X. Denote their observability operators by
and Oo, respectively. By Theorem 3.4 we have

VOdoX O.oX, x X,

where V H2v (D) H2r (RHP) is the unitary transformation as defined in Proposition 3.3,
and L; is the Laplace transform.

In [30] (see also [24]) it has been shown that there is a parbalanced realization
(Adb, Bdb, Cdb, Ddb) of Gd with state space X that satisfies the following:

l/4Adb AdoW1/4

and

Od /U 1/4,

where YV H+/- H+/- Ix, and Od is the observability operator of (Ad, Bd, Cd, Dd).
Let (A, Bc, C, D) T((Ad, Bd, Cd, Dd)), where T is the transformation de-

fined in Theorem 3.1. Since D(Ac) range(Ad + I) and D(Ao) range(Ado + I), we
have, by the equality v1/aAdl) Ado/V1/4, that )A21/aD(Acl)) c_ D(A.o). By Theorem 3.4,
(A., B., Cc, D) is a parbalanced realization of Gc and for the observability operator
of (A, B, Cc, D,.) we have

ff.,Ocbx VOdbx w’l/ax, x c:. S.

Notice that in fact by Theorem 5.1 we have Odo Ix. Thus

ff-(. bX V(-d )/ 4x ff--,( " 4x X C= X

Since is unitary, this shows that (9,x OcoVV1/4x for x X. By the definition of (.9o and
Oct, we have

CcbetAc’X CcoetA’vl/4x, x c. D(Ac,).

Note that Ccb is a bounded operator from (D(Acb), IIAc) to g (see Definition 2.1) and Cco
has the analogous property. For x c=_ D (Ac,) the function e Ac’X is continuous in in the graph
norm IIA. Similarly, since V/4x c= D(Aco) for x c= D(Ac,), etAcl/4x is continuous in
in the graph norm llano. Therefore both C,etAcbx and CcoetAco)A;1/4x are continuous in

in the norm of Y. Taking 0, we have

Cc,X Co’WU4x, x c= D(Ac,).

Since by assumption Co and hence Cco)A;/4 are bounded, the operator

CcblAb D(Acb) -+ Y

is bounded, where D(Acb) is equipped with the norm of X. As D(Ab) is dense in X, Cob can
be boundedly extended to X.
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To complete the proof we just note that the restricted shift realization is unitarily equiv-
alent to any output-normal realization of G,. and that all parbalanced realizations of G. are
equivalent.

COROLLARY 8.10. Ifthe input operator ofan input-normal realization ofG. TLCU’r

is bounded, then the input operator ofa parbalanced realization ofG is bounded.
Proof. Let (A,, B,, C,, D,) be the *-restricted shift realization of G. and let

(Ao, Bo, Co, Do) be its dual realization. Then (Ao, Bo, Co, Do) is the restricted shift real-
ization of 0.. By the assumption, the operator B, is bounded. Hence so is the operator Co.
By Proposition 8.9 the output operator of a parbalanced realization of 0c is bounded. Consider
the dual system (A, B, C, D) of this parbalanced realization of 0,.. We have B to be bounded.
Notice that the dual system of a parbalanced realization of (c is a parbalanced realization of
G.. Therefore the input operator of any parbalanced realization of Gc is bounded.

COROLLARY 8.11. Let G,. be in TLCte’r. Assume that the Hankel operator Hc,. has
closed range. Then the input (output) operator ofa parbalanced realization ofGo is bounded
ifand only ifthere is a constant M > 0 such that

sup II[a.(x + iy)- Gc(+)]ull2dy <_ (Mllull) 2 for any u U,
x>0 cxz

sup II[,.(x + iy)- c(+cx)]vll2dy <_ (MIIvll)2 for any v Y
\x>0

Proof Since the Hankel operator Hc, has closed range, by Proposition 6.2 all input-
normal, output-normal, and parbalanced realizations of G. are equivalent. The corollary then
follows from Proposition 8.4. [3

9. Examples.

Example 1" Rational transfer function. Let g(s) be a scalar-valued rational proper
transfer function in H(RHP), i.e., g(s) has all its poles in the open left half plane.

Note that g(s) has, up to a unitary scalar, a unique factorization as

g(s) q(s)f(-s),

where q(s) is an inner function, i.e., a Blaschke product with poles in LHP, and f(s) is
a rational function in H (RHP), i.e., a proper rational function with poles in LHP. The
functions q (s) and f(s) are strongly coprime, which is for rational functions equivalent to both
functions not having common zeros in the extended RHP, i.e., {s 6 C Re(s) > 0} t_J {cx}.

The Blaschke product q is determined by the poles of g. For example if

(s 1)(s -i- 2)
g(s)

(s + 3)(s + 4)(s + 5)’
then the Blaschke product is given by

q(s)

and

(s 3)(s -4)(s 5)
(s + 3)(s + 4)(s + 5)

f(s)
(s + 1)(s 2)

(s + 3)(s + 4)(s + 5)

It follows from the results in 6 that the state space of the restricted and *-restricted shift
realization of the transfer function g is given by

X (qH2(RHP))+/-.
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Note that by Kronecker’s theorem (see, e.g., [22]) X is a finite-dimensional space with di-
mension equal to the number of zeros or poles (counted with multiplicities) of the Blaschke
product. From the construction it is clear that the Blaschke product is completely determined
by the poles of the transfer function. Hence we have recovered the well-known result that
the dimension of a minimal state-space realization equals the number of poles of the transfer
function.

Example 2: Delay system with strictly proper rational part. In this example we
consider single-input single-output delay systems. We continue with the notation in the above
example and let the transfer function have the form gl(s) e-asg(S) with c > 0. Let
p(s) e-’q(s). Clearly p is in H(RHP) and inner. Later we will show that in fact p
and f are weakly coprime. For now assume that this is true. Thus by Theorem 4.8 gl is
strictly noncyclic, and by Proposition 5.11 the state space X of the restricted shift realization
(Ac, B., Cc, D.) has the form

X H2(RHP) 3 pH2(RHP).
x(s)-x(1)The domain ofA, isD(A) 1-s x X}. Hence forh D(A,) we will have

h(s) x(-)-x(1)l_. for some x 6 X, limr,r+ rh(r) x(1) and

(Ah)(s) sh(s) lim rh(r) sh(s) x(1).

Note that g satisfies the condition in Proposition 8.4. So the operator Bc is defined as

1
(Bcu)(s) __[g(s) gl(W)]u -gl(s)u, u G_ C,

and B,. is bounded. Hence (I Ac) -1 B( D(Ac) and

O(Cc) D(Ac) -t- (I Ac)-IBU D(Ac).

We have, for h D(Ac),

C,.h lim rh(r).
E,r---+cx

Note that because c 0, by Corollary 8.8 C is unbounded.
The operator D,. is D gl (+cx:)) 0.
We can directly verify that this is a realization of g. Let 6 RHP. An easy calculation

will show that for h D(Ac)

((I ac)-lh)(s) h(s) h().
-s

(We remark here that this formula is true in general, notjust for this particular example.) Then

1 gl(S) gl()1 -lg (S)U--(( I Ac)-1 BcU)(S) ( I Ac)
S

Hence

gl(r)-gl()
Cc(I Ac)-lBcu lim r gl().

re], r--++cx r

This realization is exponentially stable by Theorem 7.11 since g is clearly analytic on
Re(s) > -3. It also follows from Theorem 7.11 that the degree of stability is -3 max{s
s is a pole of g }. Consequently the parbalanced realization will also be exponentially stable
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with the same degree of stability. Notice that g is continuous in the extended ilK. Hence the
Hankel operator Hg is compact. Therefore by Theorem 6.1 there exists a balanced realization.

To show that p and f are weakly coprime, consider the closed linear span S :--
pH2(RHP) v fH2(RHP). We need to show that S H2(RHP). The space S is ob-
viously a (right) invariant subspace of HZ(RHP). Hence by Beurling’s theorem [22] there is
an inner function (R) 6 H(RHP) such that

S (R)H2(RHP).

Hence pH2(RHP) c (R)H2(RHP) and fH2(RHP) c (R)H2(RHP) Let q(s)- s-2
s+2

(which is the inner part of the inner-outer factorization of f; see [22, p. 11 ]). Then

qlHe(RHP) fH2(RHP).

So by [22, Cor. 5, p. 13] we must have that p/(R) and ql/( are both inner functions. Note
that (R)(2) - 0 since otherwise h(2) 0 for any h pHZ(RHP) c_ (R)HZ(RHP), and this
is certainly not true. Thus the inner function ql (s)/(R)(s) has a zero at 2. Hence the function
e+zq,(s) will still be in H(RHP) That is, 1/(R) 6 H(RHP). Hence HZ(RHP)s-2 (+(s)

)(1/(9)H2(RHP) c (R)H2(RHP)= S.
Note that exactly the same argument in this example will apply for any transfer function

gl e g(s), where g is a stable and strictly proper rational function and ot > 0. Also, in a
similar manner we can obtain the *-restricted shift realization which will have bounded output
operator and has the same stability properties as the restricted shift realization.

We summarize these as follows.
PROPOSITION 9.1. Ifa scalar transferfunction G has theform G(s) e-aS g(s), ot > O,

where g is a stable and strictly proper rationalfunction, then
1. G has a balanced realization;
2. all reachable output-normal realizations of G have bounded input operator and un-

bounded output operator, whereas all observable input-normal realizations have bounded
output operator and unbounded input operator;

3. all reachable and observable input- and output-normal realizations and all par-
balanced realizations are exponentially stable with growth bound equal to max{Re(s) s
is a pole ofG }.

Example 3: Delay system with not strictly proper rational part. When the rational
transfer function g in the previous example is not strictly proper, the resulting realizations will
be different: the input operator of the restricted shift realization is not necessarily bounded,
and it is not clear whether there is a balanced realization of g because the Hankel operator Hg
is not compact. A parbalanced realization, however, exists by Theorem 6.1. We first consider
the simplest case with g(s) 1. This is a simple delay gl (s) e-a* (or > 0). The state space
of the restricted shift realization is X H2 O e H2, which is the image of the Laplace
transform on L2([0, or]). Let (Ac, Be., Cc, D,.) be the restricted shift realization and let

(A, B, C, D) (_,-1Ac, -Bc, Cc, De).

We know that (see Theorem 5.7)

(etAc f)(x) f(x + t)lt0,,l, f L2([0, ot]), x [0, or], > 0,

where f(x + t)lt0,al f(t + x) if q- x [0, a] and 0 otherwise. Thus

Af f’, f e D(A),
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with D(A) {x Le([0, or]) x is absolutely continuous, x’ L2([0, or]), x(a) 0}. By
Theorem 5.7, for x D(A) and u C,

( 1
[G.(s)-Gc(1)]u, (1-A*c)X)[.(ul(x

,/ s

( e-as e- 1-s u,E-l(1-A*)E-x)
(et-ault0,al, ;-1(1 A*c)_..-lx)L2([O,a])

{et-au, (1 A*)/2-1X)L2(t0,al),

(1 le )where et-aul[o,al -.- 1-s u (t) is et-au for [0, oe] and 0 otherwise. This

shows that for x D(A*) c_ L2([0, a]),

[B(u)l(x) [,-1Bcul(x [ff-.*Bcu](x) [Bcul(x) (et-au, (1- A*)x)L2([0,a]).

It can be shown that

D(A*) {x L2([0, or]) X is absolutely continuous, x’ 6 L2([0, or]), x(0) 0},

and A*x -x’ for x D(A*). Hence

(et-a ux(oe).[B(u)l(x)- (et-au (1- A*)X)L2([O,a]) u,x +
Since for x D(Cc),

C.x lim rx(r),
6lR

we have for x D(C) c_ L2([0, c]),

Cx Cc,X - lim r(fx)(r) limx() x(0).
IR

.>0

Finally, Dc g(+ec) 0.
This realization is, by Theorem 7.11, exponentially stable. In fact, the spectrum of etA is

{0} (t > 0). The operators B and C are both unbounded.
Now consider the factorization e qf*, where q(s) e and f (s) 1. Clearly

this is a strongly coprime factorization. Therefore by Proposition 6.2 all reachable and ob-
servable realizations of e are equivalent. This shows that all reachable and observable
realizations are exponentially stable and have unbounded input, output, and state propagation
operators.

As in the previous example, we can generalize this result.
PROPOSITION 9.2. Ifa scalar transferfunction G has the form G(s) e g(s), where

g is a stable proper rationalfunction and g(ec) 7 0, a > 0, then
1. all reachable and observable admissible realizations ofG are equivalent;
2. if (A, B, C, D) is a reachable and observable admissible realization of G, then the

operators A, B, and C are all unbounded;
3. every reachable and observable admissible realization of G is exponentially stable

with growth bound equal to max{Re(s) s is a pole of G}.
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Proof Since g is a stable proper rational function, g has a factorization g qf* such that
q and f are stable proper rational and strongly coprime (see Theorem 4.10 for the definition
of strong coprimeness). Hence

inf [Iq(s)l + If(s)l] > 0.
sERHP

Since g(ec) - 0, we must have that f(ec) 0. Therefore

inf [Iq(s)e-’"l + If(s)l] > 0.
sERHP

This, by the Corona theorem (see [22, p. 66]), shows that qe and f are strongly coprime.
So by Theorem 4.10 the Hankel operator H has closed range and by Proposition 6.2 all
reachable and observable realizations of G are equivalent. Thus 1. is proven.

Since G is not analytic at infinity, by Theorem 8.2 the state propagation operator of
any reachable output-normal realization is unbounded. Note that in the factorization G
(qe-’)f* the inner function does not satisfy condition 3 in Theorem 8.6 because now ot 0.
Therefore by Corollary 8.8 the output operator of the restricted shift realization and the input
operator of the *-restricted shift realization are unbounded. Thus 2. follows from 1.

Since G is strictly noncyclic and

inf{ot G(s) has analytic continuation on Re(s) >

max{Re(s) s is a pole of g}
<0,

by Theorem 7.11 all reachable output-normal realizations of G are exponentially stable with
growth bound max{Re(s) s is a pole of g }. As equivalent systems have the same exponential
stability property and growth bound, 3. also follows from 1.

Example 4: Systems with infinite Blaschke product. In this example we consider
transfer functions of the form g(s) R(s)B(s), where R(s) is a proper rational function in
H(RHP) and B(s) is an infinite Blaschke product also in H(RHP). We assume that
there is no pole-zero cancellation. That is, the zeros of R(s) (B(s)) do not coincide with any
of the poles of B(s) (respectively, R(s)). We point out that B has the form

I1-/l S--n
n--1

where I1-"1 is assumed to be 1 if/n 1 The zeros fln(n 2, .) of B satisfy the1-fl
condition (see 17]) ,, Re fl

n=l 1 + Ifln 12
07).

Note that either infinity is an accumulation point of the zeros (and the poles) of B, or else,
the zeros (and the poles) of B are bounded and have accumulation points which are on the
imaginary line.

First we consider the case that R(s) is not strictly proper and the zeros of R(s) do not
coincide with any of the accumulation points of the poles of B(s).

Write R(s) n(s)/d(s), where n(s) and d(s) are coprime polynomials. Then we have

d*(s) n(s)
g(s)

d(s)
B(S)

d.(s)
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d*,,) *’) We have g qf*. The innerwhere d*(s) d(-g). Set q(s) --d-B(s) and f (s) d{,,.---7"
function q (s) is again a Blaschke product and f (s) is in H (RHP) and rational. Furthermore,
from the assumption on R(s) and B(s) it follows that the zeros of f (s) do not coincide with
any of the zeros or accumulation points of the zeros of q (s). Thus we must have

infsRHPIf(s)l-4-Iq(s)l > 0.

This shows that g has a strongly coprime Douglas-Shapiro-Shields factorization. Hence the
Hankel operator Hg has closed range. Thus by Proposition 6.2 all reachable and observable
admissible realizations of g are equivalent. Therefore all these realizations are asymptotically
stable. They are exponentially stable if and only if there exists ot > 0 such that g is analytic
on Re(s) > -or. Since R(s) is rational and in H(RHP), we know that g is analytic on
Re(s) > -o for some o > 0 if and only if there is ) > 0 such that B(s) is analytic on
Re(s) > -). Note that the last condition on B(s) is equivalent to that there is ) > 0 such
that Re(fin) > ,, n-- 1, 2

By Corollary 8.8 we know that the input and output operators of any reachable and
observable admissible realization of g are bounded if and only if Re(,,) <

The second case is that R(s) is strictly proper, no zero of R(s) coincides with any accu-
mulation point of the poles of B(s), and infinity is not an accumulation point of the poles of
B(s). In this case B is analytic at infinity and the poles of B have accumulation points on the
imaginary line. As in the first case, g has a strongly coprime factorization and hence Hg has
closed range. Thus all reachable and observable admissible realizations ofg are equivalent and
asymptotically stable. However, no reachable and observable realization of g is exponentially
stable, since the poles of B have accumulation points on the imaginary line and hence g is not
analytic on Re(s) > -or for any ot > 0.

Since in this case we have g E HZ(RHP) by Proposition 8.4, the input and output
operators of any reachable and observable realization of g are bounded.

The third case is that R(s) is strictly proper, no zero of R(s) coincides with any accumu-
lation point of the poles of B(s), and infinity is an accumulation point of the poles of B(s).
In this case we can show as was done in Example 2 that the factorization of g in the first
case is a weakly coprime factorization. Hence g is strictly noncyclic. Thus all input-normal,
output-normal, and parbalanced realizations of g are asymptotically stable. As in the first
case, an input-normal, an output-normal, or a parbalanced realization of g is exponentially
stable if and only if there exists , > 0 such that Re(n) > ,k, (n 1, 2 ).

From Corollary 8.8 it follows that the input operator of an input-normal realization or the
output operator of an output-normal realization is bounded if and only if
Thus by Proposition 8.9 and Corollary 8.10 the input operator and output operator of any
parbalanced realization of g are bounded if y Re(fl,,) < x.

Since clearly g E HZ(RH P), by Proposition 8.4 the input operator of an output-normal
realization and the output operator of an input-normal realization of g are bounded. If in addi-
tion no accumulation point of the poles of B(s) is on the imaginary line, then g is continuous
in the extended imaginary line and therefore g has a balanced realization.

We observe that in this case an output-normal realization cannot have a bounded out-
put operator and still be exponentially stable. An analogous fact holds for an input-normal
realization and its input operator.

The fourth and final case is that at least one of the zeros of R(s) coincides with an
accumulation point of the poles of B(s). Note that this accumulation point must be on the
imaginary line.

As in the previous case, the factorization of g in the first case is a weakly coprime factor-
ization. Hence g is strictly noncyclic. Thus all input-normal, output-normal, and parbalanced
realizations of g are asymptotically stable. They are not exponentially stable because g is not
analytic on Re(s) > -or for any ot > 0.
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Again by Corollary 8.8 the input operator of an input-normal realization or the output
operator of an output-normal realization is bounded if and only if Re(fin) < z. Thus by
Proposition 8.9 and Corollary 8.10 the input operator and output operator of any parbalanced
realization of g are bounded if Re(n) < x.

If every accumulation point of the poles of B is a zero of R, then g is continuous on the
extended imaginary line. Hence g has a balanced realization.

We now summarize the results as follows.
PROPOSITION 9.3. Consider g(s) R(s)B(s), where R(s) is a proper rationalfunction

and B(s) is an infinite Blaschke product, both in H(RHP), and B and R have no pole-zero
cancellation.

1. If R(s) is not strictly proper and no zero of R(s) coincides with any accumulation
point ofthe poles of B(s), then

(a) all reachable and observable admissible realizations ofg are equivalent;
(b) all reachable and observable admissible realizations ofg are asymptotically stable;
(c) all reachable and observable admissible realizations of g are exponentially stable

if and only if there exists > 0 such that Re(n) > or, n 1, 2 where
fl, n 1, 2 are the zeros of B(s);

(d) all reachable and observable admissible realizations ofg have bounded input and
output operators ifand only if, Re(n) < x.

2. IfR (s) is strictly proper, no zero ofR (s) coincides with any accumulation point ofthe
poles ofB(s), and infinity is not an accumulation point ofthe poles ofB(s), then

(a) all reachable and observable admissible realizations ofg are equivalent;
(b) all reachable and observable admissible realizations ofg are asymptotically stable;
(c) no reachable and observable admissible realization ofg is exponentially stable;
(d) all reachable and observable admissible realizations ofg have bounded input and

output operators.
3. If R(s) is strictly proper, no zero ofR(s) coincides with any accumulation point ofthe

poles of B(s), and infinity is an accumulation point ofthe poles orB(s), then
(a) all input-normal, output-normal, and parbalanced realizations ofg are asymptoti-

cally stable;
(b) all input-normal, output-normal, andparbalanced realizations ofg are exponentially

stable ifand only ifthere exists > 0 such that Re() > ot (n 1, 2 );
(c) the input operator ofan input-normal realization or the output operator ofan output-

normal realization of g is bounded if and only if Re() < x. The input
operator and output operator of any parbalanced realization of g are bounded if, Re(fl) < ;

(d) the input operator ofan output-normal realization and the output operator an input-
normal realization ofg are bounded.

If in addition, no accumulation point of the poles of B is on the imaginary line, then g
has a balanced realization.

4. If at least one of the zeros of R coincides with an accumulation point of the poles of
B, then

(a) all input-normaL output-normaL and parbalanced realizations ofg are asymptoti-
cally stable;

(b) no input-normaL output-normaL or parbalanced realization of g is exponentially
stable;

(c) the input operator ofan input-normal realization or the output operator ofan output-
normal realization of g is bounded if and only if y Re(fin) < x3. The input
operator and output operator of any parbalanced realization of g are bounded if

Re(fin) < .
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If every accumulation point of the poles of B is a zero of R, then g has a balanced
realization.
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DYNAMIC POLE ASSIGNMENT AND SCHUBERT CALCULUS*

M. S. RAVI’f, JOACHIM ROSENTHALt, AND XIAOCHANG WANG

Abstract. The output feedback pole assignment problem is a classical problem in linear systems theory. In this
paper we calculate the number of complex dynamic compensators of order q assigning a given set of poles for a
q-nondegenerate m-input, p-output system of McMillan degree n q (m + p 1) + mp. As a corollary it follows
that when this number is odd, the generic system can be arbitrarily pole assigned by output feedback with a real
dynamic compensator of order at most q if and only if q(m + p 1) +mp > n.

Key words, output feedback pole assignment, dynamic compensator, holomorphic curves in Grassmannian,
degree of variety

AMS subject classifications. 93B55, 93B27, 14M15

1. Introduction. The output feedback pole assignment of linear systems with static or
dynamic compensators is a classical problem in control theory and many theoretical and
numerical research papers have been devoted to this problem.

Although the systems involved are linear, the problem is in fact not linear. It was Brockett
and Byrnes [4] who first explained the pole assignment problem with static compensators as
an intersection problem in a compactified set of static compensators, the Grassmann manifold
Grass(m, m + p). In making the connection to the classical Schubert calculus they were able
to show that there are

d(m, p) deg Grass(m, m + p)
1!2!... (p 1)!(mp)!

m!(m + l)!...(m + p- 1)!

complex static output feedback laws which assign a set of poles for a nondegenerate m-input,
p-output linear system of McMillan degree n mp. In particular if the number d(m, p) is
odd, pole assignment by real static feedback is possible, because the set of complex solutions
has to be invariant under complex conjugation. Moreover even if d(m, p) is even, Wang,
using algebrogeometric techniques, showed in [25] that a real solution exists for the generic
system as soon as mp > n.

People have been looking for similar results for the dynamic pole assignment problem
for a long time. A first attempt was made by Byrnes in [5]. Recently Rosenthal interpreted
in 16, 17] the pole assignment problem with dynamic compensators, again as an intersection
problem in a compactified space of dynamic compensators which we denote by Kqm,p. It was
also proven in [17] that if a plant has McMillan degree n q(m + p 1) + mp and is
q-nondegenerate, then there exist

(1.2) d(m, p, q) deg Kqm,p
complexdynamic feedback compensators of order q which assign a set of n + q closed-loop
poles. At this point we want to mention that all major results derived in [4, 17, 25] are based on
a careful study of the associated pole assignment map. (See 2 for more details.) Indeed the
numberd(m, p, q) can also be viewed as the mapping degree ofthe associated pole assignment
map and this map has geometrically the format of a central projection.
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One goal of our paper is to derive a formula for d(m, p, q). Historically the formula (1.1)
for d(m, p) d(m, p, 0) was first discovered in 1886 by Hannibal Schubert 18], a German
high school teacher, using a symbolic formalism known as Schubert calculus. Using modem

mplanguage the number d(m, p) is equal to r where O" denotes the first Chern class of the
classifying bundle over the Grassmann manifold Grass(m, m+p). By applying Pieri’s formula
(see 3 for more details)

(1.3) (il, i2 im) "O’1 (il it 1 im)
it-l>it-i

repeatedly to (p, p + 2, p -+- 3 p + m) or1, we can compute the number d(m, p)
deg Grass(m, m + p).

In [15] we defined a set of subvarieties of Kqm,p similar to the Schubert varieties of
Grass(m, m + p) and proved a geometric formula similar to Pieri’s formula (1.3). This
enables us to express d(m, p, q) deg Kqm,p as the solution of a partial difference equation
with boundary condition. In this paper (3) we will solve this difference equation and derive
a closed formula for d(m, p, q) which is valid for all positive integers m, p, and q. From this
formula we finally will derive several new results which predict real and complex solutions
assigning a specific set of closed-loop poles. One of the main results of this paper is Theo-
rem 1.1.

THEOREM 1.1. The poles of an m-input, p-output, q-nondegenerate, linear system of
McMillan degree

(1.4) n-q(m+p-1)+mp

can be assigned arbitrarily by using outputfeedback with complex dynamic compensators of
order at most q, and there are

H(j -k+(nj -n)(m+p))

(1.5) d(m, p, q) (-1)q(m+l(mp + q(m + p))I. k<Jm
nlW...’nm--q H(p+j+nj(m+p)_ l)

j=l

complex solutions for each set ofpoles. In particular, if d(m, p, q) is odd, a real solution
always exists. Moreover when d(m, p, q) is odd, the generic system can be arbitrarily pole
assigned by outputfeedback with real dynamic compensators oforder at most q ifand only if
(1.6) n < q(m + p 1) + mp.

The variety Kqm,p which parameterizes the set of m-input, p-output compensators of
McMillan degree q can also be viewed as a parameterization of the space of rational curves
of degree q on the Grassmann variety Grass(m, m + p). This geometric link originates from
the well-known Hermann-Martin identification 12]. (Compare also with [6, 17].)

We were surprised to learn that there has recently been a tremendous interest in the in-
tersection theory of parameterized curves (of arbitrary genus) on Grassmann varieties and
other homogeneous spaces [2, 8, 24, 31]. Researchers working in conformal quantum field
theory conjectured several new intersection numbers and an interesting formula for all num-
bers d(m, p, q), different from (1.5), was part of this conjecture. Readers interested in the
physics behind this conjecture are referred to Vafa [24]. The conjecture itself is formulated by
Intriligator in [8] as well as in [2]. In 15] we were able to verify this conjecture for all numbers
d(m, p, q). More recently Siebert and Tian [22] presented a proof covering the conjecture
for all spaces of parameterized curves on a Grassmann variety. For readers interested in these
connections we will give some more details at the end of 3.
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The paper is organized as follows. In the next section we review the notion of an au-
toregressive system. This class of systems generalizes the class of transfer functions and
it allows us to define the pole placement map by using the behavioral approach to systems
modeling as proposed by Willems [28, 29]. In this framework the points of the variety Kqm,p
naturally parameterize all autoregressive compensators of a fixed number of inputs, outputs,
and a bounded McMillan degree. We also restate the main results derived in [17], which
were in part the motivation of this paper. We conclude this section with two new theorems
(Theorems 2.14 and 2.15) which sharpen the main results derived in [17].

The main theorem (Theorem 1.1) is proven in 3. The proof involves the review of
the generalized Pieri formula which was derived in [15]. To derive the new formula (1.5)
describing the degree of the pole placement map in the critical dimension, we solve the partial
recurrence relation mentioned earlier. This leads not only to a closed formula for the degree
of the pole placement map in the critical dimension but also to a formula of the degree of
some generalized Schubert varieties (Theorem 3.5). The section is concluded with several
simplified formulas covering particular situations.

In 4 we concentrate on the question of for which triples m, p, q the degree d(m, p, q)
is odd, respectively, even. In Theorem 4.2 and Corollary 4.4 we present a relatively simple
combinatorial procedure which computes the mod 2 degree of the variety Kqm,p for arbitrary
m, p, q. Using this procedure we prove the existence of odd degrees even if min(m, p) > 3,
covering in this way many multi-input, multi-output feedback situations. (Ifmin(m, p) > 3 the
degree of all Grassmann varieties is even. In part because of this there do not exist any positive
pole placement results over in the critical dimension, i.e., when n mp.) We conclude the
section with a complete description of all odd numbers d(m, p, q) for q 0, 1, 2.

Finally in the last section we merge the derived results and provide a collection of corol-
laries and consequences. In this section we also cover situations when the plant is represented
by a "traditional" strictly proper transfer function or when the compensator is supposed to be
a proper transfer function only.

Km.p, and the pole2. The set of autoregressive systems Aqm,,, the projective variety q

placement map. In this section we collect some mathematical preliminaries and simulta-
neously establish our notation. We develop the theory by using the behavioral approach of
Willems [28] because we believe that the problem formulation in this setting is very natural.
For the relation of this formulation to the traditional transfer function formulation we refer
to 17, 28, 29].

First we review the notion of signal space, behavior, and autoregressive system. For this
let ]K denote either the set of real numbers or the set of complex numbers, i.e., K or
C. Let JK denote the set of all functions 7t --+ K. With respect to the usual addition
and scalar multiplication of functions, JK is a real vector space. A linear subspace C JK
which consists of functions that are arbitrarily many times differentiable will be called a signal
space (see [3, 27]). In other words, 7-{ is a linear subspace which is invariant under the linear

d Usually we will assume that 7-/-- C (J, K), though other function spacestransformation 7"
are well possible. (Compare with [3, p. 76] and [28].)

Let p(s) be a polynomial with coefficients in JK, i.e., p(s) K[s]. Such a polynomial
dinduces a linear transformation/3 7-/--+ 7-(, w(t) p()w(t). More generally consider a

p k polynomial matrix P (s) with entries in K[s]. P (s) induces a linear transformation

(2.1) /3 7_/ 7_/p,

w(t) -+ P w(t).
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Using the language of Willems [28], we call the kernel of the linear transformation/3 the
behavior and will denote this subset of the signal set k by/3.

In general the behavior/3 ker(P (dg7)) is an infinite-dimensional -vector space of the
signal space 7-(k. In the case where P (s) is square and invertible it is, however, well known
that the behavior/3 has real dimension n deg det P (s). Moreover the dynamics of this
autonomous system are described by the roots of the characteristic polynomial det P (s) 0.

Recall that two p k polynomial matrices P (s) and/3 (s) are called (row) equivalent if
there is a unimodular matrix U (s) with P(s) U (s)P(s). Clearly row equivalent matrices
define the same behavior. On the other hand if the signal space is sufficiently rich, e.g., if
C(, ) C 7-/, we have the following result. (Compare with [3, 6.2] and [10, Thm. 3.9].)

LEMMA 2.1 (cf. 19, Cor. 2.5]). IfC (, ) C 7-[, then P (s) and ’ (s) define the same
behavior ifand only ifthey are row equivalent.

Based on this result we have the following definition.
DEFINITION 2.2. An equivalence class offull rank p k polynomial matrices is called

an autoregressive system.
The class of autoregressive systems generalizes the class of transfer functions in the

following way. Consider a proper or improper p rn transfer function G(s). Assume G(s)
has a left (polynomial) coprime factorization D-l(s)N(s) G(s). If )-l(s)l(s) G(s)
is a second left coprime factorization, then it is well known that the p (m + p) polynomial
matrices (N(s) D(s)) and (N(s) D(s)) are row equivalent. In other words (N(s) D(s))
defines an autoregressive system.

The following definition extends the notion of McMillan degree to the class of autore-
gressive systems.

DEFINITION 2.3 (see [17, 26, 28]). The degree ofan autoregressive system P(s) is given
by the maximal degree ofthefull-size minors of P(s).

Next we would like to introduce feedback. For this consider a p (m + p) autoregressive
system P(s) (the plant) and an m (m + p) autoregressive system C(s) (the compensator).
The closed-loop system is then the dynamical system described through the system of autore-
gressive equations

(2.2) P()) w(t) O.

Note that the square polynomial matrix (((I) is in general not of full rank, i.e., (2.2) does
not describe an autoregressive system as defined in Definition 2.2. To single out the compen-
sators which give rise to a closed-loop autoregressive system we need the following definition
(compare with [20]).

DEFINITION 2.4. A compensator C (s is called admissible ifthe closed-loop characteristic
polynomial

(2.3) P(s)’q(s) := det
C(s) /I

O.

We are now in a position to define the pole placement map. Let P(s) be a p (m + p)
autoregressive system of McMillan degree n and denote by Aqm,p the set of all m (rn +
p) autoregressive systems of McMillan degree at most q. Let Be C Aqm,p be the set of
autoregressive systems which are not admissible compensators. Finally identify the set of
nonzero polynomials of degree at most d with the projective space a. Then define the pole
placement map as follows.
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DEFINITION 2.5. The pole placement mapfor a plant P (s) is defined as the rational map
given by

(2.4) pp.Aqm,p_Bp ]n+q,

C(s) b(s)=det((s))(s)

We want to note at this point that the roots of 4(s) do not depend on the particular
representation of the plant P(s) or the compensator C(s). Indeed if P(s) Ul(s)P(s)
and ((s) Uz(s)C(s), then q(s) det Ul(S) det Us(s) 4)(s). Finally the roots of 4(s)
correspond to the poles ofthe closed-loop system in the transfer function formulation. (See 17]
for details.)

For a given plant P (s) we usually say that P (s) is pole assignable (almost pole assignable)
in the class of feedback compensators of.degree at most q if the map pp is onto (almost onto).
Though many results are known when a system is pole assignable in the class of feedback
compensators of order at most q over the complex numbers C 17], the question is still far
from being solved over the reals and in the ungeneric situation. (Compare with [28].) Clearly
the following property is a necessary condition for pole assignability.

DEFINITION 2.6 (see [26, 28]). An autoregressive system P(s) is called controllable or
irreducible ifthe matrix P (s) is offull row rankfor all s C.

Indeed if the system P (s) is not controllable, the full-size minors of P (s) have a common
factor which is necessarily a factor of the closed-loop characteristic polynomial 4 (s). Clearly,
even if P (s) is controllable we cannot expect that P (s) is pole assignable in the set offeedback
compensators of degree at most q. The following definition singles out an interesting class
of systems which has the pole assignability property in the critical dimension (i.e., when
dim Aqm,p dim n+q) over the complex numbers.

DEFINITION 2.7 (see [17]). A plant P(s) is called q-nondegenerate if all compensators
C(s) oforder at most q are admissible. To put it in other words, P(s) is q-nondegenerate if
the set Be introduced in (2.4) is empty.

In the last part of this section we establish the connection to our earlier work in 17, 26].
First we would like to point out the following observation. The pole placement map pp
as introduced in (2.4) actually depends only on the full-size minors of P(s) and C(s). In
other words if C (s) and C (s) have the same full-size minors, then the resulting closed-loop
characteristic polynomial pp (C s)) and pp (( s)) have the same roots. Based on this fact we
assign to each autoregressive system C(s) Aqm,p its full-size minors, i.e., we consider the
following Pliicker map:

(2.5) rr Aqm p ---+ ]l(]q+l () A K +P

C(S) t--"+ el(S /... / Cm(S).

Here c(s) denotes the/th row vector of the m x (m + p) matrix C(s). Of course when
describing the map 7r with respect to the standard basis

(2.6) {eil A /X eim 1 <_ il < < im <_ m + p},

it is well known that the coordinates are exactly the full-size minors of the matrix C (s). In
particular the map 7r is well defined.

In the following, whenever we work with coordinates, we will assume the standard ba-
sis (2.6). More specifically, if

(2.7) 7r(C(s)) Z fi(s) "eel A / eim,
il(m)
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we will use the coordinates

(2.8) fi(s Z(i;q)S
q + Z(i;q_l)S

q-1 .qt_ .qt_ Z(i;0).

The map 7r is in general not an embedding as it is for the classical Pliicker embedding
(the case q 0). Indeed as shown in [17], rc(C(s)) rc(C(s)) if and only if the matrices
C(s) and C(s) are H-equivalent. (See [17] for details.) On the other hand if C(s) and C(s)
are both controllable (see Definition 2.6), then C(s) and C(s) are H-equivalent if and only if
they are row equivalent. The following lemma summarizes these statements.

LEMMA 2.8. 7r restricted to the set ofcontrollable autoregressive systems is an embedding,
in particular rc is generically one-to-one.

From the earlier remarks it is clear that the pole placement map pp factors over the image
of 7r. We introduce therefore the following notation.

DEFINITION 2.9. Kqm,p denotes the image ofAqm,p under the map
By definition the set Kqm,p is a subset of the projective space

:N ](Kq+l ( /m]xm+p)"

Note that the Pliicker coordinates {f/(s) introduced in (2.8) satisfy a set of quadratic relations
coming from the description of Grass(m, m + p) in (mm+" )-- [7, p. 65]. Those relations must
hold for all s 6 . Equating coefficients we get a necessary set of quadratic relations for the
coordinates zi;d as well. The following theorem states that those relations define Kqm,p.

THEOREM 2.10 (see [17]). Kqm,p is a projective (sub)variety of]u. The defining relations
are given by a set of homogeneous quadratic polynomials obtainedfrom equating the coef-
ficients in the Pliicker relations. The variety Kqm,p is in general singular and has dimension
q(m + p) + mp.

The following example explains the situation.
Example 2.11 (see 16]). The only Pliicker relation of Grass(2, 4) in 5 is given by

(2.9) X12X34 X13X24 -- X14X23 0.

Let fij(s) z(ij;1)s + z(ij;o) and

(2.10) f2(s)f34(s) f13(s)f:a(S) + f14(s)f23(s) 0;

we then have three quadratic equations

Z(12;1) Z(34;1) Z(13;1)Z(24;1) -- Z(14;1)Z(23;1) 0,

Z(12;1)Z(34;0) Z(13;1)Z(24;0) -i- S(14;1) Z(23; 0)

-t- Z(12; 0) Z(34;1) Z(13;0)S(24;1) -t- Z(14;0)Z(23;1) 0,

Z(12; 0) S(34; 0) Z(13;0)Z(24;0) -!- Z(14; 0) Z(23; 0) 0,

which define the projective variety K in I? Because dim K 8 it follows that K is2,2 2,2 2,2

a complete intersection and by B6zout’s theorem [7], the degree is equal to 2 8.
As we can describe the compensator C(s) through the vector

(2.11) C(S) CI(S) /’’" / Cm(S),

we can describe the plant P (s) through the vector

(2.12) p(s) pl(s)/’"/ pp(S).
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Finally the closed-loop characteristic polynomial is given through the linear pairing

(2.13) (p(s), c(s)) := Cl(S)/.-. A Cm(S) / pl(s)/""/ pp(s) dp(s).

Note that the linear pairing (,) originally defined on K, Kqm,p extends linearly to the

product space (Kn+l (R)/Pxm+p) 3(q+l (R) /m]m+p).
Next we show that the pole placement map pp induces a central projection in the projective

space ?N ](q+l (R)/m]m+p). For this consider a fixed plant P(s) represented through
the vector p(s) pl (s) / / pp(s). Consider the subspace

(2.14) Ep := {c(s)l(p(s), c(s)) 0} C N.

Then we have a central projection (compare with 17, 25]):

(2.15) Le N_Ee n+q,
f(s) g(s) f (s) ).

Let X, be the restriction map L I(Kqm.p- E,), i.e.,

q Ee +q(2.16) Xp Km,p

The next lemma explains the relation between the maps X,, L and the pole placement map
Pp.

LEMMA 2.12. The pole placement map p introduced in (2.4) factors over the variety
Kqm,p through

(2.17) pe Lp

The map p, is onto (almost onto) ifand only ifx, is. Finally a plant P(s) is q-nondegenerate
ifand only if Kqm,p

Proof From the definition of the linear pairing (,) it is clear that p, L, o 7r. Moreover
because

(2.18) yr Aqm,p --+ Kqm,p
is onto, the second statement follows. Finally if P (s) is q-degenerate there is a compensator
C (s) E Aqm,p which is not admissible. But this is equivalent to the statement

(2.19) CI(S) /’’" / Cm(S) gqm,p A Ep. [3

This lemma will allow us to study the pole assignment problem completely in the projective
space IN. In the geometric picture the set Kqm,p Ee will be of crucial importance. Note that

7r(B,) Kqm,p

By abuse of notation we will denote Kqm,p fq Ee by Be as well; Lemma 2.12 justifies this
choice. The set B is sometimes called the base locus of the central projection ) and by
Lemma 2.12 this set is empty if and only if the plant P(s) is q-nondegenerate. The following
theorem gives the result which mainly motivated this paper.

THEOREM 2.13 (see [17]). For a q-nondegenerate system of McMillan degree n

q(m + p 1) + mp, the pole assignment map Xe is onto over C and there are deg Kqm,p
(counted with multiplicity) complex dynamic compensators assigning each set ofpoles. In
particular, a real solution always exists ifdeg Kqm,p is odd.
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Proof Since Be 0, the pole placementmap )re Kqm,p n+q is a finite morphism [21,
Chap. I, 5, Thm. 7]. Therefore )e is onto over C [21, Chap. I, 5, Thm. 4] and deg )e
deg Kmq p 13, Cor. (5.6)].

Actually we can strengthen this result with the following theorem.
THEOREM 2.14. Let P be a system ofdegree n < q (m + p 1) + rap. If

(2.20) dim Be dim Ee N Kqm,p q(m + p) + mp n q 1,

then Xe is onto over C (and over ifdeg Kqm,p is also odd).
Proof Let H be the q(m + p) + mp n q codimensional projective subspace in N

such that

(2.21) Be N H 0

(such H exists by [13, Cor. (2.29)]), 1 Kqm.p q(m+p)+mp is the central projection with
center Ee f) H, and 7r2 ]q(m+p)+mp YF1 (Be) -+ ]n+q is the central projection with center
7gl (Ee). Then r is onto over C and is onto over if deg Kmq p is also odd, and

Xe 72 o1.

THEOREM 2.15. The pole assignment map Xe is onto over Cfor the generic system ifand
only if

(2.22) n <q(m+p-1)+mp.

This condition is also sufficient over 1R ifdeg Kqm,p is odd.
Proof The necessity was proven by Willems and Hesselink in [30]. On the other hand

if n q (m + p 1) + mp, the generic system is q-nondegenerate by 17, Cor. 5.6] and the
sufficiency follows from Theorem 2.13. If n < q (m + p 1) + mp, then it follows for the
generic system from 17, Thin. 5.5] that

(2.23) dim Be =q(m+p)+mp-n-q-1.

By Theorem 2.14 the sufficiency follows. [3

3. The subvarieties Z. of the variety Kqm,p and a closed formula of their degrees.
In this section we derive a closed formula for the degree of a set of generalized Schubert
subvarieties of the variety Kqm,p. As a corollary we will obtain a formula for the mapping
degree of the pole placement map in the critical dimension. For the convenience of the reader
we quickly review some geometric aspects ofthe classical Pieri formula (1.3). For this consider
the index set

I {i (il im)l < ix <"" < im}

equipped with the partial order

(il im) < (jl jm) "> it < jtVl.

If an m-dimensional plane P 6 Grass(m, m + p) C ](Am]re+p) is expanded in terms of
the standard basis (2.6), i.e., if P is represented by the vector

(3.2) x ".--- x ei A A eim
iEl
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we will call the coordinates X the Pliicker coordinates (see [7, p. 64]) of the plane P. The set

(3.3) Si {x Grass(m, rn + p)lxj 0 for all j ; i}

is called a Schubert variety. Let Hi be the hyperplane defined by setting xi 0 and let
lil "= Y=l(it l). Then the geometric version of Pieri’s formula states that

(3.4) S N H U Sj
jEI

j<i, IJl=lil-1

and that the intersection multiplicity along each Sj is 1. In terms of the intersection ring, Si
represents a Schubert cycle (il, i2 in), Hi represents the Schubert cycle rl (p, p +
2, p + 3 p + m), and the geometric intersection is expressed through a formal multipli-
cation as given in (1.3). Readers who want to learn more about Schubert calculus are referred
to the excellent survey article of Kleiman and Laksov [9].

In 15] we proved a similar formula as given in (3.4) for subvarieties of Kqm,p. To explain
this generalized Pieri formula we first re-index the coordinates zi;d of Kqm,p.

DEFINITION 3.1. For each (i; d), (i in), < il < < im < m + p, let
ot :-- (c1 am) be defined as

[d/m](m + p) + it+d-mid/m] for 1, 2 m[d/m] + m d,
Oll ([d/m] + 1)(m + p) + it+d-m[a/m]-m for m[d/m] + rn d + 1 m.

Using this re-indexing we can associate to every coordinate Z(i;d) of Kqm,p a new coordinate
z. The following example shows the relation between the indices (i; d) and

Z(i;0) Zi,

Z(i;1) Z(i2 im,il+m+p),

Z(i;2) Z(i3 im,i+m+p,i2+m+p),

Z(i;m) Z(il+m+p im+m+p),

Z(i;m+l) Z(i2+m+p im+m+p,it+2(m+p)),

Note that the indices o belong to the index set

(3.5) /7 .= {or 6 I IO/m O/1 < m + p},

which is by definition a subset of the index set I. In particular [ is also equipped with a partial
order. Using this partial order we can now define an interesting set of subvarieties of Kqm,p.

DEFINITION 3.2.

(3.6) Z {Z Kqm,plz -Ofor all c}.

The main results of 15] are summarized in the following proposition and corollary.
PROPOSITION 3.3 (see [15]). For each index , Z is a subvariety ofdimension I1, Ifn

is the hyperplane of]
N

defined by z O, then

(3.7) Zo N Ha U Z
/<, I/l=ll-I

and the intersection multiplicity along each Z is 1.
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55(5,9) 165(5,9)

55(5,8) 90(5,8) 75(4,9)

34(5,7) 21(4,8) 42(5,7) 48(4,8) 27(3,9)

13(5,6) 21(4,7) 14(5,6) 28(4,7) 20(3,8) 7(2,9)

13(4,6) 8(3,7) 14(4,6) 14(3,7) 6(2,8)

5(4,5) 8(3,6) 5(4,5) 9(3,6) 5(2,7) (1,8)

5(3,5) 3(2,6) 5(3,5) 4(2,6) (1,7)

2(3,4) 3(2,5) 2(3,4) 3(2,5) (1,6)

2(2,4) (1,5) 2(2,4) (1,5)

(2,3) (1,4) (2,3) (1,4)

(1,3) (1,3)

(1,2) (1,2)

(1,9)

Flo. 1. (a) Hasse Diagram of Z(5,9). (b) Hasse Diagram of S(5,9).

Using B6zout’s theorem [7, Thm. 18.3] the expression (3.7) translates into a partial
recurrence relation, which the degrees of the varieties Z,, have to satisfy.

COROLLARY 3.4 (see [15]).

(3.8) deg Z deg Z.

The partial recurrence relation (3.8) has to be satisfied for the whole index set [. It is pos-
sible to depict this relation with the help of a Hasse diagram. A Hasse diagram corresponding
to the variety Z is a directed graph, whose vertices are all fl /r, < o. The directed edges
/3 -+ ?’ are precisely those ordered pairs such that/ covers , (i.e., fl > , and I/1 I?’l / 1).
Then according to Corollary 3.4, the degree of Z can be computed graphically in the fol-
lowing way: If we label the vertices in such a way that the number on (1, 2 m) is 1 and
the number on fl is the sum of the numbers on the vertices covered by 13, then the number on
o is deg Z Figure provides an example of Z(5,9) K Note that Rosenthal obtained2,3"

deg Klm,p 55 by computing the coefficients of the Hilbert polynomial using the computer
program CoCoA in 16]. For comparison we also include the Hasse diagram of the Schubert
variety &5,9), whose underlying diagram corresponds to all indices 6 I, < (5, 9).

From Fig. 1 we can see that the Hasse diagram of Zan be obtained by "cutting off" all
the vertices of I that are not in I in the Hasse diagram of S. If we use d (Oel Cm) for the
degree, then both deg Z and deg S satisfy the partial difference equation

(3.9) d(otl Otm) d(Ol oil 1 am)
I=1

subject to the initial condition

(3.10) d(1, 2 m) 1
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and subject to the boundary conditions

(3.11) d(O O/m) --0,

(3.12) d k, k 0.

deg Z is subject to one more boundary condition, namely,

(3.13) d(k k + m + p) O.

The computation of the degrees of the varieties Z is therefore reduced to the solution of
a partial difference equation with boundary conditions. The next theorem provides a closed
formula for this problem.

THEOREM 3.5. - Hk<j(O/j O/k + (nj n)(m + p))
(3.14) deg Z nl+...+,m=0Z--" I-Ij(O/j + nj(m + p) 1)!

with the convention that 1/k! 0 ifk < O.
Proof Let g(o/) deg S. Then (see [11, p. 103] and [23])

H(O/j_O/k) (Oil-1)! (Otl-2)! (Otl m)!
(3.15) g(o/)- Io/l!

<j
--loci! det (or2-1)! (ot2-2)! (-’2-’Z-.

l-I(oe- 1)!
j=l (Otm- 1)! (Otm--2)! (Otm--m).

and (3.14) becomes

(3.16) deg Z

Let

g(o/1 4- nl(m + p) O/m 4- nm(m 4- p)).

d(o/)
n +...-k-nm=O

g(o/1 4- nl(m 4- p) O/m 4- nm(m + p)).

Then d(o/) satisfies the equation (3.9) because g(o/) does. Moreover since

d(o/1 O/m) g(o/1 O/m)

for O/1 < < O/m < rn + p, d(o/) satisfies the conditions (3.10) and (3.11) for O/m < m + p.
We only need to verify (3.12) and (3.13).

Notice that by (3.15)

g( O/j O/ -g( O/ O/j ...).

g( O/j 4- kj(m 4- p), O/j+I 4- kj+l(m 4- p)

-g( O/j 4- kj+l(m 4- p), O/j+l 4- kj(m + p) ).

On the other hand if O/1 4- m 4- p O/m, then

g(o/1 4- k m 4- p) O/ 4- k m 4- p

g(o/m 4- (kl 1)(m + p) O/1 4- (km 4- 1)(m + p))

-g(o/1 4- (km 4- 1)(m + p) O/m + (kx 1)(m + p)).

In either case d(o/) -d(o/); i.e., d(o/) 0. [3
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(3.18)

Applying the formula (3.14) to Kqm,p we then have a formula for deg Kqm,p.
THEOREM 3.6.

H(j -k+ (nj -nk)(m+ P))

deg Kqm,p (-1)q(m+l)(mp + q(m + p))!
k<j

nlq-...q-nm---q H(p+j +nj(m+p)- 1)!
j--1

Proof Let k [q/m] and r q km. Then

Kqm Z(p+r+l+k(m+p) p+m+k(m+p),p+l+(k+l)(m+p) p+r+(k+l)(m+p)).,P

So

deg Kqm,p (sgn or)
nl+...+nm--q

where cr is the permutation

g(p + + nl(m + p) p + rn + nm(m + p)),

(r + 1, r + 2 m, 1,2 r) --+ (1,2 m),

and the sign of this permutation is given by

sgn r (-1)r(m-r) (-1)(q-km)((k+l)m-q) (-1)2qkm+mq-qz-k(k+l)m2

(_l)mq(_l)q (_l)mq(_l)q.

Therefore

deg q 1)q(m+l)Km,p (- Z g(P + + nl(m + p) p + rn + nm(m + p)),
nl+...+nm=q

which is the formula (3.18).
Combining Theorems 2.13, 2.15, and 3.6, we then have Theorem 1.1.
We conclude this section with several simplified formulas. First recall the definition of

the Fibonacci numbers given by the recurrence relation fl 1, f2 1, and fn+l fn + f-i
for n > 1. From Corollary 3.4 it follows immediately that

(3.19) deg Kq fsq+52,3

Using a well-known expression for the Fibonacci sequence we therefore get

(3.20) deg Kq 1 1 t_ ,g/
5(q+l) 5(q+l)

2,3-- 2 2

Note that formula (3.20) has also been given by Intriligator [8, p. 3554] as an illustration of
the conjectured intersection numbers arising from some computation in conformal quantum
field theory. For q 1, we again get deg K 55 (compare with the Hasse diagram of2,3

Z(5,9)) and for q 2, we get deg K2 610.2,3
In general, for m 2, formula (3.18) can be simplified to

q

deg Kq )q - (q 2j)(p + 2) + 1
2,p (--1 (q(p + 2) + 2p)! .= (p + j(p + 2))!(p + 1 + (q j)(p + 2))!

To illustrate "the nonlinear character" of the pole placement map we derive a table that shows
all degrees of the variety Kq for p 9 and q 0, 5; see Table 1.2,p
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TABLE 1.

p\q 0 2 3 4 5

2 8 32 128 512 2048
5 55 610 6765 75025 832040
14 364 9842 265720 7174454 193710244
42 2380 147798 9112264 562110290 34673583028
132 15504 2145600 290926848 39541748736 5372862566400
429 100947 30664890 8916942687 2610763825782 763562937059280
1430 657800 435668420 266668876540 165745451110910 102703589621825280
4862 4292145 6186432967 7853149169635 10262482704258873 13319075453502743045

4. Odd or even degrees. In this section we introduce some methods that can be used to
determine whether the deg Kqm,p is odd or even without computing the degree itself.

For Grass(m, m + p) Km,p, it is a well-known fact that deg Grass(m, p + m) is even

whenever min(m, p) >_ 3 [1]. This is not the case for general Kqm,p, i.e., in a certain sense
there are many more odd numbers for a fixed q > 0 than there are for q 0.

The main result of this section is Theorem 4.2, which provides a short combinatorial
description of all triples m, p, q which result in an odd degree. Using this theorem we derive
several corollaries classifying the odd- and even-degree varieties.

To prepare for the main theorem we first rewrite formula (3.18):

deg q 1)Km,p (--1)q(m+ (mp + q(m + p)) (-1)
nl+...+nm=q

m(m- 1)

(4.1) det

(p-m+l+nl(m+p))! (p-m+2+nl(m+p))! (p+nl(m+p))!

(p-rn+2+n2(m+p))! (p-m+3+n2(m+p))! (p+l+n2(m+p))!

(p+nm (m+p))! (p-+- +nm (m+p))! (p+m-- +nm (m+p))!

(--1)q(m+l)(--1) m(’l-) sgn r
+...+nm--q

(mp + q(m + p))!
(4.2)

(p m + or(l) + nl(m + p))! (p 1 + or(m) + nm(m + p))!

Note that yim__l ((p m 1) + + a(i) + ni(m + p)) mp + q(m + p). It therefore
follows that every summand in the expression (4.2) is a multinomial coefficient

( k ) (kl + k2 + + km),
(4.3)

kl km kl !k2! km
For multinomial coefficients there is a well-known criterion frequently used by topologists

which guarantees that such a coefficient is odd. We formulate this criterion as a lemma.
LEMMA 4.1. The multinomial coefficient (kl k m) is odd ifand only ifthere are no "carry

overs" in the summation k + + km when calculated using binary representation.

Proof Let
k=2hI+..-+2"1 0<nl <... <nl.

Then

2ni 2hi(xl + + Xm) H(xl + + x rood2.
i=1
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In particular it follows from this lemma that (gl,..k.,km) is even as soon as two numbers
among {kl km are equal or two numbers are odd.

We will call a set {kl, k2 km of positive integers a disjoint binarypartition ofk if the
multinomial coefficient (k, k m) is odd. To put it in other words, {kl, k2 km is a disjoint
binary partition of k if k - k2 + / km k and if their binary representations

ki 2ni -t- 2hi2 +... + 2niri 0 < nil < ni2 < < niri, 1, 2 m,

have disjoint exponents; i.e., nij 5 nrs for all i, j, r, s.
THEOREM 4.2. Let a min(m, p). Then deg Kqm,p is odd ifand only if the number of

disjoint binary partitions {kl ka} ofq(m + p) + mp having the property that

{kl ka} {m + p 1, m + p 3 m + p 2a + 1} modm + p

is odd.
Before we give the proof we will illustrate Theorem 4.2 with several examples.
Example 4.3. a. m 2, p 9, q 4, q(m + p) + mp 62 2 + 22 + 23 -t- 24 -k- 25.

The disjoint binary partitions equal to 10, 8} mod 11 are

{25, 2 + 22 + 23 q- 24} {32, 30},
{2 + 22 + 24 -k- 25, 23 {54, 8 },

{2 + 23, 22 + 24 --t- 25 10, 52}.

So deg g4 deg K4 is odd.2,9 9,2

b. m 3, p 4, q 5, q(m + p) + mp 47 1 + 2 + 22 + 23 -t- 25. The disjoint
binary partitions equal to {6, 4, 2} mod 7 are

{2 + 22, 25, 1 + 23 {6, 32, 9},

{2 + 25, 22, 1 + 23} {34, 4, 9},
{1 + 22 + 23 25 2} {13, 32, 2},
{1 -+- 23 q- 25, 22, 2} {41, 4, 2}.

So deg K5 deg K5 is even.3,4 4,3

c. m=3, p--6, q=3, q(m+p)+mp=45-- 1+22+23+25 There is only one
disjoint binary partition equal to {8, 6, 4} mod 9:

{23, 1 -k- 25, 22} {8, 33, 4}.

So deg K3 deg K3 is odd.3,6 6,3

d. m 5, p 6, q 3, q (m + p) + mp 63 1+2+22+23+24+25 There is
only one disjoint binary partition equal to 10, 8, 6, 4, 2} mod 11"

{25, 23, 1 + 24, 22, 2} {32, 8, 17, 4, 2}.

So deg K5,63 deg K6,53 is odd.
Proof Without loss of generality, assume m < p. Consider again the description of the

degree of the variety Kqm,p as it was provided in formula (4.2). It is our goal to show that in
the summation mod 2 the only relevant permutation is r d. In other words, we will show
by clever "book keeping" that all other multinomial coefficients are either 0 or cancel each
other.
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First assumer is not an idempotent, i.e., cr 2 5 id or cr or- 1. In this case we immediately
verify that the sets

{((p-rn- 1)+i+cr(i)+ni(m+p)) 1 m}

and

{((p rn 1) + + o-1(i) d- nr-(i)(m -+- p)) 1 m}

are equal as unordered sets. But thisjust means that the corresponding multinomial coefficients
in the summation (4.2) cancel each other rood 2. So it follows that we only have to sum over
idempotent permutations.

Assume therefore that cr 2 id. If a id then cr contains a pure transposition, i.e., there
are two distinct integers a, b having the property that a (a) b and a (b) a. Consider the
ordered set

(((p rn 1) + + or(i) + ni(m + p)) m)

If na rib, then the corresponding multinomial coefficient is zero since two numbers in the
binary partition (namely the numbers at positions a and b) are equal. On the other hand
if na 5 rib, then the corresponding multinomial coefficient cancels with the multinomial
coefficient obtained by interchanging na and

It therefore follows that the only relevant summand in (4.2) is cr id. The mod 2 degree
of Kqm,p reduces, therefore, to the evaluation of the mod 2 sum of

(4.4)

Z( (mp + q(m + p)) ).p-m+l+na(m+p), p-m+3-k-nz(m+p) p+m-l+nm(m+p)nl+...+nm=q

Since a summand

( (mp+q(m+p))
p-m+l+nl(m+p), p-m+3+nz(m+p) p+m-l+nm(m+p)

is odd if and only if {p rn + + n (m + p) p + rn + nm (m -+- p) is a disjoint bin-
ary partition of mp + q(m + p), the deg Kqm,p is odd if and only if the number of disjoint
binary partitions equal to {p rn + 1, p rn + 3 p + rn rood rn + p ofq (m + p) +mp
is odd.

For the Grassmann variety it is possible to identify the first Chern class Cl (respectively, the
first Stiefel-Whitney class Wl) of the classifying bundle with the first elementary symmetric
function

X .qt_

__
Xrn E z,[Xl Xm ].

The degree (respectively, the mod 2 degree) of the Grassmann variety is then represented
through the coefficient of a certain monom (see [23] for details) in the expansion of

(Xl --"""-]- Xm
dim Grass(m’m+p)

For the mod 2 degree of the variety Kqm,p, Theorem 4.2 gives a way to do a similar
computation. For this consider the polynomial ring Z2[Xl Xm ], the ideal

I :=(x+p 1 .m+p 1),.,tm

and the factor ring R Z[Xl Xm]/I. Then we have the following corollary.
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COROLLARY 4.4. Ifm <_ p the mod 2 degree ofthe variety Kqm,p is equal to the coefficient
ofthe monom x+p-1 m+p-3 p-m+1

X2 "’’Xm in the expansion of

(Xl +’’" + Xm)dimKqm’p E R.

Proof From the proof of Theorem 4.2 it follows that the mod 2 degree of Kqm,p is equal
to the sum of certain multinomial coefficients of the form

kl km,] kl km I
Since the rood (m + p) identification of disjoint binary partitions in Theorem 4.2 corresponds
to the ideal theoretic identification of monoms in the factor ring R, the total mod 2 number of
identified monoms is exactly the mod 2 degree of Kqm,p.

In practice we can often use the "freshman’s dream"

(Xl "{- + Xm)2 2 2k=x +...+x mod2.

The following examples illustrate the corollary.
Example 4.5 a. rn 2, p 3, q 3 In this case dim K3 21 and we know from2,3

the table at the end of 3 that deg K32,3 6765. Using the corollary we compute

(x + y + z)21 (x 16 -i-- y16 + zl6)(x + y + z)5 (x2
__

y2 + z2)3.
Since the coefficient in front of the monom x4y2 is indeed I we conclude once more that K2,3
is of odd degree.

b. m-3, p=4, q =69, q(m+p)+mp=495= 1+2+22+23+25+26+27+28
Since the dimension is quite large we reduce mod 7 in the first step:

(1, 2, 22, 23, 25, 26, 27, 2s) (1, 2, 4, 1, 4, 1, 2, 4) mod 7.

Using this reduction we have

(x + y + z)495 (x -- y + z)3(x2 -+- y2 + z2)2(x4 ..{._ y4 + z4)3
(x + y + z)(x4 + y4 + Z4).

Since there is no monom x6yaz2 in this expansion, we conclude that K69 and K69
3,4 4,3

both have an even degree.
COROLLARY 4.6. Let min(m, p) > 1. Then any of thefollowing conditions implies that

deg Kqm,p is even:
a) rn + p is even.
b) mp + 3 > (m + p)(q + 2).
c) rain(m, p) > q + 2 + v/q2 + 4q + 1.
d) The binary number ofq (m + p) + mp has less than m 1 ’s other than the digit on the

2o position.
e) 2min(m’p)+l > q(m + p) + mp + 2.
f) i=1 ri < mp, where ri [0, m + p) is the number, equals the 2ni rood rn + p in

the binary representation q(m + p) + mp 2 + + 2’.
g) rn+p=2-1.
Proof Without loss of generality assume that rn _< p.
a) Whenm+p is even, all the integers p-m+ +n (m -- p) p+m +nm(m -+- p)

are odd. By the remark after Lemma 4.1, all multinomial coefficients appearing in
(4.4) are even.
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(4.5)

b) Let 2 _< q(m + p) + mp < 2r+l. Then a necessary condition for {p rn + 1 +
n l(m -t- p) p + m 1 + nm (m nt- p)} to be a disjoint binary partition is

p rn + 2i l + ni(m + p) >2

for some i. In particular

p + rn 1 + q(m + p) > 2 >_ (1/2)(q(m + p) + mp + 1),

which implies

(m -t- p)(q + 2) > mp + 3.

c) Consider -(m2 2(q + 2)m + 3). It has two roots: q + 2 4- v/q2 + 4q + 1. So
when rn > q + 2 + x//q 2 + 4q + 1,

-(m2 2(q + 2)m + 3) < 0.

The degree is even if rn p by a). If m < p (note that q + 2 m < 0),

(m + p)(q + 2) mp 3 -(m2 2(q + 2)m + 3) + (q + 2 m)(p m)

< -(m2 2(q -+- 2)m + 3)
<0.

So c) implies b).
d) Under the condition, q(m + p) + mp cannot have a disjoint binary partition

{kl km such that none of the ki is 1.
e) The smallest number such that d) is not satisfied is 2m+l 2. So e) implies d).
f) A necessary condition for

(kl km)-(p-m-I-1 p-t-m-l) modm+p, ki >0,

is }-i=1 ki >_ mp.
g) Notice that m + p is odd. So 2 < m < p. For any n > k, let n ak + r, 0 < r < k.

Then

2 2r(1 + 2k +... + 2/(a-1))(2/ 1) + 2r.
So 2 2 mod m + p. Let the binary representation of q(m + p) + mp be
2nl "t- 2n2 d- + 2nl and consider

2hiH(Xni
+ooo+X ).

i=1

By replacing 2i with 2ri for ri ni mod k, ri E [0, k), and using the property

2 2 2r+l
X

2r+l(X21 +’’" + X (X + -Jr" mod 2

repeatedly, we get

2riH(x21ri +’" + xm )’
i=1

with {rl rj C [0, k) distinct. The polynomial (4.5) has degree at most 1 + 2 +
+ 2-1 m + p, which is always less than mp under the condition 2 < m < p.

By the same argument as in the proof of (f), the degree is even.
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An immediate corollary of Theorem 4.2 is the result of ]" deg Grass(m, m + p) is odd
if and only if

1. min(m, p) 1 or
2. min(m, p) 2, max(m, p) 2k 1.

We say this corollary is immediate because when m 2 < p, {p + 1, p 1 is a disjoint
binary partition if and only if p 2k 1, and when min(m, p) > 3, all the degrees are even
by Corollary 4.6 (c).

COROLLARY 4.7. deg Klm,p is odd ifand only ifeither
1. min(m, p) 1 or
2. min(m, p) 2, max(m, p) 2n d- 2n2 d- ...-k- 2m 1 with ni+l > ni d- 1,

1-1.
Proof By letting m + p + 2n +... q- 2nl we can easily show that neither of the sets

{m+p-l,m+p-3, m+p-51, {2(m+p)-l,m+p-3, m+p-5},

{m+p-l,2(m+p)-3, m+p-5}, {m+p-l,m+p-3,2(m+p)-5}

can have disjoint exponents in the binary representations of the elements. So the degree is
even if min(m, p) > 3. Now let m 2, p > m, be odd and

p + 1 2n -+-... q- 2m.

Then2nappearsinbothp+l-m+p-land2p+l--2(m+p)-3. SodegK is2,p
odd if and only if

{p 1, 2p + 3} {2 + 22 +...-+- 2n-I -k- 2’ +... + 2’’, + 2n+l -+-...-k- 2n’+l

is a disjoint binary partition, i.e., if and only if rti+l > rti -- 1 for 1 1. ]

Similar results can also be proven for q > 1. The combinatorics however becomes very
involved. We provide without proof the result for q 2.

COROLLARY 4.8. deg K2m,p is odd ifand only ifeither
1. min(m, p) 1,
2. min(m, p) 2, max(m, p) 8() + 1, or
3. min(m, p) 3, max(m, p) 8.

5. Corollaries and additional new positive pole placement results. In this section we
establish the connection to the classical state space and transfer function formulation of the
pole placement problem. We also derive several results which combine the results derived in

3 with some results derived in [17].
Consider a controllable observable linear system

(5.1) .ic Ax + Bu, y Cx,

where x 6 ]n, U ]m, and y 6 P, respectively. If a controllable observable dynamic
compensator of order q,

(5.2) {t Fu + Ey, u Hu + Ky,

is applied to the system, the closed-loop system becomes

u EC F u y:Cx.
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So the closed-loop characteristic polynomial is

(5.4) (s) det ( SI A BKC -BH )-EC sI- F

If G(s) --C(sI- A)-IB and T(s) K + H(sI F)-E are the transfer functions of
the system (5.1) and compensator (5.2), respectively, and if G(s) D(s)-N(s) and T (s)
Td- (s)T (s) are left coprime fractions such that det(s I A) det D(s) and det(s I F)
det T(s), then q(s) can also be written as

(D(s) N(s) )(5.5) b(s) det(sI A)det(I G(s)T(s))det(sI F) det Tn(s) Td(s)

Let P(s) (D(s) N(s)) and C(s) (Tn(s) Td(s)). Then P(s) and C(s) can be viewed as
autoregressive systems describing the behavior of the plant and the compensator, respectively.
The combined dynamics are then described by

The following result combines Theorem 2.15 with [17, Cor. 5.8].
THEOREM 5.1. Consider a generic set of matrices (A, B, C) ]n(n+m+p) describing a

plant as in (5.1) and consider an arbitrary monic polynomial dp(s) IR[s] ofdegree n + q. If
(5.7) n < q(m + p 1) 4- mp,

then there exists a complex dynamic compensator of the form (5.2) resulting in the closed-
loop characteristic polynomial dp (s). Ifin addition the number d(m, p, q) introduced in (1.5)
is odd, then there even exists a real compensator assigning the closed-loop characteristic
polynomial (s).

Proof We only outline the main steps. Using the same argument as in Theorem 2.15, we
verify that dim B, q(m + p) + mp n q 1 for the generic and strictly proper plant.
Theorem 2.14 therefore still applies and the pole placement map is onto if we allow all auto-
regressive systems. Since the plant is strictly proper a closed-loop characteristic polynomial
of degree n + q can only be achieved if the compensator is proper. q

The following example illustrates how this theorem can be applied.
Example 5.2. Assume the matrices (A, B, C) describe the plant parameters of a generic

real 2-input, 9-output plant of McMillan degree n. From Table 1 it follows immediately that
there exists a real compensator of degree as long as n < 28. If, e.g., n < 58, then it
follows that there is a real compensator of degree 4 assigning an arbitrary set of self-conjugate
closed-loop poles.

Combining Theorem 2.15 with 17, Cor. 5.9] one can finally prove the following result.
THEOREM 5.3. Let G(s) be a generic m-input, p-output proper transfer function of

McMillan degree n and let c(s) K[s] be a generic polynomial ofdegree n + q. If
(5.8) n < q(m 4- p 1) + mp,

then there exists a proper complex compensator T (s) of McMillan degree q such that the
closed-loop transferfunction

GT(S) (I G(s)T(s))-lG(s)

has characteristic polynomial dp(s). If in addition the number d(m, p, q) introduced in (1.5)
is odd, then them even exists a real transferfunction T (s).
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ON THE GENERICITY OF STABILIZABILITY FOR TIME-DELAY SYSTEMS*
LUC C. G. J. M. HABETS

Abstract. Conditions for the stabilizability oftime-delay systems with incommensurable point delays by dynamic
state feedback are known in the literature. In this paper it is shown that these conditions are satisfied generically.

Although an algebraic approach is used to describe the class of all time-delay systems with point delays, the
concept of genericity is formulated in a topological framework. In the metric space consisting of all parametrizations
of time-delay systems, the subset of all stabilizable systems is an open and dense subset.

The proof is given for the commensurable delay case first. It is shown that the incommensurable delay case is not
significantly more difficult and that the same arguments prove also that systems with incommensurable time-delays
are generically stabilizable.

Key words, time-delay systems with point delays, stabilizability, genericity

AMS subject classifications. 93B25, 93D 15, 15A54

1. Introduction. Time-delay systems with point delays can be seen as rather straight-
forward generalizations of ordinary linear time-invariant systems. In the delay case, k (t), the
derivative of the evolution variable x at time t, and y(t), the output y at time t, do not depend
only on the evolution variable x and the input u at time but also on the evolution variable
and input from specific time instants in the past. Let or1 crg denote k delay operators with
incommensurable time-delays rl r, acting on the trajectories of the evolution variable
and the input:

(1) rix(t) x(t "i), criu(t b/(t "gi), (i 1 k).

Then a system with k incommensurable time-delays rl r can be written as

(2)
k(t) A(Crl ak)x(t) + B(al ak)u(t),
y(t) C(o" ak)x(t) + D(al cr)u(t),

where A(cr Ok), B(Crl Ok), C(O’l Ok) and D(cr O’k) are polynomial ma-
trices in the delay operators al a of appropriate dimensions. Note that the state of this
system at time is not the evolution variable x(t) but the time-trajectory {x() 6 [t T, t]}
of this evolution variable. Here T denotes the length of the largest time-delay occurring
in (2).

After substitution of indeterminates s s for the delay operators O" O"k in (2),
the system E (A(s1 Sk), B(s1 Sk), C(s1 Sk), D(s1 Sk) over the poly-
nomial ring ][Sl s] is obtained. Together with the delays rl r, this quadruple of
matrices is a complete description of the delay system (2); since the time-delays rl r are
incommensurable, there is a 1-1 correspondence between time-delay systems of the form (2)
and systems E (A(s1 Sk), B(s1 Sk), C(s1 Sk), D(s1 Sk)) over the ring
l[s s].

To study the concept of internal stability for time-delay systems, consider the differential-
difference equation for the evolution variable x, and assume that no input is applied. Then the
system is called internally stable if, independent of the given initial conditions, the evolution

*Received by the editors April 23, 1993; accepted for publication (in revised form) December 23, 1994. This
research was supported by the Netherlands Organization for Scientific Research (NWO) and carried out while the
author was with the Department of Mathematics and Computing Science, Eindhoven University of Technology,
Eindhoven, the Netherlands.

lnstitut fiir Dynamische Systeme, Department of Mathematics, University of Bremen, P.O. Box 330 440,
D-28334 Bremen, Germany (luc@mathematik.uni-Bremen.de).
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variable x(t) tends to zero for -+ cx. According to [7, Cor. 4.1, p. 182], this notion of
stability is equivalent to the following condition on the matrix A (Sl sk):

’) C+ det()I A(e- e-)) O.

Here "rl "r/ are the time-delays of the delay operators O" O"k corresponding to the
indeterminates S s, and C+ denotes the open complex right half plane.

If a system is not internally stable, this property may be achieved by a proper choice of a
static or dynamic feedback compensator. Completely analogous to the case ofsystems without
delays, this so-called stabilizability problem can be split into two dual parts: the problem of
stabilization by (static or dynamic) state feedback and the detectability problem. In the rest of
this paper we confine ourselves to the problem of stabilizability by state feedback and therefore
assume that C I and D 0.

In the literature, the problem of stabilizability of time-delay systems has been solved
in at least two different ways. Surprisingly, both the infinite-dimensional systems approach
and the systems over rings approach yield the same conditions for the solvability of this
problem. However, there are also important differences between these results. In the infinite-
dimensional systems approach, a static state feedback (possibly containing distributed time-
delays) suffices to achieve internal stability, whereas in the algebraic approach a dynamic
feedback compensator (containing only point delays) is required for this.

THEOREM 1.1 (see [12], [3], [14], [4]). Consider a time-delay system E:

(3) Jc(t) A(cq cr)x(t) -k- B(Crl r)u(t),

where cri (i 1 k) denotes the delay operatorwith time-delay ri andwhere A
and B(Crl crk) are matrices ofpolynomials in the delay operators rl r, ofsize n n
and n m, respectively. Substitute indeterminates S s for or1 cr and regard E
(A(Sl s), B(Sl sk)) as a linear system over the polynomial ring [Sl s].
Then thefollowing three conditions are equivalent:

(i) E is internally stabilizable by a dynamic statefeedback compensator only contain-
ing point delays,

(ii) E is internally stabilizable by a static statefeedback, possibly containing distributed
time-delays,
(4) (iii) ’v’z C+ rank(zl- A(e-z e-Z) B(e-z e-z)) n.

Rank condition (iii), which can be seen as a generalization of the well-known Hautus test
(see [8]) to the case of time-delay systems with point delays, is the starting point of this paper.
We shall prove that this condition is generically satisfied on the parameter-space describing
all time-delay systems with point delays of the form (3). This means that condition (iii) is
very weak; it is satisfied for most time-delay systems.

The condition of reachability for systems over polynomial rings (see, e.g., [9], 16]) can
be stated as a rank condition in almost the same way as the stabilizability condition (for
a short proof see, for example, [5]). In [11], Lee and Olbrot prove that this condition is
generically satisfied if and only if the number of inputs to the system is larger than the number
of indeterminates of the polynomial ring (i.e., the number of incommensurable time-delays).
Their approach is completely algebraic; they compare the number of polynomial equations
that have to be satisfied with the number of unknowns and apply some results from algebraic
geometry to prove their result (except on some hypersurfaces in the parameter-space of all
time-delay systems, the reachability condition is always satisfied).

At first sight, this approach also looks very promising for solving the genericity problem
of stabilizability for time-delay systems. In this case, however, each indeterminate si in the
polynomial ring corresponds to a delay operator ri of length "t’i, and in the Laplace domain
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O" and "ri are interrelated via an exponential function. In this way some extra (exponential)
equations are obtained that are probably enough to remove the condition on the number of
inputs. Unfortunately, this method fails because we are now dealing with both polynomial and
exponential equations, which do not fit into the algebraic-geometric framework any more.

In this paper we choose a completely different approach; we describe the concept of
genericity in a topological way. In this setting, a certain property is called generic if it
holds on an open and dense subset of the parameter-space describing all time-delay systems.
However, before we can Sleak of open or dense subsets, we first have to introduce a topology
on this space. This topology formalizes our intuitive ideas on the following question: when
are the parametrizations of two time-delay systems said to be close to each other? In 2 this
topological framework is treated in more detail.

Then all tools are available to prove that the set of stabilizable time-delay systems is
open, which is described in our 3. The proof of denseness is more involved. In 4 we start
with some preliminary results on matrices over the ring of analytic functions. These are used
in 5 to show that the set of stabilizable time-delay systems is indeed a dense subset of the
parameter-space describing all time-delay systems.

Remark 1.2. In the rest of this paper it is always tacitly assumed that we are dealing with
time-delay systems with commensurable delays. This implies that there is only one delay
operator cr required to describe the system equations (2). In general, this situation is much
simpler than the incommensurable delay case. Fortunately this distinction does not make
any difference for the approach we take to the problem. All results are easily generalized to
the incommensurable delay case because the assumption of the presence of only one time-
delay operator is never used explicitly. This assumption is only made to simplify notation to
highlight the really important ideas more clearly. In 6 we return to this subject briefly and
explain why the methods developed in this paper are also applicable in the incommensurable
delay case.

2. A topological framework for time-delay systems. This section is devoted to the
introduction of a topology on the parameter-space describing all time-delay systems with
commensurable time-delays. This topology reflects our intuitive notion of the concept of
genericity. Also the space of all 2-dimensional polynomials is equipped with a suitable
norm. These polynomials, and especially characteristic polynomials, play a vital role in the
characterization of stability. Some of the topological aspects of this relationship are discussed
in more detail.

Consider a triple E (A(s), B(s), r), with A(s) [s]nn, B(s) ]t[s]nm, and
r 6 +. After substitution of the delay operator cr with time-delay r for the indeterminate s,
such a triple is a complete description of the time-delay system:

(5)
At(t) A(r)x(t)+ B(r)u(t),

rx(t) x(t r), cru(t) u(t r).

On the other hand, the triple E (A(s), B(s), r) can be seen as a point in the parameter-space

(6) ]2 {(A(s), B(s), r) A(s) [s]nn, B(s) [s]nxm, "g ]i+}.

Clearly, to each element of 12 there corresponds a time-delay system as defined in (5). By
imposing a metric on each of the three components of 12, the parameter-space 12 is turned into
a metric space, and thereby its topology is fixed. We start with the introduction of a norm on
polynomial matrices in IR[s]pq.



836 LUC C. G. J. M. HABETS

Let P (s) be a p q polynomial matrix over [s]. Then there exists an 6 1 t_J {0} and
real matrices P0, P1 Pe, with Pe 5/: O, such that

P(s) Pi Si.
i=0

This is called the degree of the polynomial matrix P(s) and is denoted by deg(P(s)).
Defining Pi "= 0 for > , we can map the polynomial matrix P (s) to the sequence (Pi)i=0 of
real matrices. In this way we obtain an explicit description of P (s) in terms of its parameters.
In fact, there is a 1-1 correspondence between polynomial matrices and the space 0(]pxq)
consisting of all real matrix sequences with only a finite number of nonzero elements (i.e.,
matrices with at least one nonzero entry), via the bijection

lr" eO(]pq) ----> ][S]pXq 1/r((Pi)i__o Pi Si.
i=0

The space 0(]1pxq) is easily turned into a normed space by defining the norm of (Pi) byi=0

II(ei) i--0 ei II,
i=0

where ei is the operator induced norm of the real matrix Pi. It is evident that the same norm
can also be used for polynomial matrices.

DEFINITION 2.1. Let P(s) be a p q matrix over [s]. Let (Pi)=o 0(]pq) be such
that

(7) P(s) ei Si.
i--0

Then the norm of P (s) is defined as

(8) IlP(s)llpm "= IIPilI,
i=0

where Pi is the operator induced matrix norm of Pi for all 6 I U {0}.
The norm [[. pm for polynomial matrices has a very important property. In the Introduction

we have seen that for the investigation of the stability properties of a time-delay system, the
exponential function e-z has to be substituted for the indeterminate s in a polynomial matrix
A(s). Since for all z 6 C+, the norm [e-Z[ is bounded above by 1, the norm [[P(s)llpm of the
polynomial matrix P (s) is a uniform upper bound for the norm of P (e-z) in the closed right
half plane.

LEMMA 2.2. Let P(s) [s]pq. Thenfor all r > 0 andfor all z C+, we have

IIe(e-Z)ll IIe(s)llpm.

With condition (iii) ofTheorem 1.1 in mind, we see that Lemma 2.2 has a very interesting
consequence for square polynomial matrices.

COROLLARY 2.3. Let A (s) [s]nn. Thenfor all r > 0 and z C+, andfor all w C
satisfying wl > A (s)II pm, we have

rank(w/- A(e-rZ)) n.
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Using Definition 2.1, the parameter-space V may be equipped with a suitable metric.
DEFINITION 2.4. Let E1 (Al(s), Bl(s), rl) and E2 (A2(s), B.(s), r2) be two ele-

ments ofthe parameter-space )2. Then the distance between E and E2 is defined as

(9) dr(E1, ]2) .’-- Ilal(s) a2(s)llpm + IlBl(S) B2(s)llpm + Iv 321.

With this distancefunction dr(., .), the parameter-space V becomes a metric space.
Once the topology on the parameter-space )2 has been fixed, the concept of genericity

is easily defined. For each triple E (A(s), B(s), 3) in ]2, it is possible to check the
stabilizability of the corresponding time-delay system using Theorem 1.1. Let

S := {(A(s), B(s), 3) " Vz C+ rank(z/- A(e-Z)lB(e-Z)) n}

be the set of all stabilizable delay systems. Then the property of stabilizability is called
generic if the set S is an open and dense subset of the parameter-space V. In the topology on
V generated by the metric dr(., .), this implies that the set S covers almost the whole space V:

(i) S is open. A stabilizable time-delay system remains stabilizable after a small per-
turbation ofthe parameters describing the system (i.e., the property of stabilizability is a robust
property).

(ii) S is a dense subset of. Every element E 6 ]2 can be approximated arbitrarily
close by a sequence of stabilizable systems (i.e., a sequence in S).

We see that the topology generated by the metric of Definition 2.4 leads to a formal
definition of genericity that looks very natural and that is completely in accordance with our
intuitive notion of this concept.

In almost the same way as for polynomial matrices, it is possible to regard the polynomial
ring R[s, z] as a linear space and to define a norm on this space.

DEFINITION 2.5. Let p(s, z) R[s, z], and write p(s, z) as

k

(10) pjs
,j z

i--0 j=0

Then the norm ofp(s, z) is defined as

k

(11) lip(s, z)llp ]Pijl.
i=0 j=0

With this norm, R[s, z] becomes a normed ring.
Analogously to the polynomial matrix case, there exists a 1-1 correspondence between

polynomials p(s, z) in two variables and exponential polynomials of the form p(e-z, z).
Characteristic polynomials of this form determine the stabilizability of a time-delay system.
From this point of view, the norm of Definition 2.5 has several interesting properties. For
example, the norm p(s, z)lip is a good measure for the magnitude of p(e-z, z) in a bounded
part of the closed right half plane.

LEMMA 2.6. Let p(s, z) [s, z], and assume that the degree ofp in z is n, i.e.,

Zp(s,z) EPijsJ
i=0 j=0

and there exists a j {0 k} such that Pnj O. Let M > and e > O. If
M-1

(12) lip(s, z)llp < " Mn+l 1’
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then

(13) Yr > 0 Vz 6 C+ s.t. Izl M :lp(e-z, z)l < e.

Finally there is a clear relationship between polynomial matrices in one indeterminate on
the one hand and 2-dimensional polynomials on the other. In this relationship the characteristic
polynomial plays the leading role. In the rest of this paper we need only the following result.

PROPOSITION 2.7. Let A(s) [s]nn. Then

Ve > 0 96 > 0 VB(s) 6 [s]n

]]A(s) B(s)i]pm < == det(zI A(s)) -det(zl B(s))][p < e.

According to Proposition 2.7, the map X,

(14) X :[s]"n -----+ [s, z] x(A(s)) det(zI A(s)),

is continuous with respect to the norms on [s] and [s, z] as defined in (8) and (11),
respectively. The validity of this result follows from the fact that the determinant of a matrix
is a sum of products of its entries. Since both addition and multiplication are continuous
operations, a proof of Proposition 2.7 follows straightforwardly.

Remark 2.8. With the norms and metrics defined in this section, none of the spaces V,
][S]pxq, or ][s, Z] becomes a complete metric space. All these spaces basically consist of
sequences (of scalars or matrices) with a finite number of nonzero elements. However, we
imposed a sort of 1-norm on these spaces that does not distinguish between sequences with a
finite and an infinite number of nonzero elements. Therefore it is easy to construct a Cauchy
sequence that does not converge.

Fortunately, this somewhat unsatisfactory situation is not troublesome because complete-
ness is never used in the proofs of our genericity result. Moreover, this problem may be
solved by introducing so-called inductive limit topologies (see, e.g., 1, Chap. IV, 5]). For the
study of genericity of more general concepts of stabilizability, this topology is indispensable
(see [6, 3.3]), but in our case, inductive limit topologies would make things unnecessarily
complicated.

3. On the robustness of the property of stabilizability. In this section the first part of
our genericity result is proved. Based on the topological framework introduced in the previous
section, it is shown that the subset S of V, consisting of all parametrizations of stabilizable
time-delay systems, is an open subset of V. In practice this means that stabilizability of a time-
delay system is a robust property: it is preserved after small perturbations ofthe parameters. In
this section an upper bound is derived for the distance between a nominal stabilizable system
and all the perturbed systems that are allowed. If the distance between a perturbed system and
the nominal system is smaller than this upper bound, the perturbed system is still stabilizable.
Since this upper bound is always larger than zero, this immediately implies that S is open.

From Theorem 1.1 we know that the stabilizability condition for time-delay systems is a
full rank condition on a matrix in the variable z, which has to be satisfied for all z 6 C+. Now
the proof of the main theorem of this section is based on the fact that in C n+m the set of
all matrices of full row rank is open, i.e., a full row rank matrix in C+m remains of full
row rank after small perturbations of its entries.

THEOREM 3.1. Let E0 (Ao(s), Bo(s), r0) be apoint in V, andassume that the time-delay
system (5) corresponding to E0 is stabilizable, i.e.,

:rank(z/- Ao(e-rZ)lBo(e-rz)) n.
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Then there exists a p > 0 such that all systems E in the ball around Eo with radius p,

/(]0, P)"-- {] E dv(, 0) < P},

are stabilizable.
Proof First of all there exists an e E N such that Ao(s) and Bo(s) can be written as

Ao(s) Ai Si no(s) ni Si
i=0 i=0

Next define G as

(15) G {z 6 C Rez > 0 and Izl [[Ao(s)llpm + 1}.

Since the delay system corresponding to E0 (A0(s), B0(s), r0) is stabilizable, it follows
from [3] or [14] that the matrix (zI Ao(e-Z)lBo(e-z)) has a right-inverse T(z) that is
analytic on C+. Now G is a compact subset of C+, so T (z) is bounded on G, and thus

(16) K "= max{llT(z)lllz G}

is well defined.
Choose

(17) p "--min 1,
4K’ IlAo(s)llpm + "4Ke (min

[[eo(s)llpm’ [[Bo(s)[lpm

then clearly p > 0. We show that all systems in/3(Eo, p) are stabilizable.
Let E (A(s), B(s), r) 6 ]2 be such that dr(E, Eo) < p. The proof that E is stabiliz-

able, i.e., that

Vz C+ rank(z/- A(e-rz) B(e-rZ)) n,

is divided into two parts: the case Izl > IlAo(s)llpm + 1 and the case Izl [[Ao(s)llpm + 1.
Let z E C+, and assume that Izl > IlAo(s)llpm + 1. Because dr(E, E0) < p, we have

IIA(s)llpm IIAo(s)llpm + [[A(s) Ao(s)llpm < [[Ao(s)llpm + p.

Using (17) it follows that Izl > [IAo(s)llpm + 1 IlAo(s)llpm + p > [[A(s)[lpm and, according
to Corollary 2.3 (with w z), this implies that

rank(z/- A(e-Z)) n.

But then certainly rank(z/- A(e-rz) B(e-*Z)) n.
The second part ofthe proof is more complicated. Let z 6 C+, Izl _< [IAo(s)llpm + 1. We

start by proving that

(18)
1

II(zI- A(e-rZ) B(e-rZ))- (zl- Ao(e-Z) Bo(e-z))ll <
K

First note that

II(zI- A(e-Z) B(e-Z))- (zl- Ao(e-Z) Bo(e-rz))l[

(19) < [IAo(e-z) A(e-Z)ll + IIB(e-z) Bo(e-z)ll.
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Now clearly

(20) IlAo(e-z) A(e-Z)[ < IlAo(e-z) Ao(e-Z)l + IlAo(e-rz) A(e-rZ)lI.

With Lemma 2.2 it is easy to see that the second term in (20) is bounded from above. Since
IIA(s) Ao(s)llpm < dr(E, E0) < p and p < -, we obtain

1
(21) IIAo(e-z) -A(e-Z)ll < IIA0(s)- A(s)llpm < p <

-4K

To estimate the other term, we apply the mean value theorem:

IIAo(e-z) Ao(e-Z)ll Ai (e-irz e-irz) <_ IIAill" ilzl [e-iz]d
i=0 i--0

(22) < IIAo(s)llpm" g." (llAo(s)llpm -+- 1).p <
4K’

where in the last inequality (17) was used.
Completely analogously we can prove that

(23) IIn(e-z) no(e-Z)ll <_ IIn(e-z) no(e-Z)ll + Ilno(e-z) no(e-Z)l <
2K

Combining the previous inequality with (19)-(22), we get (18).
Now recall that (zI Ao(e-z) Bo(e-z)) is right-invertible, with right-inverse T(z).

Moreover T (z)II _< K. So

1
(24) II(zI- A(e-Z) B(e-Z))- (zI- Ao(e-Z) Bo(e-Z))ll < <

K- IIT(z)II

Finally, according to [10, p. 399], (24) implies that the matrix (zI A(e-z) B(e-Z)) is
right-invertible. This completes the proof. [3

Remark 3.2. Although Theorem 3.1 seems to have much in common with the result of
Pandolfi in 13, 5], there are several differences. First ofall, Pandolfi’s result is obtained within
the more general framework of distributed parameter systems, ofwhich the class of time-delay
systems considered in this paper is only a small subclass. Moreover, in the setting of Pandolfi,
perturbations of systems are perturbations of the linear operators describing the system, and
robustness of stabilizability is studied in this context. In our approach, perturbations are
described within the metric space V of all parametrizations. Although Pandolfi’s result holds
in a much more general setting, our result is more specialized to capture the concept of
genericity for the class of time-delay systems with point delays.

Remark 3.3. For robustness of stabilizability it is crucial that the rank condition for
stabilizability, rank(z/- A(e-z) B(e-Z)) n, has to be satisfied only on the half plane
C+. In [13, 4] it is shown that modal controllability, i.e., the property that the same rank
condition is satisfied on the whole complex plane, is not robust. In that situation, the division
of the proof into two parts (the cases Izl > IlAo(s)]lpm + 1 and Izl _< IIAo(s)llpm q- 1) is of no
use because the norm of A (e-z) may become arbitrarily large when Re z --+ -cxz.

4. Some results on matrices over the ring of analytic functions. In the second part
of the proof of our genericity result, matrices of analytic functions play an important role.
The relationship between the rank of these matrices and their determinants is of special inter-
est. This section can be seen as an intermezzo in which this relationship between rank and
determinant is studied using projection matrices.
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The first lemma describes how projections can be helpful for the computation of the
determinant of a matrix.

LEMMA 4.1. Let A and A2 be two arbitrary square matrices, and let E be a projection.
Define p(E) := rank(E). Let be an indeterminate. Then

(25) det(cEA1 + (I E)A2) oE) det(EA1 + (I E)A2).

Proof Choose a basis {xl xn} such that range(E) (Xl Xp(E)) and range
B,) denote the matrix of EA1 -+- (I E)A2 with(1 E) (xp(e)+l xn). Let B (

respect to this new basis, where B1 consists of the first p(E) rows of B and B2 consists of the
aB,last n p(E) rows. Then (, is the matrix of otEA + (I E)A2 with respect to this basis.

Hence

det(otEAt + (I E)A2) det otB1B2 ot
p(e det B2

ot
p(e det(EA1 + (I E)A2).

Let Q(z) be an n n matrix over the ring of analytic functions on C, i.e., all entries of
Q(z) are analytic functions in z. Define

(26) p(z) "= det(Q(z)).

It is clear that in a point ) 6 C, the matrix Q() is of full rank if and only if p()) - 0. Also,
when p0) 0, it is possible to obtain more precise information on the rank of Q(.) from
the determinant function p(z), by using a suitable projection E.

PROPOSITION 4.2. Let Q(z) be an n n matrix ofanalyticfunctions andp(z) det(Q (z)).
Assume thatfor a certain ) C, p()) O. Define the matrix ofanalyticfunctions Ol(Z) as

Q1 (z) :--
Q(z)- Q(.)

j=l " Qj) ())(z ,)s-1

Let E be a projection such that E Q()) O. Then

(27) p(z) (z ))o(e) det(EQ(z) + (I E)Q(z)).

Moreover, ifp (E) k, then

(28)
p(J)()) =0 for j-- 1 k- 1,
p()(.) k!. det(EQ’()) + (I E)Q(;L)).

Proof Q(z) can be written as Q(z) Q()) + (z ))Ol(z). Therefore

p(z) det(EQ(z) + (I E)Q(z)) det((z )OEQI(z) + (I E)Q(z))

(z )). det(EQ(z) + (I E)Q(z)),

where in the last step Lemma 4.1 is used. The result on the derivatives of p(z) in , when
p(E) k is an easy consequence of (27) and the definition of Ql(Z). [

COROLLARY 4.3. Let Q(z) be an n n matrix ofanalyticfunctions and p(z) det(Q(z)).
Then

(29) ,k 6 C" PPo) - 0 == rank(QO)) n
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Proof Let ) 6 C be such that P0) 0 and p’(.) - 0. Choose a projection E
with range(Q())) ker(E). Since Q()) is singular, p(E) rank(E) > 1. According to
Proposition 4.2 we have

p(z) (z ))p(E) det(EQl(z) + (I E)Q(z)).

Suppose that p(E) > 1. Then p’()) 0. This contradicts our assumption, and therefore,
p(E) 1. This implies that dim(range(Q()))) n 1.

Remark 4.4. From Proposition 4.2 it is clear that (p(.) 0 and p’ ()) 7 0) is a sufficient
condition for Q()) to have rank n 1, but it is not a necessary one. It is also possible that
rank(Q())) n 1 while p’(;) 0. In that case the matrix EQ’O) + (I E)Q()) is
singular.

In 5 we are especially interested in matrices Q(z) of analytic functions for which the
determinant p(z) has only simple zeros. According to Corollary 4.3 this implies that

if p()) 0, then rank(Q())) n 1.

Let Q(z) be given, and assume that . 6 C is such that p(;) det(Q())) 0 and also
p’(.) 0. Then it is possible to perturb Q(z) in such a way that ) becomes a simple zero
of p(z). However, to prove this result, we first need a lemma that describes how a constant
matrix can be perturbed to increase its rank.

LEMMA 4.5. Let A be an n n matrix over C, and assume that rank(A) g. For each
j 1 n }, there exists a matrix B IRnn satisfying thefollowing properties:

(i) B 1 and rank(B) j,
(ii) Vow, fi 0 range(orA + fl B) range(A) @ range(B).

Proof Let el en denote the standard basis in C. Then there exists a permutation
re 1 n} 1 n} such that

(30) range(A) (Aer(1) Aer(e)).

Choose vectors eil ei,_e from the standard basis satisfying

(31) (eil ei._e) @ range(A) C.
Let j 6 n }, and define B as

Be(k) 0 for
Ber(k) ei,_e for

k=l t,t+j+ n,
k=t+l t+j.

With this choice of B, it is obvious that (i) is satisfied.
From the construction of B it is immediately clear that range(A) fq range(B) {0}.

Moreover, the inclusion range(cA +/B) C range(A) + range(B) is trivial. So, to prove (ii),
we only have to show the correctness of the other inclusion.

Let xl 6 range(A). Then there exists a yl G (er(1) er(e)) such that Xa Aye. But
clearly Byl --0. Hence

(1)(otA + fiB) -Yl Ayl -k-
fl Byl Xl

and x 6 range(oA +/3 B).
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Let X2 E range(B). Then there exists a y2 e (er(e+l) er(e+j)) such that By2 x2.
Since Aye range(A), there exists a y3 6 (e(1) e(e)) such that Ay2 Ay3. Now

1
(aa 4- fiB). fi(Y2 Y3) -(ay2 ay3) ,4- By2 By3 Bye x2,

and X2 G range(oA 4- fl B). This completes the proof of (ii). E]

At this stage all ingredients to prove the main result of this section are available. This
result describes how a matrix of analytic functions may be perturbed to reduce the multiplicity
of one of the zeros of its determinant to 1.

PROPOSITION 4.6. Let Q(z) be an n n matrix ofanalyticfunctions, and define p(z)
det(Q(z)). Assume that C satisfies p()) O. Let g(z) be an analyticfunction such that
g’ ()) =/= O.

Thenfor each e > 0 there exists an n n polynomial matrix A (s) over ][s] that satisfies
thefollowing properties (where O.(z) Q(z) 4- A(g(z)) and (z) det(0(z)))"

(i) I1A(s)llpm < 6,

(ii) deg(A(s)) < 1 ifg()) is real and deg(A(s)) < 2 ifg(k) is complex,
(iii) /3(Z) 0 and ’(Z) O.
Proof If p’()) - 0, the proof is trivial: take A(s) 0.
Assume p’()) 0. Lete > 0. Ifrank(Q())) n- 1, define B1 0. Otherwise, choose

a matrix B1 according to Lemma 4.5, with IInll 1 and rank(B1) n 1 rank(Q0)) in
such a way that

Vc : 0 range(Q()) + orB1) range(Q(.)) @ range(B1).

This implies that for all ot 0, rank(Q(,k) + orbs) n 1.
Fix ot ge and apply Lemma 4.5 again, but now to the matrix Q(,k) 4- oB. In this way

we find a matrix B2 (possibly depending on or), satisfying IIB2I[ 1, rank(Be) 1, and

’fl : 0" range(Q(Jk) 4- orB1 + fiB2) range(Q(.)) ( range(B1) range(B2).

So for every fl # 0, the matrix (Q ()) + ot B1 + fl B2) has rank n.
Let E denote the projection on range(B2) along range(Q(.) + orBs), so that E(Q()) +

orB1) 0 and EB2 B2. Then p(E) rank(E) 1. Define Q,(z) Q(z) + oB
and p(z) det(Q(z)). So p() det(Q()) + oB1) 0 and using formula (28) from
Proposition 4.2 we obtain

p’(;() det(EQ’()) 4- (I E)Q())) det(EQ’()) 4- (I E)Q(,k)).

First note that ker(EQ’(Jk) + (I E)Q(,k)) C ker(Q())). Moreover, we know that
dim(ker(Q())) 1. Therefore the problem can be divided into two different cases.

Case 1. ker(EQ’() 4- (I E)Q(,k)) {0}. Then p’() det(EQ’(;) 4- (I
E)Q())) :/= O, and A(s) otB satisfies (ii), (iii), and also (i) because IlA(s)llpm
IlcB111 _<

Case 2. ker(EQ’()) 4- (I E)Q())) ker(Q(.)). If g(.) is real, define for all
/ \{0}

A(s) "= orB1 + fl(s g(,k))B2;

if g()) is complex, define for all/3 E ]\{0}

A(s) "= otB + fl(s g(.))(s g(,k))B2.

Then in each case A(s) 6 [s]"n, and moreover (ii) is satisfied.
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Let fl 6 ]\{0} and define 0(z) := Q(z) + A(g(z)). Then 0(.) Q(.) 4- ctB1, and in

both the real and the complex cases there exists a ?, : 0 such that ’()) Q’()) + ?’ B2. Since
()) Q())+orB1 is singular, we still have that/3() 0, and according to Proposition 4.2,

/3’(.) det(E0’(;k) + (I E)O(.)) det(E(Q’() + ’B2) + (I E)Q())).

Assume that x 6 ker(E(Q’(.) 4- yB2) 4- (I E)Qa(.)). Then x 6 ker(Q(.)). So by
assumption, x ker(E Q’(.) + (I E)Q()). Moreover we have that EB2 B2, and thus
we obtain

?’B2x (E(Q’() 4- ?’B2) 4- (I E)Q(,L))x (EQ’(,k) 4- (I E)Q(.))x O.

So (Q(.) + ,B2)x 0. By construction Q()) + vB2 Q()) 4- orB1 4- ’B2 has full rank,
and thus x 0. This implies that rank(E(Q’() + vB2) + (I E)Q()) n. Therefore

’ (L) 0, and 0(z) satisfies condition (iii) for all fl 0.
To satisfy (i), we choose

fl -e. min
4 Ig(X)l

when g() is real, and

:= ge. rain
g() + g()l g(X). g()

when g() is complex. Then it is easily verified that A(S)pm < e. This completes the
proof.

Remark 4.7. When the matrix Q(z) of analytic functions has the propeay that Q()
Q(z), its determinant p(z) also has that propey. This implies that is a zero of p(z) of
multiplicity k if and only if is a zero of p(z) of the same multiplicity. Note also that if
g() g(z) and g() is complex, the reduction process described in the proof of Proposition
4.6 reduces the multiplicity of both the zeros and to 1 in only one step. Although in general
a perturbation matrix A (s) of degree 2 is needed to fix this problem, this matrix handles both
zeros and at the same time.

Remark 4.8. Corollary 4.3 and Proposition 4.6 are formulated in a ve general con-
text of matrices over analytic functions, but in the next section they are only used for a

ve specific case. It is clear that for the time-delay system coesponding to the point
E (A(s), B(s), r) , the matrix (zl A(e-Z)) is ve impoant for its stabilizability
propeaies. Therefore the results of this section are applied to the case Q(z) (zI A(e-Z))
and g(z) e-z. Then clearly g’() -re-z 0 for all C. In this perspective, Propo-
sition 4.6 describes how the matrix A(s) has to be peaurbed within the noed ring [s]
in such a way that (zI (A(e-z) + A(e-Z))) satisfies the condition of Corolla 4.3.

5. Approximation by stabilizable time-delay systems. In this section, the second and
final pan of our genericity result is proven. We show that the subset S of V, consisting of all
parametrizations of stabilizable time-delay systems, is a dense subset of V. This means that in
any arbitra small neighborhood of a point E , coesponding to a nonstabilizable time-
delay system, there is a point E S c that describes a stabilizable time-delay system. In
this section such an approximation by stabilizable time-delay systems is constructed explicitly.

The main idea of the proof is as follows. Let a point E (A(s), B(s), r) be
given such that the coesponding time-delay system is not stabilizable. First of all it may be
shown (use, e.g., Corollary 2.3) that for all matrices A(s) [s], the analytic function
fi(z) det(zI (e-Z)) has only a finite number of zeros in C+. Using Rouch6’s theorem,
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Corollary 4.3, and Proposition 4.6, it is possible to prove that for every e > O, there exists a
matrix A(s) R[s] such that IIA(s) Ae(s)llpm < g and

(32) Yz 6 C+ rank(z/- A(e-rZ)) < n === rank(z/- A(e-rZ)) n 1].

So, in all points z 6 C+ where the matrix (zI A(e-Z)) loses rank, it loses only rank 1. This
loss ofrankhas to be compensatedby the matrix B(s). Therefore this matrix has to be perturbed
in such a way that the perturbed version B(s) satisfies the inequality B(s) B(s)llpm <
and is such that

(33) Vz 6 C+ rank(z/- Ae(e-rZ)) < n rank(z/- Ae(e-rz) Be(e-rZ)) n].
Since the analytic function p(z) det(zI A(e-Z)) has only a finite number of zeros
in the closed right half plane, it is possible to satisfy this condition. In this way we find a
stabilizable time-delay system E (A(s), B(s), r) such that dr(E, E) < e, and the
proof is complete.

The rest of this section is devoted to a detailed elaboration ofthe scheme ofthe proof given
above. The first lemma (which can be seen as a direct consequence of Corollary 2.3) describes
the location of the zeros of the analytic function p(z) det(zl A(e-Z)) corresponding to
the square polynomial matrix A (s).

LEMMA 5.1 (see [7, p. 18]). Let A(s) N[s]nn and r > 0 be given. Then the analytic
function p(z) det(zI A(e-rZ)) has only afinite number ofzeros in the closed right half
plane C+. Moreover, all the zeros ofp(z) in C+ are located within the semi-disc

(34) D "= {z 6 C[ Re z > 0 and Izl < I[A(s)l[pm}.

In Lemma 5.1, the role of the right half plane C+ is not crucial. By shifting to the left
and to the right it is possible to show that p(z) det(zI A(e-Z)) has a finite number of
zeros in any arbitrary right half plane.

In the proof of the main results of this section, we often assume that the function p(z)
det(zI A(e-Z)) has no zeros on the boundary ofC+, i.e., p(z) has no zeros on the imaginary
axis. Fortunately, this is not really a restriction. By an arbitrarily small perturbation of the
matrix A(s) corresponding to p(z) det(zI A(e-rZ)), it is possible to shift the zeros of
p(z) in the horizontal direction. In this way we can prove the following result.

PROPOSITION 5.2. Let A(s) IR[s]nx and r > 0 be given. Let e > O. Then there exists
a polynomial matrix A (s) N[s]n satisfying thefollowing properties:

(i) A (s) A (s)llpm < e,
(ii) deg(A (s)) deg(A (s)),
(iii) the characteristicfunction pl (z) :-- det(zI A (e-Z)) has no zeros on the imag-

inary axis.
The next theorem is a restatement of a well-known result from complex analysis. It plays

a crucial role in the rest of this section because it describes how small perturbations of an
analytic function influence the location of its zeros.

THEOREM 5.3 (Rouch6’s theorem (see, e.g., [15, Thm. 10.43])). Let f and g be two

functions that are analytic inside and on a Jordan curve ,f Suppose that f and g have no
zeros on J. Denote by Nf and Ng the total number ofzeros off and g inside f also counting
multiplicities. Then

(35) [Vz J" If(z)- g(z)l < If(z)l === Ng NU.
Let ,7 be a Jordan curve, and let f and g be two functions satisfying the conditions of

Theorem5.3. Define 3 "= min{If(z)llz 7}. Thentheconditionlf(z)-g(z)l < 3 implies
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that f and g have the same number of zeros inside 3". This observation is exploited in the
next lemma.

LEMMA 5.4. Let A(s) IRis]nn and r > 0 be given. LetJ be a Jordan curve in C+ such
that p(z) det(zI A(e-Z)) has no zeros on J. Then there exists an > 0 such thatfor
all polynomial matrices fit(s) IR[s]n satisfying IIA(s) (S)llpm < , the characteristic

function [(z) det(zI .(e-Z)) corresponding to (s) has the same number of zeros
within ff as p(z) (counting multiplicities) and no zeros on f

Proof Define p,.(s, z) := det(zI A(s)). Then p,.(s, z) IRis, z], and the degree of
p,.(s, z) in z is n. Define

(36) 3 min{lp(z)l z

and M "= 1 + max{lzl z J}. Now apply Proposition 2.7. Choose an Y > 0 in such a way
that for all matrices (s) 6 [s]n satisfying IlA(s) (s)llpm < g, the following inequality
holds:

M-1
(37) IlPc(S, z) -/3.(s, z)llp < 3M+1 1"

Here/3,.(s, z) denotes the characteristic polynomial det(zl , (s)) of , (s), which is also of
degree n in z. We show that for the claim of Lemma 5.4 holds.

Let fi,(s) 6 [s]nn be such that IIA(s) fi,(s)llpm < . First apply Lemma 2.6 to
r(s, z) := p,.(s, z) .(s, z) and use inequality (37). In this way we obtain

(38) Yz C/, Izl _< M" Ip(z)-/3(z)l

So in particular Ip(z) -/3(z)l < 3 for all z
(Otherwise there would be a ) 6 J such that IP())I < 3, which contradicts definition (36).)
Finally, since both p(z) and/3(z) are analytic functions without zeros on ,7, Rouch6’s theorem
and formulae (36) and (38) imply that p(z) and/3(z) have the same number of zeros inside
the Jordan curve J (counting multiplicities).

Lemma 5.4 indicates that small perturbations of the matrix A (s) affect the zeros of p(z)
only slightly: they cannot cross the Jordan curve J. The idea is now to perturb A(s) in such a
way that the multiple zeros of p(z) inside 3" become simple without changing the total number
of zeros inside J. In this approach, Rouch6’s theorem (in the disguised form of Lemma 5.4)
again plays an important role.

PROPOSITION 5.5. Let A(s) ]R[s]nn and r > 0 be given. Let f be a Jordan curve in
C+, and assume that p(z) det(zI A(e-Z)) has no zeros on ,7. Choose g > 0 such that
Lemma 5.4 is satisfied. Let Np denote the total number ofzeros of p(z) within J, counting
multiplicities. Thenfor all e (0, g) there exists a matrix (s) I[s]n such that

(i) Ila(s) a(s)llpm < e,

(ii) deg(,(s)) < max(deg(A(s)), 2),
(iii) the analytic function (z) det(zI A(e-rZ)) has Np zeros within ff and all

these zeros are simple.
Proof Let e 6 (0, Y). Then it follows from Lemma 5.4 that for all (s) 6 [s]

satisfying [IA(s) (s)llpm < e < , the number of zeros of/3(z) det(zI (e-Z))
inside J is equal to Np. Let Lp denote the number of simple zeros of p(z) within 3". The
proposition is proved with the following induction argument:

i 6 {0, Np Lp} 3Ai(s) [s]nxn such that

(1) IIA(s) Ai(s)llpm < e,
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Im-axis

Re-axis

FIo. 5.1. Location ofthe zeros inside a Jordan curve

(2) deg(Ai(s)) < max(deg(A(s)), 2),
(3) the analytic function Pi(Z) det(zI Ai(e-rZ)) has at least Lp -!- simple zeros

within if, i.e., Lpi >_ Lp -t- i, where Lpi denotes the number of simple zeros of Pi (Z) enclosed
by ft.

When 0, this is trivial. Choose A0(s) A (s).
Induction step. Suppose that for certain {0, 1 Np Lp 1 we have found a

matrix Ai(s) satisfying (1)-(3). If Lpi >_ Lp -+- + 1, choose Ai+l(S) Ai(s), and we are
ready.

Next assume that Lpi Lp -t- i. Since < Np Lp, we know that at least one of the Np
zeros of Pi(Z) inside ff is a multiple zero. Let ;k.j, j 1 }, denote all distinct zeros of
pi (Z) in ,7. Then there exists a p > 0 such that the circles C.j defined by

(39) Cj {z C llz- ;kjl-- p}

neither intersect one another nor the Jordan curve ff (see Figure 5.1). Apply Lemma 5.4
to each of these circles C.j. Then for all j 1 , we find an fj > 0 such that for
all .(s) [s]nn, the inequality IIA(s) ,(s)llpm < j implies that pi(z) and/(z)
det(zI A(e-Z)) have the same number of zeros within Cj and no zeros on C.j. Define
:= min{fj j 1 }.

Assume, without loss of generality, that k is a multiple zero of pi (Z). Apply Proposition
4.6 to Q(z) (zl Ai(e-rZ)) with g(z) e-rz and . .1. Clearly g’(k) -re-rk 5 0,
so there exists a polynomial matrix A(s) ][s]nxn, with deg(A(s)) < 2, in norm bounded
by

( 1 )II/X(S)IIm < min ,
2--T" e

and such that/3(z) det(Q(z) + A(e-Z)) has only a simple zero in z kl. We show that
Ai+l(S) :-- Ai(s) -Jr- A(s) meets the requirements (1)-(3), with replaced by + 1.
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(1) and (2) are very straightforward:

IIA(s) Ai+l(s)llpm IIA(s) Ai(s)[[pm -l-- IIAi(s) Ai+l(S)[lpm
2i- 1 1 2i+1- 1

<-- 2i
q- 2--]-. 2i+1

",

and deg(Ai+l(S)) < max(deg(Ai(s)), 2) < max(deg(A(s)), 2).
(3) Since IIAi+l(S) Ai(s)llpm < , we can apply Lemma 5.4 to each of the circles Cj

defined in (39) separately. In this way we determine that for all j 6 1 }, the number
of zeros of Pi+l(Z) within Cj is equal to the number of zeros of pi(z,) within Cj (counting
multiplicities). This implies that the tpi circles containing a simple zero of pi (Z) also contain
exactly one (simple) zero of Pi+l (Z). Moreover, the multiple zero ,1 has become simple by
construction, and thus

Lpi+t >_ Lpi + Lp -k- + 1.

This completes the proof of the induction argument. The correctness of Proposition 5.5
follows immediately by taking (s) ANp-L,,(S). I-]

Proposition 5.5 shows that the matrix perturbations introduced in Proposition 4.6 can be
used successively to reduce the multiplicity of zeros to 1. Rouch6’s theorem guarantees not

only that the total number of zeros within the Jordan curve 3" remains constant but also that
simple zeros remain simple. Combining Propositions 5.2 and 5.5, we can finish the first part
of the proof as indicated in the introduction of this section by an appropriate choice of the
Jordan curve J.

THEOREM 5.6. Let A(s) [s]nn and r > 0 be given. Thenfor all e > 0 there exists a
matrix Ae(s) ][s]n such that

(i) IIa(s) a(s)l[pm < ,
(ii) deg(A(s)) < max(deg(a(s)), 2),
(iii) V) 6 C+ rank()I A(e-Z)) > n 1.

Proof Let e > 0. Choose according to Proposition 5.2 a matrix Al(s) ][s]n,
and such that Pl(Z)of the same degree as A(s), satisfying IIA(s) Al(s)llpm < ,

det(zI A(e-Z)) has no zeros on the imaginary axis.
Define R := A (s) pm "-[- and the Jordan curve ,,7, as depicted in Figure 5.2, by

(40) ff := {z 6 C (Re z 0 and zl < R) or (Re z > 0 and zl R)}.

So, according to Lemma 5.1, all zeros of pl(z) det(zI A l(e-rZ)) in C+ are located
inside the Jordan curve ,,7. Let Np denote this number of zeros of pl (z) within ff (counting
multiplicities). We choose g > 0 such that Lemma 5.4 is satisfied and apply Proposition 5.5

min(1 e, g). Then we find a matrix Ae(s) [s]n" such thatwith g

min(1 , g) < e(1) Ilal(s) ae(s)llpm <_
(2) deg(a(s)) <_ max(deg(a(s)), 2),
(3) p(z) det(zI A(e-Z)) has Np zeros within J that are all simple.
Clearly, the matrix A(s) satisfies both (i) and (ii), so we have to prove only (iii). Since

]lA(s)llpm < ]]A(s)llpm + , Lemma 5.1 implies that p(z) has no zeros in %- outside J.
Moreover, since [lAx(s) Ae(s)[lpm < , we know from Lemma 5.4 that p(z) has no zeros

on J. Therefore all zeros of p(z) in C+ are located within J. According to (3), all these
zeros are simple and thus we have

(41) Vz c+. o :/: 0].
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FIG. 5.2. The Jordan curve

Now, let ) 6 C+, and assume that rank()I Ae(e-Z)) < n. Then Pe()) det()I
Ae(e-Z)) 0, and thus according to (41), P’e ()) 5 0. Applying Corollary 4.3 to the matrix
(zl A(e-Z)), we obtain

rank (,kI Ae(e-rZ)) n 1.

This completes the proof [3

In the second part of this section we are concerned with perturbations of the matrix B(s).
Suppose that a point E (A(s), B(s), r) 6 1 is given. First perturb A(s) in such a way
that for A(s) conditions (i)-(iii) of Theorem 5.6 are satisfied. From Lemma 5.1 it follows
that the analytic function pe(z) det(zI A(e-rZ)) has only a finite number of zeros in
C+, say 1 )k. We know that for each {1 k}, rank()iI Ae(e-i)) n 1,
and therefore the left-kernel of the matrix (iI A(e-i)), i.e., the linear subspace of C
consisting of all row vectors xT such that x. ()iI Ae(e-Zi)) 0, is 1-dimensional.

T C/So for each 6 1 k}, this left-kernel is spanned by one row vector v
_

Now
(iI Ae(e-zi) B(e-Zi)) has rankn if and only if

(42) v. B(e-rzi) 5 O.

So, to achieve stabilizability, we have to perturb B(s) in such a way that for the perturbed
version Be(s) the following holds:

Be(e-r)i(43) i G 1 k} l) O.

To find such a perturbation of B(s), we first look for a vector b that is not perpendicular
to a given finite set of vectors.

LEMMA 5.7. Let the column vectors Vl v C be given, and assume that they are
all nonzero. Then there exists a vector b ]tn such that

.bO.’v’i {1 k} 1)
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Proof. First define for all 1 k the linear spaces

-o].V/ :={x ERn Ivi "x

Since all vectors U are nonzero, the sets V/are linear subspaces ofRn, with dimension smaller
than or equal to n 1. This implies that each Vi is a nowhere dense subset of ]R Application
of Baire’s category theorem (see, for example, 15, Thm. 5.6 and Rem. 5.7]) yields

k

i=1

Intuitively, the result of Lemma 5.7 is clear. The vectors Vl v correspond to linear
subspaces V1 V in IR of dimension smaller than or equal to n 1. Now we simply have
to pick a vector b E R that is not an element of one of these subspaces V1 V. Since we
only consider a finite number of subspaces, this is a rather easy task.

Lemma 5.7 makes it possible to find a perturbation of the matrix B(s) that is suitable for
our purpose. This result is stated in the next lemma.

LEMMA 5.8. Let the vectors U1 Vk C and bl b C be given. Assume that
for all 6 1 k} vi 1. Thenfor all e > 0 there exists a vector R such that

(i) II/ll < ,
(ii) Vi E {1 k} U (b -- i) O.

Proof Let e > 0. Choose, according to Lemma 5.7, a vector ?, IR such that yr. ?’ # 0
for all/ {1 k}. If for all/ {1 k} we have l). be O, then/ 1/2e. satisfies

T 1,
ItIt

the claim. Otherwise, choose a p (0 min{Ivi bil v. bi O, k}), and define

1
/ . min(e, p). -. ,.

T. bi O, thenThen (i) is clear: [lfll[ <_ g e. < e. To prove (ii), let E 1 k} If v

T min(, p) - O.U (bi-k- ) U -" (V)" I111
On the other hand, if v bi 5 O, then

1
lye. (bi + fl)l [vbi -1- vl >_ ]vbil- Iv/l _> p -IIv/ll. II/ll _> p p > 0.

So, in either case, v. (bi
At this point, the proof outlined in the introduction of this section is almost complete. We

have only to state and prove the main result.
THEOREM 5.9. Let 52 (A(s), B(s), r) 6 ]2 be given. For all e > 0 there exists a point
(f (s), (s), ) ]2 such that

(i) dv(52, 52) <
(ii) deg(/(s)) < max(deg(a(s)), 2) and deg(/}(s)) deg(B(s)),
(iii) the time-delay system corresponding to 52 is stabilizable, i.e.,

Vz 6 C+" rank(z/- f(e-z) [(e-Z)) n.

Proof Let e > 0. First apply Theorem 5.6 to A(s), and choose a matrix A(s) R[s]
such that

(1) IIa(s)- ftCs)llpm
(2) deg((s)) < max(deg(A(s)), 2),
(3) Vz E C+ rank(z/- ft(e-Z)) > n 1.
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According to Lemma 5.1, the function /3(z) det(zl A(e-Z)) has only a finite
number of zeros in C+, say hi hk. Only in these points, (zl fi,(e-Z)) loses rank, but
still rank(z/- A(e-Z)) n 1. So the left-kernel of (zI A(e-Z)) is one-dimensional for
all z 6 {hi hk }. Choose vectors vl v of norm 1 in Cn, spanning these left-kernels:

’v’i {1 k} span(v/) {x C IxT. (iiI ff(e-rLi)) 0}.

Denote for all 6 k} the first column of B(e-zi) by bi. According to Lemma 5.8,
and V (bi -at- 16) 5k 0 for all 1 k.there exists a/3 6 R such that II/ < e

Define B (s) as the sum of B(s) and the n x m matrix (13 0) consisting of the column/3,
completed with zeros"

B(s) B(s) + (fl I0).

Then (i) and (ii) obviously hold, and we need to show only that ((s),/(s), r) satisfies
(iii).

For this, let z 6 C+. If z {hi h}, then rank(z/ (e-Z)) n, so certainly
rank(z/- (e-z) [(e-Z)) n.

Otherwise, suppose that z hi for certain 6 1 k}. Let x 6 C be such that

(44) xT (hil fi,(e-z’) (e-r;ki)) O.

Hence, xT is an element of the left-kernel of (hi I d(e-rXi )), and there exists an ot e C such
that x o vi. Now the first column of/ (e-rxi is bi + fl, and

0 XT (bi q- fl) otv. (bi if- fl) or. [v. (bi if- fl)].

We conclude that o 0. This completes the proof.
From Theorem 5.9 it follows directly that the subset S of V, consisting of all parametriza-

tions of stabilizable time-delay systems, is a dense subset of V. Note that the conditions
on the degrees of A (s) and B (s) are essential. According to Theorem 5.9, it is possible to
construct a sequence of time-delay systems (]i) cxz

i=1 (Ai(s), Bi(s), "gi)i=l converging to
Z (A(s), B(s), r) (in the sense of 2) with the property that

Vi N" deg(Ai(s))< max(deg(A(s)), 2) and deg(Bi(s))- deg(B(s)).

This means that to achieve stabilizability, we have to perturb only a finite number of all
parameters describing the original system Z. Construction of a sequence of stabilizable
systems converging to E, but with an increasing degree in s, is of no use for our genericity
result because this requires systems with time-delays of constantly increasing length. Since
we can always obtain a stabilizable system using perturbations of an a priori given degree, the
result of Theorem 5.9 also holds within the framework of so-called inductive limit topologies,
mentioned at the end of 2.

At this stage, our conjecture on the genericity of stabilizability for time-delay systems is
reduced to a simple corollary from Theorems 3.1 and 5.9.

THEOREM 5.10. Time-delay systems of the form (5) are generically stabilizable in the
following sense: the subset S of the parameter-space , consisting of all parametrizations
E (A(s), B(s), r) oftime-delay systems satisfying

Vz 6 C+" rank(z/- A(e-Z) lB(e-Z))= n,

is an open and dense subset ofthe metric space V.
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6. Generalization to the case ofincommensurable time-delays. In 2-5, a derivation
of our genericity result is given for systems with commensurable time-delays. This restriction
was made only for notational convenience; the incommensurable delay case is not signifi-
cantly more difficult. In this section we point out that with exactly the same arguments as
before, the genericity result can also be proved for the more general class of systems with
incommensurable time-delays.

In the algebraic terminology, systems with k incommensurable time-delays, given by
rl rk, are modeled as systems over the ring ]t[s1 Ski where the indeterminate S

corresponds to the delay operator cri with time-delay ri. To apply a topological approach to
our genericity problem, first a parameter-space W (the incommensurable version of V) has to
be introduced. Denoting R[sl sk] by , V is defined as

V := {E (A, B, (’gl 75k)) A ,]nn, B ,]-nm, "gi C +(i 1 k)}.

In the same way as in the commensurable delay case, a matrix over ]1[s1 Skipq can be
seen as a k-dimensional sequence of p q matrices over , with only a finite number of
nonzero elements. So, application of an 1-norm is possible, and in this way Definition 2.1
may be generalized. In the same way, polynomials in more than two indeterminates can be
treated.

With these generalized definitions of the norms, the results of 2 remain valid. Most of
these results rely on the fact that for all z 6 C+: ]e-Zl _< 1. Since all time-delays "gi are
strictly larger than zero, we still have

(45) i {1 k} ’gi > 0 VZ Cq- le-riZl < 1,

and the same proofs may be applied. The only difficulty left is the result on the continuity of
the map X from a polynomial matrix to its characteristic polynomial. Here exponentials do
not play a role, but for this result the number of indeterminates is not significant at all, and
therefore it also holds in the incommensurable delay case.

The results of3 are easily generalized, as far as perturbations ofthe matrices A (s sk)
and B(s Sk) are concerned. Perturbations ofthe lengths ofthe time-delays are more com-
plicated. However, because of (45), all perturbations of time-delays can be treated succes-
sively. In each step (i 1 k), the exponentials e-z e-i-’z and e-ri+z e-z

corresponding to all the other time-delays except ri, are bounded above by 1 in absolute value
because we assume that z 6 C+. Therefore exactly the same techniques as in formula (22)
may be applied successively for each ri separately to arrive at the desired result.

Section 4 is already put in a general context, so here nothing has to be done. Note however
that in Proposition 4.6 only one time-delay is required to achieve an appropriate perturbation
of the matrix Q(z).

In the first part of 5 we are now dealing with analytic functions of the form

p(z) det(zl A(e-’z e-z)).

The assumption on the absence of zeros on the imaginary axis can be removed in almost the
same way as stated in Proposition 5.2. Trivially, Rouch6’s theorem is still valid, and it is also
easily seen that all zeros of p(z) det(zl A(e-z e-z)) in C+ are contained in a
compact subset of C+. Therefore, Lemma 5.4 still holds and the same process of succes-
sively reducing the order of the zeros to 1 can be used. Again, Rouch6’s theorem guarantees
that the total number of zeros in C+ remains constant and that simple zeros remain simple.
Moreover, the results of 4 imply that the condition on the degree of A (s Sk) is satisfied.
Perturbations of the matrix B(s) can be obtained in exactly the same way as described for the
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commensurable delay case. Therefore Theorem 5.9 may also be generalized to delay systems
with incommensurable time-delays.

Summarizing, we conclude that our genericity result for the stabilizability of time-delay
systems with commensurable time-delays also holds in the incommensurable delay case. This
final conclusion is stated in the last theorem.

THEOREM 6.1. Time-delay systems with incommensurable time-delays oftheform

2(t) A(Crl rl)x(t) q- B(Crl crl)u(t),

where cri (i 1 k) denotes the delay operator corresponding to a time-delay 75i, are
generically stabilizable in thefollowing sense: the subset ofthe parameter-space

]A2 {(A(s1 Sk), B(Sl Sk), (T1 Z’k)) A(Sl Sk) E ]1[S1 Skinn,
B(s1 Sk) ]1[S1 Sk]nxm and i {1 k} ri > 0},

consisting of all parametrizations E (A(s1 Sk), B(s1 sk), (’gl Tk) of time-
delay systems satisfying

Yz C+: rank(z/- A(e-rlz e-rkZ) B(e-rz e-kz)) n,

is an open and dense subset ofthe metric space W.

7. Conclusions. In this paper it was shown that time-delay systems with commensurable
or incommensurable time-delays are generically stabilizable. First, an algebraic approach was
used to model time-delay systems with point delays. For this class of systems, a topological
framework was introduced to formalize the concept of genericity. In this setting it was shown
that the set of stabilizable time-delay systems is an open and dense subset of the parameter-
space describing all time-delay systems. This means that stabilizability is a robust property;
it is preserved after small perturbations of the parameters. Moreover, a nonstabilizable time-
delay system can be approximated arbitrarily close by a sequence of stabilizable time-delay
systems. Therefore the property of stabilizability is very weak; it is generic in the sense
described above.
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OPTIMAL POSITIONING OF ANODES FOR CATHODIC PROTECTION*

L. STEVEN HOUr AND WEIWEI SUN

Abstract. We consider an optimal control problem that arises in cathodic protection. The control is the position of
a finite number of anodes, each with a prescribed current density. The goal is to obtain a desired potential distribution
on the cathode that will prevent or reduce cathodic corrosion. The existence of an optimal solution is proven. The
differentiability of the functional minimized is justified, and the equations satisfied by the derivative are established.
Then a numerical algorithm is proposed for computing the optimal position of the anodes. Finally, we present some
numerical results obtained by implementing the proposed numerical algorithm with a boundary element method.

Key words, optimal control, cathodic protection, nonlinear boundary value problem, gradient method

AMS subject classifications. 49J20, 49K20, 65K10, 65N30

1. Introduction. This article is motivated by the desire to reduce corrosion (caused by
chemical reactions) of ship propellers surrounded by sea water or of metal containers filled
with an electrolyte. The corrosion process can be significantly slowed by maintaining a critical
electrical potential on the portion of the structure surface to be protected. This portion of the
surface to be protected usually acts as cathodes. The rest part of the surface is either insulated
or anodes. The placement of a number of anodes on the structure surface could effectively
change the potential distribution on the surface. Thus one could attempt to adjust the current
density on the anodes and/or the location of the anodes to best match a desired potential dis-
tribution on the cathode. In light of this, mathematicians, scientists, and engineers have been
trying to use optimal control theory and techniques to design cathodic protection systems. For
instance, 13] contained a survey on this subject. Zamani and Chuang 12] studied a potential
matching problem by controlling the electrical current density on the anode. The models used
in 12], however, are essentially linear. Hou and Sun [7] discussed, mainly from an algorithmic
point of view, several control problems, including adjusting the positions of anodes, in order to
achieve a desired potential on the structure; nonlinear models as well as linear ones were em-
ployed. Amaya and Aoki [2] used discrete optimization techniques to handle optimal control
problems with hybrid controls; i.e., several controls are applied simultaneously. The controls
being used in the design of cathodic systems can be loosely divided into two categories. The
first is "value controls," i.e., the current density on the anodes or the density of point charges.
The second is "location controls," i.e., the location of anodes and/or location of point charges.
In this article, we will attempt to mathematically analyze optimal control problems with "lo-
cation controls" and devise some numerical algorithms that can aid the design of a cathodic
control system. The theories presented in this paper can be applied to a variety of cathodic
protection problems. Propeller and container protection serves as two concrete examples.

We assume the "corrosive fluid" occupies a physical domain f2 with a boundary F. The
domain can be finite as in the case of a metal tank containing an electrolyte (see Figure 1) or
infinite (but with a bounded boundary) as in the case of a ship body surrounded by sea water
(see Figure 2). The "corrosive fluid" in the former case is the electrolyte and in the latter is
the sea water. The electrical potential 4 in f2 is governed by the differential equation
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electrolyte

cathode

FIG. 1. An interior domain example: an electrolyte container.

propeller

anode

FIG. 2. An exterior domain example: a ship surrounded by sea water.

-div(a grad) 0 in

where the conductivity a has a positive lower bound.
For simplicity of exposition, we will deal only with interior problems. Since we will

use boundary element methods for computations, the treatments for infinite domains and
finite domains are essentially the same (see [7], [11] for details). For general theories and
applications of boundary element methods, see [4].

The boundary of the domain is divided into three parts: namely, the cathode Fc (the
surface to be protected), the anode toiN=l Fi (on which electrical current or potential is given),
and F0 (the insulated part).

On Fc, 4) satisfies the relation

(r -f() onFc,
On

where f is an empirical function that depends on the "corrosive fluid" and the cathode materials
(see [3]).

We assume that we have at our disposal a number of given electrical current sources
(anodes) that are to be connected to the boundary of f2, but the location of the anodes can
be adjusted, i.e., the location of Fi ’s, acts as control variables. Our task is to determine the
optimal location for Fi’s such that the resulting potential distribution on Fc best matches some
desired one. On each Fi, we have the boundary condition

Y Ui onF,
On
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which corresponds to the specification of the current density. This is the case for impressed
cathodic controls [7], 12] and is the case we will treat in this paper. In some other cases, other
types of boundary conditions may be specified instead of the current density, e.g., in the case
of a nonpolarizable electrode 13].

A mathematical description proceeds as follows. Let fl be a bounded open domain in
]2 and F be the boundary of . Assume F [u/N=I Fi] U FC F0. We assume that all
boundary segments are closed and they may intersect with each other only at the end points.
We assume that the boundary F is parameterized by the arc length coordinate s 6 [0, L] and
each Fi has a fixed arc length di > 0. Since each point on F is uniquely determined by its
arc length coordinate s, we will use s to denote, without confusion from the context, both
the arc length coordinate for the point and the point itself. Thus each Fi is determined by the
arc length coordinate ti of its center point. The location of all the Fi’s is the control variable,
i.e., the center position ti ’S constitute the control variable. Each ti is constrained to range on
a finite interval lag, bi]. Since the partition of F depends on t (tl, t2 tN), we rewrite
F [U/V=lF/(t)] U Fc U F0(t). Each segment F/(t) is centered at ti with a fixed arc length
di. Ic is fixed (independent of t) with a positive measure. We assume that each Fi (t) is

di diparameterized by s [ti , ti + -]. F0(t) F \ [Fc U (uiN=IF/(t))]. We assume that
dN di didl < al < bl < a2 < b2 < < aN < bu < (L -) and bi < ai+l for2 2 2

1 N 1 and that ai+l bi > di+di+l for 1 N 1 Recall that each ti2
is the center point of the th anode and the width of the ith anode di > 0; thus under these
assumptions, the situation of two anodes joining together is permitted, but overlapping of two
anodes is disallowed. We assume that each u is a given function in C(R) with a compact
support on the interval (-di di di di

T, -)" Thus the function s
has a compact support on Fi (t).

We are concerned with the following optimal control problem: seek a state b and a t 6 ]1N

with components ti [ai, bi ], N, such that the functional

frc )2(1.1) ,.7(, t) (b b0 dF

is minimized subject to the the constraint equations

(1.2) div(a grad q) 0 in

U (S ti) V S ti ti + on Fi (t) 1 N(1.3) a
On

(1.4) a 0 on Fo(t),
On

and

(1.5) a -f(4) on Fc.On

Here b0 is a desired potential distribution on Fc under which the corrosion rate is minimized.
The function f 6 C1() is given by either

(1.6) f(b) kt +/t3,

where k and are constants and k > 0, > 0 (see [7]), or

(1.7) f (dp) C3[ecl4) e-C:4)],
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where C1, C2, and C3 are positive constants (see [3]). If 0 in (1.6), the problem reduces
to a linear one. For f given by either (1.6) or (1.7), one can easily verify that there exists an
oe > 0 such that

(1.8) f’() > ot and f(O) O.

Note that the boundary conditions (1.3)-(1.5) can be written imo a unified form

cr -f(4) + fi(’, t)
On

with appropriately defined f and ft.
We will use a variational weak formulation (1.9) ofthe nonlinear boundary value problem

(1.2)-(1.5). We will utilize Sobolev spaces Hm(), HS(I-’i), HS(Fc), HS(1-’0), and HS(F).
The norms on these spaces are denoted by, e.g., ]lm, I1,,,;, and so on. For details, see
[1] and [5]. We restate the minimization problem as follows: seek a state 4 6 Hi() and
a t 6 1-I/N=l[ai, bi] such that the functional (1.1) is minimized subject to the the constraint
equation

fr grad grad dS2+ frc f(dP)gtdF

(1.9) N

/1].=(t)
ui(s-ti)ds ’ Hi(f2).

The nonlinear boundary value problem (1.2)-(1.5) is understood in the sense of (1.9). Of
course when the solution is smooth enough, (1.2)-(1.5) can hold in the classical sense.

Now we state a useful fact whose proof can be found in, e.g., [9]. The norm on Hi(f2)
defined by

IIllllx rl grade[2 dr2 + c b2 dl-" V b e HI()

is equivalent to the usual Hl(f2)-norm II1; i.e., there exist constants p > 0 and ?, > 0 such
that

(1.10) P 111121 >_ fo l gradl2 dr2 +or fvc 2 dF >Y 114llZ1 4 Hi(f2)

The rest of the paper is organized as follows. In 2 we prove the existence and uniqueness
of solutions to (1.9) so that the constraint equation is well posed. In 3 we show the existence
of an optimal pair (1, ) that minimizes (1.1) subject to (1.9). In 4 we establish the differ-
entiability of the constraint minimization problem so that a first-order optimality condition
is derived. In 5 we propose an algorithm for computing optimal solutions using gradient
methods. Finally in 6 we report some numerical results that demonstrate the effectiveness of
our theory and algorithm.

2. Existence and uniqueness of solutions to the constraint equations. We first exam-
ine the existence of a solution to (1.9), which is a partial differential equation with nonlinear
boundary conditions. In this section we assume that t is given; thus the boundary components
1-’i, N, are fixed. We will show that for f given by either (1.6) or (1.7), equation
(1.9) possesses a unique solution 6 H (f2). We point out that 10] studied general nonlinear
boundary value problems using a boundary integral method. It is possible to generalize the
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ideas of boundary integral methods in [10] to study (1.2)-(1.5) (then, equivalently, (1.9)).
For the case in which f is given by (1.7), existence and uniqueness results for (1.9) were
established in [8] by a variational method for an energy functional. For completeness we still
give a proof of existence and uniqueness, but the approach is different from that of [8] and
10]. Also, although we will restrict our attention to the physical boundary conditions (1.6)
and (1.7), it is possible to deal with more general nonlinear boundary conditions with our
methods.

LEMMA 2.1. X is afinite-dimensional Hilbert space whose scalar product is denoted by
(., .) and the corresponding norm by I" I. Let F be a continuous mappingform X into X with
thefollowing property: there exists an r > 0 such that

(F(), ) > 0 V X with I1 r.

Then there exists a c X such that

F()=0 and I1 _<r.

Proof See [5, p. 279]. [

LEMMA 2.2. Assume 6 HI() and s > O. Then esll LI(F). Moreover, there exists
a constant to, independent ofC, such that

e*11 dF < + IF] + e IFI < oo,

where I’l is the measure of F.
Proof The proof is based on an imbedding theorem for Sobolev-Orlicz spaces 1]. See

[8] for details. [3

LEMMA 2.3. Assume {n} C L2(Fc) is a sequence such that --+ almost everywhere
on Fc and

(2.1) ])c f()dF < B V /1,

where f is defined by (1.1) and B > 0 is a constant independent ofn. Then

and

f() dF _< liminf fr f(’) dr
c c

Proof See [81 or [61. [3

THEOREM 2.4. Assume each ui C(1-’i), 1 N. Then there exists a unique
qb H1(2) that satisfies (1.9). Furthermore, 49 C2(f2) C(-).

Proof We first show the existence of a 6 HI() that satisfies (1.9). Using (1.8) and
the mean value theorem we have

where is between 0 and . It follows from the last relation and (1.10) that

f a grade, grade dr2 + f f()dF> yllll V HI().
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Using the Cauchy-Schwarz inequality and trace theorems we obtain the estimate

/gi(S ti)ds </114111 Ilui(’- ti)ll0,ri ’v’ q5 E HI(),
i=1 i=1

where fl is a positive constant. By combining the last two estimates we deduce that for

r= p--F [ /N=I [I/g/("- ti)ll,Fi 21- 1] > Owe have

N

fcrgrad’grad49df2+frcf(dPldpdF-ilfr, ui(s-ti)ds
(2.2) .=

> 0 4 E H(g2) with Ilq[[ r.

Since Hl(fa) is separable, we choose a countable basis of Hl(fa) {7*i}i1. We set X
span{7,l 7*}. The inner product and norm on each X are defined by that of H()
restricted to X,. We introduce the mapping F X, --, X, defined by

(Fn(4)), ap,)= fcr grad4, grad , dS2 + fvc f()’ dF

N

-lf,Ui(S-ti)gtjds,.= l<_j<n.

It follows from (2.2) and Lemma 2.1 that the finite-dimensional problem

N

(2.3) fgraddpn.gradapd+fvcf(dpn)dF=ilfviui(x-ti)ds.= ll]tUzXn

has a solution )n Xn with a bound

Ilui(" ti)llo, ri -I-
Y

We can extract a subsequence of {4n }, still denoted by {4n }, that converges weakly to some

4 6 H (f2) as n -+ 0. Then {n also converges weakly in H x/2 (F), using a trace theorem.
By compact imbedding results, {qn converges strongly in L (1-’), and by extracting a further
subsequence, {q, converges pointwise almost everywhere. Now we examine the two cases
(1.6) and (1.7) separately. For f given by (1.6), using the strong convergence of {4n in L3 (I-’),
the obvious growth condition

]f(4)l < C(1 + 14l 3) ’ 4
and the well-known continuity properties ofthe N6myckii operator on Carath6odory functions,
we may pass to the limit in (2.3) to show that

N

frgrad’graddff2+frcf(dP)dF=lfiui(s-ti)ds.=
Then, using the denseness of CX() in HI() and the fact that 4lvc E L4(1-’c), we conclude
q satisfies (1.9). For f given by (1.7) we see that by setting 7t 4, in (2.3) we obtain

c
f(d?,), dF < Ilull0,rA ll4,ll0,ra

<_ Cllullo, va 114,111 _< C Ilull0,rA - {llull0,ra +
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By Lemma 2.3 we have

and

f() dr _< liminf frc f(n)n dr

lirn fro If(n) f()l dF 0.

Thus for each !/t cl() we may pass to the limit in (2.3) and obtain

fcrgrad’gradTzdg2+frcf()dF=fvA udF ’ cl()

Using the denseness of cl() in HI() and the fact that f() 6 LZ(Fc) (which follows from
Lemma 2.2), we conclude satisfies (1.9).

We briefly examine the regularity of the solution nl(2). If f is given by (1.6),
then trace theorems on f2 C IR2 imply that f(b) L (F) for all r > 1. If f is given by
(1.7), then Lemma 2.2 implies that f() L (F) for all r > 1. Employing elliptic regularity
theories, we see that W3/2’r (’2) for all r > 1, which in turn implies [re Wl’r (F) SO that

C(). Interior regularity results for the Laplacian equation implies e C2(g2). Thus
we have shown that there exists a solution HI() (q C2() f3 C().

To answer the question of uniqueness, we assume that and are two solutions to (1.9).
Then we have

cr grad( q). grad dS2 + frc [f() f()lP dF 0

Setting , we see that

cr
grad( )12 dg2 + Ire [f() f()]( q) dF 0.

Using the mean value theorem,

l or[ grad(- )12 dr2 + / f’(q)(- q)2 dF --0

for some between 4) and . Using (1.8), we see that

a[ grad( )[2 dff2 + o fc ( )2 dF _< 0.

Hence we deduce that grad(b q) 0 in g2 and (b ) 0 on Fc. This in turn implies
( q) 0 in f2; i.e., uniqueness holds.

3. Existence of an optimal solution. We have shown that for each fixed t, (1.9) has a

unique solution, which will be denoted by (t) in subsequent discussion. We are now
prepared to study the existence of an optimal t that minimizes the functional (1.1) subject to
(1.9).

THEOREM 3.1. Assume bt C l(]) with a compact support on 1-’i, 1 N. Then

there exists a (, ) 6 (I-IN_l[ai, bi]) x Hi(f2)that minimizes (1.1)subject to (1.9).
!
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Proof We first prove that the mapping t 4 (t), where 05 (t) is the solution of (1.9), is

continuous from H=l[ai, bi] into Hi(S2). Let t 6 H/N=I[ai, bi] be given. For each 3t 6 RN

we introduce

bt 4(t + 3t) 4(t).

Then t6t G H (-2) satisfies

a
gradqt grad v dfl + fro [f(b(t + St)) f(b(t))] v dr

N

/1"-- fi (t)
[li(S--ti--tti) Ui(S--ti)] v ds V V Hl(2)

di di ), and thus for 13tlHere we have used the fact that u (.) has a compact support on (-T, T
dismall enough, the support of ui(s ti ti) for s (ti+ti-g, ti+ti+) lies on Fi(t).

Using the mean value theorem we have

a
gradbt grad v d2 +frc f’(q)btv dr

N

/1fi’__ (t)
[ui(s-ti-’ti)-ui(s-ti)]uds ’ v G HI().

By setting v bt and using (1.8), (1.10), and a trace theorem, we see that

N

’llbtll2 IIqtll0,rc Ilui(’- ti 8ti) bli("
i=1

N

_< C ]lt6tlll Ilui(. ti ti) bli(" ti)llo, ri(t),
i=1

SO

N

IIbtlll C Ilui(’-ti-6ti) ui(’-ti)llo, ri(t).
i=1

Since each b/i is continuous, the right-hand side clearly goes to zero as 16t[ --+ 0. Hence,

i.e., we have shown that the mapping t v- 4(t) is continuous from 1-I__l[ai, hi] HI().
This in turn shows that J(4 (t), t) is continuous on the bounded, closed set l-I=l[ai, bi so

that J(4(t), t) has a minimum, attained at, say, i. Of course (i, 4(i)) minimizes (1.1) subject
to (1.9). The proof is completed by setting q 4 (i). [3

4. Differentiability and first-order optimality conditions. In this section, we will at-
tempt to characterize the optimal solution. The main result can be simply stated as follows:
the minimum is attained when each ’i is either on the boundary of [ai, bi or in the interior of
(ai, bi) with a vanishing th partial derivative.

THEOREM 4.1. Assume U CI(]]) with a compactsupport in 1-’i (t), 1 N. Then
the mapping t w- 4(t) is differentiablefort I-[Y=l(ai, bi). Furthermore, let i, HI() be
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the solution ofthefollowing equation:

(4.1)

grad/’i grad dS2+ Jrc f’())’i c dF
f

l(S ti)ap dsbt

(t)
V ape Hi(f2).

Then i, a(t)
Oti

Proof Let a t e I-I/U=l (ai, bi) be given. Since 4 (’) is continuous on 1-I/U=l[ai, bi] and
f is C 1, f’(q(t)) is continuous on Fc. Equations (1.8) and (1.10) imply that (4.1) is a
well-posed mixed Neumann-Robin-type boundary value problem, and there exists a unique
,ki ,ki(t) e Hi(f2) satisfying (4.1) and

(4.2) IlXilll < c(, Ul UN),

where C(4, U UN) is a constant depending on (4, U U N)-
For each nonzero , we introduce

(t + sei) b(t)
1/t i,

where ei is the th standard basis vector in ]N. Using the fact that U (’) has a compact
disupport on (--, -) we see that for e small enough, the support of ui(s ti ) for s

(ti + , ti + / ) lies on Fi (t). Thus the defining equations for 4(t + eei) and 4(t)
are given by, respectively,

r gradq(t + ei) grad vd +frc f(q(t + ei))v dF

N

jlfFj.= (t)
uj(s-tj-j) vds MvG Hi(f2)

and

cr gradq(t) grad v dr2 + frc f(4(t))v dF

N

jlfFj.= (t)
uj(s-tj) vds V v e HI().

(6j is the Kronecker delta.) Now we subtract the last two equations, divide by , and then
subtract (4.1). The resulting equation reads as follows:

(4.3)
f cr grad "gradvdS2+frc[f(q(t+eei))-f(c(t))e f’((t))i]v dr

d Fi(t)/
Ui(S--li--)__-- Ui(S--ti) IV ds

Note that

f(q(t+ei)) f(b(t)) f01 f’((1--S)q(t) + sq(t+ei))ds
q (t + fei) b (t)
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and

f’((1-s)b(t) + sp(t+ei))ds

lf"(b(t) + s(1-r)($(t+ei) b(t))) ds dr [q(t+ei) $(t)];

thus by adding and subtracting terms in (4.3) we have

(4.4)

If f is given by (1.6), then f"(p) 6q so that

{ fFcfolfo
1/4

s If"(p(t) + s(1-r)((t+ei) b(t))) ds  rl4 r ]
_< C II(t) / s(1-r)((t+e) -q(t))ll

_< C {ll,(t)lla / II,(t /

If f is given by (1.7), then f"() C3[C21ec’* Ce-c2. so that from Lemma 2.2 we infer
that

s f"(p(t) + s(1-r)(cp(t+ei) p (t))) ds drl4dI }
1/4

_< el1 / IFI / eCllP(t)+s(1-r)(dP(t+ei)-eP(t)ll)] 1/4

_< C [1 + IFI + eC{ll(t)lll+llcb(t+eei)]l}] 1/4.

Thus by setting v , in (4.4) and using (1.8) and (2.1) we obtain

Ui(’--ti--5) Ui(’--ti)

0,Fi(t)
IIo, ri(t)

+ K(llq(t)ll, IIq(t-I-ei)ll)IIq(t+ei)--(t)llL4W)IlXillL’Wc)II,IIL4w),

where

K(llq(t)ll, IIb(t+ei)ll)

max {C [1 + Irl + ec (ll(t)ll+llP(t+’ei)ll)] 1/4
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Trace theorems imply that

IIb(t+eei) b(t)llL4(rc) _< IIb(t+eei) b(t)llL4(r) _< Cllb(t+eei) b(t)lll,

]lZillL4(rc) < [IXillLar) <_ cllxilll and [[ellL4(r,c) <

so that

Ui(’--ti--(-) Ui(’--ti)
I1 II1 C u (. ti

(4.5) -e 0,Fi(t)

+ C K(llb(t)lll, IIqS(t+eei)l[1)IIb(t + ei) b(t)lll IlZil[1

Since each U E C1(]1), the first term on the right-hand side of (4.5) clearly goes to zero as
e 0. Since the mapping t - (t) is continuous from I-I/N=I [ai, bi] HI(), we see that
the quantity K(llq(t)lll, Ilq(t/eei)lll) is bounded as e 0 and 114(t / eei) q(t)lll --+ 0
as e -- 0. We recall (4.2) that ]l;i II1 is bounded. Hence we conclude that the right-hand side
of (4.5) goes to zero as e --+ 0, i.e.,

Thus we have shown that the mapping t - (t) is differentiable from 1--I/= (ai, bi) H ()
and 0(t) i. []

Oti
Integration by parts yields that ,i is the solution of the following linearized boundary

value problem:

div(r grad Zi) 0 in

0)

On --Ui (S ti V S ti -, ti q- on 1-’i(t),

0n -, tj + on j=l N,

cry-0 on Fo(t),

and

cr -f’(b(t))Zi on Fc.
On

THEOREM 4.2. Assume that (q, {) minimizes (1.1) subject to (1.9). Then for each i, i
either is on the boundary of [ai, bi or satisfies the equation

()(i (O)i dr o,

where i is the solution of (4.1) with t .
Proof Since (, ) satisfies (1.9), we have q 4(). Define E(t) ff(q(t), t). We

have shown in previous lemmas that 4(’) is continuous in I-[=1 [ai, bi] and differentiable in

I-I= (ai, bi). Minimizing (1.1) subject to (1.9) is obviously equivalent to minimizing/C over
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I-I/N=l[ai, bi ]. Thus i is a minimum of/C. Hence, we have that for each i,/’i is either on the
boundary of [ai, bi or in the interior of (ai, bi) with

Oti

Differentiating/C(.) by the chain rule yields

Oti

where i satisfies (4.1) with t . Thus if ’i is in the interior of (ai, bi), then

Remark (three-dimensionalformulation). The analysis we have done for the two-dimen-
sional case can be generalized to the three-dimensional case in a straightforward manner by
replacing the function space Hi(f2) with WI,P(2) for some p > 3. (Then Lemma 2.2 holds.)
In the three-dimensional case, each center point on the ith anode Fi is parameterized by (xi, yi).
Let t (xl, yl, x2, y2 Xu, YN). Then we obtain essentially the same results as in the
two-dimensional case.

Remark (exterior problems). For infinite-domain problems, we assume the following
condition at infinity:

4(x) b as Ixl ,
where b is a constant. Then the results of this paper hold equally well.

5. Gradient methods. Grandient methods for minimizing/C (t) with variable step lengths
are given as follows:

tn+l t" p. VK(ff).

This algorithm applied to the problem (1.1)-(1.5) takes on the following form:
a) Choose a t( 6 I-Iiu (ai, bi).
b) For n > 0, solve for q(") b(") (t(")) from

(5.1) div(a grad4() 0 in

(5.2) a O--- Ui(S -, 4- on Fi(t(")), ’ i,

(5.3) a
On

and

(5.4) cr -f((")) on Fc.On

c) Solve for In) for each 1 N from

(5.5) div(a grad ,I") 0
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(5.6)
On - + on F (t)),

(5.7) O" - +- onFj(t()), Yj#i,

(5.8)

and

(5.9)

d) Update t by

r 0 on r0(t(n)),
On

0)In) f,(())L()---i on Fc.

/[n+l) t{n) /On fFc ()(n) *0)iIn) dF,

if t,!n+l) > bi, set t{n+l) bi,

if t{+x) < ai, set t{n+l) ai.

e) n + - n; go to b).
Remark. A stopping criterion has to be used in actual implementation.
Remark. Standard convergence results for the constrained gradient method requires that

the step length p, be sufficiently small. However, the convergence will be very slow if the step
length is chosen to be too small. In our implementation, we use the test-and-trial strategy to
ensure the locations will improve by at least a fixed tolerant distance per iteration so that the
number of iterations needed to obtain an optimal solution is typically small. Effective choices
of p also depend on the dimensions of all the variables involved. Boundary element methods
are employed to implement the above algorithm, and if necessary, the mesh is adjusted at each
iteration so that each set of new locations form part of the set of all grid points.

Remark. In step d) in the algorithm, (n+x) is calculated and then projected into the
admissible set. In our experience with several examples, such a projection is not needed
when the step size and initial guesses are chosen properly so that our constrained optimization
problem can often be treated as an unconstrained optimization problem.

6. Computational examples. We tested our algorithm with an electrolyte container
problem. The metal container is assumed to occupy a rectangular domain f2 0 < x <
3, 0 < y < 2 (see Figures 3, 6, and 9), and the container is filled with an electrolyte. The
cathode Fc is on the bottom boundary described by the coordinates 1 < x < 2 and y 0.
We investigated several cases: single-anode control (Example 1), double-anode control with
different densities on the top and right segments (Examples 2a and 2b), and double-anode
control on the top segment (Example 3).

Example (single-anode control on the top segment). We want to place an anode of
width 0.4 on the top boundary. The center point (xc, 2) of the anode segment is constrained
to the interval 0.2 _< x. < 2.8. The current density on the anode is chosen to be u
-20cosZ(2.5(x x.)) for x 6 (xc 0.2, Xc + 0.2). We use the empirical function f()
4 + 0.44)3. The desired potential distribution on Fc is 40 -1.

Our initial guess of x is 0 2.6 (Figure 3). After four iterations using the gradientX

algorithm, we arrive at x4 1.5, which corresponds to the center point on the top boundary
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anode

cathode

FI6. 3. Initial guess ofthe anode position on the container (Example 1).

anode

cathode

FIG. 4. Optimal anode position (Example 1).

(Figure 4). The step lengths in the gradient method had to be adjusted properly to ensure fast
convergence. In Figure 5 we plotted the initial and final potential distributions on Fc. We
could verify that xc 1.5 is indeed the minimum. This result is also consistent with intuitive
explanations by chemists.

Example 2a (double-anode control on the top and right segments). We want to place two
anodes ofwidth 0.4 on the boundary, one on the top boundary with a center point (Xc, 2), where
0.2 < xc < 2.8, and another on the right boundary with a center point (3, y), where 0.2 <
y < 1.8. The current densities on the two anodes are chosen to be u 16 cos2 (2.5 (x Xc))
for x (Xc 0.2, xc + 0.2) and u2 -4 cos2(2.5(y yc)) for y 6 (y 0.2, yc + 0.2). The
function f and desired q0 are chosen to be the same as in Example 1.

Our initial guesses for the two anodes are x) 2.6 on top boundary and y0) 0.4 on
the right boundary (Figure 6). After four iterations using the gradient algorithm, we arrive
at Xc(4) 1.1 on the top boundary and yc(4) 0.6 on the right boundary (Figure 7). Again,
the step lengths in the gradient method had to be adjusted properly to ensure fast conver-
gence. In Figure 8 we plotted the initial and final potential distributions on Fc. We verified by
small perturbations ofthe anode locations that we indeed obtained a minimum with xc 1.1 on
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-2

-3
1.5 2

FIG. 5. Initial and optimal potential distribution on the cathode I’c (Example 1) (initial:

anode

----, optimal: ).

cathode
anode

Fro. 6. Initial guess ofthe anode positions on the container (Examples 2a and 2b).

anode

anode

cathode

Fro. 7. Optimal anode positions on the top and right boundary (Example 2a).
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-1

-2

-3
1.5 2

FIG. 8. Initial and optimal potential distribution on the cathode I’c (Example 2a) (initial: optimal: ).

anode anode

cathode

Fla. 9. Optimal anode positions on the top and right boundary (Example 2b).

the top boundary and yc 0.6 on the right boundary. This result is not an obvious fact.
Our algorithm and calculation proved to be useful in providing the optimal locations for the
placement of the double anodes.

Example 2b (double-anode control onthe top andright segmentsmdensities interchanged).
All the data are the same as in Example 2a, except that the two density functions are inter-
changed, i.e., u --4 COS2 (2.5(X--Xc)) for x 6 (Xc-0.2, Xc+0.2) and u2 16 cos2 (2.5(y-
yc)) for y (yc 0.2, yc + 0.2).

We use the same initial guess as in Example 2a (Figure 6). After nine iterations using
the gradient algorithm, we arrive at -(9) 2.6 on the top boundary and (9) 8 on theYc.X,
right boundary (Figure 9), which are different from the optimal positions that we obtained in
Example 2a. In Figure 10 we plotted the initial and final potential distributions on 1-’c.

Remark. The results of Examples 2a and 2b indicate that after we have found the optimal
locations for each anode, it is still important not to misplace the anodes with different current
density. [3

Example 3 (double-anode control on the top segment). We want to place two anodes of
the width 0.4 on the top boundary, one with a center point (x1, 2), where 0.2 < Xlc < 1.3,
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-2

1.5 2

FIG. 10. Initial and optimal potential distribution on the cathode Fc (Example 2b) (initial: optimal: ).

anode anode

cathode

FIG. 11. Initial guess ofthe anode positions on the container (Example 3).

and another with a center point (X2c, 2), where 1.7 < X2c <_ 2.8. The current densities on the
two anodes are chosen to be ua -16cosZ(2.5(x xa,.)) for x E (Xlc 0.2, Xlc + 0.2) and
u2 -4 cosZ(2.5(x XZc)) for x E (X2c 0.2, Xzc + 0.2). The function f and desired q0 are
chosen to be the same as in Example 1.

(0) 0.4 and -(0) 2.6 (Figure 11). AfterOur initial guesses for the two anodes are Xlc 2c
(7) 1.2 and (7) 1.6 (Figureseven iterations using the gradient algorithm, we arrive at x 1c 2c

12). Again, the step lengths in the gradient method had to be adjusted properly to ensure fast
convergence. In Figure 13 we plotted the initial and final potential distributions on Fc. Clearly,
the two anodes at their optimal positions join together at the common end point (1.4, 2) on
the top boundary. The common end point of the two anodes has to be insulated in order to
maintain the two anode system.

Remark. In Examples 2a and 3 we allow the anodes on different target segments to join
together. In the case of Example 2a the optimal solution yields two disjoint anodes. In the
case of Example 3 the optimal solution yields two anodes that join together at a point on the
top boundary. When this happens, we can simply combine the two anodes to form a larger
anode with different density profiles on the two sections of the combined anode. However, to
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anodes

cathode

FIG. 12. Optimal anode positions on the top and right boundary (Example 3).

-2

-3
1.5 2

FIG. 13. Initial and optimal potential distribution on the cathode Fc (Example 3) (initial: optimal: ).

maintain the combined (piecewise) density function, one will still need two separate electric
sources. Inserting a thin insulator makes it easier to generate the required electric density
profile on each anode. In most practical applications, one usually looks for optimal locations
for anodes in isolated segments and thus will not encounter the situation of joining anodes.
For instance, in the case of ship propeller protection, one wishes to place one anode near the
front and two near the rear end; thus the target segments for these anodes are far apart from
each other. Returning to Example 3, we may restrict the first anode to near the top left corner
(say, Xlc 0.4) and restrict the second anode to the right half of the top boundary. With such
restrictions, the two anodes will never join each other.

In all examples we have used boundary element methods (see [4], [7], [10]) to carry out
the algorithm proposed in 5, i.e., to solve the systems (5.1)-(5.4) and (5.5)-(5.9) repeatedly.
The calculations were performed on a SUN Sparc 2. Details for the boundary element method
and numerical examples for propeller protection and/or for hybrid controls can be found in [7].

Acknowledgments. The authors thank the anonymous referees for many useful com-
ments that have helped improve the results of this paper.
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AUGMENTED LAGRANGIAN-SQP METHODS FOR NONLINEAR OPTIMAL
CONTROL PROBLEMS OF TRACKING TYPE*

KAZUFUMI ITO AND KARL KUNISCH

Abstract. An augmented Lagrangian method with second-order update is developed and its relationship to the
sequential quadratic programming method is described. The rate of convergence proof depends on a second-order
sufficient optimality condition, which is shown to be satisfied for a class of nonlinear optimal control problems
of tracking type. Numerical examples are included which demonstrate the globalizing effect of the augmented
Lagrangian method.

Key words. Lagrangian methods, SQP methods, nonlinear optimal programming

AMS subject classifications. 49D, 65K

1. Introduction. The mathematical and, more specifically, the numerical treatment of
optimal control problems for nonlinear partial differential equations arising in diverse areas
of science has received an increasing amount of attention in the recent past. We mention
optimal control problems in phase field modeling [CH, H], in superconductivity [GHS], in
combustion, and, of course, in fluid dynamics. The numerical treatment of such problems
offers a multitude of open problems and the present paper addresses one such problem.

We study a class of optimal control problems for nonlinear partial differential equations
where the cost is oftracking type. The technique that we propose and analyze is the augmented
Lagrangian-SQP (sequential quadratic programming) algorithm as developed in [IK]. In this
method the differential equation is treated as a constraint which is realized by a Lagrangian
term together with a penalty functional. The resulting augmented Lagrangian functional al-
lows a rather straightforward characterization ofthe second derivative. We prove second-order
convergence rate of the algorithm and we also demonstrate this rate with numerical examples.
The second-order convergence rate depends upon a second-order sufficient optimality condi-
tion. We verify this second-order condition under variants of assumptions on the smallness
of the cost functional at the solution. While this analysis is to a certain degree specific for the
class of problems under consideration, the general principle becomes apparent: For optimal
control problems with cost functional oftracking type, smallness ofthe cost or the residue helps
(guarantees for the problems in this paper) the second-order sufficient optimality condition to
hold.

Another important aspect of this research is the global behavior of the algorithm in nu-
merical experiments. We did not implement any globalization strategy and yet convergence
was observed even for very unfavorable start-up values. The cost functional for the augmented
Lagrangian-SQP algorithm involves a penalty term. We point out that the specific size of the
penalty parameter is not too significant (details are given in 5) unless it is chosen to be zero,
in which case convergence generally fails. Let us also mention that the approach of this paper
is quite different from that chosen in [CH, GHS, H], for example, which is based on iterative
techniques for solving the necessary optimality system.

This paper is organized in the following manner. In 2 relevant results on the augmented
Lagrangian-SQP technique are summarized. The optimal control problems and the associated
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Lagrangian framework are developed in 3. The second-order sufficient optimality condition
is analyzed in 4 and numerical test examples are given in 5.

2. Review of augmented Lagrangian-SQP methods. In this section results on aug-
mented Lagrangian-SQP methods which are relevant in the following sections are summa-
rized. We refer to [Be] for further details concerning such methods for finite-dimensional
problems and to [IK] for infinite-dimensional problems.

We consider

min F (x) subject to e(x) O,

where F X --+ N, e X -- Y, with X and Y Hilbert spaces. We make the following three
assumptions.

(H1) There exists a (local) solution x* of (79), F and e are twice continuously Fr6chet
differentiable, and the second Fr6chet derivatives are Lipschitz continuous in a neigh-
borhood V(x*) of x*. The Fr6chet derivative of any function with respect to x is
denoted by a prime. The Lagrangian Z2 X Y --+ N associated with (79) is defined
by

.(x, )) F(x) + (), e(x))y,

where (., .) y stands for the inner product in Y. An element .* 6 Y is called Lagrange
multiplier for (79 if

(2.1) /’ (x*,)*) F’ (x*) + e’ (x*)*)* 0.

Here e’(x*)* denotes the adjoint operator of e’(x*). In (2.1) and also below, we
frequently do not distinguish between F’ (x*) 6/2(X; R) and its Riesz representation
in X.

(H2) e’(x*) is surjective.
(H3) There exists z > 0 such that

/2"(x*, )*)(h, h) >_ tclhl2x for all h ker e’(x*).

Under these assumptions there exists a neighborhood V (x*) of x* and constants 6 > 0 and
6 > 0 such that

c(X, *) > .(x*, )*) + alx x*lZx for all x V(x*) and c > (,

where/c is the augmented Lagrangian defined by

c
c(X, )) (x, )) + le(x)12.

We shall describe two algorithms and introduce

"(x, Z)M(x,) e’(x)

ALGORITHM 1.
(i) Choose 0 6 Y, c 6 ((, cxz), and set a c , n 0.
(ii) Determine 2 as solution of

(Paux) min/c(X, n) subject to x V(x*).

(iii) Set 2 )n + ae(2).
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(iv) Solve for (, )

(v) Set .n+l 2, /’/ ?1 -I- 1 goto (ii).

Existence of a solution to (Pa,x) is guaranteed if f X -- IR is weakly lower semicontinuous
and e X -- Y maps weakly convergent sequences to weakly convergent sequences. The
following algorithm differs from the first one in that (Pa,x) is eliminated.

ALGORITHM 2.
(i) Choose (x0, 1.0) 6 X x Y, c > 0, and set n 0.
(ii) Set ),, + ce(x,,).
(iii) Solve for (J,))

) ( -x,2_; )__(’(x,,)M(xn e(x.) /"

(iv) Set (X,+l,),+1) (, ), n n + 1 and goto (ii).

PROPOSITION 2.1. Let (HI) and (H2) hold, and in the case ofAlgorithm 1 assume that
Pa,x) admits a solutionfor all n.

(i) /f .._--.. 1)0 )*l 2 is sufficiently small then Algorithm is well defined and its iterates
satisfy

I(x.+, z.+) (x*, Z*)lxv <_ _lZ. Z*l,
C--C

for a constant independent ofc and n O, 1
(ii) Ifcl(xo, )0) (x*,)*)lxv is sufficiently small, then Algorithm 2 is well defined and

its iterates satisfy

I(Xn/l )n+l)- (x*)*)lXxY < Il(Xn )n)- (x* Jk*)l 2XxY’

for a constant independent ofn O, 1
For a proof we refer to [IK].

3. A class of nonlinear optimal control problems. The general framework of the pre-
vious section will be applied to optimal control problems governed by partial differential
equations of the type

-Ay + f(y) h in fl,

Oy
(3.1) On

g on I-’1,

Oy
g2 on 1-’2,

On

where 6 L2(g2) and g2 L2(1-’2) are fixed and g L2(1-’1) is the control variable. Here f2
is a bounded domain in Rn with C 1,1 boundary or f2 is convex. The boundary F is assumed to
consist oftwo disjoint sets F 1, F2, each ofwhich is connected (or possibly consisting of finitely
many connected components), with F F1 tO F2 and 1-’2 possibly empty. Further it is assumed
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2n
that f C2(]1), f(Hl(ff2)) C LI+e(Q) for some e > 0ifn 2, and f(HI(Q)) C L- (S2)
if n > 3. Equation (3.1) is understood in the variational sense, i.e.,

(Vy, Vtp) + (f (y), q)) (, q)) + (, q))I" for all q) Hi(g2),(3.2)

where

=/ g on F1,
/ g2 on F2,

(’, ")r denotes the L2-inner product on F, and (.,.) stands for duality pairing between func-
tions in LP(f2) and Lq() with p-1 + q-1 1. In (3.2) we should more precisely write
(if, rrq))r instead of (if, q))v, with rr the zero-order trace operator on F. However, we shall
frequently suppress this notation. We refer to (y, g) as a solution of (3.1) if (3.2) holds. The
optimal control problem is given by

(P)
2rain -ICy Ydlz + L2(FI)

subject to (y, g) 6 Hi(f2) L2(I"I) a solution of (3.1).

Here C is a bounded linear (observation) operator from H (f2) to a Hilbert space Z, and
Yd 6 Z and c > 0 are fixed.

To express (P) in the form (79) of 2 we introduce

with

and

by

" HI() X L2(1-’l) -+ Hi(f2)

(Y(y, g), q))/-/,),,/_/, (Vy, Vq)) + (f(y) , q)} (,

e" HI() L2(1-’) + HI()

e A/’,

where N" H (), H () is the Neumann solution operator associated with

(Vv, Vqg)a + (v, p) (h, 0) for all 0 Hi(if2),
where h HI()*. In the context of 2 we set

X Hi(f2) L2(1-’l), Y Hi(f2),
with x (y, g) 6 X, and

1 2F(x) F(y, g) -lCy- Yalz + -Igl 2
L2(F)"

We assume that (HI) holds, i.e., that (P) has a solution x* (y*, g*). The regularity
requirements of 2 are clearly met by the mapping F. Those for e are implied by

y -- f(y) is continuous from Hi(g2) to Ll+e(f2) for some e > 0ifn 2,
2n

Hi(f2) to L- (f2) ifn >_ 3,

(hO)
y --+ f’(y)

y --+ f"(y)

is continuous from HI() to Ll+e() for some e > 0 if n 2,
Hi(f2) to L(f2) ifn > 3,

is Lipschitz continuous in a neighborhood of y*
from Hi(f2) to Ll+(f2) for some e > 0ifn 2,

2n
from Hi(f2) to L6--7 (fl) if3 < n _< 6.
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Here we used the fact that due to Sobolev’s embedding theorem H (72) is continuously em-
bedded into Lp (72) for p < if n > 3, and into Lp for every p > 1 if n 2. We note that

(h0) is satisfied by f (y) yk for k __< 5, for example.
In the remainder of this section we focus on the Lagrangian functional and on properties

of the Lagrange multiplier associated with (P). We require the following hypothesis:

(hl) { f’(Y*) L2+(72) for some e > 0 if n 2,
f’(y*) Ln(72) if n > 3.

With (hi) holding, f’(y*)cp e L2(72) for every p e H1(72). It is simple to argue that

ker e’(x*) {(v, h) (Vv, V99) + (f’(y*)v, q)n (h, P)r, for all 99 H1(72)},

i.e., (v, h) e ker e’ (x*) if and only if (v, h) is a variational solution of

--Av + f’(y*)v 0 in 72,

Ov
h on(3.3) On

Ov
0 on F2.

On

We also require (H2), assuring existence of a unique Lagrange multiplier ;k* 6 H (72) satis-
fying

(3.4) e’(x*)*)* + (A/’C*(Cy* Yd), otg*) 0 in H1(72) L2(F1),

where e’(x*)* H1(72) -- H1(72) L2(F1) denotes the adjoint of e’(x*) and C* Z --->

H 1(72). stands for the adjoint of C H1(72)
__

Z with Z its pivot space. The Lagrange
multiplier satisfies the following proposition.

PROPOSITION 3.1 (Necessary condition). Let (HI), (H2), and (hl) hold. Then X* is a
variational solution of

-AJk* + f’(y*)X* -C*(Cy*-Ya) in 72,

(3.5) O,k*
0 on F,

On

i.e., (V)*, Vqg) -t- (f’(y*);k*, 99) -t- (Cy* ya, Ccp)z Ofor all 99 H1(72) and

)*(3.6) rrl otg* on F1.

Proof The Lagrangian associated with (P) can be expressed by

1 2 ot 2/2(y, g, Z) -ICy Yalz + -IglL2r,) + (VZ, Vy)

-t-(Z, f (y) h)a (Z, )r.

For every (v, h) H1(72) L2(F’I)we find

,y(y*, g*, )*)(V) (Cy* Yd, Cv)z -t- (V)*, Vv)s2 + (Z*, f’(y*)v)a

and

Thus the claim follows.

Zg(y*, g*, ,k*)(h) c(g*, h)r ()*, h)r.
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In the following regularity result we let * denote the function

,.= { g* on F1,
g2 on F2.

COROLLARY 3.2. Under the assumptions ofProposition 3.1 and ifC* Cy* Yd La ),
then k* e Ha() and g* e H3/a(F1). Ifn 2 and f2 is a convex curvilinearpolygon ofclass
C 1, ga H3/a(Fa), g* e H3/a(F1), and * is "sufficiently smooth" at the endpoints of F,
then y* e Ha (f2).

These regularity properties follow from well-known results on elliptic boundary value
problems [G, pp. 44, 126, 149].

Let B H (-2) -> H (), be the differential operator given by the left-hand side of
(3.5), i.e., B v q) is characterized as the solution to

(Vv, Vap)a + (f’(y*)v, gr)a (99, Ifir)(H)*,H for all 6 H(S’2).

We shall use the following hypothesis:

(h2) 0 is not an eigenvalue of B.

Note that (h2) holds, for example, if

f’(y*) > fl a.e. on

for some/3 > 0. With (h2) holding, B is an isomorphismfrom H (f2) onto H (S2)*. Moreover,
(h2) implies (H2).

COROLLARY 3.3. Let (H1), (H2), and (hl) hold.
(i) There exists a constant K(x*) such that

1)’1/41 < K(x*)l(N’C*(Cy* Yd), cg*)lx.

(ii) Ifmoreover (h2) is satisfied and C*(Cy* ya) L2(), then there exists a constant

K(y*) such that

I)*ln= _< K(y*)IC*(Cy*-Ya)lL2(a.

Proof Due to (H2) we have (e’(x*)e’(x*)*) -1 /2(Hl(f2)) and thus (i) follows from
(3.4). Let us turn to (ii). Due to (h2) and (3.5) there exists a constant Ky, such that

(3.7) I)*ll < Ky, IC*(Cy* ya)l(nl..

To obtain the desired Ha()-estimate for )v* we apply the well-known H2 a priori estimate
for Neumann problems to

-A)v* + )v* f,

0,an

with f I.* f’(y*).* C*(Cy* ya). This gives

I)v*lH <_ g (I)*lL= / If’(Y*)X*IL2 q-IC*(Cy* Yd)IL:)
for a constant K (depending on fl but independent of y*). Since

If’(y*)X*lL2 < If’(y*)lL, IX*ln 1,
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where

2+e ifn =2,
s-- n ifn > 3,

the desired result follows from (3.7).
To calculate the second Frchet derivative we shall use

(h3) I f" (y*) L 1+ (f2) for some e > 0 if n 2,

f"(y*) L (f2) for 3 < n < 6.

PROPOSITION 3.4. Let (HI), (H2) and (hl), (h3) hold. Then

(3.8) /Z"(y*, g*, )v*)((v, h), (v, h)) ICwl2z / 1hl2c2() / ()*, f"(y*)v2),

for all v, h) X.
Proof By Sobolev’s embedding theorem there exists a constant Ke such that

(3.9) I()v*, f"(y*)v2)l < gel)*lHllf"(y*)lLqlv[214
for all v 6 H (-2), where

(3.10)
l+e, e>0, ifn--2,

q-- 2n
if3<n <6.

6-n

Referring back to the proof of Proposition 3.1 we see that the claim easily follows.

4. The second-order sufficient optimality condition. We turn now to an analysis of
the second-order sufficient optimality condition (H3) for the optimal control problem (P).
In view of (3.8) the crucial term is given by ()*, f"(y*)ve)a. Two types of results will be
given. The first class of results will guarantee that I()*, f"(Y*)Ve)al is small. This can be
achieved by guaranteeing that )*, or, in view of (2.1), that F’(x*) is small. We may refer to
this type of assumption as a small residual problem. The second class of assumptions rests on
guaranteeing that )* f"(y*) > 0 on .

In the statement of Theorems 4.1 and 4.2 we use Ke and q which are defined in (3.9),
(3.10). Further lIB-111 denotes the norm of B-1 as operator from H1 (f2)* to HI().

THEOREM 4.1. Let (H1), (H2), (hl), (h3)hold.
(i) IfZ Hi(f2), C id, and

(4.1) KeK(x*)I(y*-ya, otg*)lxlf"(y*)lLq < 1,

then the second-order sufficient optimality condition (H3) holds.
(ii) IfZ Le(S2), C is the injection ofHl(f2) into L2(f2), n < 3, and ifin addition (h2)

holds and

(4.2) [eK(y*)ly*-yalc2(a)lf"(y*)lc(a) < 1,

where Ce is the embedding constant ofH2(f2) into L(S2), then (H3) is satisfied.
Proof (i) By (3.8) and (3.9) we have for every (v, h) 6 X

/2"(y*, g*, )*)((v, h), (v, h))
> Ivl(a> / otlh] 2 -Kelk* ]HI(a) f" )1 112L2(I-’I) _Y*_.Lq(f2).U.HI(f2)
> (1 geg(x*)l(y* Ya otg*)lxlf"(y*)lq())Ivl2/4 + clhl2

L2(I-,I),
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where in the last estimate we used Corollary 3.3(i). The claim now follows from (4.1). We
observe that in this case "(y*, g*, .*) is positive definite on all X, not only on ker e’(x*).

(ii) By (3.3) and (h2) we obtain

(4.3) IVln() _< IIB-Xllllrr, lllhl2(r forall (v,h) ker e’(x*).

Here Ilrr denotes the norm of the trace operator from Hi(s2) onto L2(F1). Hence by
Corollary 3.3(ii) and (4.3), we find for every (v, h) 6 ker e’(x*)

/"(v g*, .*)((v, h), (v h)) Iv 2 2 (). f,,*, IL() + otlhlL(r,) (Y*)V2)s2
2

+- IhlL(r + ilB_lllallr11alvl’(

Due to (4.2) the expression in brackets is nonnegative and the result follows.
In the following result, C can be a boundary observation operator, for example.
THEOREM 4.2. Let (HI), (hl)-(h3) hold, and let [[rr be the norm ofthe trace operator

from Hi(if2) onto L2(I-’l). Then

(4.4) 2[[B-1llllrrl [[Ky, lf*(fy* Yd)I(H’)* < ot

implies that the second-order sufficient optimality condition (H3) is satisfied, where Ky, is the
constant appearing in (3.7).

Proof. As in the proof of Theorem 4.1 (i) we find

/2"(y*, g*, .*)((v, h), (v, h)) > ICwlz / clhl2(r) gel)*lHl(s2)lfttlLq(2)ll)12H,(ft)
> ICvl2z / c[hl2

:(r) Ky, IC*(Cy* yd)l(H),lf"lLq()lwl 2
H(f2)

where (3.7) was used. For (v, h) ker e’ (x*) this implies by (4.3)

[L(r)/2"(y* g*, .*)((v h), (v h)) > ICwlz / lh
/

211B-1llllrrll
Ky,[C*(Cy* Ycl)l(Ht)*lf"lLq(a) IVl2H(S2)

The desired result follows from (4.4).
In view of (4.1), (4.2), (4.4), and the fact that lY* Yal is decreasing with oe -- 0+,

the question arises as to whether by decreasing we can always verify that the second-order
sufficient optimality condition holds. The answer to this question is not obvious since the
te lY* YI in (4.1), (4.2), (4.4) is multiplied by factors which depend on x* and hence on

themselves.
We next analyze one specific situation for which the second-order sufficient optimality

condition holds for all a which are sufficiently small. In continuation of Theorem 4.1 (i) we
consider the specific situation where

(4.5) Z L2(), C is the embedding of nl() imo L2(), and n 2.

In the following Lemma 4.3 and Theorem 4.4 we shall write (P) instead of (P) and denote
by x (y, g’) a solution to

1 z ot 2min -IY Y,lt2(a) + -lgli2(v),
subject to (y, g) 6 H1(2) L2(1-’1) a solution of (3.1).
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We assume

(i) there exists a 6 such that f (t)t > at2 for all 6 and

(h4) yn y in Hi(f2) implies f(Yn) f(Y) in L2(2);
(ii) f maps bounded set in HI() into bounded sets in L4/3().

LEMMA 4.3. If(3.1) has a solution (, ,) and if(h4(i)) holds, then there exists a solution
x (y, g) of(P)for eve > O.

Proof Let > 0 and let (y, g) be a minimizing sequence of (P). Then

lim ([Yn YI + lgnl2 ] < I Ydl2 2
r +

n

and hence {(Yn, gn)}nl is bounded in L2() x L2(F1). By (3.2) and (h4(i)) we find that
{(Y g }n=l is bounded in H() x L2(F). Consequently there exists a subsequence of

-)’ denoted by the same symbol, and (y, g") with (y, g) (y, g) weary{(Yn, g In=l,
in H() x Lz(F1). Due to (h4(i)) and weak lower semicominuity of norms, (y, g) is a
solution of (P).

For the next theorem we require additional hypotheses.

There exists a solution (y0, g0) of (3.1) with the propey that

(h5) lY YaIL lY
where y is the first coordinate of any solution (y, g) of (3.1).

Under the conditions of Lemma 4.3 let B H () H ()* denote the differential
operators characterzied by Bv where

(Vv, V) + (f’(y)v, ) (, )m.,n, for all H().

There exists ff > 0 and such that B is surjective(h6)
and nll for evew 6 [0, if].

A sufficient condition that implies (h6) is given in Remark 4.5 below.
THEOREM 4.4. Let (4.5), (h4), (h5), and (h6) hold, and assume that n 2 and F is C’

smooth. Then there exists (0, ] such that the second-order sufficient optimali condition
holfor (P) for all (0, ].

Proof Due to Lemma 4.3 and (h5) there exists a solution x (y, g) of (P) for evew
> 0. By (h5)

lY- YI 2 < ly= 2 2

2 2ly- yal) + lglw,
which implies

Ig"lw Ig

and

ly_ya[2 yO 2 (gO gl )
Hence {(y, g)}>o is bounded in L2(fl) x L2(F). From (h4(i)) and (3.2) it follows that
{(y, g)}>o is also bounded in H(fl) x L2(U1).



SECOND-ORDER METHODS FOR NONLINEAR OPTIMAL CONTROL 883

Next we argue that there exists a constant K1 such that

(4.6) [y [wl,4() K1 for all c 6 [0, d].

In fact, since n 2, the functionals q) -+ ,,(q)) fr q)ds, with

| g on F1,
g2 on F2,

are elements of W1’4/3("2)* [Tr, p. 72], and there exist constants K2 and K3 such that

(4.7) 11Gll(w1.4/3), < K2[,,IL2() < K3 for all ot 6 [0, d].

The functions y satisfy

(4.8) (Vy

Due to (h4(ii)) and (4.7) the right-hand side in (4.8) describes a family (in o) of bounded
linear functionals on W1,4/3(). Hence there exists K such that (4.6) holds [Tr, p. 179].
From continuity of f’ from ]R to 1R and the fact that W,4(S2) is continuously embedded in
C (fl) for n 2, it follows that

for a constant M independent of o [0, o7] and ) 6 L2(S2). Therefore B 6 ;(H1(),
(H(S2))*) and (h6) is applicable.

Due to (h6) there exists a Lagrange multiplier ) satisfying the variational form of

-0 onF
On

and

(4.9) IIYIH(a) < DIy YdI(H’)*

for every ot 6 [0, o7]. As in the proof of Corollary 3.3 we show that

IXlH2(f) _< K4ly- ydlL(a

for a constant K4 independent of oe [0, 07].
With these preliminaries we find for the Hessian

2 f,,(y v2/2"(y

> Ivl(a)/oelhl2L(r,) IIYlL(a)If"(Y’)IL(a)Ivl2
L2()

> (1- :eK4ly- YdlL2()lf"(y)lL(a))lVl2L2(a)+ otlhl2L(r,),
where e denotes the embedding constant of H2(f2) into L(f2). Since f 6 C2(N) by
assumption, (4.6) implies the existence of K5 such that ]f"(Y)lL(a) _< Ks. Combining
these estimates with (h6) we find

/2"(yc, g, 1,)((v, h), (v, h)) >_ (1 [eK4Ksly YdlL2(a))]l)[2L2(S2)

oe( 2 1 2)+-
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for all (v, h) 6 ker e’(x). Finally

ly= ytl2 < lyO yctl2 gO2 g, 2
) ) + c(I Ir)

and Ig IL:(rl) --< ]g0lL2(rl), and therefore

/g’(y’, g, 2.’)((v, h), (v, h)) > - IhlL=F,) + 211Z.r, Ivl2H,)

+ [1 eK4K5 ([yO Yd[L2(S2)+ X//-lg012L:(Fl)_ iga]2 )] 1)
2

L2(FI)

for all (v, h) 6 ker e’(x). The conclusion follows from this estimate.
Remark 4.5. Let the assumptions of Theorem 4.4 except possibly (h6) hold, and assume

that (y0, gO) in (h5) is unique. Then, using (4.6) we can argue that (y", g) -- (y0, gO) weakly
in W1,4(f2)x Lz(F1) asot -- 0+. Ifmoreover f,(yO) > 2/3 > 0 on , then there exists o7 > 0
such that f’(y) >/ on S2 for all ot 6 [0, c7]. By the Lax-Milgram lemma, (h6) follows.

In Theorems 4.1, 4.2, and 4.4 the second-order optimality condition was guaranteed
by assuring that the term (2.*, f’(y*)v2)f is small when compared to ICvlz +
Alternatively we can proceed by assuming that

(h7) 2.* f"(y*) > 0 a.e. on .
THEOREM 4.6. Assume that (HI), (H2), (hl), (h3), and (h7) hold and that
(a) Z H1(2), and C id, or
(b) (h2) is satisfied.

Then (H3) holds.
Proof By Proposition 3.4 and (h7) we find for all (v, h) 6 X

2L;’(y*, g*, 2.*)((v, h), (v, h)) > ICvlZz + clhlLz(rl).

In the case where (a) holds, the conclusion is obvious and "(v*, g*, 2.*) is positive not only
on ker e’(x*) but also on all of X. In case (b) we use (4.3) to conclude that

ZY’(*, g*, *)((v, h), ( h)) >_ ICplz + Ih : 1 2)B_I il21lvv 2 IvlHa)

for all (v, h) 6 ker e’ (x*).
Next we give a sufficient condition for (h7).
THEOREM 4.7. Let (H1), (H2), (hl) hold and assume that
(i) (C*(ye Cy*), 7r)(/4l).,Hl > Ofor all 7r HI(S2) with p >_ O, a.e.,
(ii) f’(y*) > 0 a.e. on
(iii) f’(y*) > 0 a.e. on

Then (h7) holds. The conclusion remains correct ifthe inequalities in (i) and (iii) are reversed.

Proof Set q9 inf(0, 2.*) 6 H(S2) in (3.5). Then we have

lvq)12dx + (f’(y*)tp, p) + (c*(Cy* ye), p)(141)*l O.

Since f’(y*) > 0 it follows from (i) that 2 2.,VOlL2(a 0 and > 0. Together with (iii)
we find 2.*f"(y*) > 0 a.e. on 2. If the inequalities in (i) and (iii) are reversed, we take
p sup(0, 2.*).
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Example 4.8. We consider

--Ay+y3--y--/t in,
(4.10) Oy

m=g onF,
On

and the associated optimal control problem

/ lfa(4.11)
rain - lY Yeldx + - gedx,

subject to (y, g) HI() Le(F) a solution of (4.10).

Here is a bounded domain in, n _< 3, satisfying the general requirements specified at the
beginning of this section. In the present example I-’1 0, 12 0, and consequently

g. In the context of the general theory we put

Z L2(2), C" HI() ---> L2(ff2)canonical injection, f(t) -t.

Equation (4.10) represents a simplified Ginzburg-Landau model for superconductivity with
y denoting the wave function, which is valid in the absence of internal magnetic fields [T,
Chaps. 1, 4]. Both (4.10) and

(4.12) Ay + y3 + y

are of interest for superconductivity, but we prefer to concentrate on (4.10) here rather than
on (4.12), since the former has three equilibria while the latter has only one equilibrium.

The optimal control problem (4.11) with a slightly more general version of (4.10) (i.e.,
(4.12)) was studied in [GHS]. The numerical approach in that paper is based on solving
the optimality system associated with (4.11), which involves solving (4.10) and the costate
equation.

Let us discuss the validity of some of the conditions (hi) and (Hi) for the present problem.
Existence of a minimum x* (y*, g*) is proved in [GHS] for any oe > 0. It is also proved
there (using n < 3) that e’ (x*) is surjective and thus (HI) and (H2) hold. Sobolev’s embedding
theorem and

f’(t)--3t2- 1 and f"(t)-6t

imply that (hl), (h3), and (h4) hold. Let us note that f has the three equilibria +1 and 0,
of which 4-1 are stable and 0 is unstable. It is therefore quite reasonable to conjecture that
in general for/t 0, yd > implies < y* < yd and, similarly, that yd < -1 implies
Yd < Y* < --1. This was confirmed numerically. In these cases f’(y*) > fl > 0 and (i)-(iii)
of Theorem 4.7 hold. The situation is more delicate if -1 < ya < and the (numerical)
solution y* depends qualitatively more significantly on the cost oe of the control. We shall
elaborate further on this point when discussing numerical examples below.

Example 4.9. Here we investigate

--Ay--by3--y= in f2,

Oy
(4.13) On

g on 1-’l,

Oy
=0 onF2,

On
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and the associated optimal control problem is given by

min lY- Ycl[2ds + - g2ds,
(4.14)

subject to (y, g) 6 HI() L2(F1) a solution of (4.13),

where F3 is a nontrivial measurable subset of F2 and satisfies the properties specified at the
beginning of this section. Moreover

Z L2(1-’3), C is the trace operator from HI() onto L2(1-’3),

and f is as in Example 4.8. To argue existence of a solution to (4.14), first note that (4.13)
is satisfied for at least one pair (y, g) 6 Hi(g2) L2(F), which renders the cost functional
in (4.14) finite. Hence there exists a minimizing sequence (Yn, gn) in H(f2) L2(I-’l).
Using (4.13) it is simple to deduce that (Yn, gn) is bounded in HI() L2(Fx) and every
weak subsequential limit is a solution to (4.14). Thus (H1) holds. Concerning the remaining
hypotheses, the same remarks apply to (4.14) as to (4.11).

Example 4.10. This is the singular system

-Ay y3 in f2
(4.15) Oy

--=g onF,
On

and the associated optimal control problem

min Y Y
a

(4.16) HI(a) + gds,

subject to (y, g) H(S2) x L(1-’I) a solution of (4.15),

where ya H (S2). If (4.15) admits at least one feasible pair (y, g), then it is simple to argue
that (4.16) has a solution x* (y*, g*). (We refer to [L, Chap. 3] for existence results in
the case where the cost functional is of the form lY Yl(a + oelgl(r for appropriately
chosen r > 2.) The existence of a Lagrange multiplier is assured in the same manner as in
Example 4.8. Clearly (hl) and (h3) are satisfied. For y const > 1/2, we observed that
0 < y* < y, .* < 0, which in view of (h7) and Theorem 4.6 explains the second-order
convergence rate that is observed numerically.

g. Numerical tests. We carried out numerous tests for Examples 4.8-4.10 and focused
our interest on the following aspects:

convergence for wide ranges of initial values and values for the penalty parameter c

(no globalization, e.g., by line search),
rate of convergence,
how well the desired state yd can be reached and how strongly this depends on
influence of equilibria.

All of the tests were carried out with f2 [0, 1] [0, 2] with a five-point central finite
difference discretization of the state equation (appropriately modified at the boundary so that

j--0 2N Thethe discretized system equation for (4.10) is symmetric) on the grid {(g, -)Ji=0 N
programs were written in MATLAB. Convergence was achieved for all test examples for a
wide range of values for c. For c 6 10, 1000] and ot 6 10-7, 10- ], the algorithm was quite
insensitive with respect to the specific value of c. For c 6 10-7, 10] the number of iterations
increased as c was decreased. For c 0 divergence was observed in all runs. The case c 0
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in Algorithm 2 corresponds to the SQP method without globalization strategy or, equivalently,
to the Newton method applied to the first-order necessary optimality condition. Second-order
rate of convergence was the typical behavior for all three examples with reasonable choices
for ct and c.

In all examples below we chose Algorithm 2, and N 20,/t 0, )0 0 (start-up
value for )*), Y0 Yd (start-up value for y*), go 0 (start-up value for g*), unless otherwise
specified. We denote the converged numerical solution by (y*, g*, ,*).

RUN 1. This is Example 4.8 with

c- 1, ct= 10-3, yd--3.

In Figure 5.1 we give the graph of the converged solution after five iterations. The values for

e
lYn Yn-112/4 / Ig gn-ll 2

L

are given in Table 5.1. We observe that 1 < y*(= yS) < Yd, i.e., the solution is attracted by
the stable equilibrium. As a consequence, Theorem 3.4 applies. Moreover rr,5 gS, which
confirms (3.6) of Proposition 3.1.

Let us make some additional comments on further runs. If the desired state was chosen
between the two equilibria 0 and 1 so that 0 < ya < 1, then the numerical solution satisfied
0 < y* < 1, as well. In these cases )* < 0 and Theorem 4.6 is not applicable. Nevertheless
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TABLE 5.1.

e:
TABLE 5.2.

n 13.4 .023 .023 .023 .040 .029 ’080 .020 4.25

very good convergence could always be achieved. For Yd (x) x, c 10, ot 1, for example,
we found {en 4}n-a (.0032, .015, 0.04, 6 1014). While typically convergence was achieved
within the first ten iterations, we should also mention our worst result with

1003 100, c 1, ot 10-3, Y0 0, go 1, 1.0 0, N 10.

The exact solution is (y*, g*, )*) (100, 0, 0). Convergence was achieved after 294 itera-
tions, and for

lYn y’l/e1

]Yn-1 Y*I 2H

we found (291 294) (.028, .01 1, .01 1, .10).
RUN 2. This is Example 4.9 with

(5.1) c= 100, o= 10-5, Yd-- 1, go-- 1, 1-’1 --(0, 1) {0}, 1-’3 (0, 1) x {2}.

The rates for

]Yn Y*I2HI -+-]gn-1 L

are given in Table 5.2. The exact solution is (y*, g*) (1, 0). We also give graphs for
the evolution of Yi. Convergence is a little slower for small c and thus the graphs are more
interesting. Figure 5.2 gives, therefore, the results for c 1, with the remaining specifications
being those of (5.1).

RUN 3. This is Example 4.9 with (5.1). Here, unlike in the previous run, we chose the
value y0 -2 as the initial guess for y*. In the course of the iteration Yi has to "pass through"
the equilibria and 0 to reach y* Yd 1. Selected graphs of the sequence yi are shown
in Figure 5.3. Between iterations 9 and 10 the step over the unstable equilibrium occurs.
This step was too large and due to the weak influence of the control which was applied at the
ordinate value y 0 on the state at ordinate value y 2, it took about 16 additional iterations
until the desired state Yd was reached (1Y36 Y*IH’(S2) 7 10-5). In Figure 5.4 we give a

plot for the evolution of Igi IIr,. We observe that recovery after passing through the unstable
equilibrium is only possible with large values of the cost (for 11 14).

RUN 4. This is Example 4.9 with

1
(5.2) c= 100, or= 10-5(a= 10-7), Yd’-" + x, Y0-- 1, 1-’1, I-’3 as in (5.1).

In Figure 5.5 we give the plots for y6 with ct 10-5 and ot 10-7, respectively. Clearly the
cheaper cost allows us to reach the desired state Yd better than the more expensive cost.
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RUN 5. Here we consider Example 4.9 with a more challenging desired state:

1 (3)(5.3) N=40, c--20, c= 10-7, ye= sin x

For the convergence rate we found the results of Table 5.3.
RUN 6. This is the singular control system of Example 4.10 with

(5.4) c-- 10, oe= 10-, y- l+xy, yo=O.

The results after 10 iterations are given in Figure 5.6. We ran other tests with ya const (and,
e.g., c 10, c =. 1) and observed that for const > 0(< 0) the resulting Lagrange parameter
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TABLE 5.3.

e(n) .0029 .0041 .0051 .0050 .0046

t_lO lambda_lO

2 0.5

0

0 0 0 0

g_lO

50

-50
2

0 0

FIG. 5.6.

satisfies )* < 0(> 0). If y, > .5(< .5), then 0 < y* < Yd, (y, < Y* < 0), so Theorem 4.6 is
applicable.
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THE KORTEWEG-DE VRIES EQUATION ON A PERIODIC DOMAIN WITH
SINGULAR-POINT DISSIPATION*

S. M. SUNt

Abstract. This paper considers the Korteweg-de Vries (KdV) equation

ut + uux + uxx O, O < x < l, > O, u(O,x) uo(x),

and the periodic boundary conditions u(t, 1) u(t, 0), Uxx(t, O) Uxx(t, 1) with an L2-stabilizing control input
implemented by a feedback mechanism Ux(t, 1) otUx(t, 0) and Iotl < 1. It can be shown that the solutions conserve

[u] f u(t, x)dx and the constant state [u0] possesses the smallest energy among solutions with samethe volume
volume. It has been proved that the solution of the system exists and approaches [u0] as --+ +cx when ot 1/’2.
This paper studies the case for ot -1/2 and gives a proof of the existence and exponential decay of the solutions
by deriving estimates of the corresponding Green’s function and using semigroup theory. The method used here also
works for the other cases with lot[ < 1.

Key words. KdV equation, point dissipation, stabilization

AMS subject classifications. 93D 15, 93C20, 35Q53

1. Introduction. Recently the Korteweg-de Vries (KdV) equation

(1.1) ut + Vuux + Uxxx O,

has been studied intensively in many papers. For , 0, this is a third-order linear dispersion
equation and has been studied in [12]. The cases with , 0 are essentially equivalent and
can be covered by letting y 1.

The literature for (1.1) both for x on a periodic domain and for a domain -zx < x < oz
is enormous, and the reader may be referred to 1, 2, 4, 5, 9, 15] for more details and to [7, 8,
12-14] for related control problems. Here we are considering the following initial boundary
value problem:

blt-l-UUxf-blxxx=O, O<x < 1, t>O,

(1.2) u(O,x) tp(X),

u(t, 1) u(t, 0), Ux(t, 1) cux(t, 0), Uxx(t, 1) Ux(t, 0),

where Il < 1. By integrating the equation in (1.2) from zero to one and using the boundary
conditions, it can be easily obtained that the volume [u] fd u(t, x)dx of the solution u(t, x)
is conserved for >_ 0, which is physically reasonable.

It is well known that the KdV equation (1.1) is a model equation for water waves in
a channel using long-wave approximations. The equation is usually considered for x 6

(-x, +cxz). However, the fluid regions are always finite in physical applications and fluid-
dynamical experiments as well as numerical computations. Therefore, it is more realistic to
consider the KdV equation in a bounded region. The KdV equations with periodic boundary
conditions are relevant to wave motions in a circular channel with a great radius. Also, the
periodic boundary conditions are mostly used in experiments and numerical computations to
find the properties of long waves on the free surfaces of channel flows, which are governed
by the KdV equation. Furthermore, it is much easier to control the boundary conditions of
the flows, such as by using wave-makers at boundaries, so that certain states of the flows can

*Received by the editors June 13, 1994; accepted for publication (in revised form) December 28, 1994.
Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.

892



KdV EQUATION WITH POINT DISSIPATION 893

be reached. The boundary conditions in (1.2) can be viewed as a control mechanism of the
vertical velocity of the fluid at boundary, which is intended to stabilize the flow.

In control theory, the system (1.2) is described as a closed-loop point dissipation process.
Closed-loop control generally refers to control synthesis via state feedback of some sort and
is predominantly concerned with achieving asymptotic stability of an equilibrium or invariant
set. From an identity

f01 fo f01lu(t, x)12dx lu(t, x) [u]12dx 4- I[u]12dx,

it shows that among all functions u 6 L2(0, 1) for which [u] is a fixed constant, Ilullt2(0,1 is
uniquely minimized by the constant function u c [ul, which is an equilibrium state of
(1.2). Therefore, a solution of (1.2) may be caused to approach the constant state [u] [4]
as +0o through use of a control process designed to make Ilu(t, ")11L2(0,1 nonincreasing.
By multiplying the equation in (1.2) by u(t, x), integrating it from zero to one, and using the
boundary conditions again, we can obtain an identity for the solution of (1.2),

d (f01 )(1.3) d--- lu(t,x)12dx (1/2)(oz 1)lux(t, 0)12.

When I1 < 1, the energy is decreasing unless ux(t, O) Ux(t, 1) 0. Therefore, the
boundary condition ux (t, 1) otu(t, 0) for Icl < can be viewedas a dissipation mechanism
for the system (1.2). This condition was obtained by Russell and Zhang [13] using an L2-

stabilizing control input, implemented by a feedback mechanism. Because of the dissipation
mechanism at the boundaries, it is reasonable to expect that the solution u(t, x) of (1.2)
approaches [4 (x) as -- 4-0o.

The system (1.2) was first derived in 13] to study the smoothing properties of the solution
of (1.2) with asymptotic decay properties in Lz(0, 1). Their results can be summarized as
follows. Let

(1.4) (Au)(x) -u"’(x)

with

D(A) {w e H3(0, 1) w(1) w(0), w’(1) otw’(0), /"(1) w"(0)},
and let A* be its adjoint operator in L2 L2(0, 1). If ot -1/2, then A and A have
complete sets of eigenvectors--respectively, { < k < } and {] < k < }--
which are noalized so that 6j and fo dual Riesz bases for L:. Define

H’p w ck (1 + Ikl p’)lcgl p <
k=- k=-

with the norm

Ilwll.,, [klP( 1 4- ]kips).
k---c

If we denote H, by H/, then the main results in 13] can be stated as follows.
THEOREM 1.1. Assume [a[ < and a -1/2. Then there exists a fl > 0 such thatfor

any H with [[[[, fl, (1.2) has a unique solution u C([0, ); H) and

Ilu(t, .) []IIL Ke-Ot I1 []11

for O, where K > 0 and p > 0 are independent of and [] f dx.
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The existence of solutions in Theorem 1.1 was proven by using an integral equation
based on the "variation of parameters" formula and explicit representation of the semigroup
associated with the operator A obtained from the dual Riesz bases {4g and 7t }. Then the
asymptotic decay of the solutions was obtained by use of Lyapounov techniques based on
properties of a linear equation ut + Uxxx 0. However, when ot 1/2, the eigenvectors of
A and A do not form dual Riesz bases for L2 and the proof in 13] cannot be carried over.
Therefore, a new method must be introduced for the proof when ot 1/2.

The objective of this paper is to give a proof of Theorem 1.1 for ot 1/2. We consider
this singular case in Theorem 1.1 with ot 1/2 and construct the semigroup corresponding
to A using the Green’s function to study the existence of solutions for (1.2) when ot 1/2.
After we derive the estimates for the linear operator, we can invert (1.2) into an integral equation
and show that the corresponding integral operator is a contraction. Therefore, the contraction
mapping theorem implies the existence of the solutions of (1.2). Finally we use an inequality
similar to the Gronwall inequality to prove the exponential decay ofthe solutions. We note that
the method developed here can also be used to prove Theorem 1.1. It is interesting to note that
all the large eigenvalues of A_ 1/2 are on the negative real axis. However, Komomik showed
that A-l does not generate an analytic semigroup [6], which will be given in Appendix 3.

The paper is organized as follows. In 2, the exact form of the semigroup S(t) corre-
sponding to A_ 1/2 is constructed by using Green’s function, and some properties ofthe Green’s
function are given. In 3, various properties and estimates for S(t) applying to functions in
L2 (0, 1) and H (0, 1) are derived. In 4, the local and global existence of solutions of (1.2)
is proven and the exponential decay of the solutions to their mean values is obtained.

2. Representation ofthe semigroup forA-l LetA be an operator defined in (1.4). If
lot[ _< 1, it is easy to check that A is dissipative in L2 L2 (0, 1). By using elementary theory
of ordinary differential equations, we can show that the range 7()01 A) is the whole space
L2 if )0 > 0 is large enough. Thus by Lumer-Phillip’s theorem 10], A is the infinitesimal
generator of a Co-semigroup S(t) of contractions in L2; that is, for f L2 and Iotl <_ 1,

(2.1) [[S(t)fllL < [[fllL2.

Since ot : 1/2 was studied in 13], here we assume that ot 1/2 and let A A_ 1/2. Now
we determine the discrete spectrum of A. Assume that #1, #2, and #3 are the three complex
cubic roots of -.. Then after some tedious computation, we can see that the eigenvalue ;k of
Au .u satisfies either . 0 or

(2.2) 3 (e-’ + e-u + e-u3) O.

Since A is dissipative, Re ) _< 0 if . is an eigenvalue. Also, every eigenvalue has multiplicity
one. Next we obtain the asymptotic forms of the eigenvalues ).

LEMMA 2.1. If ;k is an eigenvalue and ])] is large, then . is real and ) -(2k + 1)7r/2
as k -- /oe. Also, there is no eigenvalue on the imaginary axis except ) O.

Proof If ;k ir with r real, then there exists one cubic root of -/r--say,/Zl--Such that

It1 ir 1/3. Therefore, by (2.2),

3 (e-ir/3 Ar e(/+i)r/3/2 _.]_ e(-q/-+i)r /3/2) O.

By separating the real part and the imaginary part, it is straightforward to show that the only
root is r 0. Thus, no eigenvalues are on the imaginary axis except zero. Next we show that
) is real for large eigenvalues ). Since all eigenvalues have negative real parts except zero,
Re (-) > 0. Let/zl be the cubic root of- with arg/zl[ _< r/6. Then ]1 Ir d- i]i
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with/Z > 0 and I/zil </Zr/. Substitution of IZl [Z nt- ilzi, /Z2 O)/Zl, /Z3 (-02/Zl with
o (-- 1 + /)/2 into (2.2) and separating the real and imaginary parts yield

3 e-r cos lZi e(Izr+/txi)/2 COS((./’/Zr /Zi)/2)

--e(lz’-"v/l’zi)/2 COS((./’/Zr -/Zi)/2) 0,

e-zr sin/z/ d-e(lZ"+v%z)/Esin((lZr --/z/)/2)

--e(zr-v/-z)/2 sin((./’/Zr +/zi)/2) 0.

Rewrite these two equations as

2 cosh(.//zi/2) cos(v/’/Zr/2) cos(/zi/2) + 2 sinh(//zi/2) sin(//Zr/2) sin(/zi/2)

3e-tz/2 e-(v/tzr/2) cos/z

2 sinh(f/zi/2) sin(C/Xr/2) cos(/zi/2) 2 cosh(.//zi/2) COS(//Zr/2) sin(/zi/2)

e-(flzr/2) sin/Z

Multiply the first equation by cos(/zi/2) and the second by sin(/zi/2), and subtract the resulting
equations to get

(2.3) 2cosh(/lzi/2) cos("/lZr/2) COS(lZi/2)(3e-tzr/2 e-’flZr/2).
Then multiply the first by sin(/zi/2) and the second by cos(/zi/2), and add them together to
obtain

(2.4) 2 sinh(v//zi/2)sin(x//Zr/2) sin(lzi /2)(3e-lzr/2 + e-/lZr/2).
Since I/xil < tZr//, lZr "(X)if. x. But cosh(-J/zi/2) > 1. Thus as . cx, by
(2.3) cos(//Zr/2)l < K exp(-/Xr/2), where K is a fixed constant, which implies

/Z (2k + 1)zr// + O(e-gr/’/5) for k large.

Therefore, sin(-/Zr/2)l -- 1, and from (2.4) we have that [Z o(exp(-krc//’)), which
yields that for . large, the cubic root/z of- must be

(2.5) /zl (2k + 1)rr// + O(e-r/’/5).

However, 2cos(/z/2) 3e-/2 e-’/5/2 has infinitely many real roots/2 (2k +
1)rr// + O(exp(-krc//)), which satisfy (2.3) and (2.4) with/z 0. Thus --/k3 k
1, 2 are also the eigenvalues of A. Now let us consider the analytic function

f(z) e-z/2 (3 e-z e-z e-)2z).
If Re z > 0andl Imzl < 1,thenlf(z)l-t-lf’(z)l+lf"(z)l < K, where K is a fixed constant.
f(z) has infinitely many real zeros/2k, and at/2, If’(/2)l -t- O(exp(-kzr//)). For
z in a disk centered at/2 with radius 1/2, we have

f(z) f(fz) + f’(fz)(z fzg) + (1/2)f"()(z -/2)2,

where is in the disk. Thus

If(z)l >_ Iz -/21 (If’(/2)l- glz
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where K is independent of z and k. Therefore, there is a > 0 such that for Iz -/2kl < and
z /2k, f(z) 0. Thus/z in (2.5) must be real also, which implies that the large eigenvalues
are real, completing the proof of Lemma 2.1.

We note here that A does not generate an analytic semigroup, which will be shown in
Appendix 3. In the following, we shall give a representation ofthe semigroup S(t) S_l/2(t),
where S (t) is the corresponding C0-semigroup of A. Let ;k be in either the upper half or the
lower half plane. Without loss of generality, we assume that ;k is in the upper half plane since
the discussion is similar for ;k in the lower half plane. Let/z -;k,/Z2 O)/Zl, /Z3 O)2/Zl
with o (-1 + x/)/2. Since Im;k > 0, Re (-i;k) > 0. There is a/z* such that
(/z*) 3 -i;k with [arg/z*l _< (zr/6) and (i/z*)3 -;k. Let/zl i/z*, which implies
I(zr/2) arg/Zl[ <_ (zr/6). Now let G(;k,x, ) be the Green’s function of (;kI A)-1 in L2.
Then for f 6 L2,

(2.6) (;kI A)-l f G(;k,x,)f()d e D(A)

where G(;k, x, ) is given in Appendix 1. Since A is an infinitesimal generator of a C0-
semigroup of contractions, by a formula in 10, Cor. 7.5, p. 28], we have

(2.7)
v+icx

S(t)f (1/2zri) et (;kI A)-fd;k

for > 0, , > 0 and f D(A2). It is well known that (;kI A)-lf is analytic in the
complex ;k-plane except poles, which are the eigenvalues of A. However, by Lemma 2.1 all
the eigenvalues except zero are in the left side of the complex plane. By using the spectral
decomposition theorem and the residue theorem [3] for the pole of (;kI A) -1 at zero, we
have

S(t)f (1/27ri) eZt(;kl A)-l fd;k + co f(x)dx,

where co is a fixed constant and the last term is the projection of f(x) onto in L2, since is
the eigenvector for the eigenvalue zero. Here F* is a contour with only the eigenvalue zero of
A on its right side and asymptotic to F 4- cxz as I;kl -- +o. Next we deform the contour F*
further into " ’+ t3 ’_, where, for ;k ;kr + i;ki,

(2.8)

’+ { F (;ki) -{- ;ki, 0 __< ;ki -’+ -[’-OO and F (;ki)

is a smooth function of ;ki with IF(;ki)13/2/;ki -- 3 > 0 and

’_ {F(-;ki)+ i;ki, O >_ ;ki "->

F (0) F* N Im ;k 0} < 0, and all the eigenvalues of A except zero are on the left side of
F. Using Cauchy’s theorem, we have

(2.9)

(fF fF ) f01+ ezt (;kl A)-lfd;k + co f(x)dxS(t)f (1/2zri)
*n/ImZ>__01 *{ImZ_<01

(1/27ri) + et(;kI A)-lfd;k + co f(x)dx
+

for > 0 and f 6 79(A2) since the integrals over contours at infinity are seen to be zero
by using the exponential decay of ext and the explicit form of G(;k, x, ) for (;kl A) -1.
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However, for > 0, Re (.t) --+ -ec with order of -I)tl2/3 if ) . Thus the right-hand
side of (2.9) is well defined for all f L2 if > 0. Since S(t) is equal to the right-hand side
of (2.9) for f D(A2) and D(A2) is dense in L2,

1
ezt ()I A) -1 fd. +co f(x)dx

1
et().i_A)_lfd)+_(2.10) S(t)f 2rri +

for f L2 and > 0. Now we rewrite (2.10) in terms of/1 /Z

1 (fF fF) f01(2.11) S(t) / (3/z2)e-z3t (/z3I + A)-1 fdlz + co f(x)dx,
+

where 1-’+ is in {/z arg/z (7r/2)1 _< (zr/6), Im # > 0} and is from #i b > 0 to

/zi +cx, and F_ is in {/z arg/z (3zr/2)l _< (7r/6), Im/z < 0} and is from/zi -b < 0
to/i -c. Also, F+ and 1-’_ are disconnected. For/z =/Zr + i/zi and ,k )r + i with

.3 _), we have )r 3/Zr/Z/2 -/Zr and )i // 3/Zr2/Zi. Therefore, on F+,/-r <_ Cl < 0,
3/Zr/Z/ -/Zr

3 _< Cl < 0 for a small fixed negative number Cl, and lZr --+ --62/3/3 as/z --- c(i.e., ]i -’"OO). From the formula of the Green’s function in Appendix 1, we have

{ -(1/3#2)ez(x-) + R(#,x, ), 0 < x < < 1,
(2.12) G(-/z3, x, )

R(/z, x, ), 0 < < x < 1.

Since G(-/z3, x, ) is analytic in/z when/z is in the upper or lower/z-plane, we assume that
for i large--say, I/zil > r--tZr --32/3/3 30 and 3/Zr/Z/2 /Zr

3 _< --2ill < 0 on F+ for
two small fixed positive numbers 3 and/31. Also, by checking the terms in G(-/z3, x, ), we
can see that

(2.13) sup IG(-#3, x, )l < K/lzl2

0<x,<l

if I/Zrl _< 0 for large //i and a fixed small constant 0 > 0, where # is on F+ and K is
independent of/z. Let 30 be fixed with 1301 < 0. We then have the following properties of
the C0-semigroup S(t).

3. Properties o1’ the Co-semigroup S(t). Since we use the contraction mapping theorem
to obtain the existence of solutions, we first need the following estimates.

PROPOSITION 3.1. Let T > 0 be given. Thenfor f L(O, T; Lz),

sup S(r)f(t r, .)dr
0<t<T H

( f01 )< K T 1/4 sup IIf(t,.)llc2 / Z sup f(t,x)dx
0<t<T 0<t<T

where H H (0, 1) and K is independent of T.
Proof By the form of S(t) in (2.11), we have

f0 yo’yoS(r)f (t r, .)dr < I1 + I12 + g f(r,x)dx dr,
L

where

11,2 3/z2e-#3r G(-r3, x, )f(t r, )ddtxdr
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By (2.13), 0 < 6o < eo, and H61der’s inequality, we have

(3.2)
I21 < K e-tZr2/3dlidr dx sup Ilf(r,

0<z<t

< Kt 1/2 sup II/(r,.)1122.
0<r<t

By a similar calculation, we have I < Kt x/2 suP0<r<_t IIf(r, ")ll= and

lifo S(r)f(t r, .)dr
L

< K (T 1/4 sup IIf(t, ")11 + T sup
0<t<T 0<t<T

f(t, x)dx

In order to estimate the first-order derivative, from (2.12) we first consider

IIll (x)l[.2de= (1/2zti) 3/z2e-tt3r Gx(-lZ3, x, )f(t r, )dlzdrd
+ L

(f0a [fxlf0tfF(1/2rr) 31z2e-rt3r(-1/3tz)ert(x-lf(t r,)dlzdrd
+

f0l f0t iF 12 )1/2+ 32e-"3rRx(l,x,)f(t r,)ddrd dx
+

(f01 ]fxlf0t fF 12 )1/2< (1/2r) 31e-"3r(-1/3)e"(-lf(t r,)ddrd dx
+

+(’/2rr)(f0 Ifo fo 131z2e-URx(Iz’x’)f(t-r’)dlzdrd
dl-’+

de=fII + lb.

By using Fubini’s theorem and Minkowski’s inequality in integral form,

(fo1 (f0t fF f01 )2112 <_ (1/2re) 3/z2e-3r Rx(IZ, x, )f(t r, ) des ldlzldr
+

(f01 f01 )1/2_<(1/2yr)fo fr ( ]3tx2e-rt3rRx(iZ, x )f(t, -v,)ld$)2dx
+

fo’f (fo’fo t )< K sup IIf(v, ")ILL 3uZe-urRx(Iz, x, ) ddx
0<r<t +

dx)
1/2

Id/zldr

1/2

Id/zldv.

In Appendix 1, we shall show that

Rx(lZ, x, ) dsdx < K/llz] 3/2.

Therefore,

1/2 < K sup IIf(r,’)ll Ilzill/2e-U:ia2/3rdlzidz
0<r<t

< Kt 1/4 sup Ilf(v,
0<r<t
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For I I1 and x < 0,

fF ld,e-lZ3r+z(x-)dlz--(fF nt-[+illd,e-tZ3r+(x-)lZdlz,_
Jir

where [’_ is a finite smooth curve on F+ with b </i < r. Then

lze-U3r+(x-)Udlz K <

and

+ooi f+ooid,e-#3r+(x-)ldlz lzei(tz3r+(x-)lZ)dlz.
Jir

In Appendix 2, we show that if x is bounded, then

Therefore,

fr+ lzei(Iz3r+l(X-))dlzl <_ gr-3/4

111 < K If (t r, )lr-3/4ddr dx

(fol (lot )2 )1/2< g .-3/4 sup IIf(r,’)ll.dr dx
O<r<_t

<_ Kt 1/4 sup IIf(r, ")ll.
O<r<t

1/2

Ill(x)
def 0 f0t 1 fF (fo

x

fx 1)-X 3/d’2e-3r "}- G(-/z3, x, )f(t r, )ddlzdr
+

Therefore

O (foX fl) fot 1 fr 31x2e-U3G(-lz3 x )f(t r )dlzdrd
3x

+ i +

f01f0t 1 fF 3/d,2e-/z3r --/1,
3 es)dlzdrd II(x)i +

Gx( ,x,)f(t-r,

IlIII(x)ll < Kt 1/4 sup IIf(r, ")11..
0<r<t

By a similar proof, we have

O fotl fr (fo
x

fx 1)XX 3/z2e-#3r q a(-/z3, x, )f(t r, )dsdlzdr

< Kt 1/4 sup IIf(v,’)ll.
0<r<t

t

Thus IIll(x)llL2 Kt 1/4 suPo<_< Ilf(r, ")lit2. However, by (3.1) and (3.2) we know that
the multiple integrals in f S(r)f(t r, .)dr are absolutely integrable and the order of the
integration can be interchanged by Fubini’s theorem. Also, since G(-/z3, x, ) is continuous
at x and each term in G(-/z3, x, ) has a form X(x)Y(), then
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Combining the above estimates, we have

-x S(r) f (t r, .)dr

Finally we have

L

< Kt 1/4 sup Ilf(v,’)llL2.
0<r<t

sup S(r)f(t r, .)dr
O<t<T H

< g r 1/4 sup IIf(r,’)llL2 + r sup f(r,x)dx
O<t<_T 0<r<T

Proposition 3.1 is a local estimate. Next we give a global estimate under some condition
on f(t, x).

PROPOSITION 3.2. If f (t, x) L([0, x); L2) and f2 f (t, x)dx =_ Ofor all > O, then
there exists a K such that

sup S(r)f(t-r,.)dr <g sup [[f(v,-)[[.
0<r<+cx H 0<r<+cx

Proof By Proposition 3.1, we need only to prove the inequality for > 1. If > 1, then

def 0IIIIIH S(r)f(t- r, .)dr

< S(r)f(t r, .)dr + S(r)f(t r, .)dr
H H

dej 111 + 112.

But 111 f S(v)gt(1 "c, .)dVllH l, where gt(s,x) f(s -+- 1, X) for s > 0. By
Proposition 3.1,

111 < K sup [[gt(r, ")ILL= <-- K sup [[f(r +t-- 1, ")IILz
0<r<l 0<r<l

<K sup IIf(r,’)llL2.
0<r<+c

By using (2.11), (2.13), and the uniform convergence of the integral and its derivatives for
r > 1, we have

1/2 < K f + I/zlale-U3rl IG(-/z3,
dl

(f01 tl/21 (f01 t 1/2

+ IGx(-tt3, x, )12d If(t r, )12d Idlzldr
L

< K sup IIf(v, ")ILL "+- I/21le-U3rl(l/z-2l + I/z-ll)ld/zldv
0<v<(x

ft(f+< K sup IIf(v ")11= 4- i/z2le-tti2va2/3 -2 -1(ltil + Ittil )dlzidr
0<r<cx

fl< K sup IIf(r,’)ll= / e-Z2ia2/3(lltil-2-+-llZil-1)dtzi
0<r<cx

_< K sup IIf(v,’)ll,
0<v<cx
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where K is independent of t. Thus suPt>_ 112 < K suP0<< Ilf(v, ")ll. Combining the
estimate for 0 < < 1, we obtain

sup S(r)f(t-r,.)dr < g sup IIf(v,’)ll.
0<t<+cx H 0<r<cx

Finally we derive the estimates for the C0-semigroup S(t) applying to an HI-function.
PROPOSITION 3.3. For wo(x) 6 H Hi(0, 1), S(t)wo H and IIS(t)wollni <

KIIw011/l for all [0, cxz), where K is independent oft.
Proof Since S(t) is a C0-semigroup of contraction in L2,

and S(O)wo wo. For > O,

1 (fr fr) 0 f010
S(t)wo -t- 3k62e-z3tG(-/z3 x )wo()ddlz

(3.3)

(fr fr)fo2rri
+ 31z2e-tt Gx(-Iz3 x )wo()ddlx

+

since the integrals are uniformly convergent for > 0 and G(-/z3, x, ) is continuous at
x . By the form of G(-/x3, x, ) and integration by parts, we obtain
(3.4)

G(-#3, x, )wo()d G(-tz3, x, )wo()d

fo [+ [3(-/z)(3 e-"l e-" e-U3)]-1 (e" e-U)/x3#l(/xl -/z2)e

nt- (eu3 e-U)/x2/z-l(/zl --/x3)ezx-z3 -k- (eu3 e-"2)ll(N2 N3)euzx-"3

-+- (e#l e-tZ2)/3/z]-l(/2 --/zl)e#2X-#l q- (e. e-/Z3)/z2/z]-l(//3

q- (eu2 e-"3)l/l(/z3 tz2)eU3X-Z2]wo()d
e=-fI tx, x) + I I Ix, x),

where #1 #, #2 O)#, #3 (-O3/z with a) (-1 + /)/2. Therefore, for > 0,

i 3tz2e-Z3t I (lz’ x)dlz
L

S(t)Wox IIc=+ Ic01 f01
In order to estimate I I (/z, x), we need the following lemma.

LEMMA 3.1. Iff (y) L2[0, cx)andRea < O with ot =/= O, then f exp(oexy) f(y)dy
L2[0, cx) and

Ill0 +ec eaxy f(y)dy
L2[0,,cxz)

<_ g f(Y)II:t0,,).

The proof of the lemma can be easily obtained by generalizing a lemma in [3, p. 2332]. Now
we rewrite 11 (/z, x) as

(3.5) lI(lz, x) Ill(lZ, X) d- Ih(lz, x) +... + ll6(lz, x).
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Then

III def fF 3/z2e-/X3tllx(/x’ x)dlz
2

/
+ L

(1/4zr2) #2e-at+zx(lz3(3 e-.l e-.2 e-3))-1

+

X(e" e-"1)(3/2)(1 2) e-"wodd dx.

Since r + ii and r iS a function of for on F+, i.e., r s(i) with s(i)
-/3/3 0 for i r,

III= II--ll[l+e-(S("i)+i"i)at+(s(")+i"i)x4 2
X (3 e-(s(i)+ii) e-m(s(i)+ii) e-2(s(i)+ii)) -1

12)<(ew(s(txi)+ilzi) e-(S(IZi)+i#i))(st(li) -I-- i) e-W(s(lzi)+ilzi)wo()dd[i dx

I1-)1 f011 (fbr fr) 1247r2 + (...)dlzi dx

de2 III1 + III2.

Since -s(/zi)3 + 3s(/zi)#/ < 0 for//4 E [b, r] and every term inside the integral of III1 is
bounded, we have

Illl--II--)lfolfbr (1 )242 (’")dNi dx < K Iw0()ld < gllwoxl[ z

However, by Lena 3.1, we have

1112 Ii-l If
+

eaOX (aoWii)3t+i#ix
42

e-

x (3 e-(a+i) e-w(a+ii) e-W2(a+iui)) -1 (ew(a+ii) e-(a+iui))

<_ K eiti(1-)e-awo()d dlzi

fr+  fo< K ei’ui (e-’a(l-)w0(1 ’))d" dlzi.
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Since Re (iw) < 0, by Lemma 3.1 again, we obtain

III2 < K [e-(1-c) woe(1 ff)12dff < KllwOxll 2

By a similar proof, we have

/z2 3t--- e I I lZ x dlz
t

and therefore

(fF+ _+_ iF_ ) 3#227r___ e--3tlil(lZ,x)dtzz
L

gllwoxll22.

Then by applying the same procedure to I Ii (#, x), 2, 3 6, we have

(iF f)+ Ili(lZ, x)d#
+ L

< K WOx
2
L

for 2, 3 6. By (3.3)-(3.5), we have

(f fF ) 3#2e-#3t+ II(l,,x)d#
+ Z

< KIIwoxll 2
L2.

By the estimate of I (/z, x), we have

-x S(t)wo
L2 "

Thus IIS(t)woll, Kllw01l/4,. The proof is completed.
Now we are ready to obtain the existence and exponential decay of the solutions.

4. Existence and exponential decay of solutions with small amplitude. We now study
the initial value problem for the KdV equation

(4.1) W -[- 113W + lldxx "-0 for 0 < x < 1, > 0,

(4.2) w(0, x) wo(x),

with boundary conditions

(4.3) w(t, 1) w(t, 0), wx(t, 1) (-1/2)wx(t, 0), Wx(t, 1) Wxx(t, 0).

If the nonlinear term WWx is moved to the right-hand side of (4.1), then variation of parameters
yields an equivalent integral equation:

(4.4) w(t, .) S(t)wo S(r)(ww)(t r, .)dr.

Let

(4.5) Fude=fs(t)wo- S(r)(UUx)(t r, .)dr.
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Then the solution of (4.4) is a fixed point of Fu in L2 L2(0, 1). First we prove the
well-posedness of (4.1)-(4.3) in H Hi(0, 1).

THEOREM 4.1. For any wo H 1, there exists a T T(llw0ll/4) > 0 such that (4.1)-
(4.3) has a unique solution u C(O, T; HI), where T -- +cx as I[w0ll/-/ 0. For
any T’ < T(lldp(x)lli4), there exists a neighborhood U of ok(x) in H such that the map

wo --+ u(t, .)from U to C(O, T; H 1) is Lipschitz continuous.

Proof Let

’T’b { v G C(O’ T; H1) 0<t<TSUp IIv(t, .)lll4, <_ b}
for some b > 0 and T > 0 to be determined. From Propositions 3.1 and 3.3, we have

sup IIFvlIH’ K311WOIIH -+- KI(T 1/4 -!- T) sup II(vvx)(t, ")11=
0<t<T 0<t<T

< g311wollH + gl(r 1/4 -+- T) sup Ilv(t, ")liB’
\0<t<T

where K1 and K3 are the constants in Propositions 3.1 and 3.3, respectively, and are indepen-
dent of T and v. Ifwe letb 2K3 Ilw0ll/4 and KI(T 1/4 + T)b 2KIK3IIwoIIH,(T 1/4-+- T) <
1/2, then sup0<t< IlFvll/4 _< b and F maps ST-,b into itself. For v, v2 6 Sv,b, we have

FI)I Fvz S(’g)(VlWx + WVZx)(t- r, .)dr,,

where w Vl 1)2. Thus by Proposition 3.1 we have

sup IlFVl FvzIIH, <_ KI(T 1/4 -I-- T) sup IlVlWx + llOV2xllL
0<t<T 0<t<T

<__ gl(ZX/4q Z)(\O<t<TSUp IlVllIH + 0<t<TSUp IIv211H1) 0<t<TSUp IIwlIHI

< 2Klb(T 1/4 -+- T) sup Ilwllnl.
0<t<T

Since 2Klb(T 1/4 + T) < I by the choice of b and T, F is a contraction, and by the contraction
mapping theorem F has a unique fixed point in S,b. If we choose KI(T 1/4 + T)b 1/4
2K1K3(T 1/4 d- T)IIWOIIH, then T +x as Ilw01ln, 0. Finally it is obvious that for any
Z’ < T(ll4(x) 11/), there is a neighborhood U of 4 in n such that is well defined from U
to C(0, T’; H1). For any Wl, w2 6 U, let Ul Wl, u2 w2, and w Ul u2. Thus

1/) S(t)(l/)l //)2) S(75)(Ullldx + WUax)(t- v, .)dr.

By Propositions 3.1 and 3.3, we have

sup Ilwll/ K31lw w2[ln -+- KI(T 1/4 + T) ( sup Ilull
0<t<T \0<t<T

+ 0<t<sup Ilu2llH) O<t<TSUp IIwlIHI

< K3llWl wZIIH -t- 2KI(T 1/4 + T)b sup Ilwlln,
0<t<T
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Thus suP0<t<T Ilwlln K3(i-2Kx (T1/4q T)b)-1 [IWl-W2lln’, which implies G is Lipschitz
continuous from U to C(0, T; H 1).

After we have the local existence, we prove the global existence of the solutions of (4.1)-
(4.3) with small initial data.

THEOREM 4.2. There exists a fl > 0 such that for any wo H with too
(4.1)-(4.3) have a unique solution u C(R+, H) with R+ [0,

Proof Let

Sb={v6C(R+;Hi) sup
0<t<+cx

IIv(t, ")lln b and v(t, O) v(t, 1)}
with b > 0 to be determined. Let

Fv- S(t)wo- S(r)(VVx)(r)dr.

Using Propositions 3.2 and 3.3, we have

sup
O_<t<+oo

IIFvll K311wollH + K2 sup IlvvxllL
0<t<+o

_< K3 wo H + K2 sup v H
\0_<t +oo

since f vvxdx 0, where K2 and K3 are the constants in Propositions 3.2 and 3.3, respec-
tively. Choose b > 0 and/3 > 0 such that Kzb < (1/2)and K3fl < (b/2). Then F maps
Sb into itself since f S(r)(vvx)(t r)dr 6 D(A) and S(t)wo H with (S(t)wo)(O)
(S(t)wo)(1) by the construction of S(t). The contraction property of F can be obtained
similarly in Theorem 4.1. Thus F has a unique fixed point in S, which is a solution of
(4.1)-(4.3).

Finally we show the exponential decay of the global solutions of (4.1)-(4.3) as -+ +x.
THEOREM 4.3. There exists 81 with > 81 > 0 such that for any wo H with

Ilw011/ < 81, the solution u(t, x) of(4.1)-(4.3) satisfies

Ilu(t, ") [wo]llt2 Ke-pt Ilwo [w0]llt2

for all > O, where fl is defined in Theorem 4.2, K > 0 and p > 0 are independent ofwo and
t, and [w0] f wo(x)dx.

Proof Since [u] [w0] for all > 0 and the solution is periodic in L2, i.e., u(t, O)
u(t, 1), by substituting u [u] into the equation and changing the variable, we can assume
that [w0] [u] 0. For 81 < fl, (4.1)-(4.3) has a unique global solution u satisfying

u(x, t) S(t)wo + S(r)(UUx)(t r, .)dr.

First let us estimate IlS(t)wollL for > 1. In (2.11), we note that if llr t_ ilxi I+,
then 3/Zr/X/2 /Zr

3 < 0. However, since ]r --82/3/3 80 as ]-/i "-’> "--OO, then
3/Zr/Z/2 /Zr

3 < --2/31 for some fll > 0 whenever [&r t- lZi F+. Since [wo] 0, by
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(2.11) and (2.13) we have

Thus for > 1, IIS(t)woll Ke-ltllwollL2. By the semigroup property of S(t), we

have IIS(t)wollL < Ke-Itllwoll for all >_ 0. Since u(0) u(1), fd uuxdx O, and
G(_#3, x, ) is continuous at x , the integration by parts yields

fo-1 3/z2e-#3(t-r) G(-/z X, )(bt2(’g, )/2)ddtzS(t r)((u2/2)x)(r, x)
+or’_

1 3/z2e-tz3(t-r) G (-/z x ) (u2 (z", j)/2)djdlz
2ri

e-/l(t-r) fF fo3/z2e-(/z3-/h)(t-r) G(-/z x, )(u2(r, )/2)ddlz.
2zri +ur_

By using the same derivation of the estimate for (0 S(t r)f(r, .)/Ox) in Proposition 3.1, we
can obtain

f0 S(r (u2 (t "c, /2)xdr
L

< K Z’-3/4e-/41r Ilu2(t r, .)llc2dv

< K (t "c)-3/4e-/l(t-r)llu2(’c, ")ll2dv

<_ K sup
O<r<+o

Ilu(r, ")11/ (t- r)-3/4e-l(t-r)llu(’g,

Thus the solution u(t, x) satisfies

Ilu(t,

/
< K |e-tllwoll2 + sup

0<r<+cx fot )Ilu(r, .)liB (t- r)-3/4e-l(t-r)llu(r, .)lltzdr

where K is independent of t, u and wo. Let Kllwoll=
and w(t) e’tllu(t, ")11=. Then w(t) satisfies

w(t) < c1 + c2 (t
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Define g(t) suP[t]<r<[t]+l w(’t’), where [t] is the largest integer less than or equal to t. Then

[t]-I ik+l (t r- f[t_< Cl -I-C2 z)-3/41/)(z)d’t" c2 (t z)-3/4to(’t’)dzto(t)
k=0 dk

[t]-I

<_ c + c g(k)4((t k) 1/4 (t k 1) 1/4) -+- c2g([t])4(t [t]) 1/4
k--O

But

(t k) 1/4 (t k 1) /4 (t k)i/4(t k 1)0-i/4

for k < [t]- 1. Thus

which implies

and

[tl-1

w(t) < Cl + 4c2 g(k) + 4c2g([t])
k--0

[t]

c + 4c2 g(k),
k=l

It]

sup w(r) < Cl + 4c2 Z g(k)
[t]<z<[t]+l k=l

t]+l

g(t) < C1 -- 4c2 g(r)dr

fo’ tt+lc1 + 4c2 g(r)dr + 4c2

<_ c + 4cg(t) + 4c g(r)dr.

g(r)dr

Cl 4Cl fog(t) < + g(r)dr,
1-4c 1-4c2

If4c2 < 1/2, then

which yields

< (t- k)-3/4 _< 1

g(t) < exp < 2c
1 4c2 1 4c2

by the Gronwall inequality. Therefore, from the definition of g(t), w(t), Cl, and C2, we have

Ilu(t, ")IIL _< 2KIIwoIIL2 exp ( (/1 8K sup Ilu(v,
\ 0<r<+cx

By the proof of Theorem 4.2, we choose w0 so small that

/1- 8K sup Ilu(r, ")11/ _> 2 > 0
0<r<+x

and K suP0_<<+ Ilu(r, ")11 _< (1/8). Then Ilu(t, ")ILL= _< 2KIItooIIL2e-2t, which implies
Theorem 4.3.
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Appendix 1. The Green’s function G(., x, ) is the following: for 0 < x < < 1,

G(), x, ) (3.)-l/zlem(x-) + (3)(3 B))-X[(e-ul 1)/xleul(x-)

+(2 e-v e-3)2eu2(x-) + (2 e- e-2)3e3(x-)

+(eU2 e-Vt)3eX-2 + (eu3 e-U)2eUX-U3

+(eU3 e-U2)le2X-U3* + (e e-U2)3eU2X-U

+(el e-3)2e3X-l + (e2 e-3)le3X-2]
(3x)-le:(x- + R(, x, );

for0 < <x < 1,

G(L, x, ) (3(3 B))-l[(e-" 1)le"(x-)

+(e-.2 1)2e.2(x-) + (e-3 1)3e.(x-)

+(e.2 e-.)3e.lX-m + (e"3 e-.l)N2e.X-.3

+(e.3 e-.:)Nle.:X-.3 + (e e-.2)N3e.2X-.l

+(e. e-.)2e.-.* + (e e-.3)le.3X-.:*]
R(,x,),

where B e-l + e-2 + e-N3. Here -X, o1, and 3 o21 with w
(- 1 + )/2. Next we show that

R(,x,) ddx K/I

where e F with > 0. Note that on F, i and r is negative and bounded
with r --2/3/3 as i . Write R(, x, ) as

R(,x, ) A0 + B1 + B2 + A1 + A2 + + A6.

Then we derive the following estimates:

z, lt Ait ddx g[[-4 for i=0,3,6,

11 [0Nil2

ddx glm[ -3 for i= 1,2,4, 5,

11 [OBi 2
]-3ddxKl for i=1,2.

Here we check only a few of them for F+. The others and the case for F_ are similar
and left to e reader. By noting that 13 B[ K > 0 for F+, r is bounded and small,
and 13 B[- Ke-’/ if F+ and i +, we have
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10Ao 2dxd 13)(3- B)l-2le- llallZll4le<x-12ddx

folfo< gllzl-Ze-,/51,il [e,l(X-lZddx < gl/z[ -4,

f0lf0l li9A312 folfodxd 132k(3 B)l-Zle"3 e-’Zlzllzxlz2lZleZ’2x-z’3ldxd

0101_< gll-e-’/51"il le.3 e-2lele.X-.3 Idxd

<_ KII- e-./51.ilx-./51.,ldxd <_ KII-,

11 IOAI[2 11dxd 13Z(3 B)l-2le" e-" 121131Zle2x-2z Idxd

K-e-1" el.dxd K1-3,

1 10BI 2- e-" e-"3 ,le.(x-
3x(

+
3(3- B)

gll- e- e dx + e-l"l(x-lddx

gll-.
By these estimates, we have the L-estimates for the x-derivative of R(, x, ). Here we note
that we can obtain the same estimates for the -derivative of R(, x, ).

Appendi . We prove the following lena.
LEMMA A. 1.

Idef
+
ei(t+Xd Kt-(+l/3(1 +

where K is independent oft > 0, x , and 0 1.

Proo Let y t/. Then I becomes

+ exp(i (Y3 (xt-1/3)y))dYt-(l+a)/3 y +I
t/3

If . xt-1/3 I is

Let goo(y) be a C-function such that goo -= 0 for lYl < 1 and 99o 1 for lYl >_ 2. Thus

I < -(l+a)/3 yaei(y3+;ky) goo(y)dy
t/3

+ t--(l+u)/31 yaei(y3+;kY)(1 --goo(y))dy de---fI1 + /2.
tl/3
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Then lI2l < Kt-(1+)/3. If. > -2,then 3y2 +9 > l fory e [at 1/3, +cx)q {lyl > 1}. Thus,
from integration by parts,

(f+ (Y) )I1 < -(1+)/3 (_l)ei(y+Xy) o(Y)
dy + K

(3yz + ) y

(f+ ((Y)))< t_(l+a)/3 ei(y3+Zy (i(3y2 + ))_ P0(Y)
dy + K K,

(3y2 + ) y y

where i max(1, att/3). In the following we assume -2 and -Z -I1. Let
y 11/20, which yields

+ oeilZl3/(o3-n)(Ixla/20)do11 t-(+)/31xl(l+=)/2

Let 01 (0) have a suppoa in (-, 1/) g), 2(0) have a suppoa in (( 1 /) 2g, 1 /)+
2g), and 3(0) have a suppoa in ((1/) + g, +) with 01 + 2 + 03 1. Thus

f+ o=eilZl3/(o3-O,o(lXi1/20)(l(O) +I1
IXl-1/2

II + 112 + 113.

Using integration by parts several times, we have

113
x/J)+g I)13/2(3

Kt-(+)/31XI (+)/2-(3/2).

By a similar argument, II I1[ _< Kt-(l+)/31jkl(-2)/2. Finally, using a corollary in [16, p. 311],

112 t-(l+a’/3l)l(l+a)/2 f(l/)+2g rla eil)13/2(3-o) qgo(I)ll/2rl)2(rl)drl_
Kt-(l+a)/3l.l (1+a)/2-(/4)

since 9 < -2, andifg > 0is small enough, q90(1911/27) 1 for . < -14 and 1311/2((1//)
2g) > 2. Therefore, for N-2, IIl Kt-(1+)/2]1(2-1)/4. By the definition of I, we have

III Kt-(l+u)/3 (1 + Ix3/tl (2-1)/12)
Appendix 3. In this appendix, we shall show that A does not generate an analytic semi-

group. The proof presented here was gNen by Komomik [6].
By Lena 2.1, there are no eigenvalues X of A on the imagina axis except 0. Thus

for v with either v < 0 or v > 0, (I A)-1 exists. In order to have A generate an
analytic semigroup, (&I- A)-1 must satisfy

C C
(ZI A)-1 <

for v with v real and large, where C is a fixed constant 10]. However, from (2.6),

(I A)-l f G(, x, )f()d
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for f 6 L2, where G(;, x, ) is defined in Appendix 1, and in the following, notations from
Appendix 1 will be used. Now we estimate only II0T A)-III for ) iv with v > 0.
Similar estimates can be obtained for ) iv with v < 0. If ) iv with v > 0, then

1 ci,//2 ((--/’- i)/2)/-, 3 ((- i)/2),/-. From Appendix 1,

G(,k, x, ) (3)0-1/zlezl(x-) X(x,1)() "- R(/z, x, ),

where R(/z, x, ) Ao + B1 - B2 -+- A1 + -+- A6 and )(x,1) is the characteristic function
of interval (x, 1). First we show that for/z =/zl ci large,

IR(lz, x, )[Zddx < KIv[ -5/3

where K is denoted as a generic constant. We need to derive the following estimates:

fo IAi[2ddx < Klv1-2 for 0, 3, 6,

fo fo [Ail2ddx K[v[ -5/3 for 1, 2, 4, 5,

fo fo1 IBi [2ddx < KIv1-5/3 for i- 1,2.

Here we check only several of them. The others are similar and left to the reader. Note that

13 B > K1 > 0 for v large and 13 B I-1 < Ke-/2. We then have

f01f01 f01f01 ]2 etZ(x-)IAol2dxd 13)(3- B)l-Zle-ul- ll2l/Zl 12ddx

Klvl-4/3e- fol leig/-(x-)12ddx < KIvl-,

f0xf01IA312dxd 139(3 B)l-21e3 e-m l2llzllzle2r2x-23 Idxd

folfo< Klvl-4/3e-/’- le e-2121e-’,/’Vx-’-L/-12dxd < Klvl-
f01f01 f01f01IAll2dxd 13.(3 B)l-leu2 e-u 1211z31Zle:zx-z2 Idxd

< Klvl-4/3e-V’fofol e’/Y-dxd <_ Klv1-5/3

IBll2dxd 3)(3 B)
1/212 [eZ2(x-g 12dxd

+ 3L(3- B)
l/z212 le(x-) [2dxd

( f01fx f01f0 )< Klvl-4/3 e-.,/,’- e-,/U(x-)ddx + e-V’-"-(x-)ddx

< KIv[ -5/3.



912 s.M. SUN

Thus from above estimates for R (/z, x, ), we obtain that for f a L2,

fx[[(kI A)-l fI[L > (3’)-llzlet(x-) f()d
1_.2

-> (3)O-11zae"’(x-)f()d
i

Klvl-5/6llf()llz2.

Consider the function f(x) eix L2. Then

ll(3)-(1 x)lze’xllL

3-3/21vl-2/31lelX I1.
Thus

II()I A)-lexllz (3-3/2[v[ -2/3 Klvl-5/6)lle’Xllz

which implies 11(.I A)-II >_ 1v1-2/3(3-3/2 KIv[-1/6). Therefore, for v large, we have
that II0.I A)- >_ (3-3/2/2)1v1-2/3. Thus, A does not generate an analytic semigroup.

Acknowledgments. The author wishes to thank Professor D. L. Russell for suggesting
the problem studied in this paper and for valuable discussions in the course of development
of the work.
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UNIQUE DETERMINATION OF MULTIPLE CRACKS BY TWO
MEASUREMENTS*

GIOVANNI ALESSANDRINI AND ALVARO DIAZ VALENZUELA

Abstract. We study the inverse problem of determining multiple cracks in a planar conductor by electrostatic
measurements at the boundary. We prove that two measurements at the boundary suffice to identify multiple cracks
with any number of components. We treat the problem under no regularity assumptions on the cracks and on the
background conductivity.

Key words, inverse problems, cracks, elliptic equations, level curves

AMS subject classifications. 35R30, 78A30, 31A25

1. Introduction. The inverse problem ofdetermining cracks by boundary measurements
consists of finding the shapes and locations of fractures inside a conductor f2 by applying
finitely many current fluxes to the boundary of f2 and measuring the induced potentials on the
boundary.

Friedman and Vogelius [F-V] proved that if is a planar domain of known analytic
conductivity, then a single crack crmthat is, a (possibly empty) smooth simple curvemis
uniquely determined by prescribing two appropriate current fluxes. This result was generalized
by Bryan and Vogelius to the case of multiple cracks. In [B-V 1] they prove that a collection
of N pairwise disjoint smooth simple curves crj, j 1 N, is uniquely determined by
prescribing N + 1 appropriate current fluxes.

The main purpose of this paper is to show that two appropriate current fluxes suffice to
determine multiple cracks with any number of components. See Theorem 1.1.

It has been known since the paper by Friedman and Vogelius that the crucial step toward
uniqueness theorems rests on the description of the shape of the level (equipotential) curves of
voltage potentials inside , and this in turn depends on information on the critical (stationary)
points of the potentials. Here too we shall elaborate this theme. In fact, we shall make use of
a technique, developed by Alessandrini and Magnanini (see [A-M1, A-M2]), which yields a
precise evaluation of the number of interior critical points of solutions to elliptic equations in
the plane in terms of the number of sign changes of boundary data.

The methods in [A-M2] will enable us to generalize the uniqueness result also in other
respects. First we shall consider conductivities in f2 that may be discontinuous and anisotropic;
this, we think, may be of some interest for applications with composite materials. Moreover,
we shall not require that the components ofthe multiple cracksatisfy any smoothness condition,
not even that they be curves. Roughly speaking, we shall only require that each component
not be an isolated point (which would have zero capacity) nor break off f2. A detailed list of
our assumptions is given below.

We let be a bounded simply connected open set of2 with smooth boundary 0. We
define a multiple crack cr in f2 as a possibly empty closed set that is the union of finitely many
pairwise disjoint, closed continua O" O’N C f2 such that f2\crj is connected for every
j 1 N. Recall that a continuum is a connected set with at least two points.

Typical examples of the components crj are simple arcs, but, by our definition, sets with
dendritic shape are also admitted. Components crj may also contain a closed curve ?,. In such
a case, we have that crj must also contain the bounded region surrounded by 9/.
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Dipartimento di Scienze Matematiche, Universitfi degli Studi di Trieste, Piazzale Europa 1, 34100 Trieste, Italy.
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We represent the known conductivity at x 6 as a 2 2 matrix A A(x). We assume
that its entries belong to L() and that, for some L > 0, the following ellipticity condition
is satisfied:

(1.1) A(x) > )ll2 for almost every x 6 and for every

We prescribe the boundary current fluxes as follows. Let 0S2 be decomposed into three
internally pairwise disjoint simple arcs ?’0, ?’1, ?’2. Consider three functions 00, r/1, 2 6 L2 (0 f2)
that have the following properties:

(1.2a) r/j>0 on0, supp r/j C ?’j for every j 0, 1, 2.

(1.2b) f0a r/j 1 for every j 0, 1, 2.

Here, integration is meant with respect to ds, the arclength element along 0. Next, let
us define the functions aPl, 1/r2 as

(1.3) aPk r/0- r/k, k 1, 2.

In the sequel, we shall also make use of their antiderivatives along 0S2, that is,

(1.4) q k(s) f k(s)ds, k 1, 2,

where the indefinite integration is considered along 0 fl with the counterclockwise orientation,
again with respect to the arclength parameter. Notice that, due to (1.2b) and (1.3), 1, tI/2 are
continuous on all of 0fl and uniquely defined up to an additive constant.

As is customary in this field, we distinguish the cases when a is assumed to be perfectly
conducting or perfectly insulating. The boundary value problems corresponding to these two
settings are as follows. We consider the weak solutions Uk W1’2(), Wk wl’2("\o’),
k 1, 2, of the following boundary value problems:

(1.5a) div(AVuk) 0 in fl\a,

(1.5b) uk=ck,j onaj, j= 1 N,

(1.5c) AVuk v k on 0f2,

(1.5d) f AVuk v 0 for every smooth Jordan curve fl C fl\a;

(1.6a) div(AVwk) 0 in f2\a,

(1.6b) AVwk.v=0 on0aj, j--1 N,

(1.6c) AVwk. v 0k on 0f2,

where the numbers Ok, j are also unknowns and v denotes unit normal, with outward orientation
when on 0S2. Problem (1.5) represents the perfectly conducting case, whereas problem (1.6)
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describes the perfectly insulating one. Problems (1.5) and (1.6) are to be interpreted rigorously
as follows:

To find Uk Wl’2(f2) satisfying btk const weakly on each crj and also

faAVuk VCk f 7tkck fr every ck W1,2(s2) such that ck

weakly on each o-j;

(1.6’) To find w wl’2(g2\cr) satisfying fAVwg VO fkO for every

r] G wl’2(’\o’).

The existence and the uniqueness, up to an additive constant, of solutions to (1.5), (1.6) is
straightforward in the framework of elliptic equations in divergence form. Let us also observe
that being the sets crj continua they have positive capacity and their boundary is composed
of regular points for the classical Dirichlet problem; see for instance, the book by Tsuji
[T, Thm. I, 11]. In view of the celebrated result of Littman, Stampacchia, and Weinberger [L-
S-W], we have that solutions uk to (1.5), k 1, 2, are continuous in all of S2. Consequently,
also the N-tuple {ck,j }jN=I in (1.5b) is uniquely determined up to an additive constant. Notice,
in connection with this, the role of condition (1.5d), which is implicit in the formulation (1.5’)
and represents a no-flux condition around the cracks. A conditions analogous to (1.5d) holds
automatically when u is replaced by w.

Now we are in position to state our main result.
THEOREM 1.1. Let F be a nonempty simple arc in Of2. Let or, r’ be two multiple cracks in

k 2, be the solutions to (1.5), (1.6), respectively, when cr is replacedg2, and let Uk, Wk,

by or’. Ifeither

(1.7)

or

(1.8)

then we have

ut=u onFforallk-- 1,2

wk w on F for all k l, 2,

Note that in this theorem the prescribed current fluxes belong to L2(0ff2); however, up
to minor technical adjustments, even less regular data could be considered. For instance, the
functions k couldbe replacedby measures, provided that conditions (1.2), (1.3) are preserved.
In particular, data modeling concentrated electrodes as in [B-V 1] would serve the purpose.

In 2 we prepare for the proof ofTheorem 1.1. We state and prove Proposition 2.1, which
allows us to extend the duality arguments already used in [F-V, B-V1, B-V2] to our setting.
Next, in Proposition 2.2, we introduce the tools from [A-M2] that will be needed later.

In 3, we state Propositions 3.1 and 3.2, which enable us to complete the proof of
Theorem 1.1.

Section 4 contains the proofs of Propositions 3.1 and 3.2.

2. Stream functions and geometric critical points. We define B (det A)-IAT,
where (.)T denotes transpose, whereas we denote by (.) +/- the rotation by 90 in the counter-
clockwise direction.

PROPOSITION 2.1. For each k 1, 2, there exists, and it is unique up to an additive
constant, afunction vk Wl’2(f2\cr) that satisfies
(2.1) VVk (AVw)+/- almost everywhere in f2\r.
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Furthermore, vk is a weak solution ofthefollowing boundary value problem:

(2.2a) div(BVvk) 0 in

(2.2b) vk d,j on Orj, j 1 N,

(2.2c) v q on OS2,

(2.2d) BVvk v 0 for every smooth Jordan curve fl C 2\cr,

where the numbers dk,j are unknown.
Before giving a proof, we start with some remarks.
The function v is the so-called stream function associated with w, and we have that

problems (1.6) and (2.2) are equivalent through (2.1). The construction of the stream function
associated to a solution of an elliptic boundary value problem like (1.6) is a generalization of
the notion of conjugate harmonic function and is well known in the case when the coefficients
in A are smooth and aj are smooth curves or have smooth boundaries. See the book by
Bergman and Schiffer [B-S] and, more specifically, for the case of cracks [B-V2].

Note that v is continuous in f2\cr; in fact, as we already observed, every point in
O(S2\r) Of t20a is regular for the Dirichlet problem. Moreover, v can be continued
to a W1,2(S2) f) C() function by setting vk d,j in crj, j N.

The rigorous formulation of (2.2) takes the following form:

(2.2’) To find 1)k e wl’2() satisfying v const weakly on each crj, v P on

0S2, and also fo BVvk V 0 for every W’2(f2) such that const

weakly on each crj.

Stream functions tk associated to solutions v of (1.6) could be constructed as well, and a
result completely analogous to Proposition 2.1 could be stated. We avoid the details since we
shall make use of t only locally, and we shall not need to specify its boundary conditions.

Proposition 2.1 implies that condition (1.8) in Theorem 1.1 is equivalent to

(2.3) BVI)k P BVv’. v on F for all k 1, 2,

where v denotes a solution to (2.2) when cr is replaced with r’. In fact, we shall prove Theorem
1.1 by treating v rather than w, the advantage being that vk, like u, satisfies Dirichlet-type
conditions on cr rather than Neumann-type conditions.

Proof of Proposition 2.1 (sketch). Let us approximate cr by closed sets rn such that
O"n-1 D fin _._> O" as n cx and 0rn are smooth and A by smooth matrices An satisfying
uniform ellipticity conditions and converging to A as n --+ cx in Lp() for all p < cx.
With such replacements, our thesis holds and we have uniform W1,2 bounds on corresponding
regularized solutions to (1.6) and (2.2). Next we let n --+ cx and find subsequences of
regularized solutions weakly converging in W1,2(\a) to solutions of the original problems
(1.6) and (2.2) that also satisfy (2.1).

We shall need some properties about the geometric character of level lines of solutions
of two-dimensional elliptic equations in divergence form and discontinuous coefficients. This
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issue was treated in [A-M2] for the case when the matrix A is symmetric, but the following
results hold also in the nonsymmetric case.

PROPOSITION 2.2. Let u WI’2(D) be a weak solution to div(AVu) 0 in a simply
connected domain D, and let be its stream function. Then we have the representation
u + it f o X where ) is a quasi-conformal mapping ofD onto the disk B1 (0) and f is a
holomorphicfunction on B1 (0).

Moreover, ifu AVu v 0 in the weak sense on an arc F C 0D, then we have u 0
everywhere in D.

Proof. See [A-M2, Thm. 2.1 and Cor. 2.2] for a proof. ]

This representation gives that the geometrical structure ofthe level lines of u has the same
character as that of the harmonic function h Re f.

A point z D is then called a geometric critical point for u if X (z) is a critical point for
h, that is, Vhlx(z) O.

Let F be a smooth vector field in a planar domain G with smooth boundary, and let F 0
on OG. We define the index of F in G by

1 I d(arg F),(2.4) I (G, F)
2zr G

where arg F denotes the angle made by F with a fixed direction, and the integral is taken in
the counterclockwise orientation. If is a point where F vanishes we define the index of F
at( as

l(ff, F) lim I(Br(), F).
r--O

In places we shall also deal with the index of complex-valued functions g u + it; for this
purpose, we shall identify the function g with the vector field F ().

We denote the geometric index of Vu at the point z as the index of the vector field Vh at

X (z), namely,

I (z, Vu) I (X (z), Vh);

the geometric index coincides with the index defined above when u is smooth (see [A-M2]).
Note that, contrary to the customary definition ofindex (see, for instance, [M]), we have chosen
to place the minus sign in the definition (2.4) (and hence, index= -winding number) in such
a way that, for solutions of elliptic equations, the geometric index is always a nonnegative
integer and positive only at geometric critical points. In fact, we have the following result.

LEMMA 2.3. Assume that the hypotheses ofProposition 2.2 hold. For every z D there
exists a neighbourhood U ofz such that the level set { U lu(() u(z)} is composed of
I (z, Vu) + 1 simple arcs whose pairwise intersection consists of {z} only.

Proof See [A-M2, Lem. 2.5] for a proof of the lemma. q

Proposition 2.2 also implies that the points z where u(z) (z) 0 are isolated, unless u
is constant. At such points, we may define the index ofthe complex-valued function g u +i t.
It is easily seen that we have

(2.5) l(z, g) I(x(z), f) I(z, Vu) + 1 > 1.

3. Proof of Theorem 1.1. The proof of Theorem 1.1 will be based on the following two
propositions, whose proofs are postponed to 4.

k 1 2, everywhere inPROPOSITION 3.1. If (1.7) holds, then we have Uk uk,

k 1 2, everywhere inLikewise,/f(2.3) holds, then we have vk vi,
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For any or,/ 6 ]R such that c2 +/2 1, set u cu +/3u2 and v ot v "l" / 1)2. We
have that u and v are solutions to problems (1.5) and (2.2), respectively, when 0k and qk are
replaced with ctaPl +/7t2 and q otql +/3q2, respectively.

PROPOSITION 3.2. Neither u nor v have geometric critical points in \cr.
ProofofTheorem 1.1. Suppose that (1.7) holds, and assume by contradiction tr’\cr - 0.

Hence r’\tr must contain a continuum 3. By Proposition 3.1, we have that there exists a
constant ck’ such that uk uk c on 3, k 1, 2. Since solutions to (1.5) are unique up to

0, k 1 2. Thereforeadditive constants, we may assume with no loss of generality that ck
u 0 on 3. We shall show that there exist ,/ 6 , O2 -1-" f12 1, such that u has at least
one geometric critical point in f2\tr, and this contradicts Proposition 3.2. The same type of
argument applies when (1.8) or, as is the same, (2.3) holds.

Let P be a fixed point in 3, and let D be a disk centered at P with sufficiently small radius
in such a way that D C 2\cr. Let Pn G 3 N D, n 1, 2 be points such that Pn P
for all n and Pn -+ P as n cx. Let tl, t2 be stream functions for ul, u2, respectively. We
may also require tx (P) 0, t2(P) 0. Obviously, we have that Ctl +/t2 is a stream
function for u and that (P) 0. For every n 1, 2 we may find Cn,/n ]1 satisfying
2 2ctn +/3n 1 such that the complex-valued function

gn Otn(Ul + it1) + fin(U2 + it2)

vanishes at the points P and Pn. We have I (P, gn), I (Pn, gn) >_ 1. Possibly passing to
subsequences, we may set

or0 lim On, /0 lim n, Ol + 1.

Let us denote

go Ot0(btl -t- itl) +/30(u2 + it2).

By the continuity property of the index, we obtain

I(P, go) >_ lim inf (I(P, gn) + I(P,,, gn)) > 2.

Hence, by (2.5), I (P, Vu) >_ 1 when ot co and/3 =/30; that is, P is a geometric critical
point for u. q

4. Proofs of Propositions 3.1 and 3.2.
ProofofProposition 3.1. Consider the connected component G of f2\(r t_J or’) such that

0G C 0f2. Functions uk, uk are solutions to div(AVu) 0 in 2\(cr t_J or’), and they have the
same Cauchy data on F. By Proposition 2.2 and continuity, we obtain uk u in G. Suppose
f2\(cr t3 G) is nonempty, and let D be any of its connected components. We have that one
connected component A1 of OD is contained in OG and the remaining Ah are some of the

" since A C cr t_J or’, we obtain uk const oncomponents crj of or. On A1, we have uk
A 1. By conditions (1.5b), (1.5d) we deduce uk const in D; by Proposition 2.2 this implies
uk const in f2, which contradicts (1.5c). Hence f2\(r t_J G) is empty and u u

in f2\(tr N or’). Finally,By reversing the roles of cr and r’, we arrive at uk uk u

by continuity and conditions (1.5b). The same argument applies to solutions

ProofofProposition 3.2. Consider the Neumann boundary data ap o/lPl -[-/ 1/t2 for u
on 0 f2. We have ap (c +/3) r/o cr/ -/72; therefore, 02 can be decomposed into two
arcs 32, 32--0ne being the union of two of the arcs ?’0, ?’1, ?’2, and the other is the remaining
one of the three such that ap > 0 on 31 and 7t < 0 on 32. Note also that the Dirichlet data
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q/ OtI/1 q-/tI/2 for v on 092 is a primitive of , and therefore is nondecreasing in 31 and
is nonincreasing in 32.
By using the regularization procedure outlined in the proof of Proposition 2.1 and by

recalling the continuity properties of the geometric index (see [A-M2, Proposition 2.6]), it
suffices to prove the thesis when A and 0a are smooth. Notice also that, in the regularization
procedure, we may also approximate the botmdary data ap and . Hence we shall also assume
that ap is smooth, ap > 0 in the interior of 31, ap < 0 in the interior of 32, and is still a
primitive of p.

Let us incidentally remark that a straightforward application of the methods in [A-M1]
would give, for both u and v,

1
(number of critical points in \a) + ( number of critical points on Oa) _< N,

where N is the number of components of a. Thus, if a were empty, our thesis would follow
immediately. In the sequel we shall deal with the case whena is nonempty. Roughly speaking,
our argument will consist of showing that conditions (1 .Sd), (2.2d) imply that there are exactly
2N critical points on

We shall prove that, for every domain G c Q\a such that no geometric critical point of
u nor v belongs to 0 G, we have

I (G, Vu) I (G, Vv) O.

With no loss of generality, we may assume OG F0 t_J 1-’1 U... U 1-’N where F0 I"N
are smooth closed curves such that 1% surrounds F1 t_J t_J FN and each Fj, j 1 N,
surrounds Cry. We have

N

2zr I G Vu Efr dargVu- fr dargVu,
j=l

and the analogous formula holds for v. By using the fact that 0f2 splits into two parts where
the Neumann data for u and the tangential derivative of the Dirichlet data for v have constant
sign and by the arguments used in the proof of Theorem 2.2 in [A-M1] we have

d arg Vu, fr d arg Vv > 0.

The proof will be completed by showing

(4.1) fr darg Vu _< 0 for every j 1 N.

In fact, we shall obtain I (G, Vu) 0 since we already know that such an index is nonnegative.
The same argument will be applicable to v since the boundary conditions for u and v on ay
are of the same type.

Let E be the annular region bounded by Fj and Oaj. We may find R > 0 and a conformal
change of coordinates from E to the annulus BR(0)\B1 (0) that is smooth up to the boundary
and transforms Fy into OBR(O) and ay into 0 B1 (0), (see, for instance, [N]). By conformal
invariance we have, in the new coordinates,

(4.2) div(AVu) 0 in BR(0)\BI(0),
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(4.3) u c const on 0BI(0),

AVu.v=O

and, by continuity,

for every smooth Jordan curve fl c BR (0)\B (0),

(4.4) I AVu. v O.
Bl(0)

Condition (4.4) implies that both the level sets {u > c}, {u < c} have zero distance from
0BI(0). Moreover, by the maximum principle, they also have zero distance from OBR(O).
Hence, the level curve {u c} contains at least two arcs, both joining OB1 (0) to O BR(O). We
want to continue u to a solution of an elliptic equation in the larger annulus Bn(O)\B1/n(O)
by the inversion z --+ 2-1, Where (.) denotes the complex conjugate. If A is given by

then we set

and

[a(z) b(z)1A(z)
Lc(z d(z)J

for every z BR(O)\BI(O),

a(-1) b(g-1)qA(z) _c(_l) d(_l) j
for every z 6 B1 (0)\B1/n(0)

u(z) 2c u(g-1) for every z BI(O)\B1/R(O).

We easily see that A is continued in such a way that ellipticity is preserved and u is
continued to a C solution of

div(AVu) 0 in Bn(O)\BuR(O).

The level curve {z6 Bn(O)\Ba/n(O)[u(z)=c} is now composedby the circle 0BI(0)
and by at least two arcs, both joining 0B n (0) to 0 Bn (0) and hence both intersecting 0B (0).
Therefore, either there exist at least two geometric critical points of u on 0B1 (0) or there exists
only one of geometric index of at least 2. In both cases we obtain by Lemma 2.3

2 I(BR(O)B1/R(O), Vu)=
B1/R(O) BR(O)

where use is made of the C smootess of u. On the other hand, by a straightfoard
calculation based on the cominuation by reflection of u we have

l(Z2 B/(O) B(O)

and thus

d Vu O,arg
Bn(0)

which is equivalent to (4.1) by the invariance of the winding number under change of coordi-
nates, lq
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Appendix. After this paper was accepted, the authors learned that H. Kim and
J. K. Seo [Unique determination of a collection of finite number of cracks from two

boundary measurements, SIAM J. Math. Anal., 27 (1996), to appear] have obtained a
result similar to Theorem 1.1 in the case when the background conductivity is smooth and the
unknown multiple crack is composed of finitely many disjoint smooth simple curves.
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REGULARITY AND EXACT CONTROLLABILITY FOR A BEAM WITH
PIEZOELECTRIC ACTUATOR*

MARIUS TUCSNAKt

Abstract. We consider an initial and boundary value problem modelling the vibrations of a Bemoulli-Euler
beam with an attached piezoelectric actuator. We show that the Sobolev regularity of the solution is by 1/2 + higher
than that one obtains by simply using the Sobolev regularity of the control term. The main results concern the
dependence of the space of exactly controllable initial data on the location of the actuator. Our approach is based
on the Hilbert uniqueness method introduced by Lions [Contr6labilit exacte des systmes distribus, Masson, Paris,
1988] combined with some results from the theory of diophantine approximation.

Key words, exact controllability, Hilbert uniqueness method, piezoelectric actuator, diophantine approximation

AMS subject classifications. 93C20, 35B75, 35B60

1. Introduction. In recent years a lot of papers were devoted to the study of elastic
structures with piezoelectric actuators (e.g., [2], [3], [5], [6]). The main topics covered in
the papers quoted above are modelling (see [2], [5], [6]), LQR, and identification problems
(see [3]). Concerning the controllability problems, as far as we know, all published works
consider finite-dimensional approximations of the initial distributed control problems (see
[6] and references therein). The main purpose of the present paper is to study the exact
controllabillity ofabeamwith piezoelectric actuatorby using the theory ofinfinite-dimensional
control systems as developed in [13]. More precisely we consider the initial and boundary
value problem modelling the vibrations of a Bemoulli-Euler beam that is subject to the action
of an attached piezoelectric actuator. If we suppose that the beam is hinged at both ends and
that the actuator is excited in a manner so as to produce pure bending moments, the model for
the controlled beam can be written as (cf. [5])

4W d
(1.1) w"(x, t) + -x4(x, t) u(t)x[arl(x 8ts(x)], 0 < x < , > O,

i921/) 0q21/3
(1.2) w(0, t) w(n’, t) --4-, (0, t) -7--4-(7r, t) 0, > 0,

Ox Ox

(1.3) W(X, O) wO(x), Yf(X, O) I/)I(x), 0 < X <

In the equations above w represents the transverse deflection of the beam, , 0 6 (0, 7r) stand
for the ends of the actuator, and y is the Dirac mass at the point y. Moreover by w’, w"
we denote the time derivatives of w. The control is given by the function u [0, T] - R
representing the time variation of the voltage applied to the actuator. Our main purpose is to
determine the initial data that can be steered to rest by means of the control function u. More
precisely we can give the following definition.

DEFINITION 1.1. We say that the initial data w, w are "exactly L2-controllable in (, O)
at time T" if there exists u L2(0, T) such that the solution w of (1.1)-(1.3) satisfies the
condition

(1.4) w(x, T) w’(x, T) O, O < x <

*Received by the editors April 4, 1994; accepted for publication (in revised form) January 5, 1995.
Ecole Polytechnique, Centre de Math6matiques Appliques, 91128 Palaiseau Cedex, France, and Universit6 de

Versailles (tucsnak@ cmapx.polytechnique.fr).
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The plan of this paper is as follows. The second section contains some notation and
preliminaries. In the third section we prove an existence and regularity result for (1.1)-(1.3).
The exact controllability is studied in the fourth section. Our approach was inspired by ideas
and methods used in [9] and 10] for pointwise control problems.

2. Notation and preliminaries. To study the wellposedness and controllability for
(1.1)-(1.3) we introduce the function spaces (Y)eR defined as follows. If oe > 0, then
Y is the closure in Ha() of the set of all functions y C() satisfying the conditions

d_(0 d_ (Zr) 0 for all n > 0; for negative ot we define Y as the dual space of Y_dx2n dx2n

constructed by means of the inner product of Y0 L2(2)
Let us now consider the homogenous initial and boundary value problem

(2.1) 04b"(x, t) -k- x4 (x, t) 0, 0<x <zr, 6 (0, T),

02 02b(2.2) (0, t) (zr, t) -x2 (0, t) -x2 (zr, t) 0, 6 (0, T),

(2.3) b(X, 0) 0(X), ’(X, 0) ql(x), 0 < X <

It is by now well known that the initial and boundary value problem (2.1)-(2.3) is well posed
in Y+2 Y for all oe > -2. Moreover, as a consequence of the Hilbert uniqueness method
(HUM), introduced in 13], the following result holds.

PROPOSITION 2.1. All initial data in Y+2 Y are "exactly L2-controllable in (, r/) at
time T" ifand only ifthere exists a constant c > 0 such that

(2.4) -x ( t)- -x (rl, t) dt > c(llll 2 2

for all

(0, 1) Y3 Y1.

We shall also need some results from the theory of diophantine approximation. For a
real number p, we denote by [I [P[[[ the difference, taken positively, between p and the nearest
integer, i.e.,

IIIplll min Ip nl.
neZ

Let us also denote by A the set of all irrationals p e]0, 1[ such that if [0, al an is
the expansion of p as a continued fraction, then (an) is bounded. The set A plays a very
important role in our control problem. Let us note that A is obviously uncountable and, by
classical results on diophantine approximation (cf. [4, p. 120]), its Lebesgue measure is equal
to zero. In particular, by the Euler-Lagrange theorem (cf. 11, p. 57]) A contains the irrational
quadratic numbers (i.e., satisfying a second-degree equation with rational coefficients). We
shall essentially use the fact that the elements ofA are badly approximable by rational numbers.
More precisely, the following result holds true (cf. [11, p. 24]).

PROPOSITION 2.2. A number p (0, 1) is in A ifand only ifthere exists a constant C > 0
such that

C
(2.5) Illqplll >_

q

for all strictly positive integer q.
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We shall also use the following result on simultenous approximation (cf. [4, p. 14]).
PROPOSITION 2.3. Let Pl Pk be k irrationals in (0, 1). Then there exists a strictly

increasing sequence ofnatural numbers qn such that

qn max(lllqnpl]ll IIIqnpilll IIIqPklll)
i=l,k k+l’

Vn> 1.

The next proposition, which is proved in [4, p. 120], shows that an inequality slightly
weaker than (2.5) holds for almost all points in (0, 1).

PROPOSITION 2.4. For any > 0 there exists a set B, C (0, re) having the Lebesgue
measure equal to r and a constant C > O, such thatfor any p B,

C
(2.6) IIIQPlII >_

ql+

for any strictly positive integer q.
Let us notice that by Roth’s theorem (cf. [4, p. 104]), for all > 0, B contains all

algebraic irrational numbers in (0, rr).

3. Existence and regularity of solutions. The regularity of the solutions of (I.1)-(1.3)
is a problem that is similar in many respects to the regularity for the wave or Euler-Bernoulli
equations with interior point control (see 14], [16]). As in the cases mentioned above one
can prove that the regularity of the solutions of (1.1)-(1.3) is higher than that one obtains
by simply using the Sobolev regularity of the fight-hand side of (1.1). More precisely if we
denote by f2 the interval (0, rr) we notice that if u L2(0, T) the function u(.)( g0) is

in L2(0, T; H-- (f2)) for any > 0. Standard regularity for the Bernoulli-Euler equation
(cf. [13]) implies the existence and the uniqueness of a solution of (1.1)-(1.3) in

(3.1) C([0, T], Y1/2_) fq cl([0, T], Y__).
The main result of this section, given below, shows that the space regularity in (3.1) can

be improved by + .
THEOREM 3.1. Suppose that w Y1, w Y-I. Then the initial and boundary value

problem (1.1)-(1.3) admits a unique solution having the regularity

(3.2) w C([0, T], Y) fq C ([0, T], Y_I).

Consider r 6 [0, T]. To prove Theorem 3.1, following 14], we introduce the homogenous
initial and boundary value problem

(3.3) v"(x, t) q- -;-, (x, t) O, 0<x <re, (0, r),

)2V
(3.4) v(0, t) v(zr, t) --(0, t) --(7r, t) 0, (0, r),

Ox Ox

(3.5) v(x,

The following lemma shows that the solution of (3.3)-(3.5) has a point regularity property
that is essential for the proof of Theorem 3.1.
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LEMMA 3.2. For any g Y-1 the initial and boundary value problem (3.3)-(3.5) admits
a unique solution having the regularity

(3.6) v e C([0, T], Y1) f-) cl([0, T], Y-l).

Moreover, for any p e (0, re) thefunction oo Lz(p, .) is in (0, T) and there exists a constant
C > 0 such that

(3.7) x(p, .)
L2(0,T)

< CIIgllY_,.

Proof The existence and uniqueness of a solution having the regularity (3.6) are standard
results for the Bernoulli-Euler equation. To prove (3.7) we put

g(x) n2an sin (nx).
n=l

By density it is enough to show that (3.7) holds for g 6 C(S2). Obviously the solution of
(3.3)-(3.5) is given by

v(x, t) Z an sin (n2t) sin (nx),
n=l

which implies that

(3.8)
Ox

(p t) nan sin (n2t) cos (np).
n=l

If we consider the right-hand side of (3.8) as a Fourier series in (see Theorem 4.1 in [7] for
details) we obtain the existence of a constant C depending on T such that

(3.9)
Lz(0,T)

_<Cy 2 2n a
n=l

which is exactly (3.7). Fq

Remark 3.1. The result of Lemma 3.2 is optimal in the sense that one can easily find
g 6 Y-l, T > 0, and p 6 (0, 7r) such that equality holds in (3.9). We also remark that
another possible way by which to prove Lemma 3.2 is a multiplier technique, as used in [7]
for the wave equation with point control.

Proofof Theorem 3.1. Due to the linearity of (1.1) and to well-known properties of the
Bernoulli-Euler equation, it is enough to consider the case w w 0. Suppose again
g 6 C(f2), and let v be the solution of (3.3)-(3.5). If we multiply (1.1) by v and integrate
by parts we easily obtain

(3.10) w(x, z)g(x)dx u(t) -x (, t) -ff-x (O, t) dt.

Lemma 3.2 implies that

u(t) -x (, t) -x (rl, t) dt Cllull:(o,r)llgll_,,
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SO, by (3.10), we obtain that w(., r) Y1, for all r [0, T]. By replacing r by r + h in (3.10)
we easily get that

(3.11) w C([0, T], Y1),

which implies that

041/)
(3.12) C([0, T], Y-3).

Ox4

As w satisfies satisfies (1.1), from (3.12) we obtain that

(3.13) w" G L2((0, T), Y-3).

From (3.11) and (3.13), by applying the intermediate derivative theorem (cf. [15, p. 19]) it
follows that

(3.14) w’ La ((0, T), Y_ 1).

The conclusion (3.2) is now a consequence of (3.11)-(3.14) and of the general lifting result
from 12].

Remark 3.2. As by (3.10) the interior regularity of to is equivalent to a point regularity
property, Remark 3.1 implies that the result in Theorem 3.1 is sharp.

4. The exact controllability results. In this section we shall study the space of initial
data that are exactly La-controllable in (, r/) at time T. Let us put

(4.1) gP(x) Z an sin (nx), l(x) Z n2bn sin (nx).
n=l n=l

A simple calculation shows that the solution of (2.1)-(2.3) is given by

q(x, t) Z[a, cos (nat) sin (nx) + bn sin (n2t) sin (nx)],
n>l

which implies that

(4.2)
-x (, t/-- ff-x (0, t) dt

4 [nan cos (nZt) + nbn sin (n2t)]2 sin2
n(r/+ ) sin2 n(

n>_l
2

Relation (4.2) implies that (2.4) is false for any ot if g- or v_ is rational, and by Proposition
2.1 it follows that the condition

(4.3)
+r/ r/- R-Q
2rr 2zr

is necessary to have exact controllability of all initial states in Yot+2 x Ya. The following result
shows that the condition above is not sufficient in the sense that there are , satisfying (4.3)
that do not allow the control of arbitrary regular initial data. More precisely we have the
following result.
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PROPOSITION 4.1. For any t > -2 there exist , r/ (0, 7r) satisfying (4.3) such that the
space Y+2 Y contains initial data that are not exactly LE-controllable in (, r/) at time T,
for any T >0.

Proof. By Proposition 2.1 it is enough to show that (2.4) is false for any or, c > 0. Let us
fix ct > 0 and v > 3+_____2. We choose then

(4.4) +7 an
2zr 10n!’

n--1

where an 6 {0, 1 9} for all n > 1, and an is not identically zero for great n. According
to 17] the right-hand side of (4.4) is a Liouville number; i.e., it is transcendental and there
exists a strictly increasing sequence of integers qn stlch that

(4.5) qn
1

<--, Vn>l.
qn

We note that

sin(qn-krl) sin[zr(qn -krl )]2 2rr P < r qn
2r

for any integer p. The relation above and (4.5) imply that

(4.6) sin qn + r < , Yn> 1.
2 q

Now consider the sequence of initial data

3a

(4.7) b(x) qnr sin (qnx), d(x) --O,

A simple calculation shows that {4, 4 }n Y+a x Y and

(4.8) I1112r_ + I112Ir__= ,
Moreover the solution of (1.1)-(1.3) with the initial data given by (4.7) is

3or

n(X, t) qnT COS (qZnt) sin (qnX),

x (O,r).

so, by (4.6) we have

(4.9) -x (, t) ---x (rl, t) dt

38+2 Iqn(rl-k)]sin2[qn(’+qn sin2
2

rl ) l fo
r

3+2sin2 Iqn(r/k-) 1 + 0,< qn
2

when n --+

Relations (4.8) and (4.9) imply that (2.4) is false for any ot > -2 and c > 0.
Remark 4.1. The estimates in Proposition 4.1 are not sharp. In fact, it seems likely that

the methods developed in [10] can be used to prove the existence of , r/satisfying (4.3)
such that >_0 Y,+2 x Y contains initial data that are not exactly L2-controllable in (, 0) at
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time T, for any T > 0. We also remark that, by standard duality arguments, condition (4.3)
implies approximate controllability in

Proposition 4.1 shows that to obtain exact controllability, we need assumptions stronger
than the irrationality of - and L. At this point we shall use the number theoretic prelimi-
naries stated in the second section. A first result in this direction is as follows.

THEOREM 4.2. Suppose that that 2r and belong to the set A (introduced in the
second section). Than all initial data in Y3 Y1 are exactly L2-controllable in (, ) at time
T, for any T >0.

Proof By Proposition 2.1 the conclusion of the theorem is equivalent to the existence of
a constant c > 0 such that

(4.10) f0T[0 a 12-x (, t) -x (O, t) dt >_ c(ll4ll2r_ /

for all

(0, 1) Y3 Y.

By applying the Ball-Slemrod generalization of Ingham’s inequality (cf. [1], [8]), from (4)
we obtain that there exists a constant C > 0 such that

(4.11) -O-T (se, t) -3-7x (r/, t) dt

(n a + n bn)sin2 sin2 dt.
n>l

2 2

As 2zr and are in A, from (2.5) we see that there exists a constant C > 0 such that for n
large enough we have

(4.12) sin In(r/4-)] sin {zr In(r/4-)’J} (C-) C
2 2zr

p >_ sin >- --n ’v’n >_ 1.

Inequalities (4.11) and (4.12) imply that

foT[O_.X (’ -’X(r]’O ]2 (nan+nbn),t)-- t) dt > c_ -2 2 -2 2

n>l

which is exactly (4.10). U
The following result shows that, for almost all choices of the ends of the actuator, we have

exact controllability in Sobolev spaces more regular than Y3 El.
THEOREM 4.3. Suppose that > 0 is arbitrary, and consider the set B introduced in

Proposition 2.4. Then, for any O (0, zr) such that B, all initial data in2r 2re

Y3+ YI+ are exactly LZ-controllable in (, rl) at time T for any T > O.
Proof As 6 B from (2.6)it follows that2zr 2zr

(4.13) sin
n(r/+ )

> sin > Yn > 1
2 n 1+’ 2 nTM

Consider again the solution b of (2.1)-(2.3) with the initial data given by (4.1). By applying
(4.2) and (4.13) we obtain

5-7(, tl x(, tl dt >- c(11411_1_ + 114
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for all

(t0, ql) E Y3 Y1.

By Proposition 2.1 it follows that all initial data in Y3+, Y1+e are exactly L2-controllable in
(, 7) at time T, for any T > 0. q

Let y (x, t) be the solution of

04Y (x, t) h(t)
d

(4.14) y"(x, t) + -x [60(x) -6(x)], 0 < x < re, > 0,

02y
(0, t)

02y
(Tr t) --0, > 0,(4.15) y(0, t) y(zr, t) x x2

(4.16) y(x,O)=O, y’(x,0)=0, 0<x <

By Theorem 3.1 we have

y E C([0, T], Y1) f) CI([0, T], Y-l).

By reversing the sense of the time in (1.1)-(1.3) we easily see that Theorems 4.2 and 4.3
imply that the space regularity y(., T) and y’ (., T) is higher than that one obtains by simply
using Theorem 3.1.

COROLLARY 4.4. Suppose that y is the solution of (4.14)-(4.16), where h L2(0, T)
and o- belong to the set A (respectively, to B). Then, for any T > O, the application2r 2rr
h -+ {y(., T), y’(., T)} maps L2(0, T) onto Y3 Y (respectively, onto Y3+e Y+e, V > 0).

Theorems 4.2 and 4.3 give no information on the controllability of initial data in Y+2 x Y,
with ot < 1. A partial answer is given by the following result.

PROPOSITION 4.5. Suppose that > O. Then the set Y2-. Y-, contains initial data that
are not exactly LZ-controllable in (, rl) at time T, for any T > 0 and , [0, zr].

Proof By applying Proposition 2.3 we easily obtain the existence of a strictly increasing
sequence of positive integers (qn) such that

(4.17) sin[ qn(0-)]2 < Yn> 1.

Consider now the sequence of initial data

q(x) sin (qnX), tI(x) 0

We note that

(4.18) I1112’, + 114 2lit,_=- qn --+ o, when n --+

A simple calculation that gives the corresponding sequence of solutions of (2.1)-(2.3) is

dPn(X, t) cos (q2nt) sin (qnX),

SO by (4.17) we have
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(4.19) -x t) -if-f-x( t) d

=q2nsin2Iq"(rl+)lsin2[q"(rl-)]forcs2(q2t)dt<K22
Yn>l,_

where K is a positive constant. In a similar manner we can show that (4.18) and (4.19) hold
true for the sequence of initial data

4(x) 0, 41(x) q2 sin (qnx) Yx

so (2.4) is false for a -e and arbitrary c > 0. ]

Remark 4.2. The exact controllability of initial data in Ya+2 x Yot, with 0 < ot < 1, seems
an open question.
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A DUALITY THEORY FOR SEPARATED CONTINUOUS LINEAR PROGRAMS *

MALCOLM C. PULLAN

Abstract. This paper presents a detailed duality theory for a class of continuous linear programs called separated
continuous linear programs (SCLP), based on a particular dual problem SCLP*. Using weak duality, a notion of
complementary slackness is introduced, and several sufficient conditions for optimality of SCLP are derived along
with the existence of complementary slack variables for basic feasible solutions for SCLP. Following this, a fairly
general condition for the absence of a duality gap between SCLP and SCLP* is given, as are several conditions for
the existence of an optimal solution for SCLP*. Finally, using all these ingredients, a strong duality result between
SCLP and SCLP* is proven when the problem data are piecewise analytic. A simple counterexample is presented to
show that strong duality may not follow if the assumptions of piecewise analyticity do not hold.

Key words, duality, continuous linear programming, linear optimal control
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1. Introduction. In 1953, Bellman [7] introduced a class ofoptimizationproblems which
he called bottleneckproblems. These problems have now become known as continuous linear
programs because they can be formulated as linear programs having variables which are
functions of time as follows:

CLP: maximize c(t)rx(t) dt

subject to B(t)x(t) + g(s, t)x(s) ds < b(t),

x(t) > O, [0, T],

with x(t), c(t), and the elements of B(t) and K(s, t) being bounded measurable functions.
In this paper we will be considering the following subclass of CLP called separated

continuous linearprograms, first introduced by Anderson 1] in an attempt to model job-shop
scheduling problems:

SCLP: minimize c(t)rx(t) dt

(1) subject to Gx(s) ds + y(t) a(t),

(2) Hx(t) + z(t) b(t),

x(t), y(t), z(t) > O, e [0, T].

Here x(t), z(t), b(t), and c(t) are bounded measurable functions and y(t) and a(t) are ab-
solutely continuous functions. The dimensions of x(t), y(t), and z(t) are nl, n2, and rt3,

respectively. Thus G is an n2 n matrix and H is an n3 x n matrix. We let o)(t) denote a
complete set of variables for SCLE i.e., co(t)r (x(t)r y(t)r z(t)r). By differentiating the
integral constraint (1) we can see that SCLP is a special type of linear optimal control problem
with state positivity but without state feedback.

The usual way to solve CLP (or SCLP) is by discretization (see, for example, Buie and
Abrham 10]); however, a number of authors have tried to solve this problem by extending

*Received by the editors October 25, 1993; accepted for publication (in revised form) January 10, 1995.
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Department ofMathematical Sciences, Loughborough University ofTechnology, Loughborough, Leicestershire LE11
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the simplex method for finite-dimensional linear programming. This was first attempted
by Lehman [21] and extended by Drews [12], Hartberger [19], and Segers [35]. The most
comprehensive, but a still incomplete, solution method based on the simplex method can be
found in Perold [25], later followed up by Perold [26] and Anstreicher [5].

Now the success of the simplex method for finite-dimensional linear programming is
due to the existence of a comprehensive duality theory. We can briefly summarise this as
follows. A more comprehensive treatment of this may be found in any standard text on linear
programming, e.g., Dantzig [11]. Consider the standard finite-dimensional linear program,
FLP:

FLP: minimize

subject to

cTx
Ax b,

x>O,

where A is an m n matrix and x 6 n. Given FLP, we may define a corresponding finite-
dimensional linear program called the dualproblem, FLP"

FLP: maximize by
subject to Avy <_c.

In this context, FLP is often called the primal problem. Now FLP and FLP exhibit two
important properties. The first is that if x is any feasible solution for FLP and y is any feasible
solution for FLP, then bry < cVx or, more concisely, V[FLP] < V[FLP]. (Here and
throughout the rest of this paper, we use the notation V [LP] to denote the optimal value of a
linear program LP, with the possibility that V[LP] cxz if LP is an infeasible minimization
problem and V[LP] -cxz ifLP is an infeasible maximization problem.) This result is known
as weak duality. The second duality property is crucial to the simplex method, namely, that
V[FLP] V[FLP] (no duality gap) and if V [FLP] is finite, then there exist optimal solutions
for both FLP and FLP. This result is known as strong duality.

Now as the concept of duality is at the heart of the simplex method for finite-dimensional
linear programming, to extend this algorithm to CLP (or SCLP) it would be necessary to
establish a similar duality theory for CLP (or SCLP). Indeed, this concern has been paramount
in the development of the partial algorithms in Lehman [21], Drews [12], Hartberger [19],
Segers [35], Perold [25], and Anstreicher [5] mentioned above. Moreover, because of this
importance of duality results, many papers that deal solely with duality for CLP, and hence
for SCLP, have appeared. In fact, the author of the problem CLP, Bellman, introduced in [8]
the following dual problem for CLP:

CLP’’" minimize w (t)rb(t) d

subject to B(t)rw(t) + g(s, t)rw(s) ds >_ c(t),

w(t) > O, [0, T],

where w(t) is in the space of bounded measurable functions. Restricted to SCLP this gives

SCLP’’’ maximize a(t)ru(t)dt b(t)rv(t)dt

subject to c(t) + Gru(s) ds + Hrv(t) >_ O,

u(t), v(t) >_ O, [0, T],
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with u(t) and v(t) in the space ofbounded measurable functions. On introducing the problem,
Bellmanthen readily established the weakduality result V[CLP] < V[CLP*’]. The first strong
duality results for CLP and CLP*’ were given in Tyndall [36]. Among other things, the strong
duality result required that B, K, b > 0. Consequently this result is not very useful for SCLP,
as many instances of SCLP which are of practical importance (e.g., network problems) give
rise to negative entries in G and a and hence also in K and b in the corresponding CLP.

However, Tyndall’s work was soon exended by Levinson [23], Tyndall [37] and Grinold
14-16]. Grinold’s results were more general than either Levinson’s or Tyndall’s; however, the
problem still remained that many simple instances of CLP, such as network versions of SCLP,
were not covered by the results. Using Grinold’s results (in particular [15, Thm. 5, p. 42]),
however, it is a trivial matter to establish the following result.

THEOREM 1.1 (no duality gap). Suppose that SCLP isfeasible and that H is oftheform

Then SCLP has an optimal solution and V[SCLP*’] V[SCLP] (i.e., there is no duality gap
between SCLP and SCLP).

Since the work of Grinold, numerous papers on duality for CLP have appeared. These
include Schechter [34], Reiland [32], and Levine and Pomerol [22], to name a few; however, in
many ways the results ofGrinoldremain the most general. It is perhaps not surprising that more
general results have not been obtained because it is not difficult to construct counterexamples
to possible duality results using the dual problem CLP*’ (see, for example, Grinold 14]). This
means that to establish more general strong duality results for CLP or SCLP it is necessary to
consider a dual problem different from CLP*’. This has been noted for a long time by authors
trying to develop algorithms for the solution of CLP, e.g., Lehman [21]. In fact, the successive
improvements of the algorithms for CLP mentioned above use more general dual problems
by allowing 8-functionals in feasible solutions to the dual. Despite this, the need to consider
more general dual problems has largely been ignored by authors studying duality for CLP. A
notable exception to this, however, is Papageorgiou [24], who poses the dual problem (and
the primal problem) in the space of functions of bounded variation.

There have been numerous works on duality theory for general linear programs, and a
review of these may be found in Anderson and Nash [2]. The study of duality in the context
of optimal control has also attracted many authors. Here it seems that it has been observed
for a long time that dual problems such as CLP*’ for CLP will not suffice. For instance, in
Rockafellar [30], the author studied a class of convex optimal control problems and noted
that strong duality theorems could be obtained by allowing dual variables to be of bounded
variation. This work was later extended to more general problems in Hager and Mitter 18]
and Hager 17].

On a more general note, duality theory for general optimization has been a subject of
intense study, with a large number of texts and articles devoted solely to this. Two notable
general contributions out of many are Rockafellar [31] and Borwein [9].

Now, in Pullan [28], the following dual problem for SCLP was introduced:

SCLP*: maximize

subject to

dzr (t)ra(t) r/(t)r b(t) dt

c(t) Grzr(t) + Hro(t) > O,

r/(t) >_ 0, a.e. on [0,

zr(t) monotonic increasing and right continuous

on [0, T] with zr(T) 0,
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with the variables r/(t) Lebesgue-integrable functions on [0, T] and where zr(t) monotonic
increasing means that each component of rr(t) is monotonic increasing. Here the expression

r
drc(t)ra(t)

is understood to be a Lebesgue-Stieltjes integral. We shall make frequent use ofsuch integrals,
and the reader is referred to Kolmogorov and Fomin [20] for its definition and important
properties.

The dual problem SCLP* is readily seen to be a generalisation of SCLP*’ in that a
feasible solution for SCLP*’ generates a feasible solution for SCLP* of the same cost, but
not necessarily vice versa (see [28]). The following weak duality result was also established
in [28].

LEMMA 1.2 (weak duality). V[SCLP*] _< V[SCLP].
Using this more general dual in [28], Pullan was able to establish a complete algorithm

for solving SCLP when c(t) and a(t) were piecewise linear, with a(t) continuous, and b(t)
was piecewise constant. As a corollary to the algorithm, the following strong duality result
was also established.

THEOREM 1.3 (strong duality). Suppose that a(t) and c(t) are piecewise linear (with a(t)
continuous) and b(t) is piecewise constant on [0, T]. Supposefurther that thefeasible region

for SCLP is nonernpty and bounded; then V[SCLP] V[SCLP*] and there exist optimal
solutionsfor both SCLP and SCLP*.

In fact, although it was not stated in [28], the optimal solutions for SCLP and SCLP*
could be chosen with x(t) piecewise constant and with r(t) and rl(t) piecewise linear.

The purpose of this paper is to continue the duality work for SCLP begun in Pullan [28],
based on the dual problem SCLP*. In particular, we establish a strong duality result (Theo-
rem 6.9) under the assumption ofpiecewise analyticity of the problem data. As with the above
result, the optimal solutions in this strong duality result are also seen to be of a particularly
simple form for both SCLP and SCLP*. A counterexample to a possible strong duality result
is also given in 7 in the case when the assumptions of piecewise analyticity do not hold. As
well as strong duality results, we also develop a duality theory in three other directions. This
is both for its own sake and for its use in proving the strong duality results of 6.

The first ofthese is the concept ofcomplementary slackness for SCLP (3). This concept is
based on the corresponding one for FLP, which has been extended in Anderson and Nash [2] to
more general linear programs. Complementary slackness is a condition that holds at optimality,
given that strong duality holds, and thus generates sufficient conditions for optimality of the
problem in question. Using these ideas we thus develop several sufficient conditions for
optimality of SCLP. Moreover, given mild assumptions on the costs, we show that it is

possible to calculate a set of complementary slack variables for any (or at least any sufficiently
well behaved) solution for SCLP that is an extreme point of the set of feasible solutions (i.e.,
a basicfeasible solution). This is identical to what happens for FLP and forms an important
step of the simplex method.

The second preliminary type of duality result we establish is a fairly general condition for
the absence of a duality gap between SCLP and SCLP* (4). Although not as useful as strong
duality results, such results can often be used to prove convergence of possible algorithms.
Having done this, we note that a fairly general condition also exists to guarantee the existence
of an optimal solution for SCLP (Theorem 2.1). Hence, to establish general strong duality
results it is necessary only to prove that SCLP* admits an optimal solution. This turns out to
be quite difficult for general problem data unless severe restrictions are placed on the problem
and in fact may not be true, as shown by Example 7.1. Nevertheless, two general results for
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the existence of an optimal solution for SCLP* are established in 5. We conclude this section
with a more cryptic result for the existence of an optimal solution for SCLP*. This last result
is used in 6 to prove the strong duality.

Before beginning the analysis it is worth noting that the convex optimal control problem
considered in Hager and Mitter 18] and Hager 17] can be seen to include SCLP by suitable
transformations. Moreover, the Lagrangian dual problem considered in 18] and 17] can be
simplified to SCLP*. Using the results in 18], it is possible to derive the following result.

THEOREM 1.4. Suppose that a(t) is absolutely continuous and that b(t) and c(t) are
continuous. Suppose also that there exists a continuousfeasible solution co(t)for SCLP with
coi(t) > Ofor each and [0, T]. Then V[SCLP] V[SCLP*] and there exists an optimal
solutionfor SCLP*.

Conditions similar to the existence of a strictly positive solution above are well known to
ensure strong duality in various problems and are known as Slater-type conditions. However,
it is also well known that such conditions often are difficult to verify or fail to hold in practice.
As would be expected, by considering only a linear problem, we are able to obtain a much
more complete duality theory.

For the purpose of slightly simplifying notation throughout this paper we will rewrite
SCLP* in the following equivalent form, obtained by replacing /(t) by -r/(t):

SCLP*" maximize

(3) subject to

f0
T

f0rl(t) b(t) dt drc(t) a(t)

c(t) Gvrc(t) H l(t) > O,

r/(t) < 0, a.e. on [0, T],

re (t) monotonic increasing and right continuous

on [0, T] with rr(T) 0.

We let O(t) denote a complete set of variables for SCLP*, i.e., O(t) (rr(t) r, rl(t)r). Also,
given O(t) we let (t) be the left-hand side of (3). Thus 7t(t) c(t) Grrc(t) Hro(t).

We now begin the discussion by introducing some definitions and stating some previous
results on SCLP that will be used throughout this paper.

2. Definitions and established results. In this section we introduce some standard defi-
nitions and state some previous results on SCLP that will be useful throughout this paper. We
begin by introducing some standard notation.

For any n, >_ 0, we use the notation

supp(’) {i :(i > 0}

to denote the support of (.
Let f [a, b] -- n. We shall say that f is analytic on a neighbourhood of [a, b]

(or [a, b)) if there exists e > 0 and an analytic function g (a e, b + e) -- ]n such that
f(t) g(t) for all 6 [a, b] (respectively, [a, b)). Let P {to, tl tm} be a partition of
[a, b]. We say that f ispiecewise analytic on [a, b] with breakpoints in P, or simply, piecewise
analytic on [a, b], if f(t) is analytic on a neighbourhood of [ti-1, ti) for 1 m. The
smallest such partition P (excluding a and, if f is continuous at b, b) will be called the
breakpoints. We use similar definitions for piecewise constant, linear, and polynomial. Finally
we use the notations f(t-) to denote lims.t f(s) and f(t+) to denote lims+t f(s).

We shall make frequent use of the standard spaces L[a, b] (bounded measurable func-
tions on [a, b]), L l[a, b] (Lebesgue-integrable functions on [a, b]), C[a, b] (continuous func-
tions on [a, b]), and NBV[a, b] (functions of bounded variation on [a, b] normalised so that
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they are right continuous on (a, b] and have f(b) 0). The way that functions of bounded
variation are normalised in NBV[a, b] is slightly nonstandard. We shall also use the notation
Xn[a, b] to denote the n-fold product of X[a, b] with itself, where X is any one of Loo, L1,
C, and NBV.

We shall also make occasional use of dual pairs of vector spaces (see Schaefer [33]). Let
(X, Y) be a dual pair ofspaces. We shall use the notation tr(X, Y) to denote the weaktopology
on (X, Y).

Finally, by way of preliminary notation, it will be useful to define F(SCLP) to be the
feasible region for SCLP, thus

F(SCLP) {x(t) 6 L[0, T] there exists y(t) cn2[0, T], z(t) L[0, T] such

that co(t)r (x(t)r, y(t) r z(t) r) is feasible for SCLP

We now summarise previous results relating to SCLP that will be useful in this paper.
The first of these may be found in Anderson, Nash, and Perold [3]. As with finite-dimensional
linear programming, we use the notation basicfeasible solution for SCLP to denote an extreme
point of the set of feasible solutions for SCLP.

THEOREM 2.1. Ifthefeasible regionfor SCLP is nonempty and bounded, then there exists
an optimal solutionfor SCLP at a basicfeasible solution.

THEOREM 2.2. Afeasible solution, co(t), for SCLP is basic ifand only ifthe columns of

G I 0K-- H 0 I

corresponding to the support of co(t) are linearly independentfor almost all [0, T].
Due to its use in the above theorem, the matrix K will play a significant role throughout

this paper. We define K formally as well as some related properties.
DEFINITION 1. We define

I 0 1K= H 0 1

1. We let L be the number ofbasis matrices of K.
2. Let B be any matrix consisting of columns of K and 9/ ]lnl+n2+n3" We use the

notation ’s to denote those elements of ?, corresponding to the columns of K that
are in B in the same order Thus if gi is the j th column of B, then gi is the j th
element of ?’8.

Let B be a basis matrixfor K.
3. Letco(t) (x(t), y(t), z(t)) beasetofvariablesforSCLP. We letxs(t) denote

cos(t) restricted to x(t). Thus xs(t) consists ofthe elements ofx(t) corresponding
to those ofthe first n columns ofK that are also in B, arranged in the same order
as the columns ofB.

4. Let p(t) be a solution to Bp(t) d(t) for some d(t) (that is, p(t) B-ld(t)). We
use the notation px(t) to denote the elements of p(t) corresponding to those of the
first n columns ofK that are also in B, arranged in the same order as the columns
of B.

In a recent paper [29], a study was made of the possible forms of optimal solutions for
SCLP with various types of problem data. The main purpose of this paper was to establish
conditions under which an optimal solution existed for SCLP for which x (t) was either piece-
wise constant or piecewise analytic. We summarise these two main results below. It will be
seen that these results coupled with the previous strong duality result (Theorem 1.3) provide
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the key to establishing the strong duality results in 6. We first state a preliminary result proven
in [29].

LEMMA 2.3. Let a(t) be any absolutely continuous function and b(t), any bounded
measurablefunction on [0, T]. Let B (1) B (L) be the basis matricesfor K and let

p(i)(t)--B(i)-l[ it(t) ]b(t)

Define x(i)(t) by-(i) p(xi)tB(i(t) (t) with the other components ofx(i)(t) set to zero. Let w(t)
be any basic feasible solution for SCLP; then for almost all [0, T], x(t) x(it)(t) for
some it.

THEOREM 2.4. Suppose that a(t) is piecewise linear and continuous, b(t) is piecewise
constant, and c(t) is piecewise analytic on [0, T]. Suppose also that the feasible region for
SCLP is nonempty and bounded. Then there exists an optimal basicfeasible solutionfor SCLP
with x(t) piecewise constant on [0, T]. Moreover, let x (1) x (L) be given by Lemma 2.3,
where L is the number of basis matricesfor K, and P {to, tl tn} be any partition of
[0, T] containing the breakpoints of a(t), b(t), and c(t) and with k(t)rx (i) k(t)7"x (j) for
all (tm-, tm) or (:(t)rx (i) 5/: k(t)x(J) for all (tm-, t,n), for each j and each m.
Then such x(t) may be chosen so thatfor all m, the maximum number ofbreakpoints ofx(t)
in [tm- tin) is L.

THEOREM 2.5. Suppose that the costs c(t and right-handsides a (t andb(t arepiecewise
analytic on [0, T] (butwith a(t) continuous) and that thefeasible regionfor SCLP is nonempty
andbounded. Then there exists an optimal basicfeasible solutionfor SCLP with x (t) piecewise
analytic on [0, T].

3. Complementary slackness results. Consider the finite-dimensional linear program
FLP. The statement that strong duality holds between FLP and FLP* can be equivalently
written as follows. There exists x feasible for FLP and y feasible for FLP* such that

(4) xT (c ATy) 0,

i.e., x and y are complementary slack. This statement forms the basis ofthe simplex method for
finite-dimensional linear programming in the following way. Suppose we have a basic feasible
solution x for FLP. The next step in the simplex method is to calculate complementary slack
variables for this basic feasible solution and test for optimality. In other words, we calculate
a set of variables y satisfying (4) and optimality occurs if y is dual feasible.

In this section we mimic these ideas for SCLP. We will define the concept of comple-
mentary slackness in an analogous way and show that complementary slack variables can be
calculated for any given basic feasible solution for SCLP, given that it and the costs satisfy
some mild assumptions. The calculation of complementary slack variables for FLP amounts
to solving a system of linear equations involving the costs and a basis matrix. We will see that
a similar method applies for SCLP. As strong duality need not necessarily hold between SCLP
and SCLP*, the following complementary slackness results can also be seen as sufficient, but
not necessary, conditions for optimality.

The basis of our discussion is the following complementary slackness result based on the
weak duality result between SCLP and SCLP* proven in Pullan [28].

LEMMA 3.1. If09 isfeasiblefor SCLP, 0 isfeasiblefor SCLP* and

(5) fo
r
(t)x(t) dt dzr(t)ry(t) O(t)rz(t) dt O,
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(where p(t) c(t) GTyr(t) HTO(t)), then 09 and 0 are optimalfor SCLP and SCLP*,
respectively. Moreover, strong duality holds between SCLP and SCLP* ifand only if there
exists cofeasiblefor SCLP and 0 feasiblefor SCLP* such that (5) holds.

Proof Suppose that 09 is feasible for SCLP, 0 is feasible for SCLP*, and (5) holds. Then

0 (t)Tx(t) dt q- dzr(t)T y(t) (t)T z(t) dt

c(t) rx(t) dt (GT rr(t) + HT (t))T x(t) dt + drr (t)T y(t)

r(t)Tz(t)dt

c(t)Tx(t) dt + drr(t)T Ox(s) ds + y(t) O(t)T(Hx(t) + z(t)) dt

c(t)Tx(t)dt- rl(t)Tb(t)dt + drc(t)Ta(t)

by integrating by parts (see, for example, Dunford and Schwartz 13, p. 154]) and the feasibility
of co(t). The first statement of the lemma now follows by weak duality (Lemma 1.2). By
reversing this argument we obtain the second statement. B

It would seem that the equation for SCLP corresponding to (4) for FLP is (5). Indeed, it is
possible to show that the above result is exactly the restriction to SCLP of the complementary
slackness result for general linear programs given by Anderson and Nash [2]. However, the
equations (5) by themselves are not easily solved. If, however, feasibility of co in SCLP and
0 in SCLP* is also assumed, then the integrals in (5) may be simplified. With this in mind
we now proceed to simplify (5) before defining the notion of complementary slackness. The
more difficult expression to simplify is

T

(6) dyr(t) T y(t) O.

To solve this we need to digress briefly and consider the concept of a function increasing at a
point.

DEFINITION 2. Let f [a, b] ----> I be a monotonic increasing function and (a, b).
We say that f is strictly increasing at iffor any tl, t2 [a, b] with (tl, t2) we have
f(tl) < f(t2). For the definition ofstrictly increasing at a or b we use the intervals
[a, t2) and (tl, b], respectively, in place of (tl, t2).

We now derive some useful results based on this definition. It is worth noting the con-
verse of the above definition explicitly, namely, if f is monotonic increasing but not strictly
increasing at t, then there exists tl and tz with 6 (tl, t2) and f (tx) f (t2); i.e., f is constant
on some interval containing t. This statement forms the basis for our next lemma.

LEMMA 3.2. Suppose f [a, b] -- is monotonic increasing on [a, b]. Suppose there
is an open interval (or, fl)

_
[a, b] such that f is not strictly increasing at anypoint of (c, fl);

then f is constant on (o, fl).
Proof Let x, y 6 (c, fl). Assume x < y. Consider the interval [x, y]. For any 6 [x, y],

f is not strictly increasing at t, so by the remark above, there exists an open interval containing
on which f is constant. By the Heine-Borel theorem (see, for example, Apostol [6]), a finite

number of these intervals cover [x, y], and as these intervals are not pairwise disjoint, we see
that f is constant on [x, y]. In particular f(x) f (y), and so, as x and y were arbitrary, f
is constant on (or, fl). El
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In most cases f strictly increasing at a point will imply that either f is discontinuous at
or f is strictly increasing on some interval containing t. In particular, this will be true if f is

analytic on some interval containing (see Pullan [27, Cor. D.2.1]). However, there do exist
continuous monotonic increasing functions that have points where they are strictly increasing
but which are not strictly increasing on any interval (see [27, Ex. D. ]).

The next result is the main result that will be used concerning the concept of strictly
increasing at a point. It is this result that allows us to unpack (6) to give a more satisfactory
definition of complementary slackness for SCLP.

LEMMA 3.3. Let f [a, b] be monotonic increasing and g [a, b] -- [0, x) be
continuous. Suppose that f is strictly increasing at [a, b] and

(7) g(s) df (s) 0;

then g(t) 0. Conversely, if g(t) 0 for every point at which f is strictly increasing,
then (7) holds.

Proof. Suppose that f is monotonic increasing, g is nonnegative on [a, b], and (7) holds.
Suppose also that f is strictly increasing for some but g(t) > 0. Then, as g is continuous,
there exists an interval I such that I and g(s) > 0 for all s I. Hence, as f is strictly
increasing at t,

g(s) df (s) > O.

However, as g(s) > 0 for all s [a, b], we have

b

g(s) df (s) > O,

which is not possible, so we must have g(t) 0.
Now suppose that g(t) 0 at every point at which f is strictly increasing. Let S

g(t) > 0 }, then f is not strictly increasing at any point of S. Suppose S ,1(Oen,/n),
(N < ), where (oen, ,) (Oem,/m) 0 if m - n. Then by Lemma 3.2, f is constant on
(cn,/3n). Hence

N

fsg(t) df (t) _, f( g(t) df (t) O.
n=l n’in)

If either g(a) > 0 or g(b) > 0, then a similar argument will give that f is constant on some
interval containing a if g(a) > 0, or b if g(b) > 0. Hence

g(t) df (t) O.
,b}

Finally, g(t) 0 on (a, b) S and so the result follows.
We now define the notation of complementary slackness for SCLP.
DEFINITION 3 (complementary slackness). Let co be afeasible solutionfor SCLP. We say

that 0 NBVn2[o, T] L3[0, T] is complementary slack with co ifzr is right continuous at
zero, andfor any or, 6, and i,

1. ifyi(t) > 0 on (or, ), then rci is constant on lot,/3);
2. ifyi(T) > O, then rci(T-) rci(T) 0;
3. 7i (t) 0 a.e. on xi (t) > 0 };
4. rli(t) 0 a.e. on zi(t) > 0 }.
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It is worth noting that if 0 is also feasible for SCLP*, each of the conditions for com-
plementary slackness has a corresponding contrapositive. For instance, condition (1) can be
written equivalently as follows: if rei is strictly increasing at t, then yi(t) O.

Given this definition, we may now write the complementary slackness result, Lemma 3.1
in an analogous manner to that for FLP.

THEOREM 3.4 (complementary slackness). Suppose that o9 isfeasiblefor SCLP and that
0 is complementary slack with o9. IfO isfeasiblefor SCLP*, then o9 is optimalfor SCLP and 0
is optimalfor SCLP*. Moreover, strong duality holds between SCLP and SCLP* ifand only
if there exists o9 feasible for SCLP and 0 feasible for SCLP* such that 0 is complementary
slack with o9.

Proof. Suppose that strong duality holds between SCLP and SCLP*. Then by Lemma 3.1
there exists o9 feasible for SCLP and 0 feasible for SCLP* such that

(t)rx(t) dt dre(t)ry(t) rl(t)rz(t) dt O.

Clearly we have i(t) 0 a.e. on xi(t) > 0 and rli(t 0 a.e. on zi(t) < 0 for
each i. Suppose that yi(t) > 0 on (c,/3). Then by Lemma 3.3, rei is not strictly increasing
on any point of (or,/). Hence by Lemma 3.2 and as re is right continuous, rei is constant on
[c,/3). Similarly if yi(T) > 0, then rei(T-) rei(T) O. Hence 0 is complementary slack
with co.

This establishes the result one way. The proof of the converse is similar. q

Having defined complementary slackness, there still remains the question of how such
complementary slack variables should be calculated and, more importantly, if they exist at
all. In the finite-dimensional linear program their existence is guaranteed for basic feasible
solutions. We see that this is essentially true for SCLP as well, in the sense that a 0 can be
defined satisfying points 1-4 of the definition. This is the content of the next result. However,
there is one slight technicality, and that is in ensuring that this 0 is in the appropriate space. As
the result below shows, this will be true for sufficiently well-behaved costs and a basic feasible
solution with sufficiently well-behaved support over time. For example, right continuous costs
of bounded variation and a piecewise continuous basic feasible solution would suffice.

THEOREM 3.5. Let o9 be a basicfeasible solution for SCLP with B(t) the columns ofK
n2corresponding to the support ofog(t). Let L[0, T] be any arbitraryfunction such that

ifyj (t) > 0 on (, 13) f’l [0, T]for some , 13, and j, then (j is constant on [or,/3) fq [0, T]. Let
0 be any solution of

(8) O(t)r B(t) ?B(t) r

for almost all [0, T), where

c(t) 1(. ((0t)

(where 0 is ofdimension n3), with re(t) re(t+) for such that (8) does not have a solution,

ifthe limit exists, and re(T) O. Ifthis 0 is an element ofNBVn:[o, T] L3 [0, T], then it is
complementary slack with o9. Conversely, any 0 complementary slack with co satisfies (8)for
some (t) for almost all [0, T].

Proof Let (t) [0, T] --+ ]n2 be any arbitrary function satisfying (j constant on [c,/)
if yj(t) > 0 on (t,/). Let be as above. From Theorem 2.2 there exists a solution O(t)
(although not necessarily unique unless B(t) is square) to (8) for almost all 6 [0, T]. To
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show that any solution 0 6 NBVn2[O, T] x L73[0, T] is complementary slack with w we
unpack (8) into the three equivalent separate equations to give

(9) (re(t) G + rl(t) H)i ci(t),

(10) 7rj (t) ’j (t),

(11) 0h(t) --0.

for those indices i, j, and k which correspond to the columns of B(t) (i.e., such that Ki
is in B(t), j such that Kn,+j is in B(t), and k such that Kn+n2+ is in B(t)). Consider the
conditions of Definition 3 in turn.

1. If yj(t) > 0 on (o,/), then by definition of ’(t), j(t) is constant on [c, ). Hence
7rj is constant a.e. on [or, f) by (10) and hence everywhere as n: is right continuous.

2. Ifyj(T) > 0, thenby a similar argument to the above, wehaveTrj(T-) zcj(T) O.
3. If xi (t) > 0 on a set S, then for almost all 6 S we have by (9)

(c(t) GVrc(t) H:rrl(t))i O,

i.e., i(t) 0 a.e. on S.
4. If zi(t) > 0 on a set S, then for almost all S we have by (11) that rli(t O.

This establishes the result in one direction and the proof of the converse is similar. [3

It should be noted that the construction of the complementary slack variables is by no
means unique. Even if (8) has a unique solution, in general there will be a countable number
of undetermined constants, one for each interval on which yj (t) > 0 for some j. A similar
problem frequently occurs in finite-dimensional linear programming. In this case, when there
is an arbitrary manner in which to calculate the complementary slack variables, the basic
feasible solution is called degenerate.

It is worth noting that problems of degeneracy in an infinite-dimensional context have
been a major stumbling block in the development of general CLP algorithms. For instance,
in Perold [25, 26], the author attempted to give a general pivot operation for CLP. However,
the pivot operation only worked under some nondegeneracy assumptions. Similarly in An-
derson 1], an initial attempt was made at developing an algorithm for SCLP with the same
restrictions on a, b, and c as those considered in Pullan [28] (see 1). Here again, the method
failed to work in general due to degeneracy problems. The first algorithm to overcome the
degeneracy problem was that for CNP, the single-commodity network version of SCLP given
in Anderson and Philpott [4] (under the same assumptions on a, b, and c as those for SCLP in
both 1 and [28]). Here the authors encountered and distinguished between the two types of
degeneracy we have encountered for SCLP, namely, the possibility of not solving the comple-
mentary slackness equations uniquely and, second, of determining the constants associated
with the intervals where yj(t) > 0 for some j. The resulting algorithm, however, was very
complicated, and great care was needed in the specification of how to handle degeneracy.
The success of the more recent algorithm in Pullan [28] for SCLP is due to the fact that for
the particular a, b, and c chosen, it is possible to handle the problems of degeneracy by the
ordinary simplex method for FLP.

The problems of degeneracy will play a significant role in the development of strong dual-
ity results for SCLP. In 6 we will look again at degeneracy and give a concrete definition for
a particular SCLP problem to be degenerate for piecewise analytic a and b (Definition 4). We
will see, however, that the only type of degeneracy that need concern us here is the possibility
of not solving (8) uniquely. In fact, in the absence of such degeneracy, the strong duality
results of 6 become much easier. This is not surprising because strong duality is relatively
simple to establish between FLP and FLP* in the case where there is no degeneracy present.
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Even in general linear programming, the absence of degeneracy, appropriately defined, allows
a strong duality result for a general dual problem to be established with ease (see Anderson
and Nash [2, Thm. 2.10]).

4. Conditions for the absence of a duality gap. We now consider sufficient conditions
to ensure that there is no duality gap between SCLP and SCLP*, i.e., V[SCLP] V[SCLP*].
As well as being interesting in its own right, such a result is one of the necessary conditions
for strong duality. The main result of this section is Theorem 4.2. The result here is quite
general, and so for most practical instances of SCLP we may deduce that there is no duality
gap between SCLP and SCLP*. We begin by establishing an important property of F(SCLP),
the feasible region for SCLP.

nl nlLEMMA 4.1. The set F(SCLP) is closed in the cr(L[0, T], L [0, T]) topology.
Proof. Supposex ’ F. There are three cases to consider, depending onwhich constraint is

nlviolated. Ifxi(t) < 0 on some set S ofnonzero measure for some i, then define f L [0, T]
by

! J -i,
Xs, j =i,

where Xs is the characteristic function of S. Then

but for any ot a F,

r
f (t)rx(t) dt < O,

r
f (t)r o(t) dt > O,

and so x is contained in some weakly open set that does not intersect with F.
Now suppose that

t[Gx(s)]i ds > ai(t)

for some index and 6 [0, T]. By the continuity of both the integral and a, this will be true
for all in some open interval S (tl, rE), with equality at the point tl. Define f 6 L2[0, T]
by (12) and set g Gr f. Then

g(t)rx(t) dt > ai(t) dt,

and for any ot 6 F,

g(t)r(t) dt < ai(t) dt,

so x is again contained in some weakly open set that does not intersect with F.
The remaining case, namely, [Hx(t)]i > bi(t) on some set S of nonzero measure for

some i, is similar, rq

We now prove the main result for the absence of a duality gap between SCLP and SCLP*.
The proof involves considering a sequence of linear programs whose optimal values converge
to that of SCLP and by using properties of the weak topology.,
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THEOREM 4.2 (no duality gap). Suppose that a(t) is absolutely continuous on [0, T]
with Riernann-integrable derivative. Suppose also that c(t) and b(t) are Riemann-integrable
and that the feasible region for SCLP is nonernpty. If, furthermore, there exist a continuous
piecewise linearfunction (t) and a piecewise constantfunction [(t) such that a(t) < t(t)
and b(t) < b(t) on [0, T] and such that the feasible region for the problem SCLP with a(t)
and b(t) replaced by t(t) and [(t), respectively, is bounded, then

V[SCLP] V[SCLP*];

i.e., there is no duality gap between SCLP and SCLP*.
Proof. Let {b(n) }nl and {c(n) }n=l be sequences of piecewise constant functions such that

bn(t) <_ (t), bn(t) $ b(t), and cn(t) c(t) a.e. on [0, T] (see Apostol [6, Thin. 10.11]).
By considering a sequence r(t) $ &(t) we may also construct a sequence of continuous
piecewise linear functions {a(n)}n__l such that an(t) < t(t) and an(t) a(t) uniformly on
[0, T]. Let SCLPn be the SCLP problem with a(t), b(t), and c(t) replaced by an(t), bn(t),
and c(n)(t), respectively. Let Fn F(SCLPn) and F F(SCLP). As {a(n}n= and {bn}n__
are monotonic sequences converging to a in cn2[0, T] and b in L[0, T], respectively, it is
not difficult to see that

for all n and

Fn+ Fn

Now by the boundedness assumption, it follows that Fn, for each n, and F are bounded. More-
nl [0, T]) topology by Lemma 4.1over Fn, for each n, and F are closed in the cr (L[0, T], L

Let x) (t) be an optimal solution for SCLPn (i.e., the x part of the optimal w) (t), the
existence of which is given by Theorem 2.1). We now construct a subsequence {Xnk }1 and

nlx 6 F such that Xnk x in the cr(L[0, T], L [0, T]) topology.
To achieve this we recall a result from functional analysis which states that if X is a

separable normed linear space (that is, has a countable dense subset), then any norm-bounded
sequence in X* (the dual ofX) has a subsequence that converges in the cr (X*, X) topology to an
element of X* (see, for example, Kolmogorov and Fomin [20, Thm. 4, p. 202]). Now it is well
knownthat L [0, T], andhenceL [0, T], is a separable space (see again [20, Thm. 3, p. 382]).
Hence, as Ll[0,n Z]* L[0, T], there exists a subsequence, {Xnk }k=l’ of {Xn}n__l and x 6

nl nlL[a, b] such that x x in the a(L[0, T], L [0, T]) topology. Let k be given, and
consider the sequence {x}=

_
Fn. This sequence converges to x, and so as F is closed,

we have x e Fnk As k was arbitrary and F Nn= Fn, x F. It will be seen in fact that x
is optimal for SCLP.

From the construction above we now have x 6 F and

f0 f0
T

lim d(t)rX (nk) (t) dt
k--- cx

d(t)rx(t)dt

for any d 6 L [0, T]. Hence

lira c(m)(t)rx(n)(t)dt c(m)(t)x(t)dt
k--- cx

for any m. Also by Lebesgue’s dominated convergence theorem we have

lim cm(t)rx(t) dt c(t)rx(t) dt.
m----o
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Thus, as c(m)(t) " c(t) a.e. on [0, T], we have

(13) lim c(n(t)rx(nk(t)dt c(t)rx(t)dt.
k--- cx

Now by the strong duality result from Pullan [28, Thm. 1.3], there exists 0 (n) (t) feasible
for SCLP* such that

f0
T

f0c(n)(t)Tx(n)(t) dt 0

T

(n(t)b(n(t)d dzr(n(t)ra(n(t).

But a(n)(t) >_ a(t) and b(n(t) >_ b(t) a.e. on [0, T]. Hence

(14) c(n)(t)x(n)(t)dt <_ o(n)(t)rb(t)dt- drc(n)(t)ra(t).

Now c( (t) <_ c(t) a.e. on [0, T] and hence

c(t) GTzr(n)(t) HVrl((t) >_ c((t) Grzr((t) Hro(n)(t)
>0

a.e. on [0, T] by the feasibility of 0( in SCLP*. Thus o(n)(t) is feasible for SCLP*. Hence
by weak duality (Lemma 1.2),

r(’O(t)rb(t)dt- drr(nl(t)ra(t) < c(t)rx(t)dt.

Combining this with (13) and (14) above we have

lim (nk(t)rb(t)dt dzc((t)ra(t) c(t)rx(t)dt,
k---o

and so the result follows.
We note that while the boundedness conditions of Theorem 4.2 may look complicated,

it is not difficult to show that they will be satisfied if the set H _< b(t), _> 0} is
bounded for each 6 [0, T]. As noted in Pullan [27], this is not that different in practice from
insisting that the feasible region be bounded. It is worth noting that the H of Grinold’s result
in Theorem 1.1 satisfies the condition H < b(t), > 0 bounded for each 6 [0, T]
and b 6 L[0, T].

5. Conditions for the existence of optimal solutions for SCLP*. We now present two
general results that establish the existence of an optimal solution for SCLP* and a third, less
general result. The first two general results are relatively easy to prove but are not very
useful in practice as they tend to be rather restrictive. It is the third result that will be used
to prove strong duality in the next section by using the result for the absence of a duality gap
(Theorem 4.2) and the result for the existence of a piecewise analytic optimal solution for
SCLP (Theorem 2.5).

The first result shows that SCLP* has an optimal solution if its feasible region is a bounded
subset of Lnc2+n3 [0, T]. As this result is easy to prove and does not form part ofthe development
of the strong duality results in 6, we give only an outline of its proof. To use this result to
ensure strong duality, we would need to guarantee the existence of an optimal solution for
SCLP. The most readily available condition for this is that the feasible region for SCLP is also
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bounded (Theorem 2.1). However, it can be shown (see Pullan [27]), that both the feasible
regions for SCLP and SCLP* bounded in the appropriate sense can be very restrictive and thus
not a very practical condition to impose on the problem. Note that we make the distinction
that the feasible region of SCLP* is a bounded subset of ]’,n2+n3[o, T], because in general,
’/ C L3[0, T].

THEOREM 5.1. Suppose that the feasible region of SCLP* is a nonempty and bounded
subset ofL+n3[O, T]. Then there exists an optimal solutionfor SCLP*.

Proof. For an explicit proof see Pullan [27]. It involves showing that in this case the
feasible region is closed in an appropriate weak topology. The proof is then made com-
plete by using Alaoglu’s theorem for weak compacmess (see, for example, Dunford and
Schwartz 13]).

The next general result shows that if there exists a sequence of feasible solutions for
SCLP* that are of uniformly bounded variation and whose objective function values converge
to the optimal value, then SCLP* attains its optimal value.

THEOREM 5.2. Suppose that there exists a sequence {o(n)}n=l offeasible solutions for
SCLP* ofuniformly bounded variation; i.e., there exists N such that

T

IIdO(n)(t)llc N

for all n. Suppose also that

lim rl(n)(t)Tb(t)dt- drc(n)(t)Ta(t) V[SCLP*];
n--+c

then there exists 0 optimalfor SCLP*.
Proof By the Helly selection principle (see, for example, Kolmogorov and Fomin [20,

Thm. 5, p. 372]) there exists a subsequence {O(nk)}kC=l and 0 of bounded variation on [0, T]
such that o(nk)(t) -- O(t) for all 6 [0, T]. The results now follow by Helly’s convergence
theorem (see again, Kolmogorov and Fomin, [20, Thm. 4, p. 370]) and Lebesgue’s dominated
convergence theorem. [3

Our final, less general result in this section is the one that we will be using to establish
the strong duality results in the following section. It is a specialised version of the previous
result and presents a condition that guarantees the existence of a piecewise analytic optimal
solution for SCLP* based on a particular sequence of feasible solutions whose objective
function values approach the optimal value of SCLP*. Although its statement is more cryptic
than the previous two results, it will be made clearer if it is compared with Theorem 3.5 on
the calculation of complementary slack variables. It will be in the context of a sequence of
suitable complementary slack variables that this result will be used.

LEMMA 5.3. Suppose that a (n) a and b(n) --+ b uniformly. Let SCLPn be the problem
SCLP with a replaced by a(n) and b replaced by b(n). Suppose there exists 0 (n) optimalfor
SCLPn* (the dual of SCLPn) satisfying thefollowing conditions:

1. For each n, 0 (n) is piecewise analytic on [0, T] with breakpoints in the partition
{t(on) (n) of [0, T].mn

2. For each 1 mn there exists a basis matrix B(t{n)) for K such that

o(n)(t)= (B(t}n))-l)
T
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fort [tml, tn)), where

((n)(t)
c(t)

:rr(n)(tn)--)
0

for [tn__)1, tn)).
Suppose also that there exist M and N such that mn <_ M and 1[0 (n) I1 <_ N for all n. Then
there exists a piecewise analytic optimal solutionfor SCLP* with at most M breakpoints.

Proof. By introducing extra artificial breakpoints, if necessary, we can assume that mn
M for all n, i.e., that each 0 (n has exactly M breakpoints. Now 0(m (t) is uniformly bounded
for all n and t, so there exists {nk}kC=X and a partition P {to tt} of [0, T] such that

tn) -- ti for 0 M and 7Y (n) (tn)-) converges for M. As there are only
a finite number of basis matrices for K, we may also assume that the subsequence {n}l is

chosen so that for each i, B(t{n) B(i) for some basis matrix B (0 of K. We now let

?(t) lim ((n/)(t)
k-- cx

for 6 [0, T] P and ?(t) ?(t+) for P. These limits exist as 7(nk)(tnk)-) converges
for each i. We now define

O(t) (B(i)-l)
T

for e [ti-1, ti) for each 1 M and O(T) 0. We now have O("kl(t) --+ O(t) for
all 6 [0, T] P and 7r(n)(T) g(T) for all n. Now by taking a further subsequence, if
necessary, we can assume that limk O(nk)(ti) exists for 1 M 1. Note that O(ti)
may or may not be equal to limk_,c 0(n (ti). Using Helly’s convergence theorem and the fact
that the Lebesgue-Stieltjes integral is not affected by the value of 0 at its breakpoints in (0, T)
(see Kolmogorov and Fomin [20, Prob. 7, p. 377]) we have for any continuous function g that

lim dTg (nk) (t) T g(t) dyr(t)T g(t).
k--+ cx

This will allow us to establish the result that 0 is optimal for SCLP*.
Now the feasible region for SCLPn is the same for all n and the same as that for SCLP*.

Hence 0 (n) is feasible for SCLP*, and thus 0 is feasible for SCLP*. We now show that 0
is optimal for SCLP*. Now by the remark above and Lebesgue’s dominated convergence
theorem we have

lim o(n)(t)Tb(m)(t)dt dzr(nk)(t)Ta(m)(t)
k---c

(t)rb(m (t) dt drr (t) ra(m (t)

for all m. Now a(m) -+ a in cn2[0, T], b(m) b in L3[0, T], and 0 acts as a continuous
linear functional on cn2[o, T] L73[0, T]. Hence we have

lim O(t)rb(m) (t) dt dTr(t) a (m) (t) O(t) b(t) dt drc(t)ra(t).
moQ
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Hence, by the uniform convergence of a(m) and b(m), we have

(15)

lim V[SCLPn*k] lim onk(t)rbn(t)dt dZr(n)(t)Ta(nk)(t)
k--+ cx- k-- cx

rl(t) r b(t) dt dzr(t)ra(t)

_< V [SCLP*].

Suppose that V[SCLP*] > lim_c V[SCLP* ]. Then there exists 6 feasible for SCLP*
and such that

{(t)rb(t)dt- dfr(t)ra(t) > lim V[SCLP*].
k-+o

This is a contradiction since, by similar arguments to the above, we would then have that

lim q(t)rbm(t)dt d(t)ram(t) (t)rb(t)dt
rn- 0

d#(t)ra(t),

thus giving a feasible solution for SCLPn*k for some ng with objective function value strictly
greater than V[SCLP* ]. Hence (15) is an equality and so 0 is optimal for SCLP*. [3

6. Strong duality results. We now turn to strong duality results between SCLP and
SCLP*. The main result in this section is that strong duality holds between SCLP and SCLP*
if a(t), b(t), and c(t) are piecewise analytic, with a(t) also continuous, and the feasible region
for SCLP is both nonempty and bounded (Theorem 6.9). It is also shown that in this case
optimal solutions exist for both the primal and the dual which are piecewise analytic on [0, T].
Before considering the general case, we will first show that strong duality holds between
SCLP and SCLP* in the case where c(t) is piecewise analytic, a(t) is piecewise linear and
continuous, and b(t) is piecewise constant (Theorem 6.6). Although Theorem 6.6 is just a
special case ofTheorem 6.9, it is convenient to separate the two in order to bring greater clarity
and understanding.

The proofs of the strong duality results in this section are quite long and involved. How-
ever, it is possible to break up the proofs into smaller segments. With this in mind we now
present several fairly unrelated results that will be used in the proofs of the strong duality
results.

6.1. Preliminary results. In Pullan [28], the key to establishing the strong duality result,
Theorem 1.3, was a special discretization of SCLP and its properties. Under the appropriate
assumptions on the problem data for SCLP it was shown that if we had an optimal solution
for SCLP that was piecewise constant, then we could construct an optimal solution for this
discretization in a natural way. As the (finite-dimensional) dual of this discretization was
a natural discretization of SCLP*, the strong duality theorem of finite-dimensional linear
programming allowed the construction of an optimal solution for SCLP*, thus establishing
strong duality. The difficult part of the above analysis was showing that an optimal solution
for SCLP gave an optimal solution for the discretization. We now extend this result from
piecewise linear to piecewise analytic costs. It turns out that the proof of this result is very
similar to the corresponding one in [28]. Once established, this result will then be one of
the keys to establishing strong duality results. We begin by defining the discretization used
in [28].
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Let P {to, tl tm be a partition of [0, T]. Assume that a(t) is piecewise linear and
continuous and that b(t) is piecewise constant, both with breakpoints in P. Let

ti- ti
Ui ,2

ti ti-
2

The variables in the discretization are (ti_l-[-), (ti-), (ti), (ui), (ti-lq-), and (ti--),
which, as the notation suggest, coespond in some way to the function values of x, y, and z
at ti-l+, ti--, and ui of a feasible solution for SCLP. We define the discretization of SCLP,
called AP(P), as follows:

AP(P): minimize

subject to

m

_
(c(ti-l-I-)T’(ti-ld-) -]-C(ti--)T(ti--))

i=1

G(to+) + (ux) --a(ul),

GJ(ti-) + (ti) (ui) a(ti) a(ui), 1 m,

GJ(ti-l+) + (ui) (ti-1) a(ui) a(ti-1), 2 m,

Hfc(ti-ld-) -t- (ti-ld-) rib(ti-+), 1 m,

H(ti-) + (ti-) rib(ti-), 1 m,

(ti-X-),,(ti--), :(ti), (Ui),(ti-ld-), (ti--) >_ O,
i:l m,

or in matrix form,

AP(P)" minimize

subject to

&_>O,

where

T._ (C(to_l_)T 0T C(tl_)T 0T C(tld_)T C(tm_ld_)T 0T C(tm_)T 0T)
T (a(ux)T, zxb(to_l_)T (a(tl) a(ul))T Zlb(tl-)T (a(tm) a(Um))T

zmb(tm-)r),
d9r (J(to+)r (ul (to+)r J(tl (tl) (t-) (tm--) (tm)

(tm-)r),

where the O’s in are of dimension n2 q- n3 and

G I 0 0 0 0
H 0 I 0 0 0
0 -I 0 G I 0
0 0 0 H 0 I
0 0 0 0 -I 0 G
0 0 0 0 0 0 H

-I 0 G I 0
0 0 H 0 I

Note that A depends not on the particular partition chosen but only on its size. In fact, in [28],
AP(P) was written in a slightly different but equivalent form where A did depend on the
partition chosen. We have rewritten AP(P) as above for this reason.
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Now AP(P) has the following (finite-dimensional) dual"

AP*(P)" maximize frO
subject to Or A <_ r

or, after making a few simplifications,

AP*(P): maximize

subject to

fr(tod-)ra(to) d- ff-(7 (ti_l+) d- fr(ti--))T (a(ti) a(ui))
i=1

d- vSi((ti-ld-) d- (ti--))Tb(ti -)
i=1

c(ti--) Gr fr (re-) Hr (ti--) >_ O, 1 m,

c(ti-ld-)- GT(ti_ld-)- HT(ti-ld-) >_ O, 1 m,

(ti--), (ti-ld-) < O, 1 m,

(ti--) (ti-ld-) >_ O, 1 m,

(ted-) (ti--) >_ O, 1 m 1,

(tm--) < O.

The relevant result about AP(P) established in [28] was the following.
THEOREM 6.1. Suppose that w(t) isfeasiblefor SCLP with x(t) piecewise constant with

breakpoints in P {to, tm }. Then r?o defined by

(16)

(ti-ld-) ZiX(ti-ld-),
fC(ti--) ZiX(ti--),
(ti) y(ti),

(Ui) y(ui),
(ti-ld-) riz(ti-ld-),

(ti--) riZ(ti--), i- 1 m,

isfeasiblefor AP(P). Moreover, ifc(t) is piecewise linear with breakpoints in P and co(t) is
optimalfor SCLP, then 69 is optimalfor AP(P).

We now proceed to extend Theorem 6.1 to the case of c(t) piecewise analytic.
THEOREM 6.2. Suppose that a(t) is piecewise linear (and continuous), b(t) is piece-

wise constant, and c(t) is piecewise analytic, each with breakpoints in the partition P
{to, tl tm}. Let co(t) befeasiblefor SCLP with x(t) piecewise constant with breakpoints
in P. Then , as given by (16), isfeasiblefor AP(P). Moreover, ifw(t) is optimalfor SCLP,
then o is optimalfor AP(P).

Proof The feasibility of follows from Theorem 6.1. Suppose then that w(t) is optimal
for SCLP with x (t) piecewise constant with breakpoints in P. Let d) be given by (16). Suppose
& is not optimal for AP(P). Then& exists, feasible for AP(P), with strictly improved objective
function, i.e.,

r rr3 < 0.
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Following the constructions in [28] (see 4 in [28]), let

LfC (ti_ 1-]-),

Yc(t) LC(ti--),
LC(tm--),

E [ti-l, Ui), 1 m,_
[ui,ti), 1 m,

t--T.

Let 15 min{ 15i 1 rn and e 6 [0, 15]. Set Ei E15i/15 and define

Ye(t) / J(t),
/ x(t)

[ti- 1, ti- -- Ei) U [ti ei, ti) for 1 m,
otherwise.

Let e(t) and e(t) be given by the constraints of SCLP (i.e., so that 2e(t), (t), and e(t)
satisfy (1) and (2) in place of x(t), y(t), and z(t), respectively). By the same argument as
in [28], the resulting &e(t) is feasible for SCLP.

We now claim that there exists e > 0 such that &e(t) is an improved feasible solution
for SCLP. For this purpose we use the standard notation o(hn) for n 6 N to mean a function
defined on an interval containing zero such that limh+0 o(hn)/hn 0. Now as c(t) is analytic
on a neighbourhood of [ti_ 1, ti) for 1 m, we have

C(ti-1 q- p) c(ti-l-[-) -at- P(ti-l+) + o(p)

for p > 0. Hence

( )c(t) dt Ei C(ti-l+) -k --t(ti_l-+-) q- o(ei)

Similarly,

fti
ti

( Ei

--Ei

c(t) dt E c(ti--) -O(ti--) -[- O(Ei)

Continuing in exactly the same way as in Lemma 4.3 in [28] we establish that

T

fo
T E (c(t)r2(t)dt c(t)rx(t)dt= +o(s)),

where

Or(O)) i (X(ti--) x(ti-l-[- )To(ti_).

Hence

l(foT fo
r ) 1 (lim- c(t)2s(t)dt- c(t)rx(t)dt lim-

s$O E s$O 15

< O,

+ o(s))

thus contradicting the optimality of 09 (t). D
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In 3 we encountered and discussed a notion of degeneracy. This was a problem that arose
when trying to calculate complementary slack variables. As with the corresponding notion in
FLP, when degeneracy is presem, it is not possible to calculate a set of complementary slack
variables uniquely. In the conclusion to 3 we noted that there were essentially two types of
degeneracy for SCLP. One of these was when there were not enough nonzero variables at
any particular time to form a basis matrix for K. We will see that to establish strong duality
results, degeneracy is a significant problem. This is not surprising because in the absence of
degeneracy in finite-dimensional linear programming, the proof of the strong duality result
becomes relatively straightforward. It turns out that only the one type of degeneracy for SCLP
mentioned above plays an important part in the strong duality theory for SCLP. As this is the
case and as we have not defined degeneracy formally before, we now present the following
definition. It will be seen to be very similar to the corresponding one for FLP. As our strong
duality results to follow only cover piecewise analytic problem data, we only give a definition
of degeneracy for such data.

DEFINITION 4. Suppose that a(t) and b(t) are piecewise analytic with breakpoints in the
partition P {to, tl tm }.

1. Let B be any basis matrix of K. Let

p(t)=B-l[ d(t) ;b(t)

We say that B is a degenerate basis matrixfor SCLP ifpi(t) Ofor all [tj_l, tj)
for some and j. Otherwise we say that B is a nondegenerate basis matrixfor SCLP.

2. We say that SCLP is degenerate ifthere exists a basis matrix B for K such that B is
a degenerate basis matrixfor SCLP. Otherwise we say that SCLP is nondegenerate.

We now present a simple lemma based on this definition, a result which has an equivalent
counterpart in finite-dimensional linear programming.

LEMMA 6.3. Suppose that SCLP is nondegenerate and that co(t) is a basic feasible
solutionfor SCLP. Suppose there exists (or, fi) C [0, T] such that supp(co(t)) is constant on
(or, fl). Then [supp(w(t))] n2 + n3 on (ct, fl), and so there exists a unique basis matrix B
ofK such that the nonzero variables ofw(t) are precisely COB(t) on (, fl).

Proof Let B be any basis matrix of K that contains the columns of K corresponding to
supp(co(t)) on (or, fl). This exists as w(t) is a basic feasible solution. Let

d)(t) (t)
z(t)

then as co(t) is feasible for SCLP, we must have

n(t)=B-l[ &(t)lb(t)
for (or,/3). However, by the nondegeneracy assumption we have that each component of
&n(t) is nonzero for all (or,/3). Hence supp(co(t)) has n2 -+- n3 elements on (or, fl), one
for each column of B. [3

Our final result in this section is quite unrelated to the previous ones and comes from
Pullan [29]. The result shows that the number of zeros in a linear combination of analytic
functions is dependent only on the functions involved and not the particular scalars chosen.
This is useful in establishing strong duality results for the following reason. As mentioned
above, degeneracy will play an important part in the analysis to follow. In fact, as with FLP, we
will see that it is relatively easy to establish a strong duality result for nondegenerate problems.
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To establish a strong duality result in general we will then approximate a degenerate problem
by a sequence of nondegenerate ones. We will then wish to use Lemma 5.3 to produce an
optimal solution for SCLP*. To do this we will have to produce a uniform bound on the
number of breakpoints in the optimal solutions for the approximating dual problems. The
required uniform bound is given by the result below. For this result we use the notation SI to
denote the cardinality of a set S.

LEMMA 6.4. Let f [a, b] --+ ]t be a function analytic on a neighbourhood of [a, b].
Then there exists M(f) (< oc) such thatfor all ,k ]Rn if

S(Z, f) [a, b] Zr f(t) 0 },

then either S0, f) [a, b] or IS(), f)l < M(f).

Ii.2. Analytic costs. In this section we will be extending the strong duality result in
Pullan [28, Thm. 1.3], to SCLP with piecewise analytic costs. We begin by restricting our
attention to the case where the problem data contain no breakpoints. We thus introduce the
following assumption that we will assume holds for the problem data of SCLP throughout the
rest of this section.

Assumption 6.1. The costs c(t) are analytic on a neighbourhood of [0, T], a(t) is linear
on [0, T], b(t) is constant on [0, T], and the feasible region for SCLP is nonempty and
bounded.

We now proceed to establish a strong duality result under this assumption. This is done in
two stages, first for nondegenerate problems and then for degenerate ones (see Definition 4).

We use the following notation. Given a cost c(t) we let

where the 0’s are of dimensions n2 and n3, respectively. We now define the following sets.
Let

Q {(B-1)TB’B is a basis matrix for K 1,
R k O c GTzr HTrl forsomeOT (rr T, rl T) Q },
S {pj p Qk3 R}.

Note that S consists of a finite set of analytic functions. Now each of these functions is
identically zero or contains a finite number of zeros on [0, T]. Let N be the total number of
zeros of functions in S that are not identically zero on [0, T]. Let o)(t) be a piecewise constant
optimal solution for SCLP with, say, M breakpoints. This exists by Theorem 2.4. We now let
P {to, tl tm be the partition of [0, T] with at most M + N + 2 points that contains
all the breakpoints of w(t) and all the zeros of functions in S that are not identically zero, as
well as the points 0 and T. We now present a lemma showing that such a partition can be used
to construct an optimal solution for SCLP* fairly naturally if SCLP is nondegenerate. This
lemma makes use of the standard L matrix norm, which is defined by

[[Bl[o max [bi,j 1, 2 n
j=l

for an n x n matrix B.
LEMMA 6.5. Suppose that SCLP is nondegenerate. Then there exists a piecewise ana-

lytic optimal solution 0 for SCLP* with breakpoints in P (i.e., having at most M + N + 1
breakpoints). Moreover, 0 satisfies thefollowing:
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1. For each 1 rn there exists a basis matrix B(i) for K such that

O(t) (B(i)-I)
r
( (t)

for [ti- 1, ti), where

c(t)
((t) re(ti-)

0

for [ti-1, ti).
2. II011 max{ IIZ-lll 2 is a basis matrixfor AP(P) }llcllo.
Proof By Theorem 6.2 we have &, given by (16), optimal for AP(P). Hence, by the

strong duality theorem for finite-dimensional linear programming, there exists a basis matrix
B for AP(P) such that if

g (/}-I)T [(tl--).
[(tm --)

then is optimal for AP*(P) and complementary slack with &. Note that

_< max{ [[/- 111 ./ is a basis matrix for AP(P) }l[ c

We will now construct 0 (t) optimal for SCLP* such that

O(ti+) (ti-+-), 0 rn 1,

O(ti--) (ti--), 1 m,

and such that each component of 0(t) is monotonic on [ti_l, ti) for 1 m. Such a O(t)
will then satisfy (2) in the statement of the lemma.

Fix i, and consider the interval (ti- 1, ti). Let B be the basis matrix of K that contains the
colunms of K corresponding to supp(co (t)) on (ti-1, ti). The existence and uniqueness of this
matrix B is given by Lemma 6.3. Let ?(t) be as given in the statement of the theorem. Then
it is clear that 0 complementary slack with (5 implies

O(ti_l-[-) (B-l)rB(ti_l-[-),
g(ti-) (B-l)r(B(ti-).

Now (t) (t) for all t. Hence by the properties ofthe partition P, for any j, B T
B (t) ]j

contains no isolated zeros in (ti-1, ti) andso [(B-l)r?B (t)]j is monotonic on (ti-1, ti) for each
j. Define

O(t) (B-l)r?B(t)

for [ti-1, ti). We then have 0j (t) monotonic on [ti-1, ti) for each j. By a similar argument
we also have j(t) (c(t) Grre(t) Hrtl(t))j monotonic on [ti-1, ti) for each j. Hence,
by the feasibility of for AP*(P), we have

c(t) Grre(t) Hr O(t) >_ O,
0(t) < 0, G [ti-1, ti),
re(t) monotonic increasing and right continuous on [ti-1, ti).
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If this is done for each and we set O(T) 0, we then obtain a feasible solution for SCLP*
(note that zr(T-) _< 0 as :(tm-) _< 0). Moreover, by the construction, we have O(t) comple-
mentary slack with w(t) by Theorem 3.5. Hence, by the complementary slackness theorem,
Theorem 3.4, O(t) is optimal for SCLP*. Finally, by construction, O(t) satisfies the remaining
requirements of the lemma. [q

We now have all the necessary ingredients to establish a strong duality result for SCLP
under Assumption 6.1. This is done by approximating SCLP by a sequence of nondegenerate
problems and then using Lemma 5.3 to guarantee an optimal solution for SCLP*. The required
uniform bounds for the application of this lemma are provided by the result for the existence
of a piecewise constant optimal solution for SCLP, Theorem 2.4, and Lemma 6.4. There is
one slight problem in establishing this result, however--namely, the need to construct suitable
approximating SCLP problems with bounded feasible regions. This is done by adding upper
bound constraints to the problem so that any right-hand sides will give a bounded feasible
region. The proof is then made complete by showing that the resulting optimal dual variables
for the extra constraints are zero by complementary slackness.

THEOREM 6.6 (strong duality). Suppose that c(t) is piecewise analytic, a(t) is piecewise
linear and continuous, b(t) is piecewise constant on [0, T], and thefeasible regionfor SCLP
is nonempty and bounded. Then V[SCLP] V[SCLP*] and there exist an optimal solution

for SCLP, with x(t) piecewise constant, and a piecewise analytic optimal solutionfor SCLP*.
Proof It is required only to prove that SCLP* has a piecewise analytic optimal solution.

The other statements are given by previous results (Theorem 2.4 and Theorem 4.2; however,
the fact that V[SCLP] V[SCLP*] in this case could also be shown directly in the proof
to follow). We restrict ourselves to the case where a(t) is linear, b(t) is constant, and c(t) is
analytic on a neighbourhood [0, T]. The more general case can be dealt with by repeating the
argument below a finite number of times.

Assume for the moment that SCLP contains upper bound constraints on x (t), i.e., that H
is of the form

Let B (1) B (L) be all the possible basis matrices for K. Let

Qi,j B(J) " 6 ]ln2+n3, ffi 0 }.

Then as B (j) has full rank, ai,j is a (n2 + n3 1)-dimensional subspace of ]n2+n3 (i.e., a
hyperplane). Now Oi,j 1 n2 q- n3, j 1 L is a finite set of hyperplanes in
]1n2+n3 It is now not difficult to show that for any }, 6 ]1n2+n3 there exists {?’(") }n=l such that
y(n) $ y and /(n) ( Oi,j for each and j and for all n. In particular there exist r(n $ i and
s (n) $ b such that

r n)

s(n) ] - Oi,j

for each and j and for all n. Let

a (n) (t) a(O) + tr (n)

b(n) (t) s (n)

Then {b(n)}nC=l is a set of constant functions and {a(n)}n= a set of linear functions such that
a (") $ a and b(n) , b uniformly. Let SCLPn be the problem SCLP with a and b replaced
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by a(n) and b(n, respectively. Now as H is of the form given by (17), the feasible region for
SCLPn is both nonempty and bounded. Moreover, by construction, SCLPn is nondegenerate.

Now by Lemma 6.5 there exists an optimal solution, o(n)(t), for SCLPn with at most

Mn + N + 1 breakpoints, where M, is the number of breakpoints of a piecewise constant
optimal solution for SCLPn and N is some constant depending only on c(t) and B(1) B
and is thus independent of n. We now wish to apply Lemma 5.3 to obtain a piecewise analytic
optimal solution for SCLP*. To apply this lemma it will be sufficient to show that there exists
A, independent of n, such that M can be chosen so that M < A. This is because

max{ II/-lll is a basis matrix for AP(P)

depends only on the size of the partition P and not the actual points in the partition (see
comment on page 948). Let x,i, 1 L be the possible values of a basic feasible
solution for SCLPn as given by Lemma 2.3. Now by Lemma 6.4 there exists M, independent
of n, such that if

Si,j,n [0, T]" c(t)Tx (n’i) --C(t)Tx (n’j)

for # j, then for each # j either Si,j, < M or Si,j, [0, T]. Using the result for the
existence of a piecewise constant optimal solution (Theorem 2.4), we may now deduce that an
optimal solution co( (t) exists for SCLP for each n with at most (M + 1)L breakpoints. This
gives the required uniform upper bound on the number of breakpoints for an optimal solution
for SCLPn and establishes the result for H of the form given by (17).

Suppose that H is not of the form given by (17). Let R > 0 be such that Ilxll _< R for
all x 6 F(SCLP). Let SCLP(R) be the problem SCLP with the extra constraints

x(t) + v(t) 2Re,

v(t) >_ O,

where e is the vector of all ones. By the definition of R, F(SCLP) F(SCLP(R)) and
v(t) > Re > 0 for all 6 [0, T] and for any feasible solution for SCLP(R). Let or(t)
denote the dual variables in SCLP(R)* corresponding to v(t), and 0(t) the dual variables
in SCLP(R)* corresponding to the original constraints Hx(t) + z(t) b(t) in SCLP, i.e.,
so that the constraint 7z(t) > 0 can be written as c(t) GVr(t) HVo(t) r(t) > O.
By the argument above, there exists O(t) (zr(t), r/(t) v, or(t) v) piecewise analytic on
[0, T] and optimal for SCLP(R)*. Moreover, O(t) is complementary slack with some optimal
solution co(t) (x(t) y(t) z(t) v(t)) for SCLP(R) by the complementary slackness
theorem, Theorem 3.4. But v(t) > 0 and so we must have o’(t) 0 a.e. on [0, T], and hence
everywhere as or(t) is piecewise analytic on [0, T]. Thus (zr (t) v O(t)) is an optimal solution
for the original SCLP*. This establishes the result. ]

It is worth noting as an aside that Lemma 5.3 also ensures that the optimal O(t) for SCLP*
derived in the proof of the above theorem has at most (M + 1)L + N + 1 breakpoints, where
M is given in the proof of the theorem.

6.3. Analytic right-hand sides. In this section we will be extending the strong duality
result in the previous section to SCLP with piecewise analytic costs and right-hand sides. In
the result from the previous section, the bulk of the proof was concerned with the case when
the problem data had no breakpoints and there were upper bound constraints on x (t). We thus
introduce the following assumption that we will assume holds for the problem data of SCLP
throughout the rest of this section.



956 MALCOLM C. PULLAN

Assumption 6.2. The costs c(t) and the right-hand sides a(t) and b(t) are analytic on a

neighbourhood of [0, T], H is of the form

and the feasible region for SCLP is nonempty.
We now concentrate on proving strong duality under Assumption 6.2. The proof involves

approximating a (t) and b(t) by sequences ofpiecewise linear and piecewise constant functions,
respectively, and using the ideas from the previous sections. This same general technique was
used in Pullan [29] to prove Theorem 2.5 starting from Theorem 2.4. We will thus use some of
the ideas from [29]. The first of these is the concept of a change of basis. This concept allows
us to distinguish between two types of breakpoints in a basic feasible solution for SCLP when
the problem data have breakpoints. One type of breakpoint results from a breakpoint in the
problem data. The other results from a change of basis which we now define.

DEFINITION 5. Let o)(t) be a piecewise analytic basic feasible solution for SCLP and
x( (t) x( (t) be given by Lemma 2.3. By a change of basis we mean a time s (0, T)
such thatfor some e > O, x(t) x(i)(t) for (s e, s) and x(t) x(J(t) for (s, s + e)
for some and j such that xi (t) xj (t) on (s e, s + e).

As with [29], we note that if a and b are analytic on a neighbourhood of [0, T], then a

change of basis is identical to a breakpoint. However, if a and b are piecewise analytic on
[0, T], then in general, the set of changes of basis for a basic feasible solution will be a subset
of the set of breakpoints for that solution. This is because some of the breakpoints may be
caused by breakpoints in the problem data and not by a change of basis.

We now begin the development of a strong duality result under Assumption 6.2. As
with proving Theorem 2.5 in [29] we do this by taking sequences {a(n)}nC=l and {b(n)}nC=l
of piecewise linear (and continuous) and piecewise constant functions, respectively, so that
a (n) >_ a, b(n) >_ b with a(n --+ a and b(m b uniformly. The sequences are constructed so
that SCLP,, has an optimal basic solution for SCLPn with a bounded number of changes of
basis independent of n, where SCLP is the problem SCLP with a and b replaced by a(n) and
b(, respectively. This construction is given in Lemma 4.2 in [29]. To complete the strong
duality result under Assumption 6.2 we then construct a corresponding optimal solution for
SCLP (the dual of SCLPn) and use the bound on the number of changes of basis to apply
Lemma 5.3. As might be expected, however, to construct the corresponding optimal solution
for SCLPn we need to ensure that SCLP,, is also nondegenerate.

We begin the analysis by establishing the existence of a(n) and b(" with the required
properties.

LEMMA 6.7. Suppose that Assumption 6.2 holds. Then there exist M 1, a sequence
a(’) }nl ofpiecewise linear and continuousfunctions, and a sequence {b(m} ofpiecewise
constantfunctions with a()(t) > a(t) and b(n)(t) > b(t) on [0, T]for each n, a(m --+ a and
b(n) b uniformly on [0, T], and such that SCLPn is nondegenerate and has a piecewise
constant basicfeasible optimal solution with at most M changes ofbasis, where SCLPn is the
problem SCLP with right-hand sides a (n) and b(n).

Proof This lemma, without the nondegeneracy requirement, is precisely Lemma 4.2 in
Pullan [29]. Now in the proof of Theorem 6.6 we saw that it was not difficult to ensure that
an approximating problem to a given SCLP problem was nondegenerate. This is because any
right-hand side canbe approximated arbitrarily closely by a right-hand side for a nondegenerate
problem. Thus it would be expected that the extra requirement for SCLPn to be nondegenerate
causes no new difficulties. In fact the proof of the current result is virtually identical to the
proof of Lemma 4.2 in [29]. As this is the case, and as the proof of the Lemma 4.2 in [29] is
also rather long and detailed, we omit the discussion. ]
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This is actually the bulk of the proof of a strong duality result between SCLP and SCLP*
under Assumption 6.2. What remains to do now is prove a result similar to Lemma 6.5 in the
previous section that generates an optimal solution, 0 (n) (t), for SCLPn* (the dual of SCLPn as
given by the previous lemma) that is uniformly bounded with respect to n. The existence of an
optimal 0 (n) (t) for SCLPn* follows in a similar way to Lemma 6.5; however, this 0 (n) (t) may
have breakpoints at each of the breakpoints of a(n) (t) and b(n) (t). The number of breakpoints
in 0 (n) (t) could thus become unbounded and so we would not be able to apply Lemma 5.3 to
guarantee an optimal solution for SCLP*. This is where the uniform bound on the number of
changes of basis of an optimal solution for SCLPn is used.

We now set up the same notation to that used in the previous section. Given a cost c(t)
we let

where the O’s are of dimensions n and n, respectively. We also define the following sets.
Let

Q {(B-1)TB’B isa basis matrix for K ],
R p c Gryr Hrrl for some 0r (7r r F]T) Q },
S= {pj p e QU R}.

As with Lemma 6.5, let N be the total number of zeros of functions in S that are not identically
zero on [0, T]. Let O)(n) (t) be a piecewise constant optimal solution for SCLP withM changes
of basis, where M is given by the previous lemma. We now fix n and define two partitions
of [0, T] as follows. Strictly speaking, these partitions depend on n; however, we drop this
dependence in the notation for simplicity. Let

P {t0, tl tm}

be the partition of [0, T] that contains all the changes of basis for w() (t) and all the zeros of
functions in S that are not identically zero. Our next partition of [0, T] is

f2 {r0, rl rq}
(2) (2) p(mm)(0) (1)

8
(1)

$ ,8 },1 ,81 p ,...,Sp2

which contains P, written in this case as

(0) S(1) Sp(mm)},p --/s p

and all the breakpoims of a(m (t) and b(n)(t). For convenience weset P0 1 ands0(/) Spi(i-1)_t
for 1 m. We now present the result guaranteeing an optimal solution O(")(t) for
SCLP* which is uniformly bounded with respect to n.

LEMMA 6.8. Let SCLPn be given by the previous lemma. Then there exists a piecewise
analytic optimal solution 0 (n) for SCLP* with breakpoints in P (i.e., having at mostM+N+ 1
breakpoints). Moreover, 0() satisfies thefollowing:

1. For each 1 m there exists a basis matrix B (i) for K such that

o(n)(t)- (B(i)-l)TeB(i)(t)
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for [ti- 1, ti ), where

c(t)
?(t) yr(ti-)

0

for [ti-1, ti ).
2. [10(n)llc max{ II/-lllc / is a basis matrixfor AP(P) }llcll.
Proof Using arguments similar to those for the corresponding result in the previous

section (Lemma 6.5), we see that there exists an optimal solution & for AP(f2) with a corre-
sponding basis matrix/ for AP(f2) such that if

(18)

?(r0+)

6 (/-I)T
(rl--)

(rq --)

then 6 is optimal for AP*(f2). Moreover, an optimal solution, 0 (n) (t), which is complementary
slack with co(n)(t), can be defined from in the following way. Fix and consider (ti-1, ti).
As supp(con(t)) is constant on (ti_l, ti), there exists a unique basis matrix B of K, given by
Lemma 6.3, corresponding to the support of w()(t) on (ti_l, ti). The optimal o(n)(t) is then
defined by

O(")(t) (B-l)r ?(t)

for [ti-1, ti), where

c(t)
(t) Yr(ti--)

0

for [ti-1, ti ).
Now by the construction of the partition P, the components of 0 (n) (t) are monotonic on

[ti-1, ti). We currently have 0 (n) constructed from (18). This could theoretically produce 0 (’)

with a breakpoint at every point in f2. We now show that this is not possible. In particular, let

(to+)

(tm--)

We will now show that in fact

(19) (/-I)T
(t0+)
t?(tl --)

?(tm --)

for some basis matrix/ for AP(P). This will give us the required bound on the size of 0 (n)

stated in the lemma and establish the result. We note that a basis matrix/ must contain
2m(n2 + n3) colunms of the constraint matrix , for AP(P). (Recall that rn is the size of the
partition P.)
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The basic idea of the proof is that as supp(co(n (t)) is constant on (ti-1, ti) for each i, the
essential information for B can be compressed into a smaller matrix B. This idea is quite
simple in concept but difficult to notate due to the size of the constraint matrices involved.
Recall that the constraint matrix for AP(f2) is given by

G I 0 0 0 0
H 0 I 0 0 0
0 -I 0 G I 0
0 0 0 H 0 I
0 0 0 0 -I 0 G
0 0 0 0 0 0 H

-I 0 G I 0
0 0 H 0 1

i.e., a matrix with a repeating block structure with 2q(nl + n2 -+- n3) colunms. (Recall that
q is the size of the partition .) Similarly, the constraint matrix,/, for AP(P) will be of the
same form but with 2m(nl if- n2 -k- n3) columns.

We begin by making a simple observation. Consider the matrix

G I 0 0 0 1H 0 I 0 0
0 -I 0 G 0
0 0 0 H I

made up of five blocks of columns which we call block I to block 5 for convenience. Suppose
that FI is a matrix of columns of A with the following property: column of block 1 is in FI if
and only if column of block 4 is in H, and column of block 3 is in H if and only if column
of block 5 is in FI. In other words, the columns of the blocks containing G and H are the
same, and the columns of the blocks containing a single I (of dimension n3) are the same.
We claim that for such a 1-I to have full column rank, it must contain no more than n2 -+- n3
columns corresponding to the first three blocks. Suppose that FI contains more than n2 + n3
columns from the first three blocks. Then there exists dr (u r, vr, wr) nlWn2-k-n3 with
ot - 0 and with 6 supp(ot) only if Ai is a column in H, such that

H 0 I --0.
1/3

Define

r (ur, vr, wr, _ur, _wr).

Then/ 0, and by the definition of H, we have supp(/) only if Ai is a column in H.
Moreover, A/ 0. Thus H does not have full column rank. Hence, as claimed, if FI has full
column rank, then it must contain no more//2 d- n3 columns corresponding to the first three
blocks.

With this observation in mind we now return to the basis matrix/ of the constraint matrix
/ for AP(ff2). Fix and consider (ti-1, ti). Consider the colunms of fi corresponding to the
variables of& relating to the times in f2 N [ti-1, ti] (except for (s(oi>)), i.e., corresponding to

the variables 2(s(oi+), ((S(oi + sli>)/2), (s(oi+), 2(si>-), (sli>), (si>-) , (itSp_+),
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,,,, (i) (i)
ttSpi_ -[- S(p’i))/2), Z {,Spi -47), (S(ptl)-), f(S(pii)), and (S(pii)-) This can be written as

0 0 0 0 0 0

G I 0 0
H 0 I 0
0 -I 0 G
0 0 0 H
0 0 0 0
0 0 0 0

0 0
0 0
I 0
0 I

-I 0 G
0 0 H

0 0 0 0 O-

6 ..i" -10G I0
0 0 0 H 0 1
0 0 0 0 -I 0

0 0 0 0 0 0 0 0 0 0 0

In this case we refer to each group of nl -+- n2 -+- n3 columns as a block Thus/(i) contains 2pi
blocks. Now as supp(w(n)(t)) is constant on (ti-1, ti) and has n2 + n3 elements (as SCLPn is
nondegenerate),/ contains at least n2 + n3 columns of/(i) from each block, except possibly
the last one. (The last block is excluded as we may have yj(ti) 0 for some j but yj(t) > 0
for (ti-1, ti).) Moreover, the columns of/(i) that are in/ are the same for each block in
the sense that column j of the first block of e{i) is in/ if and only if column j of each block
of fii), except possibly the last one, is in/. However, by using the observation made above
about the matrix A (which in some sense is a building block of e{i)), for/ to have full column
rank it must contain exactly n2 + n3 columlls of/(i) from each block, except possibly the
last one. This shows that any degenerate columns in/, i.e., columns corresponding to zero
variables in &, must be taken from the last block of/(i) for some i. Thus the total number of
columns of/ that are taken from the last block of/(i) for some must be m(n2 + n3).

Now consider AP(P). Let & denote a set of variables for AP(P). Consider the columns
of the constraint matrix for AP(P),/, corresponding to the variables ofd relating to the times
ti-1 and ti (except for (ti-1)), i.e., corresponding to the variables 3 (ti_l+), ((ti-1 -+- ti)/2),
(ti- 1-1-), - (ti --), (ti) and (ti --). This can be written as

0 0 0 0 0

H 0 I 0 0
0 -I 0 G I
0 0 0 H 0
0 0 0 0 -I

0 0 0 0 0

0
0
I
0

0

We refer to the first nl -+- n2 -+- n3 and last nl q- n2 -+- n3 columns of/(i) as the first and second
blocks, respectively. Define a matrix h (i) consisting ofcolunms of/ (i) as follows Ifcolumn j
of the first block of (i) is in/ (and hence column j of each block of/(i), except possibly
the last, is in/), then column j of the first block of/(i) is in/(i). This generates n2 + n3
columns of/(i). The remaining columns of/ are chosen in accordance with the columns of
/ from the last block of/(i). In particular, if column j of the last block of/(i) is in/, then
column j of the second block of/(i) is in/}(i). By the properties of/ noted above as well
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as (18) we now claim that

(20) ((i))Tg [ (ti-l--) 1(ti --)

In fact, suppose for instance that [#" (i) (i)
tsj -) #tsj_1+)] 0 is one equation in (18).

Then we must have y(t) > 0 on (ti-1, ti) and so the equations [#(s/)-) #(Sl/)], 0

for each/= 1 Pi and [(si)+) (s/)-)] 0for each/= 1 pi 1 are in (18).
Hence we have [(ti-) (ti_l+)] 0. But by definition of i), this equation is in (20).
A similar argument follows for the other equations.

Having defined (i) for each we set

(1) (2) (m) ];

then by the obseations made above we see that
(n2 + n3) from each of the first bloc of (i) for each i, and m(n2 + n3) in total from the
second bloc of each i). Hence is a square matrix. Moreover, from (20) we see that
satisfies

T
(tl--)

All that remains now is to show that has full colu rank. Then will be a basis matrix
for AP(P) and so (19) will hold.

Suppose that does not have full colu rank. Then there exists

supp(y) only if i is a colu in and such that y 0. Suppose yT ((1) T fl(1) T
(m)T (m)T), where (i) fl(i) nl+n2+n3 for each/ Define p(i) n+n2+n3 by pi) )i)

if j n + 1 n + n2 and pi) 0 otheise. Define

T )T (1)T p(m) (m) T)T ((1) p(1 P (1)T (m)T p(m)T T

where p(i) is repeated 2(pi 1) times for each i. Then it can be obseed that 8 0, thus
showing that does not have full colu rank.

The strong duality result under Assumption 6.2 now follows immediately by appealing
to Lemma 5.3 to guarantee the existence of an optimal solution for SCLP*. Note that this
lemma guarantees a piecewise analytic optimal solution for SCLP* with at most M + N + 1
breakpoints, where M is given by Lena 6.7. The existence of a piecewise analytic optimal
solution for SCLP is given by Theorem 2.5 and the absence of a duality gap by Theorem 4.2.
By using the same arguments as in the strong duality result for analytic costs, Theorem 6.6,
the result can be extended to include general H that does not necessarily contain the upper
bound constraints on x(t). Again we may repeat the overall argument a finite number of times
to aive at the main result of this paper.

THEOM 6.9 (strong duality). Suppose that the costs c(t) and the right-hand sides a(t)
and b(t) are piecewise analytic on [0, T] (with a(t) continuous) and the feasible region for
SCLP is nonemp and bounded. Then V[SCLP] V[SCLP*] and there exist piecewise
analytic optimal solutionsfor both SCLP and SCLP*.

Note that the result for the absence of a duality gap contained in the above result has a
less restrictive boundeess assumption than Theorem 4.2.
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7. Conclusions and counterexamples. The previous section contained a general strong
duality result between SCLP and SCLP*. The proof was largely constructive and involved
finding an optimal solution for SCLP*. The proof showed us that, at least locally, an optimal
solution O(t) for SCLP* satisfies

O(t) (B-l)r

for in some interval [a,/3), where

c(t)
e(t)

0

for 6 [oe,/). Hence the optimal O(t) has the same properties as the costs c(t). Thus if,
for instance, c(t) were a polynomial of degree n, then the optimal O(t) would be piecewise
polynomial of degree n. Such an observation has also been made about optimal solutions for
the primal problem SCLP in the conclusion to Pullan [29], namely, that optimal solutions for
the primal reflect the nature of the right-hand sides a(t) and b(t). This leads to many possible
variations on the strong duality theorem of the previous section. Recalling one result from the
conclusion to [29] we state one of these many possible variations.

THEOREM 7.1 (strong duality). Suppose that the costs c(t) and the right-hand sides a(t)
and b(t) arepiecewisepolynomial on [0, T] (with a(t) continuous) ofdegrees n, rn + 1, andm,
respectively. Suppose also that thefeasible regionfor SCLP is nonempty and bounded. Then
V[SCLP] V[SCLP*] and there exist piecewise polynomial optimal solutions ofdegree rn

for SCLP and degree n for SCLP*.
It is also interesting to speculate whether strong duality holds between SCLP and SCLP*

in more general circumstances, for instance, continuously differentiable problem data. To
partially answer this question we present a simple counterexample to show that the result
in Theorem 6.9 cannot be extended beyond analytic a and b to, say, n-times continuously
differentiable a and b for some n, even if the costs are assumed to be constant. In such a case
an optimal solution for the primal problem may have an infinite number of breakpoints. Thus,
because of the necessity of complementary slackness for strong duality, it is possible that any
potential optimal solution for the dual must have an infinite number of breakpoints, which can
cause the potential optimal zr(t) to be unbounded, i.e., not of bounded variation.

Example 7.1. Consider a simple network of two nodes connected by two arcs (see Fig-
ure 7.1). We will consider a network problem over the time interval [0, 1] where storage
is permitted at the nodes (in other words, a CNP example as discussed by Anderson and
Philpott [4]). Let xi(t) denote the rate of flow in arc at time and yi(t) denote the amount
of storage at time in node for 1, 2. The rate of flow in each of the two arcs is subject
to an upper bound of 1, and the cost per unit flow in each arc is 1. Choose n > 1 and define
the supplies, ri (t), in node by

{ (1rl (t)
(1 t)n sin i
0,

r2(t) --rl(t)

for t [0, 1]. We then define

ai(t) ri(s)ds
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Arc 1

Ac
FIG. 7.1. The network in Example 7.1.

for 6 [0, 1] and 1, 2. Then ai(t) is n-times continuously differentiable. Our SCLP (or
CNP) problem is now

Ex: minimize

Let

subject to

01(Xl
(t) -+- x2(t)) dt

ot(Xl(S)
x2(s))ds + yl(t) al(t),

t(X2(S) xx (s)) + y2(t) a2(t),ds

Xl (t) + Zl (t) 1,

x2(t) + z2(t) 1,

Xl (t), x2(t), Yl (t), y2(t), Zl (t), z2(t) >__ 0, e [0, 1].

S-- {t [0, 1]:rl(t) > 0};

then it is clear that Ex has an optimal solution, o(t) v (Xl(t), x2(t), yl(t), y2(t), Zl(t),
z2 (t)), where

rl(t), S,xx (t) 0, ’ S,

0, tS,x2(t) r2(t), S.

This then gives yl (t) y2(t) 0 and Zl (t), z2(t) > 0 on [0, 1]. Now the dual of Ex is given
by

Ex*: maximize (r (t) + r(t)) dt a (t) drr (t) a2(t) drr(t)

subject to 1 rl (t) + 2(t) rl(t) >_ 0,

1 7r2(t) d- 7t’l (t) r/2(t) > 0,

r/1 (t), r/E(t) < 0, a.e. on [0, 1],

7gl (t), 7g2(t monotonic increasing and right continuous

on [0, 1] with rrl(1) 7r2(1) 0.

By a simple application of Theorem 4.2 we see that there is no duality gap between Ex and
Ex*. However, as we shall see below, Ex* does not attain its optimal value, and hence strong
duality does not hold between Ex and Ex*.

Suppose that strong duality holds, i.e., that Ex* attains its optimal value. Then by the com-
plementary slackness result (Theorem 3.4), there exists O(t)r (Trl (t), :rr2(t), /’]1 (t), r/2(t))
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optimal for Ex* and complementary slack with co(t). Using the definition of complementary
slackness, we see that this must imply that

(21)

(22)
(23)

1 2"t’l (t) q- rr2(t) 01 (t) 0 a.e. on S,

1 rr2(t) + rrt(t) 02(t) 0 a.e. on [0,1] S,

Ot (t) r/2(t) 0 a.e. on [0, 1].

We now proceed to show that these equations cannot be satisfied while maintaining O(t)
feasible for Ex*.

Suppose that zr2(0) M. As re2(1) 0 we must have M _< 0. Now S is an open
disconnected set in [0, 1] with an infinite number of components. Suppose then that

S {0} U U(ti, Si)
i=1

and that 0 tt < S1 < t2 < $2"" Now (tl, S1) C S, so we must have by (21) and (23) that

1 (t) + rr2(t) a.e. on (tl, S1).

Hence, as :rr2(t) _> M on (tl, Sl), we must have

rrl(t) > 1 + M on (tt, S1).

Hence 1 (t) > 1 + M on (tl, t2) by the monotonicity of 1 (t). Now by repeating the above
argument for the interval (st, t2), which is not a component of S, and using (22) and (23) this
time, we obtain

7r2(t) >_ 2 + M on (s1, t2).

Continuing in this manner it is apparent that we may construct 6 (0, 1) such that 7rl (t) > 0.
This is a contradiction since 7r1(1) 0 and 7rl (t) is monotonic increasing on [0, 1]. Hence
no optimal solution for Ex* exists, so strong duality does not hold between Ex and Ex*.

The question of whether it is possible to extend Theorem 6.6 (i.e., the result with analytic
costs, linear a(t), and constant b(t)) to include more general costs appears more difficult and
remains unresolved.
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CYCLE DECOMPOSITIONS AND SIMULATED ANNEALING*
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Abstract. The behavior of simulated annealing algorithms is tightly related to the hierarchical decomposition of
their configuration spaces in cycles. In the generalized annealing framework, this decomposition is defined recursively.
In this paper, its structure is extensively studied, and it is shown that the decomposition can be achieved through an
implementable algorithm which allows exact computation of the fundamental constants underlying the behavior of
these algorithms.
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1. Introduction. Simulated annealing is now used extensively for optimizing large-scale
problems. Its main advantages are its wide applicability and its simplicity, allowing a large
variability in the choice of the constraints defining the cost function to be minimized.

Let us recall briefly the theoretical scheme. We consider the problem of finding the
configurations minimizing a function U E--+ on a finite set E, called the configuration
space (or the state space). The function U is generally called the cost function or the energy
function. One considers an inhomogeneous Markov chain X (Xn)nr on E with transition
kernel at time n given by Qr,,+l, where for all T > 0 (called the temperature)

(1) QT(i, j) q(i, j)e-qej)-t:i))+/T,

and q is an irreducible Markov kemel satisfying q(i, j) q(j, i). The sequence 7- (Zn)nl
is a sequence of nonnegative numbers called the cooling schedule. For low temperature, the
Markov chain preferably follows configuration paths with decreasing energy value, but hill-
climbing moves are allowed with a probability controlled by the temperature. The theory of
simulated annealing says that if the cooling schedule is sufficiently slowly decreasing, then
we have

sup P(U(X,,) :/: min U IXo- --+ O.
iE

Using the large deviation approach of Wentzell and Freidlin [6] one can have much more
information on the behavior at low temperature. It appears that the Markov chain performs a
hierarchical exploration of the configuration space well described by the cycle decomposition
of E introduced in [6]. The role of the cycles becomes clear if we consider the Markov chain
under a constant cooling schedule at temperature T. When the Markov chain enters into a
cycle, the time to exit from the cycle is of order of e/4e/T, where He called the exit height is
a constant depending only on the cycle and not on the entering point. The smallest cycles
are the singletons, and the largest one is the whole space E. Since two cycles are either
disjoint or included one in the other, the cycles are structured as a tree, and the Markov chain
moves from cycle to cycle along characteristic paths. The generalization of this approach to
decreasing temperature schedules for the study of simulated annealing algorithms requires
some important work, for which the reader can refer to [2-4, 9, 10].

Let C(E) denote the set of all the cycles, and for every cycle H, He(H) denotes the
exit height of FI. Many of the characteristics of the asymptotic behavior of the sequential
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annealing under decreasing cooling schedule can be computed. For instance (see [2, 7]), if 7-
is a decreasing cooling schedule vanishing to zero, then we have

-----+ 0 iff y. e H Tn --00(2) sup P(U(Xn) min U X0 )n+
icE n>O

where Hi denotes sup{ He(H) FI C(E) and U(FI) > rain U and U(I-I) minion U(i).
The constant H1 is called the critical height of the cycle decomposition. Moreover, there exists
a positive constant K1 such that for any cooling schedule 7" we have

(3) sup P(U(Xn) > rain U Xo > K1/rtpt
icE

where Olop inf{ U(FI)-minU
ne(r) I-I C(E) and U(I-I) > minU }. The optimality of the

exponent Otopt is proven by a final result established in [2] which says that there exists a
positive constant K such that for all N > 0 there exists a cooling schedule for which we have

(4) sup P(U(XN) > min U Xo < KINp’.
icE

The number Otop is called the optimal convergence exponent.
In order to have a better convergence speedtoward the global minima of U, many computer

scientists have proposed parallelized schemes ofthe usual sequential simulated annealing. The
underlying idea is to distribute the amount of computation on several processors (see 1, 13]).
It appears that the parallel schemes lead to a more general form of the simulated annealing
called the generalized simulated annealing (G.S.A.) introduced by Hwang and Sheu in [10]
and which corresponds to a discrete-time and finite-space analogue of the general framework
introduced by Wentzell and Freidlin in [6] in their study of random perturbation of dynamical
systems. Instead of assuming that the transition kernel QT satisfies (1), we just assume that
there exists tc > 1 such that

1
(5) -q(i, j)e-V(i’j)/T <_ QT(i, j) <_ tcq(i, j)e-V(i’j)/T,

where the family V called the communication cost satisfies V (i, j) 6 [0, +cx] and V (i, j)
+cx iff q (i, j) 0. This new framework is adapted to the study of many of the extensions
(parallel or not) of the usual sequential scheme. One gets from Wentzell and Freidlin’s theory
that there exists a virtual energy W which plays the same role as the energy U for low
temperature since if we denote by/zr the unique equilibrium probability measure of QT, then

lim T In lzT(i) -(W(i) min W),
T--+0

and with the help of the Dobmshin theory of inhomogeneous Markov chains we easily prove
that if T is sufficiently slowly decreasing, then

supP(W(Xn)>minWIX0=i) --+ O.
icE +cx

However, if we want to establish more precise results for the general framework, like (2)-(4)
(with U replaced by W), we have to deal with an extension of the cycle decomposition. This
extension has been proposed in the original work of Wentzell and Freidlin, where they again
define cycles for which we keep the crucial property that at constant temperature, the time to
exit from a cycle FI is of order of eHe(1-I)/T where He(I’I) does not depend on the starting point.
Using this extended cycle decomposition, Hwang and Sheu in 10] proved a weak version of
(2) for cooling schedules 7" satisfying T, c/ln(n + 2), and in [13, 14] the author proves
the exact analogues of (2)-(4) for the G.S.A. (where U is replaced by W). Hence the cycle
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decomposition plays a central role in the asymptotic behavior of the G.S.A. as well as in the
computation of H1 and Copt.

We will in this paper perform an extended study of the cycle decomposition in the gener-
alized annealing framework. In 2, starting from the recursive definition of the cycles, which
depends only on the communication cost V (and not on W), we will establish the links be-
tween the virtual energy W and the exit height He (FI) and show that these links lead to a
decomposition diagram structuring the cycle decomposition in a valued tree. Then we will
introduce the altitude of communication by

At(i, j) inf inf sup W(gk) q- V(gk, gk+l),
nEl%I i=go,g gn=J k<n

which will allow us to give a new construction of the cycle decomposition very close to
the sequential case construction. We will show also that this altitude of communication is
symmetric (Ac(i, j) Ac(j, i)) and that this property characterizes (up to a multiplicative
constant) the virtual energy. This will allow us to shed a new light on the weak reversibility of
Hajek. Finally, in 3, we propose an implementable algorithm to compute automatically the
cycle decomposition as well as all the critical constants H1 and Olop This may be useful in
order to study the exact asymptotic behavior of the G.S.A on small state spacesufor example,
when evaluating parallel schemes (see 13]).

2. Generalized simulated annealing.

2.1. Definition. Let us first recall some notation. The set E denotes a finite configuration
space, and q an irreducible Markov kernel on E called the communication kernel. The
irreducibility of Q means that for all distinct configurations and j there exists a path (ik)O<k<n
satisfying

io i, in j, and q(i, ik+l) > 0 for all k < n 1.

Let us also consider a real-valued number tc > 1. We can now define precisely the families of
kernels we will consider.

DEFINITION 2.1. Let (QT)T>0 be afamily ofMarkov kernels on E. We say that (QT)T>0 is
admissiblefor q andtc ifthere exists afamily ofpositive real-valuednumbers V j (i,j)EE E

(some ofthem may take the value +x) such that
1. V(i, j) < +cxz iffq(i, j) > 0;
2. for all T > O, all i, j E E,

1
-q(i, j)e-V(i’j)/T <_ Q(i, j) < tcq(i, j)e-V(i’j)/.

Thefunction V E E-- [0, +cxz] is called the communication costfunction.
NOTATION 2.2. The set ofall the admissiblefamilies (Qv)>0 will be denoted 4(q, x).
The set t(q, to) contains all the families of kernels associated with sequential simulated

annealing algorithms and also many parallelized versions of the sequential scheme.
We define now the generalized simulated annealing algorithms.
DEFINITION 2.3. We say that (Xn)nI is a generalized simulated annealing with pa-

rameters (E, V, q, to, v0, 7"), where vo is a probability measure on E and 77 (Tn)nr is a
decreasing sequence ofstrictly positive real-valued numbers called the cooling schedule, if
there exists afamily ofMarkov kernel (Qr)T>0 in 4(q, tc) with communication costfunction
V such that (Xn)nr is a Markov chain on E satisfying

P(Xo i) vo(i), E,

P(Xn+l j Xn Qrn+l(i, j), i, j E.
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2.2. Virtual energy. Let us consider a family (Q)>0 of Markov kernels in 4(q, )
and V E E-+[0, +cxz], the associated communication cost function. In the following
definition, we recall the notion of A-graphs as defined by Wentzell and Freidlin in [6]. Like
them, i-+ j will denote the pair (i, j).

DEFINITION 2.4. Let A C E. We say that a set g ofarrows i-- j in A E is an A-graph
iff

1. for each AC, there exists a unique j E such that j g;
2. for each Ac, there is a path io--+ix---> in such that ik---ik+l g,

ending on a configuration in A.
We denote by G(A) the set ofthe A-graphs. Furthermore, for each g G(A) we denote

V(g) V(i, j).
i--jg

We can now define the virtual energy.
DEFINITION 2.5. We say that W E--I1 is the virtual energy associated with the com-

munication costfunction V if

W(i) inf V(g), E.
gG({i})

The virtual energy will play the same role as the energy U for the sequential simulated
annealing, as shown in the proposition below.

PROPOSITION 2.6 (Wentzell and Freidlin). For all T > O, we denote by tx the unique
invariant probability measurefor Q (since q irreducible implies Qr irreducible). Then we
have

T ln(/z(i)) ----+ -(W(i)- W(E)),
T--+O

where W(E) inf W(j).
jE

Hence, the generalized simulated annealing can be seen again as an optimization algorithm
minimizing the virtual energy. However, the virtual energy is now only implicitly defined by
the communication cost function.

2.3. Decomposition in cycles. The study of the virtual energy is not sufficient to un-
derstand the behavior of a generalized simulated annealing algorithm. One can have two
communication cost functions giving the same virtual energy but leading to very different
asymptotic behaviors. This leads us to the computation of a decomposition in cycles as done
for the sequential case [2]. However, the cycles cannot be obtained by a simple substitution
of U for W. The correct construction has been given by Wentzell and Freidlin [6] and is
reported here with slight modifications. For this purpose, let us give the following preliminary
definition.

DEFINITION 2.7. Let F be afinite set, C F F--+[0, +x] be a function, and and j
be two distinct configurations of F.

1. We denote by PthF(i, j) the set of all paths (gk)O<k<n in F such that go and
gn j. The path-dependent integer n will be denoted by ng and will be called the
length ofg.

2. For g to be in PthF(i, j), define C(g) by

ng-1

C(g) C(gk, gk+l).
k=0

We adopt the convention that C(g) +cxz ifone ofthe summation terms is +zxz.
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The decomposition in cycles is defined in an iterative way. First the set E of cycles of
order 0 is defined by

E={{i}lieE}.

Let us consider the communication cost function V on E defined by

V({i}, {j}) V(i, j).

Assume that the set Ek of the cycles of order k and a communication cost function Vk on Ek

have been constructed. The construction of the pair Ek+l, Vk+l can be split in several steps:
1. From Vk, we define another communication cost V, on Ek by

v,(n n’)-[ 0

/ v(I-I, i-i’) -/-/e
ifH FIf,
otherwise,

where H(I-I) inf{V(I-I, n’) n" E, FI" - n }.

2. On E, we define the relation by

FI - H’ if either FI I-I’ or there exists g 6 PthEk (H, FI’) such that V, (g) O,

and the equivalence relation k by

FIR FI’ if either FI FI’ or FI FI’ and FI’ - FI.

3. Define D+1 by

Dk+l L.J 1-1’ll-I E: },
l-ltT"Zk FI

and define on D+1 the partial order -< by 1-Ikl+1 "< 1-I+1 if there exists FI/ C l"I/k+l
for 1, 2 such that lq I-I]. We denote D,+1 by the set of the minimal elements
of Dk+l for the order -<.

4. Define E+1 by

Ek+l Dk+l C1 I-Ik E‘ 13I-I+1 Dk+l \ Dk+l 1-Ik C l-Ik+l

5. We define now a communication cost Vk+l on E/+1 by

(6) V+I(FI+’, FII+1) Hm+I(FI+1) +
inf{ V,(FIo, nl)i (n, nl)e * *, n c n+, nl c nl+1 },

where Hm+I(FI+1) -sup{ Hetn) n c no+1, n e e .
The construction goes on until E E }. We denote the order ne of the decomposition and
the set C(E) of all the cycles by

nF inf{ k 6 N IE+1 {E}
and

ne+l EkC(E) "-’=0
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Construction of the cycles of order

6

{a,b,e}
4 " {c’d’f}

\ /

Construction of the cycles of order 2

FIO. 1. Contruction ofthe cycles.

TABLE 1. TABLE 2.

Hm He V {a, b, e} {c, d, f}
{a,b,e} 3 4 {a,b,e} 4

{c,d, f} 3 4 {cid, f} 6
{g, h, i} 4 6 {g, h, i} 6

{g,h,i}

4

This procedure gives a hierarchical decomposition of the state space as a tree beginning
with the singletons and ending with the whole space.

We shall illustrate this decomposition on a small configuration space:

E {a,b,c,d,e, f,g,h,i}.

On the left-hand side of Fig. 1, we have represented only edges with finite cost, and their
valuation V (i, j) is reported above. The construction of the cycles can be obtained directly on
such a small example. We explain here how to obtain the cycles of order 1 since the cycles of
greater order can be obtained by iteration of the process. For this purpose, we construct first
the exit graph, which is a subgraph of the previous graph for which we keep only the edges
i-- j satisfying V (i, j) infke,ki V (i, k). The cycles of order 1 are the strongly connected
components of the exit graph. We recall that for an oriented graph, a strongly connected
component is a family of vertices maximal for the inclusion among all the families which stay
connected even if one of their vertices is suppressed. For each cycle H constructed in this
way, we get the quantity Hm (H) as the maximal valuation among the edges of the exit graph
joining two vertices of FI. Finally, for each pair of distinct cycles FI and FI’, we get V I(H, 1-I’)
from (6). In our example, we get the following three cycles of order one: {a, b, e}, {c, d, f},
and {g, h, i}. We obtain for Hm He and V the values given in Tables 1 and 2. The values
of V are reported on the right-hand side of Fig. 1. For the order 2, we have only the whole
space E. Hence, we get the decomposition tree in Fig. 2.

2.4. Decomposition diagram. In this section, we will show that we can define as for
sequential annealing the bottom of a cycle, its exit height, and any of the quantities defined
previously. We will study the links between the exit heights and the potential of the cycles and
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I 1 Idl Ifl Igl i’h’,l lil
Decomposition tree

FIG. 2. Decomposition tree.

show the existence of an extension of the decomposition diagram introduced in the sequential
case.

DEFINITION 2.8. Let E. We define by induction the increasing family of cycles
(ik)o<k<nE by 0 {i} and

ik+l E Ek+l k C ik+l for k < ne

DEFINITION 2.9. Let A C E.
1. We define the maximalproperpartition J4,(A) ofA for IAI > 1 by

J/I,(A) H C(E) H is a maximal element in C*a (E) },

whereC*A(E H C(E) IFI C A, FI A }.

2. For all A, we call the order of in A the nonnegative integer na,i defined by

na,i sup{ k 1t 0 <_ k <_ ne and k C A }.

We will now extend the quantities defined previously on cycles.
DEFNtTION 2.10. Let H C(E). We define

1. the order nn ofH by

nn =inf{kl10<k<neandH Ek};

2. the exit height He (FI) of FI by

sup{Hek(H) [k < ne, FI Ek }/fH 5 E,
He(H) +cx otherwise;

3. the mixing height Hm(FI) of Fl by

sup{ He(l-I’) FI’ e ,M,(FI) /flI-ll > 1,
Hm (FI) 0 if l-I is a singleton;



CYCLE DECOMPOSITIONS AND SIMULATED ANNEALING 973

4. the potential W(H) of rI by

W(FI) inf{W(i) e FI };

5. the bottom F(H) of Fl by

F(I-I) {i 6 I7 w(i) w(rI) }.

We can make a few comments about these definitions.
Remark 1. The definition of the exit height of a cycle as a sup can be surprising. However,

we can make the following remark, whose easy verification is left to the reader. Let H be a
cycle of E. If for an integer k < nE we have H 6 Ek fq Ek+l, then

(7) Hmk+(Fl) Hek+(Fl)= Hek(Fl).
Hence, He(H) He(FI) as soon as FI E.

This remark allows us to use the notation He (i) for He ({ }).
Remark 2. From the construction of the cycles, for all FI E and H+ e Ek+ such

that FI C FI+ and FI # FI+, we get Hmk+(Flk+l) < sek+l(rlk+l). Hence, using Remark
1, we deduce that for each cycle FI such that FII > 1, Hm (rI) < He(H).

Some parts of the previous definition can be extended to arbitrary subsets of E.
DEFINITION 2.11. Let A C E, A ?k O.

1. We define the exit height He (A) ofA by

He(A) sup{ He(n) rI C(E), FI c A }.

2. We denote by W(A) the real-valued number

W(A) inf{ W(i) A}.

3. We define the bottom F(A) ofA by

F(A) e A IW(i) W(A) }.

The following proposition reveals the strong link between the decomposition tree and the
virtual energy.

PROPOSITION 2.12. Let E. Then

(8)

W(i) A(E) E (He (i) Hm (i))’
O<k<ne

nE

where A(E) E E (He (FI) Hm(FI))
k=0 II E

with the convention Hm (i) O.
Proof The proof is split in four steps.
Step 1: Let g G({i}). There exists an {/}-graph g’ such that V(g’) < V(g) and such

that for all FI 6 E \ {i }, 7-g(FI, g’) is true (recall that is the cycle of order 1 containing i):
(FI, g’) There exists in g’ a unique arrow e--+ f going out of FI (e.g., e 6 FI and

f H). Moreover if f’ FI \ {e} and f’-+f" g’, then V(f’, f") He(f’) O.
This statement can be proved by induction on the number of FI 6 E \ {i such that (FI, g)
is false. Assume that there exists FI 6 E \ {il} such that 7-/(1-I, g’) is false. Then consider
the following procedure:
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1. Define go g and A0 {e}, where e is an exit point of 17 for g for which there
exists a path e e0--> ...--+ en in g satisfying ek 17 for 1 < k < n.

2. Assume that (gk, A) has been constructed for k < p. Then define

Ap+l fl 17 \ U<_pA f. Ap such that V(fl, fg.)) ne(fl) }.

If Ap+ 0, then the construction ends with gp. Otherwise, for all fl 6 Ap+, we
choose f2 At,, denoted/(f2), such that V(f, f2) He(f1) and define gp+l by

gp+l j--->k j Ap+l and j-->k gp U j-->l(j), j Ap+l }.

Since FI is a cycle, we verify easily that the procedure ends within at most I-II 1 steps and
that at each step, gp G({i}) and V(gp) < V(gp-1), Moreover, the algorithm ends with an
{i }-graph gpo for which 7-[(17, gpo) is true.

Step 2: Let g’ be the graph obtained by Step 1. For all 17 6 E \ {il}, we denote
by e(17) the unique exit point of 17 for g’ and by f(17) the unique configuration such that
e(I’l)--+ f(17) 6 g’. Now consider the graph gl on E defined by

gl e(17)l__+f(i-l) i-i E \ {i1} }.

One easily sees that g G ({i }). We can make V (g 1) appear in the computation of V(g’)"

V(g’) He(j)+ y (V(e(n), f(17))- He(e(I-l))) He(i)
jEE FIEEl\{i

>_ He(j)+ V(g 1) nml(n)- {He(i)- nml (i1)}
j6E FIE

Step 3: Moreover, if g G ({i }), there exists g 6 G({i }) such that

(9) V(g) He(j) + V(g1) Hml(FI) -{He(i) nml (il)}.
jE FIE

Such an {/}-graph g can be obtained by the following procedure: first, for all 17---> 17’ 6 gl,
we choose e(17) 6 17 and f(I-I) 17’ such that

V(e(17), f(l-I)) He(e(17)) inf V(j,k) He(j) V(17, 17’) Hm(I-I).
E FI ,k FI’

1. Define go 0, A0 A {i }, B0 {i 1}, and 170 1.
2. Assume that g, Ak, A, B, and I-I E have been constructed for k < p. Define

Ap+ {fl 17 \ Ap f2 6 Ae such that V(fl, f:) He(f) }.

If Ap+l and Bp E 1, then the algorithm is ended.
If Ae+ 0 and Bp E 1, then define D 17 Be f (I-I) 6 Bp }. Choose
an element Flp+ 6 D (D 0) and define Ap+l Ap+ e(17p+l)},
Be+ Be t_J {17p+1}. The graph gp+l is then defined by gp+l gp
e(17p+l)-+ f(1-lp+l) }.

and for allIf Ap 0, define FIp+l FIe Be+ Be Ae+ Ae t3 Ae+,
j Ae+, choose an element l(j) Ae such that V(j, l(j)) He(j). The
graph ge+ is then defined by ge+ ge t3 {j-+l(j) j Ae+ }.

One easily verifies that this procedure ends within EI 1 steps. Moreover, when Ae+l 0,
we have

V(gp)-- He(j)-- (V1(17, I-I t) gml (17)) He(i),
FIB jn FlBt\{il },I-l--> Fl,Eg

so (9) is verified for the final graph which belongs to G({i}).
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Step 4" We deduce from the previous steps that

W(i) He(i) Z Hml(1-I) + W1(il) (He(i) Hml(il)),
jE FIE

where Wk is defined as W with the {ik}-graphs on Ek valued by V.
From the recursive construction of the family (E, vk), we finally arrive at

nE

W(i) Z (He(I-I)- Hm (I-I)) + wne(ine)
k=0 1-leE

Hnee(1-I)-(=oHe(i)-Hm(ik))I-I Ee ,1-Iie

One easily verifies that W (ie) neee\lie/H2 (rI), so the proof of the proposition is
ended. S

COROLLARY 2.13. Let rI be a cycle. Thenfor all f F(rI) we have
1. He (f) H+l(f+l)forO < k <_ nn 1,

nn fk k2. He(n) H(f) + 2=(He( H(f)).
Proof. From Proposition 2.12, we can write

nE

w(j) ac(e)- He(j)- }-(He(j) H(j)).
k=l

Assume that j I-l; then we have

nE n,j

W(j) Ac(E)- He(j)- y (He(j) Hm(jt))- (He(j) Hm(j)).
k=nn,j+l k=l

One verifies that nn,j nn for all j 6 rI. Hence, since jnn I-I, the last summation is the
only one depending effectively on j for j 6 l’I. Thus if f 6 F(rI), we have

nl-i nl-i

k=l jI-I k=l

A straightforward computation gives for j 6 1-I

nn nn-1
He(j)-[- (Ske (jk) Ukm(jk)) He(n)- Z (Ukm+l(jk+l) Uke (jk))"

k=l k=l

Since Hkm+l(jk+l) He (jk) > 0 we deduce that

nn
He(j) + Z(He (j) Hm(j)) <_ He(n),

k=l

where the equality is reached for jo FI satisfying

(10) He(j) Hmk+l(/ok+l for O _< k _< nn 1;

hence, we obtain points 1. and 2.
COROLLARY 2.14. Let I-I C(E), II-II > 1. There exists a nonnegative constant Ac(rI)

called the altitude of Fl such thatfor all FI’ JM,(1-I), we have

(11) w(rI’) + He(W) Ac(rI).

If I-I is a singleton, we define Ac(rI) W(FI).
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Proof Let FI be a cycle of E which is not a singleton. Consider FI’ 6 .A/t,(FI) and

f F(H’)"
l-it,f

W(FI’) + Hen’ Wf + nef + ,nef
k=l

nE

Ac(E> E (He (f> Hmk(S))"
k=nw+l

However, from Remark 1 it follows that for all k 6 N verifying n ri, + 1 < k < n ri we have

Heg (fk) Hmk (fk) 0. Hence, one has

RE

W(FI’) + He(1-I’) Ac(E) E (He (fk) Hkm(fk))’
k=nn

so we get the result since the summation is now independent of FI’.
Considering 1-I’ 6 /t,(I-I) such that He(1-I’) Hm(H), we get from equation (11) that

W(FI’) W(FI) and

(12) A(n) w(n) + n.(n).

Both equations (11) and (12) reveal that potentials, exit, and mixing heights of the cycles
are linked through the altitudes of communication. We will now show that we can deduce
from (11) and (12) a top-to-bottom computation of the values of W(FI) and Ac(H) for all
the cycles as well as the organization of the decomposition tree in a valued graph called the
decomposition diagram.

Assume that the quantities He(H) and Hm(FI) have been computed during the cycle
decomposition process.

We start with the computation of Ac(E) with the help of equation (8)"

neC(E)\{E} neC(E)\{E}

and obtain W(E) from (12).
Assume that Ac(FI) has been computed for a given cycle FI; then if FI’ 6 A//,(I-I),
we get W(H’) from equation (11) and Ac(1-I’) from equation (12).

Therefore, starting from the cycle E, one can get step by step all the values of A(FI) and
W(H), going from top to bottom in the decomposition tree. This has been done in our
example: in Fig. 3, a cycle is represented either with an horizontal bar (and in this case the
cycle configurations are given by the usual lines of descent) or with a black point for the cycles
reduced to singletons. The mixing height is given by the difference between the horizontal
bar associated with the concerned cycle and its lowest configuration. Finally, the exit height
is given by the height difference between the horizontal bar immediately above the bar of the
concerned cycle and its lowest configuration. We have reported on the figure the values of
Hm({g, h, i}) and He({g, h, i}). In our example, we obtain for the points of E the following
virtual energies:

Configuration:
W- W(E)"

We see that configuration 9 is the global minimum of the virtual energy so that the generalized
simulated annealing converges to it for proper cooling schedules.
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Ac ({ a,b,e})

W(E)=19

f h

c d g

Decomposition diagram

He
({g,h,i})

Hm g,h,i

FIG. 3. Decomposition diagram.

2.5. Virtual energy and communication altitude. We will extend the notion of altitude
introduced in Corollary 2.14 to the definition of the communication altitude between two
points. We will see that this function contains in fact all the necessary information to compute
the virtual energy (Theorem 2.17) and the decomposition in cycles (Proposition 2.20). Its
study will allow us to shed new light on the weak reversibility condition of Hajek (Theorem
2.18).

2.5.1. Characterization of the virtual energy through the communication altitude.
DEFINITION 2.15. Let i, j C E. We define the communication altitudefrom to j by

Ac(i, j) inf sup (W(gk) + V(gk, g+l)).
gPthe (i,j) O<k<ng

We adopt the convention that the sup is equal to W(go) on a path oflength O.
The link with the definition of the altitude previously introduced in Corollary 2.14 is

clarified by the following proposition.
PROPOSITION 2.16.

1. Let i, j E; we have

Ac(i, j) Ac(j, i) Ac(I-Iij ),

where I-Iij is the smallest cyclefor the inclusion containing and j.
2. Let FI C(E); then

Ac(FI) sup Ac(i, j).
i,jeFl

Proof. Point 2 is a straightforward corollary of point 1. We consider now the first point.
We prove first the following result.

Let FI be a cycle, a H, and b FI. Then we have

(13) V(a, b) + W(a) > W(H) + He(H).
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We get from Proposition 2.12

(14)
nrl

W(a) W(1-I) He(n) + V(a, b) V(a, b) Hre (ar) Hm(ar)
r=0

nn-1
(gr(ar, br) gr+l(ar+l, br+l) -k- Hfn+l(ar+l) H(ar))

r=0

q- (gnn(ann, bnn) gn(ann))

We verify easily that each term between parentheses is nonnegative, thus we get (13).
Now consider i, j 6 E. If j, then we have Ac(i, i) W(i) Ac({i }) and thus the

result. Assume then that j, and consider FI 6 A.(ITij) such that FI i, where 1-Iij is
the smallest cycle for the inclusion containing and j. For all paths g 6 PthE(i, j), we define
rg inf{ 0 < k < ng gk FI }. We have from (14) with a and b j

sup (W(gk) + V(gk, gk+l)) >_ W(grg-1)-[- V(grg-1, grg) >-- W(I"I) q- He(l-I) Ac(llij).
O<k<ng

Hence we obtain

Ac(i, j) > Ac(I-Iij).

We will now prove the reverse inequality,

(15) Ac(i, j) < Ac(1-1ij),

by induction on n nij. If n Flij 0 then the result is trivial since j. Now assume that

nri; p + i and that (15) is proved for nrli < P. There exists gP Pthep(i p, jP) such that
Vp (g;, g;+l)- Hep (g;) -0 for all 0 < k < ngp. Moreover, for all 0 < k < ng, we define

ak 6 g; and bk gkP+l, satisfying for all 0 < r < p 1

vr+l(ark+l, brk+1) Hrm+l(ar+1) -[- Vr(ark, brk) Hr (ar).

Then we get from the equalities (14)

V(ak, bk) + W(ak) He(a;) + W(a) Ac(l’Iij).

However, defining b-1 we get from the induction hypothesis that Ac(bk-1, ak) < Ac(I-Iij),
so the proposition is proven for n 1--li p + 1. [3

The symmetry of the communication altitude function (Ac(i, j) At(j, i)) proven in
Proposition 2.16 is in fact a characterization up to an additive constant of the virtual energy
W, as shown in the following theorem.

THEOREM 2.17. Let W’ E--+ and Aw, E E--- such thatfor all i, j E, j
we have

Aw,(i, j) inf ( sup W’(gk) W V(gk, gk+l))g6Pthe(i,j) \O<k<ng

IfAw, satisfies Aw,(i, j) Aw,(j, i) for all i, j E, 5 j, then there exists c Isuch that
for all E

W’(i) W(i) + c.
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Proof. We will prove by induction on the size of the cycles of E that for all H a C(E),
there exists c(H) ]R such that

W’(i) W(i) + c(Fl),

The result is trivial for the singletons. Let n > 1 and assume that the result is proved for the
cycles whose size is smaller or equal to n. Let H be a cycle of E whose size is n + 1. We
note (1-II)o<l<r, the family of the elements of A4. (1-I), and assume that there exists c 6 and
0 < l0 < r such that c(H/,) < c < c(I-Ii) for 0 < < lo < l’ < r. Since H is a cycle, there
exists 1’ > l0 > 1, 6 I-It,, and j 6 1-I such that W(i)+ V(i, j) Ac(H). Hence

However,

Aw,(j, i) >

Aw,(i, j) < W(i) + c(I-Ii, "- V(i, j) < Ac(H) + c.

inf W’(a) + V(a, b) > inf W(a) + C(I’II) dr- V(a, b)
aFlt, bFll aI-ll, bI-Ii1
> inf Ac(a, b) + c(Fl/) > Ac(1-I) + c,

aFlt, bFI

SO

Aw,(jo, i) Aw,(i, jo) > O,

which is in contradiction with the symmetry of Aw,. Hence, all the c(Fl/) are equal, and the
result is proven for FI. q

2.5.2. Itajek’s weak reversibility condition revisited. Theorem 2.17 gives us a new
characterization of the virtual energy. In this section, we return to the sequential framework
and will deduce from Theorem 2.17 the exact status of the weak reversibility condition of
najek [7].

In the sequential framework, the communication cost V depends on the energy function
U and the communication kernel q and is defined by

(U(j) U(i))+ ifq(i, j) > 0,
(16) V (i, j +cx otherwise.

Moreover, for all i, j 6 E, 5 j, we define

and note

Pthq(i, j) {g Pthe(i, j) VO < < ng q(g:, gk+l) > O}

Dq(i, j) inf sup U(gk).
g6Pthq(i,j) O<k<ng

The weak reversibility condition of Hajek is equivalent to the symmetry of Dq"

(17) Dq(i, j) Dq(j, i), i, j E.

It is well known that for an arbitrary choice of the communication kernel, the energy U is not
necessarily the virtual energy associated with V. However, if we assume that the symmetry of
the communication kernel q (q(i, j) q(j, i)), then U is the virtual energy up to an additive
constant. In [8], Hwang and Sheu prove that the weak reversibility condition of Hajek also
is sufficient. In fact, we can go further and deduce from Proposition 2.16 and Theorem 2.17
that Hajek’s condition is a necessary and sufficient condition on q to have the equality (up to
an additive constant) of U and W.
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THEOREM 2.18. Let V be the communication cost associated with a sequential simulated
annealing algorithm (i.e., V(i, j) (Uj) U(i))+ for j and q(i, j) > 0), where U is
the underlying energyfunction. Then U is the virtual energy W (up to an additive constant)
ifand only ifthe irreducible communication kernel q satisfies the weak reversibility condition
(17) ofnajek.

Proof. It is sufficient to note that if Au is defined by

Au(i, j) inf sup U(gg) + V(gk, gk+l), i, j E,
gePthe (i.j) O<k<ng

then Au(i, j) Dq(i, j) since we have

U(i’) + V (i’, j’) { +xzU(i’) v U (j’) if q(i’, j’) > O,
if q(i, j) O.

Hence, if U is the virtual energy (up to an additive constant) associated with V, then Au (i, j)
A(i, j) + c, where Ac(i, j) is the communication altitude from to j, so that we deduce from
point 1 of the Proposition 2.16 that the weak reversibility condition of Hajek (17) is verified.
Assume that Dq verifies (17). Then Av (i, j) Av (j, i), so we deduce from Theorem 2.17
that U is the virtual energy up to an additive constant.

2.5.3. Decomposition in cycle via the communication altitude. We end this section
with a proposition which shows that the decomposition in cycles can be computed directly from
the values of the communication altitude between configurations. This new characterization
of the decomposition in cycles is very close to the definition of the cycles for the sequential
case [2] and is its natural extension.

DEFINITION 2.19. Let h . We note Th, the equivalence relation defined by

i=j
Thj iff or

Ac(i, j) < h otherwise.

PROPOSITION 2.20. We have

C(E) U E/7-h,
h6]

where E/7"h denotes the set ofthe equivalence classes ofEfor the relation

Proof Let I-I 6 C(E). We want to prove here that 17 E/TZh for an h 6 ]K. The result
is trivial if either 17 is a singleton or 17 E. We consider now the remaining cases and will
prove that we can choose h A(FI). If 17 E/7ac(rl), then there exist 6 17 and j 6 1-I
such that Ac(i, j) < Ac(17). Let 17’ be the smallest cycle containing and j. We get from
Proposition 2.16 that At(i, j) Ac(I-I’) so that Ac(17’) < Ac(l’I) with FI C 17’ and 17’ I7.
However, from (11), (12), and Remark 2 we have

Ac(17) W(FI) + Hm(I-I) < W(17) + He(I’I) Ac(n’),

so we get a contradiction.
Conversely, let C E/Th. If either C E or C is a singleton, then C is obviously a

cycle. We consider the remaining cases. Let 17 be the greatest cycle for the inclusion among
all the cycles included in C. If 17 C, then we consider H and j 6 C \ 17. Since and
j are in C, we have Ac(i, j) < h. Moreover, Ac(i, j) Ac(17ij), where I-Iij is the smallest
cycle containing and j, so Ac(17ij) < h and I’Iij C C, which is impossible. Hence we get
that 17 C. 13
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2.6. Optimal exponent. In this part, we will only give the central theorem on the conver-
gence of G.S.A. algorithms, which extends Catoni’s result previously stated for the sequential
simulated annealing.

DEFINITION 2.21.
1. We call critical height associated with the decomposition in cycles of E for the

communication cost V the real-valued number H1 defined by

H1 He(E \ F(E)) sup He(H).
FIC E), FIf)F E)=O

2. We call optimal exponentfor reaching F E) for the communication cost V the real-
valued number aopt defined by

THEOREM 2.22.

W(FI)- W(E)
infCopt

nc(e),nCF(e)=o He(H)

1. For all decreasing cooling schedules (Tn)nEN converging to 0 we have

ifand only if

sup P(Xn F(E) Xo- i) 0
EE n--+ cx

e-H1/Tn +(:x.
n=O

2. We assume thatOol, < +oandthat QT (i, j). is a rational expression ofthefunctions
(ea/T)ae for any i, j E. There exist two strictly positive constants R1 and R2
such thatfor all integers n > 1 we have

R1 R2
< inf sup P(W(Xn) # Wmin Xo i) <

ntPt Tl >-’" Tn >O 6E ntPt

Point 1 of the theorem is the extension of the well-known result of Hajek. It has been
proven for the generalized simulated annealing by Hwang and Sheu in 10]. Point 2, which
gives the optimal convergence rate toward F(E), has been proven by the author in 13, 14].

3. Energy landscape exploration algorithm. In the previous section we have seen the
roles of the critical height H1 and the optimal exponent Otopt. Both depend in a nontrivial
way on the communication cost V. Computing these quantities even for very small examples
is intractable by hand. However, it can be useful to compute systematically these quantities
on medium-size examples in order to be able to test some conjectures on examples and to
compute exactly the virtual energy as well as the critical height or the optimal exponent. In
this part, we propose a constructive approach to calculate their values on a computer through
the recursive construction of the cycle decomposition. We will show that our algorithm has a

complexity in O([EI3), where [El is the size of the configuration space.
We call attention here to an alternative approach recently proposed by M. Desai, S. Kumar,

and P. R. Kumar in [5] for a direct computation of the virtual energy from the communication
cost. Their method is actually not given as a directly implementable algorithm, but this could
be done in the spirit of our work with the same complexity. However, since they do not
make any explicit reference to the decomposition in cycles, their method is limited to the
computation of virtual energy and does not, for instance, provide the critical height H1 or the
optimal exponent Olop
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3.1. Construction ofthe decomposition tree. The mainproblem ofthe effective decom-
position in cycles is the construction of a graph isomorphic to the valued graph G (S, ,4, V),
which is called a decomposition graph and is defined by the following three points.

1. The set S of the vertices of G is defined by

nE+l
S= U Ek{k}.

k=0

The subsets Ek {k} ofS are calledthe levels of. If S Ek {k} and S’ EZ {k’}
are both levels of , we will say that S’ is the level above S if k’ k + 1. We note
So, the level E {0} called the base of .

2. The edge set A of contains the following three types of edges: for all v (I-I, k),
to (FI’, k’) S,

v--- w s ,4 if k k’ and V(I7, FI’) < +o.
Then we say that to is a neighbor of v.

v := to ,4 if k k’ and V (FI, FI’) He (FI).
Then we say that w is the exit out of v.

vSto,4 ifk=k’+landI-I’CFI.
Then we say that v is thefather of to and that w is a son of v.

3. The set of the valuations contains the following valuations of the vertices and on
the edges:
(a) For all v (1-I, k) S

mixing_height(v) Hm (I-I),

exit_height(v) He I’I ).

(b) For all v (FI, k) and to (FI’, k’) in S such that v--- to ,4

com_cost(v, to) V (I-I, I-I’).

One deduces easily from the recursive decomposition in cycles a construction level by level of
the decomposition graph from its base. There exists, however, a step in this algorithm which
is not obvious. Assume that the level S has been constructed, as have the edges u=,w between
vertices of S. In order to construct the level S’ above S and the son-father edges (uSw), we
have to identify the equivalence classes on S for the equivalence relation 7:

*uv iff u=v and v::u,

where w=w’ means that there exists n s 11 and a family (tol)O<l<n of vertices in S such that
wo w, ton w’ and the edges wl=Wt+l exist for 0 < < n. However, this problem is
equivalent to the computation of the strongly connected components of G (S, A), where A
is the set of edges u=v between the vertices of S.

DEFINITION 3.1. We say that C C S is a strongly connected component of the oriented
graph G S, A) ifboth ofthefollowing conditions are verified.

1. For all u, v C, we have

u=v and v:u.
2. The set C is maximal among all the subsets ofS verifying 1.
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An easy lemma establishes that the equivalence classes for the relation 7Z in S are exactly
the strongly connected component of G (S, A). However, Robert Tarjan proposes in 11
an algorithm with complexity O(ISI / IAI) to compute the strongly connected components.
Hence, we can now define a recursive algorithm to construct the graph from the data given
by the base So, the edges u--+ v between the vertices of So, and their valuations com_cost(u, v).
We give below a pseudocode version.

main ()
BEGIN

load the vertices of ;
FOR EACH in

load the edges
FOR EACH neighbor

load com_cos t(, m)
mixing_height () 0

decompose(S0)
END

The function decompose, which is the main ingredient of the main program, is defined as
follows.

FUNCTION decompose (S)
BEGIN

IF ( is not a singleton)
THEN

FOR EACH in /* Computation of the valuations exit_height */
exit_height(v):: min{com_cost(v,w) v->w};

FOR EACH in /* Creation of the edges m */
FOR EACH in

IF (exit_height() com_cost(,m))
THEN create the edge m; /* m is an exit out of */

/* Creation of the level $’ above and creation of the edges
son-father between the vertices of ’ and those of */

next_level (S)
/* Creation of the edges v-+w between the vertices of S’ and

computation of their valuations */
FOR EACH in ’FOR EACH ’ son of /* e.g. the edge $’ exists */

FOR EACH m’ neighbor of ’ /* e.g. the edge ’-+m’ exists */
IF (the father
THEN

tmp mixing_height()+com_cost(’, ’)-exi t_height(’)
IF the edge -+m does not exists yet
THEN

create the edge -+m;

com_cost(, ) tmp;
ELSE com_cost(,m):= min{ com_cost(,m) tmp ];

/* Decomposition of the level ’ above */
decompose (S’)

END

We have intentionally isolated the function next_level since this function is nothing but the
Tarjan’s algorithm for the search of the strongly connected components in an oriented graph.
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In fact, we have to distinguish the minimal components from the others, but this can be easily
achieved since this last problem reduces to finding the leaves in a tree.

Our construction algorithm of the decomposition graph is completely recursive, so
we obtain a simple implementation. From the complexity point of view, for each level, the
complexity of the construction of the next level is dominated by the complexity of the Tarjan’s
algorithm, that is, O([S[ + IA[), where S is the family of vertices of the current level and A
is the family of the edges u=v between the vertices of S. This complexity admits an upper
bound in O([S[ + [BI), where B is the family of the edges u---v between the vertices of S.
However, if S’ is the level above S and B’ is the family of the edges u-- v between the vertices
of S’, we have

IS’l _< IS[- 1 and IB’[ < ]B[- 1.

Since at each level we have the upper bound BI _< SI2, we deduce that the total complexity
of the algorithm is in O(I S013), where So is the base of . This value of the complexity shows
clearly the difficulty of a computation by hand but also the limitation of this approach even on
a computer.

3.2. Derivation of the virtual energy and the critical constants. It is now simple to
deduce from the graph the value of the interesting quantities. We start here by the computa-
tion of the virtual energy W. From Corollary 2.14 we deduce that for all 6 E and all k < ne
we have the relation

(18) W(ik) W(ik+l) + nkm+l(ik+l) nke (ik).

Thus, on each vertex v (I-I, k) of S, if we define the valuation called virtual_energy(v) by

virtual_energy(v) W I-I ),

we deduce from (18) that if w is a son of v (e.g., the edge v Sw exists) then

(19) virtual_energy(w) virtual_energy(v) + mixing_height(v) -exit_height(w).

The relation (19) allows the computation ofvirtual_energy(v) for each vertex v ofS recursively
from the value of virtual_energy(voo), where vo denotes the unique vertex of the last level of

(e.g., vo (E, ne + 1)). However, virtual_energy(vo,) is equal to W(E) inf W, which
can be arbitrarily fixed to the value 0 since it is sufficient to compute the virtual energy up to
an additive constant. (One should in fact compute the constant with a recursive algorithm.)

We are now interested in the computation of the bottom F(E) of E (global minima of
W). In the framework of , we have to find the vertices v of the base So of for which
virtual_energy(v) is minimal. This computation can be achieved without having to compute
the virtual energy with a recursive procedure. (We use here the characterization of F(E) given
by point 1 of Corollary 2.13.) We will note F(), the family of the vertices v ({i}, 0) of S
for F(E).

bottom_exploration(vo)
FUNCTION bottom_exploration(v)
BEGIN

IF (v has no son) /* v E So */
THEN add v to the list;
ELSE

FOR EACH son w of

END

IF (exit_height(w) mixing_height(v))
THEN bottom_exploration(w)
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For the computation of the critical height H1 H(E \ F(E)) it is sufficient to take the
maximal value of exit_height(v) for any vertex v which does not have a descendant in F().
We obtain the following recursive procedure:

critical_height:= 0;

compute_critical_height(v, cr i t i cal_height)
FUNCTION compute_critical_height(v, c r i t i ca 1 _he ight)
BEGIN

IF ( has at least one son)
THEN

FOR EACH son m of
IF (exit_height(w) < mixing_height(v))
THEN critical_height:= sup{ critical_height exit_height(m)
ELSE compute_critical_height(w, cr i t ical_height)

END

Finally, we give here a recursive procedure to compute the optimal exponent Otopt. We recall
its definition,

W(I-I)- W(E)
Olop inf

nsc(e), rlnF(E) He (i])

In fact, it is not necessary to consider all the cycles. Indeed, if 1-I is a cycle such that H f]F(E)
0, then for any cycle I]’ C H, we have W(I]’) >_ W(l’I) and He(I]’) <_ He(I]) so that we get
the inequality

W(i]’)- W(E) W(II)- W(E)
(n’) He(n)

Now, for any cycle H distinct of E, we note H+, the smallest cycle containing H and distinct
from FI. From the previous remark, it is sufficient for computing Otopt to consider the cycles I]

such that FI N F(E) 0 and H+ N F(E) 0. For such cycles, we have W(I]) + He(H)
W(E) + Hm(H+) so that

W(1-I) W(E) Hm(i]+) H(I-I)
n(n)

Thus we can compute directly from the decomposition in cycles the value of Olop without
computing before the virtual energy. We propose the following procedure:

alpha_opt +oo;
compute_alpha_opt(v, a 1pha_op t)
FUNCTION compute.alpha_opt(v,alpha_opt)
BEGIN

IF (v has at least one son)
THEN

FOR EACH son m of v
IF (exit_height(w) < mixing_height(v))
THEN

tmp:= (mixing_height(v) exit_height(m))/exit_height(w);
alpha_opt min{ tmp alpha_opt };

ELSE compute_alpha_opt(w,alpha_opt)
END
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3.3. Examples. We have used this decomposition algorithm to evaluate the efficiency of
a parallel scheme of simulated annealing on spin-glass energies (see 12] for a presentation
of this scheme). Let us briefly present the setting. We consider the configuration space
E {- 1, 1 s, where S is a finite set called the set of sites, and a spin-glass-like energy

stS seS

where the couplings Jts,tl are independently and identically distributed (i.i.d.) random vari-
ables with normal distribution A/’(0, 1) and the hs are i.i.d, random variables with uniform
distribution on [0, 1]. This provides us with a large class of energies with a statistical structure
relevant to real minimization problems. On a sample of 200 energies, we have performed the
cycle decompositions for the communication costs associated with the sequential simulated
annealing and the parallel scheme 13]. The values of Hi and Otopt have been computed also
for a comparison. We give below the central processing unit (cpu) time (in seconds) on a Sun
4/65 corresponding to our sample for three values of Sl"

ISI 4 10s

ISI 6 189 s

181=8 4778s

As expected from the complexity study, the cpu time is exponentially increasing with SI, so
we have been confined in our experimental work to SI _< 10, that is, EI _< 1024. (We see
that the average time for a cycle decomposition is about 12 s for IEI 28 256.) Beyond
the attractiveness of an exact calculation of the critical constants, one of the appealing aspects
of the explicit construction of the cycle decomposition is to give an efficient numerical tool to
progress in the badly known cycle structure of random energies.
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A CHARACTERIZATION OF BOUNDED-INPUT BOUNDED-OUTPUT
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DISTRIBUTIONAL INPUTS*
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Abstract. We consider linear time-invariant operators defined on the space of distributions with left-bounded
support. We argue that in this setting the convolution operators constitute the most natural choice of objects for
constructing a linear system theory based on the concept of impulse response. We extend the classical notion of
bounded-input bounded-output stability to distributional convolution operators and determine precise conditions
under which systems characterized by such maps are stable. A variety of expressions for the "gain" of a stable
system is derived. We show that every stable system has a natural threefold decomposition based on the classical
decomposition of functions of bounded variation. Our analysis involves certain extensions of the Banach spaces LP
in the space of distributions.

Key words, linear systems, stability, distributions

AMS subject classification. 93

1. Introduction. The concept of impulse response has traditionally played a central role
in linear system theory. In spite of this fact, certain fundamental system-theoretic ideas have
apparently not been developed on a mathematically rigorous level for systems with arbitrary
distributional inputs and outputs. In particular, an extract characterization of the impulse
and step responses that correspond to bounded-input bounded-output (BIBO) stable systems
has not previously appeared in the literature. As an illustration of the problem, recall that
if a linear time-invariant system is described by convolution of its inputs with a measurable
function h, then the system is BIBO stable if and only if h 6 L 1. (See, e.g., [1, p. 388].)
This characterization is inadequate, however, for studying classes of systems where h may be
a distribution since even a simple all-pass system has impulse response 6 L 1. Obtaining a
complete description of stable distributional systems is the primary goal of this paper.

A somewhat more limited framework than ours that addresses this problem appears in
[2, p. 108], where systems are viewed as convolution operators and the impulse response is
restricted to be a measurable function plus a linear combination of time shifts of the unit
impulse. (In [2] the time-varying case is also included.) Thus, systems that differentiate the
input are not included in [2], nor are more exotic cases such as the examples we present in 5.
Our framework includes that of [2] (restricted to the time-invariant setting) and gives a more
general framework for linear systems and, in particular, BIBO stable systems.

In 2, we consider the problem of meaningfully characterizing linear time-invariant sys-
tems in terms of their impulse responses. To set the stage for stability analysis, in 3 we
pose and solve the problem of extending the Banach spaces LP in the space of distributions
for 1 < p < cx. In 4 we define BIBO stability for convolution operators on distribution
space and obtain exact conditions on the impulse and step responses of a BIBO stable system.
Expressions for the induced norm or "gain" of a stable operator with bounded inputs are also
established. Section 5 contains a discussion of a three-fold decomposition applicable to all
BIBO stable impulse responses. Our results are summarized in 6.

2. Preliminaries. We need a brief introduction to the theory of distributions. (See [3]-
[6].) If 9 --+ , define the support of 9, i.e., supp 9, as the closure of the set {t 9(t) 0},
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and let trtp be the translation of 0 defined by (trrqo)(t) 0(t r). Let K be the space of
C functions 99 with supp 99 bounded, and let K’ be the dual space of K. (See
[6] for an exact description of the topology of K.) A distribution f is an element of K’, i.e.,
a continuous linear functional 99 --+ (f, 99) on K. For f 6 K’, supp f is defined to be the
complement of the largest open set U C such that supp 99 C U implies (f, qg) 0. We may
also define the time shift trr f of a distribution f by (cr f, go) (f, cr_rp) and the derivative
j of f by (j, go) -(f, gb). Denote the ith distributional derivative by f(i>. It is easy to
show that the time shift and differentiation operators commute and that

d
d---

The unit impulse 3 is defined by (3, 99) 99(0). Also, any function f that is locally
L determines a distribution according to (f, 0) f fp. (Functions that coincide a.e. are
identified.) In this way, we may view functions in Lp as distributions for 1 < p < c. In
particular, the unit step function 0 may be considered a distribution. Define 33 cry3 and
0r cry0. If f is locally L and differentiable a.e. in the classical sense, denote this derivative
by f’. It is an important fact that there exist f such that f j. This may occur in trivial
ways (e.g., 0 3, but 0’ 0 a.e.), but such cases also exist where f is continuous. (See 5.)
Define K {f K’ supp f C [r, cx)} and

K+ Kr.

Convergence in K’ is defined via its weak* topology, which has a subbasis consisting of
all sets of the form

Ug (f + g I(f, qg)[ < 1},

where 99 6 K and g 6 K’. In terms of convergence, this means that a sequence (or net) fn
converges to f iff (fn, tp) -- (f, 99) for all 99 6 K. Thus a linear operator T K+ -- K+ is
weak* continuous iff (fn, 99) -’+ 0 implies (T(fn), 99) --+ 0. A linear operator T K_ -- K+
is causal iff inf(supp T (f)) > inf(supp f) for all f 6 K_.

We are especially interested in convolution operators; the convolution of any pair
f, g 6 K_ is defined as follows. It is shown in [3, p. 100] that the map (t) (g, cr_t99)
defines a C function. Since 99 has bounded support, supp ap is bounded above. Choosing

6 K to be any function in K such that 7t(t) 7r(t) for all > inf(supp f), we define
(f’g, 99) (f, 7t). This definition is unambiguous, since (f, y) 0 whenever supp ,f) supp
o 4. Convolution can be shown to be commutative and to satisfy f*3i f(i). Also, if

K’ is an operator of the formh f’g, h j*g f* A convolution operator T K+ --+ .+
T(u) h’u, where h 6 K_. For any convolution operator, T(O)= T(3)*O T(3); T is
causal iff h 6 K. We will often refer to the following basic result from [3, p. 105] concerning
continuity of convolution operators.

LEMMA 2.1. Let T be a convolution operator with T(v) h*v for every v, and let
Un u be a convergent sequence (or net) in K’+. Ifthere exists a r 1R such that either supp
h C (-cxz, r] or supp bln C [’g, 00) Yn, then T(un) T(u).

Let Co {f "/1 --+/t[f is continuous, f(-cx) f(cx) 0} with norm

Ilfll sup If(t)l.

We denote by BV the space of functions f with bounded variation. Set NBV
{f 6 B V f is left-continuous, f(-cx) 0}, and let Var(f) be the variation of f. From [7,



A CHARACTERIZATION OF BOUNDED-INPUT BOUNDED-OUTPUT STABILITY 989

Ch. 6], NBV is the dual of Co with induced norm

f IIn Var(f).

In addition, let DBV {, K’ g B V} and define

d Var(g).

It is easy to verify that lid defines a norm on DBV and that NBV and DBV are isometrically
isomorphic under the map g --+ ; hence DBV may also be viewed as the dual of Co. It is
easy to show that K is dense in Co and that the norm lid satisfies

(1) Ilflla--sup I(f, 99)1=r suplf_oqg(t)dg(t)r
IIoll=l IIoll=l

for any f DB V.
Recall that every f BV has a decomposition (unique a.e.) ofthe form f fl + f2+ f3,

where fl is bounded and absolutely continuous, f2 is a bounded saltus function (i.e., f2
Eoti03i, where E [otil < cx), and f3 is a singular function (i.e., f3 is continuous andnonconstant,
f3 B V, and f 0 a.e.).

Define Lp B V+, and DBV+ to consist of the Lp, B V, and DBV distributions f 6 K’,+,

respectively, with inf(suppf) > -c. For p < c, L is a dense subspace of Lp. On the
other hand, the closure ofL is a proper subspace of L, namely,

L { f L esstE(-cx,-n]sup lf (t)l -- O as n -- cxz]
Let L[0,) denote the L functions f with supp f C [0, x). Note that L[0,), L, B V+, and
DBV+ may be viewed as subspaces of K+.

The first question we address is that ofdetermining which operators T K+ --+ K+ can be
justifiably called "linear systems." Clearly, T should be linear. Also, since we wish to develop
a theory based on the concept of impulse response, we need to establish conditions under
which T (6) uniquely characterizes the operator T. We will limit ourselves to time-invariant
operators, although the results of this section can be generalized considerably. As a first step,
we might also impose continuity on T, since continuous linear operators are easier to work
with. These constraints and the following lemma lead to Theorem 2.2.

LEMMA 2.2. Let r I and

13 f K’13ti > r, ii such that f iiti
i=1

Then I3 is weak* dense in Kt3.
Proof. Using an overbar to denote weak* closure, it is clear that 13 C K’

3
K3, so

I C K’3. We will demonstrate that [3 D K3 D K3b D K’3, where

K3 {q9 6 K[ supp q0 C Iv, cx)}, K3b {f K’31 supp f is bounded}.

Let q9 6 K with supp 9 C [r, r + A] and define

V=--9 r+k t-r-k--
k=0 n n
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For any 6 K, (yn,
weak*. Since 0 is arbitrary, 13 D K and 13 D K. Let (/9n K0, n weak*, f K’b,
andn f*q)n. From Lemma2.1, n 6 K and lrn f. Hence, K K’b and Kr D Kb.
Finally, let g 6 K’r and let 0n 6 K satisfy On(t) 1 for 0 < < n. Then Tng K’b and

ring g weak*, so Kb
THEOREM 2.3. Let T K+ -- K+ be a weak* continuous, linear, time-invariant operator

Then T(u) T(6)*u for all u K’+.
Proof Suppose u 6 K’. From Lemma 2.2, for any weak* neighborhood U of u, there

exists a v 6 U of the form
k

V E ii(ti
i=1

with ti >_ for all i. Let o 6 K. From linearity and time-invariance of T,

where

(T(v), o) (T(),

k

i=l

Note that ap K and (t) (v, O’_t for all > r. Thus

(T(), ) (T(B)*v, q).

Since o is arbitrary, T(v) T()*v. From Lemma 2.1, T(u) T()*u. fq

Unfortunately, the converse to Theorem 2.3 is false; i.e., a convolution operator may fail
to be weak* continuous. From Lemma 2.1, boundedness of T(3) is sufficient to guarantee
continuity of T. The next result establishes the converse.

THEOREM 2.4. Let T K+ -- K+ be a weak* continuous convolution operator. Then
supp T() is bounded.

Proof. Suppose supp T() is unbounded. Then there exist sequences on K and O/
such that supp (/9n C [O/n, O/n "q- 1], O/n (X), and (T(6), (/gn) /n # 0. Let

i<_n
t

di qgi

o"and lr n. From [3, p. 2], ln 0 in K; hence, n is a bounded subset of K. Let

Then fn -- 0 weak*, but

sup(T(3)*f, 7rm) > {T(8)*fn, )

nyn
T(6)

I- T n/nO’a lrn

1
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SO T (3)*fn does not converge uniformly to 0 on bounded subsets of K. From [4, pp. 55-56],
T (()*fn does not converge to 0 weak*, so T is not continuous.

It follows from Theorem 2.4 that there exist many familiar examples of linear systems
that are characterized by weak* discontinuous convolution operators. For example, 0 has
unbounded support, so a simple integrator is discontinuous. In particular, the sequence
0 weak* as n Pc, but its integrals 0_n converge to the constant distribution 1. In view of
such examples, we choose not to restrict ourselves to weak* continuous operators.

Unfortunately, an arbitrary class of discontinuous operators T in general is not uniquely
characterized by the values T(6), since T(3) only determines the action of a linear time-
invariant operator on the proper subspace span { It IR} c K_. On the other hand, the
distributions T(6) do uniquely characterize the family of convolution operators. In fact, it
is easy to show that h*u 0 for every u 6 K_ implies h 0, so T --+ T(3) maps the
convolution operators one-to-one onto K_. Thus any linear time-invariant nonconvolution
operator has the same impulse response as some convolution operator.

Based on these observations, we define a linear time-invariant system to be a convolution
operator T K+ K+. In the next section, we develop the machinery that will enable us to
define and characterize BIBO stability for such systems.

3. Extension of normed linear spaces. In this section we examine the problem of ex-

tending LP in K’ for arbitrary p. We do this because L is known to play a role in characterizing
BIBO stability of an operator and because L is used in the definition of stability. Values
p 6 (1, cxz) are not directly related to stability but can be easily handled along with p
and are therefore included. In fact, the problem can be couched in much more general terms
without substantially increasing the level of difficulty.

Let X be a Hausdorff topological vector space over 1R, and let Y c X be a normed linear
space. Then Y has two topologies: the norm topology and the one inherited from X. Denote
the topology of X by 7" (i.e., 7" is the family of all open subsets U of X), let Tr be the relative
topology on Y generated by 7" (i.e., %, consists of all sets U fq Y). Also, let B(y, r) C Y be
the norm ball about y with radius r. We make the following assumptions.

A1) YU T, U fq Y =/=4).
A2) YU 6 7" and Yy 6 U C’l Y, e > 0 such that B(y, e) C U.
A3) U 6 7-such that U C)Y Y- B(0, 1).

Assumption A1) states that Y is dense in X relative to T. The other two assumptions give
upper and lower bounds on Tr. Assumption A2) states that the norm topology on Y is stronger
than or equal to Tr, while A3) says that B(0, 1) is closed in

Suppose Y has norm II- II, let x 6 X, and let U C 7" be the family of all neighborhoods
of x. Define

(2) IIx sup inf Ilyll.
fl yUNY

In view of A1), Ilxll is well defined and determines a function X -+ [0, cx]. The next
result establishes that is a natural extension of to all of X.

PROPOSITION 3.1. 1) II" and I1" coincide on Y.
2) is lower semicontinuous on x relative to 7".
3) Ifllxll < cx, thenforeverye > OandT-neighborhoodU ofx thereexistsa y UAY

such that

Ilyll < Ilxll / e.

4) Ifll. f x [0, eel satisfies 1)-3) (replacing e withfthroughout), then I1" f
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Proof. 1) Forx e Y,

inf Ily < IIx
yU#fqY

for all/, so IIx < IIx follows immediately from (2). Suppose IIx e < a < Ilx II. Then (2)
states that for every/ and e > 0 there exists a y 6 Us f3 Y such that Y < IIx e / 8. Setting
8 a Ilxll yields Ilyll < a. Hence Us f3 B(0, a) q, and B(0, a) is not closed relative to
7". Thus B(0, 1) is also not closed, contradicting A3). Therefore Ilxll Ilxll.

2) We need to show that -- {x X lllxll > R}
R

is T-open for every R < oo. (See [8, p. 84].) From (2) we have

(3) E {x 6 X 3 a T-neighborhood U of x and 8 > 0
R

such that Ilyll > R + e Yy U N Y}.

Ifx 6 R for some R, then U and8 are determined by (3). In fact, U c yR, so is open.
3) This follows immediately from (2).
4) If IIxll o, IIxll f _< Ilxll e. Suppose that Ilxll < cx and 8 > 0 are given. From

2), there exists a/ such that Ilyl[ > Ilxll f for every y Us. Setting u Us in 3)
Setting yieldsguarantees the existence of a z 6 Us f3 Y such that Ilzll < Ilxll e / . y z

[Ixl[ f < [[xl[ / 8. Since e is arbitrary, Ilxll f < Ilxll e. Interchanging the roles of "e" and "f"
and applying the same arguments gives Ilxl[ f > [Ixl[ e. [3

Let Ye {x X lixll < oo}. From Proposition 3.1, 1), it is obvious that Ye D Y. We
refer to Ye as the X-extension of Y. The next result further justifies this terminology.

PROPOSITION 3.2. 1) Ye is a subspace ofX.
2) I1" e is a norm on Ye.
Proof 1) If x Ye and c 6 ]R, then

(4)

IIoxlle-sup inf Ilyll
yU#fqY

I1 sup inf Ily
yU#fqY

I111xll

Furthermore, ifx1, X2 C Ye and Us is a neighborhood ofx /X2, then there exist neighborhoods
V and We of x and x2, respectively, such that V + We C Us. Hence,

(5)

Ilxl /x211 sup inf IlYll
YUt3fqY

< sup inf IlYl / Y211
Y2WfqY

< Ilxlll / IIx211

Thus cx and x + x2 belong to Ye, and 1) follows.
2) In view of (4) and (5), to demonstrate 2) it remains to show that Ilxll 0 implies

x 0. Indeed, Ilxll 0 implies

(6) inf IlY 0
yeU#fqY
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for every ft. Since X is Hausdorff, for x #- 0 there must exist disjoint T-neighborhoods
U and V of x and 0, respectively. From assumption A2), there exists an e > 0 such that
B(0, e) C V. Thus B(0, e) fq Ut p, contradicting (6).

Roughly speaking, Propositions 3.1 and 3.2 say that 1) I1" is the smallest possible
extension of such that IIx is consistent with T-approximations to x from within Y, and
2) Ye is the largest subspace of X upon which is a norm.

We may now specialize these ideas to X K+ and Y LP+. First note that assumptions
A1) and A2) follow easily from [4, II.4.4] and [3, I.1.8]. The next result verifies assumption
A3).

PROPOSITION 3.3. B(0, 1) C L is weak* closed (relative to K’+) for 1 <_ p <_
Proof Suppose B(0, 1) is not weak* closed. Then there exist e > 0 and f 6 L such

that f lip 1 + e and such that, for each 99 6 K, there exists a g 6 L_ with g lip _< 1 and
I(f g, 99)1 < . Let q be conjugate to p. Since K is dense in Lq using IIq for q < o,

To handle the case q cxz,we may choose 99 K such that l19911q 1 and I(f, 99)1 > 1 +
we note that K is dense in Co, so [7, Thm. 6.19] guarantees the existence of a 99 6 K with

Thus, for arbitrary p, I(g, 99)1 < 1 andI1011 1 and I(f, 99) > 1 + .
< I(f, qo)l- I(g, 0)1 _< I(f g, 9)1 <

2 4

This is a contradiction, so B(0, 1) is closed. [3

Since A1)-A3) are satisfied, the K_-extension Le of L_ and its norm II are well
defined. The following two results characterize Lp

+e more precisely.
PROPOSITION 3.4. Let 1 < p <_ cx. Then LP+e L P+.
Proof. Suppose f K’ L, let M < o be given, and let q be conjugate to p. Since K

is dense in Lq relative to [[q, the dual of K with [[q imposed on it is just Lp. Thus there
exists a 99 K with 119911q such that I(f, 99)1 > M + 1. Furthermore, there exists a weak*
neighborhood U of f such that ]lgllp > ](g, 99)1 > M for all g U N L; thus [Ifll >- M.
Since M is arbitrary, Ilfll e and f te. Hence te t.

The case p 1 is somewhat more challenging.
PROPOSITION 3.5. Ll+e DBV+ and Ilxll Ilxlldfor all x DBV+.
Proof. Let

| Ilflla, f DBV,
IIflID , f DBV.

It suffices to verify 1)-3) in Proposition 3.1. If f 6 L 1, then f for some absolutely
continuous g. Hence

IlfllD Var(g) lldg(t)l I(t)l dt Ilflll,

and 1) holds.
To prove 2), let R < cxz andR {f 6 K’lllfllo > R}. For f yR, we have from

(1) that

sup I(f, 99)1-- IlfllD > e.
qgK

Hence, there exists a 0 e K with go 1 such that f, 99)1 > R. Let

U {g 6 K’ I(f g, 99)1 < I(f, o)1- R}.
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U is a weak* neighborhood of f. If g e U,

I(f, q))l- I(g, q))l < I(f g, q))l < I(f, q))l- R,

so I(g, o) > R. Hence,

Ilgllo sup I(g, 0)1 > R.
oK

Thus g R and U C R. Hence yg is weak* open, and D is lower semicominuous.
Condition 3) can be proven directly using elementa analytic arguments based on the

definition of Var(.), but here we supply a functional analytic proof that is more amenable
to generalization. Let U be a weak* neighborhood of f, and let e > 0. Then there exist

@1 @n 6 K such that h 6 U whenever I(f h, i)1 < 1 for all i. If fll n 6 N, then

[i<f, i)l [(f’ ii)l
Noting that K C L and that L is the dual ofthe Banach space L 1, it follows from [9,T. 5,
p. 109] that there exists an h Z such that (h, ) (f,
Note that I(f h, i)l 0, so h U. Since L is dense in L relative to I1" II1 (and therefore
also weak*), there exists a g 6 U L such that g 111

We can make slight modifications to the arguments of this section and cotmct an
extension Lff of Lp in K’. In this way, results similar to Propositio 3.1, 3.4, and
3.5 are obtained; i.e., Lff Lp for 1 < p and L DB V. This construction has
the advantage that L is a Banach space, while Le is not; however, convolution is not defined
on all of L, so we must restrict oselves to Le.

Besides stability analysis, another impoant application of our extension theo occurs in
treating minimum-no optimization problems over K’. For example, the issue of extending
a qua&atic cost functional on L2 to K’ arose naturally in the earlier work of one ofus 10]. It is
easily seen that 10, Prop. 1 follows iediately from Proposition 3.1, pa 2) and Proposition
3.4.

4. BIBO stability. Proposition 3.4 shows that "boundeess" of a distribution f 6 K
is most naturally intereted to mean that f 6 L. Hence, we define a linear operator
T K K+ to be BIBO stable if T(L) C L. Clearly, this definition extends the
classical one, as long as u, T (u) 6 K.

Since convolution operators satisfying T() 6 L are ownto be BIBO stable, a natural
conjecte is that the convolution operators with kernels in the extension space Le described
in Proposition 3.5 coincide exactly with the stable operators. TNs idea is supposed by the
fact that 3 6 Le, since 3 0 and 0 BV+, and (i) Ze for 1, 2, 3 since
6(i-1 B V. It is easy to show that T(u) 6(i*u defines a stable operaor iff 0.

Coesponding to each convolution operator T we may associate a T K C defined
by

T(p)(t) (T(6), a-t).

Indeed, it is established in [3, p. 100] that T takes values in C with T()(t) 0 for all
in some inteal [re, ). The following result provides prelimina infoation about BIBO
stable operators.

LEMMA 4.1. Let T K K be a convolution operator
1) IfT is BIBO stable, then

sup IIT(u)ll < .
uL
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2) T is BIBO stable iff

sup IT(o)(t)l dt <
oK

I1oll -----1

Proof 1) Let P be the restriction of T to L[0,). We begin by showing that P is contin-
uous relative to I1" I1,

Let u, ui L[o, and Ilui ull 0. Suppose there exists a v 6 L such that
IIP(ui) vll 0. Since weak* topology is weaker than norm topology on L, ui --+ u
weak* and P(ui) V weak*. From Lemma 2.1, P is weak* continuous, so P(ui) P(u)
weak*. Since weak* topology is Hausdorff, P (u) v. The continuity of P follows from the
closed graph theorem.

Now let ui L with ui 0. For each ui there exist ri such that cr u L[0,o)"
Also, cry, ui u 0. From the continuity of P and time-invariance of T,

IIT(ui)ll --IIr-,P(riui)ll --IIP(riui)ll O.

This shows that T is continuous or, equivalently,

hence

and

sup T(u)I1 < -uLe
Ilull=l

2) (sufficient) Let u 6 L. From the definition of convolution on K’, we have

(T(u), qg) u(t)T(go)(t) dt;

I(T(u), tp)] < Ilull IT(qg)(t)ldt

sup I(T(u), qg)l < cx.
0K

I1oll =1

Since K is dense in L 1, T (u) extends continuously to a unique linear functional on L 1. Hence,

(necessary) From 1),

sup sup
ueLO tpciK

Ilullo=l I1111 =1

u(t)T(qg)(t) dt sup sup I(T(u),99)l
uLO
Ilull=l IIlll=l

_< sup T(u)ll
uLy

Let q9 6 K and ui(t) sgn(T(qg)(t))O_i(t). Then

Ir(o)(t)l dt lira u(t)r(o)(t) dt

< sup u(t)T(o)(t) dt
uLy
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SO

sup IT(o)(t)l dt < oo. q

119111=1

Lemma 4.1, part 1) makes the striking statement that every stable convolution operator
is also continuous relative to IIo. In system-theoretic jargon, this means that, in the time-
invariant case, BIBO stability implies that small changes in the system input give rise to only
small changes in the output. It is an interesting fact that this statement is demonstrably false
in the time-varying case.

We are now in a position to give our main result.
THEOREM 4.2. Let T K+ -- K+ be a convolution operator Thefollowing statements

are equivalent.
1) T is BIBO stable.

3) T(O) BV+.
Proof The equivalence of 2) and 3) is obvious from Proposition 3.5. To prove that 3)

implies 1), let 9 K, u L, and s T (0) and note that

(T(u), 99) u(t)(i, tT_t dt

u(t)(s, cr_t(o)dt

u(t)s(z)(o(t + r)dr dt

u(t)o(t + r)ds(r)dt

f_ (f2 )u(t- r)ds(r) qg(t)dt,

so

T(u)(t) u(t r)ds(r) aoe.

and

IT(u)(t)l Ilullo Var(s) a.e.

Thus T(u) L.
Finally, we show that 1) implies 2). From [11, Thm. 2.3.9] and Lemma 4.1, part 2),

we know that there exists a measurable function g I2 - I with g(t, .) Lc for all
t, f-o g(’, r)9(r) dr absolutely continuous,

and

ess sup Var(g(., r)) < o

g(t, r)9(r) drT()(t)- 7 o

for all 9 K.



A CHARACTERIZATION OF BOUNDED-INPUT BOUNDED-OUTPUT STABILITY

Since T is time-invariant,

g(t, r)p(r to) dr g(t to, v)p(r) dr

for all t, to 6 I, p 6 L 1. Integration and a change of variables yield

g(t, r + t0)o(r)dr g(t to, r)o(r) dr.

Thus g(t, r + to) g(t to, r) for all t, to, r. Set s(t) g(-t, 0). Then s B V and

g(t, r) g(t , O) s(r t),

SO

997

T(o)(t) - c
s(z t)go(r)dt - (errs, o) (crt,

for all q9 6 K. Setting 0 yields (, qg) (T(6), o); hence T(3) 6 DBV fq K’+
DBV+.

Our next objective is to obtain a more detailed picture of the additional structure imposed
on a linear system by stability. We begin by considering certain extensions of the operators T
and T.

Since every stable T is continuous on L relative to I[o, each such operator may be
extended uniquely to a continuous linear operator To L --+ L. Similarly, Lemma 4.1,
part 2) also states that T is BIBO stable iff (K) C L and is bounded using the L norm

throughout. In this case, since K is dense in L 1, T extends uniquely to a continuous linear
operator Te L _.+ L 1. It is easy to show that To and e are time-invariant.

THEOREM 4.3. Suppose T K’+ K+ is a BIBO stable convolution operator and
s T(O). Let Te" L L be defined by

Te(u)(t) u(t v) ds(v).

Then
1) Te(u) To(u)for all u L.
2) Te(O)(t) o(t + r)ds(r) for all 0 L 1.

3) T is the adjoint of Te.
Proof. 1) As in the proof of Theorem 4.2,

r(u)(t) u(t r) ds(r)

for any u e L. Since Te is continuous relative to I1, 1) follows immediately.
2) Forany o K,

T (go)(t) (i, cr_trp)

s(r)b(t + r)dr

qg(t + v)ds(v).

Thus Te(p) T(p) for all 9 K. Since Te is continuous relative to 1, 2) follows.



998 CHI-JO WANG AND J. DANIEL COBB

3) Let s 6 B V, u 6 L, and p 6 LX. Applying Fubini’s theorem and a change of
variable, we have

or

u(t) qg(t + r) ds(r) dt u(t r) ds(r) qg(t) dt

Fu(t)Te(gO)(t) dt Te(u)(t)qg(t) dt.

Note that the proof of Theorem 4.3 applies even if s 6 BV B V+. Hence, the idea
of a stable system whose step or impulse response does not have left-bounded support is
meaningful; the system may be viewed as an operator on L. However, such an operator does
not extend easily to K’ or even K_.

To conclude this section, we give several equivalent expressions that quantify the "gain"
of a stable operator.

g’THEOREM 4.4. For any BIBO stable convolution operator T K+ +,

sup IIT(u)ll sup IlZe(u)ll- sup IlZe(go)lll Var(T(0))= IIZ()ll.
uL uL 9L

Ilu Iloo Ilu Iloo I1o =1

Proof. The first equality follows from continuity of Te. Since the norms of adjoint opera-
tors must coincide, the second identity holds. The next equality follows from the representa-
tion of Te established in Theorem 4.3. The last identity follows immediately from Proposition
3.5.

5. Additional properties of stable systems. In view of the Theorem 4.2, part 3) the
step response of every BIBO system can be decomposed as T (0) S 4- s2 4- s3, where S

is absolutely continuous, s2 is saltus, and s3 is singular. (See 12].) Thus, the corresponding
impulse response is T(3) hi 4- h2 4- h3, where hi i. Since sx is bounded and absolutely
continuous, h 6 L1+. Also, since s2 is a saltus function,

(7) h2 o/i (6z- ),

where Iotil < cx. Hence the impulse response of any stable system can be uniquely
decomposed into the sum of an L function, an impulsive distribution, and the (distributional)
derivative of a singular function.

The distribution h3 ; 3 is particularly interesting and apparently has not been treated in
the literature as a viable impulse response. Distributions of this type illustrate the fact that, for
a function s - , the operations of differentiation and identification with a distribution

of $3 as afunctiondo not in general commute, even if s is continuous. Indeed, the derivative s3
vanishes a.e., so s is identified with the distribution 0. On the other hand, s3 is by definition
not constant a.e., hence its distributional derivative 3 does not vanish.

A classical example of a singular function on [0, 1] is the Cantor function, which we
denote by co. (See [12, p. 50].) Define

0, t<0,

c(t) co(t), 0 < <_ 1,

1, t>l.

Then c is nondecreasing and singular on. Since Var(c) 1, Proposition 3.5 gives I111 1.
The support of the distribution is simply the Cantor ternary set, which is uncountable and
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has Lebesgue measure zero. (See [12, p. 49].) Note that has a far more elusive structure
than a conventional impulsive distribution (7). Nevertheless, Theorem 4.2 guarantees that the
system governed by T (u) u is BIBO stable.

On the other hand, suppose T(3) 6. Any attempt to decide the value f IT(6)I by
intuitive means would be perilous at best. Using our theory, this case is easily handled by
simply noting that T (0) 6 B V+.

Another characterization of stable linear time-invariant systems can be obtained by ex-
amining the set 7-/of Fourier transforms of functions in L. It follows from [5, p. 189] that
the Fourier transform of any h 6 L exists, is a function, and is given by

(8) H(co) e-it ds(t),

where s 6 BV and h. We refer to as the set of BIBO stable transferfunctions. Clearly,
a rational function belongs to 7-/iff it is BIBO stable in the usual sense.

According to Theorem 4.2, the stable transfer functions are generated by letting s vary
over BV in (8). Since every function in BV can be written as the difference of two bounded
nondecreasing functions, a substantial number of existing results in analysis come into play.
For example, working from 13, Ch. VII, we find that all functions in are bounded and
uniformly continuous. Several complete, albeit abstruse, characterizations of 7-/are available,
perhaps the simplest following from Bochner’s theorem: A function H belongs to iff H is
the difference of two continuous positive semidefinite functions. (See 13, p. 137].)

The Laplace transform

H(z) e-zt ds(t)

of h } Ll+e also exists and is analytic on Re z > O. It is easy to show that the "boundary
function"

co --> lim H a + co
cr--->O

is well defined and equals the Fourier transform (8). In fact, if supp h C [r, cx),

IH(z)l < e-lezVar(s)

for all right half-plane z. In particular, if h e Ll+e with r > O, then Hbelongs to the Hardy
space H (C+). The converse implication fails, however, since the function

H(z) e-Z

belongs to H, but H(ico) is not continuous at co 0 and therefore H is not stable. Sufficient
conditions on H(z) for stability (other than those on the boundary function) are difficult to
obtain. Even analyticity on the whole plane is not sufficient (e.g., let h ).

Our final comment of this section addresses the issue of linear systems with multiple
inputs and outputs. In this case, T (3) and its Fourier transform are matrices. Extending the
definition of BIBO stability in the obvious way, it is clear that stability simply corresponds to
each entry of the matrix being stable in the sense described above.

6. Conclusions. We presented a coherent distributional theory for linear time-invrariant
systems based on the concept of impulse response. The property of BIBO stability was shown
to be equivalent to a simple condition on either the impulse or step response of the system.
We also supplied a somewhat more difficult stability condition related to the system transfer
function. The time-varying case is at present under investigation.
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FINITE-DIMENSIONAL APPROXIMATION OF A CLASS OF CONSTRAINED
NONLINEAR OPTIMAL CONTROL PROBLEMS*

MAX D. GUNZBURGERt AND L. STEVEN HOU

Abstract. An abstract framework for the analysis and approximation of a class of nonlinear optimal control and
optimization problems is constructed. Nonlinearities occur in both the objective functional and the constraints. The
framework includes an abstract nonlinear optimization problem posed on infinite-dimensional spaces, an approximate
problem posed on finite-dimensional spaces, together with a number of hypotheses concerning the two problems.
The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to
enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and
to derive existence results and error estimates for solutions of the approximate problem. The abstract framework
and the results derived from that framework are then applied to three concrete control or optimization problems
and their approximation by finite-element methods. The first involves the von Kfirmfin plate equations of nonlinear
elasticity, the second the Ginzburg-Landau equations of superconductivity, and the third the Navier-Stokes equations
for incompressible, viscous flows.

Key words, optimal control, nonlinear partial differential equations, finite-dimensional approximation, finite-
element methods, von Kfirmfin equations, Ginzburg-Landau equations, Navier-Stokes equations

AMS subject classifications. 65J15, 65N30, 49J20, 35J65, 73G05, 76D05, 81Q05

1. Introduction. The need to solve optimization and control problems arises in many
settings. Although in some cases these problems may be easily solved, either analytically or
computationally, in many other cases substantial difficulties are encountered. For example,
candidate optimal states and controls may belong to infinite-dimensional function spaces and
one may have to minimize a nonlinear functional of the state and control variables subject
to nonlinear constraints that take the form of a system of partial differential equations whose
solutions are in general not unique. In this paper, our goal is to construct and analyze a
frameworkfor the approximate solution ofmany such problems. The setting for our framework
is a class of nonlinear control or optimization problems that is general enough to be of use in
numerous applications. The major steps in the development and analysis of our framework
are as follows:

define an abstract class of nonlinear control or optimization problems;
show that, under certain assumptions, optimal solutions exist;
show that, under certain additional assumptions, Lagrange multipliers exist that may
be used to enforce the constraints;
use the Lagrange multiplier technique to derive an optimality system from which
optimal states and controls may be deduced;
define algorithms for the approximation, in finite-dimensional spaces, of optimal
states and controls;
derive estimates for the error in the approximations to the optimal states and controls.

Two of the key ingredients used to carry out the above plan are a theory given in [21]
for showing the existence of Lagrange multipliers and a theory first developed in [6] for the
approximation of a class of nonlinear problems. In both of these theories, certain properties of
compact operators on Banach spaces play a central role. We point out that the nonuniqueness
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of solutions of the nonlinear constraint equations deems it appropriate to employ Lagrange
multiplier principles.

After having developed and analyzed the abstract framework, we will apply it to some
specific, concrete problems. In each case, we use the abstract framework to analyze the con-
crete problems by merely showing that the latter fit into the former. The particular applications
we consider are

control problems in structural mechanics having geometric nonlinearities that are
governed by the von Kfirmfin equations;
control problems in superconductivity that are governed by the Ginzburg-Landau
equations;
control problems for incompressible, viscous flows that are governed by the Navier-
Stokes equations.

In considering these applications, we will purposely choose different types of controls in order
to illustrate how these can be accounted for within the abstract framework. In all three cases,
approximation will be effected through the use of finite-element methods.

2. The abstract problem and its analysis. In this section we define and analyze an
abstract class of constrained nonlinear control problems; an outline of the definitions and
results of this section is as follows.

In 2.1, the abstract class of constrained control problems that we consider is defined.
In 2.2, a list of assumptions about the class of abstract problems is given.
In Theorem 2.1 of 2.3, some of the assumptions listed in 2.2 are used to show that
optimal solutions of the abstract problem exist.
In 2.4, some additional assumptions of 2.2 are used to show that Lagrange mul-
tipliers exist that may be used to enforce the constraint; also, first-order necessary
conditions are given.
In Theorems 2.5 and 2.6 of 2.4, the first-order necessary conditions for determining
optimal states and controls are simplified under additional assumptions about the
control set.
In 2.5, the optimality system from which optimal controls and states can be deter-
mined is made more amenable to approximation by simplifying the dependence of
the objective functional on the control.

2.1. The abstract setting. We begin with the definition of the abstract class of nonlinear
control or optimization problems that we study.

We introduce the spaces and control set as follows. Let G, X, and Y be reflexive Banach
spaces whose norms are denoted by I1" IIG, I1" IIx, and I1" lit, respectively. Dual spaces
will be denoted by (.)*. The duality pairing between X and X* is denoted by (., ")x; one
similarly defines (.,.)r and (.,.)c. The subscripts are often omitted when there is no chance
for confusion. Let (R), the control set, be a closed convex subset of G. Let Z be a subspace of
Y with a compact imbedding. Note that the compactness of the imbedding Z c Y will play
an important role.

We assume that the functional to be minimized takes the form

(2.1) 7(v, z) ;.(v) + ; g(z) v (v, z) X

where is a functional on X, $ is a functional on (R), and ) is a given parameter that is assumed
to belong to a compact interval A C +.

The constraint equation M(v, z) 0 relating the state variable v and the control variable
z is defined as follows. Let N be a differentiable mapping from X to Y, K a continuous linear
operator from (R) to Y, and T a continuous linear operator from Y to X. For any A, we
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define the mapping M from X (R) to X by

(2.2) M(v, z) v + ) TN(v) + TK(z) V (v,z) e X x tO.

With these definitions we now consider the constrained minimization problem:

(2.3) min dr(v, z) subject to M(v, z) 0.
(v,z)X xt3

In (2.3), weseeka global minimizer with respect to the set {(v, z) 6 X x tO M(v, z) 0}.
Although, under suitable hypotheses, we will show that the problem (2.3) has a solution, in
practice, one can only characterize local minima, i.e., points (u, g) 6 X x tO such that for
some e > 0

(2.4)
,.7"(u, g) < ,.7(v, z) ’V’ (v, z) X x 0 such that

M(v, z) 0 and Ilu vllx

Thus, when we consider algorithms for locating constrained minima of J, we must be content
to find local minima in the sense of (2.4).

After showing that optimal solutions exist and that one is justified in using the Lagrange
multiplier rule, we will introduce some simplifications in order to render the abstract problem
(2.3), or (2.4), more amenable to approximation. The first is only to consider the control set
tO G. The second is only to consider Frbchet differentiable functionals (.) such that the
Frchet derivative U(g) E-lg, where E is an invertible linear operator from G* to G.

2.2. Hypotheses concerning the abstract problem. The first set of hypotheses will be
invoked to prove the existence ofoptimal solutions. It is given by:

(HI)

(H2)

(H3)

(H4)

(H5)

(H6)

infvex U(v) >

there exist constants or,/3 > 0 such that (z) > llzll m v z

there exists a (v, z) 6 X x tO satisfying M(v, z) O;

if u (n u in X and g(n ----.g in G where {(u (n, g(n)} C X x tO, then
N(u (’0) N(u) in Y and g(g(’) K(g) in Y;

,f(., .) is weakly lower semicontinuous on X x tO

if {(u (m, g(n))} C X )< tO is such that {o’(u(n))} is a bounded set in IN and
M(u(n, g(n)) 0, then {u (n is a bounded set in X.

The second set ofassumptions will be used tojustify the use ofthe Lagrange multiplier rule
and to derive an optimality system from which optimal states and controls can be determined.
The second set is given by

(H7) for each z tO, v - J(v, z) and v M(v, z) are Fr6chet differentiable

(H8) z (z) is convex, i.e.,

(Fzl + (1 ’)z2) _< ),’ (Zl) -- (1 F) (z2) ’v’ Zl, z2 tO, / [0, 11;

(H9) for v X, N’(v) maps X into Z.

In (H9), N’ denotes the Fr6chet derivative of N.
A simplified optimality system may be obtained if one invokes the additional assumption:

(H10) tO G, and the mapping z - g(z) is Fr6chet differentiable on G.
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Hypotheses (H7)-(H10) allow us to obtain a simplified optimality system for almost all
values of the parameter X A. In many cases, it is possible to show that the same optimality
system holds for all values of X. The following two additional assumptions, which will only
be invoked in case (1/)) is an eigenvalue of-TN’(u), each provides a setting in which this
last result is valid:

(Hll) if v* X* satisfies (I + X [N’(u)]*T*)v* 0 and K*T*v* 0, then v* 0;

(H11)’ the mapping (v, z) v + TN’(u)v +X TKz is onto from X G to Y.

In order to make the optimality system more amenable to approximation and computation,
we will invoke the following additional assumption:

(H12) S’(g) E-lg, where E is an invertible linear operator from G* to G and g is
an optimal control for the constrained minimization problem (2.4).

2.3. Existence ofan optimal solution. We first use assumptions (H1)-(H6) to establish
that optimal solutions exist.

THEOREM 2.1. Assume that thefunctional ff and mapping M defined by (2.1) and (2.2),
respectively, satisfy the hypotheses (H1)-(H6). Then, there exists a solution to the minimization
problem (2.3).

Proof. Assumption (H3) simply asserts that there is at least one element of X x (R) that
satisfies the constraint. Thus, we may choose a minimizing sequence (u (n), g(n))} C X t
such that

and

lim J’(u (n) g(n)) inf if(v, z)
n--, (v,z)X x6)

M(u(n), g(n)) O.

By (H1 and (H2), the boundedness of ff(u (n), g (n)) implies the boundedness ofthe sequences
{llg(nlla} and {.T’(u(n)}. Then, by (H6), we deduce that {llu(n IIx} is bounded. Thus, we may
extract a subsequence {(u (n), g("))} such that u (") u in X and g("l g in G. Since (R) is
closed and convex, we have g 6 (R). Of course, u 6 X. We next show that (u, g) satisfies the
constraint equation. Using (H4), we have that

lim (TN(u(n)), f) lim (N(u(n)), T’f) (N(u), T’f) (TN(u), f) f X*
n--+o n-+cx

and

lim {TK(g(n)), f) lim (K(g(nl), T’f) (K(g), T’f) (TK(g), f)

so that

VfeX*

0 lim (M(u(n), g(")), f) (u + X TN(u) + ),. TK(g), f) f X*,
n-+oo

i.e., M(u, g) 0. Finally, we use (H5), the weak lower semicontinuity of if(., .), to conclude
that (u, g) is indeed a minimizer in X x (R) satisfying the constraint M(u, g) 0.

Remark. The hypotheses (H1)-(H6) are not sufficient to guarantee that optimal solutions
are unique. Indeed, in many applications to nonlinear problems, including the ones we consider
in 4, optimal solutions in the sense of (2.4) are in general not uniquely determined.
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2.4. Existence ofLagrange multipliers. Wenow wish to use the additional assumptions
(H7)-(H9) to show that the Lagrange multiplier rule may be used to turn the constrained
minimization problem (2.3) into an unconstrained one. Actually, the Lagrange multiplier rule
will only enable us to find local minima in the sense of (2.4). We first quote the following
abstract Lagrange multiplier rule whose proof can be found in [21].

THEOREM 2.2. Let X1 and X2 be two Banach spaces and (R) an arbitrary set. Suppose ff
is afunctional on X1 (R) andM a mappingfrom X x () to X2. Assume that (u, g) Xl x to
is a solution to thefollowing constrained minimization problem:

(2.5)
M(u, g) 0 and there exists an > 0 such that if(u, g) < if(v, z)

for all (v, z) X1 x tO such that Ilu v]lx < e and M(v, z) O.

Let U be an open neighborhood ofu in X 1. Assumefurther that thefollowing conditions are

satisfied:
(2.6)

(2.7)

for each z tO, v w- if(v, z) and v M(v, z) are Frchet-differentiable at

I)-U,

for any v U, zl, z2 tO, and 9/ [0, 1], there exists a z z(v, za, z2) such
that

and

M(v, z) yM(v, Zl) + (1 y)M(v, Z2)

J(l), Zy) /J(U, Zl) + (1 /)J(l), Z2)

(2.8) Range(Mu (u, g)) is closed with afinite codimension,

where Mu(u, g) denotes the FrOchet derivative ofM with respect to u. Then, there exists a
k and a lz X that are not both equal to zero such that

k (flu(u, g), v) (lz, Mu(u, g)v) O Y v 6 X1

and

min/(u, z,/z, k) --/2(u, g,/z, k),

where (u, g, lz, k) k 7(u, g) (tt, M(u, g)) is the Lagrangianfor the constrained mini-
mization problem (2.5) and where Ju (u, g) denotes the FrOchet derivative off with respect
to u. Moreover, if
(2.9) the algebraic sum Mu(u, g)X1 + M(u, tO) containsO X2 as an interiorpoint,
then we may choose k 1, i.e., there exists a It X such that

(flu(U, g), v) (lz, mu(u, g)v) =0 Y v X1

and

min (u, z,/z, 1) (u, g,/z, 1).
zEO

Proof See [21]. U
Next, we apply Theorem 2.2 to the optimization problem (2.4). In doing so, we will need

the following result.
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LEMMA 2.3. Let the spaces X, Y, and Z and operators T and N be defined as in 2.1.
For v X, assume that N’(v) maps X into Z. Then, TN’(v) is a compact operatorfrom X
to X; therefore, a(-TN’(v)), the spectrum ofthe operator (-TN’(v)), is at most countable
with zero being the only possible limit point.

Proof Since Z Y, we see that N’(v) is a compact linear operator from X to Y.
Also, T is a bounded linear operator from Y to X, so TNt(v) is a compact operator from X
to X. Hence, a(-TN/(v)) is at most countable and consists only of 0 and the eigenvalues of

(-TN’(v)).
Note that in the following result, the existence of at least one pair (u, g) satisfying (2.4)

is guaranteed by Theorem 2.1.
THEOREM 2.4. Let A be given. Assume that assumptions (H1)-(H9) hold. Let

(u, g) X (R) be an optimal solution satisfying (2.4). Then, there exists a k and a

tz X* that are not both equal to zero such that

(2.10) k (7.(u, g), w) (lx, M.(u, g) w) O V w e X

and

(2.11) min Z(u, z,/z, k) (u, g,/z, k).

Furthermore, if (1/1.) a(-TNt(u)), we may choose k 1; i.e., for almost all 1., there
exists a lZ X* such that

(2.12) (J, (u, g), w) (/z, M, (1., u, g) w) 0 ’w 6X

and

(2.13) min;(u, z,/z, 1) --/2(u, g,/x, 1).

Proof. Let 1. 6 A be given. To show the existence of k and/z such that (2.10) and
(2.11) are valid, we only need to verify that the hypotheses (2.6)-(2.8) of Theorem 2.2 hold
with X1 X2 X, since in this case (2.5) reduces to (2.4). Obviously, (2.6) is merely a
restatement of (HT). Since (R) is convex and since the mappings T and K are linear, we have
that if z yZl -[- (1 ?,)z2, then

M(v, z) v + 1. TN(v) + 1. TKz
g(v + 1. TN(v)) + (1 g)(v + 1. TN(v)) + y1.(TKzl + (1 y)TKz2))
yM(v, Zl) -[’- (1 y)M(v, z2).

Moreover, (H8) implies that

J(V, Z,) 1. ."(U) --[-" 1. g(Z,) 1. .’(U) -[- 1. S()/Zl -[- (1 )/)z2)
_< 1. ff-"(u) --[-- 1. (g(Zl) -[- (1 y) g(z2)) y J(v, Zl) -[- (1 ?,) if(v, z2).

Thus, (2.7) holds. The operator Mu (u, g) from X to X is defined by

Mu(u, g) w w +1. TN’(u) w Y w X

or, simply,

Mu(u, g) I + 1. TN’(u).
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From (H9) and Lemma 2.3, we have that TN’ (u) is a compact operator from X to X. As a
result, Mu(u, g) I + ) TN’(u) is a Fredholm operator, so it has a closed range with a finite
codimension, i.e., (2.8) holds. Thus, by Theorem 2.2, there exists a k 6 and a/z 6 X* that
are not both equal to zero such that (2.10) and (2.11) hold.

To show the existence of a/z such that (2.12) and (2.13) are valid, we only need to
verify that the additional hypothesis (2.9) of Theorem 2.2 holds. In fact, if in addition
(1/)) ’ cr(-TN’(u)), then it follows that X Range(/+ ) TN’(u)) Range(Mu(u, g)),
so Range(Mu (u, g)) contains 0 6 X as an interior point, i.e., (2.9) holds. Hence, by Theorem
2.2 and Lemma 2.3, we conclude that for almost all ) there exists a/z 6 X* such that (2.12)
and (2.13) hold. V1

So far (R) has only been assumed to be a closed and convex subset of G. No smoothness
condition on the control variable g has been assumed in the functional or in the constraint.
Thus, the necessary condition of optimality with respect to variations in the control variable
is expressed in the cumbersome relation (2.11). We now turn to the case where (R) contains a
neighborhood of g, where (u, g) is an optimal solution. In particular, we assume that (R) G.
In this case, (2.11) can be given a more concrete structure.

THEOREM 2.5. Let ; A be given. Assume that assumptions (H1)-(H10) hold. Let
(u, g) X G be a solution ofthe problem (2.4). Then there exist a k IR and a/Z X*
that are not both equal to zero such that

(2.14) k (Ju(u, g), w) (/z, (I + ) TN’(u))w) O V w e X

and

(2.15) k(U(g),z) (/z, TKz) O V z 6 G.

Furthermore, if(1/Z) q[ r(-TN’(u)), we may choose k 1; i.e., there exists a/z X* such
that

(2.16)

and

(,flu(U, g), w) (/Z, (I + ) TN’(u))w) 0 w X

(2.17) (’(g),z) (/z, T Kz) =0 Y z G

hold.
Proof Since the hypotheses imply that J(v, z) is Fr6chet differentiable with respect to

z, (2.14)-(2.17) follow easily from Theorem 2.4. [3

Remark. If k 0, then there exists a/z - 0 such that

-(/z, Mu(u, g)w) O Y w X,

so the optimality system necessarily has infinitely many solutions. In fact, for any C 6 ,
(C/z) is a solution whenever/z is a solution. This creates both theoretical and numerical
difficulties. Thus, it is of great interest to try to eliminate this situation. Fortunately, Lemma
2.3 and Theorem 2.4 tell us that we may set k 0 for almost all values of (1/.), i.e.,
except for the at most countable set of values in cr(-TN’(u)). 1

If the control g enters the constraint in a favorable manner, then we may take k 1
even when (1/) 6 cr(-TN’(u)). Specifically, we invoke one of the assumptions (Hl l) and
(H11)’. We then have the following result.

THEOREM 2.6. Assume that the hypotheses of Theorem 2.5 hold. Assume that if (1/.) 6

r (-TN’(u)), then either (H 11) or (H11)’ holds. Then, for all A, there exists a/z X*
such that (2.16) and (2.17) hold.
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Proof Because of Theorem 2.5, we need only to examine the case (1/.) cr (-TN’(u))
and to show the algebraic sum Mu(u, g)X + M(u, G) X. If (Hll)’ holds, the result is a
direct application of Theorem 2.2.

If (Hll) holds, let (1/)) be a nonzero eigenvalue of (-TN’(u)). Then, is also an
eigenvalue of (-N’(u)*T*) with a finite-dimensional eigenspace having the corresponding

v*m X* G*eigenfunctions Ji--a C as a basis. We claim that {K* *T u i--1 C is a linearly
independent set. To see this, we assume i--1 li K*T*v; 0 with O G ]; this expression
can be rewritten as K* T* (Yim=l O/i /)i*) 0. Because each v’ is an eigenvector, we have

(I + Z Nt(u)*Z*) --]im=l ol l) O. Thus, the assumption (Hll) implies that yirn=l o 1) 0.
Since {v’ }im__l is an eigenbasis and, therefore, a linearly independent set, we have each O/i 0.
This shows that {K*T*v}im=l is a linearly independent set in G*. Hence, we may choose an
orthonormal dual basis {Zi }im___l G such that (zi, K*T*v]) 3ij.

Now, letw 6 Xbegiven. Wechoosez 2 Yi__l(//), l))zi. Then(w, v)-;k(TKz, v])
(w, v;) )(z, g*T*v]) (w, v;) zim___l (112, 1))ij 0 for j 1 m. Thus, by Fred-
holm alternatives, there exists a unique v 6 X that satisfies (I + ) TN’(u))v w ) TKz
or (1 + . TN’(u))v + ) TKz w; thus, we have shown that Mu(u, g)X + M(u, G) X.
Hence, by Theorem 2.2, there exists a/x X* such that (2.16) and (2.17) hold.

2.5. The optimality system. Under the assumptions of Theorem 2.6, an optimal state
u X, an optimal control g 6 G, and the corresponding Lagrange multiplier/z X* satisfy
the optimality system of equations formed by (2.2), (2.16), and (2.17). From (2.1) we have
that flu )f" and fig .U, where U’ denotes the obvious Frbchet derivative. Then,
(2.16)-(2.17) may be rewritten in the form

(2.18) I + , [N’(u)]*T*Iz )vt(u) 0 in X*

and

(2.19) U(g) K*T*lz 0 in G*.

For purposes of numerical approximations, it turns out to be convenient to make the change
of variable T*/z. Then, the optimality system (2.2), (2.18), and (2.19) for u 6 X, g 6 G,
and Y* takes the form

(2.20) u + . TN(u) + . TKg O inX,

(2.21) + ) T*[N’(u)]* ) T*.T"(u) 0 in Y*,

and

(2.22) ’(g) K* 0 in G*.

It will also be convenient to invoke an additional simplifying assumption concerning the
dependence of the objective functional on the control. Specifically, we assume that (H12)
holds. Then, (2.20)-(2.22) can be rewritten as

(2.23)

(2.24)

u + TN(u) + ) TKg O inX,

+ ) T*[N’(u)]* ,k T*.T"(u) 0 in Y*,

and

(2.25) g-EK*=0 inG.
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Remark. Note that the optimality systems, e.g., (2.23)-(2.25), are linear in the adjoint
variable . Also, note that the control g may be eliminated from the optimality system (2.23)-
(2.25). Indeed, the substitution of (2.25) into (2.23) yields

(2.26) u + . TN(u) + . TKEK* O inX.

Thus, (2.24) and (2.26) determine the optimal state u and adjoint state ; subsequently, (2.25)
may be used to determine the optimal control g from . This observation serves to empha-
size the important, direct role that the adjoint state plays in the determination of the optimal
control. [3

Remark. Given a 6 Y*, it is not always possible to evaluate g exactly from (2.25). For
example, the application of the operator E may involve the solution of a partial differential
equation. Thus, although it is often convenient to devise algorithms for the approximation
of optimal control and states based on the simplified optimality system (2.24) and (2.26), in
some other cases it is best to deal with the full form (2.23)-(2.25). Thus, when we consider
approximations of optimal controls and states, we will deal with the latter. [3

Remark. In many applications we have that X* Y. Since these spaces are assumed
to be reflexive, we also have that Y* X. In this case, we have that both u and belong
to X. ]

3. Finite-dimensional approximations of the abstract problem. In this section we
define and analyze algorithms for the finite-dimensional approximation of solutions of the
optimality system (2.23)-(2.25); an outline of the definitions and results of this section is as
follows.

In 3.1, we define the finite-dimensional approximate problems that we consider.
In 3.2, a list of assumptions about the approximate problems is given.
In 3.3, we quote a result of [6] that we will use to analyze approximations obtained
as solutions of the approximate problems defined in 3.1 and 3.2.
In 3.4, we provide error estimates for the approximation ofsolutions ofthe optimality
system (2.23)-(2.25).

3.1. Formulation of finite-dimensional approximate problems. A finite-dimensional
discretization of the optimality system (2.23)-(2.25) is defined as follows. First, one chooses
families of finite-dimensional subspaces Xh c X, (y,)h C Y*, and Gh C G. These families
are parameterized by a parameter h that tends to zero. (For example, this parameter can be
chosen to be some measure of the grid size in a subdivision of f2 into finite elements.) Next,
we define approximate operators Th Y --+ Xh, Eh G* -+ Gh, and (T*)h X* --(y.)h. Of course, one views Th, Eh, and (T*)h as approximations to the operators T, E,
and T*, respectively. Note that (T*)h is not necessarily the same as (Th)*. The former is a
discretization of an adjoint operator, while the latter is the adjoint of a discrete operator.

Once the approximating subspaces and operators have been chosen, an approximate prob-
lem is defined as follows. We seek bl h U:: Xh, gh Gh, and h

_
(y,)h such that

(3.1) Uh -t- , ThN(uh) -I- , ThKgh 0 in Xh

(3.2) h q.. , (T,)h[Nt(uh)],h , (T,)hf’t(uh) 0 in (y,)h

and

(3.3) gh Eh K,h 0 in Gh
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3.2. Hypotheses concerning the abstract problem and the approximate problem.
We make the following hypotheses concerning the approximate operators Th, (T*)h, and Eh:

(H13) lim II(T Th)Yllx --0 ’ y Y,
h-->0

(H14) lim [I(T* (T*)h)wllY, 0 V v X*,
h0

(H15) lim II(E Eh)sll 0 V s G*
h--->0

We also need the following additional hypotheses on the operators appearing in the defi-
nition of the abstract problem (2.4):

N 6 C3(X; Y)and f" 6 C3(X; ]);(H16)

(H17)

(H18)

N", N’", ", and f"" are locally bounded, i.e., they map bounded sets to bounded
sets;

forv 6 X, in addition to (H9), i.e., N’ (v) (X; Z)where Z ---- Y, wehave
that [N’(v)]* 6 (Y*; ) where ----- X*, that for r/ 6 Y*, [N"(v)]* r/ 6

/2(Y*; ), and that for w 6 X, "(v). w 6 Z2(X; );
(H19) K maps G into Z.

Here, (.)" and (.)’" denote second and third Fr6chet derivatives, respectively.

3.3. Quotation of results concerning the approximation of a class of nonlinear prob-
lems. The error estimate to be derived in 3.4 makes use of results of [6] and [10] (see also
[13]) concerning the approximation of a class of nonlinear problems. These results imply
that, under certain hypotheses, the error of approximation of solutions of certain nonlinear
problems is basically the same as the error of approximation of solutions of related linear
problems. Here, for the sake of completeness, we will state the relevant results, specialized to
our needs.

The nonlinear problems considered in [6], 10], and 13] are of the following type. For
given ) 6 A, we seek 7t 6 2, such that

(3.4) 7-t(z, 7) 7 + 7-(z, ) 0,

where T 6/2(3); 2,), is a C2 mapping from A x ,-t" into y, 2, and 3) are Banach spaces,
and A is a compact interval of. We say that {(., p())) . A} is a branch ofsolutions of
(3.4) if ) --+ aP00 is a continuous function from A into 2, such that 7-((), ())) 0. The
branch is called a regular branch if we also have that 7-(7’ (., 0)) is an isomorphism from
2, into ,-t" for all ) 6 A. Here, 7-/7,(., .) denotes the Fr6chet derivative of 7-/(., .) with respect
to the second argument. We assume that there exists another Banach space Z, contained in
y, with continuous imbedding, such that

(3.5) and ap 6 X,

where 7’ (., .) denotes the Fr6chet derivative of (., .) with respect to the second argument.
Approximations are defined by introducing a subspace 2,h C 2’ and an approximating

operator ,f-h G /(32; 2"h). Then, given ) 6 A, we seek 7th 6 2,h such that

(3.6) 7-th(X, 7h) =-- 7h + The(x, 7h) O.
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Concerning the operator T"h we assume the approximation properties

(3.7) lim II(Th T)collx 0 V co 3)
h---0

and

(3.8) lim II(Th T)llc(z;x) 0.
h--- 0

Note that whenever the imbedding Z C 3) is compact, (3.8) follows from (3.7) and, moreover,
(3.5) implies that the operator 7"(), ) 6 (A’; A’) is compact.

We can now state the result of [6] or 10] that will be used in the sequel. In the statement
of the theorem, D2 represents any and all second Fr6chet derivatives of .

THEOREM 3.1. Let iV and 3) be Banach spaces and A a compact subset of. Assume
that is a C2 mappingfrom A ,V into 3) and that D2 is bounded on all bounded sets of
A ,V. Assume that (3.5), (3.7), and (3.8) hold and that {(), ())); ) 6 A} is a branch
ofregular solutions of (3.4). Then, there exist a neighborhood (9 ofthe origin in ,V and, for
h < ho small enough, a unique C2function ) -- h()) ,h such that {(., h())); ) 6 A}
is a branch of regular solutions of (3.6) and h()) ()) O for all ) A. Moreover,
there exists a constant C > O, independent ofh and ., such that

(3.9) IIh(5L) ())IIx CIl(h )(-, (X))llx v 9 A.

3.4. Error estimates for the approximation of solutions ofthe optimality system. We
now apply the result of Theorem 3.1 to study the approximation of solutions of the optimality
system. Set A’ X G Y*, 3) Y X*, Z Z Z, and ,Vh Xh Gh (y,)h. (Recall
that Z was introduced in (H18).) By the hypotheses on Z and , we have that Z is compactly
imbedded into 3). Let 7- /(3:; 2’) be defined in the following manner: 7-(?, f) (fi, if, )
for (?, f) 3) and (, , ) ,V if and only if

(3.10) fi + T? 0,

(3.11) + T*f 0,

and

(3.12) EK* O.

Similarly, the operator 7"h (3); A"h) is defined as follows" ’Th (/7, f) (th, h, h) for
(?, f) S 3) and (t7 h, h, h) A,h if and only if

(3.13) h _+_ Th? O,

(3.14) h _[_ (T,)hf O,

and

(3.15) gh EhK,h O.

The nonlinear mapping A A’ -- 3) is defined as follows: (., (fi, , )) (?, f) for
) A, (, , ) A’, and (, f) if and only if

(3.16) ? ) N(t) + ) K
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and

(3.17) f ) [N’(5)]* ) .T’ (5).

It is evident that the optimality system (2.23)-(2.25) and its finite-dimensional counterpart
(3.1)-(3.3) can be written as

(u. g. ) +7(z. (.. . )) o

and

(uh, , h) + 7rh6(z, (, gh, h)) O,

respectively, i.e., with ap (u, g, ) and h (uh, gh, h), in the form of (3.4) and (3.6),
respectively.

Now we examine the approximation properties of ’Th
LEMMA 3.2. Let the operators T and ,-ffh be defined by (3.10)-(3.12) and (3.13)-(3.15),

respectively. Assume that the hypotheses (H13)-(HI5) hold. Then

(3.18) lim II(T "Th)(r, r)llx 0 V (r, r) 6 32.
h--0

Proof. Let (5, , ) "T(r, v); i.e., (5, , ) satisfies (3.10)-(3.12). Let (5h, h, h)
"Th(r, v); i.e., (sh, h, h) satisfies (3.13)-(3.15). Subtracting the corresponding equations
yields that

lift 5hllx II(T Th)rllx,

and

I[, ghllG (E Eh)K*gh + EK*(
< II(E- Eh)K*hI[ G + IIEK*IIz:(Y*;G)II(g-

Thus, for some constant C > O,

II(T- Th)(r, r)llx

_< c [ll(Z- Zh)rllx + II(Z*- (z*)h)vllY + II(E- Eh)g*hllG[

Then the result of the proposition follows from (H13)-(H15)
Next, we examine the derivative of the mapping
LEMMA 3.3. Let the mapping A 2( --+ 32 be defined by (3.16)-(3.17). Assume

that the hypotheses (H9), (H16), and (H18)-(H19) hold. Then, for every k A and every
(u, g, )

_
,V, the operator (u,g,)(., (u, g, )) /:(A’; Z).

Proof A simple calculation shows that G(u,g,)(, (u, g, )) (A’; 3;) is given by

N’(u). 5 + K )(u,g,)(., (u, g, )). (5, , g) .
[N"(u). 51". + [N’(u)]*. .T"’(u). 5

Then, the result follows from (H9) and (H18)-(H19)
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A solution (u()), g()0, ())) of the optimality system (2.23)-(2.25) is called regular if

the system (for the unknowns (i, , g))
(3.19)

+ ,k T*[N"(u)]*i. + . T*[N’(u)]* ,k T*.T"’(u)i :,(3.20)

and

(3.21) - EK*
is uniquely solvable for any (:, , ) e 2’ X G Y*. (Note that the linear operator
appearing on the left-hand side of (3.19)-(3.21) is obtainedby linearizing the optimality system
(2.23)-(2.25) about (u, g, ).)

In the following theorem, we will assume that the solution (u()), g()), ())) of the
optimality system (2.23)-(2.25) that we are trying to approximate is a regular solution. The
assumptions we have made, in particular (H9), (H18)-(H19), are sufficient to guarantee that
for almost all values of ), this is indeed the case.

LEMMA 3.4. Assume the hypotheses of Lemma 3.3. Then, for almost all ), solutions

(u()), g()O, ())) ofthe optimality system (2.23)-(2.25) are regular.
Proof. The system (3.19)-(3.21) is equivalent to

(3.22) (I + ) T$(u, g, ))(i, , ) (2, , ),
where the linear operator ,_q (u, g, ) 2" - Y is defined by

1
S(u, g, ). (i, , g) (u,g,)(), (u, g, )). (i, , g)

_( N’(u).i + K )[N’(u).ill*. + [g’(u)]*.g-.T"(u). i

Now, T 6 E(y; 2"); hence, by Lemma 3.3, (I + . TS(u, g, )) is a compact perturbation of
the identity operator from 2" to 2". Thus, for almost all ;k, (3.22), or equivalently (3.19)-(3.21),
is uniquely solvable; i.e., for almost all ), the solution (u(.), g(.), 0)) of the optimality
system (2.23)-(2.25) is regular. [3

Using Theorem 3.1, we can now provide an error estimate for approximations of solutions
of the abstract problem.

THEOREM 3.5. Let (u()), g()), ())) 2", for ) A, be a branch ofregular solutions

ofthe optimality system (2.23)-(2.25). Assume that the hypotheses (H13)-(H19) hold. Then,
there exist a 6 > 0 and an ho > 0 such that for h < ho the discrete optimality system
(3.1)-(3.3) has a unique solution (uh()), gh()o, h())) satisfying

(u(), g()0, ())) (uh()), gh(), h())) I[A < 6.

Moreover,

(3.23) lim (u()), g()), ())) (uh()), gh()),,()) 0
h-+0

uniformly in ) A and there exists a constant C, independent ofh and ), such that

lim (u()0, g()0, ())) (u()0, g()),
h-+0

(3.24) C{ II(Th T)(N(u(Z)) + Kg())[lx + [[(Eh E)K*(X)IIG

+ T*)([N’(u())]*
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Proof Assumptions (H16) and (H17) ensure that 6 C2(,, y) and D2 maps bounded
sets of A A" into bounded sets of y. By Lemma 3.3, assumptions (H18) and (H19) imply
that (3.5) holds. By Lemma 3.2, assumptions (H13)-(H15) imply that (3.7) holds. Then, since
Z is compactly imbedded into y, (3.7) implies that (3.8) holds. Thus, all the hypotheses of
Theorem 3.1 are verified. Then, a direct application of Theorem 3.1 yields (3.23) and (3.24)
follows from (3.9). [3

It is easily seen that (3.23) and (3.24) are equivalent to

lim { Ilu(.) uh())llx + Ilg()) gh()’.)llG + II(;k) h()01lY, } 0
h--0

uniformly in . 6 A and that there exists a constant C, independent of h and ), such that

Ilu00 uh(X)llx + IIg(.) gh(X)llG + I1(9) h())l]Y,

<_ C.{ ]](Zh Z)(N(u(,k)) + gg(.))llx + II(Eh

+ II((r*)- r*)([N’(u(Z))]*(X)- -’(u (X))) t, }.
If, in (3.9), the operator 7- is invertible, we have, using (3.4), that

Thus, if the operator T from Y to X is invertible, we have that (3.24) is equivalent to

Ilu(Z) uh(),.)llx + IIg00 gh())llG

(3.25) < C{]](ThT-1- I)u(.)llx + ]I(EhE-1

Jr-I[((T*)h(T*) -1 I)(X)IIy, }.
4. Applications. We now apply the framework and analyses developed in 2 and 3 to

some concrete problems, all of which feature constraints on admissible states and controls
that take the form of a system of nonlinear partial differential equations. In each application,
we use a different control mechanism, so the discussion provided in this section illustrates
the treatment of a variety of such mechanisms. However, one could use any of the control
mechanisms discussed in any of the applications in any other application or, in fact, use any
combination of such mechanisms.

Before examining any specific application, we establish some notation. Further notation
will be established as needed when the individual applications are considered.

Throughout, C will denote a positive constant whose meaning and value changes with
context. Also, H (79) for s IR denotes the standard real Sobolev space of order s with
respect to the set 79, where 79 could either be a bounded domain S2 e ]Rd, d 2, 3, or part of
the boundary F of such a domain. Of particular interest are the spaces H(79) L2(D),

HI(z)) q e L2(7) xj e (D) for j 1 d

and

H2(D)= { bL2(D) 0 02
G L2()

Oxj Oxj Oxk
forj, k= 1 d}
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Also of interest is the subspace

H{ (79) { e H (79) -0 on079]
where 079 denotes the boundary of 79.

Dual spaces will be denoted by (.)*. Duality pairings between spaces and their duals will
be denoted by (., .). Norms of functions belonging to H (f2) and H (F) are denoted by
and [Is,r, respectively. Of particular interest are the LZ(f2)-norrn [10, the Hl(f2)-norm

and the H2 ,)_norm

2

0

1122
j,k=l

2

O,

Corresponding Sobolev spaces of real, vector-valued functions having r components will
be denoted by I-IS(79), e.g., I-I1(79) [H1(79)]r. Of particular interest will be the spaces
L2(79) I-I0(79) [L2(79)]r,

and

Ovj L2I’I1(79)- yj e L2(79) xk
e (79) for j= 1 randk= 1 d}

OVj
L2 021)j

L2I’I2(79) vj E L2(79) x E (79)’
OxkOxe

()

1 r andk, g 1 d},forj

where vj, j 1 r, denote the components of v. Also of interest is the subspace

Norms for spaces of vector-valued functions will be denoted by the same notation as that used
for their scalar counterparts. For example,

j=l j=l

We denote the L2() and L2 (f2) inner products by (., .); i.e., for p, q 6 L2() and
u, v 6 L2 (2)

(p,q)-fapqdS2 and u,v)-fau.vd .
Similarly, we denote by (., ")r the L2(F) and L2(F) inner products; i.e., for p, q L2(F) and
U, V e L2 ([’)

(p,q)r-frpqdI" and (u,v)r-fru.vdF.
Since in all cases L2-spaces will be used as pivot spaces, the above inner product notation can
also be used to denote duality pairings between functions defined on HS-spaces and their dual
spaces.

For details concerning the notation employed, one may consult, e.g., 1].
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4.1. Distributed controls for the von Kfirmfin plate equations. For this application
we will use distributed controls; i.e., control is effected through a source term in the governing
partial differential equations. Let S2 be a bounded, convex polygonal domain in 2, and let F
denote the boundary of f2. The yon Kfirmfin equations for a clamped plate are given by (see,
e.g., [9] or [18])

and

where

1
A2fffl + X-[lr2, 1/r2] 0 in ,

z

A21/r2 [lrl, 1r2] .g

lrl-- --l/r2 --0 onF,
On On

02111 02(/) 021/I 02 821r 02[v, 1
0Xl2 0x ax ax 2OXlX2 Oxlx2

Here, denotes the Aiu stress function, 2 the deflection of the plate in the direction nodal
to the plate, g is an external load nodal to the plate that depends on the loading parameter, and a(.)/an is the nodal derivative in the direction of the outer nodal to F.

By introducing appropriate rescalings, i.e., by replacing by 1, 2 by 2, and g by
g, we can rewrite the von Khhn equations as follows:

(4.1) A2l + [2, 2] 0 in ,
(4.2) A22 [1, 2] g in ,
and

(4.3) 1 l/r2 0 on F.an On

We introduce the spaces

l’l(a) "--[N(a)l2 O-2(a)= (Og(a))*, and H-2(a): (H(a))*
and the bilinear fo

a(, q) ]A Ab dr2 g !/*, b E H2()

in order to define the following weak formulation of the yon Kfirmfin equations (4.1)-(4.3).
Find !/* (!Pl, 2) E l-l(f2) such that

(4.4)

and

(4.5)

a(lrl, 1) -" -([r2, 11r2], 1) 0 V 11 Hg(’)
Z"

a(!/e2, 2) .([1, 1/e2], 2) )v(g, q2) V q2 H().
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Using the identity

(4.6) ([, b], ) ([, ’], q) , q, " H(f2),
one can show that for each g H-(fl), (4.4)-(4.5) possesses at least one solution
(ap, ap2) I/(S2) and that all solutions of (4.4)-(4.5) satisfy the a priori estimate

(4.7) 117r1112 + I1P2112 _< CIIgll-2

see, e.g., [18], for details. In the sequel a solution to (4.1)-(4.3) will be understood in the
sense of (4.4)-(4.5).

Given a desired state q0 (aPl0, 20) L2(2), we define for any q (1, aP2)
I-I(S2) and g L2 (f2) the functional

,.(1//, g) 7"(rl, 2, g)

(4.8) ((lPl- lPl0)2 --(lP2- l/t20)2) d" -- d"
2

We then consider the following optimal control problem associated with the von Kirmfin plate
equations:

(4.9) min{ ff(q, g) H20(), g (R) subject to (4.4)-(4.5),

where (R) is a subset of L2 (S2).
We define the spaces X H20(f2), Y H-2(f2), G L2(Q), and Z LI(Q). By

compact imbedding results, Z - Y. For the time being, we assume that the admissible
set (R) for the control g is a closed, convex subset of G L2(f2).

Let the continuous linear operator T E(Y; X) be defined as follows. For f (fl, f2)
Y I’I-2(f2), Tf X I-I(2) is the unique solution of

a(lPl, 1) (fl, 1) V 1 Hob(f2)
and

a(2, b2) (f2,

It can be easily verified that T is self-adjoint.
We define the (differentiable) nonlinear mapping N X --+ Y by

-[, 1
or, equivalently,

1

and define K g LZ(f2) --+ Y by

o)Kg=-(g
or, equivalently,

(Kg, #} -(g, q2) ’v’ # (1, 2) X.
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Clearly, the constraint equations (4.4)-(4.5) can be expressed as

t + Z TN(t) + . TKg O,

i.e., in the form (2.2). With the obvious definitions for .T(.) and g(.), i.e.,

10)2 1/r20)2) d ’-2 G+ v x

and

8(g)= df2 Vg6G,

the functional (4.8) can be expressed as

J(!/t, g) . 2t-(O) + ) (g),

i.e., in the form (2.1). Thus, the minimization problem (4.9) is in the form of the minimization
problem (2.3).

We are now in a position to verify, for the minimization problem (4.9), all the hypotheses
of2 and 3.

4.1.1. Verification of the hypotheses for the existence of optimal solutions. We first
verify that the hypotheses (H1)-(H6) hold in the current setting.

(H1) is obviously satisfied with a lower bound 0.
(H2) holds with c 1 and fl 2.
(H3) is verified with the choice (f0, g0) X (R), whereg is an arbitrarily chosen

element in (R) and () (o), po>) is a solution of

and

2]--’0

A21/f0) )V [1/f[0) 1/)’0) )v g(o)

=g)= =0 onF.po)
On On

In order to verify (H4), we assume {g(n)] C O is a sequence satisfying g( g in
La(); then, we have g( g in H-(), so lim(g(m, z) (g, z) for all z H:(),
i.e., Kg( Kg in Y. Assume that the sequence {(m] C g() satisfies ( in

(); then, 0 ( /0x 0x 0 /0x Ox in L:() and, by using a compact imbedding
result, ( in L:(). Now, using the identity (4.6),

{N((n)),) 2 ],1 [ 2 ,2

([n) 1] n))_ ([n) 2] n))
+ ([02, 11, 02) ([01, 2], 02)

1

2
([2, 2] 1) ([1, 2] 2) (N(O), ).

Hence, (H4) is verified.
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The verification of (H5) follows directly from the observation that the mappings -.T’() (1/2)[[ 0[[g and g + (g) (1/2)[[gllg are convex.
The verification of (H6) is a trivial consequence of the a priori estimate (4.7).
It is now just a matter of citing Theorem 2.1 to prove the existence of an optimal solution

that minimizes (4.8) subject to (4.4)-(4.5).
THEOREM 4.1. There exists a (}, g) H(f2) (R) such that (4.8) is minimized subject

to (4.4)-(4.5). q

4.1.2. Verification of the hypotheses for the existence of Lagrange multipliers. We
now assume (, g) is an optimal solution and turn to the verification ofhypotheses (H7)-(Hg).

The validity of (H7) is obvious.
(H8) holds since the mapping g - (g) (1/2)llgll is convex.
(H9) can be verified as follows. For any 6 X, the operator N’(O) X -+ Y is given

by

[1l/’2,21 ) V-- (1 2) e XN’(t). -[lltl, 21 [l/f2, 11

Thus, using the definition of [., .], we obtain that N’(O) p 6 Ll(ff2) Z.
The Lagrangian is given by

(, g, 1, k) k ’(, g)- a(lrl, 71) -[ ([12, aP21, 71)

+ a(2, 72) )v([X, 1/t21, 72) Z(g, 72)}
for all (, g, r/, k) X x G x X 1R H(f2) x L2(Q) x l-l(f2) ]1. Note that in this
form of the Lagrangian, the Lagrange multiplier r/ X Y*, so we have already introduced
the change of variables indicated between (2.17)-(2.18) and (2.19)-(2.21).

Having verified the hypotheses (H7)-(H9), we may apply Theorem 2.4 to conclude that
there exist a Lagrange multiplier r/ X H(S’2) and a real number k such that

(4.10) r/+ ) T* ([N’ (#)1" r/- k .T" (!/*)) 0

and

(4.11) (, g, n, k) < z;(, z, n, k) v z e o

and that for almost all values of ., we may choose k 1.
Recall that T is self-adjoint. Also, note that for any X lt02(fl),

(;]5’72] ) ’V’--(71 72) eX[N’()]*.r/= [2, [fl, 7"]2]

Thus, (4.10), with k 1, can be rewritten as

(4.12) a(’l, 71) )v([1/r2,721, ’1) ,(1/tl 1/rl0, ’1) ’v’ 1 e Ho2(’)

and

(4.13)
a(’2, 7) + )([aP2, 7,], ’2) --([/tl, 72], ’2), (111"2 lit20, ’2) v 2 e ().
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Using the definition of the Lagrangian functional, (4.11), with k 1, can be rewritten as

Z
(z z) + Z(z 02)

;- (g, g) .(g, r/z) > 0 Vze(R).

Note that, in the above expression, we have already employed hypothesis (H12), which in the
current context is trivially satisfied with E the identity operator on G* G LZ(2). For
each e e (0, 1) and each e O, set z et + (1 e)g 6 (R) in the last equation to obtain

2
-(t-g,t-g)+e(t-g,g)+e(t-g, 02)>O Yte(R)

so that, after dividing by e > 0 and then letting e 0+, we obtain

(4.14) (t g, g + ]2) 0 M e (R).

We see that for almost all values of ., necessary conditions for an optimum are that (4.4)-
(4.5) and (4.12)-(4.14) are satisfied. The system formed by these equations will be called an
optimality system.

We now specialize to the case (R) L2(f2). Note that the hypothesis (H10) is satisfied.
Then, using Theorem 2.5, we see that the inequality (4.14) becomes an equality and, by letting
z g vary arbitrarily in L2(), we now have, instead of (4.14),

(4.15) (z, g +/’]2) 0 V Z e L2().

Thus, according to that theorem, wehave that for almost all ), an optimality system ofequations
is now given by (4.4)-(4.5), (4.12)-(4.13), and (4.15). However, we can go further and verify
that the hypothesis (H11)’ is valid, which in turn will justify the existence of a Lagrange
multiplier satisfying the optimality system for all ) A. We now assume the domain g2 is a
convex polygon with no angles greater than 126

Let) be given suchthat 1/ is an eigenvalue of-TN’(qt), where (, g) e I-Ig (f2) x L2()
is an optimal pair that minimizes (4.8) subject to (4.4)-(4.5). We wish to show that for each
( 6 I-I-2(), there exists a LE(s2) and a ff 6 It20(f2) such that

(4.16)

and

(4.17)
a(12, (2) ([1 1, 1D’2], 2) ([1/tl, 2], 2) --)(, 2)

(f2, 2) v 4,2 e H3().

To show this, we first let ff e I’I(f2) be a solution of

a(l, tl) -I-- ([1/r2, 2], tl) (ffl, tl) M *1

and

a(, Cz) ([,, P2], ) (f2, 2) 4)2 H3(2).
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The existence of such a qt can be shown in a manner similar to that for showing the existence
of a solution to the von K/rm/n equation; the key step is that by adding the two equations
with the test function 4i replaced by qt, we have the a priori estimate

a(@l, 1)-1-a(@2, 2) (1, 1)q-(2, 2).

Then, we choose -[ap, 2]. Note that regularity results for the biharmonic equation
applied to (4.4)-(4.5) yield qt e tt4(S2) (see [3]). Hence, using imbedding theorems we
deduce that e L2(f2). It is obvious that and ff satisfy (4.16)-(4.17); i.e., we have verified
(H11)’. Hence we conclude that for all ), the optimality system (4.4)-(4.5), (4.12)-(4.13),
and (4.15) has a solution. Thus, we have Theorem 2.6, which, in the present context, is given
as follows.

THEOREM 4.2. Let (, g) e I-Ig() x L2(S2) denote an optimal solution that minimizes
(4.8) subject to (4.5)-(4.6). Then, for all ) A, them exists a nonzero Lagrange multiplier
r H(2) satisfying the Euler equations (4.12)-(4.13) and (4.15). 0

4.1.3. Verification of the hypotheses for approximations and error estimates. We
finally verify the hypotheses (H13)-(H19) that are used in connection with approximations
and error estimates.

A finite-element discretization of the optimality system (4.4)-(4.5), (4.12)-(4.13), and
(4.15) is defined in the usual manner. We first choose families of finite-dimensional subspaces
Xh C Hg(S2) and Gh C L2() parameterized by a parameter h that tends to zero and satisfying
the following approximation properties. There exist a constant C and an integer r such that

(4.18) inf IIq--qhl[2 < Chml[tllm+2 V I-Im+2(’) 1 < m < r,
lh xh

and

(4.19) inf IIz zhll0 Chmllzllm V z Hm(), 1 < rn < r.
zhEG

One may consult, e.g., [8] for some finite-element spaces satisfying (4.18) and (4.19). For
example, one may choose Xh Vh x Vh where Vh is the piecewise quintic-C () finite-
element space constrained to satisfy the given boundary conditions and defined with respect
to a family of triangulations of . In this case, h is a measure of the grid size. For simplicity,
one may choose Gh Vh.

Once the approximating spaces have been chosen, we may formulate the approximate
problem for the optimality system (4.4)-(4.5), (4.12)-(4.13), and (4.15). Seek qth 6 Xh,
gh Gh, and r/h 6 xh such that

(4.20)

(4.21)

(4.22)

(4.23)

and

(4.24) (Zh gh _1_ rl) 0 V Z
h Gh



1022 MAX D. GUNZBURGER AND L. STEVEN HOU

The operator Th E /2(Y; Xh) is defined as follows. For f E Y, Thf h Xh is the
unique solution of

and

[ (/)h Vh

Since G L2(fl) is reflexive, Eh is in fact an operator from G* --+ Gh.
By the well-known results concerning the approximation of biharmonic equations (see,

e.g., [2] or [8]), we obtain

and

II(T- Th)fllx 0

as h 0, for all f 6 Y. This is simply a restatement of (H13).
(H14) follows trivially from (H13) and the fact that T is self-adjoint, and we have chosen

(T*)h Th.
(H15) follows from the best approximation property of L2()-projections and (4.19).
(HI6) and (H17) follow from the fact that N and 5r are polynomials. Here we also use

imbedding theorems and Cauchy inequalities.
We set Z L1 (f2). For each r/ I-l() and E I-Ig (f2), Sobolev imbedding

theorems imply that

[N’()]* r/-- [1/)’2, [//)’1, 12] e

([N"(@)]*. ’).r/-- [’2, [’1, 02] e

These relations verify (H18).
From the definition of the operator K we see that K maps L2(’) into L (’), i.e., K maps

G into Z. Thus (H19) is verified.
Hence, we are now in a position to apply Theorem 3.5 to derive error estimates for the

approximate solutions ofthe optimality system (4.4)-(4.5), (4.12)-(4.13) and (4.15). It should
be noted that Lemma 3.4 implies that for almost all values of Z, the solutions of the optimality
system are regular.

THEOREM 4.3. Assume that A is a compact interval of + and that there exists a
branch {(k, (), g()), r/(k)) ) 6 A} of regular solutions of the optimality system (4.4)-
(4.5), (4.12)-(4.13), and (4.15). Assume that the finite-element spaces Xh and Gh sat-
isfy the hypotheses (4.18)-(4.19). Then, there exist a > 0 and an ho > 0 such that
for h < ho, the discrete optimality system (4.20)-(4.24) has a unique branch of solutions
{(Z, l]/h(z), gh()), ?lh())) ) A} satisfying

{llqch(x) @(X)l12 + Ilgh(k) g(,)llo -t-IIr/h()) r/00112} < S V X A.

(Ehg, h) (g, h) v ch Gh

Since T T*, we define (T*)h Th.
We define the operator Eh L2() Gh as the L2(S2)-projection on Gh; i.e., for each

g L2(f2),
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Moreover,

lim{llth(J) 0.)112 + Ilgh(-) g()ll0 + I[r/h() r/()) 112} 0,
h--0

uniformly in ) A.
If in addition, the solution of the optimality system satisfies (qt()), g()O, rl()))

Hm+2(Q) Hm(Q) Itm+2(Q)for ;k A, then there exists a constant C, independent
ofh, such that

II(Z) h(x)ll2 4- IIg(.) gh())ll0 4- I1() r/h(x) 112
< Chm(llqt()OIIm+2 4- IIg()0llm 4-IIr/()0llm+2),

uniformly in ) A.
Proof All results follow from Theorem 3.5. For the last result, we also use (3.25) and

the estimates (see, e.g., [2] or [8])

II(ThT-1- I)112 Chmlltllm+2 for l’Im+2(S2),

II((T*)h(z*)-1- I)r/l12 [[(ZhT-1- I)rl12 Chmilrlllm+2 for l] I-Im+2(ff2)

and

I1(EhE-1- I)gll0 Chmllgllm for g Hm().

In these estimates, the constant C is independent of h, , g, r/, and ).

Remark. In fact, we obtain from (4.15) that g -72, so the term IIg(k)llm in the
right-hand side of the error estimate is redundant.

Remark. By using (4.15) again, along with (4.24) and the error estimate in Theorem 4.3,
we have the following improved error estimate for the approximation of the comrol g:

IIg()0 -gh()0112 IIr/e())- r2h()011e _< Chm(ll())llm/2 4- IIr/()01lm/2)
Of course, we also use the fact that we have chosen Gh Vh C H2(2). 71

4.2. Neumannboundary controls for the Ginzburg-Landau superconductivity equa-
tions. For this application we will use Neumann boundary controls; i.e., control is effected
through the data in a Neumann boundary condition. Let be a bounded open domain in Rd,
d 2 or 3, and let F be its boundary. A simplified Ginzburg-Landau model for supercon-
ductivity is given by

--A1/r 4- (lpl2 4- l/r22 4- IAI 1) 1/t V. (AO2) A" V1/r2 0 in

-/xT + (p2 + 722 + IAI 1) P2 + V. (AaPl) + A. VI/t
n. (V’l/t + A2) )gl on F,

and

n. (VID"2 AI) )g2 on F.

Here, 1/t and ape denote the real and imaginary parts, respectively, of the complex-valued order
parameter, A is a given real magnetic potential, g and g2 are related to the normal component
of the current at the boundary, and ;k > 0 is a "current loading" parameter. These equations
are a special case of a more general model for superconductivity wherein A is also unknown;
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see, e.g., [22] for a derivation of the general model. It can be shown that in certain limits, e.g.,
high values of the applied field, the above simpler model is valid; see [7].

By introducing appropriate rescalings, i.e., by replacing 7tj by /-j and g by g,
j 1, 2, we can rewrite the above Ginzburg-Landau equations as follows:

(4.25) A 1/tl -1-

(4.26) --A1/t2 / (IAI

(4.27) n. (Vapx + Aa/,’z) ;gl on F,

and

(4.28) n. (VTt2 AI) ,gz on F.

We introduce the bilinear forms

a(’t]t, dp) f(V V + (]A,2 -1)Tt)dQ V,HI(Q)

and

(7, ) f. A. (7VO

We assume that A e H (). Note that

, b e HI().

a(7t, 40 a(4, 7t) and b(ap, ) -b(, ).

Then, a weak formulation of the Ginzburg-Landau equations (4.25)-(4.28) is defined as
follows. Seek q (Tel, 2) 6 Ill(f2) such that

(4.29)

and

a(l, 1) -}- b(2, )1) -}- ((lr12 + 1/r22)lrl, 1) X(gl, l)r V 1 HI(a)

(4.30) a(r2, b2) b(l, 2) .ql_ ,((1/tl2
__

1/f22)l/t2, 2) (g2, 2)r g 2 HI()

It can be shown that, for each g (gl, g2) R-x/2(F), (4.29) and (4.30) possess at least one
solution 1() and that all solutions of (4.29) and (4.30) satisfy the a priori estimate

(4.31) [lllll + ll211 C (llgll-x/2,r + [[g2ll-/2,r)

see, e.g., 11], for details. In the sequel, a solution of (4.25)-(4.28) will be understood in the
sense of (4.29)-(4.30).

Givenadesiredstate0 (10, 0) L2(), we define for any O (, 2) Hx()
and g (gl, g2) L2(F) the functional

(4.32) J(O, g) ( x0)2 + (2 z0)2 dD+ (g + g)dF.

We then consider the following optimal control problem associated with the Ginzburg-Landau
equations for superconductivity:

(4.33) rain J(O, g) e I(D), g e subject to (4.29) and (4.30),

where is a subset of L2 (F).
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We define the spaces X I-II(Q), Y (Ill(Q))*, G L2(17), and Z [I-I1/2+
where e 6 (0, 1/2) is chosen such that I-II(Q) -+---> H1/2+(Q) La(Q). By compact
imbedding results, L4/3 (Q) -+ Z ---> Y. For the time being, we assume that the admissible
set (R) for the control g is a closed convex subset of G L2 (1-’).

Let the continuous linear operator T 6 /Z(Y; X) be defined as follows. For each f
(fl, f2) C Y (H (Q))*, Tf X I’I (Q) is the unique solution of

a(@l, 1) -t- b(/r2, 1) (fl, 1} V 1 Hi(Q)

and

a(1/r2, 2) b(1/rl, b2) (f2, 2) V 2 G HI

It can be easily verified that T is self-adjoint. Also, it can be shown that for most choices of
A, the operator T is well defined; see 11].

We define the (differentiable) nonlinear mapping N X --+ Y by

(1/’12 -- 1/r)l/rl )N() (2 + 1/r22)l/,r2 vCex

or, equivalently,

2<N0P), >-- ((12 + 2>I, (I) --((//fl2 + 1/f22)l/f2, 2) * ((I, 2) X

and define K I-I-1/2(17) --+ Y as the injection mapping

(Kz, v) -(z, v)r Z I’I-1/2(17), V Ill(Q).

Clearly, the constraint equations (4.29)-(4.30) can be expressed as

, + . TNOp) + Z TKg O,

i.e., in the form (2.2). With the obvious definitions for 9v(.) and (.), i.e.,

1 f((pl 1/r10)2 ..1 (2-- 1/r20)2) dQ
and

(g) (g2+g)dF ’V’g G,

the functional (4.32) can be expressed as

,7(, g) ;v 2:() + z (g),

i.e., in the form (2.1). Thus, the minimization problem (4.33) is in the form ofthe minimization
problem (2.3).

We are now in a position to verify, for the minimization problem (4.33), all the hypotheses
of2 and 3.
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4.2.1. Verification of the hypotheses for the existence of optimal solutions. We first
verify that the hypotheses (H1)-(H6) hold in the current setting.

(H1) is obviously satisfied with a lower bound 0.
(H2) holds with c 1 and/ 2.
(H3) is verified since 0 and g 0 is obviously a solution of (4.29)-(4.30).
In order to verify (H4), we assume {g(n)} C (9 C L2 (F) is a sequence satisfying g(n) g

in L2(l); then, we have g(n) g in It-1/2(F), so limno (g(n), V)r (g, V)r for all v
Hi(f2), i.e., Kg(n) Kgin Y. Assume that the sequence {n)} C HI() satisfiesn t
in Hi(f2); then, by using the compact imbedding Hi(g2) --->---> L4(2), (n) .....> 1 in La(f2).
Now,

<N(r(n)),b>_ ((n))2 +(2 )) ,(1 -[- (lr) -[-(l/t2

Hence, (H4) is verified.
The verification of (H5) follows directly from the observation that the mappings b ->

’() (1/2)114 011 and g -> S(g) (1/2)llgll,r are convex.
The verification of (H6) is a trivial consequence of the a priori estimate (4.31).
It is now just a matter of citing Theorem 2.1 to prove the existence of an optimal solution

that minimizes (4.32) subject to (4.29)-(4.30).
THEOREM 4.4. There exists a (, g) 6 I-I ())< (9 such that (4.32) is minimized subject

to (4.29)-(4.30).

4.2.2. Verification of the hypotheses for the existence of Lagrange multipliers. We
now assume (/,, g) is an optimal solution and turn to the verification of hypotheses (H7)-(H9).

The validity of (H7) is obvious.
(H8) holds since the mapping g -> (g) (1/2) fr Igl 2 dF is convex.
(H9) can be verified as follows. For any 6 X, the operator N’(O) X ---> Y is given

by

(31/fl "[- 1/t22)1 "[" (21 lfit2)(2 )N’(). b (322 + 2)2 q- (21

Thus, we obtain that N’().b 6 L4/3() --> [l-ll/2+e (2)]* Z.
The Lagrangian is given by

(, g, r/, k) k 7(, g)

for all (, g, r/, k) X x G x X x I I-II() L2(I-’) I-II() . Note that in this
form of the Lagrangian, the Lagrange multiplier r/ X Y*, so we have already introduced
the change of variables indicated between (2.17)-(2.18) and (2.19)-(2.21).

Having verified the hypotheses (HT)-(H9), we may apply Theorem 2.4 to conclude that
there exist a Lagrange multiplier r/ X I-I (f2) and a real number k such that

(4.34) n + k T* ([N’()]* "n k fi’(t)) 0
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and

(4.35) L(, g, r/, k) <_ L(, z, r/, k) z e {9

and that for almost all values of )v, we may choose k 1.
Recall that T is self-adjoint. Also, note that for any !/t e X I-I (’),

(31/r12 -- 1/t22)r/1 --}- (2111/r2)r/2 )IN’(1//)]* 1’] (31/t22 q- 1/rl2)r/2 --]- (21/rl 1/r2)1
(;r]l r]2 X.

Thus, N’() is self-adjoint as well and (4.34), with k 1, can be rewritten as

(4.36)

and

a(’l, r/l) b(’l, r]2) -I- )((31/12 --[- 1/:)1, ’1)
+ ,((21/_11/y2)2, ’1) ,(l/rl a/rio, ’1) ’v’ ’1 Hi(if2)

(4.37)
a(’2, r]2) -+- b(’2, 1) --I- )v((31/)22 + 1/t12)2, ’2)

+ )v((gl/-fll/,r2)r]l, ’2) Z(1/-f2 1//’20, ’2)

Using the definition of the Lagrangian functional, (4.35), with k 1, can be rewritten as

: (z, z)r + )v(z, r/)r = (g, g)r )(g, r/)r >_ 0 Vze(R).

Note that, in the above expression, we have already employed hypothesis (H12), which in the
current context is trivially satisfied with E, the identity operator on G* G L2(F). For
each e e (0, 1) and each t {9, set z et + (1 )g (R) in the last equation to obtain

2
(t g, t g)r + e (t g, g)r + e (t g, r/)r > 0 VtE(R),

so, after dividing by e > 0 and then letting e --, 0+, we obtain

(4.38) (t-g,g+r/)r >0 Yt(R).

We see that for almost all values of ., necessary conditions for an optimum are that
(4.29)-(4.30) and (4.36)-(4.38) are satisfied. Again, the system formed by these equations
will be called an optimality system.

We now specialize to the case (R) L2(F). Note that the hypothesis (H10) is satisfied.
Then, using Theorem 2.5, we see that the inequality (4.38) becomes an equality and, by letting
z t g vary arbitrarily in L2 (F), we now have, instead of (4.38),

(4.39) (z, g + r/)r 0 z e L2(p).

Thus, according to that theorem, we have that for almost all )v, an optimality system of
equations is now given by (4.29)-(4.30), (4.36)-(4.37), and (4.39). However, we can go
further and verify that the hypothesis (H11) is valid, which in turn will justify the existence
of a Lagrange multiplier satisfying the optimality system for all ) A.

To verify (H 11), we first note that, via the change of variable T* v, that assumption
can be equivalently stated as

if e Y* satisfies (I + ,k T*[N’(u)]*) 0 and K* 0, then $ 0.
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To verify this version of (H11), we assume that Y* l-I (2) satisfies (I +. T* [N’ (qt)1")
0 and K* 0, i.e.,

a((1, 1) b((1, 2) -[-- ((31/tl2 --[- 1/t22)1, (1)
--]- . ((21/rll]r2)2, (1) 0 V 1 Hl(’2),

2a((2, 2) + b((2, 1) -[-- . ((31P22 -[- 1/r )2, 2)
--[- . ((212)1, (2) 0 V if2 G Hi(f2),

and

=0 onF.

(Note that K* lr.) Let 2’ be a smooth extension of S2 such that is a compact
subset of S2’. We then define ’, ’, and A’ to be the exteions, by zero outside , of

0 and A, respectively. Let the fos a’(.), b’ (.) and (., .)’ defined over be the
analogues ofcoesponding fos defined over . We may show from the last tee equatio
that

’ (’), 0’ L6(’),
+ ( 3,1 +

+ z 0 v
and

b’a’(’2, :2) q" (’2, 1) + )v ((3:2 q- v-1 ,s2,

In the sense of distribution, ’ satisfies

(4.40)

and

(4.41)

-Ase 2A’. V’ + (IA’I 2 + Z (37t2 + !/t2) 1)se
(V. A’- 2)v ’11/)se 0

--A] + 2A’. Vse +(V. A’ + 2.)

+ (IA’I2 + (3b2 + i2) 1)se 0

We now quote the following unique continuation result whose proof can be found in 17]. See
also [12] and [19].

LEMMA 4.5. Let f2’ be an open and connected subset of d, d 2 or 3. Let the
functions V [Loc(f2’)]dxd for some q >_ 2 and W [Ll2odc-l(’2’)]dxdxd be given. If !
aoc (,..,) A _[_yjd= dZk=l Wijk(Ok/OXj)"[- zjd__l Vijj 0 (in the sense ofdistributions),

1 d, and I 0 on an open, nonempty subset of f2’, then 0 on f2’. [3

Since A 6 1-11(f2) and 6 1-11(f2), it is easy to see that the coefficiems in (4.40)-(4.41)
satisfy the regularity requirements of Lemma 4.5. Also note that ’ 0 on (f2’ \ f2), which
contains an open set. Thus we obtain that ’ 0 in f2’, or 0 in S2; i.e., (H11) is verified.

Hence we conclude that for all ), the optimality system (4.29)-(4.30), (4.36)-(4.37), and
(4.39) has a solution. Thus, we have Theorem 2.6, which, in the present context, is given as
follows.

THEOREM 4.6. Let (, g) HI() x L2(F) denote an optimal solution that minimizes
(4.32) subject to (4.29)-(4.30). Then,for all A, there exists a nonzero Lagrange multiplier
r/ H (f2) satisfying the Euler equations (4.36)-(4.37) and (4.39). [3
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4.2.3. Verification of the hypotheses for approximations and error estimates. We
finally verify the hypotheses (H13)-(H19) that are used in connection with approximations
and to derive error estimates.

A finite-element discretization of the optimality system (4.29)-(4.30), (4.36)-(4.37), and
(4.39) is defined in the usual manner. We first choose families of finite-dimensional subspaces
Xh C H () and Gh C L2 (F) parameterized by a parameter h that tends to zero and satisfying
the following approximation properties. There exists a constant C and an integer r such that

(4.42) inf I1 hlll Chmllllm+
hX

V E Hm+l(), 1 _< rn < r,

and

(4.43)
inf IIz- zhll0,r Ch inf [IVl[m+l/2
EG VEHm+I/2 (2), vlr--z

V z E Hm+l/2(2)lr 1 <_ m < r.

One may consult, e.g., [8] and 15], for some finite-element spaces satisfying (4.42) and (4.43).
For example, one may choose Xh Vh Vh where Vh is the piecewise linear or quadratic
finite-element space defined with respect to a family of triangulations of f2. In this case, h is
a measure of the grid size. For simplicity we may choose Gh (Xh) Iv, i.e., the functions in
Gh are the restrictions to the boundary F of functions belonging to Xh.

Once the approximating spaces have been chosen, we may formulate the approximate
problem for the optimality system (4.29)-(4.30), (4.36)-(4.37), and (4.39). Seek Oh Xh,
gh Gh, and 11h Xh such that

(4.44) a(lh, blh) +b(2h, blh) +.{ ((lh)2 + (2h)2)lh, blh )(ghl,c/)h) r
h2 h h h(4.45) a(h, b2h)-b(lh, b2h)+z{((h)2+ 2) )2h, 2 )(g2, b2)r

a((h 71h) b((1h r/2h) +) ((3 (aph)2 + (2h)2)r/1h (1h)
(4.46)

+ )v((2lhzh)02h, () ;k(lh 1/rl0 1h) V Clh Vh

2) + b((2, r/1h) +’((3(ap2h)2 + (Y 02,
(4.47)

+ ’l/Y2 111, C2 ) Z(’I]/’2h 1P’20, C;) V ’2h E Vh

and

(4.48) (zh, gh q_ /h)r" 0 V Zh Gh

The operator Th /(Y; Xh) is defined as follows. For f Y, Thf 11h Xh is the
solution for

a p qb + b apg d? f dp V qh
6 Vh

and

a( (phi)_b(h ,h h h Vh2) {f2, 2) V b2 G

Since T T*, we define (T*)h Th.
We define the operator Eh Lz(F) --, Gh as the LZ(F)-projection on Gh; i.e., for each

g L2(U),

(Ehg, zh)r (g, zh)F V Zh Gh

Since G L(F) is reflexive, Eh is in fact an operator from G* Gh.
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By results concerning the approximation of the Ginzburg-Landau equations (see, e.g.,
11]), we obtain

II(T- Th)fllx 0

as h -- 0, for all f 6 Y. This is simply a restatement of (H13).
(H14) follows trivially from (H13) and the fact that T is self-adjoint and we have chosen

(T*)h Th.
(H15) follows from the best approximation property of L2 (F)-projections and (4.43).
(H16) and (H17) follow from the fact that N and are polynomials. Here we also use

imbedding theorems and Cauchy inequalities.
Setting Z I-I1/2+ ("2), we have that ---- [HI()] X*. For each q 6

1() and 6 (), Sobolev imbedding theorems imply that

((3+)1+(212)2) GL4/3() Q[Nt(O)]* "q (3 + )2 + (212)1

([N"()] ) "n (62C2 + 21Cl)02 + (21ff2)01 + (2C12)01

and

These relatio verify (H18).
From the definition of the operator K we see that K maps L2(F) into [/2+, ()],, i.e.,

K maps G into Z. Thus (H19) is verified.
Hence, we are now in a position to apply Theorem 3.5 to derive eor estimates for the

approximate solutions of the optimality system (4.29)-(4.30), (4.36)-(4.37), and (4.39). It
should be noted that Lemma 3.4 implies that for almost all values of , the solutions of the
optimality system are regular.

THEOREM 4.7. Assume that A is a compact inteal of + and that there exists a
branch {(, 0(), g(), q()) 6 A} ofregular solutions ofthe optimali system (4.29)-
(4.30), (4.36)-(4.37), and (4.39). Assume that the finite-element spaces Xh and Gh sat-

is the hypotheses (4.42)-(4.43). Then there exist a > 0 and an ho > 0 such that
for h ho, the discrete optimali system (4.44)-(4.48) has a unique branch of solutions
{(Z, 0h(z), gh(Z), nh(Z)) Z 6 A} satising

Moreove

lim{llCh(&) (&)lll + Ilgh(&) g(&)ll0,r + Ilnh(&) n(Z)lla} 0
h0

uniformly in 6 A.
g in addition, the solution of the optimali system satisfies (0(), g(), q()) 6

Hm+() x m+l/2()lr x m+l()for A, then there exists a constant C, independent
ofh, such that

lie(Z) ch(z)lll + IIg(&) gh(&)ll0,r + IIn(Z) nh(&)lll
Chm(ll(Z)llm+l + inf Ilwllm+l/2 + IIn(Z)llm+l),

v6Hm+/(),vlr=g

uniformly in ) A.
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Proof All results follow from Theorem 3.5. For the last result, we also use (3.25) and
the estimates (see 11])

II(ThT-1- I)lll < Chml]rllm+ for t E I-Im+l(),

II((z*)h(z*)-1 --/)r/Ill ]I(ThT- I)r/lll < Chmllr/llm+l for r/E I’Im+l(’2)

and (see, e.g., [2], [8], and [15])

II(EhE- I)gll0,v < Chm inf Ilvllm+l/2
v6Hm+l/(f2),vlr =g

for g 6 I-Im+l/2(2)[ r

In these estimates, the constant C is independent of h, , g, r/, and ..
Remark. In fact, we obtain from (4.39) that g -r/Iv, which implies

inf Ilvllm+/2 Ilr/llm+/2 Ilr/llm+l,
v6Itm+/2 S2 vlr =g

so the term (infvi.im+/z(S2),vlr_-g IlVllm+l/2) in the right-hand side of the error estimate is redun-
dant.

Remark. By using (4.39) again, along with (4.48) and the error estimate in Theorem 4.7,
we have the following improved error estimate for the approximation of the control g:

IIg()- gh(.)ll/2,r _< Cllr/(X)- r/h(.)l]l < Chm(ll())llm+l 4-Ilr/())llm+l)
Of course, we also use the fact that we have chosen Gh (Xh)lr C H1/2(F). [-]

4.3. Dirichlet boundary control for the Navier-Stokes equations of incompressible,
viscous flow. For this application we will use Dirichlet boundary controls, i.e., control is
effected through the data in a Dirichlet boundary condition. Let f2 denote a bounded domain
in Nd, d 2 or 3, with a boundary denoted by F. Let u and p denote the velocity and pressure
fields in f2. The Navier-Stokes equations for a viscous, incompressible flow are given by (see,
e.g., [13], [14], or [20])

-v V. ((Vu) + (Vu)r) + (u- V)u + Vp f in

V.u=0 inf2,

and

u b+g onF,

where f is a given body force, b and g are boundary velocity data with fr b. n dF 0 and

fr g" n dF O, and v denotes the (constant) kinematic viscosity. We have absorbed the
constant density into the pressure and the body force. If the variables in these equations are
nondimensionalized, then v is simply the inverse of the Reynolds number Re.

Setting 1Iv Re and replacing p with plY, b with )b, and g with )g, we may write
the Navier-Stokes equations in the form

(4.49) -V. ((Vu) 4- (Vu)T) 4- Vp + u. Vu ) f in fl,

(4.50) V.u--0 infl,

and

(4.51) u )(b + g) on F.
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and

We introduce the subspaces

Hnl(1-’) { gHl(1-’)
We also introduce the bilinear forms

a(u, v) ((Vu) + (Vu) ((Vv) + (Vv)T) dr2

and

.ndF=0}

V u, V H ()

(4.54)

(4.55)

and

(4.56)

Formally we have

b(u,q)-O Vq L(f2),

(s, u)r ,k (s, g)r . (s, b)r s G H-1/2(F).

t= [-pn + (Vu + (Vu)r) n]r,
i.e., t is the stress force on the boundary. The existence of a solution (u, p, t) for the system
(4.54)-(4.56) was established in [15].

Given a desired velocity field u0, we define for any (u, p, t) 6 H () L(f2) H-a/z([’)
and g 6 I-I (F) the functional

ff2 14 ’’f 2)(4.57) J(u, p, t, g) In u0 d + (IVsgl 2 + Igl dF,

where Vs denotes the surface gradient.

b(v, q)
sup > Cbllqllo V q L(Q)

0vrI() Ilvlll

for some constants Ca and Cb > 0. For details concerning the notation employed and/or for
(4.52)-(4.53), one may consult [13], [14], and [20].

We recast the Navier-Stokes equations (4.49)-(4.51) into the following particular weak
form (see, e.g., [15]). Seek (u, p, t) I-II(f2) x Lg(f2) x I-I-1/2(F) such that

a(u, v) + b(v, p) (t, v)r + ,k c(u, u, v) . (f, v) v 6 Hi(f2),

(4.52)

and

(4.53)

P
b(v, q) J q V. vdf2 v HI() and p L2()

and the trilinear form

C(U, V, W) fs2(U" 7)V. wd"2 u, v, w G H (’).

These forms are continuous over the spaces of definition indicated above. Moreover, we have
the coercivity properties

a(v, v) > Ca llvl121 ’v’ v H(2)
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We define the spaces X HI() L02(f2) H-I/2(1-’), Y [Hl(2)]* L20() H1/2(1-’),
G Hnl(l-’), and Z L3/2(f2) {0} HI(I"). By compact imbedding results, Z is compactly
imbedded into Y. For the time being, we assume that the admissible set (R) for the control g is
a closed, convex subset of G H (1-’).

We then considerthe following optimal control problem associated with the Navier-Stokes
equations:

(4.58) min{,(u, p, t, g) (u, p, t) s X, g (R)} subject to (4.54)-(4.56).

We define the continuous linear operator T E(Y; X) as follows. For each (g’, r/, r) Y,
T (’, , x) (ti,/3, ’) X is the unique solution of

and

a(ti, v) + b(v,/3) (’, V)r (’, v) v I-I (f2),

b(ti, q) (r/, q) q L(),

(s, ti)r (s, r)r

It can be easily verified that T is self-adjoint.

V S C I’I-1/2(F)

We define the (differentiable) nonlinear mapping N X Y by

N(u, p, t) 0
b

or, equivalently,

(N(u, p, t), (v, q, s)) -(f, v) + c(u, u, v) (s, b)r

and define K I-I1/a(F) Y by

V (v, q, s) E X

or, equivalently,

(Kg, (v, q, s)) -(s, g)r g s I:11/2(F), (v, q, s) s X.

Clearly, the constraint equations (4.54)-(4.56) can be expressed as

(u, p, t) + , TN(u, p, t) + , TKg 0,

i.e., in the form (2.2). With the obvious definitions for .T’(.) and (.), i.e.,

1 fa 14’(u, p, t) lu Uo dr2 (u, p, t) X

and

g(g) (IVsgl2 + Igl 2) dr’,

the functional (4.57) can be expressed as

if(u, p, t, g) ) ’(u, p, t) + . $(g),

i.e., in the form (2.3).
We are now in a position to verify, for the minimization problem (4.58), all the hypotheses

of2 and 3.
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4.3.1. Verification of the hypotheses for the existence of optimal solutions. We first
verify the that the hypotheses (H1)-(H6) hold in the current setting.

(H 1) is obviously satisfied with a lower bound 0.
(H2) holds with ot 1 and/ 2.
(H3) is verified with the choice (u() p(0), t0, 0) X (R) where (u p0) is a solution

to the Navier-Stokes equations with Dirichlet boundary conditions, and t) [-p()n +
(Vu() + (Vu()) r) n]r; see, e.g., [13] or [20].

In order to verify (H4), we assume {g(n)} C (9 C I-In (F) is a sequence satisfying g(n) g
inItl(F); thenwehave g(n) ginI’I1/2(F), so limn--,(g(n), v)r (g, v)r forallv I-II(),
i.e., Kg(n) Kgin Y. Assume that the sequence {u(n) C I-IX(f2) satisfiesu() uinHX(f2);
then u(n) - u in L4(f2) by the compactness of the imbedding It1(S2) -- -- L4(). Now,

(N(u(n)), v) c(u(n), U(n), V) C(U, U(n), V) --[- C(U(n) U, U(n) V)

c(u, u, v) + 0 (N(u), v) as n o.

Hence, (H4) is verified.
The verification of (H5) follows directly from the observation that the mappings (u, p, t) --(u p, t) (1/4)Ilu ull4() and g - 8(g) (1/2)Ilgll 2

1, v are convex.
To verify (H6), we combine a priori estimates obtained from the constraint equations and

the functional. Let {u(k), p(k), t(), g()} C 1-11(f2) L(S2) I-I-1/2(F) I-II(F) be a sequence
such that

(4.59)

(4.60)

(4.61)

and

ff(u(), g()) < C,

a(u(k) v) + b(v, p()) (t(k) v)r + ) c(u() u() v) ) (f, v)

b(u(k), q) 0 ’v’ q L(f2),

V v HI(),

(4.62) (s, u(k))r )(s, g())r )(s, b)r V s I-I-1/2(r).

First, (4.59) implies that (u(), g()) is uniformly bounded in L4() I-I (17). For each g(),
we may choose a (w(k), r ()) I-I (’2) L(’2) that satisfies the Stokes problem

(4.63)

(4.64)

a(w(/0, v) -t- b(v, r (/0) (f, v) V v I-I(),
b(w(), q) 0 q 6 L(S2),

and

(4.65) w(k) )(g() + b) on 17.

Furthermore, the estimate

(4.66) IIw()lll C(llfll0 + Ilblll/2,r + IIg()lll,r)

holds. By subtracting (4.63) from (4.60) with v u() w(), also using (4.61) and (4.64),
we obtain

(4.67)
a(u(/,) w(,), u() w()) -) c(u() u(/’), u(k) w(/,))

) c(u(k), u(k) w(k), U(k)).
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Note that

so that, using (4.67), we have that

1 T 2

L4()

Then, by (4.66) and the triangle inequality, we have that

(Vu(k))+ (Vu(k))T 110 C{llfll0 + Ilblll/2,r + IIg(g)lll,r + Ilu(k)ll4()}
Thus,

II(Vu()) + (Vu())TII0 + Ilu()ll0,r
II(Vu(>) + (Vu()) T II0 + Ilbll0,r + IIg()ll0,r

_< C(llfll0 / Ilblll/2,r + IIg(g>lll,r / Ilu(g>ll L4(>)
Since the mapping u - IlVu + (Vu) II0 + Ilull0,r defines a norm on HI() equivalent to the
standard H ()_norm, we have that

Ilu()lll C{llfll0 + Ilblll/2,r + IIg()lll,r + Ilu()ll4()}
since Ilu(g)IIL4() and IIg() 1,r are uniformly bounded, we conclude that Ilu() II1 is uniformly
bounded as well. One easily concludes from (4.60) that IIt()ll_l/2,r is uniformly bounded.
Thus (H6) is verified.

It is now just a matter of citing Theorem 2.1 to conclude the existence of an optimal
solution that minimizes (4.57) subject to (4.54)-(4.56).

THEOREM 4.8. There exists a (u, p, t, g) 6 I-II(’) x L() x I’I-1/2() x O such that
(4.57) is minimized subject to (4.54)-(4.56). [q

4.3.2. Verification of the hypotheses for the existence of Lagrange multipliers. We
now assume (u, p, t, g) is an optimal solution and turn to the verification of hypotheses (H7)-
(H9).

The validity of (H7) is obvious.
(H8) holds since the mapping z - 8(g) (1/2) fr (IVsgl 2 / Igl 2) dF is convex.
(H9) can be verified as follows. For any (u, p, t) 6 X, the operator N’ (u, p, t) X -- Y

is given by

u. Vv+v. Vu)N’(u, p, t). (v, q, s) 0
0

for all (v, q, s) Hi(f2) L(f2) H-1/2(F). Thus we obtain N’(u, p, t) (v, q, s)
L3/2(2) x {0} x HI(F) Z.
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The Lagrangian is given by

(u, p, t, g, v, (p, :, k)

k if(u, g) {a(u, v) + . c(u, u, v) + b(v, p) + b(u, 0) (z’, U)r

(t, V)r . (f, V)r + ) (r, b)r + . 0r, g)r}

for all (u, p, t, g, v, p, z’, k) X x G X IR 1-11() L(f2) I-I-1/2(F) x I-Inl(F)
ltl() L(ff2) H-1/2(r) . Note that in this form of the Lagrangian, the Lagrange
multiplier (v, p, 3) X Y*, so we have already introduced the change ofvariables indicated
between (2.17)-(2.18) and (2.19)-(2.21).

Having verified the hypotheses (H7)-(H9), we may apply Theorem 2.4 to conclude that
there exist a Lagrange multiplier (v, 0, z’) X I-II("2) L() I-I-1/2(r) and a real
number k such that

(v, p, 3) + Z T* ([N’ (u, p, t)]*. (v, , r) k .T" (u, p, t))(4.68) 0
/

and

(4.69) (u, p, t, z, v, 0, r, k) < (u, p, t, g, v, 0, "r, k) V z (R)

and that for almost all values of ), we may choose k 1.
Recall that T* T. Also, note that for (u, p, t) X Hi(s2) L(f2) H-1/2(l’),

the operator [N’(u, p, t)]* X ---> Y is given by

(-u’Vv+v’(Vu):r)[N’(u, p, t)]*. (v, q, s) 0 (v, q, s) X.
0

Thus, (4.68), with k 1, can be rewritten as

(4.70)

(4.71)

a(w, v) + ) c(w, u, v) + c(u, w, v) + b(w, q) (,, W)r

((u uo) w)
b(v,r)=O Yr L2o(f2),

V W H1(),

and

(4.72) (y, v)r 0 V y H-I/2(1-’).

In the right-hand side of (4.70), we use the notation (v3, w) ja__ (v, wj).
Using the definition of the Lagrangian functional, (4.69), with k 1, can be rewritten as

(Vsz, Vsz)r + (z, z)r (Vsg, Vsg)r

(g, g)r )(r, z)r + .(r, g)r > 0 V z O.
2

For each (0, 1) and each z O, by plugging z + (1 )g (R) into the last inequality
we obtain

(Vsg, Vs(Z g))r + (g’ z g)r + T (Vs(Z g), V(z g))r
2

+ (z- g, z- g)r cO:, z- g)r >_ 0 Yz(R);
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hence, after dividing by e > 0 and then letting e -- 0+, we obtain

(4.73) (Vsg, Vs(z g))r + (g’ z g)r (, z)r >_ 0 z (R).

We see that for almost all values of, necessary conditions for an optimum are that (4.54)-
(4.56), (4.70)-(4.72) and (4.73) are satisfied. Again, the system formed by these equations
will be called an optimality system.

We now specialize to the case (R) tt (F). Note that hypothesis (H10) is satisfied. Then
using Theorem 2.5, we see that inequality (4.73) becomes an equality, and by letting z k- g
vary arbitrarily in Itn (F), we now have, instead of (4.73),

(4.74) (Vsg, Vsz)r + (g, Z)r (, z)r 0 z (R) HnI(F).
Thus, according to that theorem, wehave that for almost all ), an optimality system ofequations
is now given by (4.54)-(4.56), (4.70)-(4.72) and (4.74). However, we can go further and verify
that hypothesis (H11) is valid, which in turn will justify the existence of a Lagrange multiplier
satisfying the optimality system for all ) A.

We now verify (H11), which we again note can be equivalemly stated as follows.

If Y* satisfies (I + T*[N’(u)]*) 0 and K* 0, then 0.

To verify this hypothesis, we assume that (, a, 0) 6 Y* Itl(Q) x Lz() x I-I-X//(F)
satisfies (I + . T*[N’(u, p, t)]*) (, or, 0) (0, 0, 0) and K*(, a, 0) 0, i.e.,

a(w, ) + . c(w, u, ) + ) c(u, w, ) + b(w, or) (0, w)r 0 w 6 Hl(fl),
b(/,r)=0 Yr6Lg(Q),
(Y,)r=0 Yy6H-/2(F),

and

0=0 onF.

(Note that K*(, or, 0) 0.) Let f2’ be a smooth extension of f2 such that is a compact
subset of Q’. We then set ’, a’, and u’ to be the extension, by zero outside fl, of, or, and u,
respectively. We may show from the last four equations that

t I.II(Q’) O"t L(Q’)
b’(4.75) a’(w, ’) + ) c’(w, u’ $’) + ) c’(u’ w, ’) + (w, a’) 0 w 6 H(Q’)

and

2(4.76) b’(’, r) 0 r 6 L0(Q ),

where the forms a’ (.,.), b’ (.,.), and c’ (., .,.) defined over Q’ are the analogues of correspond-
ing forms defined over Q. Using a unique continuation result for the system (4.75)-(4.76) that
was established in 16] or 17], we obtain/j’ 0 and or’ 0 in Q’, or 0 and cr 0 in Q.

Thus (H11) is verified.
Hence we conclude that for all , the optimality system (4.54)-(4.56), (4.70)-(4.72), and

(4.74) has a solution. Thus, we have Theorem 2.6, which, in the present context, is given as
follows.

THEOREM 4.9. Let (u, p, t, g) 6 HI(Q) x L(f2) I-I-1/2(I-’) Hnl (F) denote an optimal
solution that minimizes (4.57) subject to (4.54)-(4.56). Then, for all ) A, there exists a



1038 MAX D. GUNZBURGER AND L. STEVEN HOU

nonzero Lagrange multiplier (v, , z) HI() L(f2) x H-1/2(I-’) satisfying the Euler
equations (4.70)-(4.72) and (4.74). U

Note that, in the above expression, we have already employed hypothesis (H12), which
in the current context is easily seen to be satisfied with E G --+ G* defined by

lEg, z) f(Vsg. Vsz + g. z)dF v ,. e e (r)

We also note that for each fixed z, (4.74), with g I-In (F), is equivalent to

(4.77) (Vsg, Vsk)r + (g, k)r + V fr k. ndF (r, k)r k 6 Hi(F)

and

(4.78) fr g" n dF 0,

where F is an additional unknown constant that accounts for the single integral constraint
of (4.78). The equivalence can be shown as follows. First, an application of the Lax-Milgram
Lemma to (4.74) on the space ttn (F) guarantees the existence and uniqueness of a solution
g ttn (F) to (4.74); this solution g clearly satisfies (4.77)-(4.78) with fr (z. n Vsg"
Vsn g. n)dF. Conversely, any solution (g, F) of (4.77)-(4.78) trivially satisfies (4.74).
Although (4.74) and (4.77)-(4.78) are equivalent, the latter is more easily discretized.

4.3.3. Verification of the hypotheses for approximations and error estimates. We
finally verify hypotheses (H13)-(H19) that are used in connection with approximations and
error estimates.

A finite-element discretization of the optimality system (4.54)-(4.56), (4.70)-(4.72), and
(4.74) is defined as follows. First, one chooses families of finite-dimensional subspaces
Vh c ttl (f2) and Sh c L2(). These families are parameterized by the parameter h that
tends to zero; commonly, this parameter is chosen to be some measure of the grid size in a
subdivision of f2 into finite elements. We let Sg Sh fq Lo() and V0h Vh fq tt(f2).

One may choose any pair of subspaces yh and Sh that can be used for finding finite-
element approximations of solutions of the Navier-Stokes equations. Thus, concerning these
subspaces, we make the following standard assumptions, which are exactly those employed
in well-known finite-element methods for the Navier-Stokes equations. First, we have the
approximation properties: there exist an integer k and a constant C, independent of h, v, and
q, such that

(4.79) inf Ilv-vhlll < Chmllvllm+ r I-Im+l(’2) 1 < m < k,
v V

and

(4.80) inf IIq qh I!0
qhES

Y q nm(’) L(2)(’) 1 < m < k.

Next, we assume the inf-sup condition, or Ladyzhenskaya-Babuska-Brezzi condition: there
exists a constant C, independent of h, such that

(4.81)
b(vh, qh)

inf sup > C.
OqheS 0vheV IIvh II1 Ilq h II0
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This condition ensures the stability of finite-element discretizations of the Navier-Stokes
equations. For thorough discussions of the approximation properties (4.79)-(4.80), see, e.g.,
[2] or [8]; for like discussions of the stability condition (4.81), see, e.g., [13] or [14]. The
latter references may also be consulted for a catalogue of finite-element subspaces that meet
the requirements of (4.79)-(4.81).

Next, let ph ,vh It; i.e., ph consists of the restriction, to the boundary F, of functions
belonging to Vh. For all choices of conforming finite-element spaces Vh, e.g., Lagrange-
type finite-element spaces, we have that ph C I’I-1/2(I"). For the subspaces ph Vhlr, we
can show the following approximation property: there exist an integer k and a constant C,
independent of h and s, such that

(4.82)
inf IIs sh ll-1/2,r
Eph

< Ch inf
vEHm (2),vlr--s

VsI’Im(K2)Ir, 1 <m <k.

We also use the following inverse assumption: there exists a constant C, independent of h and
sh, such that

(4.83) Ilshlls,r ChS-qllshllq,r V Sh E ph --1/2 < q < S < 1/2

See [2] or [8] for details concerning (4.82) and (4.83). See also [15] for (4.82).
Now, let Qh vh r i.e., Qh consists of the restriction, to the boundary F, of functions

belonging to Vh. Again, for all choices of conforming finite-element spaces Vh we then have
that Qh C l’I (1-’). We can show the approximation property: there exist an integer k and a
constant C, independent ofh andk, suchthat for 1 < rn < k, 0 < s < 1, andk E ltm+l(2)lr,

(4.84) inf Ilk- khlls,r Chm-s+1/2 inf IlVllm+.
k Qh I.Im+ (f2), vlr=k

This property follows from (4.79), once one notes that the same type of polynomials are used
in Qh as are used in Vh. We set Gh Qh fq Iln (i).

Once the approximating subspaces have been chosen we seek uh 6 Vh, ph S, th ph,
gh Qh, vh E Vh, h Soh, ,gh ph, and ,h ] such that

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

a(uh, yh) -t- , C(llh, Uh, Vh) + b(vh, ph) (vh, th)r , (f, yh) yh rh

b(uh, qh) O l qh S
(llh, sh)r )(gh, sh)r ;(b, sh)F ’V’ Sh ph,

(Vsgh, XTskh)r _f_ (gh, kh)r d- /h p kh ndF (.h, kh)F ’V’ kh Qh,

gh n dI =0,

a(wh )h) f- c(wh uh )h) -t- , c(uh wh h) -t- b(wh, h) (wh

z ((uh u0)3, wh) v wh Vh

b(I)h,rh) --0 I rh c= S
and

(4.92) (oh, yh) 0 , yh C ph.
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Note that if (4.85)-(4.92) are satisfied, then necessarily gh E Gh. Also, in the right-hand side
of (4.90), we use a notation similar to that used in the right-hand side of (4.70).

The operator Th ft.(Y, Xh) is defined as the solution operator for

a(uh, vh)
_

b(vh, ph) (Vh, th)r (f, Vh) V Vh Vh

b(uh,qh) _0 y qh S
and

(Uh, sh)r (b, sh)r V sh ph

i.e, for each f 6 Y, Thf lth Xh is the solution of the above system of equations.
Since T T*, we define (T*)h Th.
We define the operator Eh G* -- Gh as follows. For each G*, gh Eh if and

only if

and

(Vsgh, Vszh)r + (gh, zh)r + /h fF Zh ndF (.h, zh)r Zh Qh

rgh

.ndF =0.

The existence and uniqueness of a solution (gh, ?,h) Qh are guaranteed by the Brezzi
theory for mixed finite-element methods (see [4] or [5]) and the inequalities

(Vskh, 7skh)r q- kh, kh)p >-- CIIkhll al,r V kh Qh C I’II(F)(4.93)

and

(4.94) sup
/h fF kh n dF

/h /h_>Cl v e.
O:fikhQ kh 1,F

The solution necessarily satisfies gh E Gh. Thus the operator Eh is well defined.
With these definitions we see that (4.85)-(4.92) can be written in the form (3.1)-(3.3).
By results concerning the approximation of the Navier-Stokes equations with inhomoge-

neous boundary conditions (see [15]), we obtain

II(T- Th)f l[x -- 0

as h 0, for all f ((, 0, r) e Y. This is simply a restatement of (H13).
(H14) follows trivially from (H13), the fact that T is selfadjoint, and the choice

(T*)h Th.
To verify (H15), we note that the nondiscretized version of (4.93)-(4.94) certainly also

holds; i.e.,

and

(Vsk, Vsk)r + (k, k)r > CIIkll: v k e I’II(I’)1,P

F fr k ndF
sup > CII v , e .

OksIt’(r) Ilklll,r

Using the Brezzi theory for the mixed finite-element method (see [4] or [5]), we obtain that

II(E- Eh)ll,r 0 as h 0,

which verifies (H15).
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(H16) and (H17) follow from the fact that N and .T" are polynomials. Here we also use
imbedding theorems and Cauchy inequalities.

We set i L3/2(g2) {0} x {0}. For each (v, q, s) 6 X Hi(g2) x Lg(g2) x I-I-1/2(1-’)
and (w, r, k) 6 X I-II(g2) x Lg(f2) x I-I-1/2(F), Sobolev imbedding theorems imply that

-(u. V)v + v. (Vu)r )[N’(u, p, t)]*. (v, q, s) 0 ,
0

-(w. V)v + v. (Vw) )([N"(u, p, t)]*. (v, q, s)). (w, r, k) 0 ,
0

and

(f"’(u, p, t). (v, q, s)). (w, r, k)

3(Ul U01)21/31U1 )3(Ud tOd)2WdUd
0
0

where d (= 2 or 3) is the space dimension. These relations verify (H18).
From the definition of the operator K we see that K maps l-Inl(F) into L3/2(2) {0}

I’I (F), i.e., K maps G into Z. Thus (H19) is verified.
Hence, we are now in a position to apply Theorem 3.5 to derive error estimates for the

approximate solutions of the optimality system (4.54)-(4.56), (4.70)-(4.72) and (4.74). It
should be noted that Lemma 3.4 implies that for almost all values of ;k, the solutions of the
optimality system are regular.

THEOREM 4.10. Assume that A is a compact interval of+ and that there exists a branch
{(., u(L), p(L), t(), g(), v(.), q(), :(L)) A} of regular solutions of the optimality
system (4.54)-(4.56), (4.70)-(4.72), and (4.74). Assume that the finite-element spaces Xh

and Gh satisfy the hypotheses (4.79)-(4.84). Then there exist a > 0 and an ho > 0 such
thatfor h < ho, the discrete optimality system (4.85)-(4.92) has a unique branch ofsolutions
{(, uh(,,), ph(), th(.), gh(L), I)h(), th(L), ,lh (L)) j /k} satisfying

+ lip(Z) + IIt()uh (,) ph(.) I[0 th ()o Il-1/2,r

/ IIg(Z) gh(.)lll,r %- IIv(Z) vh(z)II1%- I1(-)

+ I1(-)- ’h(.)ll-l,2,r) < N for all . A.
/

Moreove

limh0 (Ilu(Z) uh(z)II1 + liP(X) Ph(,)ll0 % lit(X) th(,)ll-1/2,r %" IIg(X) gh(,k)lll,r

+ IIv(Z) vh(,)lll %" I1(-) bh()0110 %" liar(Z) h(,k)ll-l,2,r) 0

uniformly in A.
If, in addition, thesolutionsatisfies(u(Z), p(.), t(.), g(.), v(.), (.), :(.)) I-Im+l (")x

Hm(2) l’Im()[r x I-Im+l()[ r I’Im+l(") Hm() l-Im(2)lr for ,k A, then there
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exists a constant C, independent ofh, such that

llu(;) uh(.)lll + lip(Z) Ph()Qllo + lit(Z) th(jL)ll-1/2,r + IIg(Z) gh()QIIl,r

< Chm-1/2(llu()Ollm+l 4- IIP()011m 4- inf IlVllm
v6I’Im (fa),vlr =t

Ilvllm/X 4- IIv()0llm/l 4- ll4())llm 4- inf IlWllm]4- v6IIm+(fa),Vlr-ginf w6I’Im(f2),wlr =’’ /

uniformly in . A.
Proof All results follow from Theorem 3.5. For the last result, we also use (3.25) and

the estimates (see, e.g., 16] or [17])

II(ThT- I)(u, p, t)llx _< Chm(llullm+X 4- ]lpllm 4- inf IlVllm)
vI’I (S2),vl r--t

for u l’Im+(fa), p nm(ff2), and t 6 l-lm(fa)lr,

II((T*)h(T*) -1 I)(V, , )llr, II(ThT-1 I)(v, q, )llx
< Chm(llVllm+l 4- 114llm 4- inf IlWllm)

w6I-Im (2),wl =
for v 6 I-Im+l("2), G Hm(2), and r 6 l-lm(ffa)lr,

and

II(EhE-1 I)glll,r < Chm-1/2 inf Ilvllm+l
VGHm+ (if2), vl =g

for g 6 I-Im+l ()Iv.

In these estimates, the constant C is independent of h, u, p, t, g, v, b, , and ).

Remark. If the control g 6 l’Im+3/2(2)lr, then the exponent of h in the error estimate of
Theorem 4.10 can be increased from (m 1/2) to m.
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TOPOLOGICAL ASPECTS OF UNIVERSAL ADAPTIVE STABILIZATION*

STUART TOWNLEYt

Abstract. In this paper we consider two problems in "non-identifier-based," universal adaptive control within
the framework of Mrtensson [Adaptive Stabilization, Ph.D. thesis, Lund Institute of Technology, 1986]. In this
framework, any linear system stabilizable by constant linear output feedback is adaptively stabilized by an adaptive
piecewise-linear output feedback control law. The essential feature we exploit is that of a piecewise-linear output
feedbackwhich switches through a set offeedback matrices, with switching controlled by an output-driven differential
equation. For each initial condition the state ofthe system converges to zero and the time-varying gain matrix converges
to a "limit gain." In this setting we consider two related problems. The first concerns the sensitivity of closed-loop
solutions under small perturbations of the initial data. The second concerns genetic properties, with respect to the set
of initial conditions, of stabilization by the limit gain. We adopt a topological approach, based on a decomposition
of the dynamics of the resultant nonlinear, closed-loop system into a sequence of homeo/diffeomorphisms derived
from the switching nature of the dynamics. Using this decomposition we show that the set of initial conditions for
which solutions are stable under small perturbations and the limiting gain is stabilizing has full Lebesgue measure
and dense interior. This latter result has been conjectured in the literature. The results are illustrated by examples of
planar control systems where the sets of initial conditions yielding nonstabilizing limit gains are computed.

Keywords, adaptive control systems, adaptive stabilization, sequential switching, feedback control, convergence
analysis

AMS subject classifications. 93C40, 93D 15, 93D21, 34D04

1. Introduction. For a known universum, Z, of linear systems

(1.1a) k(t) Ax(t) q- Bu(t), x(O) E ]1n,
(1.1b) y(t) Cx(t),

with u(t) m, y(t) 6 P, a universal adaptive stabilizer is an output feedback control law

(1.2) u(t) f (y(t), k(t))

with a "gain" parameter, k(t), adapted according to the law

(1.3) J(t) g(y(t), k(t), u(t))

such that for each (unknown) element of E, each x(O) xo IRn, and k(O) ko JR, the
state x(t) and gain parameter k(t) given by (1.1)-(1.3) satisfy

x(t) -- 0 and k(t) -- k(c, x0) < cx as o.

The pioneering work in this area, by Mfirtensson (1986), Morse (1983), Nussbaum (1983),
and Willems and Byrnes (1984), opened up the area of universal or "non-identifier-based"
adaptive control.

For a detailed survey and comprehensive bibliography, see Ilchmann (1991). The con-
trol/adaptation laws are divided into three types according to whether f is smooth, piecewise-
smooth, or piecewise-constant in k. Each type of controller is then a universal adaptive
stabilizer for certain universa of systems. For example, the Willems-Byrnes smooth control
law (Wi!lems and Byrnes (1984)),

u(t) k2(t)cosk(t) y(t), k(t) ly(t)l2,

*Received by the editors June 1, 1992; accepted for publication (in revised form) January 27, 1995.
Department ofMathematics and Centre for Systems and Control Engineering, University of Exeter, Exeter EX4

4QE, UK.
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is a universal adaptive stabilizer for the universum of all minimum-phase single-input, single-
output systems with CB 5/: 0.

A second example is the piecewise-linear (piecewise-constant in k) dense searching con-
trol law

u(t) Kskty(t), k(t) Ily(t)ll 2 + Ilu(t)ll 2,

with switching function

S(k) if k [ri,

and Kj Mi if 2j q(q + 1) + 2i for some q and i, where {M1, M2 is a dense subset
of ]1rnxp and ri+l r/2, r0 > 1, due to Mgirtensson. This controller is a universal adaptive
stabilizer for the universum of all systems stabilizable by constant output feedback.

Despite the considerable interest shown in the problem ofuniversal adaptive stabilization,
with a few exceptions, the only guaranteed stability properties of the closed-loop system are
convergence of the internal state to zero and convergence of the gain parameter. There is no
sensitivity analysis for the solutions under small perturbations in the initial conditions nor,
for example, guaranteed exponential decay of the solutions. More important, the issue of
stabilization of (1.1) by the limiting feedback control

u(t) f (y(t), k(oo, xo))

has received only minor attention.
There have been attempts to improve asymptotic behaviour by making minor modifica-

tions to the control law. In works by Ilchmann and Owens, exponential decay of each solution
is guaranteed for the class of minimum-phase, relative-degree-one systems by adding expo-
nential weighting to the adaptation law (1990) or using nondifferential gain adaptation (1991).
In Miller and Davison (1991) the adaptation mechanisms are modified to improve transient
responses and guarantee arbitrary fast decay of the output to a prespecified neighbourhood of
the origin.

As we shall see in 2, if f is linear in y and piecewise-constant right continuous in k so
that

f (y(t), k(t)) K(t, xo)y(t)

with K(t, xo) ]tmxp, piecewise-constant in t, then exponential decay of each solution is
guaranteed. In Ilchmann (1994) universal feedback control laws ofthis type are constructed for
the universum ofminimum-phase, relative-degree-one systems, with the property that for each
given x0 the sequence of gain matrices yielding a (A + BK(cxa, xo)C) C C_ is dense. This
result constitutes a preliminary step toward understanding the role of the switching sequence
in the adaptation scheme. However, nothing is said either about stability of each solution
under small perturbation of the initial data or about exponential stability of the limiting system
matrix, A + BK(oo, x0)C, for a given gain sequence.

In this paper we show, for any universal adaptive stabilization scheme of this piecewise-
constant type, that both of these properties are generic (that is, they hold in an open and dense
set) for initial conditions x0 e 1Rn. This generic stability property has been conjectured in the
literature; see Ilchmann (1991). The significance of this generic property is that a stabilizing
gain can be derived from a single closed-loop response (experiment) if the initial condition lies
in a certain set of full Lebesgue measure. In addition, the generic properties imply regularity of
the apparently erratic dynamics. Our approach is topological, replacing the piecewise-smooth
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differential equation with a nonlinear discrete-time dynamical system, described in terms of
a sequence of homeomorphisms/diffeomorphisms. Using this approach we can analyse the
mapping x0 k(c, x0) from which we deduce our main results.

The paper is organized as follows. Section 2 contains preliminary material which estab-
lishes the framework for the remainder of the paper. We motivate the problem by considering
the first-order case in detail where we characterize the limiting gain explicitly. The charac-
terization appears in the form of inequalities on the partial sums of series generated by the
switching and gain sequences. We close the section with an illustration of the difficulties
arising in the second-order case.

In 3 we presem our main results on stability of solutions and stabilization by the limiting
gain matrix. We show that for all initial conditions in an open and dense set with full Lebesgue
measure, the limiting gain is exponentially stabilizing and the solutions are insensitive to small
perturbations. In 4 the results are applied to second-order, minimum-phase, relative-degree-
one systems.

2. Preliminaries.

2.1. System formulation. We are interested in qualitative properties of closed-loop sys-
tems arising from universal adaptive stabilization of m-input, p-output linear systems

(2.1) k(t) Ax(t) + Bu(t), x(O) xo IRn,
(2.2) y(t) Cx(t),

by piecewise-linear controllers, that is, where f in (1.2) is piecewise-linear in the output y.
Perhaps the most striking example of a universal adaptive stabilizer of this type is the "dense
searching" controller in the context of Mrtensson’s "existence of a stabilizing regulator is
sufficient for universal adaptive stabilization."

Example 2.1 (Mgrtensson (1986)). If (2.1), (2.2) is exponemially stabilizable by a pro-
portional feedback K 6 ]mxp, then a piecewise-linear universal adaptive stabilizer is given
by

(2.3) u(t)-- Kskty(t),

(2.4) k(t) Ily(t)ll 2 + Ilu(t)ll a, k(0) 0,

where
S(k) if k [ri, ri+l),
(g0, K1, K2 (M0, M0, M1, M0, M1, M2 ),
ri+l r/, r0 > 1, and
{M0, M1, M2 is a dense subset of ]tmxp (SO that at least one of the Mi will
stabilize).

In this case f(y, k) Ksk)y and g(y, k, u) IlYll + Ilull.
A second important example of piecewise-linear universal adaptive stabilization arises

when a piecewise-constant Nussbaumfunction is used in the Willems-Bymes adaptive stabi-
lization of minimum-phase systems.

Example 2.2 (Willems-Bymes; Ilchmann and Logemann (1992)). Assume that in (2.1),
(2.2) m p and the system is minimum phase so that

i-

Rank /sI-A B/ =n+mforallsC+.
C 0

We have three cases.
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(2.6)

(2.7)

where

(a) If det (CB) 0, then a piecewise-linear universal adaptive stabilizer is given by

u(t) N(k(t))Ks(k(t))y(t),

(t) Ily(t)II 2 k(O) -go

(N(k), S(k)) (-gi, i) if k 6 [-gi,
(K0, K1, K2 (M0, M1, M2 ML, M0, M1, M2 ), preserving the order-
ing;
{M0, M1, M2 ML is a spectrum unmixing set for rn x rn invertible matrices
(i.e., for each invertible rn x rn matrix M there exists 6 {0, 1, 2 L such that
tr(MiM) C C_); and
{-gi is a sequence of positive real numbers with limi -gi/-gi+l O.

In this case f(y, k) N(k)Ks(ky and g(y, k, u) IlYll z.
(b) If cr(CB) C C_ or C+, then we can take L 1, H0 equal to the rn x rn identity

matrix, H1 -H0, and choose -gi > 0 so that

(2.8) inf
-li=(-1)i-gi(-gi+l- -g/) -li=o(--1)i-gi(-gi+l-

=-x, sup +cx.

In this case

(2.9) u(t) (- 1)j-gj y(t) when k(t) [-gj,

is a universal adaptive stabilizer.
(c) If it is known a priori that cr(CB) C C+, then a universal adaptive stabilizer is given

by (2.7) with the simple high-gain feedback

(2.10) u(t) =--gjy(t), k(t) C=. [-gj,

In this case {-gi is any increasing sequence with limi_ -gi

Remark 2.3. We will not recall the proofs of universal adaptive stabilization for the
systems in Examples 2.1 and 2.2. However, we will have cause to borrow some ideas from
these proofs. For those readers not familiar with universal adaptive control, a flavour of this
area can be obtained by looking at Proposition 3.20 and Lemma 4.2.

Examples 2.1 and 2.2 have common properties. The dynamics are switched according to
the nonlinear adaptation of k, and in between switches in k, the dynamics of the x component
are linear. Indeed both examples fit into a single framework of a linear system (2.1), (2.2) and
a piecewise-linear (in y) nonlinear adaptive feedback control

(2.11) u(t) Ki y(t),

with adaptation

(2.12) k(t) --Ilfix(t)ll 2, k(O) -go R,

where the right-hand sides of (2.11) and (2.12) are determined by k(t) [-gi, -gi+l) with
an increasing sequence with limi__, -gi cx. The particular features of importance are as
follows.

The feedback gain matrix K (t, x0), defined by

K(t, xo) Ki, k(t) [-gi,

is switched according to a nonlinear differential equation-based adaptation law. Note
the dependence on x0.
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] {Ki }i=1 is an ordered set of potential gain matrices. In Example 2.1 /C is
determined by recursive searching through a dense subsetofmxp, whilst in Example
2.2,/C is determined by cycling through the spectrum unmixing set and multiplying
by the Nussbaum gain.
The right-hand side of (2.12) is allowed to depend on k, as is the case in Example
2.1, where

so that ]]yl] z + ]lull z IlCiyll 2.
KiC

In Example 2.2, Ci C for all i.
Remark 2.4. Whilst we will state most of the results for the general class of closed-loop

systems given by (2.1), (2.2), (2.11), and (2.12), in 4 we will focus on the class of systems
given in Example 2.2 in the single-input, single-output case.

A simple consequence ofthe piecewise-smoothness of (2.1), (2.2), (2.11), and (2.12) is the
existence and uniqueness of solutions on maximal intervals of existence. This is summarised
in the following lemma.

LEMMA 2.5 (existence and uniqueness of solutions on maximal intervals of existence).
For each x(O) xo ]1n and k(0) r0 6 I there exists w > 0 and a unique continuous and
piecewise-differentiable solution (x(t), k(t)) on the maximal interval [0, co), satisfying (2.1),
(2.2), (2.11), and (2.12) almost everywhere.

Proof If k(t) is bounded, then there exists tj < oe such that rj < k(t) < rj+l for all
>_t,

Jc(t) (A + BKjC)x(t) for all _>

and co oe. If k(t) is unbounded, then by monotonicity of k(.) there exists a sequence of
times to O, tl, t2 such that k(tj) rj. Since

Jc(t) (A + BKjC)x(t) for all [tj, tj+l),

x(.) is smooth on [tj, tj+l). If tj --+ t* < cxz, then co t* < cxz; otherwise o
Remark 2.6. We consider (2.1), (2.2), (2.11), and (2.12) as a class of systems containing

the essential features of nonlinear systems arising in universal adaptive stabilization. Recall,
in particular, that this means that for each x(0) and k(0) r0, x(.) and k(.) exist for all > 0
and

(2.13) lim x(t) 0 and lim k(t) k(c, x(0)) < cxz.
t--+cxz

We now assume throughout that (2.11) and (2.12) are a universal adaptive stabilizer for (2.1),
(2.2) so that (2.13) holds. We denote by

t (x(0), k(0)) - (x(t), k(t))

the flow of the nonlinear system (2.1), (2.2), (2.11), and (2.12), which is defined for all > 0.

2.2. Problem motivation. In the context of adaptive stabilization the notion of stability
is relaxed so that a priori the only guaranteed properties of the closed-loop system are those
specified by (2.13). The aim ofthis paper is to characterise information obtained as a necessary
consequence of universal adaptive stabilization. In particular, we are interested in whether the
limiting gain, K(cx, x0), given by

K(cx, xo) Ki if k (cxz, x0) < Zi+ and k(t, x0) > zi for some > 0,
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results in an exponentially stable limit system

(2.14) Jc(t) (A + BK(cxz, xo)C)x(t).

Anticipating our results, we are also interested in whether exponential stability of the limit
system is a generic (open and dense) property in the parameter space of initial conditions.

To focus ideas, consider the simplest case of a first-order controllable system:

(2.15) (t) ay(t) + bu(t), where y x and b v6 0.

This system can be stabilized by (2.7) and (2.9). In this simple case the limiting gain can be
characterised explicitly and is stabilizing unless y 0.

PROPOSITION 2.7. If yo :/: O, then u(t) K(cxz, yo)y(t) is a constant linear stabilizing
feedback controlfor (2.15). Moreover,

K(o, Yo) (- 1)J* rj,,

where j* is determined by

j* inf j Y -t- 2 (a + (-1)ib75i)(15i+1 "ci) <_ 0
i=0

IfYo O, then K(o, 0) to.
Proof Let Yo be fixed, and suppose k(o, yo) 6 (rj,, rj,+ ]. We have

d dk
(2.16) d--(y(t)2 2(a + (-1)ibri)--f provided that k(t) [ri, "t’i+l).

Let t* be such that k(t*) rj,. Integrating (2.16) from 0 to t* we have

(2.17)
j’n1

0 < y2(t*) y + 2 Z(a d- (-1)iblgi)(’Ci+l Zi).
i=0

Integrating (2.16) from t* to cxz, we have

(2.18) y2(t*) 2(a + (-1)J*b’cj,)(k(cx:), yo) rj,).

Equation (2.17) implies that a + (- 1)J* brj, < 0. It follows that

(2.19) (a + (-1)J*bvj,)(’cj,+l vj,) <_ -y2(t*).

Adding (2.17) and (2.19) gives

y2o + 2(a + (-1)ibzi(ti+l zi)) <_ O.
i=0

Even in this simplest situation, if T0 is not stabilizing and y0 0, then K(oo, Y0) is not
stabilizing.

DEFINITION 2.8. We denote by bl C I the set of initial conditions for which the limit
system (2.14) is not exponentially stable, that is,

(2.20) /g {x0 n tr(A + BK(cx, xo)C) f)C+ # 0}.
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The complement ofLt is partitioned into two parts, $ and 7":

(2.21) S {X0 E ]n Xo ’ K(o, xo) is continuous},

(2.22) 7" {x0 IR xo -> K(cx, xo) is discontinuous}.

To see that in general L/is not empty nor equal to {0}, consider the second-order, minimum-
phase, relative-degree-one system

[10] [1 1Jc(t) x(t) / u(t), y(t) [1 0]x(t),
0-1 0

which is stabilized by (2.7) and (2.9). Observe that if x0 6 {0} , then y(t) O, k(t) O,
there are no switches in gain, K(o, x0) r0, and yet x(t) ---> O. If ro is not stabilizing, then
K(x, x0) is not stabilizing and

{o1 c .
ofcourse this observation is hardly surprising since Ker[ 1 0] {0} is a stable A-invariant
subspace. A more striking example, which we will consider in detail in 4, is obtained if
(2.7), (2.10) is applied to a relative-degree-one, minimum-phase, controllable and observable
system.

Example 2.9. Consider the following minimum-phase, relative-degree-one system:

x(t) + u(t), y(t) [1 1]x(t),
6 1

expressed in control canonical form. If we assume that knowledge of the sign of the high-
frequency gain is available information, thenwe canuse (2.10) as a universal adaptive stabilizer.
Let zo 0 and r 3. If

{ ( 1 ) 62 2/}xoe a <
-2

then x(t) e-2txo, k(o, x0) < 3, and the first switch is never reached. Hence

A q- BK(cx,xo)C A + roBC A, cr(A + BK(o,xo)C) a(A)

_
C_,

and

(2.24)

In 4 we will amplify this example, using the control canonical form structure to show
that the structure of this bad set b/can be very complicated. The main result of 3 is that
despite the possible complexity of/a, in measure theoretic and topological terms this bad set
is very small.

MAIN RESULT. U is a nowhere dense and Lebesgue-measure-zero set. Moreover, ,9 is
open and dense and hasfull Lebesgue measure.

Our approach is to exploit the sequential nature of the closed-loop dynamics to essentially
replace the flow t with a sequence of diffeomorphisms. This section is concluded with
notation related to this sequence of diffeomorphisms.

1The control canonical form is not necessary at this point but is useful for the analysis in 4.
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FIG. 1. S mapped to Ho, together with S, S+I and t-l(s).

2.3. Notation. Within the natural framework of ]n+l for the dynamics of (2.1), (2.2),
(2.11), and (2.12) we adopt the following notation. For each 1

(a) Hi C n+l is the hyperplane

Hi ((x,k) k- ri}.

(b) Ai (A + BKiC) with stable subspace V/s and unstable subspace V/".
(c) Wi(t) fg eafrcfcieairdz is the observability Gramian at time for the pair

(Ai, Ci).
(d) It is clear from Example 2.9 that certain subsets of V/" ri and Vi ri+ of Hi

and Hi+1, respectively, defined by the switching condition, will play important roles.
These subsets, denoted by S/+ and S/1, are defined by

S/+ {(x, ri)I (x, Wi((x))x) "t’i+l- z’i} C Hi,
S/_ {(X, ri+l)I (X, Wi(--o)x) < ri+l z’i} C ni+l.

The subscripts in S/+ and S1 refer to the hyperplane in which they are contained,
whilst the superscripts refer to the direction of flow defining them.

(e) The complements of S/+, S/_I are denoted by R/+, R-+I.
Finally,

(f) J {i No cr(A + Bgic) f’) C+ 5 } is the indexing set for nonstabilizing gains.
These are illustrated in Fig. 1.

Remark 2.10. i) Between the hyperplanes Hi and Hi+ the dynamics of the state compo-
nent x (t) evolve according to the linear time invariant system

Jc(t) Aix(t).
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ii) S/+ is a closed subset of the affine space V/s {ri }. In Example 2.9

S is a closed subset of the affine space V/" x {ri+ }. S/+ and S play fundamental roles
in our approach. If (x(t), k(t)) S- for some > 0, then Hi+ is not reached, whereas S/-+
cannot be reached from Hi.

iii) The sets R/+ C Hi and R[-+ Hi+ are open. They are, respectively, the points in Hi
which reach Hi+ and the points in Hi+ which are reached from Hi under the flow t. Note
that they are naturally homeomorphic. In the case when (Ai, Ci) is an observable pair, they
are both punctured n-dimensional space. If Ker C contains a stable A-invariant subspace V,
then both R/+ and R-+ are homeomorphic to ]R \ V.

3. Generic stability properties of universal adaptive stabilization. In this section we
present and prove the main results. We assume throughout that (2.11) and (2.12) result in
a universal adaptive stabilizer for (2.1) and (2.2) as defined by (2.13). We show that in the
partition

(3.1) n S U T U H

of the set of initial conditions introduced in Definition 2.8,
H is nowhere dense and has zero Lebesgue measure,
T is nowhere dense and has zero Lebesgue measure,
S is open and dense and has full Lebesgue measure.

We characterise S, T, and H explicitly via smooth functions which arise from a decomposition
of the flow @t into a sequence of homeomorphisms {)i Ri+ R]-+I}.

The first thing to note is the importance of the sets Si. Indeed, for each x0
boundedness of k(t, xo) implies that there are at most finitely many switches in K(t, xo). It
follows that there must exist > 0 such that (x(t), k(t)) Sq for some q > 0 and that this,
moreover, determines K(x, x0).

LEMMA 3.1. K(x, xo) Kq ifand only if (x(t), k(t)) S+q fOr some < c.
Remark 3.2. As an immediate consequence of Lemma 3.1 and the definition of Sq+ it

follows that for each x0 n there exists M, . > 0 (depending on x0) such that

[Ix(t)ll _< Me-zt.

(See also Ilchmann (1994).)
If K(x, x0) Kq, then there exists a sequence of times 0 to < < < tq <

such that (x(tj), k(tj)) R, j 0, q 1, and (X(tq), k(tq)) S+q.
This simple observation is formalised as a decomposition of (I) into a sequence of

maps Pi.
DEFINITION 3.3. For each N, i R- --+ R+ is defined implicitly asfollows: Let

(x, ri) Ri+, then there exists ti (x) such that

Z’i+I- "gi (X, Wi(ti(x))x).

We set

i(X, 75i) (eai(ti(X))x, r/d_l).

Remark 3.4. The explicit reference to ri and ri+ is not really important but simply serves
to emphasize the domain (C Hi) and range (C Hi+l) of i. Indeed we often think of i as
a map defined on a subset of n rather than on R and drop the explicit reference to ri and

Ti+ 1-
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Example 3.5. (a) For the first-order system (2.15) and (2.9) with a b 1,

and

with

R/+ {x X2 "[- 2(1"i+1 -’[- "Ci)((--1)i’i -[- 1) > 0} X {0}

(/)i(X) "V/’X 2 "[- 2(Zi+l Zi)((--1)izi -b 1)

b-l(y) V/y2 2(’t’i+l :i)((-1)i:i + 1).

(b) Figures 1 and 2(a)-(c) show the typical qualitative effect of /--1 for second-order
systems. Figure 1 shows an ellipse mapped down through the Hi under /-1 for

2, 1, 0. Figure 2(a) shows the image of the unit circle under q-i when Ai
has two positive real eigenvalues, and Fig. 2(b) shows the image when Ai has two
negative real eigenvalues. Figure 2(c) shows the hyperbolic case when Ai has one
negative and one positive real eigenvalue. Note that if Ai has hyperbolic eigenvalues
and ri+l ri is large, then the image of the unit circle is split into two connected
components and the image of the unit circle has cusp points (at which, as we will
see, i has a singular derivative).

The development of the topological approach pivots on smoothness properties of the qSi.
A word of caution: for each x, and N there is a different time ti (x) required to reach Hi+
from Hi, and so i is truly nonlinear and not simply the linear flow x -, eaitX.

PROPOSITION 3.6. For each N, dt) Ri+ --+ R-+I is a homeomorphism.
Proof If (x, "gi) R/+, then there exists t(x) < oo such that (x, Wi(t(x))x) Zi+X
Let 6 > 0 be arbitrary. For each 6 ]R and > 0

V/((x q- ,), Wi(t(x) -1- 6)(x + a)) >_ V/(x, Wi(t(x) -[- 6)x} ;V/(, Wi(t(x) -Jr"

and

V/((x -1-a), Wi(t(x) 6)(x q-a)} <_ V/(X, Wi(t(x) 6)x}-+-aV/(, Wi(t(x)

where /(x, Wi(t(x) 6)x} < ri+l ri and /(x, Wi(t(x) + 6)x) > ri+l zi. If I111 1
and a is sufficiently small, then

((X -[- )), Wi(t(x) -]-" 6)(x -[-" a3)) > 1"/+1

and

((X -’[’-), Wi(t(x) -6)(x -[-" a3)) < 1"i+1 "i.

It follows by continuity of W (.) (in the operator topology) that (y) (t (x) 6, (x) + 6) for
each y Ba(x). Hence (.) is continuous at x, and therefore i (as a composition and product
of continuous functions) is continuous at (x, zi). By definition of R-+I it follows that i is
onto. Injectivity ofi follows from analyticity of Ci eaitx together with the fact that i is
defined only on R/+ (those points in Hi reaching Hi+l). Hence -1 R-+I --+ R/+ exists. (In
g-+l we are interested only in points coming from below Hi+1. Those points on Hi+1 which
are on flows of (I) lying entirely in Hi+l are not in R-+I. A similar argument to the one above,
reversing time, shows that q-1 is continuous and therefore i is a homeomorphism.

Remark 3.7. If K(oo, x0) gq, then a trajectory flows from (x0, k0) e H0 (under (I)t)
via the homeomorphisms i through each of the hyperplanes Hi, 1, 2 q 1 and
finally hits Sq+.

For each 6 N let ’i C ]In be defined by

,i {X0 ]n ’t(x0, z0) S/+ for some < oo}.
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FzG. 2. The image ofthe unit circle under i when Ai has (a) unstable real (b) stable real, and (c) hyperbolic
eigenvalues.
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Using the decomposition ofthe flow *t into the sequence ofhomeomorphisms i, ’-i is defined
equivalently by

/ {X0 ( n qSi_l(q5i_2(... (O(XO, "CO))...)) S?}.

LEMMA 3.8. (a) For each J

int (S/) {x0 6 ]1n t(x0, r0) int(Si+)forsomet > 0}

and
(b) S Uicg (int (Si)).
Proof (a) This follows immediately from the homeomorphic structure of the 4i.
(b) It is clear that (int (Si)) c S. To show the opposite inclusion we must verify that

if xo I,.J (Si), then x - K(cz, x) is discontinuous at x0, so x0 S. Now K(c, x0) Kj
for some j, and since x0 int (Sj) there must exist x with (xj, rj) 60S- such that x(t) xj

for some t. (Here 0 Sf is the boundary of S.) Since S- cannot be reached from Hj_I it is

clear that (xj, rj) S. Hence, we can use the continuity of the 4]-1 and the fact that S- is
closed to find, given ‘5 > 0, a small enough neighbourhood, .M, of (x, rj) (in Hj) such that
114-1(... (?21(X, Z’j))) (X0, Z’0)[[ < ‘5 for all (x, rj) 6 .Mj. Finally, using the closedness of

Sj+ we can choose zj N’j so that with x defined by (x, r0) 4-1(... (cP]-_ll(zj, rj))), we
have (x, r0) (x0, r0)II < and K(cxz, x) # Kj. [:]

COROLLARY 3.9. S is open.
S has very nice properties. By definition, for each x0 6 ,-q, the limiting gain K(o, x0) is

stabilizing. Moreover, as a direct consequence of the homeomorphic structure of the Pi, the
continuity of each x - ti(x), and the openness of S, we can prove stability of solutions on
[0, o) under small perturbations of initial data x0 in S.

THEOREM 3.10. Ifxo S, then given
then II(x, r0) (x0, ro)ll < ‘s for all > O.

Remark 3.11. Whilst this result is intuitively clear, the reappearance of time means that
a detailed proof is required.

Proof It is sufficient to prove the result in the case when 1 ’ J, or(A1) C C_, and
x0 6 int (S1). The general case follows immediately because only a finite number of fli are
involved.

Let x0 6 (intS1) and ‘5 > 0 be given. Choose 6 > 0 small enough so that Ba(40(xo)) C
intS1+. Here Ba(x) {z 6 n IIz- xll < }. Now choose 0 > 0 so that P0(Bo(xo)) C
Ba(q0(x0)). Given/z > 0, reduce 0 > 0 if required so that

max t(x)- min t(x) <
x6Bo(xo) x6Bo(xo)

If x Bo(xo), then train < to(x), to(xo) < tmax. Without loss of generality, suppose that
to(xo) < to(x). We now check that IIx(t, x) x(t, xo)ll < on each interval [0, to(xo)],
(to(xo), to(x)), and [t0(x), x). If > to(x), then

Ilx(t, x) x(t, x0)ll [[eAl(t-t(x)))o(X) eal(t-t(x)))o(Xo)[[

lieAt(t-t(x)) (qb0(x) bo(x0))II

+ll(eAl(t-t(x)) eAl(t-t(x)))qbo(xo)l[ < ,5

if/z and hence are small enough. (Here qo(’) means only the x-component.)
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If < to(xo) and/z (hence r/) is small enough, then

IIx(t, x) x(t, xo)ll lieat (x xo)ll < .
Finally if 6 (to(xo), to(x)) and/z is small enough, then

IIx (t, x) x (t, xo)II eatx eal (t-to(xo)) eaoto(xo)XO

[[eAtx eA(t-t(x))eA(t(x))xl] -k- lieA(t-t(x)) eA(t(x)) Ilx xoll

< II[eA(t-t(x))- eAl(t-t(x))]eAt(X)xll-k - < .
Similar estimates hold for Ik(t, x) k(t, xo)l (and hence IIt(x, to) (I)t(xo, vo)ll) using
continuity of to(.) and W0(.). [3

Remark 3.12. Simulations of closed-loop systems derived from universal adaptive control
algorithms can exhibit erratic transient behaviour. Theorem 3.10 gives robustness of stability
of solutions with respect to perturbations of initial data for solutions starting in the open set
$. This shows that there is inherent regularity underlying the erratic behaviour, even in the
case of the Mhrtensson dense search controller of Example 2.1.

Implicit in the analysis above is an algorithm by which we can compute . Whilst
complicated by the restricted domains and codomains of the ti we have

where for each j 6 J, L/j is defined recursively by

y/j t])-1 (R1+ f3 Z1),

zt
Zj= Sj.

k=l j-l,

The partition of Nn is completed by setting

T

where Tj t-1 (... (t;___ll ( Sj+))).
Both ofthe sets/,/and 7" are constructed via countable unions ofsets derived (by preimage)

from sets Sj+}jj and {0 Sj+}j, which are nowhere dense and have zero Lebesgue measure.
It is therefore reasonable to expect that/,/and T are themselves nowhere dense and have
zero Lebesgue measure. However, these sets become very complicated as they map under
the homeomorphisms -1 to H0. (See 4.) Moreover, homeomorphisms do not, in general,
preserve zero Lebesgue measure. To overcome these potential difficulties we establish that if
the domains of i and q-I are restricted still further, then they are diffeomorphisms.

PROPOSITION 3.13. For each 0, 1
i) i R/+ - R-+I is continuously differentiable at every x q-(Ker Ci ),
ii) -1 t-I R-+I

__
Ri+ is continuously differentiable at every y qbi (Ker Ci ),

and
iii) bi R/+ \ ((Ker Ci) U t-l(Ker Ci)) -- R]-+I \ ((Ker Ci) Udpi(KerCi)) is a diffeomor-

phism.
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Proof For x Ri+, (])i (X) (eAit(X)x, 15i), where (x) is defined implicitly by

(x, Wi(t(x))x) ri+l 17i.

Clearly the map F n+l , (t, x) - (x, Wi(t)x) is cominuously differentiable with

OF OF
O-----I(t,x Ilciea’t xll 2 and ---x [(t,x 2xT Wi(t).

If ti (X) Ker Ci, then

OF
O----](t(x).x Ilfii(x)]l 2 > O.

It now follows from the implicit function theorem that (.) is continuously differentiable in
a neighbourhood of x. Hence ti is continuously differentiable on (-l(KerCi)) with the
derivative of i, Dqbi, given by

(3.2) Dqbi Ix eAit(x) 2AidPi (x)xT Wi (t (x))
ilfii(x)ll 2

Arguing similarly, reversing time, we have that t/--1 is continuously differentiable on
(qi (Ker Ci))c.

Finally, y 6 Ker Ci t_J t]) (Ker Ci) if and only if b- (y) Ker Ci t_J b/- (Ker Ci) and

ti R/+ \ ((Ker Ci) tO q/- (Ker Ci)) --+ R-+ \ ((Ker Ci) t_J i (Ker Ci))

is a diffeomorphism. q

Remark 3.14. We observe that D4- lx --+ cx as either 4- (X) Ker Ci or x --+ S-+1.
Similarly Dilx --+ cx as q(x) --+ KerCi or as x --+ S/+. It follows that D-IIx and Dilx
become singular as x --+ Ker Ci. At first sight this does not seem obvious from (3.2). However,
we can use the alternative formula

D(])i Ix eAit(x) 2Ai eA’t(x)xxT Wi (t (x))
I[Cixll 2 -1- 2xrWi(t(x))Aix

and now taking determinants we have

(Di Ix) Det(eaitx)Det (IDet

which is zero since

1-

when Cix O.
Example 3.15. (a) In the one-dimensional case

dqbi

dx

2AixxrWi(t(x))
Ilfixll 2 -t- 2xrWi(t(x))Aix

2xTWi(t(x))Aix
0

IlCixll 2 4- 2xTWi(t(x))Aix

If ((--1)iri + 1) > 0, then > 1 and (I) expands the area between R/+ and R]-+Idx
(b) If we look again at Fig. 2, we clearly see cusp points in the image of the ellipse.

These are due precisely to the singularity of D4-1 on Ker Ci since functions with singular
derivatives do not necessarily mapsmooth curves to smooth curves. We also see that divergence

V/X2 -- 2(Zi+l Zi)((--1)izi q- 1)
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ofD-1 Ix, as -1 (x) approaches Ker Ci, is reflected in the sparsity of points in Figs. 2(a)-(c)
near Ker Ci.

To establish denseness and, more importantly, full Lebesgue measure of S, we use the
differentiability of i and a simple result from measure theory, modified slightly to suit our
purposes.

LEMMA 3.16. If X C Hi+l has zero Lebesgue measure, then tp-I(x) C Hi has zero
Lebesgue measure.

Proof. It is well known that diffeomorphisms preserve Lebesgue measure. We have to
take care of places where t-1 is not differentiable. Since S/- and KerCi are closed sets, we
can decompose /-1 (X) as

-l(x) (CJ PX(Xn)) g (Kerci f-l

where Xn X \ B1 S+1) U ) B (Ker Ci ). Note continuity of ti implies that Xn is mea-
surable for each n.

Since -1 is differentiable on Xn it follows that 4)-1 (Xn) has zero Lebesgue measure for
each n and therefore t-1 (X) has zero Lebesgue measure.

We can now state the main result of this section.
THEOREM 3.17. If (2.11), (2.12) satisfy (2.13), then S is open and dense and has full

Lebesgue measure; that is, the property that (2.14) is exponentially stable is generic.
Proof For each/ J and/ J, both 0 S/+ and S/+, respectively, have zero Lebesgue

measure. Under each "diffeomorphism" p-1, k 1 0, it follows from Lemma 3.16
that this zero measure is preserved. Hence, "T and/,/have zero Lebesgue measure as countable
unions of sets with Lebesgue measure zero. Now

" S uTuI,I,

so S has full Lebesgue measure. Moreover, since S is open, 7- U/A is closed. Therefore,
T U L/cannot have interior, and therefore S is dense.

COROLLARY 3.18. Under the conditions of Theorem 3.17, ]1n is decomposed as

where
" =SuTU,

Lt is nowhere dense and has zero Lebesgue measure,
71- is nowhere dense and has zero Lebesgue measure, and
S is open and dense withfull Lebesgue measure.

Remark 3.19. We see that the set of initial conditions x0, producing non-stabilizing limit
gains K(o, x0), is restricted to a closed set with Lebesgue measure zero. Moreover, Theorem
3.10, concerning stability ofsolutions under small perturbations, applies to all initial conditions
in an open, dense, and full-measure set of initial conditions.

If an experiment is defined as the solution {(I)t(X0, "C0) > 0} of (2.11), (2.12) corre-
sponding to a single initial condition x0 6 ", then except for initial conditions in a Lebesgue
measure zero set, a single experiment will guarantee the identification of a stabilizing output
feedback matrix. Note that b/is made up of a countable union and that any bounded subset of
]tn may intersect infinitely many components of/A corresponding to different limit gains. This
would lead to highly sensitive closed-loop dynamics. However, in the case of Examples 2.1
and 2.2 we can rule out this possibility. This adds to the regularity of these control algorithms.

PROPOSITION 3.20. For each closed-loop system in either Example 2.1 or 2.2 we have
bounded switching number on compact subsets; i.e., for each M > 0 there exists K > 0 such
that if x0 <_ M, then k(c, xo) < :.
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Proof We prove this result for the closed-loop system in Example 2.1. The same ideas
work for the closed-loop system in Example 2.2, although the technical details are more
involved. The details are omitted.

For each x0 6 ]1 an upper bound on the number of switches and hence on k(cx, x0)
is determined as follows. Let Mq be a feedback gain which is stabilizing for the given
system. We define sequences of times tn, t’n (depending on x0) such that k(tn, x0) ri, and
k(t’n, xo) Tin+l with Kin Mq. (If no such tn exists, then k(cx, x0) < Tq(q+l)/2.) Now

t’n
[ly(s)ll 2 + Ilu(s)llZds Tin_kl Tin.

But the feedback gain on the imerval [tn, t+l) is stabilizing so that there exists M (not de-
pending on Ti }) such that

ttn
Ily(s)ll 2 + Ilu(s)IlZds MIIx(t)II 2

and

x(t) < M IIx011 + [ly(s)[[ 2 + Ilu(t)ll2d

Putting these two inequalities together we obtain

(3.3) Tin+ Ti cllx011 + C(Ti TO)

for some c. Switching is, of course, terminated no later than when (3.3) is violated, and since

IIx0 is bounded, this inequality is violated for some Tin independent of x0. (The subsequence
{Ti, is determined by the condition that Kin Mq, and the length of the sequence depends
only on x0. q

So far we have concentrated on qualitative results for the dynamics of the closed-loop
system which are necessary consequences of the assumed existence of a universal adaptive
stabilizer. We can use the same approach to analyse those properties which are necessarily
required of the underlying system.

PROPOSITION 3.21 (a necessary condition for universal adaptive stabilization).
Let

I2(t) Ax(t)
} for k e [T Ti+l)k(t) Ilfix(t)ll2 I

Supposefor each xo JR, with k(0) T0, that x(t) --+ 0 and k(t) --+ k(, xo) < cx. Then
there exists j N such that r (Aj) C C_.

Proof If no Ai is stabilizing, then by Corollary 3.18 we would have

which is not possible because int(/J) 4. rq

Remark 3.22. This is the piecewise-constant analogue of the necessary conditions for
universal adaptive stabilization established in Bymes, Helmke, and Morse (1986).
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4. Qualitative and topological properties for minimum-phase, relative-degree-one
systems. In 3 we saw that in a sequence of "experiments" (i.e., applying the same control to
the same system but with differing initial conditions), generically the limiting linear system
(2.14) will be exponentially stable. As we have clearly seen in Example 2.9, we cannot really
expect better than this, and in most cases H will be nonempty. Indeed, it is easy to see that if a
piecewise-linear universal adaptive stabilizer is designed for a large enough class of systems
(containing, of course, some open-loop unstable ones), then H will be nontrivial for some
realization of the system to be controlled.

We now consider the case when only one experiment is performed so that the initial
condition is fixed. We focus on the effect that the controller, given by (2.11) and (2.12), has
on the stability properties of the limit system (2.14) and in particular whether the limiting
system is exponentially stable. We will restrict attention to Example 2.2 in the single-input,
single-output case. We have a system

(4.1) Jc(t) Ax(t) + bu(t), y(t) cTx(t),

which can be stabilized by (2.9) and (2.7), which we recall is given by

u(t) (-1)iriy(t), k(t) y2(t) if k(t) [ri, ri+l).

Note that the controller is parametrized by the sequence {ri }, which must satisfy (2.8). We
refer to such a sequence as a Nussbaum sequence.

In this problem x0 is fixed and the limiting gain k is now a function of {ri only, and so

k k(cx, {ri }). Using the relative-degree-one structure we can rewrite (4.1) as

(t) ay(t) + CTbu(t) + al2z(t),

(t) a21y(t) + A22z(t),

where a , a12 lx(n-1), a21 ](n-l)l, A22 E (n-1)x(n-1), and (by minimum phase)
t:r(AE2) C (-.

LEMMA 4.1 (Ilchmann and Owens (1991)). For each xo there exists K > 0 such that

(4.2) 0 < y(t) < K + K y(s) + crb y(s)u(s)ds.

LEMMA 4.2. Let {ri} befixed. For each R > 0 there exists q such that k(cx, {’i})
for all with II{’i " }11 _< R.

Proof. Using Lemma 4.1 and (2.7) we have for each {?i} that switching terminates before
the inequality

0 < y2(t) -+- K(’i o) -+- cTb (--1)ii(,i ’i-1)

is violated. This will be uniformly bounded on II{’i} {i}ll R for {’i} satisfying
(2.8).

Remark 4.3. If {i is fixed, then it follows from Lemma 4.2 that any/-neighbourhood of
{vi is, with regard to the possible values of the limit gain, essentially an q+l-neighbourhood
of (v0, q) for some q.

In Ilchmann (1994) it is shown that for each fixed x0 the set of Nussbaum sequences
which results in an exponentially stable linear limiting system is dense with full measure. To
be precise, let G(xo), given by

G(xo) {{ri} (2.14)is exponentially stable},
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be the totality of all Nussbaum sequences which produce exponentially stable limit systems
when (2.9) is applied to (4.1).

PROPOSITION 4.4 (Ilchmann (1994)). If (A, b, cr) is controllable and observable and xo
isfixed, then G(xo) is dense and hasfull Lebesgue measure in thefollowing sense: for each
{ri} and every > O, G(xo) is dense in the l e-neighbourhood around {zi}. If q is the

uniform bound on the number ofswitches given in Lemma 4.2for this e-neighbourhood, then
I-Iq(G(xo)) hasfull Lebesgue measure in the ]1q+l e-neighbourhood around (zo, rl "lSq).

Here 1-1q is the projection {r0, zl - (z0, zl Zq).
We can make a minor improvement to this result by exploiting continuity properties of

the ti with respect to the controller parameters {ri }.
LEMMA 4.5. (i, zi+) - eA(ti(X))x is continuous with respect to (zi, ri+l)for every x

such that

(x, Wi(t)x) > "i+1-

PROPOSITION 4.6. int (G(xo)) is dense in any l-neighbourhood of a Nussbaum se-
quence.

Proof Let

IG(xo) {{zi} x0 S({z’i})}.

We claim that I G(xo) is dense in G(xo) and open.
If e > 0 and {Z’i} are given, choose {’i G(x0), using Proposition 4.4, such that

II{’i} {vi}ll < . Letq be such that x0 Sq({i}) for some q.2 By increasing ’q+l by an
arbitrary small amount, we can arrange that x0 int (Sq({fi})) C S and therefore IG(xo) is
dense.

Almost by definition I G(xo) is open. To make this precise, let {’ci I G(xo). We must
show that

{{@i} II{@i}- {r/}ll < } IG(xo)

for some e > 0. By Lemma 4.2 we know that there exists q such that small changes to

rq+l, rq+9. are unimportant. We therefore have to consider only small perturbations to

finitely many of the ri, and so the result follows if we can verify the following two claims:
(1) if (x, rq) 6 int (Sq+), then there exists > 0 such that (, fq) 6 int (Sq+ ({?q })) for

allj, ’q, and ’q+l with IIx 11, I’j rjl < , j q, q + 1;
(2) for all e > 0 there exists > 0 such that II{q} {’q}llo < N and IIx 11 <

implies IltPq(X) q()ll < ,
since by applying (2) repeatedly we can move from/-q to/-0. (We use the obvious notation
of i denoting tPi for {’i }.)

Claim (1) follows from the continuity ofrq((x) ri+x ri with respect to and
’q }. Claim (2) follows from the continuity of tq and Lemma 4.5 since

IIq(X) Sq()ll IIq(X) bq()ll + IIq() q()ll. gl

Remark 4.7. Putting these results specific to minimum-phase, relative-degree-one, single-
input single-output systems together with the general results of 3 gives a complete picture in
that stability of the limit system is a generic and full-Lebesgue-measure property with respect
to both plant initial conditions and controller parameters.

2Recall Sq {x0 ]1 qbt(Xo, i) E S- some < o}.
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The remainder of this paper concerns a detailed quantitative and qualitative analysis of
the second-order case. We assume that crb > 0 and (A, b, c) is minimal. By Proposition
3.20 we have on each compact subset of 2 a finite partition of b/, T, and ,9 according to a
finite number of potential limit gains. The qualitative nature of this partition depends strongly
on whether information about the high-frequency gain cb is available and on the root locus
of the system to be controlled.

i) If the information crb > 0 is available, then we can simply use (2.10) and (2.7).
ii) If the high-frequency gain information is not available, then we must use (2.9) and

(2.7).
It is easy to see that there are five types of second-order, minimum-phase, relative-degree-one
systems characterized according to pole-zero locations of the system transfer function

c (s I A)_lb p(s) c’b(s ’)
q(s) (s k)(s lz)

N.B. ?’, the zero, is negative.
Case 1 (types I, II, and III) (real poles).
I.,k </z < ,.
II. ) < , </z (pole-zero interlacing).
III. 9/> ) >/z.
Case 2 (types IV and V) (complex poles).
/z . with Im) 0.
IV. Re < 0.
V. Re) > 0.
Type I: The root locus lies completely in the left half plane. If cb > 0 is known, then

Type II: The root locus lies on the real axis for all positive values of gain.
Type III: The root locus has a departure from the real axis at some positive gain.
Types IV and V: The root locus is a subset of the root locus in III. If, for some positive

gain r*, the root locus intersects the real axis, then the intersection is in the left half plane and
all gains greater than r* are stabilizing.

If sign(c7"b) is not known, then the complete -+- gain root locus is relevant. In this case I,
II, IV, and V are equivalent up to translation of the complex plane parallel to the real axis.

We are mainly interested in properties of/g. Because we have a second-order system, the
only contribution to/g can come from those j 6 J for which the x-dynamics are hyperbolic
(Aj has one positive and one negative eigenvalue). Let

jH {j J lxj -- eAjtx is hyperbolic}

and, for each j 6 JH, )j and/zj be the negative and positive eigenvalues of Aj. How the Sj+,
j 6 J/_/ ultimately contribute to S is dependent on the overall dynamics, which in turn are
determined by the possible transitions between linear x-dynamics as we map down to H0.

Qualitative and quantitative resultswhen knowledge ofcrb> 0 is available. Ifc b > 0
is known and we use (2.10), then either JH 0 or there exists q 6 1 such that

jH {0, 1 q}.

It is important to analyse the transition from one hyperbolic system to another, as this causes
the distortion and twisting of S/+.

LEMMA 4.8. If i, + 1 jI4, then
i) 4- (Si++ 1) lies between Vi x ri and Vi re },
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ii) q-’(Sl N V/s 0S/+ \ {0} "= {(s/+, ri), (-s/+, ri)}, where 4-s/+ i (.1i) and t is
determined by

dt Ti+I

iii) t/1 (S_+I) is smooth and t-1 (SI._1) I..J S? is continuous.

Proof. i) Let Vi span{v[ }, Vi" span{v’ with eigenvalues )i and/zi. If (x, Ti) E S
with x or v/s +/v’, a, E , then

4’-’ (x) cp-;’ v/s +
where p et(x) > 1.3 The result follows.

ii) Because of the continuity of @- we need only to consider points (x, ri) E S/1’ with

and e -+ O. Then

()i -/zi)

and

?1 (Xe)
(’i /L/’i) {(,i--)Vi+l)P-’ ( 1 )i

(lzi

where p --, oo, ep-Z --+ i as e --+ O, and

(4.3) 3/2 fo cT eZt 1
dt T + "gi.

It follows that lime_>0 p-I (x)
iii) Note that Ker cr span() is positioned anticlockwise between V[ and Vi. Hence,

by i) Kercr A (S--b 1) and Ker (cr) A S " Using Proposition 3.13, it follows
that tp/- (S/1) is smooth. Finally by ii), tp-(S) U S/+ is a continuous union connected at
{(S?, Ti), (--S?, 75i) }. [-]

PROPOSITION 4.9. If(A, b, cr) 12x2 X 2xl X ]1lx2 is minimal and minimum phase,
crb > 0 is known, (2.10) is used and JH 0, then bl is a closed continuous curve differen-
tiable at all but 2([ JHI 1) points and

inf{llx- Ylllx E Kercr, Ilxll-- 1, y E/d, Ilyll- 1} > 0.

Before illustrating some features ofH in the case crb > 0 known, we have a lemma which
further aids the qualitative analysis. This is to cope with transitions caused by switching from
stable linear x-dynamics to hyperbolic x-dynamics.

3We are treating ti as a function defined on ]12.
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LEMMA 4.10. If E JH, (i + 1) J, and S+ S+1, then c-i (S+1) has exactly two

connected components.

Proof. -1 is continuous but not defined on SI. Hence 4/-1 is continuous at each
point x E S1 \ S1. However, since S1 S, S1 cuts S1 into two halves. Let
(X, T +1) S_t_ approach S/-+ SO that

Xe -U + 1)

with U Vi l)i Viu, and e --, 0.
Arguing as in Lemma 4.8 we have that

-I(x) (F.p -’i t + p-lzi Vi

with lim,0 p 0, li1__,0 ep- c*, where

c* 2/Z(Ti+I Ti) --IcTvil2

21zlcT ui 2

(N.B. S-+ Si_ guarantees that 2/zSTi > IcTvil2 for each x approaching S+ in

S/++l .) I-]

Example 4.11 (Example 2.9 revisited-known high-frequency gain). For the system given
in Example 2.9 the open-loop poles and zeros are interlaced so that the root locus, i.e., the
zeros of (s2 s 6) + k(s + 1), lies entirely on the real axis. We take T0 0, T1 3, and
T2 6.5. Simple calculations yield

-2
lal 2

Si-- Ilal <

-3
I11 _<

S a lal <2
1

If r3 is not too large, then the line S is not contained in the ellipse Sf. r3 8 is a
suitable choice. Hence by Lena 4.10, (Sf) has two coected component.

The remainder of the mapping depen& on the relative sizes of z4, z5 and infoation
given by Leas 4.8 and 4.10. If r4 10, then S C Sf, and therefore by Lena
4.10, (Sf) is not split imo two components. However, S (Sf), and therefore
( (f)) is in two componems. These features are illustrated in Fig. 3, where we show

Sf mapping under 1, {1, and ffl to H0. Note the cusp feates in 1(Sf) caused by
intersection with Ker (cr).

Finally we consider the structure of . In this case J {0, 1 so that

We can calculate/X0 and/d explicitly. Indeed,
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-lO
-3 -2 -1 0 2

-lO

-15
-5 -4 -3 -2 -1 0 2 4

(b)

-10

-15
-5 -4 -3 -2 -1 0 2 3 4

(C)

Fro. 3. S mapped to Ho for Example 4.11.
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1.0

-5

-]0

-zl -2 0 2 4

Fie. 4. bto U L4 U ,$2 U 83 for Example 4.11.

and

where

, (,o)
V/27p1 + 125p6- 144p5- 8

and p e 1.41, cx). Figure 4 shows the complete picture for H together with T2 0S2 and
’T3 083. Note that H is a closed, continuous curve with two points of non-differentiability
as predicted by Proposition 4.9.

Qualitative and quantitative resultswhen knowledge ofthe sign ofthe high-frequency
gain is not available. If cTb > 0 is unknown, then the structure of H is more complicated
because as k increases, the hyperbolic dynamics are interlaced with source and sink dynamics.

The most interesting feature, which did not occur in the case of known sign of the high-
frequency gain, is that caused by transitions from hyperbolic dynamics to complex source
dynamics and back to hyperbolic dynamics. Let

jc {j J lIm(a(Aj)) :/: 0};

i.e., for each j e jcs, x -> eAjtx has complex source dynamics.
LEMMA 4.12. If j e jcs, (j 4- 1) jH, and S?+ S;+1, then t;l(S?+l C nj is a

doubly infinite spiral about {0}.
If in addition, (j 1) 6 jH, then t;Jl(t;1 (S?+I)) is apair ofinfinite spirals centredat

0(S?_1)- {(-I-s;_ 1, Tj-1)}.
Proof Let (x, rj+ 1) 6 S+)’+1 \ Sj-+I, with x parameterized by e, approach Sj-+I as e -- O.

It follows that lim_0 tj(x) cxz, where tj(.) is the time taken to flow from Hj/I to Hj. But

;l(xe) e-t(x’) (ot cos wtj(x) u 4- fl sin wtj(x)v)
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for some fixed cr > 0, w > 0, u, v 6 ]2. Hence j--l(S;+l is a spiral winding infinitely
many times about (0, rj). Arguing as in Lemma 4.10, part of j--l(sj++l) is cut by Sf. It
follows that all points in q-l(0 S+1) which are on one side of S- become an infinite nest of

loops, j-_l (j-- 1(S;+1)). Since the spiral )j-- (S+1) is centred at (0, rj) and 0(S_x) "maps"
to (0, rj) under bj_ 1, it follows that (+/-sj+_ 1, rj_ 1) (Sj+_ 1) are the centres of the nested
loops. [

If, in Lemma 4.12, j + 2 ’ J, then S/++2 is an ellipse and1(S+) contains part of S+j/l"
Hence the infinite spirals Cj (S++1) contributing ultimately to gg carry with them contributions to
S, with the ellipse Sj++2 in Hi+2 becoming an infinitely spiralling band in Hj. These features are
illustrated in Example 4.13. However, it is difficult to make general statements as to whether
these features will always reach H0 when greater numbers of switches are considered.

Example 4.13 (unknown sign of the high-frequency gain). Let

A= b- cr =[1 1].
0.2 0.8 1

If we do not know the sign of cvb, then we use (2.7) and (2.9). If r0 0, "gl 0.6,
r2 0.8, and z3 1, then 0, 2 6 J/4, 1 6 jcs, and 3 J. If r4 3.22, then

S- {(x, y) 129x2 + lOxy + 45y2 < 160/9},

-0.48
I11 6 [0.2, 0.84]

S- {(x, y) 2.65x2 2.5xy + 3.5y2 < 0.2},

Sl+ 0.
In Figs. 5(a)-(c) we show S- mapping to H0 (shown in a dotted line) together with S-

in Fig. 5(b) (shown in boldface). Figures 6(a) and 6(b) show part of/g coming from L/0 and
/,/2 (shown in boldface) together with T3 (shown dotted). Figure 6(b) is a blow-up of part of
Fig. 6(a). In order to emphasize the detail, in Figs. 6(a) and 6(b) we have rotated coordinates,
putting S- on the vertical axis.

In this example we see that even for minimum-phase, relative-degree-one systems, the
possibility of unknown sign of the high-frequency gain induces a significant degree of com-
plexity in the partition of ]2 . U T U /. In Example 4.13, J/4 {0, 2, 4, 6 and
J J/-/U {1}.

The points exterior to

o ut u s3,

represent those initial conditions whose gain evolution is not terminated until four or more
switches in gain have taken place.

Observation. Dropping explicit reference to r0, we have in Example 4.13 that +/-s- are
the centres of the infinite spirals -1 (q-I (S-)) -2. Hence, for all > 0 there exist Xl, x2,

and x3 within of so such that

K(cx,s)--ro, K(cx,xl)---z’2, K(cx,x2)=-r3, K(x,x3)=(-1)Jvj, j >4.

Hence, starting arbitrarily close to s- we have four qualitatively distinct types of closed-loop-
systems behaviour, according to none, two, three, and more than four switches switches in
gain. However, from Proposition 3.20 we know that on each bounded set we have only finitely
many switches so that this erratic nature of the closed-loop system in a neighbourhood of s-
is confined to solutions switching at most a finite number of different times.
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-1 -0.5 0 0.5 1.5

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4
5 -1 -0.5 0 0.5

(b)

0.5

-0.5

-1.5

-2

(c)

FIG. 5. Sf mapping to Ho (dotted) and 82 mappingfrom H2 to H1 (boldface)for Example 4.13.
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1.5

0.5

-0.5

...08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

(a)

0.65

0.648

0.646

0.644

0.642

0.64

0.638

0.636

0.634

0.632

0.63
-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

xlO

FIG. 6. L/0 tJL/2 tJ $3 U %for Example 4.13. (b) is a blow-up ofpart of(a).

5. Concluding remarks. In this paper we have considered a new approach to an analysis
of those nonlinear systems arising from adaptive control of linear time-invariant systems. The
particular problems considered were stability of solutions under small perturbation of the
initial data and the important question of generic stabilization by the limit gain matrix.

Instead of considering the closed-loop system as a differential equation we reduced
the analytical problem to one of the topological properties of a sequence of flow induced
homeo/diffeomorphisms. The approach is applicable to all universal adaptive stabilization
schemes in which the feedback gain matrix is piecewise-constant and right continuous and
where the first gain and subsequent ordering of the gains is independent of initial data. This
encompasses every known sequential universal adaptive stabilization scheme.

We have established that the totality of initial conditions, {x0 n }, is partitioned ac-
cording to

an open and dense full-Lebesgue-measure set S on which stability of solutions is
preserved under small perturbations and the limit gain is stabilizing,

a nowhere dense and Lebesgue-measure-zero set 7- on which on which stability of
solutions is not preserved but the limiting gain is still stabilizing,
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a nowhere dense and Lebesgue-measure-zero set/g on which the limiting gain is not
stabilizing.

For the class of minimum-phase, relative-degree-one, second-order systems with known
sign of the high-frequency gain we showed the latter to be a closed, connected curve with at
most finitely many points of nonsmoothness. We also obtained necessary conditions under
which universal adaptive stabilization by switching sequence controllers is possible.

This new approach suggests several interesting problems. For example, how does the
geometric structure ofthe sets $, 7", and/g break up as we perturb either the system (A, B, C)
or the gain and switching sequences? In particular, is the structure stable under small nonlinear
perturbations? Can we exploit knowledge of this structure to specify a finite number of
experiments by which a stabilizing gain can be "identified"? Moreover, what happens if the
system is nonlinear between switches? Can we still conclude these same generic properties?

Finally, in Logemann and Mhrtensson (1990) piecewise-constant universal adaptive stabi-
lization is considered for a large class ofdistributed parameter systems. It would be interesting
to investigate the topological structure of/g, ,9, and 7" in this case.

Beyond the piecewise-constant case we could also consider generic properties for adap-
tation laws in which f in (1.1)-(1.3) is smooth or piecewise-smooth. Similar results are
anticipated in this case. However, the analytical techniques will be different.

Acknowledgment. I would like to thank B. D. Mestel of the University of Exeter for
several illuminating discussions.

REFERENCES

C. I. BYRNES, U. HELMKE, AND A. S. MORSE (1986), Necessary conditions in adaptive control, in Modelling Identifi-
cation and Robust Control, C. I. Byrnes and A. Linquist, eds., North-Holland, Amsterdam, pp. 3-14.

A. ILCHMANN (1991), Non-identifier based adaptive control ofdynamical systems: A survey, IMA J. Math. Control
Inform., 8, pp. 321-366.

(1994), Adaptive controllers and root loci of multivariable minimum phase systems, Dynamics Control, 4,
pp. 123-146.

A. ILCHMANN AND n. LOGEMANN (1993), High-gain adaptive stabilization ofmultivariable linear systems--revisited,
Systems Control Lett., 18, pp. 35-364.

A. ILCHMANN AND O. H. OWENS (1990), Adaptive stabilization with exponential decay, Systems Control Lett., 14,
pp. 437-443.

(1991), Exponential stabilization using non-differential gain adaptation, IMA J. Math. Control Inform., 7,
pp. 339-349.

H. LOGEMANN AND B. MARTENSSON (1992), Adaptive stabilization of infinite dimensional systems, IEEE Trans.
Automat. Control, 37, pp. 1869-1883.

B. MARTENSSON (1986), Adaptive Stabilization, Ph.D. thesis, Lund Institute of Technology, Lund, Sweden.
(1991), The unmixing problem, IMA J. Math. Control Inform., 8, pp. 367-377.

D. E. MILLER AND E. J. DAVISON (1991), An adaptive controller which provides an arbitrarily good transient and
steady state response, IEEE Trans. Automat. Control, AC-36, pp. 68-81.

A. S. MORSE (1983), Recent problems in parameter adaptive control, in I. D. Landau, ed., Outils et Mod61es
Math6matiques pour l’Automatique, l’Analyse de Syst6me et le Traitment du Signal, vol. 3, Editions du CNRS,
Pads, pp. 733-740.

R. D. NUSSBAUM (1983), Some remarks on a conjecture in parameter adaptive control, Systems Control Lett., 3,
pp. 243-246.

J. C. WILLEMS AND C. I. BYRNES (1984), Global Adaptive Stabilization in the Absence oflnformation on the Sign of
the High Frequency Gain, Lecture Notes in Control and Inform. Sci. 62, Springer-Verlag, New York, pp. 49-57.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 34, No. 3, pp. 1071-1097, May 1996

() 1996 Society for Industrial and Applied Mathematics
014

oo CONTROL OF NONLINEAR SYSTEMS: DIFFERENTIAL GAMES AND
VISCOSITY SOLUTIONS*
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Abstract. Dealing with disturbances is one of the most important questions for controlled systems. 7-[ optimal
control theory is a deterministic way to tackle the problem in the presence of unfavorable disturbances. The theory
of differential games and the study of the associated Hamilton-Jacobi-Isaacs equation appear to be basic tools of
the theory. We consider a general, nonlinear system and prove that the existence of a continuous, local viscosity
supersolution of the Isaacs equation corresponding to the 7-( control problem is sufficient for its solvability. We
also show that the existence of a lower semicontinuous viscosity supersolution is necessary.

Key words. o control, differential games, viscosity solutions, Isaacs equation, nonlinear systems
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1. Introduction. In this paper we consider a general, nonlinear, controlled, dynamical
system subject to unknown disturbances

(1.1) 5 f(y, a, b),

with output or response h(y, a, b), where a is the control and b is the disturbance. The
disturbances are modelled deterministically as functions of time, and we want to optimize the
performance of the system using the worst case criterion.

We are given a closed set T with respect to which the undisturbed system (b 0) is
(expected to be) stable (or asymptotically stable), and for some prescribed y > 0 we look for
control functionals (or strategies) a ot[b] of the controller that achieve the stability and such
that, for all possible disturbances b(.), the trajectories solutions of (1.1) starting at a point of
7" satisfy

f0 f0(1.2) Ih(y, or, b)12ds <_ ,2 Ibl2ds for all > 0.

If we can find such an t (ideally in feedback form), we say that the suboptimal control
problem is solvable with disturbance attenuation level y. The definition we use, which we
basically take from Van der Shaft [30], is here given in an informal way and we refer the
reader to the next section, where (1.2) is also generalized in particular to points off 7", and to
Remarks 2.2 and 2.3, where we discuss the connections with previous literature.

As formulated, the problem appears to be a differential game for the system (1.1), as first
observed by Basar and Bernhard 10], and indeed the 7-/ problem is solvable if and only
if a suitably defined, nonnegative value function is zero on T and admits optimal strategies
(for the definition of value function we follow Elliott and Kalton 13]; for a description of the
relationship between differential games and viscosity solutions and more recent references,
see also Evans and Souganidis 14] and the author [25]). This fact makes the problem similar
to that of proving stability and asymptotic stability of dynamical systems with competitive
controls, which we studied in [26], [27]. We approach the 7-/ problem using the same method
of the mentioned papers with relevant additional difficulties, namely, the unboundedness of
the sets of controls and disturbances, the unboundedness of the dynamics with respect to the
parameters, and the fact that the running cost of the trajectories, that is,

Ih(y, a, b)l 2 y21bl2,

*Received by the editors April 21, 1994; accepted for publication (in revised form) February 14, 1995.
tDipartimento di Matematica Pura e Applicata, via Belzoni, 7, 35131 Padova, Italy (soravia@pdmatl.math.

unipd.it).
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does not have a prescribed sign. To tackle the first two we use a change of variables and
adapt to differential games a general, classical method to study unbounded control problems,
which consists of the reparametrization of the trajectories. This idea leads to a more regular
Hamiltonian while leaving unchanged the value function and was used to this purpose for
control problems by Barles [6]. The problem shows also the unusual fact that the payoff
functional of the differential game, which we recover from (1.2), is a maximum cost type
functional, as previously studied by Lions [24], Barles and Perthame [7], and Barron and Ishii
[9] in optimal stopping time control problems and by Barron [8], Krassowski and Subbotin
[23], and the author [27] for differential games. There is also the subtle question of the
existence of the value of differential games that we have to take into account, and this fact will
be discussed in Remarks 2.4 and 3.5.

Our approach is based onthe study ofthe Hamilton-Jacobi-Isaacs equation corresponding
to the differential game and the use of the theory of viscosity solutions for fully nonlinear first-
(and second-) order partial differential equations initiated by Crandall and Lions 12]. This is
due to the fact that, in the case of nonlinear systems even in a special form as nonlinear in the
state and affine in the controls, the Isaacs equation does not have in general classical solutions.
The goal is to show a rigorous relationship between the problem and the Isaacs equation
and to prove necessary and sufficient conditions for its solvability. We prove that if there is
a continuous, nonnegative, viscosity supersolution of the Isaacs equation, null on T, then the
7-t suboptimal control problem is solvable. Moreover, if the value function is finite, then it is
a discontinuous solution of the equation; when it is continuous, it is the minimal nonnegative,
continuous supersolution. Our first result can be stated also locally in a neighborhood of T,
with a suitable definition of the local 7-(o suboptimal problem. In our case, the Isaacs equation
has no unique solution in general, and this creates a further difficulty for the problem since
the usual comparison theorems for viscosity solutions do not apply and we need to look for
new optimality principles for supersolutions. The presentation of the results is almost self-
contained, and we remark that they can be easily generalized to a wider class of nonlinear
differential games.

Our results are the parallel of those of James [20] for dissipative systems, first studied
by Willems [32] (see also Hill and Moylan 16]), where, however, the stability requirement is
not an issue. In that case, the control a (.) ranges in a set that is a singleton, or equivalently a
smooth feedback control a(x) is fixed in the dynamics (1.1); this makes the proof much easier
to obtain. However in that special case, the results of James [20] are stronger in the sense that,
to prove the sufficiency part, the supersolution is required only to be lower semicontinuous. We
could do the same in our situation if the control set A is compact, allowing relaxed strategies or
requiring convexity ofthe sets (f(x, A, b), h(x, A, b)). Therefore our results can be extended
to contain those of James [20], but the details will be presented elsewhere. One of the referees
pointed out to us the recent paper by Ball and Helton [2], where the results in [20] are applied
to get necessary conditions for the solution of the nonlinear 7-/ control problem in the case
of nonlinear affine systems using viscosity solutions.

In this paper we consider a system with complete information. However, the control
problem for partially observed systems has great relevance for the applications and has been
studied by Isidori and Astolfi 18] in the case of nonlinear systems affine in the controls (but
see also Basar and Bernhard 10]). Some results in this direction are contained in the paper
by the author [28].

It is well known that disturbances can be also modelled as stochastic processes. There is
an interesting link between the two theories, by means of the risk-sensitive control approach,
where a small parameter is introduced to measure the noise intensity in the stochastic system
and to affect the payoff functional, which is in a certain log-exp form. In the limit as the
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parameter goes to zero, it can be proven that the related value functions converge to the value
function ofa differential game that is contained in the class we consider. This result, originally
obtained by Jacobson 19] for the linear exponential quadratic gaussian problem and formally
by Whittle [31] for nonlinear systems, has been proved by Fleming and McEneaney [15] and
independently by James [21], for finite horizon problems.

We finally recall that the control problem was originally formulated for linear systems
by Zames [33] in the frequency domain, where the name has a clear meaning. For detailed
descriptions of the problem as well as important recent developments of the theory and long
lists of references, we also refer to Basar and Bernhard [10], Van der Shaft [29], [30], and
Ball, Helton, and Walker [3].

The paper is organized as follows. In 2 we discuss assumptions and definitions. In 3
we state the main results of the paper with some comments. In 4 we prove some results
concerning an auxiliary problem. In 5 we give the proofs of the main results. In 6 we briefly
discuss the solution of the problem and the existence of optimal strategies in feedback form.

2. Preliminaries and differential games. We consider the following controlled dynam-
ical system:

] 19 f(Y, a, b), y(O) X U= ]N,
(2.1) / z h(y,a,b).

We assume that A C M and 0 6 B C M are closed, f ]U X A B --+ ]1u and
h U A B --+ are continuous, and the following are satisfied:

If(x, a, b) f(y, a, b)l < L(1 / lalq / Iblq)lx Yl,

If(x, a, b)l < L(1 + Ixl / ]a]q / Ibl q) for all x, y, a, b and some 0 < q < 2,

(2.2) Ih(x, a, b) h(y, a, b)l < LR(1 + lalz / IblZ)lx Yl,

Clalz LR(1 / lalq / Ibl 2) _< h(x, a, b) <_ L(1 / lal z / Iblq), (C > 0),

for all Ixl, lyl <R,a6A,b6B,R>0, and some0<q <2.

In our main results, we will also require that

(2.3) h(x, a, O) >_ O.

No big changes have to be made if in (2.2) we substitute 2 with p > 1. In our notation, y is the
state space variable, z is the rtmning cost, a is the controlled input, and b is the disturbance on
the system. Usually in the applications h(x, a, b) I-(x, a)l 2, where N A --+ P is
the output to be controlled; however, since some results of this paper have independent interest
and in order to extend the known results in the case of dissipative systems, we do not restrict
ourselves to nonnegative costs, allowing h to depend also on b. The assumptions (2.2), (2.3)
are satisfied by the usual linear quadratic model. The same is true for nonlinear systems affine
in the controls with quadratic cost.

The admissible controls for our problem are given by the two sets

t Loc(+, A),

13 Loc(lR+, B);

note in particular that they are not required to be small for large times, as usually done in
the literature. We will denote by Yx(’; a, b) or simply by yx(’) or y(.) the unique solution
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of (2.1) corresponding to the choice of the controls a 6 4, b 6 /3. We also define the
admissible strategies for the controller as nonanticipating (or causal) functionals ot /3 --+ 4,
i.e., satisfying the condition

(2.4) for all > 0, b b a.e. in [0, t] implies ot[b] o[b] a.e. in [0, t],

and indicate by A the set of such functionals.
Remark 2.1. Definition (2.4), which corresponds to the full-information situation, means

that, when acting at time t, the controller a knows completely the control b(.) in the past [0, t]
but has no preview of the future behavior of the disturbance. There are at least two typical
examples of nonanticipating strategies. The first one is a constant mapping ot[b] a
for all b 6/3; the second one is provided by (static state) feedback controls. Let a N ._+

be a function such that for all x 6 ]iN and b /3, the system f(y, a(y), b), y(O) x,
has a unique, absolutely continuous, global solution. Then for any trajectory y(.) the position
c[b](t) a(y(t)) defines a strategy, if a(.) is sufficiently smooth. A little variant of this class
of strategies is defined by means of the so-called (see Van der Shaft [30] and the references
therein) nonlinear compensators. To the system (2.1) we add the set of equations

k(, y), (0) ]n,

and consider a feedback control for this extended system or dynamic state feedback control,
a N+P

__
A. We then define the functional ot[b](t) a((t), y(t)), that, with suitable

assumptions on k and a, is a strategy.
We are given a closed set 7- C N, with respect to which we want to study the stability

of (2.1). We will not require it as an assumption in the statements, but the following is a
necessary condition for fulfilling the assumptions of our main Theorem 3.2, namely: for every
x 7" there is a A such that h (x, a, 0) 0 and f (0, a, 0) 0.

Given an open set f2, we introduce the following functional, or exit time of the trajectories
from f2, as

(2.5) tx tx(a, b) inf{t > 0" yx(t) 2} <

where tx +cx if y(t) f2 for all > 0. Observe that trivially if x f2, then tx (a, b) 0
for all a, b.

Let T C f2 C N be an open set. We say that the system hasfinite gain in f2 measured
by , if the two following conditions are satisfied:

(i) (f2 is viable for the undisturbed system) For all x 6 f2 there is a 6 t such that the
solution yx (t; a, 0) 6 f2 for all > 0 or equivalently tx (a, O) +cxz.

(ii) The function

(2.6) V(x) inf sup sup (h(yx, c[b], b) v2lbl2)ds
aEA bE/3f,, tI+

is finite for all x 6 fl and such that V _= 0 and continuous at the points of 7-.
In (2.6) we denoted

(2.7) 13, {b 13" yx (t; or[b], b) 6 f2 for all 6 +}

and set that A if and only if 0 /3,. We observe that condition (i) implies A 0
and then V > 0 (to prove this fact it is sufficient to select 0 6 + and b --- 0 as special
values in the right-hand side of (2.6)), but in general V may assume the value +cxz at some
points.
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We say that the local 7-[ suboptimal controlproblem with attenuation level index y > 0
is solvable if for any open set b/ T, there is an open 7" C f2 c L/such that the system has
finite gain in g2 measured by ,.

If instead the undisturbed system is open-loop Lyapunov stable to 7" and the system has
finite gain in RN, namely, the (lower) value function

(2.8) V(x) inf sup sup (h(y, [bl, b) glbl)ds,

is finite, equal to zero, and continuous on T, that is, the above condition (ii) is satisfied for
N ((i) is automatically te in this case), we say that the suboptimal controlproblem

is solvable.
The solvability of the local suboptimal control problem clearly implies that the

undisturbed system is Lyapunov stable with respect to T by means of open-loop controls even
if this is not explicitly required as for the solvability of the suboptimal problem. We recall
in fact that open-loop Lyapunov stability to T of the undisturbed system means that for any
neighborhood 3 T there is 3 T such that if x 6 we can find a control a 6 A so that
the trajecto solution of

f(y, a, 0), y(0) x,

satisfies y (t) 6/g for all 6 tR+. If we also want our system to be asymptotically stable, then
some condition on the sign of h stronger than (2.3) is to be assumed. We will discuss this
point in Remark 3.3. We prefer to prove the stability of the system rather than assuming it in
advance as in some previous literature, since as we will see in Remark 3.3, as a consequence
of the proof of Theorem 3.2, it is almost a consequence of the finite gain condition.

Remark 2.2 (on previous literature). When applied to linear systems, our definition of
7-goo suboptimal control problem is less restrictive than the standard one (see, e.g., Basar
and Bernhard 10] and the references therein), requiring the existence of a feedback control
a ]U _.._> A (or at least a dynamic state feedback control) such that the closed-loop system

f(y, a(y), b), y(O) x,

has a unique solution for all initial conditions, is asymptotically stable when b 0, and has
L2 gain less than or equal to /; i.e., for all y(0) x 6 7" the solution satisfies

(2.9) h(y, a(y), b)ds < ?’ Iblds for all b B.

In fact, let us assume that the suboptimal control problem is solvable in the sense above
and h is nonnegative. If there is an optimal strategy for the value function (2.8), i.e., there is
oe A such that

V, (x) sup sup (h(y, o[b], b)
bB

then we immediately obtain

f0 f0(2.10) h(y, oe[bl, b)ds < ?’ Iblads + V,(x) for all b B.

If moreover the optimal strategy can be chosen in feedback form and the initial point of the
dynamics is x T, then (2.9) is satisfied. It is also clear that feedback stabilizability implies
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open-loop Lyapunov asymptotic stability. It is important to observe however that the inequality
(2.10) gives information about any point of the space (or at least of a neighborhood of T in
the local problem) and not only about those of the equilibrium set. This is a natural additional
request for nonlinear systems and was first proposed by Van der Shaft [30]. As a matter of
fact, by known results (see, e.g., Van der Shaft [29] and our Theorem 3.2), when the system
is linear and asymptotically stabilizable by linear feedback, (2.9) implies (2.10). For general
nonlinear systems such an estimate for trajectories starting at points in a neighborhood of
cannot in general be deduced from (2.9). Note that if (2.10) holds for some strategy ct A,
then choosing b /3 with support in [0, t], we easily obtain that, when h is nonnegative,
is optimal for V, (x). The extra positive term in the right-hand side of (2.10) is needed when
starting the system at x T, as one realizes choosing b --- 0, if h (x, a, 0) > 0 for all a A.

For nonlinear systems, the choice of the wider class of strategies that we consider is more
appropriate thanjust feedbackcontrols for developing the dynamic programming approach and
the connections with the Hamilton-Jacobi equation. One can later look for optimal strategies
in smaller classes. The class of so-called feedback strategies, i.e., causal functionals of the
state, can also be used in our problem, with the same results that we prove, provided that the
Isaacs condition (see Remark 3.3) is satisfied by the system. We will not discuss this point
in detail; see, however, [28]. As much as the definition in the nonlinear case is concerned,
according to Van der Shaft [30] (but relaxing the set of strategies), we solve the nonlinear
suboptimal control problem if we find a nonnegative function U s , which is null on
T, such that for all x 6 ]1N there is a strategy ot 6 A satisfying

(2.11) h(y, ax[b], b)ds < Iblds + U(x) for all b B and > 0,

and the controls Oex [0] provide the open-loop local Lyapunov stability. Arguing as above, we
can check that this is equivalent to solving the two following steps. First prove the solvability
of the problem as previously defined and then prove the existence of optimal strategies at
points of T (ideally showing that they can be chosen in feedback form) and that they satisfy
the stability requirement. The main goal of this paper is to find necessary and sufficient
conditions for the solution of the first step. Moreover we will show in the proof of Theorem
3.2 that the stability is guaranteed even by almost optimal strategies of the value function V.
We refer to the last section for a discussion and some results about the existence of optimal
strategies. This part can be studied by fairly classical methods, as far as a nonconstructive
proof is concerned, while it is almost open in the general case if we seek explicit formulas for
optimal strategies, except for very special systems.

We need to mention that the stronger gain condition (2.10) or (2.11) involving points off
T is not required in some other previous papers (see, e.g., Van der Shaft [29] and Ball, Helton,
and Walker [3]); ours is probably the first to require the continuity of V, on T. We feel that
both requests provide desirable information about the nonlinear system, and as a matter of
fact we will get them as consequences of the proof of Theorem 3.2, without need of additional
assumptions, so we decided to include them in the definition. Moreover the definition we use
allows us to characterize the solvability of the suboptimal control problem in terms of the
existence of suitable continuous solutions of the Hamilton-Jacobi-Isaacs equation, extending
the results of the linear case.

We remark that the problem is studied in the previous literature only with respect
to a single equilibrium point of the system and not to a general closed set. We finally recall
that in the literature, the 7-/ control problem is to find the smallest ?,* > 0 such that the
suboptimal control problem is solvable for all y > ,*.

Remark 2.3. For the definition of the local 7-t suboptimal control problem, again we
follow Van der Shaft [30]. However, as an alternative to our finite gain condition in 2, one
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may consider the function

(2.12) V(x) inf sup sup (h(y, ct[b], b) y2lbl2)ds,
otEA bE13 [O,tx

rather than the one in (2.6). The statement of our main Theorem 3.2 with a similar proof will
hold true even ifwe change (ii) and ask that V in (2.12) is finite in f2, null and continuous on T.

Remark 2.4. The function in (2.8) is called the lower value function of the differential
game (2.1) with payoff functional given by

P(x, a, b) sup (h(y, a, b) ?’2lb[2)ds,
R+

which is a maximum cost type functional. The function in (2.6) is a localized version of
(2.8) in f2 that we introduce for our problem. In this paper we will mostly study properties
of functions like (2.8), and this will lead to prove properties also for the local functions (2.6)
or (2.12). Our definition of the lower value function follows Elliott and Kalton [13] and the
references therein. The definition is not symmetric since b maximizes using controls while
a minimizes using strategies. As usual in the theory of differential games it is not possible,
in general, to define a value function in any reasonable way. We decided here to develop the
lower value approach, but using the upper value given by

sup inf P(x, a, fl[a]),

where 1-" is the corresponding set of strategies for "player" b, we would obtain completely
analogous results with obvious changes in the statements. We will come back to this and to
the question of existence of value in Remark 3.5.

3. Viscosity solutions and main results. We start this section by recalling the definition
of viscosity solution of a nonlinear, first-order, partial differential equation, in the discontinu-
ous case (we refer to Crandall and Lions [12], Ishii 17], and the more recent Crandall, Ishii,
and Lions 11 for more details).

Let w f2 --> N, f2 C NN open, be a locally bounded function. We define its lower and
upper semicontinuous envelopes as, respectively,

w,(x) lim inf{w(y):lx- Yl <_ r},
r-->O+

w*(x) lim sup{w(y) lx- Yl < r}.
r--+O+

DEFINITION 3.1. Let F S2 x I x IRN --+ IR be a continuousfunction. The lower (resp.,
upper) semicontinuousfunction u 2 --+ ]R is a viscosity supersolution (resp., subsolution)
of

F(x, u, Du) O in f2,

iffor all q9 C1("2) and x argminxea(u qg), (resp., x argmaxxea(u q))), we have

F(x, u(x), Dg(x)) >_ 0 (resp., F(x, u(x), Dq)(x)) < 0).

We also say that Dp(x) D-u(x), the subdifferential ofu at x (resp., Dq)(x) D+u(x), the
superdifferential). A locally boundedfunction u is a viscosity solution of F(x, u, Du) 0 if
u, is a supersolution and u* is a subsolution.

We now state the main results of this paper, whose proof can be found at the end of 5.
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THEOREM 3.2. Consider the system (2.1) and assume (2.2), (2.3). Let f2 7- be open,
andsuppose there is a continuous and nonnegativefunction U f2 --+ such that U (x =_ Uo
ifx Of2, U(x) < Uo for x 2, U =- 0 on T, and U is a viscosity supersolution of
(3.1) 7-[(x, DU(x)) inf sup{-f(x, a, b) DU(x) h(x, a, b) + ?’21bl2} >_ 0 in

bEB aEA

Then the system hasfinite gain in g2 measured by ,. Ifthefamily ofopen sets {x 2 U(x) <
e}e>0 is a local base for T, then the local TI suboptimal control problem is solvable. If,
moreover, f2 ]m, then the 7-lo control problem is solvable.

Remark 3.3. Observe that by Definition (3.1) of 7-/, the assumptions ofTheorem 3.2 imply
that the function U is also a supersolution of

max {-f(x, a, O) DU h (x, a, 0)} > 0 in
aA

therefore by the sign condition (2.3) it can be seen as a Liapunov function for the undisturbed
control system in the sense we defined in [27]. The stability of the undisturbed system that
comes as a consequence of the proof of Theorem 3.2 is then not a surprise. If, moreover, the
output h satisfies the condition

for all e > 0, h(x, a, 0) > C > 0 in (N\B("I-, e)) A,

where B(T, e) {x dist(x, 7-) < e} and A is compact, then the undisturbed system is
also asymptotically stable, as proved in the paper by the author [26]. To achieve asymptotic
stability, the previous condition can be relaxed by asking the so-called zero-state detectability,
which we do not state here in detail. If the set T is compact, as for example in the standard
case T {0}, then the result follows without the assumption on the sublevel sets of the
continuous supersolution U of (3.1) by assuming instead that it is positive outside T. To see
this, we can apply the first part of the statement to the family {f2 }e>0 of open neighborhoods
of T constructed as follows. Given a family {/J}>0 of compact neighborhoods of T, define

{x e bl U(x) < minu U}. Therefore when 7- is compact, the finite gain condition
implies the open-loop stability if the value function V is continuous and positive outside 7".

We observe that if the assumptions of the theorem are satisfied for some ?,* > 0, then
they are obviously satisfied for all V > ,* by the same function U. We also note that, since U
of Theorem 3.2 is nonnegative, U (x) 0 implies 0 6 D-U(x); therefore 7-/(x, 0) > 0, and
then, by the assumption (2.3), there is a 6 A such that h (x, a, 0) 0. This in particular holds
on 7" and is a necessary condition on the data for the assumptions of Theorem 3.2 to hold.

When studying the local 7-t suboptimal control problem, it is interesting to have a
priori information on the size of the neighborhood of 7- where the gain condition is satisfied.
Theorem 3.2 provides an indirect answer to the question, saying that after computing, even
locally around T, a nonnegative, continuous viscosity supersolution of the Isaacs equation,
which is null on 7-, the system has a finite gain in any of its sublevel sets.

The next result completes the parallel with the theory of dissipative systems; see for
example Willems [32], Hill and Moylan 16], and James [20], where U plays the role ofstorage
function and V defined in (2.8) plays the role of available storage. It also characterizes the
lower value function V when it is continuous, and this is useful to prove the existence of the
value of the game for our problem; see Remarks 2.3 and 3.2.

THEOREM 3.4. Assume (2.2); let V be defined as in (2.8) and 2 C ]1u be open; and
suppose that Vy is locally bounded in

(i) Then V is a viscosity solution of
(3.2) min{7-/(x, OV(x)), V} 0 in

and, if it is continuous in S2 m, is the minimal continuous supersolution of(3.2).
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(ii) Ifmoreover (2.3) holds, then Ve is a viscosity solution of

(3.3) (x, DVe(x)) 0 in S2

and, when continuous, is the minimal nonnegative, continuous supersolution of (3.3).
Remark 3.5. Theorem 3.4 shows that a necessary condition for the solvability of the
suboptimal problem is the existence of a lower semicontinuous, nonnegative viscosity

supersolution, null on T (V, to be specific), of

(x, DU(x)) > 0 inIN.

Theorem 3.2 shows that a sufficient condition for the solvability is the existence of a con-
tinuus supersolution with the same sign properties. The gap between necessary and suf-
ficient conditions can be filled up, when A is compact, by further extending the class of
strategies, namely, allowing relaxed strategies or instead assuming the convexity of the sets
(f(x, A, b), h(x, A, b)), for all x, b. The details will be presented elsewhere; see [34].

Our last remark concerns the upper value approach. When considering the upper value,
the associated Hamiltonian would be 7-/(x, p) defined as in (3.1), interchanging the roles of
inf and sup. We can get analogous results in this case, but of course this requires obvious
modifications in the statements of the theorems. When the so-called Isaacs condition holds,
namely if 7-((x, p) (x, p), for all x, p 6 ]U, then the two approaches are equivalent even
if Theorem 3.4 does not prove, in general, that the lower (2.8) and the upper (see Remark 2.4)
values coincide. The value does exist for our problem, as a consequence ofthe characterization
of Theorem 3.4, when both upper and lower values are real valued and continuous in ]U (and
the Isaacs condition holds).

Remark 3.6. Recently many efforts have been made to compute numerically the value
function of differential games. Wejust refer here to the paper of Bardi, Falcone, and the author
1] and the references therein, which are more related to the techniques used in this paper,
based on the study of the Isaacs equation. As pointed out in Remark 3.3 and as a result of
Theorem 3.2, it looks interesting to study numerically the equations (3.2) or (3.3) to compute
a solution (or at least a supersolution) or have a description of its sublevel sets. See also the
concluding remark of the last section, where the importance of numerical approximations is
pointed out for the computation of optimal strategies and feedbacks. We leave this as a future
plan of research. Some results are already available, however, to compute the 7-t norm in
the case of dissipative systems (when the set A is a singleton) and are contained in a paper by
James and Yuliar [22].

4. Some preliminary results. In this section we consider a slightly different problem
from that of 2. The connection will become clear in the next section.

For the rest of this section we assume that A, B are closed, but we do not specify the
classes of admissible controls 4, /3. We only require that if a 6 .A, then a + -- A is
measurable and that for all s > 0 we have a(. / s) 4. Moreover if al, a2 f[ and tl > 0,
then also the measurable function defined by

al(t), 6 [0, tl[,
a(t)

az(t tl), [tl, +o[,

belongs to ,4. The same properties will hold for the set of controls/3.
We also consider continuous functions b A B --+ 1, +cxz) and g P x A x B --+ P

such that g(., a, b) is continuous uniformly in a and b and g(.,., b) is bounded on K A
for any K C IP compact. We assume that for all admissible controls a 6,4, b 6/3, there
is a unique absolutely continuous, global solution z(.) zx(.) Zz(’; a, b) of the Cauchy
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problem

(4.1) (r) g(z(r), a(t(r)), b(t(r))), z(0) x,

where ta,b (’) (.) r-l(.) and r (.) "ga,b (’) is the increasing change of parameter

r(t) dp(a(s), b(s))ds,

and suppose that it satisfies the condition

(4.2) IZx(S) -x] < cog(r) for all Ixl R, s 6 [0, r], a 6 A, b 6/3,

where COR + --+ + is nondecreasing, continuous at zero and COR (0) 0 (cog is a modulus).
In particular, from (4.2) we can conclude that Izx (r) x < o(1), as r 0+, uniformly in a, b,
and for x varying in a compact set. We will briefely denote in the following the reparametrized
controls as a(r) a(t(r)), b(r) b(t(r)), for all a A, b /3.

Remark 4.1. If, for example, the system (4.1) has unique global solution and g satisfies
the growth condition Ig(x, a, b)l _< L(1 + Ixl), then for all a 6 4 and b 6/3, we have that

f0 f0Izx(s; a, b) xl < Ig(z, a, b)ldr < L[(1 + Ixl)s + Izx xldr] for all s > 0,

and then, by the Gronwall lemma,

Iz(s) -xl <_ L[(1 + Ixl)r]exp(Lr) for s [0, r],

and (4.2) holds.
Assume also that h h(x, a, b) is continuous and satisfies the growth condition

Ih(x, a, b)l < Cg, for all Ixl _< R, a A, b B. Then we can also derive the estimate

r

Ih(zx, a, b)lds <_ CRuZ for all Ixl R, a 4, b 13,

where we used the fact that IZx(S)l < IZx(S) xl + Ixl L(1 + R)r exp (Lr) + R =: R,
for all Ixl _< R, s [0, r], Therefore also the trajectories z (y, r) of the dynamical system

y’ g(y, a, b), y(O) x,

r’ h (y, a, b), (0) ro,

have the property (4.2).
We continue considering the following class of functions. Let f2 C P open, . > 0, and

u f2 --+ be a continuous function. We define a (lower) value function for the differential
game (4.1) by setting

(4.3) V(x) inf sup sup exp (-)s)l(zx(S), t[b](t(s)), b(t(s)))ds
,A bE/ [0,Zx]

+ exp(-.r)U(Zx(r)) ,
/

where ]IP X A B - is continuous, 1(., a, b) is continuous uniformly in a, b and
satisfies I/(x, a, b)l _< Cg for all Ixl _< R, a, b, R > 0, Zx is here the solution of (4.1), and rx
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is the exit time of Zx (’) from Q. It is clear by definition that Vx > u. Throughout this section
we will assume that Vx is locally bounded.

We also denote the Hamiltonian function associated with the differential game as

H(x, p) inf sup{-g(x, a, b) p l(x, a, b)}
bEB aEA

and assume it is continuous in 2P.
We will prove that the value function (4.3), under some assumptions on the functions

involved, namely u, l, g, H, and on the superdifferential of Vx itself, satisfies a suitable vari-
ational inequality in the viscosity sense. This proof, besides a technical lemma, combines
modifications of several known arguments, in particular of Evans and Souganidis 14], Ishii
17], and the author [27], but we will give it for the sake of completeness. The main new

difficulties of which we need to take care are the unboundedness of the control sets and the
presence of reparametrized controls in the dynamics (4.1).

Remark 4.2. By the definition ofthe reparametrization, we observe that for all a .A, b
/3, and tl, t2 > 0, we have

z-a,b(tl + t2) z-a,b(tl) + z-a(.+t),b(.+tl)(t2),

and then for all Z-l, Z-2 > 0,

ta,b(z-1 + Z-2) ta,b(z-1) + ta(.+ta,b(Zl)),b(.+ta,b(Zl))(z-2).

As a consequence of this equality, for all a 6 A, b 6/3, and Z" > 0, we get

a(ta,b(z-1 + ")) a(ta,b(z-1) + ta(.+ta,(ri)),b(.+t.,(r))(’)).

Moreover for all al, a2 6 .A, bl, b2 6/3, Z’I > 0, if we define

al(t), [0, tal,b
a(t)

a2(t tal,b (Z’l)), [tal,bl (z-l),

and b(.) correspondingly, then we have

(Z-)), [0,
a(ta,b(z-))

a(ta,b (Z-l) -I- ta2,b2 (z-

I al (tal,b (z-)), [0,

/ a2(ta2,b2(z- z-l)), [z-l, +O).

[r:, +o),

The same properties hold true for the elements of the set of controls/3.
The reparametrization functional also has the following nonanticipating property. For

any fixed - > 0 and al, a2 .A, bl, b2 B, if al a2 and bl b2 a.e. in [0, tai,b (’)], then
ta,b () ta2,2 (V). In fact we have by definition

z-a2,b2 (ta,b (’))
do

b(a2(s), b2(s))ds fota’bi (v-)
q(al (s), bl (s))ds .

The following lemma is an important step of the proof and can be viewed as the dynamic
programming principle for (4.3) (see also [27]). Main ingredients of the proof are contained
in Remark 4.2.
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LEMMA 4.3. For all r > 0 and x S2 we have that

(4.4) VX(x)> ,zxinf sup { fo/exp (-)s)l (Zx, or[b], b)ds

+ exp (-)r A rx) VX(zx(r/x rx)) ].
Moreover if VZ*(x) > u(x), for all sequences Xn X such that VX(Xn) --+ V)*(x) there is

e > 0 such that the equality holds in (4.4), at xn, for all r [0, e] and [Xn x[ < s.

Proof 1. By Definition (4.3) of the value function, for every e > 0 there is c A such
that

If0 }VZ(x) + s > sup exp (-)s)l(zx, or[b], b)ds + exp (-Xr) u(zx(r))
[0,rx]

for all b 6 B.

For any fixed s > 0, we get, for all b /3,

VZ(x) + e > exp (-)r)l(zx, or[b], b)dr + exp (-Xs A rx)
dO

sup exp(--)r)l(zzx(SAx), [b](t(r + s A rx)), b(t(r + s A rx)))dr
[0, rzx

+exp (--Xr) U(Zzx(S/rx)(v))
/

Then we have, also using Remark 4.2 and the properties of the sets 4,/3,

VZ(x) + s > exp (-)r)l(zx, ot[b],b)dr + exp (-XS A rx)VZ(zx(S A rx)) forallb,
dO

and the inequality (4.4) follows since e is arbitrary.
2. We now assume that x 6 f2 and Vz *(x) > u(x). If the statement was false, we could

find sequences IXn xl < 1/n, 0 < rn < 1/n such that VZ(x,,) -- V *(x) and

(4.5)

By definition of W’(Xn), using Remark 4.2 and (4.5), we can construct appropriately
A, b B and choose e -- 0+ such that

sup exp (-Xr)l(zxn, an[bn], bn)dr + exp (-Xr) U(Zx. (r))
[r Arx,

VZ(xn) en < sup exp (-r)l(zxn, n[b], bn)dr + exp (-Xr) U(Zxn (r))
[0,rx,]

and then

VZ(xn)--e,, < sup
[O, 72n /VgXn Ifo Iexp (-Xr)l(zx,, Otn[bn], bn)dr nt" exp (-Xr) U(Zxn (r))
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Therefore for some sequence 0 < sn _< rn/x rx, < l/n, we have

(4.6)
s"

exp (-,r)l(zxn, Otn[bn], bn)dr + exp (-ksn) U(Zxn (Sn)) > V’(Xn)

By assumption (4.2) we know that

sup IZXn(’C) Xnl 09(Sn) ---o(1) as n --+ +cx.
[0,Sn]

If n is large, by (4.6) and the assumption on l, we then obtain for some R > 0 independent of
n that

CRSn .ql_ exp (--Sn) sup u V’(Xn) Fn.
B(x,o(1)+l/n)

As n --+ +x we finally get u(x) u*(x) > V *(x), a contradiction. [3

We can now prove the relationship between the value function and the corresponding
Hamilton-Jacobi equation.

PROPOSITION 4.4. Assume that the following hold. For all xo f2, if VZ*(xo) > u(xo)
and po D+ VZ*(xo)

(4.7) sup inf {-g(x, a, b).p l(x, a, b) Ix xol < or, IP Pol < r, [bl > 1/r}
aEA,cr >O

> -,g*(xo).

Thenfor ) > O, the valuefunction V is a viscosity solution of

min{,V + H(x, DV), V u} 0 in f2.

Proof 1. We start by proving that V(-- Vz) is a subsolution. Let x0 6 arg max(V* 0),
where q9 6 C1(f2) and V*(xo) qO(xo). Observe that V*(z) < p(z), if z 6 S2. We assume by
contradiction that V*(xo) > u(xo) and

(4.8) , qg(xo) + H(xo, Dp(xo)) > O.

By (4.7) at (x0, Dp(x0)), we can find or, R > 0 and a0 6 A such that

(4.9) )qg(z) g(z, a0, b) Dqg(z) l(z, a0, b) > r0 > 0 for all z 6 B(x0, or), Ibl R.

Moreover by (4.8), for all b 6 B, Ibl R, there are ? > 0, 6 A such that

(4.10) , qg(z) g(z,-d, b) Dqg(z) l(z,-d, b) > , z B(xo,-), b B(b,-).

By the compactness of {b 6 B Ibl R}, let {B(bi, ri)}i=l be a finite cover. Using (4.9)
or (4.10), we proved that there are e > 0 and ao an 6 A so that for all b 6 B there is
6 {0 n that satisfies

) qg(z) g(z, ai, b) Dqg(z) l(z, ai, b) > e in B(xo, e) C .
We now define the strategy ct A by the position

ao if Ib(t)l > R,
ot[b](t)

ct[b](t) ai if Ib(t)l _< R and b(t) B(bi, ri)\ N0<j</B(bj, rj).



1084 PIERPAOLO SORAVIA

Therefore by (4.2), we can select some small r > 0, such that
(4.11)

o(zx(s)) g(zx(s), [b](t(s)), b(t(s))). Dqg(zx(s)) l(zx(s), cr[b](t(s)), b(t(s))) >_ e,

forall b B,s (0, z),x B(xo, e/2),sincewecanassumezx(s) B(x0, e),fors (0, r).
If we multiply by exp (-.s) and integrate on (0, r), we obtain (also since z r A rx and
with the agreement that the right-hand side reads er A rx if . 0)

(4.12)
p(x) exp (-.r A rx) tp(Zx(r n rx)) exp (--.r)l(Zx, ct[b], b)dr

d0

> e(1 -exp (-r A rx))/. > cr > 0 for all b B, x B(xo, e/2).

By Lemma 4.3, we can choose 8 > 0 and Xn X such that V(xn) -’ V*(xo), ]Xn X0l < 3,
and

(4.13) V(xn)= ,xinf sup { f0s^xnbt exp (-.r)l (zxn, or[b], b)dr

+ exp (-)s A "lXn V(Zxn(S "Xn))}, S (0, 3)

Using (4.12) at such points Xn for large values of n and the properties of p, we obtain, for
fixed r,

for all b 6/3.

We now use (4.13) to get (we may suppose

V*(xo) >_ + o(xo)- o(x) + V(x).

As n ---> +o, we obtain the required contradiction.
2. We now proceed with the easier proof that V is a supersolution. We observe that of

course V, > u, since V > u andu is continuous. Letx0 arg min(V, -o), where o C1(f2)
and V,(xo) qg(x0). We assume by contradiction that

) o(xo) + H(xo, Dqg(xo)) < O.

This implies that we can find b B and r > 0 such that

) qg(xo) g(xo, a, b) Do(xo) l(xo, a, b) < -or for all a A.

By the assumptions on g and l, there exists e > 0 such that

L o(z) g(z, a, b) Dtp(z) l(z, a, b) < -e for all a A, z B(x0, e) C .
Let b(.) b be a constant control. By (4.2), we have that Izx(s) xl < o(1) as s 0+,
uniformly in x B(x0, e/2) and a A. Therefore there exists r > 0 small enough such that
r < Zx(cc[b], b), for all c A, x B(xo, e/2), and

tp(zx(S)) g(zx(S), ot[b](s), b(s)). Do(zx(S)) l(zx(S), c[b](s), b(s)) < -e

for all ct A,s e (0, r).
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If we multiply by exp (-s) and integrate on (0, r), we obtain (again the right-hand side is
-er if) 0)

tp(x) exp (-)z) p(zx (z)) exp (-r)l(zx, c[b], b)dr

< -e(1 exp (-,kr))/. < -tr < 0.

By the properties of q9 we then have

V.(xo) < -tr + o(xo) qg(x) + exp (-.r) V(zx(Z)) + exp (-)r)l(zx, or[b], b)dr

for all ot A, x B(xo, e/2).

We now use (4.4) and get

V.(xo) < -r + O(Xo) o(x) + V(x) for all x B(xo, e/2),

therefore a contradiction.

5. The 7-/ suboptimal control problem. We now go back to our problem and recast
it into the setting of the previous section. We first recall the Hamiltonian that one expects to
be related to the value function (2.8) and precisely

(5.1) 7-/(x, p) inf sup{-f(x, a, b) p h(x, a, b) + ’21b12}.
bB aA

PROPOSITION 5.1. Assume (2.2). Then the Hamiltonian (5.1) satisfies the following. For
all R > O, we canfind CR > 0 such that

lT-t(x, p) 7-t(y, P’)I _< CR[(1 + Ipl v Ip’l)qrlp p’l + (1 + Ipl v Ip’l)2rlx yl],

I(x, P)I -< CR(1 -t-IPl V Ip’l)2/(2-q) for all Ix I, lYl R, p, p’ U,

where r 4/(2 q)3. Irt particular 7-( is locally Lipschitz continuous in ]2N. Moreoverfor
all Ix I, Pl < R,

(5.2)
7-((x, p) min sup{-f(x, a, b) p h(x, a, b) + y2lbl2}

bBR aA
min max{-f(x, a, b) p h(x, a, b) + ?’2lbl2},
bBl a6A

where AR {a A lal <_ C}, Bg {b B lbl <_ Cg}.
Proof To prove the assertions, let R > 0 and Ixl, lYl R, p, p’ 6 ]N. For all b 6 B

and e > 0, we can find ab A such that by (2.2)

(5.3) 7-/(x, p) e <_ f(x, ab, b) p h(x, ab, b) + ’21bl2
< L(1 + Ixl / Iblq)lpl + Lg(1 + Ibl) 4- (LlPl + Ltc)lablq Cglabl 2

< Cg[(1 / Ipl)2/2-q) / (1 + Ib12)(1 / IPl)],

as easily checked, where Cg does not depend on b and ab. In particular for b 0 and since e
is arbitrary,

(x, p) _< 2Cg(1 + Ipl)2/(2-q).
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We also have that for e > 0 there exists b 6 B such that, with the choice of a 0,

(5.4) 7-(y, p’) -+- e _> sup {-f(y, a,-), p’- h(y, a,-) -+- ,2]12
aEA

> -L(1 + lYl)IP’I- LR (LIP’I + LR)I-Iq q- ,2[[2 > --CR(1 + [ptl)Z/(Z-q),

from which, for (y, p’) (x, p), we get the second inequality. Moreover if Ibl > 1, we
necessarily have by the second inequality in (5.4) that

?,2l12-q < L(1 + lyl)lp’l / 2LR + LIP’I / e / 2CR(1 + [p,l)2/(2-q),

and then

(5.5) Il2 < C(1 + Ip’l)4/2-q)2 for all lyl R, p’ 6 N.
The first inequality ofthe statement now follows from the estimate (5.5) and the corresponding
one for a-. The latter can be obtained from the second inequality in (5.3) at b, namely, if
lagl _> 1,

(5.6) CRla-l2-q < C##( 1 + IP[ v Ip’l)4/(2-q)2.

Combining the first inequalities in (5.3), (5.4) we finally get, with the choice of b, ag as above,

7-[(x, p) 7-[(y, p’) 2e < f(y, a-, b) p’ f(x, a-g, b) p + h(y, a-, b) h(x, a-, b)

<_ t( l +la-lq +l-lq)lpl lx-yl+t( l+lagl2+l-lZ)lx-yl+t( +lxl+laglq +l-lq)lp-p’ l,

and then the conclusion by the two estimates (5.5) and (5.6).
The equality (5.2) again follows easily combining the two estimates (5.5), (5.6) and the

inequalities (5.3), (5.4). [3

The estimates of Proposition 5.1, while proving continuity of 7-/, are not sufficiently good
to deal with this Hamiltonian directly, so we are motivated to reformulate the problem in a
convenient way.

We now begin with the proof of Theorem 3.2. We will need several steps to prove the
result.

LEMMA 5.2. Assume (2.2), and let U f2 -- be a continuous viscosity supersolution
ofT-[(x, DU) > O, in . Let p --+ + be bounded, smooth such that M >_ f > 0 and
p(s) O, as s -o. Define the nonnegative, boundedfunction u(x, r) p(U(x) + r).
Then u is a viscosity supersolution of
(5.7) H(z, Du(z)) > 0 in f2 ,
where we indicated by z (x, r), H(z, p) infbEB SUPaa {--’(Z, a, b)- p},
-if(z, a, b) g(z, a, b)/(1WlalZWlbl2) (f (x, a, b), h(x, a, b)-g/ZlblZ)/(l+lalZ+lbl2)
((x, a, b), (x, a, b) ’2]b12/(1 -F lal 2 -F Ibl2)).

Proof The proof is an easy consequence of the usual formulas of change of variables;
see Crandall and Lions [12]. Indeed if Pz D-u(z), then Pz f(P-I(u))(P, 1), where
p D-U(x). Therefore by the definition (5.1), for all e > 0 and b 6 B there is a, 6 A such
that

hence

f(x, ab, b) p h(x, ab, b) + ,lbl2 > -e;

---(Z, ab, b) pz > -eb(p-l(u))/(1 -F lal 2 -+-Ibl z) -Me

and the conclusion follows.
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Remark 5.3. In this long remarkwe want to checkthe assumptions of4 for the differential
game associated with the Hamiltonian H. For all a 6 A, b 6 B, we consider the increasing
change of parameter

z(t) Za,b(t) (1 + lal2 + IblZ)ds -I-IlallL2o,t) + IlbllL2o,/)

and set t(.) ta,b(’) r-l(’). We will briefely denote in the following the reparametrized
measurable functions as a(r) a(t(z)), b(r) b(t(r)) and, for such controls, solve the
dynamical system

(5.8) z’(r) (z(r), a(r), b(z)), z(0) ]1N+I.

For all z(0) ]N+I, a @ t, b /3, there is a unique absolutely continuous global solution
to (5.8).

The system with reparametrized controls satisfies (4.2). Indeed by the assumption (2.2) it
is immediate to recognize that we can apply Remark 4.1 to the vector field . Observe that we
can pass from the system (2.1) to (5.8) by means of the above introduced change of parameter
on the trajectories solutions. Indeed if z(r) solves (5.8), then

z(z) (yx(t(z)), r(t(r))),

where yx(’) is the solution of (2.1) corresponding to the choice of controls (a(t), b(t)) and

r(t(r)) ro + fr) (h(yx(t), a(t), b(t)) y21bl2(t))dt. As a notation, we will indicate by
y’ the derivative with respect to the new parameter r, while indicates the derivative with
respect to the old one t, i.e., y’(r) (t(r))/(1 + lal z + IblZ).

This idea of reparametrizing trajectories is fairly classical in control theory and was

already used in the context of the dynamic programming approach by Barles [6] to study a
class of unbounded control problems. Here everything is slightly more complicated since
we are not just dealing with controls in L as in his case and our problem is a differential
game.

The Hamiltonian in (5.7) satisfies the following regularity condition, as easily checked:
(5.9)
IH(z, Pz) H(g, Pg)l _< LR(lpzllz -l + Ipz pgl) for all Izl, Il <_ R, Pz, Pg ]N+I;

in particular, it is locally Lipschitz continuous.
Let U, u be as in Lemma 5.2. If z(.) is a solution of (5.8), z(0) (x, r0), we easily

compute
(5.10)

(u(z(r)) p U(yx(t(r))) + ro + (h(y, a, b) ’21b1)/(1 / lal 2 / Ibl2) dr

f0t(r)p U(yx(t(r))) + ro + (h(y, a, b) ,21bl2)dt)
We also observe that the exit time from satisfies rz (a, b) rx (a, b)

ftx(a,b) 2
J0 (1 + lal / IblE)dt, where rx denotes the exit time of the first N components of the

solution of (5.8) from f2 and, as before, tx(a, b) is the exit time of the solution of (2.1) from
f2. Therefore for all . >_ 0, the value function in (4.3) for the system (5.8), with 0, takes
the form
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VZ(z) inf sup sup exp (-.r)u(z(r))
,xcA bB [O, rz)

inf sup sup exp -. (1 + lal + Ible)dt)
bB [0,t)

(U(yx(t)) + ro + (h(y, a, b) glbl)dt

Since by definition is noegative and bonded, then also Vx is noegative and bonded.
In paicular, since is increasing, we also have that

V(x, 0) 0 isupbe 0,sup U(yx(t)) + (h(y, a, b) gb)dt

LEMMA 5.4. Assume (2.2), and let U, u be as in Lemma 5.2, U defined and continuous in. Thenfor all > 0, V is a viscosi solution of
(5.11) rain {V + H(z, DV), V u} 0 in

Proo 1. Let z0 x R. We sta proving that, if p D+Vx* (z0) and Vx* (z0) > 0,
then p+ > 0. We recall that p D+ Vx* (z0) is equivalent to

limsup (VX*(z) VX*(zo) p (z zo))/lz zo O.
zzo

In paicular for e+ (0 0, 1), this implies

limsup (gX*(zo + e+)- gX*(zo))/ p+.
0+

Let g > 0 and z z0 be such that 0 < 25 VX(z) V*(zo). For all 0 < e g, > 0
small enough, and n fixed, we can find such that

VX(z + e+) + e > sup sup exp (-r)U(Zz+e+
bB [0,hn+e+l

Then for such , we can choose b B, r [0, rz+e+l) SO that (obsee that, by Remark
5,3, Zn Zn+e+l)

g gX(z) e exp(-Xr)U(Zz(r));

then r C, O-(U(Zz(r))) O-(g) -C, and by (4.2) Zz(r) C, where C is
independent of e, n, and . Moreover by (5.10) and the definition of u we have that

(5.12) gX(z + e+) gX(zn) + 2e exp (-r)[U(Zz+e+ (r)) U(Zz (r))]

exp (-XC) [(p- (U(Zz (r))) + ) (-(U(Zz (r))))].

We also have that by Remark 4.1

h(yx, [b], b)dt h(y, u[b], b)dr rC1 CC1,

where C1 is also independent of e, a, and n, and then, again by Remark 4.1,

t(z)

p-(U(Zzn(r))) U(yx(r)) + rn + (h(yx,a[b],b) 21blE)dt

sup U+rn+CC.
B(x,C)
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We conclude by (5.12) and the definition of p that

V’(Zn -+-creN+l) + 2ecr > V’(Zn) + Kcr,

where K exp (-.C) mint_R,R # > 0 and R is independent of e, n, and r. As n --+ +ocz

VX*(zo + o’eN+l) + 2er > VX*(zo) + Kcr,

and finally, as cr --+ 0+ and since e is arbitrary, ps+l >_ K > 0.
2. We now conclude with the proof of the statement. Let z0 f2 x be such that

VZ*(zo) > u(zo),andletp D+VX*(zo). Sinceu isnonnegative, itfollowsthat VX*(z0) > 0;
thenby the first part p0N+ > 0 and so by (2.2) andthe definition of, condition (4.7) is satisfied
(with 0). Let us prove this last statement. Fix any a A and cr (0, 1). Let p, z, b be
such that IP Pl < or, Iz z01 < or, Ibl > l/or; and let R 1 + Ix01. By the definition of
and (2.2) we obtain (p (if, ps+l))

-if(x, a, b). p (-f(x, a, b). -fi h(x, a, b)pN+l + y2lbl2pN+l)/(1 + lal2 + Ibl2)
> (-L(1 + Ixl + lalq + Iblq)lffl- LR(1 + lalz + Iblq)pN+l + y2lbl2pN+x)/(1 + lal2 + Ib[2)

> -C(1 + lal 2 + Iblq)/(1 + Ibl 2) + V2pN+I(1 + a2(1 + la12))
_> -Ccr2-q(1 + (1 + lalZ)crq)/(1 + r2) + y2(p0N+ --o’)/(1 + r(1 + lalZ)),

where C depends only on R and p0 and the last inequality holds for cr sufficiently small. It is
clear that the right-hand side is positive whena is kept fixed and cr is choosen sufficiently small.
Therefore by Proposition 4.4 the function Vx satisfies (5.11) as a viscosity solution. [

The following lemma is an optimality principle for viscosity supersolutions of equations
of type (5.7) in Lemma 5.2.

LEMMA 5.5. Assume (2.2), and let U, u be as in Lemma 5.2. Then

(5.13) u(z) inf sup sup u(z(r)), z
aA b/ [O, rz)

Proof We start by proving that, for all s > 0, we have

(5.14) u(z) inf sup sup u(z(r)).
otA b13 [O,sAZz)

1. We first assume that satisfies the global, uniform Lipschitz condition

](z, a, b) (, a, b)l _< L Iz 1 for all z, , a, b

and prove the result for f2 ]IN (in this case, for each pair of controls, rz +oo). Observe
that, with this assumption, the Hamiltonian H will satisfy (5.9) with L LR, independent of
R. Let s > 0; then we denote

v(z) inf sup sup u(z(r)).
otA bB [0,s)

It is obvious that v(x) > u(x), so we only need to prove the opposite inequality. Therefore,
let . > 0. By Lemma 5.5, Vz is a viscosity solution of

(5.15) LV + min{H(z, DV), V (1 + .)u} 0 in IN+I.



1090 PIERPAOLO SORAVIA

The nonnegative function u is obviously another solution of (5.15). Moreover the Hamiltonian
of (5.15) satisfies the assumptions for the uniqueness of bounded solutions (see, for example,
Theorem 1.1 in the paper of Bardi and the author [5]). This implies that

VZ u in ]N+ for all ) > 0,

and then since u is nonnegative,

exp (-Xs)v(z) exp (-)s) inf supsupu(z(v)) < VZ(z) u(z)
otA bB [O,s)

for all . > O,

hence the conclusion as ,k --+ 0+.
2. Now let f2 be an arbitrary open set, satisfying (2.2), and F f2 x R. For e > 0, let

(e RN+I _.+ IR be a smooth function such that 0 <
where F {z (x, r) 6 F dist(x, 092) > a, Ixl < l/a} and F N+I\I-’. We extend u
outside Fe/2 as a continuous, nonnegative, and bounded function in N+I and call it ue. We
therefore obtain that ue is a supersolution of

(e(z) H(z, Due(z)) infsup {-e(z,a,b) Due(z)} > O, N+I,
bB aA

where e in [’e x A x B and e 0 in 1-’/2 )< A x B. We can apply the first part of our
proof and deduce that for z 6 [’e and s > 0

(5.16) u(z) inf sup sup u (z (r)) > inf sup sup u(z(r)),
otA b/3 [0,s) aA b/3 [0,sAra)

where r is the first exit time ofthe trajectory z(.) from [’e (obviously z(-) z (-) in [0, s/x r),
if z (.) is the trajectory corresponding to the vector field

3. We now conclude by the following argument. For fixed e, r/ > 0, let ej el2j. If
z0 z 6 Fe0, by (5.16) we can find or0 6 A (we can fix it as a function of z 6 Fe0) such that

sup u(z(r)) < u(z) + 0/2
eO[0,s/Xrz

for all b 6/3.

For any fixed bo b 6 /3, if rz > s, we have nothing left to prove. Otherwise we set

1 o, Zl z(rl), bl(.) bo(. + t,o[bol,bo(rl)). Then we can find c1 6 A (again as a
function of z 6 Fe, \l-’eo) such that

bl(Zz,) U(Zl) -- 0/22.

We proceed recursively and construct the strategy ot given by the position or[b] , where
is the control defined by setting

c0[b0](s), s c [0, tao[bo],bo(rl)[,
’(s) O/l[bl](S to[bo],bo(rl)), s [tao[bo],bo(T1), tao[bo],bo(rl) -+- tl[bl],b (T2)[,

Then, also using Remark 4.2, we easily obtain that with such an ot

sup U(Zzo) <u(zo)+o for allbe/3,
[O,s/Xzo)

and the result follows by the arbitrarity of 7, the other inequality to get (5.14) being obvious.
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4. We conclude the proof of the proposition using the same technique as in point 3. Let
r/> 0. For z0-z 6 F and applying (5.14)with s 1, we can find c0 6 A such that

sup U(Zzo) < u(z) + rl for all b /3.
[0, rz0/ 1]

Fix b0 b 6/3. If rz0 < 1, there is nothing left to prove. Otherwise let zx Zz(1), bl(.)
b0(. + t0tb01,b0(1)). Then we find 0/1 m such that

sup U(Zzl) <_ U(Zl) + 0/22 for all b 6/3.
[0,rZl/11

We proceed recursively and conclude the proof similarly to point 3.
As a consequence ofthe previous result andLemma 5.2, wenow prove a general optimality

principle for viscosity supersolutions of equations whose Hamiltonian is defined in (5.1). We
remark that this result has independent interest, and its peculiarity is to hold with an equality
rather than an inequality; see (5.17).

PROPOSITION 5.6. Assume (2.2), and let U S2 -- be a continuous viscosity superso-
lution of

7-[.(x, DU(x)) > 0 in g2.

Then

(5.17) U(x) inf sup sup (h(y, or[b], b) ,2lbl2)ds
otA b/3 [0,tx)

Proof We define u(x, r) p(U(x) + r) as in Lemma 5.2, and then by that result u is a
viscosity supersolution of

H(z, Du(z)) > O inf2xN.

By Lemma 5.5, Remark 5.3, and (5.10) we conclude that

u(z) inf sup sup u(z(z))
ctA b/3 [0,Zz)

inf sup sup o (h(y, o[b], b) ?’
oA bB [O, tx)

2lbl2)ds + U(yx(t)) + ro)
hence in particular

p(U(x)) u(x, O) p \inf. bsup tO, txSUp) (h(y, [b], b) ,2lbl2)ds + V(yx(t))

and the conclusion follows by the choice of p(.).
We can now give the proof of our main results.
Proofof Theorem 3.2. Let U be as in the statement of the theorem. Let x 6 f2; by (5.17)

of Proposition 5.6 we can choose e > 0 and ot 6 A so that
(5.18)

If0sup (h(y, oe[bl, b) ?,lbl)dt + U(yx(t)) < U(x) + e <_ Uo e for all b B.
[0,tx)
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For b 0, and since h(x, a, 0) is nonnegative, (5.18) implies

sup U(y(t)) < Uo- e;
[0,tx)

therefore tx (ct[0], 0) +cx by the boundary condition and the lower semicontinuity of U on
0. So part (i) of the definition is satisfied in f2 with a or[0] and ct A. Moreover since
U is nonnegative, by (5.18) we also get

f0sup (h(y, [b], b) glbl)dt < U(x) + e for all b

Hence since e is arbitrary and by the definition, we get 0 < Va < U in S2 and also (ii) is
satisfied.

Of course the argument can be repeated in each sublevel set {x 2 U(x) < .} for. (0, U0), and if this family of neighborhoods is a local base for T, then we proved the
open-loop Lyapunov stability and the fact that the local suboptimal control problem with
attenuation level t’ > 0 is solvable.

As for the suboptimal control problem, this is clearly a special case of the above,
when f Iv, and indeed the finite gain condition is an immediate consequence
of (5.17).

Proofof Theorem 3.4. To prove the first statement concerning (3.2), for a 4, b /3,
we consider again the reparametrized system, as in Remark 5.3,

y’(z) f(y(z), a(r), b(r)), y(0) x.

We have that, by changing variables,

V(x) inf sup sup [(y, ot[b], b) ,2lbl2/(1 + lal 2 + Ibl2)]dr
ctA b/3 ’1R+

Therefore, using the results of 4, in particular Proposition 4.4, with . 0, g(x, a, b)
(x, a, b), l(x, a, b) (x, a, b) ,21b12/(1 q- la[2 d- [b12), and U --- 0. Since condition
(4.7) is easily satisfied in this case, as one can check with the same argument as the one of the
proof of point 2 in Lemma 5.4, we can conclude that V, in the open sets where it is locally
bounded, is a viscosity solution of the variational inequality

(5.19) min{7-/#(x, DV(x)), V} O,

where #(x, p) infbB SUPaa{---f(X, a, b). p--(x, a, b) -4- ’21bl2/(1 + lal 2 / Ib12)}. To
prove that V, is also a solution of (3.2), we will use the fact that, by the proof of Proposition
5.1, if Bx,p CC B satisfies

7-((x, p) min sup{-f(x, a, b) p h(x, a, b) + ?’21bl2},
bBx,p aA

then there is Ax,p CC A such that

7-((x, p) min max {-f(x, a, b) p h(x, a, b) + ,21b12}.
bBx,p aAx,p

Let (x, p) 6 ]2 be such that 7-(#(x, p) _> 0. Then for all e > 0 and b 6 B we can find
ab - A such that

(5.20) -f(x, ab, b).p h(x, ab, b) -I- ?’21bl2 _> -e(1 + labl 2 + Ibl2).
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If b Bx,p, then for e sufficiently small (e.g., e < C, Ixl, IPl _< R, C defined in (2.2)),
(5.20) implies that lab[ _< Cx,p independent ofe. So we conclude from (5.20) that (x, p) >_ 0.

On the other hand if #(x, p) _< 0, then for e > 0 we can find 6 B such that for all
aEA

(5.21) -f(x, a,-), p h(x, a,-) + ?’ll2 < e(1 + la] +
If in particular e is sufficiently small (e.g., e < ,) and we set a 0, then (5.21) implies
Ibl < C,p, independent of e, and again we conclude by computing (5.21) at the points
a Ax,p, where Ax,p corresponds to the choice Bx,p B(O, Cx,p).

The second part of (i) is a consequence of Proposition 5.6 and the fact that supersolution
of (3.2) is equivalent to the nonnegative supersolution of (x, DV) >_ 0.

We now prove the statements concerning (3.3). Since V is a supersolution of (3.2), it is
clear that it is also a supersolution of (3.3). On the other hand, by the definition of subsolution,
let p D+ V,(x). If V(x) > 0, then since Vr is a subsolution of (3.2), it follows that

(5.22) 7-((x, p) < 0.

If instead V;(x) < 0, then since V is nonnegative, V is continuous at x, which is also
a minimum point of the function. Therefore 0 D-V, (x). Being both semidifferentials
nonempty and Vr continuous at x, this implies p 0; see Crandall and Lions 12]. By (2.3)
we then have

7-/(x, p) inf sup{?’2[b[ 2 h(x, a, b)} < sup{-h(x, a, 0)} < 0,
bB aA aA

and (5.22) holds also in this case. Threfore V is a subsolution of (3.3).
Again the second part of the statement (ii) is a consequence of Proposition 5.6.

6. On the solution of the control problem. This section is devoted to some results
and remarks concerning the construction of optimal strategies, in particular feedback controls
to solve the suboptimal control problem. As a matter of fact, we will only be concerned
withchecking the finite gain condition, since, as seen in Remark 3.3 and in the proofofTheorem
3.2, the stability of the system is a consequence of it. We will be making considerably strong
assumptions in the general case, but the problem appears still to be tough and challenging.
In the following we assume that the problem is solvable as previously defined; therefore the
value function V is finite in N, null, and continuous on 7".

We start remarking that, when A is compact, the theory of Elliott and Kalton 13] can be
applied to our problem without many additional difficulties (see also the author [28] for some
details concerning the full-state information and the partial-information case) and provides
the existence of optimal strategies as causal mappings ot /3 --+ 4r, where Z is the set of
relaxed controls, namely the set of measurable functions from + to the set of probability
measures on A. The optimal strategy is in the class considered in this paper if the sets
(f(x, A, b), h(x, A, b)) are convex for all x, b. Of course the existence of almost optimal
strategies is always guaranteed by the very definition of value function. Unfortunately the
proof of existence of optimal strategies is not constructive and, therefore, not useful from
the practical point of view of the applications. Moreover this class of strategies requires full
information of the system; namely, the disturbance has to be known and this is thought to be
too restrictive. We describe instead how one can proceed in certain special cases to construct
feedback controls. The ideas we outline here contain the known results in the cases of linear
and nonlinear-affine systems and show to what extent we can generalize those results. We do
not address here the question of the construction of optimal dynamic state feedback controls,
where however similar difficulties have to be faced.
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We first reduce to the interesting case 7" {0} and make the following assumption. (A1):
the value function Vr is of class C1; therefore, there is a nonnegative, classical solution, null
at the origin of the (lower) Isaacs equation

(x, DU(x))=0 inMs.
Unfortunately existence of classical solutions (and even uniqueness) is not satisfied in general
even locally around the origin, and this was the main reason we used the concept of viscosity
solutions. It is clear by its mere definition that V, is not likely to be even continuous in general.
We will outline in Remark 6.2 how to generalize when the solution is not differentiable.

For any (x, p) 2s we denote

Fx,p(a, b) f(x, a, b) p h(x, a, b) + ,21bl 2,

so that 7-/(x, p) infbeB SUPaA Fx,p(a, b) and (x, p) SUPaA infbB Fx,p(a, b), and we
look for necessary conditions. Assume that the feedback a(x) solves the 7o suboptimal
control problem and provides optimal strategies for V; then by (2.10) we have

t(h(y, a(y), b) ,2lb[E)ds < V,(x) for all b 6/3, >_ O.

Therefore by the definition of V, for any fixed > 0, we get

a(y), b) ?,2lbl2)ds -F V(y(t)) < V(x) for all b 6 B.

Dividing by and letting 0+, we conclude

0 < Fx,oVy(x)(a(x), b) for all b B;

finally by (A1) we must have

(6.1) 0 < inf Fx,oVy(x)(a(x), b) < 7-[(x, DV(x)) < 7-[(x, DVr(x)) O.
bB

Therefore equalities hold in (6.1) and V, has to be also a solution of the upper Isaacs equation.
Of course this is always the case when the Isaacs condition holds, namely when 7-/(x, p)
7-/(x, p) for all x, p, and a sufficient, easy-to-check condition for it is the splitting of the
system, namely,

f(x,a,b) fl(x,a) -+- f2(x,b), h(x,a,b) hl(x,a) + h2(x,b).

If in particular (6.1) does not hold, then necessarily the value of the game does not exist, and
therefore it is somewhat expected that feedback controls will not solve the problem in general.
The previous necessary condition of optimality will give us indications about the construction
of optimal feedbacks.

In view of (6.1), we proceed and make the second assumption. (A2): There is a nonneg-
ative, classical supersolution U of the upper Isaacs equation

(x, DU(x)) 0 in IN.

We now define the possibly multivalued map

(6.2) A(x, p) arg max {inf Fx,p(a, b)}
aA bB
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and assume (A3): there is a selection a(x) A(x, DU(x)) such that the system

f (y, a(y), b), y(O) x,

has a unique absolutely continuous solution for all b B and x Rv.
PROPOSITION 6.1. Assume (A1)-(A3). Then the feedback control a(x) solves the

suboptimal controlproblem. Ifthe assumptions are satisfied by U V,, then a (x is optimal.
Proof. Let us prove that the position ct[b](t) a(y(t)) defines a strategy satisfying

(2.11); then we conclude by Remark 2.2. It is clear by (A2) and the definition of a(.) that

inf Fx,oV(x)(a(x), b) (x, DU(x)) 0
bB

(if U V, the necessary condition (6.1) is satisfied by construction); therefore for all b B
the solution guaranteed by (A3) satisfies

0 <_ -f(y, or[b], b). DU(y) h(y, ot[b], b) + y2lbl2.

Integrating on [0, t], we obtain

yog(y(t)) + (h(y, oe, b) ?’2]bl2)ds < U(x),

and since U is nonnegative, we conclude

sup sup (h(y, or, b) ?’2]bl2)ds < U(x),
b13 R+

and the result follows.
If U V,, the same inequality shows the optimality of c for V (x). [3

Remark 6.2. To our knowledge, there are no general results concerning the existence
of optimal feedback controls, i.e., under which condition (A3) is satisfied with U V.
However, one can call the map A(x) A(x, DV (x)) a multivalued feedback synthesis in
the sense that any solution of the differential inclusion

f(y, A(y), b), y(O) x,

satisfies the gain condition (to prove this, just apply the argument of Proposition 6.1 to a
selection a(t) A(y(t)) such that f(y, a, b)). Moreover, since, as we mentioned, (A1)
is too restrictive, we should really use generalized gradients (which are usually sets) and define
the feedback control as a selection a(x) A(x, "DVe(x)") satisfying (A3). This is also an
open problem. Otherwise A(x) A(x, "DV(x)") will again be a multivalued feedback
synthesis.

The method we presented in Proposition 6.1, under certain nondegeneracy conditions
on the cost h, really works for linear systems, as the reader can find out for example in
Basar and Bernhard 10], and almost works for nonlinear-affine systems (where f(x, a, b)
f (x) -+- f2(x)a + f3(x)b and h(x, a, b) I(x, a)l 2, -(x, a) h (x) + h2(x)a), in the sense
that (A2) and (A3) are satisfied, as one easily checks (see for example Van der Shaft [30]),
since the following explicit formula for (6.2) holds (A is luckily single valued in this case):

A(x, p) -(h (x)h2(x))-l (f (x)p/2 -I- h (x)h (x)),

but again (A 1) fails in general. We do not have the space here to discuss a specific counterex-
ample, which is however not too difficult to construct and will be presented elsewhere, but
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refer instead to Van der Shaft [30] for some sufficient conditions ensuring that (A1) holds at
least locally around the origin.

For general systems, life is even harder. As we already observed, by (6.1) it follows that
if (A2) fails, we have no hope for optimal feedback controls. However here is how one might
try to proceed in this case to construct optimal strategies. We now define the set-valued map

A(x, b) arg max Fx DVr(x)(a, b)
aEA

and assume (A4): for all b /3 there is an absolutely continuous solution of the differential
inclusion

f(y, A(y, b), b), y(O) x.

We now indicate by Yx,b the set of such solutions and assume (A5)" we can find a causal
selection Otx[.] satisfying: for any b 13, Otx[b](t) A(y(t), b(t)) for some y Yx.b.

PROPOSITION 6.3. Assume (A1), (A4), and (AS). Then the strategy tx A is optimalfor
V (x).

Proof. Observe that for all b /, along the solution y ))x,b such that ax[b](t)
A(y(t), b(t)), we have

0- 7-[(y, DVr(y)) < max Fy DVr(y)(a, b) Fy,DV(y)(Otx[b] b)"
aEA

then the proof proceeds as in Proposition 6.1. [3

Unfortunately we do not know of reasonable sufficient conditions for (A4) and (A5).
However the map A(x, b) is again a multivalued optimal synthesis (not feedback in this case)
in the sense of Remark 6.2.

Remark 6.4. A more appealing way to proceed would be first to use discretizations of the
system (1.1) and the Isaacs equation, then to solve the corresponding discrete-time differential
game by feedback controls (this is usually easier to do; see the paper of Bardi and the author
[4] and also Bardi, Falcone, and the author 1] for some more details about this procedure),
and in the end to prove error estimates when using these feedbacks in the original system.
This direction of research looks more promising in the near future.
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Abstract. We study weakly optimal solutions of infinite-horizon variational problems with first-order nonconvex
integrands. This is a weakened version of the overtaking optimality criterion. These optimal solutions are closely
related to the minimal solutions studied by Moser, Aubry, and Mather. Such solutions have definite rotation number,
and we study the relation between the rotation number and the minimal energy growth rate. We establish the existence
of a weakly optimal solution for every prescribed initial condition.

We also consider discrete-time infinite-horizon periodic control problems in Rn. Analogous to rotation numbers
we consider rotation vectors and study minimization of energy growth rate for a prescribed rotation vector. This
constrained problem is related to an unconstrained minimization problem that has the same class of minimizers.
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1. Introduction. In this paper we consider a special class of extremals, the so-called
weakly optimal solutions of infinite horizon variational problems for real-valued functions.

We consider functionals of the form

(1.1)
b

l (a, b, x) f (t, x(t), x’ (t)) dt,

where-cx < a < b < +cx and x wl’l(a,b). By an appropriate choice of repre-
sentatives, wl’l(a, b) can be identified with the set of absolutely continuous functions x
[a, b] - R 1, and we will henceforth assume that this has been done.

We will assume the integrand f f(t, x, p) satisfies the following assumption.
Assumption A. (i) f 6 C3, and f (t, x, p) has period 1 in t, x;
(ii) 3 _< fpp(t, x, p) _< 3-1 for every (t, x, p) 6 R3;
(iii) [fpl / Iftpl < c(1 / IPl), Ifxxl / ILtl / Ifttl < c(1 / p2),

with some constants 3 6 (0, 1), c > 0.
Clearly Assumption A implies that

(1.2) 30p2
Co <_ f(t, x, p) < 3t-lp2 / Co for every (t, x, p) 6 R

for some constants co > 0 and 0 < 30 < 3.
Given an x0 6 R we study the infinite-horizon problem of minimizing the expression

(P)
r
f (t, x(t), x’(t)) dt

as T grows to infinity, where x(.) 6 Wllo ([0, cx)) satisfies the initial condition x(0) xo.
Infinite-horizon variational problems are studied mostly by researchers in economics

where they are used to model, for example, economic growth. Our original motivation to
study these problems came from considering questions related to continuum mechanics and
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to dislocations in one-dimensional crystals. Thus, this type of problems has wide-ranging
applications.

Our study follows the recent papers by J. Moser [15], [16], who studied the structure
of the minimal solutions of the variational problem (P). Moser’s theory can be viewed as a
development of the work by Aubry [2] and Mather 12] that is concerned with area-preserving
mappings of an annulus or a cylinder. The works of Aubry and Mather were begun in-
dependently and with different motivations but led to similar results by different methods.
While Mather studied area-preserving annulus mappings as they occur as section mappings
for Hamiltonian systems of two degrees of freedom, Aubry investigated certain models of
solid-state physics related to dislocations in one-dimensional crystals, which are discussed in
Aubry [2], Sinai [18], and Zazlavski [19].

It is assumed in Aubry’s work that the states of the model are represented by the so-
called minimal energy configurations (minimal solutions). He studied the existence and the
structure of such minimal solutions. From the point ofview ofoptimal control he investigated a
certain class of discrete-time infinite-horizon control systems employing the notion ofminimal
solutions. In the spirit of the Aubry-Mather theory, Bylayi and Polterovich [5] and Bangert
[3] studied geodesic flows and geodesic rays on Riemannian two-torus. The continuous-time
analog ofthis discrete-time problem seems to be more challenging and is ofthe type ofproblem
(P) described above.

A function x(.) 6 Wllo (R 1) will be called a minimal solution of the variational problem
(P) if

y(t), y’(t)) f(t,x(t),x’(t))] dt > 0

for every real numbers a < b and every y e W 1’1 (a, b) satisfy y(a) x(a) and y(b) x(b)
(see [2], [15], [16], [19]). It was shown in [15], [16] that (under Assumption A) minimal
solutions of (P) possess numerous remarkable properties. Thus, for any minimal solution x (.)
there exists a real number ot satisfying

sup{Ix(t) -ottl:t R 1} < x

that is called the rotation number of x(.), and given any real c, there exists a minimal solution
with rotation number

While studying infinite-horizon optimal control problems there are several optimality
notions that are considered, and the notion of minimal solution given above is the weakest
among them. Clearly we can consider the notion ofminimal solutions for the class of functions
defined on [0, cx). A more refined optimality criterion known as the overtaking optimality
criterion was introduced in the economic literature and was also used in studying infinite-
horizon optimal control problems (see [1], [4], [6], [8]).

A function x(.) 6 Wllo ([0, cxz)) will be called an overtaking optimal solution of the
variational problem (P) if

lim sup [f(t,x(t),x’(t)) f(t, y(t), y’(t))] dt < 0

for any y(.) Wllo ([0, ec)) that satisfies y(O) x(O).
Usually it is difficult to establish the existence of overtaking optimal solutions, and ac-

tually, in general they may fail to exist. Most studies that are concerned with their existence
assume convex integrands f. For convex integrands the existence of overtaking optimal so-
lutions may follow from the fact that all good trajectories converge to a unique steady state
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(see Brock and Haurie [4] and Leizarowitz [10]). For nonconvex integrands the existence
of overtaking optimal solutions is not guaranteed, and in this situation we look for weakly
optimal solutions, which indeed will be established in this paper.

A function x(.) 6 Wlo ([0, cx)) will be called a weakly optimal solution of the variational
problem (P) if

liminf [f(t,x(t),x’(t)) f(t, y(t), y’(t))] dt < 0
T--

for any y(.) Wllo ([0, ec)) that satisfies y(0) x(0).
It will be established in this paper that under certain conditions on f there exists a weakly

optimal solution x(.) Wllo’2 ([0, ec)) for any initial value x(0) x0. The analogous result
also holds for the discrete-time optimal control system corresponding to problem (P) with
analogous proofs. We can expect that these results will become useful when applied to
Aubry’s theory and in the studies of geodesic rays on Riemannian torus.

The first existence result of weakly optimal solutions without convexity assumptions
was obtained by Carlson [7] for autonomous optimal control problems with vector-valued
functions. Under the assumptions posed in [7], for every good trajectory x(.) defined on
[0, ),

.g -1 x d -+ 2 as z -- cx

where Y is a unique steady state. Using this fact, Carlson established the existence of weakly
optimal solutions.

In our situation we do not have any kind ofconvergence property of all the good trajectories
to a unique steady state. Our consideration is based on the following observation, which was
described in Leizarowitz 11 for a class of variational problems:

For every initial state there exists a weakly optimal solution if all the good trajectories
have the same limit point set.

Recently this was used by Zaslavski [20] to establish, for discrete-time control systems, the
existence of weakly optimal solutions for generic cost functions and any initial state. Actually
we will not prove that all the good trajectories of problem (P) have the same asymptotic
behavior, but we will establish a result that is very close to this and is sufficient for our
purpose.

We will derive the following results.
THEOREM 1.1. Let f satisfy Assumption A. Then there exist a strictly convex function

Ef :R --+ R satisfying El(Or) - +zx3 as Icl- and a monotonically increasing
function

r/: [0, ) [0, )

such thatfor each real ot and each minimal solution x with rotation number ot the relation

(1.3)
S+T

f(t,x(t),x’(t)) dt- Ef(o)T

holdsfor all real numbers S and T.
It follows from Theorem 1.1 that if f satisfies Assumption A, then inf{E/(ot) ot 6 R

is attained at a unique point, which we denote by otf.
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THEOREM 1.2 Let f satisfy Assumption A, and let af be the unique minimizer ofc w+

Ef (ot), namely,

Ef(tf) inf{Ef(c) :cg R1}.

Assume that otf is irrational. Thenfor any initial value xo R there exists a weakly optimal
solution x(.) Wlol ([0, o)) satisfying x(O) xo.

The proofs of these results are based on Moser’s theory (see [15], 16]) and the method of
reformulating the variational problem in discrete-time terms as developed in [9] and [11].
Theorem 1.1 is an analogue of Mather’s theorem about the average energy function for
Aubry-Mather sets generated by a diffeomorphism of the infinite cylinder, which consists
of finite compositions of exact symplectic monotone twist mappings 13]. Mather’s theorem
is a generalization of Aubry’s unpublished result, which establishes the strict convexity of the
average energy function for the Frenkel-Kontorova model. A similar result appeared in Senn
17], where the strict convexity of Ef in multidimensional situations was established. In our

discussion, in addition to the strict convexity of Ef, we also need the estimate (1.3), which
was not considered in 17].

We also consider discrete-time infinite-horizon control problems. Let v(., .) be continuous
and periodic on R Rn, namely v(x + m, y + m) v(x, y) for every x, y Rn and every

N-1m Rn with integer components. We consider cost expressions DN(Y) Y=0 v(x, x+l)
x Rn.for programs Y }=0 C Analogous to rotation numbers we define the rotation

vectors and study the problem of minimizing the growth rate over all the programs that have a
prescribed rotation vector. Let v(.) be the discrete-time counterpart of the above-mentioned
function Ef (.). It will be proved below that v(.) is a convex function.

We will establish the existence of optimal programs with prescribed rotation vectors or,
and we will obtain them as optimal programs for the following unconstrained related problem.
Supposed that (or, o(ct)) is an exposed point of epio (the epigraph of (.)), and let ) be
such that o(ot’) > v(ot) + ). (or’ c) for every or’ c. We define

v(x, y) v(x, y) + . (x y),

which like v is continuous and periodic in Rn x Rn. We have the following result.
THEOREM 1.3. Thefunction v(’) is convex. Moreover, if (or, v(Ot)) is an exposedpoint

ofepiv, then there exists a minimizer of the growth rate ofprograms that have a prescribed
rotation vector or. This minimizer has definite limits both for the energy growth rate and the
rotation vector Actually it is a minimizer ofthe unconstrainedproblem ofminimizing the cost
expressions

N-1

k-O

as N --+ cx. In the case that (.) is strictly convex and every point (or, (or)) is an exposed
point ofepiv, then the assertion of this result holdsfor every Rn.

2. Properties of minimal solutions. We will need the following result (see [14,
Thm. 1.8.2]).

PROPOSITION 2.1 Let c < a < b < /o, {x ’ o(.)}= C W (a, b), and {x}= be a

bounded sequence in LZ[a, b]. Furthermore, let x(.) W’2(a, b) be such that

Xk(t) x(t) uniformly in [a, b]
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and

Then

weakly in L2[a, b] as k --+ cxz.

I (a, b, x) < lim inf I (a, b, x).

For the proof see 14, Thm. 1.8.2].
For a, b, or,/3 6 R such that a < b we define

(2.1) U(a,b, ot, ) inf{l(a,b,x) x W’(a,b),x(a) or, x(b) --/3}.

Relation (1.2) and Proposition 2.1 imply the following result.
PROPOSITION 2.2. Let a, b, or, 13 R, a < b. Then there exists x(.) W’(a, b) such

that

x(a) or, x(b) 13, l(a, b, x) U(a, b, or, fl).

Assumption A, relation (1.2), and Theorem 1.10.1 in 14] imply the following result.
PROPOSITION 2.3. Let a, b, or, 13 R 1, a < b, and x(.) W’(a, b) be such that

x(a) or, x(b) 13, I (a, b, x) U(a, b, or, t3).

Then x (.) C2[a, b] and it satisfies the Euler-Lagrange equation.
Denote by Z the set of all integers. We note that for any integers j and k the translations

(t,x) (t+j,x+k)

leave the variational problem invariant. Therefore, if x(.) is a minimal solution, so is
x(. + j) + k. On the torus this represents, of course, the same curve as does x(.). This
motivates the following terminology (see [15], [16]).

We say that a function x(.) 6 WloI(R) has no self-intersections if for every pair of
integers j, k the function - x(t + j) + k x(t) is either always positive or always negative
or identically zero. The following results, which will be needed below, were established in
[16].

PROPOSITION 2.4. Ifx Wo’c (R) is a minimal solution without self-intersections of(P),
then there exists a unique number ot such that

sup{Ix(t)- tl R} < cx

and there exists a constant c depending only on the constants co and 60 in (1.2) so that

(2.2) Ix(t + s)- x(t) -sl <_ c1(1 +or2) /2

for all s and t.
Moreover, there exist constants (0, 1) and q > 0 independent ofx but depending on

[otl and the constants c and in Assumption A such that [Ix’(’)[[c, < ’ (where C denotes
the space ofHalder continuousfunctions oforder ).

The number c is uniquely determined by the minimal x x(t) and is called the rotation
number ofx.

PROPOSITION 2.5. Given any real ot there exists a non-self-intersecting minimal solution
with rotation number
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We associate with any non-self-intersecting minimal solution x(.) its rotation number c
and denote

(2.3)
.A//(c) x(.) x is non-self-intersecting minimal solution

with rotation number c }.

Moreover, for A > 0 we set

(2.4) MA .J{M()" I1 _< A}.

PROPOSITION 2.6 [15, Thm. 7.4] and [16, Cor. 3.3]. The set dA/Z is compact with
respect to the C-topology on compact sets in R 1. In other words, any sequence {x .All a
possesses a subsequence, say {xsi o }i=1 for which XSi ki}i=1’ and a sequence of integers {ki o

converges with first derivatives uniformly on any compact set to afunction x* .Ma.
We have the following results (see [16, Thms. 5.1, 5.2, and 5.4 and Cors. 5.5 and 5.3]).
PROPOSITION 2.7. Let ot be a rational number and q be a natural number such that

qot Z. Set

.Aq {x(.) Wlo’cl(R1) x(t + q) x(t)for every R}.

Then there exists* Aq such that x* ott+* minimizes I (0, q, x) over all x W(o (R
with x -ott tq. Moreover, x* C2(R), and it satisfies the Euler-Lagrange equation.

PROPOSITION 2.8. Let or. be a rational number and q be a natural number satisfying
qot Z. Set

q X Wllo’ e x ol 4q},
.A/[(o/, q) {x(.) .Aq l(O,q,x) < I(O,q, y)forevery y

Then the set Jl(ot, q) is totally ordered; i.e., if x, y e .M(ot, q), then either x(t) < y(t) for
all or x(t) > y(t) for all or x(t) y(t) identically.

COROLLARY 2.1. Ifx .All(or, q), then x(.) has no self-intersections.
PROPOSITION 2.9. Let ot be a rational number and q and q2 be natural numbers such

that qlot, q2ot Z. Then J(, ql) .A/[(c, q2).
For any rational number ot we set

./per(O/) j(O/, q),

where q is a natural number satisfying c Z.
PROPOSITION 2.10. Let ot be a rational number and x .A/lper(O ). Then x is a non-self-

intersecting minimal solution of (P) with the rotation number or.

The following two results were established in 16, 4].
PROPOSITION 2.11. Let u and v be minimal solutions of (P). Then the open set

{t 6 R :u(t) < v(t)} has no bounded components.
PROPOSITION 2.12. If u and v are minimal solutions, u(t) <_ v(t) for all R 1, then

either u(t) v(t) for all or u(t) < v(t) for all t.

3. Proof of Theorem 1.1.
PROPOSITION 3.1. Let ot m/n where m, n are integers, n > 1. Set

lyonE(ot) f (t, y(t), y’(t)) dt,
n
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where y .per(Ot). Then for ot there exists a constant F(c) that increases for ot > 0
and decreases for ot < 0 and such that for all numbers S, T, with T > O, and for every
X G .A/[per(O/),

(3.1)
S+T

f (t, x(t), x’(t)) dt E(ot)T _< r(a).

Proof. Let x 6 Jper(Ot). By Proposition 2.4

Ix’(t)l < q(ot) for every e R 1,

where the constant ’1 (c) depends monotonically increasing on Iotl. We set

1-’o(ot) 1 -t-4(1 + co)-t- 48-1(Cl + 1)2(1 + Il)

fl sup{If(t,x, Y)[ lY[ _< ?q(),x,t R1},
F(ot) I-’o(ot) + 3(1 +

(Recall the constants co and 30 in (1.2) and 1 in (2.2).)
It is easy to verify that

IE(a)l 11,

f(t,x(t),x’(t)) dt < sup{lf(t,x, y)l t,x, y R lyl <

for all T, T2 6 R such that ]T T2I _< 1. To prove the proposition it is sufficient to show
that for every integers T and S (with T > 0),

(3.2)
S+T

f (t, x(t), x’(t)) dt E(ot)T <_

The validity of (3.2) for any integers S and T implies that (3.1) holds for any S and T as
asserted in the proposition.

Assume to the contrary that (3.2) does not hold. Then there are integers T, S such that
<T<n-l,0_< S<n-l, and

s+T

f(t, x(t), x’(t)) dt E()T > r’o(a).

If

S+T

f(t,x(t),x’(t)) dt E(ot)T > to(or),

then

S+n

f (t, x(t), x’(t)) dt (n T)E(ot) < -Fo(ot).
+T

Therefore, we may assume without loss of generality that

(3.3) fs
s+r

f(t,x(t),x’(t)) dt E(ot)T < -1-’o(a).
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Choose a large natural number k. We have

fS+knT(3.4) knE(ot)T f(t,x(t),x’(t)) dt f(t,x(t),x’(t)) dt.
d S =0 d S+iT

By (3.3) and (3.4) there is an integer j such that < j < kn and

S+(j+I)T

(3.5) f(t,x(t),x’(t)) dt > E(t)T + (kn)-ll-’o(ot).
JS+jT

We next construct a function y WI’I(s, S + n(kT + 1)) that is equal to x on the intervals
S, S + j T and [S + (j + 1) T + 1, S + n (kT + 1) and equal to the translation of x on

the interval [S + jT, S + (j + 1)T]. It will follow from its construction and from (3.3) and
(3.5) that

sS+n(kT+l)[f
(t, x(t), x’(t)) f (t, y(t), y’(t))] dt> O.

For 6 R we set

Int(t) sup{/ 6 Z, < t}.

There exists y 6 W1,1 (S, S + n (kT + 1)) such that

y(t) x(t)
for everyt6[S,S+jT-1]U[S+(j+l)T+l,S+n(kT+l)],

y(t) x(t jT) + Int(otjT) for every [S 4- jT, S 4- (j 4- 1)T],
r+l

f (t, y(t), y’(t)) U(r, r + 1, y(r), y(r + 1))dt

for every r S + jT 1, S + (j + 1) T].

It follows from the definition of y that

(3.6)

where

x(t), x’(t)) f(t, y(t), y’(t))] dt 0-1 4- 02 4- 0"3 0,

S+(j+I)T

0"1 [f(t, x(t), x’(t)) f(t, y(t), y’(t))] dt,
dS+jT

S+jT

0"2 [f (t, x(t), x’(t)) f (t, y(t), y’(t))] dt,
dS+jT-1

S+(j+l)r+l

0"3 [f (t, x(t), x’(t)) f (t, y(t), y’(t))] dt.
dS+(j+I)T

By (3.3) and (3.5)

(3.7)

It follows from (1.2) that

(3.8)

0"1 >

--Co- 1- 28ola- bl < U(i, + 1, a, b) < co + 8llb al 2
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for any integer >_ 0 and every a, b E R 1. It follows from Proposition 2.4 and (2.2) that

Ix(v) -x(v + 1)1 < Icl + Cl(1%- Iotl) for every r R 1.

Since x E .A/[per(a), the last inequality and (3.8) imply that for every r 6 [S + jT 1,
S %- (j + 1)T]

(3.9)
TM

f(t, x(t), x’(t)) dt < co + + 23-1[1 + (lal + c1(1 + Icl))=],

It follows from Proposition 2.4, the definition of y, and (2.2) that

ly(S+ jT- 1)- y(S+ jT)I <_ Ix(S+ jT- 1)- x(S)- ajT[ + 1 < (1 + lal)(1 + Cl)

and

ly(S + (j + 1)T) y(S + 1 + (j + 1)TI Ix(S + T) + ajT x(S + + (j + 1)T)I + 1

_< (1%- lal)(1 + cl).

These relations, (3.8), and the definition of y imply that

(3.10)
TM

f (t, y(t), y’(t)) dt < co + 1 + 2[1 + (1 + Icl)2(1 + c)2]

fort [jT+S-I,S+(j+I)T].
In view of (3.9) and (3.10) we obtain

lal, la31 2c0 + 2 + 48ff1(1 + (1 + Ic])2(1 + c1)2).

We now conclude from this relation, (3.6), (3.7), and the definition of l-’0(a) that

0> 0-1 +0"2+0"3 > 1-’0(a) 4c0 4 + 88-1(1 +(1 + Ic12)(1 -$- c)2) > 0.

This contradiction concludes the proof of the proposition. ]

In the paragraph that followed Proposition 2.4 we defined the rotation number for minimal
solutions without self-intersections. In the next proposition we define it for any minimal
solution.

PROPOSITION 3.2. Ifx is a minimal solution of (P), then there exists a real number a that
is called the rotation number ofx such that

Ix(t %- s) x(t) as[ < c(1%- Iotl) + 6

for all s and (where Cl is as in Proposition 2.4).
Proof. Let x be a minimal solution of (P). For a natural number N set

rN max{/ Z" < x(N) -x(-N)}.

There exists YN ./per(rN/2N) such that

lYN(--N) x(-N)l <_ 1.

Clearly

lyN(N) x(N)l lYN(--N) + rN x(N)l < 2.
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By Proposition 2.12

(3.11) lyN(t) x(t)l _< 3 for every 6 I-N, N].

It follows from Proposition 2.4 that

lyN(t + s) yN(t) (rN/2N)sl 5 c1(1 + IrNI/2N)

for all numbers s and t.
We will next prove that the sequence {rN/2N}=I is bounded. Fix an integer No > cl.

For N > No we have

[yN(No) yN(O) (rN/2N)NoI <_ c1(1 + [rNI/2N),

which, in view of (3.11), implies that

Ix(N0) x(0) (rlv/2N)Nol < 6 + Cl(1 + Irul/2N).

Dividing the last inequality by IrN [/2N (whenever it is nonzero) yields

x(No) x(O)
rN/2N

Cl -+- C1+6
IrNI/2N

which implies a contradiction to No > cl if {rN/2N}= is unbounded.
We have thus established that the sequence {rN/2N}=No is bounded, and we have that

YN -A/[per(rN/2N) C .hA (rN/2N) for every N >_ No

(recall (2.3) and (2.4)). By Proposition 2.6 there exists a subsequence {YNk }1 that converges
with first derivatives uniformly on any compact set to a function z(.) 6 A4A where

A =sup{ IrN----]"N>2N No}.
There is a number ot such that z(.) 6 A/t (ot), and it follows from (3.11) that

Iz(t) x(t)l 5 3 for every real t.

This last relation and Proposition 2.4 imply that

Ix(t + s) x(t) otsl _< cl (1 + Iotl) + 6

for all s and t. The proposition is proved.
PROPOSITION 3.3. Assume that x is a minimal solution of (P), ot is the rotation number of

x, and {oti is a sequence ofrational numbers such that oti "-’> ot as OZ. Then there exists
a real number Ef(ot) such that thefollowing limit exists

Ef(ot)-- lim E(oti)

and is independent on the sequence {oti }cxz Moreover, for each ot there exists a real numberi=1"

Ff(ot) > 0 depending monotonically increasing on lot[ such that

S+T

f (t, x(t), x’(t)) dt Ef(ot)T

for all S, T R 1.
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Proof. For every natural number there is Yi E .Jper(Oti) such that

(3.12) lyi(0) x(0)l < 1.

Let T, T2 E R, T < T2. It follows from Proposition 3.2 and (3.12) that there exists an
integer i0 _> such that for every integer > i0

(3.13) sup{lyi(t) x(t)[ R, Itl ITll + IT2I + 1} _< 2c1(1 + I1) + 15.

Let/ > i0 be an integer. We will next define a z 6 Wlo (R 1) that is equal to x on the
intervals (-cx, T1 1] and IT2 + 1, ) and equal to Yi on the interval [T1, T2]. We also define
u Wllo (R 1) that is equal to Yi on the intervals (-cx, T1 1] and [T2 + 1, cxz) and equal to
x on the interval [T1, T2]. The fact that x and Yi are minimal solutions and the definitions of z
and u will imply that II (T1, T2, x) I (T1, T2, Yi)[ is bounded by a bound that depends only
on Icl.

More explicitly we define u, z Wlo (R 1) such that

and

z(t) [ x(t)

yi(t)

fort E (-cx, T1 1] U IT2 + 1, cxz),
for e [Ti, T2];

I(T 1, TI,Z) U(T1 1, TI,X(T1 1), yi(T1)),

I(T2, T2 + 1, z) U(T2, T2 + 1, yi(T2),x(T2 -}- |));

I yi(t) for 6 (-cxz, T1 1] U [T + 1, cx),

! x(t) for [T1, T2];

I(T1 1, T1, u) U(T1 1, T1, yi(T1 1), x(T1)),
I(T2, T2 + 1, z) U(T2, T2 + 1, x(T2), yi(T2 + 1)).

Since x and Yi are minimal solutions, we obtain

(T1- 1, T + 1, x) _< (T1- 1, T2 + 1, z),
(3.14)

I(T1 1, T2+ 1, yi) I(T1 1, T2+ 1, u).

It follows from (3.13) and Proposition 3.2 that

lu() u(r + 1)1, Iz(v) z(v + 1)1 c(ll + 1)

with c 3c + 21 for r T1 and r T2. These relations and the definitions of z and u
and (1.2) imply that for r T and r T2 and for v z and v u we have

+1

-co f (t, v(t), v’(t)) dt

sup{If(t, w, P)I" (t, w, p) e N, IPl v(r) v(r +
sup{If(t, w, p)l" (t, w, p) e N IPl < ca(1 +

We conclude from these relations and (3.14) that

+2sup{If(t, w, P)I" (t, w, p) R3, IPl c(1 +
In view of Proposition 3.1 this relation yields
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where

2[f (t, x(t), x’(t)) E(oti)] dt

(3.16) (t) 2co + 2sup{if(t, w, P)I: (t, w, p) 6 R3, Ipl < c2(1 + Icl)},

We have thus proved that for each TI, T2 6 R satisfying T1 < T2 there exists a natural number
io such that for every integer > io

E(oti)] _< (ot) / max{F(ot 1), F(u / 1)}.dt

Clearly this implies the existence of limi__, E(ci), which completes the proof of the propo-
sition.

For any c 6 R we set

(3.17) Ef(ot) lim E(oti),

where {ci }icx:=l is a sequence of rational numbers such that O/i

By Proposition 3.3 the function Ef R R is well defined. It follows from Propositions
3.3 and 3.1 that Ef(ot) E(c0 for every rational c. It follows easily from Proposition 3.3
that Ef (.) is continuous.

PROPOSITION 3.4. Thefunction Ef is strictly convex.

Proof. Let or l, or2,/3 be rational numbers and fl 6 (0, 1), Otl :/: c2. We claim that it is
sufficient to show that

Ef(Oll -Ji- (1 )0/2) </Ef(Ol) -t- (1 -/)Ef(o2).

This is so since this will imply that Ef is convex, hence it is strictly convex. There are natural
numbers n l, n2, q l, q2 and integers m l, m2 satisfying

ql/q2, Oli mi/ni, 1, 2,

and Xi .Jper(Ogi), 1, 2. We have

flO/1 "+- (1 /)0/2 [mlqln2 nt- m2(q2 ql)nl]/(nln2q2).

Fix a large natural number N such that N/(nln2q2) is an integer, and set

kl Nqlnz, k N(q2 q)nl.

We may assume without loss of generality that

(3.18) Ixl(klnl) x2(0)l < 1.

Let us prove that

(3.19) gf(jOl + (1 -/)o/2) __< flgf(ol) -- (1 -/)gf(o/2).

We will construct a function x 6 w’l(o, klnl + k2n2) that is equal to Xl on the interval
[0, klnl 1], is equal to a translation ofx2 on the interval [klnl, klnl -k- kn2 1], and satisfies

x(kn + k2n2) x(0) + kml + k2m2.
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Using the definition of x we will show that

l(O, klnl -k-k2n2, x) I(O, klnl,Xl)- l(O, k2n2, x2)

does not exceed some constant that depends only on I11 and Ict2l. Since E(/3c1 + (1 -/)o/2) _<
I (0, klnl -t- k2n2, x)/(q:znln2N), this will imply (3.19).

There exists x WI’I(O, klnl + k2n2) such that

x(t) Xl(t)(t [0, klnl 1]), x(t) x2(t klnl)(t [klnl, klnl -k- k2n2 1]),
x(klnl + k2n2) x(0) + klml - k2m2,

x(z + t) tx(r + 1) + (1 t)x(z) (t (0, 1), z" {klnl 1, klnl + k2n:z 1}).

It follows from Proposition 2.4 and (3.18) that

[xl(klnl- 1)- x2(0)l < IXl(knl- 1)- x(klnl)l q-[xl(klnl)- x2(0)l
< Cl(1 q-I1) / / I1,

Ix(knl + k2n2 1) x(knl q- kn2)l
< Ixz(k2n2 1) x2(k2n2)l + Ix2(k2n2) x(O) klml k2m21
__< C (1 q- 10/2 [) -]-" 1 -t-

From these relations, the definition of x, and (1.2) we conclude that

l(O, klnl + k2n2, x) l(O, klnl,xl) l(O, k2n.,x2)
< I(klnl- 1, klnl,x)+ l(klnl + k2n2 1, kin1 +kn2, x)

-l(klnl- 1, klnl,Xl)- l(k2n2- 1, k2nz, x2)

< 230 + 2sup{If(t, w, p)[" (t, w, p) 6 R3, Ipl < (c1 + 1)(1 + ICll / lot21)}.

This inequality and the relation xi ./per(Oi) for 1, 2 yield

E(/3ct + (1- fl)ot2) < I(O, kln + k2n2, x)/(q2nn2N)

< (Nq2nln2)-l[230 + 2 sup{If(t, w, P)I" (t, w, p) 6 R3,

IPl < (c1 -]- 1)(1 + Icl + Ict21)}

+ knl E(Otl) + E(ot2)k2n2]

--/3E(Otl) + (1 -/3)E(ot2) + (Nq2nln2) -1

[230 + 2 sup{If(t, w, P)I" (t, w, p) 6 R3,
Ipl _< (c / 1)(1 / ICll / 121)}],

Since this relation holds for any sufficiently large integer N such that N/q2nln2 is an integer,
(3.19) is established.

We will next prove that strict inequality holds in (3.19), which will conclude the proof.
We may assume without loss of generality that ct < O2. By Proposition 2.3 x and x2

satisfy Euler’s equation. It follows from Propositions 2.4 and 2.11 that there is ro 6 R such
that

xz(t) > Xl(t) for every R,
> to, x2(t) < x(t) for every 6 R < 0
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There exists y 6 Wllo (g such that

(3.20)

y(t + q2nln2) y(t) + qln2ml + (q2 ql)m2nl for every 6 R 1,
y(t) xa(t) for every 6 Iv0 qlnln2, "r0],

y(t) xz(t) for every 6 It0, r0 + (q2 ql)nln2].

Assume that

l(’co qlnln2, Zo + (q2 ql)nln2, y)/q:nln:

E([qln2ml + (q2- ql)m2nl]/q2nln2).

Then y and Xl satisfy the Euler-Lagrange equation, and by (3.20) y(t) Xl (t) for every 6

R It follows from this and the definition of y(.) that Xl (t) xz(t) for every t, contradicting
0/1 0/2. The resulting contradiction proves that

E(fl0/1 + (1 -/)0/2) < (q2nln2)-lI(’CO qlnln2, "Co + (q2 ql)nln2, y)

fiE(o/l) -+- (1 fl)E(0/2).

The proposition is proved. [

PROPOSITION 3.5. Ef(0/) -- -1- as I0/I .
Proof. Let 0/6 R, x 6 .M (0/). Propositions 2.4 and 3.3 imply that for each T > 0

(3.21) Ix(T) -x(0) -otTI Cl(1 + I1),

(3.22)
r
f (t, x(t), x’(t)) dt Ef(0/)T

_
rs ().

It follows from (1.2) that we have for every T > 0

fo fo
T

(3.23) f(t,x(t),x’(t)) dt > [-co+olx’(t)l-1] dt >_ -(co+l)T+olx(T)-x(O)l.

We obtain from (3.21) that

Ix(T)- x(O)l > IolT- c1(1 -l-Iotl),

which, in view of (3.22) and (3.23),yields

TEf(0/) >_ -Ff(0/) (co + 1)T + olclT 3oc1(1 + Icl).

Dividing the last inequality by T and then letting T --+ oe we obtain

Ef() I1o- co- 1.

This completes the proof of the proposition. U
Theorem 1.1 now follows from Propositions 3.1-3.5.

4. Discrete reformulation of (P). For x, y 6 R we set

(4.1) v(x,y)=inf{fo f(t, u(t), u’(t)) dt u wl’l(0, 1), u(0) x, u(1) y}.
It is easy to verify that
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(4.2)

v(x+l,y+l)=v(x,y), x, y6R 1",
inf{v(x, y) "x, y 6 R >_ -co;

v(x,y)/ as Ix-yl.

PROPOSITION 4.1. Thefunction v R2 R1 is continuous.

Proof. The lower semicontinuity of v follows from Propositions 2.1 and 2.2, and we will
establish the upper semicontinuity of v. Let a, b 6 R 1" y 6 WI’I (0, 1)" y(0) a; y(1) b"
v(a, b) I (0, 1, y)" {ai }i=1, {bi c}i=1 C R, ai a, bi -+ b as --+ cxz; and actually
y 6 C2[0, 1]. For an integer > we define

i(t) hit / di for 6 [0, 1],

where di ai a, hi bi b di. Clearly

y(O) + i(0) ai, y(1) / i(1) bi for > 0,

y(t) / dPi(t -- y(t), y’(t) / i (t) y’(t) uniformly in [0, 1] as cx.

Therefore

limsupv(ai,bi) < lim sup f(t, y(t) / i(t), y’(t) / Pi(t)) dt

f(t, y(t), y’(t)) dt v(a, b).

This completes the proof of the proposition. [3

Set

(4.3) /z inf lim inf l)(Zi, Zi+I) {Zi}i=O C R1
N--+x N

i-’0

which is the minimal long-run average cost. Similarly to results in [9], with slight changes in
the proofs, we obtain the following two results.

PROPOSITION 4.2. There exists a constant Mo such that
(i) for every sequence {Zi oz}i=0 C R and every integer N >_

N-1

Z[U(Zi, Zi+I) ]J] --M0;
i=0

(ii) for every initial value zo there is a sequence {z }ic=0 with z) zo that satisfies
N-I

[I)(Z;, Zi+I) //]
i=0

_<4M0

for all N >_ 1;
(iii) for every sequence {Zi}i=0 C R the sequence

[U(Zi, Zi+I) /]
i=0 N=I

either is bounded or diverges to infinity.
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PROPOSITION 4.3. We define

rr(a) inf lim inf [l)(zi, Zi+l) -/z] {zi}x Ri=0C z0--a
N--.x:

i=0

O(a, b) v(a, b) lz + rr(b) rr(a)

for a, b R Then thefunctions rr R R and 0 R2 R are continuous;

zr(a + 1) rr(a), O(a + 1, b + 1) O(a, b) for all a, b, R1;

thefunction 0 is nonnegative; and the set

F(a) {b R O(a, b) --0}

is nonemptyfor every a R
THEOREM 4.1. (i) For each x Wllo ([0, x:)) and each T > 0

T[f (t, x(t), x’(t)) tZ] > --Mo --co- Izl.dt

(ii) There exists a unique number af such that

Ef(tf) inf {Ef(fl)’fl R =/z.

Proof. Assertion (i) follows from Proposition 4.2 and (1.2). We will prove assertion (ii).
By Propositions 3.4 and 3.5 there exists a unique number o/f such that

Ef(cf) inf{Ef(fl) fl R1}.

Choose x 6 .M (otf). It follows from assertion (i) and Proposition 3.3 that

(4.4) Ef (uf > lz.

There exists a sequence {zi R}i=0 C such that O(zi, zi+) 0 for 0, By (4.2)
the sequence {zi Z/+l}i=0 is bounded. For any 6 {0, 1 there is an integer ki such that
Izi zo + kil < 1. For 6 {0, and p 6 {-i,-i + we set y Zp+i -- ki,
ri {yip}p=_i.

It is easy to verify that for every integer p the set

{y Z, > max{O,-p}}

is bounded. Therefore there exist a sequence {ap}p=_ C R and a subsequence {Yis s=l

such that ys ap as s -- o for any integer p. Evidently 0 (ap, ap+l) 0 for any integer
p. Recalling Proposition 2.2 we can find an x WloI(R 1) such that

x(p)=ap, l(p,p+ 1, x)=U(p,p+ 1, x(p),x(p+ 1))=v(x(p),x(p+ 1))

for any integer p.
It is easy to verify that x is a minimal solution of (P) and

(4.5) sup [f (t, x(t), x’(t)) lz] dt i, j
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By Proposition 3.2 the minimal solution x has a rotation number or. It follows from (4.5) and
Proposition 3.3 that

and in view of (4.4) we obtain Ef(olf) and off or. This completes the proof of the
theorem.

5. Minimal solutions with irrational rotation number. To establish Theorem 1.2 we
need to study in more details the structure ofminimal solutions with irrational rotation number.
Some of the results in this section were established in 16], while others were presented in
15] without proof. We remark that their proof is based on the approach developed by Aubry
and Le Daeron [2] for discrete-time systems (see also [19]).

Let x be a minimal solution of (P) that has an irrational rotation number or. The minimal
solution x is called regular if for every pair of integers j, k

x(t+j)-k-x(t)>O for allt6Rliffotj-k>0.

We will see in Proposition 5.4 that every minimal solution with irrational rotation number is
regular At this stage we can merely establish the existence of a regular minimal solution with
a prescribed irrational rotation number.

Propositions 24, 2.6, and 2.10 imply the following result.
PROPOSITION 5.1 Let ot be an irrational number and {0/i} cx: be a sequence of rationali=1

numbers such that oti - ot as -- oc. Assume that Xi ./per(Oi), IXi (0)l 1, 1, 2
and that the sequence {xi }i=1 converges withfirst derivatives uniformly on any compact set to

afunction x Wllo’lc(R1). Then x JM(ot) is a regular minimal solution.
COROLLARY 5.1. For every irrational number ot there is a regular minimal solution

x
Assume that ot is an irrational number andx 6 3/1 (c) is regular. Using the regular minimal

solution x and following [2], [15], [16], and [19] we will obtain an explicit expression for all
minimal solutions with rotation number or. Using this explicit expression we will prove that
every minimal solution with rotation number ct is regular.

We define a function U (t, O) by

Ux (t, O) x(t + j) k,

where 6 R and 0 is any number of the form at + cj k for some integers j and k (see
[15], [16]). Clearly the function U (t, O) is strictly monotone in 0 on the dense set on which
it is defined. One can extend U to functions U, Ux by

(5.2) U(t, 0) lim U (t, 0’), U_x (t, 0) lim Ux (t, 0"),
0t---0+ 0"-+0-

where 0’ (resp., 0") are decreasing (resp., increasing) sequences taken from the dense set on
which Ux is defined. Clearly the functions U_ (t, 0) 0 have period 1 in t, 0,

(5.3) U(t d- 1, 0) UX(t, 0), UX(t, 0 + 1) UX(t, O) + 1.

Moreover, using Propositions 2.4 and 2.6 one obtains that

(5.4) UX(t, t + ) e M()

for every choice of/3.
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A minimal solution u 6 AA (or) is called recurrent if there exist sequences of integers
{kp}p=l’ {JP}p=l such that [kp[ nt- [jp[ --+ CX as p -+ oe, and u is the limit of a sequence of

translates {Up cx}p= C 3//(or) in the C l_topology on compact sets in R where

Up(t) u(t + jp) kp, tR p--1 2,

We have the following result (see [16, Thm. 6.5]).
PROPOSITION 5.2. The solutions U(t, at + ) are recurrentfor every
The validity of Proposition 5.2 follows from (5.2) and (5.3).
In the next proposition we will show that all the minimal solutions y that are of the form

y(t) U(t, at + ) for some/ 6 R have the same limit point set on the torus.
PROPOSITION 5.3. There exists a closed set H (or) C R such thatfor every number 13 the

set H(or) consists ofall the points z that are oftheform

z lim U_ (tp, Ottp + ) ip
p-+

for some sequence ofintegers P}p=l anda sequence {tp}p= C R with Itp[ cx as p -- cxz
Moreover, for every 13 the set H(or) consists ofall the points z that are of theform

z lim Ux (tp, Utp + t) ip
p--+ cx

cxfor some sequence of integers p}p=l and a sequence P}p=l C R with Itpl --+ cx as

p--+cx.
Proof. Let/31,/2 R 1,/31 /32, {ip}p= be a sequence of integers, and {tp}p= C R be

a sequence of numbers such that

Itpl - as p x, U(tp, Oltp + f12) ip Z as p --+ cxz.

It follows from (5.2) that for every integer p > there exist integers kp and jp such that
Ijpl >_ lOpltpl, jp kp >/2 -/1, and

u(tp, +/h) > u(tp, tp +/ + jp p) p-.
It follows from (5.3) that

0 < Ux (lp .qt_ jp, ol(tp " jp) nt-/1) kp Uf (tp, Oltp .qt_/2)

<_ U

_
p -+- jp ot p nt- jp nt-/1) kp U

_
p Ol p .qt_ j2) P-1

for any natural number p. Therefore

(5.5) Ijp + tpl-- cx, as p --+ cxz,

(5.6) Uf p + jp ot p "k- jp nt- ill) kp p -- z as p --+ c,

(5.7) Ux_ (tp %- jp, ot(tp d- jp) d- ill) kp ip z as p

is a sequence of integers and {tp}p=l is a sequenceAnalogously we can show that if p }p=l cx

of numbers that satisfy

Itpl -- , Ux (tp, Ottp nt- f12) ip Z as p --
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then there exist sequences of integers {Jp}p=l, {kp}pc=l such that (5.5), (5.6), and (5.7) hold.
This completes the proof of the proposition. [3

The following result was presented in [15] without proof. It asserts that every minimal
solution with an irrational rotation number ct is regular.

PROPOSITION 5.4. Assume that y is a minimal solution of (P), ot is the rotation number of
y, and jl, j2, kl, k2 are integers satisfying orjl kl > orj2 k2. Then

y(t + jl) kl > y(t + j2) k2 for all R 1.

Proof. Set/i otji ki, 1, 2; yi(t) y(t + ji) ki for every 6 R 1, 1, 2. By
Proposition 3.2

sup{ly2(t) yl(t)l R

We will show next that lim supt[yl (t) y2(t)] > 0 and lim sup/_[yl (t) y2(t)] > 0.
It follows from Proposition 3.2, (5.3), and (5.4) that there exist numbers e2 > el for which

U_(t, ct + el) < y(t) < U_(t, at + e2) for every 6 R 1.

For p 1, 2 we have

UX(t + jp, ot(t + jp) + el) kp <_ yp(t) <_ U_(t + jp, ot(t

UX(t, ott-+-[3p+l)<_yp(t)<U_(t, ott+[3p+e2) for every 6 R1;

sup{yp(t) U_(t, at + p + el) 6 R

< sup{U_(t, ct +/3p + e2) U_(t, at + tp + el) 6 R < cx, p 1, 2.

Clearly

lim sup[y1 (t) yz(t)] > lim sup[yl(t) U (t, oft +/31 + el)]
t--+x t--+ cx

-lim sup[yz(t) UX(t, ctt
(5.8) t--- Cxz

+ inf{U_(t, ott +/1 + el) US(t, ott +/2 + el) 6 R

inf{UX (t, ctt +/31 + el) UX_(t, ct +/2 -- el) 6 R

since the first two terms in the left-hand side of (5.8) cancel each other. Analogously it is easy
to show that

lim sup[yl (t) yz(t)] >
(5.9) t--,-

inf{UX(t, ott + 131 + el) UX(t, at + + el) R1}.

We will show that

inf{U_ (t, ott+/1 -]" el) UX(t, o/t --/2 + el) 6 R > 0.

Assume the converse. Then there exists a sequence {tp)p=l C R such that

Ux_ (tp, Ottp q- fll q- el) Ux (tp, Ottp q-/2 -"
Fort 6Rlweset

[t] inf{p 6 {0, 4-1 p < t}, {t} [t].
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Evidently

UX({tp}, ol{tp} -[- {o[tp]} -+-/1 - el)
U_ ({tv}, a{t;} + {a[tp]} + 3 + e) 0 as p --- cx.

We may assume without loss of generality that

(5.11) {tp} --+ r, {c[tp]} -+ h as p --+ cxz,

and the sequence {ot[tp]}pl is either nonincreasing or nondecreasing. By (5.4) and Proposition
2.6 one of the conditions below is fulfilled:

Ux (t, at + {t[tp]} +/3j + el) ’ Ux(t, at + h +/3j + el) as p --+ cxz, j 1, 2,

uniformly on any compact subset of R 1, or

UX(t, at + {ot[tp]} +/3j + el) US(t, at + h + j + el) as p -- cxz, j 1, 2,

uniformly on any compact subset of R
By (5.10) and (5.11) in the first case we have

UX(r, otr + h + 31 + 11) lim UX({tp}, cr{tp} + h + fll + 11)
p---o

lim UX({tp}, a{tp} + {a[tp]} -+- fll +/1)
p--+o

lim UX({tp}, {tp} + {cr[tp]} + f12 --/1)

lim UX({tp}, a{tp} + h +/2 -/1)
p-+o

U (r, otr + h +/2 r-/1).

In the second case we obtain analogously

U+X (r, otr + h + fl + el) U+X (r, otr + h + f12 + 1).

On the other hand, the functions Ux (t, 0) are strictly monotone in 0 and/1 > /2. The obtained
contradiction proves that

lim sup[yl(t) y2(t)] > 0, lim sup[yl (t) y2(t)] > 0.
t---x t--+o

It follows from Propositions 2.11 and 2.12 that yl (t) > y2(t) for all 6 R 1. The proposition
is proved. [3

Let x be a minimal solution of (P) with an irrational rotation number or. By Proposition
5.4 x is regular and belongs to A//(ot). Consider the functions U(t, 0), UX(t, O) defined by
(5.1), (5.2). It follows from Proposition 2.12 that one of the conditions below holds.

(i) U_(t, ott)= x(t) for every R 1.
(ii) U (t, at) x(t) for every 6 R 1.
(iii) UX(t, ott) < x(t) < U_(t, ott) for every 6 R 1.
PROPOSITION 5.5. Let x be a minimal solution of (P), and let the rotation number ofx be

an irrational number or. Ifx is recurrent, then one of the conditions below holds:

U_ (t, at) x(t) for every R
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or

U (t, ott) x(t) for every E R 1.

k and {jp}p=l such thatProof. There exist sequences of integers p }p=l

Ikpl + Ijpl c, X(jp) -kp x(O) as p --+ cx.

It is easy to verify that x (0) E U_ (0, 0), U (0, O) }. This completes the proof of the proposi-
tion. [3

The following important result was presented in [15] without proof. It establishes that
actually the functions U and U_ do not depend on x.

PROPOSITION 5.6. Assume that ot is an irrational number, x, y All (or), and consider the

functions UX(t, 0), UY(t, 0), UX(t, 0), uY, (t, O) (see (5.1), (5.2)).
Then there exists a number 3 such that

UX (t, O) uY(t, 0 + 3) for each O, . R
Proof. Consider numbers/3, , and define

rt) ty_t, t + ) ty+Y t, ct + , tR1.

By Proposition 2.4

sup{Io’(t)l’t 6 R 1} < cxz.

We will show that either a(t) >_ 0 for all E R or a(t) _< 0 for all 6 R 1. Assume to the
contrary that there exist numbers S, T satisfying

a(T) > h, a(S) < -h,

where h is a positive number. Since the functions U(t, 0), U_ (t, 0) are right-continuous in
0, there exists e > 0 such that

U(T, otT + fl + z) U_(T, otT + ?’ + z) > h,

U_(S, orS + fl + z) U_(S, orS + ?’ + z) < -h

for every z 6 (0, e).
There exist sequences of integers {Pi }ic= {qi o}i=1 such that {Piot q- qi }i=1 is a decreasing

sequence that converges to zero. We may assume without loss of generality that

piot -+- qi G (0, e) for every 1, 2

Clearly Pil -- cx as cx. For every natural number we have

U(T, otT+ fl + piot) U_(T, otT + ?, + piot)

U_(T, otT + fl + Piot + qi) uY+(T, otT + ?’ + piot -+- qi) > h,

U

_
S orS -+- fl + P ot U

_
S orS + / -4c- p ot

U(S, orS + + piot + qi) uY+(s, orS + ?’ + piot + qi) < -h,

U_(T -k- Pi, ot(T -k- Pi) q- fl) U_(T -I- Pi, ot(T -k- Pi) -t- ?’) > h,

U(S -+- Pi, ot(S + Pi) + ) uY+(s + Pi, ot(S -I- Pi) -t- ’) <
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These relations are contradictory to Proposition 2.11. Therefore, one of the conditions below
holds:

r (t) > 0 for every 6 R l,
cr (t) < 0 for every 6 R 1.

Assume that the first condition holds. It follows from the properties of the functions U, U_
(see (5.3)) that

U_(t, ott+ fl +0) > U_(t, ott + y +0)

for every 6 R and 0 6 {up q p, q are integers}.
Since the functions U, U+y are right-continuous in 0, we conclude that

(5.12) U+X (t, + O) > uY+(t ?, +0) foreacht 0 6 R

We have thus proved that for every numbers/3, , either (5.12) or the following relation holds:

U_(t, +0) < U_(t, ?, +0) foreacht, 0 6 R 1.

Let E be defined by

E {3 U_(t, 0 + 3) > U_(t, O) for each t, 0 6 RI}.

Clearly E 0 and

30 inf{3 3 6 E} > -cxz.

It is easy to verify that

(5.13) uY,(t, 0 + 3o) >_ U:(t, O) for each t, 0 6 R 1.

Let 3 < 3o. Then there exist t(3), 0(3) 6 R such that

U(t(3), 0(3)) > U_(t(3), 0(3) + 3).

It follows from this that

U(t,O) >_U(t,O+3) foreacht, 0R1.

Since this relation holds for every 3 < 30, we conclude that

uY,(t, 0+30)_<UX(t,O) foreacht, 0 6R 1.

Together with (5.13) this implies that

uY, (t, 0 + 30) UX, (t, 0) for each t, 0 6 R 1.

The proposition is proved.
For every irrational ct we set U UX where x 6 A/[ (or). Propositions 5.5 and 5.6 imply

the following result.
PROPOSITION 5.7. Let y be a minimal solution with an irrational rotation number t. Ify

is recurrent, then there exists a unique number such that one ofthe conditions below holds:

y(t) U_(t, ott+ ) for every R 1,
y(t) U_(t, ott + ) for every R 1.
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If y is not recurrent, then there exists a number such that

U_(t, oft / ) < y(t) < U_(t, ct + ) for every R 1.
PROPOSITION 5.8. Assume that y is a minimal solution with a rotation number s/r, which

is an irreduciblefraction. Then there exist z+, z- J4per(S/r) such that

sup{ly(p + t) z+(p + t)l, lY’(P + t) z’+(p + t)l" 6 [0, 1]} -+ 0

as p --+ +oo on the integers and

sup{ly(p + t) z-(p + t)l, lY’(P + t) z’_ (p + t)l" 6 [0, 1]} --+ 0

as p ---, -oo on the integers.
Proof. Define a minimal solution u as

(5.14) u(t) y(t + r) s, R 1.
We may assume without loss of generality that u - y. By Proposition 2.11 there exists a
number to > 0 such that one of the conditions below holds-

y(t) > u(t) for every > to,

y(t) < u(t) for every > to.
Assume that

(5.15) y(t) < u(t) for every > to.

(The other case may be treated analogously.) We set

b(t) y(t)- st R.
By Proposition 3.2

Ib(t) b(0)[ < c(1 + Is/rl) + 6 for every 6 R.
It follows from (5.14) and (5.15) that

b(t + r) > b(t) for every 6 R 1, _> to.

Therefore, for any 6 R the sequence {b(t + kr)}=0 converges to a number h(t). Evidently
h(t + r) h(t) for every 6 R. Set

z+(t) h(t) + st/r for every 6 R 1.
It is easy to see that

z+ (t +.r) z+ (t) + s for every 6 R 1,
z+(t) lim [y(t + kr) ks], where k is an integer.

Analogously we can prove that for every 6 R there exists

z_(t) lim [y(t + ir) is],
i-+

where is an integer satisfying z-(t + r) z-(t) + s for 6 R 1. For an integer k we set

yk(t)-y(t+kr)-ks fort6R.
It follows from Proposition 2.6 that z+, z- Jper(S/r), and

yk--+z+ ask +c, y--+z- ask--

in the C-topology on compact sets in R. This completes the proof.
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6. Proof of Theorem 1.2. Consider the continuous function v R2 -- R 1, where

(6.1) v(x, y) inf f(t, u(t), u’(t)) dt u W’(O, 1), u(0) x, u(1) y

and set

(6.2) x inf lim inf N- v(zi, Zi+l) {zi}i=oG gl
N---x

i=0

Let the functions zr R R and 0 R2 R be as defined in Proposition 4.3. Theorem
4.1 implies the following result.

PROPOSITION 6.1. For each x Wlo ([0, )) thefunction

T --. [f(t,x(t),x’(t))- IX] dt, T E R 1, T > O,

is either bounded or diverges to +cx as T -A function x E Wllo ([0, o)) is called a good configuration if

sup [f(t,x(t),x’(t))- x] dt T c=_ R , T > 0 < o..

For x WIo ([0, cx)) denote by (x) the set of all real numbers z such that there exist
sequences of integers {ip}p= and {kp}p= such that

x kp p -+ Z, kp - +cx as p-

Evidently f2 (x) is a closed set.
PROPOSITION 6.2. Assume that Ef(tf) min{Ef(u) c R1}, where tf is irrational

and x Wl ([0, cx:)) is a good configuration. Then

{y(0) y E Ad(tf)} D f2(x) D {U_e(0, r) r R 1} t.) {U_(0, r) z R1}.

Proof. Let z Q (x). We will first show that z {y(0) y E .M(ctf)}. There exist
sequences of integers {ip}p=l {kp}p=l such that kp -- +oo, x(kp) ip -- z as p --We may assume that 1 < kp < kp+l (p ). For a natural number p we define

Xp wl’l(-kp, kp) as

Xp(t) x(t + kp) ip, [-kp, kp].

It follows from Theorem 4.1 that for every natural number N the sequence

(t)) dt p e {1 2. }, kp > Nf(t, xp(t), xp

is bounded, and by (1.2) the sequence

{x; p e {1, 2 }, kp > N}

is bounded in LZ[-N, N]. We can assume, by extracting a subsequence and reindexing, that
for some Y E Wo (R 1)

--+ Y’ weakly in LZ[-N, N] and Xp --+ Y uniformly in [-N, N] as pXp

for each natural number N.
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It is easy to verify that Y(0) z, O(x(i), x(i + 1)) 0 as cx and

(6.3) O(Y(i), Y(i + 1)) 0 for every 0, 4-1, 4-2

Since x is a good configuration, it follows from Proposition 4.2 that

i+l

f (t, x(t), x’(t)) dt v(x(i), x(i + 1)) 0 as/--+ +cxz.

Together with Proposition 2.1 this implies that

i+l

f (t, Y(t), Y’(t)) dt v(Y(i), Y(i + 1)) (i O, 4-1, 4-2 ).

It follows from this relation and (6.3) that Y 6 Wllo (R 1) is a minimal solution. Evidently for
each integers i, j satisfying < j

J
f (t, Y(t), Y’(t)) dt (j i)l _< 2 sup{lyr(t)l R }.

By Proposition 3.3 and Theorem 4.1 otf is the rotation number of Y. Therefore, z 6 {y(0)
y 6 .M(cf)}. Since z is an arbitrary element of f2(x), we conclude that

fl(x) C {y(O) y .Ad(otf)}.

Next we will establish that

(X) {u_f(0, "g) "g R 1} U {u_af(0, z’) "t" R1}.

By Proposition 5.6 we may assume without loss of generality that

Let

r 6 {U/(0, r) :r 6 R U {U_y(0, z’) :r c gl}.

There exist sequences of integers {gp}pCXZ=l {Sp}pC__l such that

Y(gp) Sp -- r as p--

It follows from the definition of Y that Y(gp) Sp ’(x) for each natural number p.
Since fl(x) is closed, we conclude that r 6 f2(x). This completes the proof of the proposi-
tion.

PROPOSITION 6.3. Assume that otf is an irrational number, tz Ef (otf ), x, y Wlo ([0, o)),
x (0) y(O), and

f/i+1(6.4 f (t, x(t), x’(t)) dt v(x(i), x(i + 1)), O(x(i), x(i + 1)) 0 for O,

Then

liminf [f(t,x(t),x’(t)) f(t, y(t), y’(t))] dt < O,
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where is an integer. Moreover if

lim inf [f(t,x(t),x’(t)) f(t, y(t), y’(t))] dt -O,

where is an integer, then

i+1

f (t, y(t), y’(t)) dt v(y(i), y(i + 1)),
di

O(y(i), y(i + l)) O for O,

Proof. It is easy to verify that x is a good configuration. We may assume without loss of
generality that y is a good configuration. There exists

/3f {U_Tf (0, r) r [0, 1]} t_J {U_ (0, r) : [0, 1]}

such that

(6.5) zr (&) > zr (U, (0, r) for every r 6 R 1.

We will show that there exist sequences of integers {ap}p=l, {np}p=l, and P}p=l such that

x Gp lp --+ flf Gp cx as p-+ cxz

and the following relation holds"

lim [y(Gp) -np] E {U, y (0, t) R1}.
p--+ cx

By Proposition 6.2 there exist sequences of integers {ip}p= 1, {kp}p= such that 1 _< kp < kp+l
(p 1 ), kp -- +o, y(kp) ip -- U_ (0, 0) as p -- cxz.

We can assume by extracting a subsequence of reindexing that there exist z0 6 f2 (x) and
a sequence of integers p }p=l such that

x(kp)-fp Zo asp--+.

For a natural number p we define Xp, yp W1,1 (-kp, kp) as

(6.6) Xp(t) x(t + kp) fp, yp(t) y(t + kp) -ip (t e [-kp, kp]).

It follows from Theorem 4.1 that for every natural number N the sequences

’(t)) dt p {1 2,..}, kp > Nf(t, Xp(t),Xp
N

{fN }f(t, yp(t), yp(t)) dt p {1, 2 }, kp >_ N
N

are bounded, and then (1.2) implies that the sequences

{Xp p {1, 2 }, kp > N}, {yfp p {1, 2 }, kp > N}
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are bounded in L2[-N, N] for every natural number N. We can assume, by extracting a
subsequence and reindexing, that for some X, Y Wllol(R1),
(6.7) --+ X’, Y’ 2[__Xp yp weakly in L N, N] as p --+ cx

(6.8) Xp --+ X, yp Y uniformly in [-N, N] as p --+ cxz

for each natural number N.
It is easy to see that

(6.9) X (0) z0, Y (0) U (0, 0)+

Since y is a good configuration, we have O(y(i), y(i + 1)) --+ 0 as --+ cx and

(6.10) O(Y(i), Y(i + 1)) 0 for 0, +1

Clearly

(6.11) O(X(i), X(i + 1)) 0 (i O, 4-1 ).

Since y is a good configuration, it follows from Proposition 4.2 that

f(t, y(t), y’(t)) v(y(i), y(i + 1)) --+ as --+ +cx.dt 0

It follows from this relation, (6.4), and Proposition 2.1 that

f (t, X(t), X’(t)) v(X(i), X(i + 1)),dt

i+l

f (t, Y(t), Y’(t)) v(Y(i), Y(i -t- 1)) (i 0, ).dt +1

In view of (6.10) and (6.11) this implies that X and Y are minimal solutions. Evidently for
each integers i, j satisfying < j

f(t, X(t), X’(t)) dt (j i)lx f (t, Y(t), Y’(t)) dt (j i)lx

_< 2sup{Izr(t)l R1}.

By Proposition 3.3 and Theorem 4.1 we conclude that X, Y 6 .A/l(otf). It follows from
Proposition 5.7 and (6.9) that

(6.12) Y(t) Uf (t, otft) for every 6 R 1.

By Proposition 5.6

{u+X(0, z’)’’r G R 1} U {u_X(0, z’)’r G R 1}
{U_(0, r) r 6 R 1} t2 {U(0, z) r R1}.

oz S xTherefore, there exist sequences of integers {gp}p=l, p}p=l such that

X gp -Sp --+ 13f as p --+
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and the sequence {O/fgp Sp converges as p cx. For p 1, 2 we have

Y(gp) Sp U: (gp, otfgp) Sp Us (0, otfgp sp).

We may assume without loss of generality that the sequence {Y(gp) Sp}pC__l converges to a
number

(6.13) fl E {U;Y(0, z’)’r e e 1} U {U_Y(0, z’) z" R 1}

as p --+ cx. Let p be a natural number. It follows from the definition of X, Y (see (6.6) and
(6.8)) that

X (gp) lim Xq (gp) lim [x (gp nt- kq) q ],
q--- q-.o

Y(gp) lim yq(gp) lim [y(gp + kq) iq].
q-- cx q--o

There exists a natural number qp such that kqp > p + 1 + 2lgp l,

.- 1
IX(gp) X(gp d- kqp) lqpl < -,

P
1

IY(gp) y(gp d- kqp) iql <
P

We set

Gp gp + kqp, np Sp + iqp, t Sp "J1- lqp for p 1, 2

It is easy to verify (see (6.13) and (6.5)) that

(6.14)

Gp >_ forp= 1,2 Gp cx asp--+

x(Gp) ’lp -- f y(Gp) np -+ [3 as p-+ Cxz,

lim rr(y(Gp))--7r(/3) _< zr(/3f)= lim 7r(x(Gp)).

It follows from (6.4) that for p 1, 2 we have

Gp
[f(t, x(t), x’(t)) f(t, y(t), y’(t))] dt

Gp-1

if/i+1r(x(O)) r(x(G))
i=0

f (t, y(t), y’(t)) dt v(y(i), y(i + 1))]
Gp-1

O(y(i), y(i + 1)) (rr(y(O)) :rr(y(Gp)))
i=0

<_ 7r(y(Gp)) 7r(x(Gp)).

Together with (6.14) this relation implies the validity of the proposition. q

Theorem 1.2 follows from Propositions 2.2, 4.3, and 6.3 and Theorem 4.1.
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7. Lagrange multipliers for the discrete-time problem. Let R be the Euclidean
n-dimensional space with the norm Ilxll max{Ixil n}. Let v R x gn - R
be lower semicontinuous function, which we call the valuefunction. A sequence 2 {xk }k=0
in R is called a program, and with every program 2 we associate the costflow {DN()}N=I’
where

(7.1)
N-1

DN()

_
V(Xk, Xk+l).

k=0

We consider the problem of minimizing DN() as N --+ ee in various senses, e.g., of mini-
mizing the functional - lim infN--, DN(2).

Denote I {0, 4-1, 4-2 }. We consider value functions v(., .) that satisfy

(7.2) v(x + m, y + m) v(x, y) for every x, y Rn and m In.

We will furthermore assume that

(7.3) inf{v(x, y) x, y Rn} >

and if we denote

K {(x, y) Rn R "X < Yi <-- Xi t_ 1, 1 n},

then

(7.4) a sup{v(x, y) (x, y) K} <.

Finally assume that there exists a number 1-’ > 0 such that

(7.5) inf{v(x, y) "x, y Rn, Ix Yl > F} > a.

We may assume that 1-’ > n.
PROPOSITION 7.1. For every program {x }g=0 there exists a program {Yk}=0

that satisfies Yo xo,

(7.6) DN@) <_ DN() for every N > 1,

and

(7.7) Y+I- Ykl _< 1-’ for every k > O.

Proof. Suppose that for some > 0 we have IXl+l xll > F. Then there exists an m In

such that (Xl, Xl+ m) K, and then by (7.4) we have that

(7.8) l)(Xl, Xl+l m) < a.

We define the program as

x, if 0<k<l,
y,

xg-m if k>l+l.

Then by (7.2)

v(y, Yk+l) V(Xk, Xk+l) for every k 7 l,



1128 A. LEIZAROWITZ AND A. ZASLAVSKI

while by (7.5) and (7.8)

V(yl, YI+I) --< a < U(Xl, Xl+l).

This completes the proof of the proposition. [3

By Proposition 2.1 we may restrict attention only to programs that satisfy (7.7). More
generally we say that 2 is a program with bounded increments if there exists a constant b > 0
such that IXk/l xkl < b for every k > 0.

DEFINITION 7.1. For a program with bounded increments 2 we define the set ofrotation
k o We denote this set by A(2).vectors as the set ofall limit points of the sequence {x/ }=1.

It is clear that for every program with bounded increments 2 the set A(2) is nonempty
and compact. In the sequel we will consider only programs with bounded increments.

With every program 2 we associate the cost growth rate lim infN DN(2) and have
the following result.

PROPOSITION 7.2. For every program 2 there exists a program such that Yo xo and
the limit limN DN@) exists and satisfies

1
(7.9) lim DN@) < lim inf DN(2).

N---->o N N--->cx N

Proof. Suppose that lim suPN DN(2) > lim infN-, DN(2), and denote

k>0 N--x) N Y(Xk+j, Xk+j+l)

Then clearly d < lim infN-_, DN(2). There exists an eo > 0 such that for every 0 < e < eo
there exists a finite sequence {Xj+l Xj+l} with arbitrarily large such that

(7.10)
1 j+l

7 v(x, x+) < d + .
k=j+l

(Clearly (7.10) will also hold for smaller integers l’ < with another finite sequence, e.g., if l’
is a divisor of l.) Let {ei o}i=0 be a decreasing sequence, 6 > 0, 15 ----> 0 as --+ CX. For every
5 let ji and li correspond to 5 as j and corresponded above to e and such that

(7.11)
ji /li

v(x, x,+) < d + 6i.
li k=ji+

We denote Np =1 li for every p > 1; define a program as

{Y0, Yl Yll {x0, xj, +i rn Xjl+l, rn

for some m I such that (x0, Xjl rn 1) 6 K, and for every p > 2 define

(YNp_l+l YNp) (Xjp+l mp Xjp+l mp)

for some mp I such that (YNp_l, Xjp+I mp) K. As mentioned above, we can choose
}i=l such that li/Ni -+ 0 as -- cx. It follows from the periodicity of v(., .), the definition

of d, and from (7.1) that satisfies

lim DN() d.
N--xz N

Since d < lim infu--+ DN(2), this completes the proof of the proposition.
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We next define the function ot (ot). For every c 6 R let

79 {2 :c A(2)},

and define

(ot) inf li.minf-- V(Xk, Xk+l) ". 7)or, XNj

| Nj k=O Nj

where for every 2 6 79 the infimum is over all the subsequences {Nj }jl such that Xuj/Nj --+ ot

asj--- x.
PROPOSITION 7.3. Thefunction (.) is lower semicontinuous.

Proof. Let 0 - 0, and let 2 be such that for an increasing sequence ofintegers {nj (i) }j=
we have

l’lj
xnj Oli and Y(Xk, Xk+l) "-> (I)(o/i) + i

nj k=0

with ffi 0 as -- Cx. Moreover, we can choose the programs {2i} such that {X}ic=I is
bounded. (For simplicity we wrote above nj instead of nj(i).) We construct an increasing
sequence of integers as

N2 nj(2)
N1 nl(1),

for some j such that N2 > N1

and generally for k > let

gk+ nj(k + 1)
k

for some j such that Nk-F1 Ni.
i=1

We now define a program as

{Yl YNl {X X1N1 },

{YNI+I YNI+N2} {X21 + m2 X2N2 +
for some m2 G In such that (YN1, YN1 (X + m2)) G K, and more generally we denote

M =l Nj and define for every k > 2

{YM+ YM} {x + m Xuk + mk}

for some m, e In such that (YMk_,, YM,-1 (X + m,)) K. It is easy to see, in view of the
condition N+I > M and the boundedness of {x }i=1, that

yM/M -+or ask-- cx

and

liminf v(yj, Yj+I) < lim inf (I)(o/i),
k---rx Mk j--1

i-->x

implying that (ot) < lim infi__, (I)(o/i). This concludes the proof.
The following result is implied by the proof of Proposition 7.3:
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COROLLARY 7.1. For every 0/ Rn there exists aprogram Y such thatfor some increasing
sequence of integers Nj }j=l we have

XN /Nj -+ 0/ and N
k=O

The following result is basic in our study of programs with a prescribed rotation vector.
For results of a similar type, see Mather 13].

THEOREM 7.1. Thefunction 0(.) is convex on Rn.
Proof. For every 0/, 0(0/) is finite as can be seen by considering the sequence Xk k0/,

k > 1. We will prove that it is convex.
Let 0/1,0/2 Rn and > 0 be given. We then can find arbitrarily large integers N and M

and finite sequences {xk}kU=l and {Yk t}k--1 such that [Xl[ 1, [Yl[ _< 1, and

(7.12)

XN
< <

N

l)(Xk, Xk+l) < 0(0/1) -- ,N
k=l

M

Z V(yk, Yk+l) < 0(0/2) + (.
M

k-l

Given a number 0 < < we can find integers p and q such that

(7.13)
pN

pN+qM
--t

lpN+qMWe construct a sequence {Zk k= as

{Zl ZN} {Xl XN},

and for every j p 1 we let

(7.14) {ZjN+I Z(j+I)N} {Xl + mj xN + mj},

where mj In is such that (ZjN, ZjN X mj) K. We then define

(7.15) {ZpN+I ZpN+M} {Yl + 11 YM +

for some 11 In such that (ZpN, ZpN Yl 11) K. Moreover, for every < j < q we
define

(7.16) {ZpN+jM+I ZpN+(j+I)M} Yl -t- lj+l y + lj+},

where lj+l I is such that (ZpN+jM, ZpN+jM Yl lj+l) K. It is easy to see from (7.12)
and the definitions of z in (7.14) and (7.15) that

IZpN+qM pN0/1 qM0/2[ < (pN + qM)e + p + q,

implying

pN
(pN + qM)-lZpN+qM

pN + qM pN + qM 0/2
1 1

M
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in view of (7.13) this implies

1
[(pN + qM)-lapN+qM (tOl -+- (1 t)c2)l < (1 + Iotll + Ic2l)e + +

A similar computation for the cost expression yields

pN+qM-

k=l

V(Zk, Zk+l) pNcb(Otl) qM(ot2) < (pN + qM)e + (p + q + 1)C1

for some constant C1 > 0, implying that

(7.17)
pN+qM-1

(pN+qM)-I Z
k=l

(11)V(Zk, Zk+l)--tdP(Otl)--(1--t)Cb(ot2) <_ C2 + -- h- -’
for some constant C2 >" 0.

Since (7.16) and (7.17) hold for arbitrarily small e > 0 and arbitrarily large N and M, it
follows that

(7.18) liminf (ot) < t(Otl) q- (1 t)(c2).
a-+ta +(1-t)ot2

Since (.) is lower semicontinuous, (7.18) implies that (.) is convex, concluding the proof
of the theorem. [3

For every c 6 Rn we consider the functional Ja defined by

J(2) cxz if ot A(Y),

l)(Xk, Xk+l), -+ Og as j - x)
j---cx:) N k=O

if c A(2),

where the infimum is over all the increasing sequences ofintegers {Nj }jC=l for whichXN/Nj --By Theorem 7.1 (.) is convex and let its epigraph be the set

epi {(or,/3) Rn+l fl >_ (ot), ote Rn}.

Let ot Rn be such that (or, (a)) is an exposed point of epiC; namely, there exists a ) Rn

such that

(7.19) (c’) > (ot) + .. (cd c) for every

Clearly if (.) is strictly convex, then every ot RN is such that (c, (c)) is an exposed
point of epiC.

We will need the following result about the existence of programs with minimal-cost
growth rate.

THEOREM 7.2. There exists a minimizer * to thefunctional
N-1- lim inf

1 Z V(Zk, Zk+l),
N---o N

k=0

N-1and it is such that limu_, N Yk=o v(z, z,+) exists.
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Proof. The proof is essentially the same as that of Theorem 3.1 in Leizarowitz [9], and
we will not repeat it here. [3

THEOREM 7.3. Suppose that (oc, (oc)) is an exposed point ofepiC. Then the problem

minimize Y w+ J(Y)

has a minimizer Yc* that has definite limits both for the rotation vector and the average cost,
so that thefollowing limits exist:

(7.20) lim --x oc
-o k

and lim inf v(x, Xk+l) d(oc).
N--+oo N

k--0

Actually Yc is a minimizer ofthe problem

N-1

minimize lim inf Z v(xk, Xk+l),
N--+cx N

k=0

where ) satisfies (7.19) and v(., .) is defined by

(7.21) v(x, y) v(x, y) + ) (x y).

lf c(.) is strictly convex, then the assertions ofthe theorem and (7.20) holdfor every oc Rn.
Proof. It is easy to verify that v(., .) satisfies all the assumptions that we had for v(., .).

Let Y* be a minimizer of the functional

- lim inf-

_
V,(Xk, Xk+l),

N--+cxz N
k’-0

N-1 , ,which, by Theorem 7.2, exists and is such that limu-o =0 v(x, X+l) exists. Denote
it by c, and we claim that c (oc) ) oc and that assertions of the theorem hold true for
the program Y*.

Let {N}I be an increasing sequence of integers, and suppose that Xu/N oc’ for
some oc’ 6 R (otherwise we consider a subsequence of {N o}=1) Then by definition of (.)
we have

lim inf v(x;, Xk+l) _> (I)(oc’) . oct,
k--+o Nk k=0

which, by (7.19), exceeds c (oc) ) oc whenever oc’ oc. However, by Corollary 7.1
there exists a program 2 for which

lim inf Vot(Xk, Xk+l)
N--+cx N

k’--0

It thus follows by Theorem 7.2 that (7.20) holds for Y*, and Y* is a minimizer of J (.) since
J(*) (oc). This completes the proof of the theorem. [3

The next result follows immediately from Theorem 7.3. We now restrict attention only
to programs 2 for which the limit

/z(Y) lim v(xk, Xk+l)
N--+cxz N

k=0
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exists. We call this limit, wherever it exists, the cost growth rate of the program 2. If we wish
to minimize the functional

2 -> lim inf v(xk, Xk+l),
N--x N

then by Proposition 7.2 we may consider for the minimization only programs 2 for which
#(2) is well defined.

THEOREM 7.4. Suppose that (or, do(or)) is an exposed point ofepido. Then the problem

minimize {/x(2) oe 6 A(2)}

has a minimizer 2" such that

lim X N-* /N and
N--+x

lim v(x, x+l) 49().
N--cx N

k---0

Namely, the minimal cost growth rate over all the programs with rotation vector ot is attained
by a program with a single rotation vector or. If do is strictly convex, then the assertion of the
theorem holdsfor every t g

Remark. For continuous-time control problems we discretize time and reduce the problem
to the one we studied above. There is then a natural correspondence between continuous-time
trajectories on one hand and discrete-time programs on the other hand. The rotation vectors
and the cost growth rate are preserved under this correspondence, which enables an easy
extension of our results to the continuous-time situation.
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COPOSITIVITY AND THE MINIMIZATION OF QUADRATIC FUNCTIONS
WITH NONNEGATIVITY AND QUADRATIC EQUALITY CONSTRAINTS*

J. C. PREISIG

Abstract. The problem of finding the minimum value of a quadratic function on a set defined by nonnegativity
and quadratic equality constraints is analyzed. The difficulty in finding the solution to this problem is primarily due
to the fact that the feasible region is nonconvex. An algorithm that requires the Hessian of the quadratic constraint
function be strictly copositive is developed for finding the minimal value of the quadratic objective function. The
problem of finding this global minima can be mapped into the problem of determining whether or not a particular
matrix is copositive. This result is equivalent to earlier results characterizing the solutions to a large class of fractional
programming problems. A more efficient algorithm for finding solutions that satisfy the Kuhn-Tucker necessary
conditions is developed, and its convergence behavior is analyzed. This algorithm requires that the Hessians of the
quadratic constraint and objective functions be both positive semidefinite and strictly copositive.

Key words, copositivity, fractional programming, nonlinear programming

AMS subject classifications. 90C30, 90C32, 90C90

1. Introduction. This paper addresses the problem of finding the minimal value of a
quadratic function with nonnegativity and quadratic equality constraints (Problem 1) and the
problem of finding the vector w that yields this minimal value (Problem 2).

PROBLEM l. opt min w_>0 wtAw.
wtBw=b>O

PROBLEM 2. Wop argmin w>_0 wtAw.
wtBw:b>0

Without any loss of generality, the matrices A and B can be assumed to be symmetric and
the constant b can be set equal to one. The matrix property of copositivity is used extensively
throughout the paper. The following definition of this property is used.

DEFINITION 1. A matrix Q is copositive ifw > 0 implies that w Qw > O. A matrix Q is
strictly copositive ifw > 0 and w = 0 implies that w Qw > 0.

Throughout this paper, uppercase letters denote matrix quantities, boldface lowercase
letters denote vector quantities, and the superscript denotes transpose. The development of
algorithms to solve Problems and 2 was motivated by an array signal processing problem.
This motivating application is described in 2. Section 3 presents an algorithm for solving
Problem 1, while 5 presents an algorithm for finding a solution that satisfies the Kuhn-
Tucker necessary conditions for Problem 2. The results in 3 are related to results from the
field of fractional programming in 4. Finally, a numerical analysis of the efficiency of the
two algorithms is presented in 6.

2. An array processing application. The application that motivated the development
of the algorithms described herein involves the processing of signals received at an array of
sensors to determine the location of the source of each of the signals received [8]. For each
possible source location denoted by p, the array processor estimates the average power in the
received signal, which is emitted by a source at that location. Ideally this estimate equals zero

if no source is present at the location p. The estimate is denoted by 2(p) and is referred to as
the ambiguity function. The array processor detailed in [8] creates the ambiguity function by
first calculating the sample cross-spectral correlation matrix of the received signal (/). Then
for each possible source location of interest, the processor calculates the signal replica vector,

*Received by the editors July 9, 1993; accepted for publication (in revised form) February 6, 1995. This research
was supported by Office of Naval Research grants N00014-90-J- 1452 and N00014-9 l-J- 1246. This paper is WHOI
Contribution 8427.

Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole,
MA 02543, and Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115.
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denoted by q(b), that is associated with that location. The ambiguity function for that location
is then given by

where the superscript h denotes Hermitian.

q(b)hk-lq(b)

The signal replica vector mentioned above (i.e., q(p)) is a quantitative description of the
spatial structure that would characterize any signal emitted by a source at location b as it is
received at the array ofsensors used by the processor. This spatial structure allows the processor
to differentiate between signals emitted by sources at different locations. Unfortunately, the
replica vector is highly dependent on the characteristics of the propagation medium between
the location ofthe source and the array of sensors. Thus, if the processor does not have detailed
and accurate environmental information as is often the case in problems involving acoustic
signals that have propagated through the ocean, the processor may not be able to calculate
q(p) accurately for each location.

The array processor in [8] addresses this problem by creating a set of allowable replica
vectors, denoted by Q(p), for each location. This set is defined as

(2.1) Q(P) q l3wl wM; tOi _> 0; q toiqi(b) and q 12--
i=1

where the vectors ql (p) through qM(b) are prototype replica vectors for the location p. That
is, Q(<p) is the set of all vectors with a norm of one that are expressible as a nonnegative linear
combination of the prototype vectors. The selection of the prototype replica vectors depends
on the range of the environmental conditions over which the processor is expected to operate.
Given the prototype vectors for each location, the processor calculates the ambiguity function
as

1
(2.2) #2()_ max

qQ(,p) qh/-lq

Let the matrix () [ql () q()]. Then (2.1) can be rewritten as

(2.3) Q()- [q 13w M; w >_ 0; q- ()w and wth()()W--1 ].
Let A() Real((b)h/- ()) and B() Real(()h()). Then using (2.3), the
problem in (2.2) can be expressed as

()--- min wtA()w.
w_>0

wtB(tp)w=l

Thus, the inverse of the ambiguity function is the solution to Problem and the associated
weights are the solutions to Problem 2.

3. Finding the global minimum. This section addresses the problem of finding the
global minimum of a quadratic function subject to a quadratic equality constraint and a
nonnegativity constraint (Problem 1). No additional restrictions are placed on the matrix
A. However, the matrix B must be strictly copositive. In this section, this problem is shown
to be NP-complete and an algorithm is developed for solving the problem.

The following four lemmas, the proofs of which follow directly from the definitions of
copositivity and strict copositivity, are required in proving the main result of this section.
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LEMMA 3.1. Let B be a strictly copositive, symmetric matrix. Then the set w > O,
wtBw is a compact set.

LEMMA 3.2. Let A and B be symmetric matrices, and assume that B is strictly copositive.
Then 3 a constant .o s.t.

(A )oB) is copositive but not strictly copositive,
) < )o A )B is strictly copositive, and
) > )o (A )B) is not copositive.

Letting the symbol e denote the column vector of all ones, the third lemma is as follows.
LEMMA 3.3. 3Wo > 0, w0 0 s.t.

and

w (A 0B) w0 0

w0 arg min W (A )0B) w,
>0

etw

where )o is as defined in Lemma 3.2.
The final lemma necessary to prove the main result of this section is as follows.
LEMMA 3.4.

VX < k0 min W (A )B) w > 0
w>0

etw

and . > -o min W (A ;kB) w < O,
w>O

etw

where )o is as defined in Lemma 3.2.
The main theorem and result of this section relates the constant .0 defined above to the

solution to Problem 1.
THEOREM 3.5. Let A and B be symmetric matrices, B be strictly copositive,

Wopt arg min wtAw,
w>_0

wtBw--I

Awopt,opt Wopt

and )o be as defined in Lemma 3.2.
Then ’opt )0.
Proof. From Lemma 3.1, the feasible region {w w > 0, wtBw is compact. In

addition, the function wtAw is continuous. Therefore, Wop exists as defined above. Let

* Wopt/(etWopt). Then > 0, et 1, and "’t(A .optB) 0. Then, Lemma 3.4
implies that .opt >_ 0.

Let w0 be as defined in Lemma 3.3, and let @ w0/4’wBw0. Then -,t(A ,0B) 0,
,,tB 1, and
is contained in the feasible region of the minimization problem that defines Wopt and .opt, this
last equality implies that .opt _< .0-

Thus, opt 0.
Utilizing Theorem 3.5, the following bisection algorithm can be used to find the solution

to Problem 1.
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1. Select 3-- and 3-+ such that A 3-- B is strictly copositive and A 3-+B is not strictly
copositive. Various simple strategies can be used to make this initial selection. (For example,
choose 3-+ so that at least one element on the main diagonal of A -,+B is < 0. If A is strictly
copositive, let 3-- 0. Otherwise, let 3-- Lmin[Wmin[2 where 3-min is the minimum eigenvalue

Vmin

wtBw, and Ymin WminBWmin.) Select some tolerance, 6 > O.of A, Wmin arg min w>o
etw

2. Let 3- (3-+ + 3--)/2.
3. If A 3-B is strictly copositive, set 3-- 3-. Otherwise, 3-+ 3-.
4. If A 3-+B is copositive or if 3-+ 3-- < 6, then let 3-opt 3-+ and terminate the

algorithm. Otherwise, go to step 2.
At termination, 3-opt will be greater than or equal to the solution to Problem 1 and the

magnitude of the difference between the two will be no greater than 6.

Finding the solution to Problem to within a particular tolerance can be mapped into
determining whether or not a matrix is copositive. In addition, the problem of determining
whether or not a matrix is copositive can be mapped into solving Problem 1. (Given any
symmetric matrix Q, divide it into two symmetric matrices A and B such that Q A B and
B has all positive elements. Then B is strictly copositive. Then, if the solution to Problem 1
for this A and B equals one, Q is copositive but not strictly copositive. If the solution is
less than one, Q is strictly copositive. Otherwise, Q is not copositive.) Since the problem of
determining whether or not a matrix is copositive is NP-complete [7], determining the solution
to Problem 1 is also NP-complete. Even though the problem of determining whether or not
a matrix is copositive is NP-complete, there are a number of procedures available for making
this determination [2, 6, 11, 12].

4. Relationship to fractional programming. Since B is assumed to be strictly copos-
itive, Problem 1 can be recast as a fractional programming problem. Then, Theorem 3.5 can
be shown to be equivalent to a theorem in [3, 9, 10] that relates the solution of a parametric
optimization problem to the solution of a fractional programming problem.

To recast Problem 1 as a fractional programming problem, we use the following lemma.
wtAwLEMMA 4.1. Let 3-opt min ,_o wtAw and 3.

w Bw= etw=
Then 3-opt 3-1.
Proof. Select Wl s.t. Wl > 0, W BW1 1, and

wl Thenetwl

~t A,I
"’1 > 0, et’l 1, and 3-opt wl

wl~t By,71
Therefore, 3-1 _< 3-opt. Select w2 such that

wAw2
w2 >_ 0, etw2 1, and 3-1 w--2Bw2

Let

Then

~t B]’2 1 and 3-1 wAw2 ’A’2 "A’2’ir2 >_ 0, W2 W--2 BW2 B2W2

Therefore, 3-opt --< 3-1.
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Therefore, opt 1. []

The result from [3, 9, 10] that relates the solution of a parametric programming problem
to the fractional programming problem in Lemma 4.1 can be expressed as

Let F(.) min w_0 w (A .B) w, and let .2 E ] be the unique
etw

wtAwzero of F()). Then ,k2 rain w>_0 wtBw"etw=

A constraint such as etw in Lemma4.1 is necessary to satisfy the requirements ofthis result
from [3, 9, 10] that the feasible region be compact and that the function F(.) have a unique
zero. From Lemmas 3.3 and 3.4, )0 .2 is the unique zero of F00. Since Lemma 4.1 relates
the solutions of Problem 1 and the fractional programming problem, the results in [3, 9, 10]
and Theorem 3.5 state equivalent characterizations of the solution to Problem 1.

References [3, 9, 10] present an algorithm and some modifications for finding the unique
zero of the function F(.). However, each iteration of this algorithm or its modifications
requires computing F(.) for a new value of . Since F00 is in general the minima of a
nonconvex function, this may be a difficult minimization problem. In fact, this problem will
be at least as difficult as determining whether or not the matrix A .B is strictly copositive,
copositive but not strictly copositive, or not copositive as required by the algorithm detailed
in 3.

5. Finding a Kuhn-Tucker point. The optimization problem arising in the application
for which the algorithms developed herein were developed (see 2) often has a dimensionality
of approximately 200. Experience has shown that for problems of such high dimension-
ality, the approach outlined in 3 is too inefficient to be useful. An alternative procedure
detailed in this section is efficient enough to handle such problems. Results presented in
Section 6 compare the performance of the two algorithms.

Rather than finding the global solution to Problem 1, the algorithm in this section finds
a point that satisfies the Kuhn-Tucker necessary conditions for Problem 2. The algorithm is
iterative and at each iteration solves a quadratic programming problem (quadratic objective
function, nonnegativity and linear equality constraints). At the nth iteration, the linear equality
constraint ofthe quadratic programming problem is derived by replacing the left-hand vectorw
in the quadratic equality constraint in Problem 2 with the solution from the previous iteration,
Wn-1. As w converges to a solution, the linear equality constraint approaches the quadratic
equality constraint in Problem 2. The proof of the convergence properties of the algorithm
requires that A and B be positive semidefinite and strictly copositive. These requirements will
be introduced at the appropriate times in the analysis that follows.

The Kuhn-Tucker necessary conditions for Wopt to be a solution to Problem 2 are

3 v, ,k s.t. Awopt )Bwopt v 0,
, Wop >_ 0,

ytWop 0,

WtoptBwopt 1.

The algorithm presented and analyzed in this section can be shown to either
a) terminate with a solution satisfying the Kuhn-Tucker necessary conditions or
b) generate an infinite sequence of solutions that contains at least one convergent sub-

sequence for which the limit point satisfies the Kuhn-Tucker necessary conditions.
In addition, it can be shown that the objective function (wtAw) strictly decreases with each
iteration.
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The iterative algorithm is as follows.
1. Select a convergence tolerance ( > 0) and initial w (w0 s.t. w0 >_ 0 and

wBw0-- 1). Set n-- 1.
2. n --arg min w_>0 w A w.

W BW
(n-l)

3. W
/vtnn

4. If cos2 (Wn- l, Wn B) > (1 ), then Wopt Wn. Otherwise, set n n + 1 and go
to step 2.

Here, cos2 is defined as

Wn-1 < 1.0 < COS2 (Wn-1, Wn B)--’/x BWn 12
(wtn_lBWn_l)(WtnBwn)

The analysis of this algorithm begins with the following theorem, which states that the
objective function is a strictly decreasing function of n.

THEOREM 5.1. Let A and B be symmetric matrices, A be copositive, B be strictly copos-
itive, andn and W be as defined in the algorithm detailed earlier in this section.

Ifcos2(Wn_ 1, Wn," B) < 1, then Wnt AWn < W AWn_
Proof. B is strictly copositive. Therefore Yn Wnt Bwn- l, wntBwn > 0. In addition,

BWn Bvn Wn and n are therefore both in theWn- 1, Wn, Wn > 0, and wn_ W

feasible region of the minimization problem in step 2 of the algorithm. Since n is a solution
to the problem in step 2 and A is copositive,

0 < "&tn A’irn _< Awn_Wn-1 1.

In addition,

COS2(Wn- 1, Wn B) cos2(w 1, rn B)
BrYn 2 1Wn-1

(Wtn_l BWn_l)(vtnBCcn) (tnnVn)
Assume that COS2 (Wn- 1, Wn B) < 1. Then

~t A’nAwn Wn ~t ~t Avn < lAWnwhAWn COS2(Wn_l Wn B) < w wn -1,Wn BenWn

completing the proof. 3
The fact that the objective function is a descent function not only shows that successive

solutions result in lower values of the objective function but will also be used later to prove
the convergence result summarized above. The final intermediate result needed to prove the
convergence result is a proof that the mapping carried out by steps 2 and 3 of the algorithm is
closed. The definition of a closed mapping is as follows (see ]).

DEFINITION 2. Let X and Y be nonempty closed sets in Ep and Eq, respectively. Let
F X Y be a point-to-set map. The map A is said to be closed if

Xk E X, Xk Xo,

Yk E F(xk), Y Yo
imply that yo F(xo). The map F is said to be closed on Z C X if it is closed at each point
in Z.

The mapping that must be shown to be closed is given by

(5.1) Yn arg min ytAy,
y>0

By=lx

(5.2) F(xn
A Yn

Yn
/ytnBn



COPOSITIVITY AND MINIMIZATION QUADRATIC FUNCTIONS 1141

The following definitions will be useful in the proof that F(xn) is a closed mapping:

Amin min xtAx,
x>_O

xtx=
AAmax max xtAx,

xtx

Bmin min XtBx,
x>_0

xtx=

Bmax max xtBx.
x>_O

xtx

The following lemma uses these definitions to bound quantities of interest.
LEMMA 5.2. Let A and B be symmetric, strictly copositive matrices. Assume that Xn > 0
BXn 1. Define n and Yn as in (5.1) and (5.2), respectively. Thenand x

tByn <1.< (ytnnYn) X

Proof A and B are finite and strictly copositive matrices. Therefore,

0 < Amin < Amax <

0 < Bmin _< Bmax <

Therefore,

(5.3)
Amax Bmax

By definition

Axn < Xn s Amax,Xn

xtnBx, >lXn 12 Bmin.

Combined with the fact that A is strictly copositive this implies that

Axn Xn 12 Amax Amax(5.4) 0 < xtnAxn xn <
Bxn Xn 12 Bmin Bminx

B imply thatThe definition of Bmax and the fact that B is strictly copositive and x

(5.5) 0 < ytnnn n 12 nmax-
The definition of Amin and the fact that x is in the feasible region of the minimization problem
in (5.1) imply that

(5.6) Axn.Yn 12 Amin _< tnAln <_ X

Combining (5.5) and (5.6) yields

Axn Bmax(5.7) 0 < ytnnYn X
Amin
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Combining (5.3), (5.4), and (5.7) yields

< (yn Byn)-(5.8) 0 <
Amax Bmax

By,, 1 Yn L and yt,, Byn > 0 implies thatCombining the facts that x,, ,
(5.9) Byn(ytnnYn) x

Bxn < 1 imply thatThe facts that xn Yn Byn and that cos2 (Xn, Yn, B) Ixt, Byn 12
(xtnBxn)(ytnByn)

Byn < 1. Combining this with (5.8) and (5.9) yieldsXn

(aminBmin)1/2(~tBn)-1/2<Yn xntByn < 1"[-1--0 <
AmaxBmax

The following theorem establishes that the mapping is closed.
THEOREM 5.3. Assume that A and B are symmetric, strictly copositive matrices and that

A is positive semidefinite. Then the mapping F(Xn) defined above is closed on the set x >_ O,
xtBx 1.

Bxn 1" that Xn --* Xo; and that F(xn) Yn "+ YoProof. Assume that ’v’n, Xn >_ 0, xn
Then

(AminBmin)5 < tByn Vn0 <
AmaxBmax Xn

Byn--+ Byo > 0.implies that xn xo
By (5.2) and Lemma 5.2,

Yn Yn(xtnByn).Yn CytnBYn
Therefore, y,, Y.."

X’nByn Therefore, xtoByo > 0 implies that

Yn Yn Yo /X-- Yo"Byn ByoXn Xo

y,, satisfies the Kuhn-Tucker necessary and sufficient conditions (sufficient since A is
positive semidefinite) for the problem in (5.1), which are

n, 2n s.t.

(5.10) A nBxn % O,

tn, In > O,

(5.11) ~t
VnYn O,

By 1.(5.12) x,,

ntn 1 implies that xtoBo 1.Yn Yn >--- 0 implies that Yo > 0. Yn xn
Left multiply (5.10) by . Then, substituting in (5.11) and (5.12) yields n

Therefore, Yn Yo implies that n ytoAYo & o.
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Then, n AYn .nBxn --+ A’o .oBxo /x

Vo. In addition, Yn n --. 0 implies that
~t’o >_ O. Yn Vn’n 0 implies that ~t

VoYo 0.
Combining the above yields

AYo oBxo o 0,

>_ 0,
~troy 0,

X’o Yo
Therefore, Yo satisfies the Kuhn-Tucker necessary and sufficient conditions for the prob-

lem in (5.1) and is a solution to that problem. Then (5.2) and Lemma 5.2 imply that

Yo
Yo

v/tnBY
Therefore, Yo 6 F(Xo). Therefore the mapping is closed on x > 0,

Given the results established in Theorems 5.1 and 5.3, the iteration of steps 2 and 3
of the algorithm satisfies the necessary conditions of the Convergence Theorem in [1] (see
Theorem 7.2.3). The algorithm will therefore either terminate in a finite number of steps
with a solution or generate an infinite sequence such that every convergent subsequence has a
limit satisfying the termination conditions. From Lemma 3.1, the feasible region containing
any infinite sequence of solutions is compact. Since all points in the sequence of solutions
are contained in this compact set, any infinite sequence of solutions will contain at least one
convergent subsequence.

The final point left to establish is that the solution at termination or the limit point of at
least one convergent subsequence of solutions satisfies the Kuhn-Tucker necessary conditions
for Problem 2. In establishing this result, it is assumed that the termination criterion e is
arbitrarily close to zero. Therefore, if the algorithm terminates, COS2(Wno_I, Wopt; B)
where no is the index at termination.

The following theorem establishes the fact that when the algorithm terminates with a
solution, that solution is a Kuhn-Tucker point of Problem 2.

THEOREM 5.4. Assume that B is a symmetric, positive semidefinite, and strictly copositive
matrix. Then ifthe algorithm detailedat the beginning ofthis section terminates with a solution,
that solution is a Kuhn-Tucker point ofProblem 2.

Proof. Let no be the index at termination. Then ,o satisfies the Kuhn-Tucker necessary
conditions for the minimization problem in step 2 of the algorithm, That is,

3 o, -o s.t.

A’no ,oBwno-1 ’o 0,

o, /no > 0,

toino 0,

Bno(5.13) Wo_

The facts that B is strictly copositive and that Wop no/V/gtnoBgno imply that

Vo, ’o s.t.

(5.14) Awopt toBWno-1 Vo 0,

Vo, Wopt >_ 0,

oWopt 0,

WtoptBwopt 1,
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where

o a 2o
Vo and UoV/~tWno BCno V/WtnoBno

Since B is positive semidefinite, it can be decomposed as B BtB. Then,
COS2(Wno-1, Wopt; B) can be rewritten as cos2(/Wno_l,/Wopt; I) 1. Therefore

(5.15) /Wno-1 a/Wopt

for some constant a. Right multiplying both sides of (5.15) by B yields Bwo_ a Bwopt.
Substituting this into (5.14) and letting )o aUo result in

3 Vo, .o s.t.

Awopt )oBwopt Vo 0,

Vo, Wopt >__ 0,

VoWop 0,

WoptBwopt 1.

These are the Kuhn-Tucker necessary conditions for Problem 2. Therefore, Wopt is a Kuhn-
Tucker point of Problem 2. [3

The final theorem establishes an analogous result for the case where the algorithm does
not terminate.

THEOREM 5.5. Assume that B is a symmetric, positive semidefinite, and strictly copositive
matrix. Then, if the algorithm detailed at the beginning of this section generates an infinite
sequence of solutions, then there exists a convergent subsequence of solutions for which the
limit point satisfies the Kuhn-Tucker necessary conditionsfor Problem 2.

Proof. Define the vector

A ( Wn-1 1Zn
Wn

and the mapping

G(zn)
/ [ Wn ]Zn+l F(wn)

AwnThe fact that F is closed implies that G is also closed. In addition, the function q (Zn) w
has already been shown to be a strictly decreasing function of n. Therefore, the convergence
results derived for the iteration of the mapping F also apply to the iteration of the mapping
G. The same termination criterion,

COS
2 (Z B) & COS2(W 1, Wn B) > (1 e) --+ 1,

is used for both iterations.
Assume that for particular A, B and initial point Wo the iteration of F generates an infinite

sequence. Then for this same A, B, and initial point, the iteration of G generates an in-
finite sequence. The set of allowable zn is a compact set, so this infinite sequence zn contains
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at least one convergent subsequence whose limit satisfies the termination criterion. (Note that
not every convergent subsequence of Wn corresponds to a convergent subsequence of Zn but
that at least one convergent subsequence of wn corresponds to a convergent subsequence of

Zn. In addition, every convergent subsequence of zn corresponds to a convergent subsequence
of Wn.) Denote this limit by

Wopt
opt

Wopt

Then Wopt f(Wopt) and cos2(Zopt; B) cos2(lopt Wopt; B) 1. Therefore, the results
of Theorem 5.4 can be applied by letting no- Wopt in the proof. Therefore, Wopt satisfies
the Kuhn-Tucker necessary conditions for Problem 2. q

This completes the characterization of the solutions generated by the algorithm detailed
at the beginning of this section. To summarize the constraints on the matrices A and B in order
for all of these results to hold, A and B must be positive semidefinite and strictly copositive
matrices.

6. Numerical results. The major advantage ofthe iterative algorithm in 5 (subsequently
referred to as the iterative algorithm) with respect to the global optimization routine in 3
(subsequently referred to as the copositivity algorithm) is its greater numerical efficiency.
The numerical results presented in this section demonstrate the relative efficiency of the two
algorithms.

The programs that implement the algorithms were written for the Matlab software package
and executed on a Sun Sparcstation2 workstation. When compared to compiled code written
in Fortran or C, the Matlab code is very slow. In addition, the Sparcstation2 processor is
much slower than many other available processors. Therefore, these results should be used to
evaluate the relative efficiency of the two algorithms and the rate of growth of the execution
time as a function ofproblem size. The absolute execution times shown here are not indicative
of what could be achieved with programs written in Fortran or C.

Both algorithms were tested using randomly generated positive semidefinite matrices. A
number of trials were run for successively larger problem sizes. Problem size, denoted by n, is
the size of the vector w. For each trial, two n n random matrices (. and/) were generated
by Matlab’s random number generator. The individual elements of each matrix were Gaussian
random variables with a mean of zero and a variance of one. The A and B matrices used by the
algorithms for the trial were then given by A AtA and B BtB. No check was conducted
to ensure that the matrices A and B were strictly copositive as is required by the iterative
algorithm. For the copositivity algorithm, the tolerance of 10-4 was used, while for the
iterative algorithm, the convergence tolerance of 0.9999 was used.

Figures 6.1 and 6.2 show the average execution times (T[n]) for the copositivity and
iterative algorithms, respectively, as a function of the problem size (i.e., the size of the vector
w). In each case, the dashed line shows the measured average execution time while the dotted
line shows a parametric model prediction of the average execution time. For the copositivity
algorithm, the exponential growth model of

[n] 0.0321 2.1057

was used where ’[n] is the predicted average execution time in seconds and n is the problem
size. For the iterative algorithm, the following polynomial time model was used:

?[n] (0.4524 + 0.0340 n)3"5.



1146 J.c. PREISIG

x 10
4

4.5
Average Execution Time vs Problem Size

3.5-

3-

o 2.5-
o
o
03 2-

1.5-

1-

0.5-

0
2 8 10 12 14

Number of Coefficients

.:I
.:I

’6

16
LOG(Average Execution Time) vs Problem Size

14-

12-

10-

" 8-

o
o
) 6-

O
..J 4-

2-

0-

./

/

-4
2

.J"

120 4 6
Number of Coefficients

FIG. 6.1. Average execution timesfor the copositivity algorithm.

2O

20



COPOSITIVITY AND MINIMIZATION QUADRATIC FUNCTIONS 1147

1200
Average Execution Time vs Problem Size

1000

8OO

600

400

200-

O" -’
0 20 40 60

f"

80 100 120
Number of Coefficients

140 160

..’/

180 200

ROOT(Average Execution Time) vs Problem Size

,5

0
0
3

.f

.A
’/

.,4’."

20 40 60

.J

.J

80 100 120
Number of Coefficients

140

.J

160 180

FIG. 6.2. Average execution timesfor the iterative algorithm.

200



1148 J.c. PREISIG

Figures 6.1(a) and 6.2(a) show a strong agreement between thepredicted and actual average
execution times. In Figure 6.1(b), log2.1057 (T [n]) and log2.1057 (T [n]) n -4.6182 are shown
while in Figure 6.2(b), (Tin]) and (if’In]) 0.4524 + 0.0340 n are shown. These plots
also show strong agreement between the predicted and actual average execution times at all the
problem sizes tested. This numerical evidence shows that the copositivity algorithm exhibits
exponential growth in execution time while the iterative algorithm exhibits polynomial growth
in execution time.

The numerical analysis of the iterative algorithm bears some more discussion. The mini-
mization problem in step 2 of this algorithm is a quadratic programming problem. There are a
number of algorithms available for solving this problem, and any of them can be used in imple-
menting the iterative algorithm. The quadratic programming algorithm used to generate the
numerical results presented in this section is the complementary pivoting algorithm developed
by Lemke [5]. For an explanation and analysis of the complementary pivoting algorithm, see
1, 4, 6]. In general, the complementary pivoting algorithm is guaranteed to terminate with
a finite solution if A is positive semidefinite or if A has nonnegative elements and positive
diagonal elements (see Theorem 11.2.4 in [1 ]).

A plot of average execution time per iteration (T[n]) of the iterative algorithm shows
that the majority of the growth in the execution time is due to growth in time per iteration
rather than number of iterations. Figures 6.3(a) and (b) show close agreement between the
actual average execution time per iteration (dashed line) and that predicted by the model
(dotted line)

[n] (0.03126 + 0.0179 n)3"23.

Further analysis confirms that the overall polynomial growth term of n3"5 for the iterative
algorithm can be attributed to a term of n3"23 for the growth in average execution time per
iteration and a term of n0"27 for the growth in average number of iterations required to solve
the problem. Further analysis has also shown that approximately 99% of the execution time of
each iteration is taken in solving the quadratic programming problem in step 2 ofthe algorithm.
Since quadratic programming algorithms that have better numerical efficiency than Lemke’s
complementary pivoting algorithm are available, the use of one of these algorithms can make
further improvements in the overall numerical efficiency of the iterative algorithm.

7. Conclusions. The algorithms developed above address two problems associated with
the minimization of a quadratic objective function subject to nonnegativity and quadratic
equality constraints. The first algorithm addresses the problem of finding the global minimum
of the quadratic objective function and requires the repeated testing of a particular matrix
to determine whether or not it is copositive. The only constraint on the problem is that the
Hessian of the quadratic equality constraint (B) be strictly copositive. This problem is NP-
complete. The second algorithm addresses the problem of finding a vector that satisfies the
Kuhn-Tucker necessary conditions for the minimization problem. The algorithm is shown to
converge, and it is further shown that the objective function strictly decreases with each itera-
tion. This algorithm requires the solution of a sequence of quadratic programming problems.
The constraints placed on the problem are that the Hessian matrices of both the quadratic
objective function (A) and the quadratic constraint function (B) be positive semidefinite and
strictly copositive.

Acknowledgments. The author thanks Steven Isabelle and Richard Pawlowicz for their
feedback and ideas during the research and the preparation of this paper. In addition, the
reviewers are thanked for their constructive input. In particular, their pointing out the rela-
tionship of the results herein to previous results in the area of fractional programming was
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PERTURBED OPTIMIZATION IN BANACH SPACES I: A GENERAL THEORY
BASED ON A WEAK DIRECTIONAL CONSTRAINT QUALIFICATION*

J. FRIDRIC BONNANS AND ROBERTO COMINETTI

Abstract. Using a directional form of constraint qualification weaker than Robinson’s, we derive an implicit
function theorem for inclusions and use it for first- and second-order sensitivity analyses of the value function in
perturbed constrained optimization. We obtain H61der and Lipschitz properties and, under a no-gap condition,
first-order expansions for exact and approximate solutions. As an application, differentiability properties of metric
projections in Hilbert spaces are obtained, using a condition generalizing polyhedricity. We also present in the
appendix a short proof of a generalization of the convex duality theorem in Banach spaces.

Key words, sensitivity analysis, marginal function, approximate solutions, directional constraint qualification,
regularity and implicit function theorems, convex duality

AMS subject classifications. 46A20, 46N10, 47H19, 49K27, 49K40, 58C15, 90C31

1. Introduction. This paper is the first of a trilogy devoted to sensitivity analysis of
parametrized optimization problems of the form

(Pu) min{f(x, u) G(x, u) K}
x

where f and G are C2 mappings from X x + to ] and Y, respectively, X and Y are Banach
spaces, and K is a closed convex subset of Y.

While the theory is fairly complete in the case of finite-dimensional mathematical pro-
gramming, that is, optimization problems with finitely many equality and inequality con-
straints, the sensitivity of perturbed optimization problems in Banach spaces is still being
developed. Just to mention a couple of recent works related to this topic, see for instance
[3, 8, 9, 11, 19, 21, 26] as well as the monographs [10, 13, 18] and references therein.

Loosely speaking, the assumptions that support a complete sensitivity analysis of the
value function and optimal solutions are uniqueness of the optimal solution for the unper-
turbed problem, constraint qualification, existence of Lagrange multipliers, and second-order
sufficient optimality conditions.

Concerning constraint qualification, the standard assumption is Robinson’s generalization
[23] of the Mangasarian-Fromovitz condition [20]. Following the lines of previous works in
mathematical programming [2, 5, 7, 12, 14], in this paper we show that sensitivity analysis is
still possible under a weak directional form ofconstraint qualification that takes into account the
nature ofperturbations. This condition is used to derive a generalization ofRobinson’s implicit
function theorem for systems of inequalities that, in conjunction with a strong second-order
sufficient condition, allows us to obtain first- and second-order upper and under estimates of
the marginal function. When these two estimates coincide (we give some sufficient conditions
for this) the first-order sensitivity of approximate optimal solutions of (Pu) is obtained.

Our second-order expansion includes a term that takes into account the possible curvature
ofthe boundary of K and does not appear in the classical setting ofmathematical programming
where K is a polyhedral set. This curvature term, studied in [9, 17] in the context of second-
order necessary conditions (see also the previous work [4]), leads to a generalization of the
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1151



1152 J.F. BONNANS AND R. COMINETTI

notion of polyhedric set and to new results on differentiability of metric projections onto
convex sets in Hilbert spaces.

We observe that in the case of the trivial perturbation f (x, u) f (x, 0) and G(x, u)
G (x, 0) for all u, the directional constraint qualification reduces to Robinson’s condition and
our upper estimates to the necessary optimality conditions obtained in [9]. Similarly, from
our under estimates one can easily derive (new) sufficient conditions for local optimality.

When the strong second-order condition fails, and particularly when the set of Lagrange
multipliers is empty, we know that directional differentiability of solutions and of the marginal
function may fail [5]. It seems that the directional constraint qualification considered in this
paper is too weak to obtain a satisfactory sensitivity analysis in such cases. This motivates a
strenghtened form of directional qualification, which is the subject of part II of this work.

Finally, in part III we study the application of both theories to semi-infinite programming,
that is to say, optimization problems with X finite dimensional and infinitely many inequality
constraints. In that case there is a gap between the upper and lower estimates, so we will fill
this gap by computing sharper lower estimates.

We denote the feasible set, optimal value, and solution set of (Pu) as

F(u) := {x X G(x, u) K},
v(u) := inf{f(x, u) x F(u)},

S(u) := {x F(u): f(x, u) v(u)}.

Similarly, given an optimization problem (P) we denote by F(P), v(P), and S(P) its feasible
set, optimal value, and optimal solution set, respectively.

The set of Lagrange multipliers associated with an optimal solution x S(u) is

Au(x) {) Y* ) NK(G(x, u)), .’x(X, ), u) --0}

with Y* denoting the dual space of Y, NK(y) the normal cone to K at y, and/2 the Lagrangian
function

/(x, ), u) := f(x, u) + (), G(x, u)).

For the rest of this paper we assume v(0) finite and S(0) nonempty. We also consider
a fixed optimal solution x0 6 S(0) and denote by A0 :-- A0(x0) the corresponding set of
multipliers.

Finally, we recall the definition of the first- and second-order tangent sets:

TK(y) := {h 6 Y: there exists o(u) such that y + uh + o(u) K},

T(y, h) "= k Y there exists O(U2) such that y + uh + -u + O(U2) K

Throughout this paper o(u) and o(u2) will be used freely to denote any terms that are
negligible compared to u and u2. Similary, O(u) and O(u) denote terms of orders u and u2.

2. Upper estimates of the value function. We are interested in sensitivity analysis of
(P,), that is to say, the study of differentiability properties of the optimal value function
v and the optimal (set-valued) map S. To this end we consider the linear and quadratic
approximating problems:

(L)

(Q)

(Ld)

min{f’(x0, 0)(d, 1) G’(xo, O)(d, 1) 6 TK(G(xo, 0))},
d

min{v(Ld) d 6 S(L)},

min{fx’(Xo, 0)w + apf(d) G’x(XO, O)w 4- aPG(d) TK2(d)},
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where we have set

f (d) := f"(x0, O) (d, 1) (d, 1),

a(d) :- G"(xo, O)(d, 1)(d, 1),

r (d) := r(G (x0, 0), G’ (x0, O) (d, 1)).

The motivation for these approximating problems is the following.
We say that u -+ Xu is afeasible path if Xu F(u) for u > 0 small enough and xu tends

to x0 when u $ O. Suppose that we have a feasible path of the form Xu xo + ud + o(u).
A first-order expansion gives G(xu, u) G(xo, O) + uG’(xo, O)(d, 1) + o(u) K, so d is
feasible for (L) and also

(1) v(u) < f(Xu, u) v(O) + uf’(xo, O)(d, 1) + o(u),

suggesting that v(u) <_ v(O) + u v(L) + o(u).
2Similarly, if d S(L) and Xu xo + ud+ u w+o(u2) is a feasible path, a second-order

Taylor expansion of G(xu, u) shows that w 6 F(Ld), and

lu2(2) v(u) <_ f(xu, u) v(O) 4- u v(L) + - [ff (xo, O)w + (I)/(d)] 4- o(u2),

u2 v(Q) 4- o(u2).so we may expect v(u) <_ v(O) + u v(L) + -To prove these upper estimates it suffices to show that each d F(L) admits an o(u)
correction such that xo + ud + o(u) F(u) and similarly that each w F(L,) admits an
o(u2) correction such that xo + ud + u2w + o(u2) 6 F(u). The existence of such corrections
may be established by using Robinson’s regularity theorem [23, Thm. 1], which is based on
the constraint qualification condition

(CQ) 0 6 int [G(x0, 0) + G’ (xo, O)X K].

However, this condition does not take into account the specific form of perturbations, so,
loosely speaking, it will work uniformly no matter what type of perturbations are being con-
sidered. We shall rather use the following refinement ofRobinson’s regularity theorem proved
in Appendix B, which allows us to discriminate those perturbations for which sensitivity anal-
ysis can be carried out.

THEOREM B.5. Let us assume the directional constraint qualification

(DCQ) 0 int [G(xo, 0) + G’(xo, O)X x (0, o) K].

Then for each trajectory Xu xo + 0 (u) there exist constants c > O, uo > 0 and a second
trajectory yu such that G(yu, u) K and

Ily, Xu <_ c d(G(xu, u), K)

for all u [0, uo].
It may not be apparent that (CQ) implies (DCQ). To see this we remark (see Appendix

B) that the latter is equivalent to

(DCQ)’ 0 int [G(xo, 0) + G’(xo, 0)X x [0, c) K].

PROPOSITION 2.1. Suppose (DCQ) holds. Then limsupu,o[V(u v(O)]/u <_ v(L) and
when v(L) > -oc we have the first-order upper estimate

(3) v(u) < v(O) 4- u v(L) 4- o(u).
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Also, lim SUPu+0 2[v(u) v(O) u v(L)]/u2 <_ v(Q) and when v(Q) >-cx the following
second-order upper estimate holds:

(4) 2v(u) < v(O) + u v(L) + -u v(Q) + o(u2).

Proof. Let d be feasible for (L). Applying Theorem B.5 with Xu xo + ud we find
a feasible trajectory Yu such that IlYu Xull <_ c d(G(xu, u), K) o(u). Then Yu
xo + ud 4- o(u) and the first-order estimate follows from (1).

To prove the second-order estimate, let d 6 S(L) and w 6 F(Ld). Applying Theorem B.5
withxu xo+ud+uZw we get a feasible trajectory yu with [lYu -Xu < c d(G(xu, u), K)

2//3 2)O(U2). Then Yu xo + ud + iu + o(u and the conclusion follows from (2).
The above upper estimates are only meaningful if v(L) < +cxz and v(Q) < +x. Let us

then prove the following result.
PROPOSITION 2.2. Assuming (DCQ) we have v(L) < +cx. Moreover, in this case

v(Q) < +cxz ifand only if there exists d S(L) such that TZ(d) 5
Proof. Using (DCQ) we may find > 0 and d 6 X with G’(xo, O)(d, t) K G(xo, 0).

Then d/t is feasible for (L) and consequently v(L) < +cxz.
Clearly v(Q) < +cxz requires T(d) qb for some d S(L).
To prove the converse we fix k 6 T(d) so that, according to [9, Prop. 3.1],

(5) k 4- I+[Tic(G(xo, 0)) G’(xo, O)(d, 1)] C T(d).

Using (DCQ) we find/z > 0 with/z[k a(d)] 6 G(xo, 0) + G’(xo, 0)X x (0, cxz) K, and
then for some z 6 X and > 0 we get

dPG(d k 4- --[K G(xo, O) G’(xo, O)(z, t)]

z-td 1
k G’x(XO,0) 4- --[Tlc(G(xo, 0)) tG’(xo, O)(d, 1)].

Letting w := (z td)/lz and using (5) we deduce that

G’x(XO, O)w 4- o(d) k 4- --[Tl((G(xo, 0)) G’(xo, O)(d, 1)] C TZ(d),

proving that (Ld) is feasible and then v(Q) < V(Ld) < 4-0. [3

3. Differentiability of the value function and suboptimal trajectories. To find lower
estimates of the cost and sufficient conditions for the existence of the right derivative v’(0),
we use convex duality theory to get the following characterization for v(L).

PROPOSITION 3.1. Assume (DCQ). Then v(L) v(D) and S(D) c]), where

(D) max{E’ (xo, X, 0) X 6 Ao}.

Moreover, v(L) > -o if and only if Ao q, in which case S(D) is a nonempty weak*
compact subset of Ao.

Proof. This is a consequence of the convex duality theorem of Appendix A, Theorem
A.2, applied to problem (L) with the perturbation function

f’ (xo, 0) (d, 1)
o(d, y)"=

4-cx

if G’(xo, 0)(d, 1) 4- y Ti(G(xo, 0)),
otherwise.
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Indeed, from (DCQ) we get

Y T:(G(xo, 0)) G’(xo, O)X x (0, )

+ U[TK(G(xo, 0)) G’(xo, 0)(d, 1)],
deX

so + Ud dom o(d, .) Y and Theorem A.2 can be used to deduce

(6) v(L) mintp*(0, ,).

A straightforward computation shows that

o* (x*, z) [ +-z:’u (x0, z, 0) if . NK(G(xo, 0)), "x (xo, , O) x*,
otherwise,

which combined with (6) yields the desired conclusions. [3

We state our next results using suboptimal paths. We say that Xu is an o(u)-optimal
trajectory if it is a feasible path and v(u) f(Xu, u) + o(u).

Existence of o(u)- and o(u2)-optimal paths requires finiteness of v(u). Conversely, when
the latter holds, one may always find o(u) or o(u2) approximate solutions of (Pu). The fact
that these paths do converge to x0 as u tends to 0 can be proved in a number of particular
situations (see for instance [6, 12]).

In addition, we shall either assume H61der and Lipschitz stability of these suboptimal
paths (these assumptions will be discussed in 6) or we shall suppose that problem (P0) is
convex in the sense that for all y K and ) NK(y) the mapping 2(., ., 0) is convex. The
next result, under the convexity assumption, extends that given by Gol’stein 15].

PROPOSITION 3.2. Suppose that (DCQ) holds, there exists an o(u)-optirnal trajectory
Xu, and either (Po) is convex or Xu xo + o(v/-ff). Then v is right differentiable at 0 with
v’(O) v(L). Moreover, when A0 q we have

v(u) v(0) + u v(L) + o(u).

Proof. If A0 b we have v(L) -cx and the result follows immediately from
Proposition 2.1. Otherwise, by Proposition 3.1 we may take , S(D) C Ao so that

v(u) v(O) f(Xu, u) f (xo, O) + o(u)
>_ (x., ., u) (xo, , O) + o(u).

Since/3) (xo,), O) O, when (Po) is convex we get (xo, ., O) < (xu, ,k, O) and when
Xu xo + o(/ff) a second-order expansion gives/2(xo, ), O) .(Xu, ,k, O) + o(u). In both
cases we obtain

v(u) v(O) >_ (Xu, Z., u) F_.(Xu, , O) + o(u)

and, since Xu tends to x0, deduce that

lim inf
uS0

v(u) v(o)
> t (xo, , O) v(D) v(L),

which combined with Proposition 2.1 yields the desired conclusions. [3

As a further consequence we establish a relation between the solution set S(L) and the
right derivatives of suboptimal trajectories.
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PROPOSITION 3.3. With the assumptions ofProposition 3.2 we have:
(a) S(L) is the set ofall weak accumulation points of (Xu xo)/u, where Xu ranges over

all possible o(u)-optimal trajectories.
(b) If S(L) c, then there exists an o(u)-optimal trajectory such that Xu xo -t- O(u).

The converse holds ifX is reflexive.
(c) Ifxu is chosen as in (b), then Au(xu) is uniformly boundedfor u small. Moreover, if

.u Au(xu), then every weak* accumulation point ofJu belongs to S(D).
Proof. (a) Letxu be an o(u)-optimal trajectory and uk 4- 0 be such that (Xu -xo)/uk d.

Then we have [G(xu, u) G(xo, 0)]/u G’(xo, O)(d, 1) and, since Tl(G(xo, 0)) is
weakly closed, deduce that G’(xo, O)(d, 1) 6 Tl(G(xo, 0)), proving that d 6 F(L). Similarly,
[f(Xu, u) f(xo, 0)]/u -- f’(xo, O)(d, 1) and then

v(uk) f(Xu, u) + o(u) v(O) + uf’(xo, O)(d, 1) + o(ut),

so Proposition 2.1 implies f’(xo, O)(d, 1) < v(L), which shows d S(L).
Conversely, let d S(L) and apply Theorem B.5 to the trajectory Xu xo + ud to find

yu xo -t- ud + o(u) F(u). Proposition 3.2 then implies

f(Yu, u) f(xo, O) + uf’(xo, O)(d, 1) + o(u) v(O) + u v(L) + o(u) v(u) + o(u),

proving that Yu is an o(u)-optimal trajectory with (Yu xo)/u d (notice that the limit can
be taken in the strong sense as well).

(b) The argument developed in (a) shows that S(L) # 49 implies the existence of o(u)-
optimal trajectories with Xu xo -t- O(u). Conversely, if such a trajectory exists, then by
reflexivity we may find a sequence uk $ 0 such that (Xu xo)/u converges weakly. From
(a) the limit belongs to S(L), which is then nonempty.

(c) Let .u Au(xu) and select ru Br with II), 11/2 _< (ru, -)u). From relation (17) in
Lemma B.4, for all u small enough there exist du Bx and ku K such that

ueru G(xu, u) + umG’ (xo, O)du ku

where e > 0 and m > 0 are given constants. Taking the product with -u we get

11)11 -< m()u, G’x(XO, O)du)

<_ mllG’x(XO, O) G’x(Xu, u)ll II)u + m()u, G’x(Xu, u)du)

< -II)u mfj (Xu u)du
4

< -II)ull + m(llf(xo, 0)11 / 1)
-4

for u small, and the desired uniform bound on Au(xu) follows.
Now let ) :-- lim )u be a weak* accumulation point of u where u $ 0. Then

Vy K (., y G(xo, 0)) lim(.u, y G(xu, Uk)) < O,

Yd 6 X /2’x (x0,), 0)d lim "x (xu, .u, ug)d O,
k

proving that . 6 A0 F(D). To show is also optimal for (D) we observe that

v(u) < f(Xu, u)
< f(Xu, u) ()u, G(xo, O) G(xu, u))

v(0) + (Xu, Zu, u) (xo, Zu, O)

v(O) + U’u (xo, Zu, O) / o(u + Ilxu x011).
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Dividing by u and passing to the limit in the subsequence uk we get ’u (x0, ., 0) > v’(0)
v(D), so ) S(D). [J

Remark. In part (a) above we also showed that S(L) is the set of all strong limits of
differential quotients of the type (Xu xo)/uk with u $ 0 and even the set of continuous
strong limits

d lim
uS0

Xu Xo

where now xu ranges over all o(u)-optimal trajectories for which this limit exists.

4. Second-order expansion ofthe value function. In this section we supplement Propo-
sition 2.1 by deriving second-order lower estimates for the value function. The next simple
result shows that (4) is a sharp bound.

PROPOSITION 4.1. Suppose (DCQ) holds and assume there exists an o(u2)-optimal path
2)Xu that admits an expansion of theform xu xo + udo + u2wo + o(u Then do S(Q),

wo S(Ldo), and we have

u2v(u) v(o) + u v(L) + - v(Q) + o(u).

Proof. Propositions 3.2 and 3.3(a) imply v’(0) v(L) and do S(L). On the other
hand, a second-order expansion of G(xu, u) shows that wo F(Ldo) and also

v(u) f (Xu, u) + o(u2)
2f(xo, O) + uf’(xo, 0)(d0, 1) + u [fx(X0, 0)w0 + Of(d0)] + o(u2)

v(O) -+- U I)(L) + -u2[ftx (x0, 0)to0 -+- (I)f(d0)] -- o(u2),

which combined with Proposition 2.1 gives the desired conclusions. [3

Unfortunately this result is ofmore theoretical than practical interest since we must ensure
a priori the existence of a second-order expansion of Xu. While it is possible to find conditions
giving a first-order expansion (see 6), we dispose of no analogue for the second-order case.
To overcome this difficulty we tackle the second-order lower estimates using duality theory
as was done in the previous section for the first order. Let us then dualize problem (Ld).

PROPOSITION 4.2. Suppose (DCQ) holds. Then v(Ld) v(Dd) where

(Od) max{E"(x0, ), 0)(d, 1)(d, 1) -a(), T2(d)) ) S(D)},

and a(), T2(d)) sup{(), k) k 6 T(d)} is the supportfunction of T(d). Moreover the
solution set S(Dd) is nonempty.

Proof. The case Tx2 (d) 4 being trivial, we shall assume Tx2 (d) 4 (notice that in this
case d F(L)). Let us consider problem (Ld) with the perturbation function

fx’(X0, 0)w + f(d) if G’x(XO, O)w + G(d) + y TZK(d),0(w, y) +cx otherwise.

To apply Theorem A.2 we must check that + t3o dom qg(w, .) Y. To this end we fix
k 6 TK2 (d) and use property (5) to get

U dom p(w, .) T2K(d) G’x(XO, O)X G(d)

D k + TK(G(xo, 0)) G’(xo, O)X (0, x) di)G(d)
y,

the last equality since (DCQ) implies Tx(G(xo, 0)) G’(x0, 0)X (0, x) Y.
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We may then use the convex duality theorem to deduce

v(Ld) min tp*(O, X)

and a straightforward computation to obtain

99*(0, .) I aO, T(d)) "(xo, ), O)(d, 1)(d, 1) if/2(x0, ., 0) 0,

/ + otherwise.

To complete the proofwe note that if. satisfies/Yx (x0,), 0) 0, we may have a 0, T(d)) <
+cx only if ) 6 S(D) (and d S(L)). Indeed, if a(., T(d)) < +x, property (5) shows
that

(., h G’(xo, O)(d, 1)) < 0 for all h TK(G(xo, 0)).

This implies . 6 NK(G(xo, 0)); hence ) 6 A0, and also (), G’(x0, 0)(d, 1)) > 0 so that

f’ (x0, 0)(d, 1) < ’(x0, ,k, 0)(d, 1) Z3’ (xo,), 0).

Since ,k 6 F(D)and d 6 F(L), this inequality proves that ,k 6 S(D)and d S(L).
With this result we have the following min-max characterization of v(Q):

v(Q) min max E"(xo, ), O)(d, 1)(d, 1) -a0, T(d)).
deS(L) .ES(D)

The term a (), T (d)) above will be referred to as the "a-term" for short and is related,
loosely speaking, to the curvature of the set K (see also [9, 17]). Neglecting this a-term we
obtain second-order lower estimates that, however, may not be sharp. To be precise, let us
consider the function

F (d) := max Z3" (x0, k, 0) (d, 1) (d, 1)
)S(D)

and the optimization problems

min{F(d) d S(L)},

min{F(d) d 6 S(L)},

where St (L) is the set of approximate solutions of (L)

St(L) := {d

To obtain meaningful second-order lower bounds we must assume that v(L) >
By Proposition 3.3 this amounts to A0 b, in which case S(D) is a weak* compact subset
of A0.

PROPOSITION 4.3. Suppose (DCQ) holds, Ao , and assume there exists an o(u2)
optimal path Xu such that xu xo + 0 (u). Then, for each e > 0 we have

1
(7) v(u) >_ v(O) + u v(L) + -u2 v(O_.e) + o(/,t2).

Moreover, ifany of thefollowing conditions hold:
(a) the path may be expanded as Xu xo + udo + o(u),
(b) X is reflexive and F is weakly l.s.c, at each do S(L),
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then the previous lower bound may be strengthened to

u2 v(0) + o(u2)(8) v(u) >_ v(O) + u v(L) + -Proof. For each ,k S(D)we have

(9) v(u) f(Xu, u) + o(u2)
> f(Xu, u) + (), G(xu, u) G(xo, 0)) + o(u2)

v(O) + F-,(Xu, Z,, u) (xo, , O) + o(u)

v(O) + u v(L) + - (xo, , O)(xu xo, u)(Xu xo, u) + o(u2)

and the small term o(u2) may be chosen uniform in . since S(D) is bounded.
Applying Theorem B.4 to the mapping ((x, u) "= G(xo, O) + G’(xo, O)(x xo, u) we

find a path yu with (Yu, u) K and

(10) IlYu xull <_ c d((Xu, u), K) < c II(Xu, u) G(xu, u)ll o(u).

Replacing in (9) we find

v(u) > v(O) + u v(L) + - (xo, ), O)(yu xo, u)(yu xo, u) + o(u2)

with o(u2) still independent of ). Thus, letting du (yu xo)/u and taking the supremum
in ) over the bounded set S(D), we get

1
(11) v(u) >_ v(O) + u v(L) + -u2I(du) -!- o(u2).

But (Yu, u) K implies du F(L), andtheequality v(u) f(Xu, u)+o(u2) f(Yu, u)+
o(u) implies that for each e > 0 the vector du belongs to S(L) for u small, so (7) follows
immediately from (11).

Let us next choose Uk $ O, realizing the lower limit lim infu 2[v(u) v(0) uv(L)]/u2.
When (a) holds we have du --+ do, while in case (b) we may assume (by eventually passing to
a subsequence) that du converges weakly to some do. In both cases Proposition 3.3 implies
do S(L) and using (11) (and the 1.s.c. of F) we get

(12) V(Uk) >_ v(O) + u v(L) + ur’(d0) + o(u,),

from which (8) follows.

5. Asymptotic expansions of suboptimal solutions. In this section we prove the ana-
logue of Proposition 3.3 for the second-order problem (Q). Roughly speaking, the solution
set S(Q) is the set of right derivatives of o(u2)-optimal paths.

This result is obtained under a strong assumption, namely, that there exists no gap between
the upper and lower estimates (4) and (8). This no-gap condition is not true in general--we
will see in part III that semi-infinite programming does not satisfy this property--but is still
valid for a large class of applications, one of which will be considered in 7.

The next result gives sufficient conditions for having no gap.
PROPOSITION 5.1. (a) For ) S(D) and d S(L) one has cr(), T(d)) < O.
(b) Ifd S(L) and O T(d), then crO, T2(d)) Ofor all ; S(D).
(c) IfO T2K(d) for all d in a (strongly) dense subset of S(L), then v(Q) v(O).
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Proof. For all ) 6 S(D) and d S(L) we have 0, G’(x0, 0)(d, 1)) 0. Moreover,
since ) 6 Ni(G(xo, 0)), for each k T2(d) we get

2)(), G(xo, O) + uG’(xo, O)(d, 1) %- -u2k %- o(u G(xo, 0)) < O,

from which (), k) < 0 and (a) follows.
Property (b) is obvious from (a). To prove (c) we notice that (a) implies v(Q) > v(Q),

so we must only show the converse inequality. To this end it suffices to assume S(L) , in
which case S(D) is weak* compact and then F is strongly continuous. The required inequality
follows using (b). [3

Note that 0 6 T (y, h) when K is polyhedral in the sense that TK (y) +(K y). This
is the case for optimization problems with equality constraints and finitely many inequality
constraints, where K {0} x/IP__. Thus, the condition "0 6 T(d) for all d in a dense subset
of S(L)" may be interpreted as a generalization of polyhedrality which, in a certain sense,
rules out any curvature of K. We shall refer to this condition as extended polyhedricity (see
also the discussion at the end of 7).

COROLLARY 5.2. Let the hypothesis ofProposition 4.3(b) be satisfied, and suppose that
the extended polyhedricity condition holds. Then v(Q) v(Q) and we have

v(u) v(O) + u v(L) + v(Q) %- O(U2).

The previous results raise the question whether a second-order expansion compatible with
curvature may hold. In this sense, we mention that the sharp lower estimate

(13) lU2 2)v(u) > v(O) %- u v(L) %- - v(Q) %- o(u

holds under assumption (a) of Proposition 4.3 and the additional hypothesis:
(H) For all sequences un $ 0 and Yn Y %- unh %- O(Un) K, there

2 2exists kn T(y, h) with Yn Y + unh + unk %- O(Un).
The proof is similar to that of Proposition 4.3 and is left to the reader. In the case of assumption
(b) in Proposition 4.3, (H) must be suitably modified in terms of weakly convergent sequences.

While (H) is not always satisfied, we observe that it holds whenever 0 6 T (y, h). To
see that (H) is in fact more general than the latter one may consider the set K {(x, y) 6

2. y >_ X2 that satisfies (H) but 0 g T(y, h). Unfortunately, we do not know an easy way
to check (H) in the general case. Nevertheless, in part III of this work we obtain sufficient
conditions for obtaining the sharp lower estimate (13) in semi-infinite programming problems.

The next result links S(Q) with the asymptotic behavior of suboptimal paths. Part (b) is
a converse of Proposition 4.1.

2PROPOSITION 5.3. Suppose (DCQ) holds, A0 : q, there exists an o(u )-optimal path Xu
such that Xu xo %- O(u), and suppose in addition that v(Q) v(O) and is weakly l.s.c.
at every d S(L). Then:

(a) S(Q) c S(O) andfor every o(u2)-optimal path Zu, the weak accumulation points of
(Zu xo)/u belong to S(Q).

(b) If X is reflexive, do S(Q), and wo S(Lao), then there exists an o(u2)-optimal
path of theform Zu xo %- udo %- 7u2wo %- o(u2).

Proof. (a) Since v(Q) v(Q) and the cost of (Q) dominates the cost of (Q), we
deduce S(Q) c S(O). If do is the weak limit of (Zuk xo)/u, reasoning as in the proof
of (9) and using (4) we obtain v(Q) > F(d0). But Proposition 3.3 implies do S(L), so
F(d0) > v(0)- v(Q)and then do 6 S(0).
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1/,12(b) Using Theorem B.4 we may find a feasible path zu xo + udo + wo + o(u2).
Expanding f(zu, u) we get

1
f(Zu, u) f (xo, O) + uf’(xo, 0)(do, 1) + u2[f’x(XO, O)wo + /(do)] + 0(/42

lU2v(O) + uv(L) + - v(Q) -I" O(U2)

lu2v(O) + uv(L) + - v(Q) + O(U2)

< O(U) + O(U2),

where the last inequality follows from Proposition 4.3. This shows that Zu is o(u2)-optimal
and the proof is complete. ]

Remark. In the next section we check that, under some reasonable hypothesis, every
o(u2)-optimal path satisfies Xu xo + O(u). When X is reflexive this implies the existence
of weak accumulation points of (Xu xo)/u, so that S(Q) is nonempty. We also observe
that when 0 6 T(d) for all d S(L), the cost function in (Q) and () coincide so that

s(a) S(O).
6. Hiilder and Lipschitz properties of suboptimal paths. We discuss next the H61der

and Lipschitz stability properties of suboptimal paths assumed in the previous sections. The
results we present are simple variants of known results (e.g., [8, 12, 14, 26]). The essential
difference lies in the use ofthe weaker directional regularity condition (DCQ) and the extension
to the infinite-dimensional setting.

Typically, the stability properties follow from different second-order sufficient optimality
conditions. More precisely, for each set fa C A0 we consider the second-order condition

soc() There exist or, r/> 0 s.t. max/:j (xo,)v, O)dd > ot d Co,

where

Co {d X Ildll 1, f’x(XO, O)d < rI, G’x(XO, O)d TK(G(xo, 0)) + rlBy}.

When the space X is finite dimensional, or more generally when Co is strongly compact for
some 0 > 0, this condition is equivalent to the positive definiteness requirement:

soc’() For each d 6 Co we have max/:’x’ (xo,)v, O)dd > 0,

where only the critical cone Co needs to be considered. Also, when (CQ) holds, one can
replace Co by a smaller set (see [8]).

PROPOSITION 6.1. Assume (DCQ), A0 b, andsuppose SOC(f2) holdsfor some bounded
f2 C A0. Thenfor each O(u)-optimal path Xu we have Xu xo -+- O(/-ff).

Proof. By contradiction suppose there exists u $ 0 such that lim r/u +cx, where
:- Ilxu x011.
Then limg Uk/r 0 and letting d := (Xu x0)/r we have G(Xu, u) G(xo, O) +

rG(x0, 0)dg + o(r) so that Gx(XO, O)dk TK(G(xo, 0)) + rIBr for k large. On the other
hand, since Xu is an O(u)-optimal path and using Proposition 2.1, we may find a constant M
such that for u small

(14) f (xu, u) < v(O) + Mu,

and since f(xu, u) f(xo, O) + rkf(xo, 0)dk + O(rk), we deduce f(xo, 0)d < for all
k large enough. The previous argument shows that dk Co for large k.
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Now, using (14), for each . f2 we have

.(Xu, ), u) .(xo, ), O) < f(Xu, u) f(xo, O) < Mu,

and since ’x (x0,), O) O, a second-order expansion of f and G leads to

), O)(xu xo, u)(Xu xo, u) < [M Ju(XO, ), 0)]u + (1 + IIll)o(llx +x0112 u2

with the small term o(llxu xoll 2 / u2) not depending on ). Since f2 is bounded, we deduce
that

max"(x0, ) 0)(dk uk/r)(dk u/r) < M’u + M"(r + u)

for some constants M’ and M", from which we get

lim sup max (xo,), O)ddk < O,

contradicting SOC(f2). [3

COROLLARY 6.2. Assume Ao dp and any of the twofollowing conditions:
(a) (CQ) and SOC(Ao),
(b) (DCQ), Co is strongly compactfor some rl > O, and SOC’(Ao).
Thenfor each O(u)-optimal path Xu we have Xu xo + O(v/-ff).
Proof. In case (a) the set f2 := A0 is bounded and the result follows at once from the

previous proposition.
In case (b) the set Co is Compact and then, letting A "= A0 f B(0, k), we get

lim min[max Z2 (x0, ., 0)dd] min[max/J(x0,), 0)dd] > 0.
kcx dCo kA dCo .Ao

Hence, for k large SOC’(f2) holds with S2 A, and we may conclude again using the
previous proposition. ]

The preceding results are not as strong as to ensure the property Xu xo + o(/-ff) needed
in Proposition 3.2. Let us then prove a Lipschitz stability result, valid for general Banach
spaces, that can be used to check the hypothesis of both Proposition 4.3 and Proposition 3.2.

PROPOSITION 6.3. Suppose (DCQ), A0 tp, and assume SOC(f2) holdsfor f2 := S(D).
Suppose also that v(Q) < +xz. Then, for each O(u2)-optimal path Xu we have Xu
xo + O(u).

Proof. The proof is similar to that of Proposition 6.1. We proceed by contradiction
assuming lim r/u +c for a given sequence u $ 0 and r := Ilxu x011, so that

d "= (Xuk xo)/rk belongs to Co for k large.
Since Xu is an O (u2)-optimal path, using Proposition 2.1 we may find a constant M such

that for u small

f(Xu, u) < v(O) + u v(L) + Mu2,
and then for each . 6 S(D) we have

(Xu, ), u) .(xo, ), O) <_ f(Xu, u) f(xo, O) <_ u .’u(XO, , O) + Mu2.

Expanding f and G we get

12"(xo, ), O)(&, u/r)(d, u/r) < 2M
u ++

with the small term o(r + Uk2) not depending on . (here we use the boundedness of S(D)).
The conclusion follows as in Proposition 6.1.
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7. Directional differentiability of metric projections. In this section we use the pre-
ceding results to compute the directional derivatives of projections onto convex sets in Hilbert
spaces. More precisely, the problem is to study the right differentiability of the unique optimal
solution of

/min IIx yu112 x K

where K is a closed convex subset of a Hilbert space H and u -- Yu is a smooth mapping
from N+ to H. Let us consider the slightly more general format

/min llx- Yull2 G(x, u) K

assuming that G(., 0) is a linear mapping G(x, O) Ax and that (DCQ) and A0 :/: P hold.
Notice that these properties are satisfied when we have (CQ), which is obviously the case if
A is surjective and particularly if G(x, O) x as in (Pu).

Since G(x, 0) is linear, we have ."x(XO, ), O) I, so SOC(2) is automatically satisfied
for f2 S(D) and problem ()) is strongly convex. In particular, S()) is reduced to a
singleton.

PROPOSITION 7.1. Suppose (DCQ), A0 7(: P, and the extended polyhedricity condition.
Then the unique solution Xu of P’u) may be expanded as

Xu xo + udo + o(u)

where do is the unique solution of ).
Proof. Propositions 6.3 and 5.3(a) imply that du "= (Xu xo)/u converges weakly

to do, the unique solution of (Q). Now, using the second-order bound (4), the equality
v(Q) v(Q) F(d0), and inequality (9), we deduce that

limsup 1-’(du) < 1-’(do).
u$O

Since I" is strongly convex, we conclude that du converges strongly to do, completing the
proof. [3

In the special case G(x, u) x and yu yo + uho; that is, when we study directional
differentiability of the projection onto K at Y0 in the direction h0, the set S(L) is just the
critical cone

S(L) Co {d TK(xo) d _1_ (Yo x0)},

so the problem ()) reduces to

min{lld h0 2 d 6 Co}.

Hence we get as an immediate consequence the following result.
COROLLARY 7.2. Assuming the extended polyhedricity condition, the projection Xu of

Yo at- uho onto K can be expanded as

Xu xo + udo + o(u),

where do is the projection ofho onto Co.
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Among the papers studying differentiability properties of metric projections we mention
11, 16, 19, 22, 26, 27]. A common hypothesis in these studies is that K has to be polyhedric

in this sense that for each x 6 K and every ,k 6 NK(x) one has

Tc(x) (q )+/- IR+(K.- x) )+/-.

Since S(L) Ti((xo)f-(yo-xo) +/- and0 6 T(xo, d)whenever d 6 R+(K-x0), the extended
polyhedricity condition is in fact a generalization of polyhedricity. Notice that this hypothesis
always holds when Y0 6 K since then Co T/((G (x0, 0)), which was the case studied in [27].
Another extension of polyhedricity is considered in [3].

8. Conclusion and further problems. We have shown that a satisfactory sensitivity
analysis for perturbed problems of the form

(Pu) min{f(x, u) G(x, u) K}

may be obtained under directional constraint qualification conditions that are weaker than the
standard Robinson’s condition.

Since the results are scattered throughout the paper, we provide a summarized (though
necessarily incomplete) version of the main results obtained in the paper. The precise meaning
of the stated assumptions and notation is made clear in the preceding sections of the paper, to
which the reader is referred.

THEOREM 8.1. Let the functions f, G defining (Pu) be of class C2, and suppose X is
a reflexive Banach space. Let xo be an optimal solution for (Po) at which the following
assumptions are satisfied."

(i) directional constraint qualification (DCQ),
(ii) existence ofmultipliers A0 - 0,
(iii) second-order sufficient condition SOC(S2) for f2 S(D),
(iv) existence ofan o(uZ)-optimal trajectory,
(v) extended polyhedricity,
(vi) d -- E(xo, ), O)dd is weakly lower semicontinuousfor all ) S(D).

Then."
(a) The optimal valuefunction may be expanded as

1
u(u) u(O) %- ulJ(L) -Jr- uZu(0) %- o(u2),

where (L) and (Q) are the linear and quadratic approximating optimizing problems.
(b) The optimal solutions of (L) are the same as the weak accumulation points of the

differential quotients (Xu xo)/u where x, ranges over the set of all possible o(u)-
optimal trajectories.

(c) Every o(uZ)-optimal path z, satisfies z, zo + O(u), and the weak accumulation
points of (z, zo)/u are optimal solutionsfor (0).

We remark that a key ingredient for attaining these results is the generalization of Robin-
son’s implicit function theorem presented in Appendix B, which is based on the weak direc-
tional constraint qualification condition (DCQ).

The main results of this paper are limited to problems for which there is existence of
multipliers and satisfying the strong second-order sufficient condition stated as (iii) above,
which ensure the existence of suboptimal paths of the form x, x0 %- O (u).

In the setting of finite-dimensional mathematical programming we know [5] that this
type of expansion may fail. For instance, when A0 b but only the weak second-order
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condition holds, suboptimal paths may only satisfy Xu x0 + 0 (/-ff) and it may happen that
v’(O) < v(L). On the other hand, when A0 P we may even have v(u) v(O) + O(/-ff).

It seems that (DCQ) is too weak to extend these results to the general framework discussed
in the present paper. Theorem B.4 may not be used since it requires the a priori bound
Xu xo + O(u), and its refinement Theorem B.1 may only handle those paths such that
[[Xu x0[I < Y for a sufficiently small ,.

These remarks lead us to consider a strenghtened form of directional constraint qualifi-
cation, well suited to the analysis of problems of the form

min{f(x, u) Gl(x, u) KI, G2(x, u) K2}

where K1 and K2 are closed convex subsets of some Banach spaces with int(K2) 7 b. This
study will be the subject of part II of this work.

Appendix A. The convex duality theorem in Banach spaces. This short appendix
presents a short proof of the convex duality theorem of Robinson [24]. This result is a
generalization of [25, Thin. 18(c)] (see also [1, Thm. 1.1]). We include it since the version
we present is more directly applicable to the dualization of problems (L) and (Ld) in the
previous sections and also since the method of proof is very simple. The basic argument is
the following lemma due to Robinson [24] (also used in Appendix B) for which we provide a
simplified proof too.

Given a subset C C X Y we denote by Cx and Cy the projections of C onto X and Y,
respectively.

LEMMA A.1. Let X, Y be two normed spaces with X complete. Let C C X Y be a
closed convex set with Cx bounded. Then

int (Cr) int (Cr).

Proof. It clearly suffices to show int (Cr) C Cr; that is, given y 6 int (Cr) we must find
2. 6 X such that (2, y) 6 C. To this end let us take e > 0 with B(y, e) C Cr and choose
an arbitrary point (x0, Y0) 6 C from which we generate a sequence (Xk, Yk) C using the
following "algorithm."

while (Yk -) do
Let ck e/llyk yl] SO that w "= y + ot( y) B(, e) C Cr.
Take (u, v) 6 C with [Iv w[[ _< E[IY Y[[ and define

k 1
(Xk+l, yk+) := (x, y) + (u, v) C.

+Ck +0tk

endwhile.
If the algorithm stops, then we have y y and we may take 2. x. Otherwise, the generated
sequence satisfies

Ilxk u diam(Cx)
(i) IIx/ xll Ily YlI,

+ck e

Ilv- wll < -[[Yk Nil.(ii) [[Yk+l Yll + k 2

From (ii) it follows that IIY YI[ < [lY0 YI]/2. This implies that y --+ y and also,
in combination with (i), that (xk) is a Cauchy sequence. The completeness of X gives the
existence of a limit 2. for (x), and the closedness of C implies (2., y) C as required. [3

We may now proceed by proving the convex duality theorem.
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THEOREM A.2. Let O(y) := inf{q)(x, y) x X}, where q) X x Y --+ ]R U {+x} is a
closed proper convexfunction with X, Y Banach spaces and IR+ t_lx dom q)(x, .) Y. Then
0 is continuous in a neighborhood of0 and 0 (0) < +cxz.

In particular 0 (0) 0"* (0), which can be written as

(15) inf 0(x, 0) min q)*(0, y*),
xX y*aY*

and the solution set of the minimum on the right is 00(0), which is nonempty and weak*-
compact when 0 (0) is finite, and the whole space Y* when 0 (0) -cx.

Proof. Since 0 is convex, the continuity near 0 is equivalent to 0 being bounded above in
a certain neighborhood of 0. To show this, let ot IR and x0 6 X be such that 99(x0, 0) < c
and consider the closed convex set

C {(x, y) g)(x, y) < c; Ilxll IIx011 + 1}

that is nonempty and has Cx bounded.
Since O(y) < for all y Cr, it suffices to show that Cr is a neighborhood of 0. From

Lemma A. 1 this amounts to 0 6 int(Cr), which, by Baire’s lemma, is a consequence of the
fact that Cr is absorbing as we show next. For any y 6 Y there exist > 0 and x 6 X with
q)(x, ty) < +, so for e > 0 small enough we have

I1(1 e)x0 + exll Ilx011 + 1,

qg((1 e)(xo, O) + e(x, ty)) < (1 e)o(xo, O) -t- eqg(x, ty) < ,
showing that ety Cr for all e > 0 small.

We observe that O*(y*) p*(0, y*) so that (15) is just a rewriting of 0(0) 0"*(0).
From this we also get that 00(0) is the solution set of min 99*(0, y*), and the last claim is a
well-known fact in convex analysis (see [25]).

Appendix B. Regularity theorems under directional constraint qualification con-
ditions. Throughout this section we suppose that G X x IR+ Y is a C2 mapping and
the spaces X, Y are Banach. Also K C Y is a closed convex set and x0 6 X is such that
G(xo, O) K and satisfies the constraint qualification

(DCQ) 0 int [G(x0, 0) + G’(xo, O)X x (0, cxz) K]
We begin by stating the equivalence.

PROPOSITION B.1. Condition (DCQ) is equivalent to

(DCQ)’ 0 6 int [G(x0, 0) + G’(xo, O)X [0, cx) K].

Proof. Clearly (DCQ) implies (DCQ)’. Conversely, suppose (DCQ)’ holds and choose
0 with

sBr C [G(xo, O) + G’(xo, O)X [0, (:x) K].

Let 3 > 0 be such that 3[Br G’u(XO, 0)] C eBr. Then

3By C [G(xo, O) + G’(xo, O)X [3, xz) K],

from which (DCQ) follows.
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THEOREM B.2. Let Xu be a trajectory such that [IXu xoll < ?’Vcff, and suppose
d(G(xu, u), K) < mu for some constants y, m and all u > 0 close to O. If ?’ is small
enough, we canfind constants c > O, uo > 0 and a trajectory Yu with

G(yu, u) K,
C

Ilyu xull <_ -(u / IlXu xoll)d(G(xu, u), g),
U

for all u 6 (0, u0].
Our proof will be based on the following couple of lemmas.
LEMMA B.3. Under assumption (DCQ), there exist e > O, ot > 1, and-ff > 0 such that

for all u [0, fi]

2ueBr C G(xo, O) + uG’u(XO, O) + uaGx(XO, O)Bx K.

Proof. Letting A := G(xo, O) + kG’(xo, O)Bx x [0, 1] K f) kBr, condition (DCQ)
gives

0 6 intU{A k 6 N};

thus the completeness of Y implies 0 6 int(A) for some k 6 11. But the set A can be
expressed as the projection over the fourth component of the closed convex set

C {(x,y,t, G(xo, O)+G’(xo, O)(x,t)-y)’llxll < k, Ilyll _< k,y K,t [0, k]},
and since the projection of C onto its first three components is bounded, Lemma A.1 gives
int(Ak) int(Ak). Therefore we may find e > 0 such that

2ekBr C G(xo, O) + kG’u(XO, O) k[0, 1]G’u(XO, O) + kG’x(XO, O)Bx K,

which multiplied by u/k and rearranged becomes

(16) 2ueBy C G(xo, O) + uG1u(XO, O) + uG’x(XO, O)Bx S,

where

( u) u
S := 1 G(xo, O) + [0, 1]uG’u(XO, O) 4- K.

Now, (DCQ) implies Gu (xo, O) [y G(xo, O) G’ (xo, 0)d]/6 for some y 6 K, d 6 X,
and > 0, so

[( u ] uUk G(xo, O) + y + -K --Gx(xo, O)d.

Since K is convex, we deduce that S C K [0, 1]G(x0, 0)d for all u < K := 8k/(6 + k),
which combined with (16) yields the desired conclusion for c "= + Ildll/8. t

In the next lemma we denote

M sup{llG"(x, u)ll IIx xoll 1, 0 u }.

/ue/Mfor all u sufficiently small.LEMMA B.4. Let o I+ --+ + be such that 99(u) < -Then there exists uo > 0 such that, for each trajectory Xu with

Ilxu xoll qg(u) Vu [0, u0],
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one hasfor all u [0, uo]

(17) u/3By C G(xu, u) -t- (otu + Ilxu xoll)a’x(XO, O)Bx K.

Moreover, we can associate to Xu another trajectory Yu such thatfor all u (0, uo]

(i) d(G(yu, u), K) < -d(G(xu, u), K),

2
(ii) IlYu xull <_ (u + Ilxu xoll)d(G(xu, u), K).

Proof. The hypothesis on q)(u) ensures the existence of uo 6 (0, g] such that

(18) 8M[au + o(u)]2 <u/3<_M Y u 6 [O, uo].

To show (17) we observe from (18) that Ilxu xoll _< o(u) _< 1, and then letting b :=
G(xu, u) G(xo, O) G’(xo, O)(xu xo, u) we have

(19) Ilbll < M(u + Ilxu -xoll)2 < M[otu + q)(u)]2 _</l/3.

Thus, Lemma B.3 gives

u/3Br b C 2u/3Br C G(xo, O) + uG’u(XO, O) + uotGx(XO, O)Bx K,

and then

u/3Br C G(xu, u) + Gx(XO, O)[-(Xu xo) + uotBx] K,

from which (17) follows at once.
Let us construct next the trajectory yu for u 6 (0, uo].
If G(xu, u) K we just take yu Xu so that (i) and (ii) hold trivially.
Otherwise we choose r such that G(xu, u) + r K and

(20) Ilrll 2d(G(xu, u), K),

and we use (17) to select d with Ildll u + Ilxu xoll such that
r

(21) ue G(x, u) + G’x(XO, O)d K.
Ilrll

With these choices we define yu Xu + d, where/3 := Ilrll/(u/3 + Ilrll) < 1.
Property (ii) follows immediately from (20) and the inequality

IlYu -xull =/lldll _< Ilrl--l (cu / Ilxu -xoll).
ue

To check property (i) we observe that Ildll _< cu / o(u) and then, using (18),

[lyu -xoll cu + 2qg(u) _< 1.

Then we can apply the mean value theorem to find 6]Xu, Yu with

(22) IIG(yu, u) G(xu, u) G’x(XO, 0)dll IIG’x(, u) G’x(XO, 0)ll IId[I

< M(u + II -xoll)lldll

2M
<_ [oeu / o(u)]211rll

< -d(G(xu, u) K)
2

where we have used the bound u + II xoll _< 2[otu -t- q)(u)], (18), and (20).
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Now, from (21) we get

G(xu, u) + G’x (xo, O)d (1 )G(xu, u) + ue [-l + K,

since 1 -/3 13ue/llrll, we deduce

[G(xu, u) + G’x(XO, O)d (1 )(G(xu, u) + r) +K C K,

which combined with (22) yields (i).
Proof of Theorem B.2. Let q)(u) := e4m/e(otu nt- IIx xoll) and suppose that 9/ <

-4m/ee so that Lemma B.4 can be used to find uo.
Starting with y,O := Xu we shall construct recursively a sequence y such that for all

u 6 (0, uo] one has

(i) d(G(yu, u), K) < -d(G(yu- u) K)

2
(ii) Ilyu yu-11] < (au + Ilyu- xoll)d(G(yu-, u), K).

ue

To prove the existence of such a sequence it suffices to check inductively that

(iii) ]lyu-x01]_<0(u) Yu6(0, u0],

so that Lemma B.4 can be used to find the next term yuk+l. Since (iii) obviously holds for
k 0, we only need to prove the inductive step. Suppose Y0, y y are such that (i) and
(ii) hold; then for every u 6 (0, u0] we have

2 d(G(xu, u), K)
(23) Ilyu Yu

k-1 _< --(ou + Ilyu-l xoll)
ue 2t-1
2m

< (cu -I-Ily.-le2t_ xoll),

so that letting at "= otu + IlYu xoll we get

It follows that

at < at-, + Ilyu Y-’ (1 +

lnat _< lnak_l q-In d-
e2k_

_< lnak-1 -t e2k_

and then recursively

2m (1 2__1) 4m
In at <lnao+ + +-..+ <lnao+,

from which we obtain the desired conclusion (iii) as

IlYu xol[ _< ak < aoe4m/e qg(u).

The existence of the sequence (yt) being established, we may use the previous bound
ak < q)(u) and (23) to obtain

2q)(u)d(G(x, u), K)
(24) ilYu y-I <

u2k-1

which shows that t(Y,)tr is a Cauchy sequence for each u 6 (0, u0].
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Let yu := limk, yu. From (i) we deduce that G(yu, u) K, while (24) implies

4o(u)
Ily, x, <_ d(G(xu, u), K),

u8

4 e4m/e [3proving the theorem with c :=
A careful analysis of the previous proof shows that the result is still valid if G is supposed

of class C (or merely strictly differentiable at (x0, 0)) provided we restrict to the case of
trajectories Xu xo + 0 (u). More precisely we have the following theorem.

THEOREM B.5. Let G X Y be strictly differentiable at (xo, O) and K C Y be
a closed convex set. Suppose that G(xo, O) K and (DCQ) holds. Thenfor each trajectory
Xu xo + O(u) there exist constants c > O, uo > 0 and a second trajectory Yu such that

G(yu, u) K,

IlYu xull < c d(G(xu, u), K),

for all u [0, u0].
Proof. It is clear that the result will follow from Theorem B.2, which is applicable since

Xu xo + O(u) implies Xu x0 + o(rff) and d(G(xu, u), K) O(u).
However, we must check that Theorem B.2 remains valid under the weaker C assumption

on G and the stronger Xu xo + O(u) condition. To this end all we need is to modify Lemma
B.4. More specifically, it suffices to adjust the arguments leading to the bounds (19) and (22),
which is easily accomplished by fixing g 6 and u0 6 (0, K] such that o(u) < gu for all
u 6 [0, u0] and then reducing .u0 so that

IIG(y, v) G(x, u) G’(xo, O)(y x, v u)ll < (IlY xll4(c +
for each u, v 6 [0, u0] and every x, y B(xo, (or + 2)u0).

As a corollary of the preceding result we obtain the following directional version of
Robinson-Ursescu’s regularity theorem for convex multifunctions.

THEOREM B.6. Let M X 2" be a multifunction with closed convex graph. Let
Yo M(xo) and let Yu be a C trajectory with y(O) yo and

(RU) 0 int[M(X) y(0) (0, cxz)y’(0)].

Thenfor each trajectory Xu xo + O(u) one has

d(xu, M-1 (Yu)) < c d(yu, M(x,))

for a given constant c and all u > 0 sufficiently small.

Proof. The result follows as a direct application ofTheorem B.5 to the function G(x, u)
(x, Yu) and the closed convex set K graph(M).

APPLICATION. As a particular case of the previous result let us consider Yo M(xo) and
suppose that d 6 Y is such that

[0 6 int[M(X) Y0 (0, cxz)d].

Then, for each trajectory Xu xo + O(u) there exists 2u such that

Yo + ud M(2u),

lieu xull <_ c d(yu, M(xu)).

In particular, letting x, x0 we obtain the existence of a trajectory u x0 + O (u) with
yo + ud M(u).
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PERTURBED OPTIMIZATION IN BANACH SPACES II: A THEORY BASED ON A
STRONG DIRECTIONAL CONSTRAINT QUALIFICATION*

J. FRIDIRIC BONNANS AND ROBERTO COMINETTI

Abstract. We study the sensitivity of the optimal value and optimal solutions ofperturbed optimization problems
in two cases. The first one is when multipliers exist but only the weak (and not the strong) second-order sufficient
optimality condition is satisfied. The second case is when no Lagrange multipliers exist. To deal with these patho-
logical cases, we are led to introduce a directional constraint qualification stronger than in part of this paper, which
reduces to the latter in the important case of equality-inequality constrained problems. We give sharp upper estimates
of the cost based on paths varying as the square root of the perturbation parameter and, under a no-gap condition,
obtain the first term of the expansion for the cost. When multipliers exist we study the expansion of approximate
solutions as well. We show in the appendix that the strong directional constraint qualification is satisfied for a large
class of problems, including regular problems in the sense of Robinson.

Key words, sensitivity analysis, marginal function, square root expansion, approximate solutions, directional
constraint qualification
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1. Introduction. This paper is the second in a trilogy (see [4, 5]) devoted to the analysis
of parametric optimization problems of the form

(Pu) min{f(x, u) G(x, u) K}

with X and Y Banach spaces,K a closed convex subset of Y, and f(x, u), G(x, u) mappings
of class C2 from X x R into and Y, respectively. We denote the feasible set, value function,
and set of solutions of (Pu) as

F(u) := {x 6 X G(x,u) 6 K},
v(u) := inf{f(x, u) x F(u)},
S(u) :-- {x F(u) f(x, u): v(u)},

respectively. Similarly v(P), F(P), S(P) will respectively denote the optimal value, feasible
set, and solution set of an optimization problem (P).

Our aim is to study the expansion of v(u) and possibly S(u) in the vicinity of a local
solution x0 of (P0). Such sensitivity analysis usually relies (among other assumptions) upon
stability properties of the feasible set F(u) that follow from so-called constraint qualification
conditions. In part I of this work (see [4]) our study was based on the following generalization
of Gollan’s constraint qualification (see [1, 10]):

(OCQ) 0 int [G(x0, 0) + G’(xo, O)X x (0, ec) K]
which is a directional version of Robinson’s condition 14]

(CQ) 0 6 int [G(x0, 0) + G’ (xo, O)X K].
Under (DCQ) we obtained the following upper estimate of the optimal value:

(1.1) v+(0) _< v(L),
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where v_ (0) and v’_ (0) denote the upper and lower Dini derivatives of the value function:

v(u) v(O)
(0) := lim sup

uS0 U

v(u) v(O)v’ (0) "= lim inf
uS0 u

and (L) is the problem with linearized data:

(L) min{f’(x0, 0)(d, 1) G’(xo, O)(d, 1) Ti(G(xo, 0))}.
d

Using duality theory we proved that v(D) v(L) < cx, where (D) is the problem

(D) max{E’ (xo,), 0) ) 6 Ao},

with Z the Lagrangian and A0 the set of multipliers associated with x0, that is to say, denoting
by NI(y) the cone of outward normals at a point y 6 K,

/(x, ), u) := f (x, u) + (,k, G(x, u)),

Ao {k Y* ) NI,:(G(xo, 0))" Etx(XO, ), 0) --0}.

Define apath as a mapping u --+ Xu from/+ to X, with Xu --+ xo when u $ 0. The path is
said to be feasible if G (Xu, u) K for u small enough. Under a strong second-order condition
on the Lagrangian it can be shown [4] that any o(u2)-optimal path Xu, i.e., a feasible path Xu
such that f (Xu, u) < v(u) + o(u2), satisfies xu xo + O(u). In this case v’(0) exists, being
equal to v(L), and some estimates for the second-order variation of v(u) can be obtained. In
fact, under suitable conditions we proved that

(1.2) 1/,/2v(u) v(O) + u v(L) + - v(Q) "]" O(U2),

where (0) is a subproblem involving the expansion of orders and 2 of the data at (x0, 0).
A remarkable property in this case is that every weak limit of (xu xo)/u, with Xu an o(u2)
optimal path, belongs to S(O).

The available perturbation theory for nonlinear programming shows that this is not the
end of the story. Under the directional qualification hypothesis of Gollan 10] and the weak
second-order sufficient condition, it appears (see [9] by Gauvin and Janin) that v’(0) exists
but may be strictly less than v(L). In that case, a path of O (u -optimal solutions satisfies only
Xu xo + 0 (.v/d). One can still formulate (see Bonnans, Ioffe, and Shapiro [6]) a subproblem
(M) such that v’(0) v(M) and S(M) coincides with the limit points of (Xu xo)/-ff where
Xu ranges over the set of all possible o(u)-optimal paths. For this it is necessary to assume the
existence of at least one multiplier. A similar theory for the case when no multiplier exists
was developed in [3] by Bonnans; here the variation of the cost as well that of the solutions is
of order O

The aim of this paper is to extend these two theories to the Banach space setting. Our
main results are Theorem 3.9 and Theorem 4.6.

The first one, valid under the weak second-order sufficient condition, provides a first-order
expansion of the form

v(u) v(O) + uv(b) + o(u),
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where (D) is a problem involving the expansion of orders and 2 of the data. Moreover, it
shows that every weak limit point of (Xu xo)/x/-ff, with Xu an o(u)-optimal path, solves (/)).

The second one is concerned with problems where no Lagrange multipliers exist. In this
case we obtain a square root expansion of the form

v(u) v(O) + /-dv(b) + o(Cd),

where (/) is another linear-quadratic approximating problem.
To prove these results we need a constraint qualification that is still directional but, ap-

parently, stronger than (DCQ). Specifically, in addition to (DCQ) we need a restorability
property that, roughly speaking, asserts that to certain almost feasible square root paths (i.e.,
paths satisfying xu x0 + O (/ff)), one can associate a sufficiently close feasible path. In the
case of nonlinear programming, that stronger hypothesis (SDCQ) reduces to the condition of
Gollan (see 1, 10]) used in [9, 3, 6], so we recover the main results of these three references.
Let us mention that square root paths have already been used for sensitivity analysis in a
Banach space setting (see [2, 11, 12]). However, our qualification condition is weaker than
those in these references.

As in part I of this work, in our extension to the Banach space setting, an additional
difficulty related to the possible curvature of the convex K appears. To be more precise, let
us recall the definition of first- and second-order tangent sets:

Tr(y) := {h Y" there exists o(t) such that y + th + o(t) K},

T(y,h):={kY" thereexistso(t2) suchthaty+th+t2k+o(t2)K].
The fact that in general 0 does not belong to the set T (y, h) may cause a gap between the
upper and lower estimates for the cost. Some cases when the curvature makes no contribution
to the second-order variation of the cost were analyzed in part I, yielding the expansion (1.2)
under a condition of generalized polyhedricity. The results in this paper are obtained under
similar assumptions.

The paper is organized as follows. In 2 we describe the strong directional constraint
qualification (SDCQ). Then in 3 we develop a perturbation theory assuming the set of
multipliers A0 to be nonempty, whereas 4 deals with the case when A0 is empty. In both
cases we obtain sharp upper estimates as well as some lower estimates of the cost and, under
a no-gap condition, obtain the first term in the expansion of the cost. Finally in the appendix
we discuss sufficient conditions for the strong directional constraint qualification (SDCQ).

2. The strong directional qualification condition. Our upper estimates are based on
paths that vary as the square root of the perturbation parameter. Specifically, we consider
paths satisfying, for given d, w in X, the two conditions

(2.3) xu xo + x/ffd + uw + o(u),

(2.4) dist(G(xu, u), K) o(u).

Note that we can express (2.4) using the concept of a second-order tangent set. Namely, if Xu
satisfies (2.3), then the expansion

G(xu, u) G(xo, O) + /-ax(XO, O)d + u a’(xo, O)(w, 1) + -G(xo, O)dd + o(u)

shows that (2.4) is equivalent to

(2.5) tPa(w, d) 6 Tf (d),
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where we have set

TC (d) := - T(G(xo, 0), Gx(xo, O)d),

o(w, d) :-- G’(xo, O)(w, 1) + -G:(xo, O)dd,

qf (w, d) := f’ (xo, O) (w, 1) + - f’ (xo, O)dd.

Remark. The set T2K (d) should not be confused with the set

r(d) := r2K(G(xo, 0), G’(x0, 0)(d, 1))

defined in part I of this paper and which will not be used here.
DEFINITION 1. We say that xo is restorable (with respect to G and K) if, given a path

Xu satisfying (2.3) and (2.4), for y < close to one can find we X with we -- w and
feasible paths of theform

(2.6) Xru xo + y V/-ffd + uwr + o(u).

We say that the strong directional constraint qualification (SDCQ) holds at xo ifxo is restorable
and the weak directional constraint qualification (DCQ) holds.

We discuss some sufficient conditions for (SDCQ) in the appendix at the end of this
paper. We show in particular that for equality-inequality constrained problems (i.e., when
K {0} K2 with K2 a closedconvex cone with nonempty interior), property (SDCQ) is
equivalent to (DCQ). In fact, it may be that the restorability property is always a consequence
of (DCQ), but we do not have a proof nor a counterexample for this.

Before proceeding with the sensitivity analysis we summarize in the next lemma four
general properties that will be of constant use throughout the paper. Here a (., Tf (d)) "=

sup{ (), k) k Tr (d)} denotes the support function of T2r (d).
LEMMA 2.1. For every d X we have thefollowing.

(P1) T(d) + TK(G(xo, 0)) +G’,(x0, 0)d C Tff(d).
(P2) If(DCQ) holds, then 0 int[TK(G(xo, 0)) G’(x0, 0)X {1}].
(P3) rfi (rd) ’2r( (d) for all , > O.

(P4) If Tfi (d) qb, then thefollowing are equivalent:
(a) a (., rK (d)) < 0.
(b) a(), T(d)) isfinite.
(c) . NK(G(xo, 0)) and (;k, Gx(XO, O)d) O.

Proof. Properties (P 1) and (P2) are straightforward consequences of [8, Prop. 3.1 and
[4, Lem. B.3], respectively, while (P3) is an easy exercise.

Let us prove (P4). Since T2K (d) : b, the implication (a) =: (b) is straightforward. Also,
the nonemptyness of Tff(d) implies Gtx(XO, O)d TK(G(xo, 0)) and then (b) =: (c) follows
from property (P 1). To prove (c) = (a) let us pick y TK (d) and choose Yt -- y with
zt G(xo, O) + tGtx (xo, O)d + t2yt K. Using (c) we deduce

0 > (., zt G(xo, 0)) (., tG’x(Xo, O)d + t2yt) t2(), Yt),

so that (), y) lim(., Yt) <_ O, proving (a).

3. Perturbation analysis assuming the existence of multipliers. In this section we
study the case when A0 q. First we give an upper estimate of v+ (0), which we can express
as a supremum of a certain function over A0. We then rely on second-order conditions to
obtain lower estimates for v’_ (0) and to investigate the coincidence of both estimates.
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3.1. Sharp first-order upper estimates of the cost. Let Co denote the cone of critical
directions at x0, i.e.,

Co := {d X fj(xo, O)d < 0; G’x(xo, O)d Tl(G(xo, 0))}.

When Ao 4 one has in fact fx (x0, 0)d 0 for all d 6 Co. To a path satisfying (2.3) and
(2.4) is associated the constraint (2.5), whereas qf(w, d) is the first term of the expansion of
the cost. This leads to the problem

(Ld) inf.{f(w,d)" 6(w,d) Tf (d)},
wX

which admits the dual

(Dd) sup E,’u(XO,), O) + E(xo,), O)dd -a(;k, T2K(d))
.6Ao

We also consider the problem

() inf{v(Ld) d Co},
d

which plays a role in the following upper estimate of the cost.
THEOREM 3.1. Assume A0 to be nonempty and (SDCQ). Then

v+(0) < v(L)= inf v(Dd) < v(L) < c.
dCo

In particular, if v([) is finite, then

v(u) < v(O) + uv(L) + o(u).

The theorem is an immediate consequence of the next two lemmas. The first one gives
the primal upper estimate of v_ (0).

LEMMA 3.2. Assuming (SDCQ) we have

v+(O) < v(/,) _< v(L) < x.

Proof. Let d 6 Co and take a feasible w F(Ld). Using the restorability property we
may find w -- w and feasible paths of the form

x xo + g /--ffd + uw + o(u).

Expanding f(Xu u) and using the fact that d is critical, it follows that

v(u) < f(Xu u) < f(xo, O) + utPf(w, vd) + o(u)

so that v_(O) _< qf(w, gd). Passing to the limit when , "l" we deduce that v_(O) _<
qf(w, d), and taking the infimum over w F(L) and d 6 Co we get

v+(O) _< v(L).

We conclude by noting that for d 0 problem (L
by [4, Prop. 2.2].

Let us prove next the dual expression for v(L).
LEMMA 3.3. Assume Ao to be nonempty and (SDCQ). For each d Co we have the

following.
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(i) v(Da) < v(La).
(ii) If (Ld) is feasible, then for all F 6 (0, 1), v(Da) v(Ld) and S(Dd) is

nonempty and bounded.
(iii) If (Ld) is infeasible, then v(Dd) ofor all F > 1.
(iv) limsup.l v(Dr’d) < v(Dd).

As a consequence we obtain

(3.7) v([,) inf v(Dd).
deCo

Proof Let us begin by showing that (3.7) is a consequence of (i)-(iv). The inequality
v(/,) > infdec0 v(Dd) is obvious from (i). To show the converse inequality it suffices to check
that v(Dd) >_ v([) for those d Co such that v(Dd) < . By (iii) this implies (Lca) is
feasible for each , e (0, 1), and then (ii) gives v(Dd) v(Ld) >_ v([,) for all ?’ (0, 1).
We conclude by letting ?, "1" and using (iv).

We now prove properties (i)-(iv).
(i) It suffices to show that if w and ) are feasible for (Ld) and (Dd), respectively, then the

dual cost is not greater than the primal one. From the primal constraint it follows that

which implies

tPf(w, d) > qf(w, d) + (,k, *o(w, d)) a(., T2K (d))

1_ ., (xo,) O)dd a (I. Tf (d)),Eu (xo, ., O) +
2 x

as was to be proved.
(ii) We first claim that v(Ld) and v(Dd) are finite and equal with S(Dd) nonempty and

bounded, whenever

(3.8) Y JR+ Tf(d) G’(xo, 0)X {1} -G(xo, O)dd

To motivate this relation, let us consider the family of problems obtained by perturbing addi-
tively the constraint of (Ld), that is, minuex go(w, y) with

] qf(w, d) if (w, d) + y Tf(d),q)(w, Y) / cxz otherwise.

Property (3.8) amounts to Y + t3o dom o(w, .), so we may apply the convex duality
theorem of part I [4, Thm. A.2] to deduce

(3.9) v(Ld) inf 0(w, 0) min 99* (0,))
wX )Y,

as well as the boundedness and nonemptiness of the set of dual solutions. Now we compute

99*(0, .) sup {(., y) f(w, d) a(w, d) + y T2r(d)}
w6X,yY

sup aO, Tf(d))- .’(xo,),O)(w, 1)- -.x(XO,,O)ddwX

Maximizing over w we deduce that 99* (0, Jk) cxz if/2’x (x0,), 0) 5 0, and then using (P4)
we get

p*(0,)) { a ) T2K d "u X " o lc"2...x(XO, ,k O)dd if . Ao,
cxz otherwise.



1178 J. E BONNANS AND R. COMINETTI

This and (3.9) imply the equality v(La) v(Dd). Moreover, since the dual is attained,
property (P4) shows that this common value is finite. This proves our claim.

In view of the previous discussion, to prove (ii) it suffices to check that for each ?, (0, 1)
property (3.8) holds with d replaced by de :-- ,d. To see this let us choose a feasible
w F(Ld), that is,

1
G’(xo, O)(w, 1) + :G(xo, O)dd Tf (d).

Multiplying by ,2 and using (P3) we deduce that

G’(xo, 0)(’2tO, }/2) + -G’(xo, O)dd Tf(d).

From this and (P 1) we get

TK(G(xo, 0)) G’(xo, O)X {1 ,2} C Tf(d) G’(xo, O)X {1} -G’(xo, O)dd,
which multiplied by + and using (P2) yields (3.8) for de as required.

(iii) Let , > 1 and set d := ?’d as before. If T2r(d) is empty, by (P3) so is Tf(d) and
then a(), T2r (de)) -o, hence v(Dd)

Let us then assume T2r (d) to be nonempty. Since (Ld) is infeasible, the convex set

T2r (d) G’(x0, 0)X x 1 does not contain G(xo, O)dd. But (P 1) and (P2) show that this
convex set has a nonempty interior, so that the Hahn-Banach theorem gives a nonzero/z 6 Y*
that separates the set and the point, that is,

(3.10) lz, G’(xo, O)(w, 1) + -G(xo, O)dd > a(lz, T2r(d)) for all w 6 X.

This inequality and property (P4) imply/z 6 NK(G(xo, 0)). Also, taking the infimum over
w 6 X we deduce/z o G’ (x0, 0) 0 (that is to say,/z is a singular multiplier, as defined in
the next section) so that for each ;k 6 A0 and > 0 we have . + t/z 6 Ao. Since S(D) is
bounded (see [4, Prop. 3.1]), it follows that

(#, G’ (xo, 0)) < O.

With these observations property (3.10) reduces to

U,(/z, d) := /z, Gu(XO, O) + - Gx(xo, O)dd a(lz, Tf (d)) > O,

which multiplied by ,2 and using (P3) gives

(3.11) U,(/z, de) > (1 ’2)(/z, G’u(Xo, 0)) > O.

Let us fix ;k 6 A0. Since U, (., de) is positively homogeneous and concave, and since . + t/z 6

A0, it follows that

v(Dd) >_ fu(XO, O) q- - f’(xo, O)dd + () d- t#, d)

tt> fu’ (x0, 0) + f (x0, O)ded + (, de) + (l, de).
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To conclude we observe that (P4) implies the finiteness of ,E0, de), so that letting " cxz
and using (3.11) we get v(Dd) cxz.

(iv) Using (P3) we obtain

v(Dd)--supzAo {/u (x’)’ 0)+ -/(x0, ), 0)dd- y2a(), Tf(d))}
2 ,2< sup{(1-y )/2,(xo,) 0)+ v(Dd)}

k6Ao

(1 y2)v(L) + y2v(Dd).

As v(L) < x, passing to the limit with y "1" we get the desired inequality. [3

When (CQ) holds, for every d Co problem (Ld) is feasible and then v(Dd) v(Ld).
Otherwise the previous lemma shows that v(Dd) v(Ld) except for at most an exceptional
value V0. The optimal values are finite for y < Y0 and equal to +cxz for > Y0. The following
lemma shows that 0 0 iff Tf (d) is empty. It will be useful in 4 as well.

LEMMA 3.4. Assume (DCQ) and suppose Tf (d) is not empty. Then letting dr := gd we
have F(Ld # for all y > 0 sufficiently small.

Proof. Taking k Tf (d) and using (P2) we get

y2-G(xo, O)dd V2k TK (G (xo, 0)) G’(xo, O)X

for all ?, > 0 sufficiently small. Then, using (P1) and (P3) we deduce

G(xo, O)dd TiC(d) G’(xo, O)X x {1},

so we may find w 6 X with q(w, dr) 6 Tf (de).
We end this section by giving a condition under which the upper estimate of Theorem 3.1

coincides with v(L). Using (P4), it is easy to see that this condition is satisfied in particular
if (P0) is convex in the sense that for all y 6 K and ) 6 NK(y), the mapping (., ), 0) is
convex. In that case the right-derivative v’(0) is actually equal to v(L) (see [4, Prop. 3.2]).

PROPOSITION 3.5. Assume (SDCQ). Then v(L) v(L) whenever

inf sup (xo, ., O)dd a(., T2r (d)) > 0.
Coso "x

Proof. By Lemma 3.3 and using the equality v(L) v(D) we get

v(L) inf v(Dd)
dECo

> inf sup ’. (xo, I., O) + - ’x (xo, I., O)dd (), T(d))
dECo kS(D)

> v(L) + inf sup (xo,) O)dd () T(d))
deCo JkS(D) 2

> v(L),

and we conclude with Lemma 3.2.
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3.2. Lower estimates and expansion of solutions. We derive next some lower estimates
for v’_ (0). As v’_ (0) _< v_(0) _< v(L) whenever (SDCQ) holds, this is only of interest if

v(L) > -cx. We give conditions that imply v’_ (0) > -cxz, based on a result of part I (see [4,
Prop. 6.1 ]) that we recall for the convenience of the reader.

For each set f2 C A0 we consider the second-order condition

soc() There exist c, > 0 s.t. max (xo, ), O)dd > otlldll 2 V d 6 C,

where

C :-- {d X" f(xo, O)d < lldll, G’x(XO, O)d TK(G(xo, 0)) + lldllnr}.

Note that for 0 the extended critical cone C, reduces to the critical cone Co.
PROPOSITION 3.6. Assume (DCQ) andsuppose SOC(f2) holdsfor some bounded f2 C A0.

Then,for each 0 (u)-optimal path Xu, we have Xu xo + 0 (x/d).
Now consider the function

and the problems

(D)

FI (d) := sup E (xo, ), O) + -gE(xo, ), O)dd
.6Ao

min{ 1-I (d) d 6 Co },

min{I-I(d) f,(xo, O)d < , Gtx(XO, O)d TK(G(xo, 0))}.

Note that v(/)) is a nonincreasing function of ; in particular, lim,+0 v(,) < v(/)). More-
over, from (P4) we get l-I(d) _< v(Da), so under the conditions of Theorem 3.1 we deduce
that

(3.12) lim v(/,) <_ v(/)) _< v().
$0

PROPOSITION 3.7. Assume (DCQ), the existence of an o(u)-optimal path, and SOC(f2)
for some bounded f2 C Ao. Then v

_
(0) > -cx and

(i) if (CQ) holds, thenfor each e > 0 we have

(3.13) v’_(0) _> v(/);

(ii) ifany of the following conditions hold:
(a) the path may be expanded as Xu xo + /-ffdo + o(x/-ff),
(b) X is reflexive and d --+ E(xo, ), O)dd is weakly lower semicontinuous at each

dCo,
then the previous lower bound may be strengthened to

(3.14) v’_(0) >_ v(/)).

Proof. Let Xu be an o(u)-optimal path. By Proposition 3.6 du (Xu xo)/x/-ff stays
bounded as u $ 0, and then for each ) 6 A0 we have

(3.15) v(u) f(x,, u) + o(u)
>_ v(O) + (Xu, ), u) (xo, ), O) + o(u)

-> v(O)+u[E’u(x’)’ o)+l-E"(x’)2 O)dudul+z(u),
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with IIo(u)ll/u 0 uniformly when ) varies over bounded sets. From this and the bound-
edness of du, it follows that v’_ (0) > -c.

To prove (i) we apply Robinson’s theorem [14] to the mapping G(x) "= G(xo, O) +
G (x0, 0)(x x0) in order to find u Xu + o(v/-ff) such that ((u) K. Then, by suitably
modifying the small term oz (u), in (3.15) we can replace du by du (Ycu -xo)/,v/ft. Moreover,
under (CQ) we know that A0 is bounded so that taking the supremum over ,k we get

v(u) >_ v(o) + un(du) + o(u),

from which (3.13) follows.
To show (ii), let us choose Uk $ 0 realizing the lower limit v’_ (0). When (a) holds we

have du --+ do, while in case (b) we may assume that du do. In both cases, do 6 Co, and
using (3.15) we get

v’ (0) > 12’ (xo ,k O) 4- - 17. (xo k O)dodo

where in case (b) we use the weak lower semicontinuity of/2 (x0,), O)dd. Taking the supre-
mum over ,k A0 we conclude (3.14). [3

We now analyze under which conditions the gap between the estimate of Theorem 3.1 and
(3.14) is null. We start with sufficient conditions for the equality between the optimal values
of the subproblems giving the upper and lower estimates. We define extended polyhedricity
of the second kind (for problem (P0) at point x0) as

0 Tf (d) for all d in a dense subset of Co.

We note that in the definition of extended polyhedricity given in part I, the set S(L) was
considered instead of Co. If the constraints are unperturbed, then S(L) Co and both
definitions coincide.

PROPOSITION 3.8. Assume A0 nonempty and (SDCQ). Ifone of the twofollowing condi-
tions hold:

(a) 0 Tf (d) for all d in Co,
(b) (CQ) and extended polyhedricity ofthe second kind hold,

then v() v(D) and S([) C S(D).
Proof. From (P4) it follows that when 0 6 Tf (d) we have a(), Tf (d)) 0 for

all . 6 A0, and then FI(d) v(Da). Consider now a minimizing sequence {dk} for (/))
satisfying a (), T2lc (d)) 0. The existence of such a sequence is obvious in case (a); while
in case (b) it is a consequence of the fact that, due to (CQ), FI (d) is continuous. Along this
sequence we have, by Theorem 3.1, I1 (d) v(Dd) >_ V(L). It follows that v(/) _< v(13).
Reminding (3.12), we get v(/) v(/). The inclusion S(/) C S(/) follows easily from
this. [3

The following is our main result in this section. It provides a formula for the derivative of
the marginal value function v’ (0) and analyzes the behavior of paths of approximate solutions,
for problems with existence of multipliers and satisfying the weak (but not the strong) second-
order sufficient optimality condition.

THEOREM 3.9. Assume X reflexive, the existence ofan o(u)-optimalpath, _. (xo, ), O)dd
weakly lower semicontinuous and one of the two hypotheses below.

(i) (CQ), SOC(Ao), and extended polyhedricity of the second kind;
(ii) (SDCQ), SOC(f2) for some bounded f2 C A0, and 0 Tf (d) for all d in Co.

Then:
(a) There exists v’(O) v([,) v(), and S([,) C S().
(b) For every o(u)-optimalpath Xu the weak accumulationpoints of(Xu xo / belong

to S(D).
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(c) If do S([) and wo S(Ld), then there exists an o(u)-optimal path of the form
Xu xo + /-&o + o(.

Proof. (a) This follows by combining Theorem 3.1 and Propositions 3.7 and 3.8.
(b) Let do be a weak limit point of (Xu xo)/Vcff. Expanding the Lagrangian as in (3.15)

we get v(/)) v’(0) > Fl(d0). As do is feasible for v(/), do is a solution of v(/)).
(c) Using (SDCQ) let us select we w0 and feasible paths of the form Xu x0 +

g q’-ffdo + uw + or(u), with (for each y) IIo(u)ll/u 0 when u -- O. Take ), ]" and
choose a strictly decreasing sequence u $ 0 such that

IIo(u)ll < Vu [0, u]
-k

from which we construct the feasible path

X --X Yk YU [Uk+ Uk)

Then we have

Ilxu xo /-ffdoll _< V/-(1 g)lldoll / ullw / - Vu [uk/, Uk)

from which we get Xu xo + /-ffdo + o(.v/-ff). Also, a second-order expansion implies that
for u [u+, u) we have

f(Xu, u) f(xo, 0).+ u f’(xo, O)(w, 1) + - fj’(xo, O)dodo + o(u)

so that

f(Xu, u) f(xo, O) + uf(wo, do) + o(u)

v(O) + uv([) + o(u) v(u) + o(u).

The conclusion follows.

4. Perturbation analysis assuming nonexistence of multipliers.

4.1. Preliminaries. In this section we analyze the situation when the set ofmultipliers A0
is empty, extending the theory of perturbed singular nonlinear programs of [3]. The qualitative
behavior is radically different from the case studied in 3, so we are led to introduce some new
objects. Indeed, if A0 is empty we have v(L) -c and by part I it follows that v’ (0) -zxz.

We will check that, under suitable second-order assumptions, the variation of the cost is
of order O(v/-ff). This leads us to define, analogously to the Dini derivatives, the following
quantities:

v#(0) := lim sup
uO

v(u) v(O)

v(u) v(o)
v#(O) := lim inf

uO W/
We define the singular Lagrangian, the set of singular multipliers (at x0, for problem (P0)),

and the set of normalized singular multipliers as

(x, ., u) (), G(x, u)),
A ": {) 6 Y*\ {0)" ) 6 Nr(G(xo, 0)), ’x(XO, ), O) -0},

The next proposition shows that A0 and A are both empty only in some very special situations.
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PROPOSITION 4.1. Ifboth Ao and A are empty, then the set

,A N+[K G(xo, 0)] G’ (xo, O)X

is dense in Y but not equal to Y.
Proof. If A Y we know that A0 - 4 [13, 14]. Suppose next that A is not dense in

Y and select y e Y not belonging to the closure of ft. By the Hahn-Banach theorem there
exists e Y* \ {0} such that

(;L, y) > (), t[k G(x0, 0)] G’x (x0, 0)w) for all w 6 X, k 6 K, > 0.

Taking the supremum over w 6 X, we get ; o G’ (x0, 0) 0, and letting 1" oo we deduce
(;k, k G(xo, 0)) < 0 for all k K, so ,k e Nr(G(xo, 0)) and then A

4.2. Upper estimate of the cost. To obtain upper estimates for v# (0) we consider the
following optimization problems:

and

dec0min fj (Xo, O)d -G(xo, O)dd Tf (d) G’(xo, O)X x

(/) decomin { fx’ (Xo O)d’,-G(xo, O)dd Tf(d) G’(xo, O)X x {1}

Problem () will give an upper estimate of the value function whereas (/), which has the
same optimal value as (), will provide a com.parison with the lower estimate of v#(0). We
remark that, when A is not empty, problem (D) is equivalent to

min f’x (xo, O)d ’u (xo, ), O) + -.x (xo, ,k, O)dd <_ a (., T (d) ), for all ;k e A’
deCo

To prove this equivalence it suffices to check that the constraints in (/) and (/’) coincide,
ttwhich follows from the next result applied with y G’u(XO, O) + 7Gx(xo, O)dd.

PROPOSITION 4.2. IfA dp, then thefollowing are equivalent.

(a) y 6 T2r (d) Gx (x0, 0)X.
(b) (;, y) < a(;k, Tf (d)) for all L e A.
Proof. Both (a) and (b) are false if T2r (d) is empty, so we may assume the contrary. The

implication (a) := (b) is straightforward and the converse follows by a separation argument.
Indeed, if (a) fails we may find a strictly separating hyperplane, that is, ;k 6 Y* \ {0} and ot 6/1{
such that

(,k, y) > ot >_ (,, k G’ (xo, O)w)

for all k e Tf (d), w e X. Taking the supremum over w e X it follows that ;L o G’ (xo, O) O,
and then taking the supremum over k we deduce that

(4.16) (., y) > ot > a (,k, Tf (d)).

Using this and (P4) we get ) Nr(G(xo, 0)), so . A and (4.16) contradicts (b).
We now state the upper estimate.
THEOREM 4.3. If (SDCQ) holds, then

v#(o) <_ v(L) v(D) <_ o,
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so when v() is finite, we have

v(u) <_ v(O) + 4v() + o(4-).

In addition, v() < 0 iff there exists a direction d such that fx (xo, O)d < 0 and T2K (d) c.
Proof. We begin by showing v#(0) < v() < 0. Let d F(/) and select w 6 X such

that G’(x0, 0)(w, 1) + G(xo, O)dd Tf (d). Using the restorability property we may find
feasible paths of the formx xo + y/-d +uw +o(u) with w -- w as y " 1. Expanding
f it follows that

v(u) < f(x, u) f(xo, O) + yV/-f (xo, O)d + o(/-),

from which we deduce

v# (0) < ,f (x0, 0)d.

Letting ?, " 1 and then takingthe infimum over d 6 F() we get v#(0) _< v(). Moreover,
(P2) implies 0 6 F(/), so v(L) < O.

We prove next v(/) v(/). Since clearly v(/) < v(/), it suffices to show that
v([.) < f’(xo, O)d for each d 6 F(/). Let d 6 F(/)and select sequences kn Tf(d),

ttwn 6 X such that 7Gx(xo, O)dd limn[k, G’(xo, O)(w,, 1)]. Using (P2) we find that
given any > 0 we will have for all n large enough

1
-tG’(xo, O)dd tkn + tG’(xo, O)(w, 1) Tr (G(xo, 0)) G’(xo, 0)X x {1}
2

which rearranged gives

1
(4.17) -G"x(XO, O)dd kn + TK(G(xo, 0)) G’(xo, 0)X x {1}.

21+t l+t

Letting dt "= /t/(1 + t)d and using (P1) and (P3) we deduce that- G’(xo, O)dtdt Tf (dt G’ (xo, O)X x }.

Hence dt F([,) and then

v(,) < f(xo, O)dt.

Letting tend to +cx we conclude that v() < fx (x0, 0)d, as required.
We conclude by proving the sufficient condition for v(/) < 0 (the necessity is evident).

If d 6 X is such that fx (x0, 0)d < 0 and T2K (d) : b, from Lemma 3.4 we get cd 6 F(/,)
for all ot > 0 sufficiently small, so that v(/) < otfx (x0, 0)d < 0. [3

Remark. From the estimate (1.1) we already know that v#(0) < 0. Henceforth Theorem
4.3 improves the upper estimate of the cost only if v() < 0.

4.3. Lower estimates and expansion of solutions. As in the case when A0 q, we
will give a lower estimate of the cost that is sharp when the contribution of the curvature of K
happens to be null.

We consider the singular second-order conditions

(SSOC) there exist or, e > 0 s.t. sup Z(x0, ;k, O)dd > c[[dl[ 2 d 6 C.
.Av
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PROPOSITION 4.4. If (SSOC) holds, then for each O(-ff)-optimal path Xu we have
x xo + o(4ff).

Proof. Let Xu be an O(v/-ff)-optimal path and let flu "= IlXu xoll, du "= (xu xo)/u.
For each . 6 Av we have

o >_ Xu, , u xo, , o
u’ (x0, , 0) + x (x0, , O)dudu + o(u) + o(fl).

The small tes o(u) and o(fl) may be chosen independent of 6 A%, so we may take the
supremum to deduce that

(4.18) f12 max (x0, , O)dud < O(u) + o(fl).
6A

If for some sequence Un 0 one has flU2n/Un , then for n large enough du, is in C. With
(SSOC) and (4.18), we obtain a contradiction.

To obtain the desired lower estimate for v#(0) we consider a relaxed version of problem
(b), namely,

() min { fj(xo 0)d "1 }Co G(xo, O)dd T(G(xo, 0)) G’(xo, 0)X x {1}

As for problem (), when AS is not empty one may use Proposition 4.2 (with d 0) to derive
the following equivalent foulation for ()"

(’) min ff (xo, O)d ’, (Xo, O) + x (xo, O)dd < 0 for all e A"
dCo

Comparing with (’) and using (P4), we see that F(’) C F(’). As these two problems
have the same cost, it follows that

(4.19) v() v(’) v(’) v().

PROPOSITION 4.5. Assume there exists an o()-optimalpath x,. If SS0C) is satisfied,
then re(O) > -. Moreover, ifany ofthe ofollowing properties hold."

(a) the path may be expanded as x, xo + do + o(),
(b) X is reflexive andfor each A" the mapping d (xo, , O)dd is weakly lower

semicontinuous at every do Co,
then

(4.o v(o e v(.

Pro@ By Proposition 4.4 we have x, xo + O() and then

v(u f (x., u + o( f(xo, o + o(,

so v(O) > -.
Now let us choose u 0 realizing the lower limit re(0), and let d := (x, xo)/.

When (a) holds we have d do, while in case (b) we may assume that d do for some
do X. In both cases, do Co and we have

v#(o) L’(xo, 0)do.
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On the other hand for all . A

so, using in case (b) the lower semicontinuity of/J (x0, ., O)dd we get

o >_ ’u (xo, z, o) + 2’x’(Xo, z, O)odo.

It follows that do F(R’). Combining with (4.19) we get

v(/) v(/’) < f’(xo, 0)do v#(0)

as was to be proved. [3

Let us put together the different bounds obtained so far. If (SDCQ) and the assumptions
of Proposition 4.5 hold, then

v(k)- v(g’) _< v#(O) _< v#(O) _< v(zS’)= v(ZS)- v() _< o.

In our next statement, which is our main result for problems with nonexistence of multipliers,
we give a condition for all these optimal values to be equal. This gives the first term of the
expansion of the optimal value v(u).

THEOREM 4.6. Assume the existence ofan O(/’ff)-optimal path Xu, (SSOC), X reflexive,
the lower semicontinuity ofd (xo, ., O)ddfor each ) As, (SDCQ), andfinally

O6Tf(d) for alld6Co.

Then v() v()), S() S()), and

(4.21) v(u) v(o) + v(5) + o(,,/-d).

Proof. The equivalence between (/) and (/) follows by noting that when 0 6 Tf (d)
(see [8, Prop. 3.1 ])

Tf (d) Ti(G(xo, 0)) ]+G’x(XO, O)d,

from which we deduce

Tf (d) G’ (x0, 0)X 1 T/ (G (x0, 0)) G’(x0, 0)X 1 }.

The expansion of v(u) then follows from Theorem 4.3 and Proposition 4.5.

5. Appendix: Checking the strong directional constraint qualification. We give
some sufficient conditions for checking (SDCQ) in the case of decomposed constraints of
the form: Y := Y1 Ye with Y1 and Ye Banach spaces and K := K1 K2 with K1 and Ke
closed convex subsets of Y1 and Ye. We denote by G (G1, Ge) the components of G, and
we consider the decomposed directional constraint qualification:

(DDCQ)
(i)
(ii)

0 int[Gl(Xo, 0) + G’l(XO, 0)X {0} K1],
there exists tb 6 X such that G’l(XO, 0)(tb, 1) 6 Rec(K1) and

G2(xo, 0) + aG’2(xo, 0)(tb, 1) int K2 for some ot > 0,
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where Rec(K1) denotes the recession cone of K1, that is,

K1
Rec(K1) lim sup

To illustrate this condition, let us mention two particular cases. The first one is when K2
Y2 so that the constraint is only with K1. Then (DDCQ) reduces to Robinson’s condition
[14]. The second case is when K1 {0}. Then (DDCQ) (i) amounts to the surjectivity of
G’lx(XO, 0) and (DDCQ) appears as a natural generalization of Gollan’s condition [10] used
in the aforementioned literature devoted to nonlinear programming.

THEOREM 5.1. (DDCQ) implies (SDCQ).
Proof. We first prove that x0 is restorable. Let Xu be a path satisfying (2.3) and (2.4).

Choose w "= ),2w + (1 ),2)6) and consider

(5.22) Yu := xo + ),rdd + uw.
Expanding in series we get

G(yu, u) G(xo, O) + ), /-ffGtx (xo, O)d + u6(w, ),d) + o(u)

G(xo, O) + ),V/-ffG’x(XO, O)d + ),2UqlG(tO, d)

+ (1 ),2)uG’(xo, 0)(tb, 1) + o(u)

G(x(),2u), ),2u) + (1 ),2)uG’(xo, 0)(lb, 1) + o(u).

Using (DDCQ) (ii) and (2.4) we deduce d(G (Yu, u), K1) o(u). Then (DDCQ) (i) allows
us to use Robinson’s theorem to find a small correction Xu of yu,

(5.23) Xu xo + ),/-ffd + uw + o(u),

such that G l(Xu, u) K1.
Expanding G2(xu, u) as above, we get

(5.24) G2(xu, u) G2(x(),2u), ),2u) + (1 ),2)uG2(xo, 0)(/b, 1) + o(u),

so that letting z := G’z(Xo, 0)(tb, 1) and using (2.4) we have

G2(xu, u) tu + (1 ),2)uz -Jr-o(u)

for some tu K2, tu -+ G2(x0, 0). Moreover, letting Ctu (1 ),2)u/t we may write
G2(xu, u) (1 Otu)tu -+- Oturu with

ru tu + z + o(u)/(1 ),2)u tu + z + o(1).

By (DDCQ) (i) we have ru K for u small; since also tu K2 and Cu 6 (0, 1), it follows
that G2(xu, u) K2. Hence Xu is a feasible path and x0 is restorable.

We now check that (DCQ) is satisfied. By (DDCQ) (i) (see [14]) there exist e > 0 and
/3 > 0 such that, whenever Yl 6 YI satisfies IlYl < e, there exist d 6 X and kl 6 K1 such
that Ildll </3l[ylll and

G l(X0, 0) + Gl(X0, 0)(d, 0) kl yl.

Now take d of the form d d + otb. Then

GI(X0, 0) + G’1 (x0, 0)(d, or) [k + otG’(xo, 0)(tb, 1)] Yl
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and

Gz(x0, 0) + Gz(Xo, O)(d, or) y2 G2(xo, O) + otGz(Xo, 0)(tb, 1) + G2(xo, O)(d, O) Y2.

We may choose e small so that for all Ilyl < e, Ily2ll < e we have IlG(xo, 0)(d, 0) y2[I
small enough to deduce, using (DDCQ) (ii), that the left-hand side above is in K2. From this
(DCQ) follows easily.

Remark. We do not know (even for nonlinear programming problems) if the property
d(G(xo + /-ffd + uw, u), K) o(u) together with (DCQ) suffices or not to construct a
feasible path of the form Xu xo + /-ffdo + uw + o(u) (without 9/and w).

Our final result .shows that, for the important class of equality-inequality constrained
problems, the restorability property is a consequence of the directional constraint qualification
condition (DCQ). So in this case the strong qualification (SDCQ) is equivalent to (DCQ).

PROPOSITION 5.2. If K := {0} x K2 with int(K2) nonempty, then (DCQ), (SDCQ), and
(DDCQ) are equivalent and are satisfied iff the condition (EDCQ) holds.

(EDCQ)
O)
(ii)

6’l(X0, 0)x x {0}
there exists fro X such that GI1 (x0, 0)(tb, 1) 0 and
Gz(x0, 0) -F otG2(xo, 0)(tb, 1) G int Kzfor some ot > O.

Proof. Obviously each of the conditions (DCQ), (SDCQ), (DDCQ), and (EDCQ) is
a consequence of the one that follows. Therefore it suffices to prove that (DCQ) implies
(EDCQ). From (DCQ), G’ (xo, 0)X (0, oo) contains a neighborhood of 0. Being a cone,
this set is equal to Y1. In particular there exist d0 6 X, or0 > 0 such that G’ (x0, 0)(do, co) 0,
i.e., G, (x0, 0) 6 GI (x0, 0)X x {0}. We deduce that

Y1 Gf1(xo, 0)X x (0, xz)- Gl(X0, 0)X x {0},

i.e., (EDCQ) (i) holds. Now pick a 6 int(K.) close enough to G2(x0, 0) SO that there exist
d 6 X and & > 0 such that (0, a G2(x0, 0)) G G(xo, O) -+- G’(xo, O)(d, t) K. It is easily
checked that (EDCQ) (ii) is satisfied with tb d/&, ot 6t/2. [3
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ON FINITE-GAIN STABILIZABILITY OF LINEAR SYSTEMS
SUBJECT TO INPUT SATURATION*
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Abstract. This paper deals with (global) finite-gain input/output stabilization of linear systems with saturated
controls. For neutrally stable systems, it is shown that the linear feedback law suggested by the passivity approach
indeed provides stability, with respect to every LP-norm. Explicit bounds on closed-loop gains are obtained, and they
are related to the norms for the respective systems without saturation.

These results do not extend to the class of systems for which the state matrix has eigenvalues on the imaginary
axis with nonsimple (size > 1) Jordan blocks, contradicting what may be expected from the fact that such systems
are globally asymptotically stabilizable in the state-space sense; this is shown in particular for the double integrator.

Key words, small input saturations, linear systems, finite-gain stability, Lyapunov functions, dissipative systems
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1. Introduction. In this work we are interested in those nonlinear systems that are ob-
tained when cascading a linear system with a memory-free input nonlinearity:

(E) k=Ax+Bo’(u), y=Cx.

The nonlinearity r is of a "saturation" type (definitions are given later). Figure shows the
type of system being considered, where the linear part has transfer function W(s) and the
function cr shown is the standard semilinear saturation (results will apply to more general
O" ’S).

Linear systems with actuator saturation constitute one of the most important classes of
nonlinear systems encountered in practice. Surprisingly, until recently few general theoretical
results were available regarding global feedback design problems for them. One such general
result was given in 14], which showed that global state-space stabilization for such systems
is possible under the assumptions that all the eigenvalues of A are in the closed left-hand
plane, plus stabilizability and detectability of (A, B, C). (These conditions are best possible,
since they are also necessary. The controller consists of an observer followed by a smooth
static nonlinearity.) For more recent work, see [20], which showedbased upon techniques
introduced in 16] for a particular casehow to simplify the controller that had been proposed
in [14]. See also [8] for closely related work showing that such systems can be semiglobally
(that is, on compact sets) stabilized by means of linear feedback.

In this paper, we are interested in studying not merely closed-loop state-space stability,
but also stability with respect to measurement and actuator noise. This is the notion of stability
that is often found in input/output studies. The problem is to find a controller C so that the
operator (u, u) - (yl, Y2) defined by the standard systems interconnection

y P(Ul -f" Y2),

Y2 C(u2 @ Yl)

is well posed and finite-gain stable, where P denotes the input/output behavior of the original
plant E. See Fig. 2. (In our main results, we will take for simplicity the initial state to be
zero. However, nonzero initial states can be studied as well, and some remarks in that regard
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tDepartment of Mathematics, Rutgers University, New Brunswick, NJ 08903 (wliu, chitour, sontag@math.
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FIG. 1. Input-saturated linear system.
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FIG. 2. Standard closed loop.

are presented in a latter section of the paper.) Once such input/output stability is achieved,
geometric operator-theoretic techniques can be applied; see for instance [3] and the references
therein. For other work on computing norms for nonlinear systems in state-space form, see
for instance 18] and the references given therein.

We focus on a case which would be trivial if one were only interested in state stability,
specifically when the original matrix A is neutrally stable; that is, we focus on the case
where all eigenvalues have nonpositive real parts and there are no nontrivial Jordan blocks
for eigenvalues in the imaginary axis. (The whole point of [14] and [20] was of course to
deal with such possible nontrivial blocks, e.g., multiple integrators.) In this case, a standard
passivity approach suggests the appropriate stabilization procedure. For instance, assume
that cr is the identity (so the original system is linear), A 4- A’ < 0, and C B’. Then
the system is passive, with storage function V(x) Iix112/2, since integrating the inequality
dV(x(t))/dt < y(t)’u(t) gives fg y(s)’u(s)ds > V(x(t)) V(x(O)). Thus the negative
feedback interconnection with the identity (strictly passive system), that is, u -y, results
in finite-gain stability. For this calculation and more discussion on passivity, see for instance
[7] and the references given therein. (For the use of the same formulas for just state-space
stabilization with applications to linear systems with saturations, see [5] and [9]; see also the
discussion on the Jurdevic-Quinn method in [13].)

In this paper, we essentially generalize the passivity technique to systems with saturations.
We first establish finite-gain stability in the various p-norms, using linear state feedback
stabilizers. Then we show how outputs can be incorporated into the framework. Our work is
very much in the spirit of the well-known absolute stability area, but we have not been able to
find a way to deduce our results from that classical literature.

These results do not extend to the class of systems for which the state matrix has eigen-
values on the imaginary axis with nonsimple (size> 1) Jordan blocks, contradicting what may
be expected from the fact that such systems are globally asymptotically stabilizable in the
state-space sense; this is shown in particular for the double integrator.
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We make one remark on terminology. In the operator approach to nonlinear systems,
see, e.g., [19], a "system" is typically defined as a partially defined operator between normed
spaces, and "stability" means that the domain of this operator is the entire space. In that
context, finite-gain stability is the requirement that the operator be everywhere defined and
bounded; the norm of the operator is by definition the gain of the system. In this paper, we
use simply the term LP-stability to mean this stronger finite-gain condition.

The reader is referred to the companion paper [2] for results complementary to those in
this paper, dealing with Lipschitz continuity ("incremental gain stability") and continuity of
the operators in question. The two papers are technically independent.

Organization ofPaper. In 2 we provide definitions and statements ofthe main results, as
well as some related comments. Proofs of the main results are given in 3. Section 4 estimates
gains in terms of the corresponding gains for systems without saturation, in particular for
p 2 (H-norms). Results regarding nonzero initial states and global asymptotic stability of
the origin are collected in 5. Section 6 shows how to enlarge the class of input nonlinearities
even more, so as to include nonsaturations as well. The paper closes with 7, which contains
the double integrator counterexample.

2. Statements of main results. We introduce now the class of saturation functions to be
considered, and state the main results on finite-gain stability. Some remarks are also provided.
Proofs are deferred to a later section.

2.1. Saturation functions. We next formally define what we mean by a saturation. Es-
sentially, we ask only that this be a function which has the same sign as its argument, stays
away from zero at infinity, is bounded, and is not horizontal near zero.

DEFINITION 1. We call cr a saturation function if it satisfies the following two

conditions:
(i) cr is locally Lipschitz and bounded;

or(t)(ii) ttr(t) > 0 ift # 0, liminft0 > O, andliminfltl Ir(t)l > 0.
For convenience we will simply call a saturation function cr an S-function. We say that

r is an n-valued S-function if cr (or1 rn)’, where each component cri is an S-function
and

if(X) de....f (tTI(X1) tTn(Xn))!

for x (x Xn) E ]tn. Here we use (...)’ to denote the transpose of the vector (...).
Remark 1. It follows directly from Definition 1 that most reasonable saturation-type

functions are indeed S-functions in our sense. Included are arctan(t), tanh(t), and the standard
saturation function cr0(t) sign(t) min{Itl, }, i.e.,

ift>l,

r0(t) if Itl < 1,

-1 if <-1.

Remark 2. It is easy to see that if cr satisfies a bound Icr(t)l _< Mltl for near zero (in
particular if tr(0) 0 and (i) in Definition 1 holds), then Condition (ii) in Definition is
equivalent to the following condition:

(c) There exist positive numbers a, b, K and a measurable function r R [a, b] such
that for all E we have Ir(t) r(t)tl < Ktr(t).

It is clear that (c) implies (ii). To see the converse, let g > 0 be such that Icr(t)l < Mltl
for tl <_ . Then just let
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1

r(t)

if t--0,

if 6 [-3, 3]/{0},

if t>3,

if <-3.

It is easily verified that there exist positive constants a, b, K such that (c) holds for this r.
DEFINITION 2. We say that a constant K > 0 is an S-boundfor cr if there exist a, b > 0

and a measurablefunction r I [a, b] such that, for all N,
(i) b < K,
(ii) ler(t)l < K,
(iii) ler(t)l < girl,
(iv) let(t)- r(t)t] < Kter(t).

The above discussion shows that such (finite) S-bounds always exist.
A constant K > 0 is called an S-boundfor an IRm-valued S-function tr ifK is an S-bound

for each component ofr.
2.2. Lt’-Stability. Consider the initialized control system given by

2 f(x,u),
(1)

x(0) 0,

where the state x and the control u take, respectively, values in ]l and/Rm. We assume that
the function f ]n x 1m - In is locally Lipschitz with respect to (x, u). Terminology for
systems will be as in any standard reference, such as [13].

Throughout this paper, if is a point in Rn, we use I1 (i-1 /2)/2 to denote the
usual Euclidean norm. For each matrix S, SII denotes the induced operator norm, and all F
denotes the Frobenius norm, i.e, IISIIF Wr(SS’) 1/, where Tr(.) denotes trace. Recall that
all _< s F.

For each < p < oe and each integrable (essentially bounded, for p cxz) vector-valued
function x LP([0, cx), Rn), we let Ilxll denote the usual LP-norms:

(foCX)lipII/IIL Ilx(t)llPdt

if p < cx, and

Ilxll-- ess supo<_t<llx(t)ll.

DEFINITION 3. Let <_ p < cx and 0 <_ M <_ x. We say that (1) has LP-gain less than
or equal to M iffor any u LP([0, pc), Rm), the solution x of (E) corresponding to u is in
Lp ([0, cxz), Nn) and satisfies

The infimum ofsuch numbers M will be called the LP-gain of (E). We say that system (E) is
LP-stable if its LP-gain is finite.

By a neutrally stable n x n matrix A we mean one for which all solutions of 2 Ax
are bounded; equivalently, A has no eigenvalues with positive real part and each Jordan block
corresponding to a purely imaginary eigenvalue has size 1. Another well-known characteri-
zation of such matrices is that they are the ones for which there exists a symmetric positive
definite matrix Q such that A’Q + QA < O.
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We now state our main result.
THEOREM 1. Let A, B be n x n, n x m matrices respectively. Let cr be an m-valued

S-function. Assume that A is neutrally stable. Then there exists an m x n matrix F such that
the system

k Ax + Bcr(Fx + u),
(2)

x(O) 0

is LP-stablefor all <_ p < .
Theorem is an immediate consequence of the more general technical result contained

in Theorem 2 below. To state that theorem in great generality, we recall first a standard
notion. Let (E) : Ax / Bu be a linear system, where x and u take values in ]n and Im,
respectively. For each measurable and locally essentially bounded u [0, cx) -- ]m and
each x0 ", let Xu(t, xo) be the solution of (E) corresponding to u with xu(O, xo) xo.
Following the terminology of [6], the stabilizable subspace S(A, B) of (A, B) is the subspace
of n which consists of all those initial states x0 n for which there is some u so that
Xu(t, xo) 0 as -- cx. In other words, S(A, B) is the subspace of ]/n made up of all the
states that can be asymptotically controlled to zero (so this includes in particular the reachable
subspace). Observe that the pair (A, B) is stabilizable (asymptotically null controllable) iff
S(A,B) _._n.

THEOREM 2. Let A and B be n n and n m matrices, respectively. Let S(A, B) be
the stabilizable subspace of (A, B). Let cr be an Im-valued S-function and let 0
S(A, B) c_ I1 be a locally Lipschitz function such that II0()11 _< min{L, LIIII} for all,, where L > 0 is a constant and k > 0 is some integer Assume that A is neutrally
stable. Then there exist an m x n matrix F and an e > 0 such that the system

(3)
c Ax + Bcr(Fx + u) + eO(v)

x(O) o

is LP-stablefor each < p < cxz, i.e., there existsfor each p a finite constant Mp > 0 such

thatfor any u LP([O, o), m), v LP([O, ), k),

The proof is deferred to 3.
Theorem 2 implies Theorem (just take 0 0) as well as a result dealing with small

"nonmatching" state perturbations.
Remark 3. It is possible to make the result even more general by weakening the Lipschitz

assumption on 0. Moreover, even the Lipschitz property of o" is not needed. The main problem
in dropping this last assumption is that uniqueness of solutions of the closed-loop system is
then not guaranteed, so that there is no well-defined input-to-state operator. Nonetheless, one
could rephrase all statements by asserting that all possible solutions satisfy the stated bounds.
This is consistent with the way stability is defined in some texts on input/output stability, where
well-posedness (existence and uniqueness of solutions) is stated as a property independent of
stability itself.

2.3. Output stabilization. Consider the initialized linear input/output system

(aao) J Ax + Bet(u),

x(o) o,
y=Ex,
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where A, B, and E are, respectively, n x n, n x m, r x n matrices. Assume that system
(Eao) is asymptotically observable (that is, it is detectable). Our main result for input/output
systems is as follows.

THEOREM 3. Assume that system (Eao) is asymptotically observable, A is neutrally stable,
and the m-valued S-function cr is globally Lipschitz. Then there exist an m n matrix F
and an n r matrix L such that the following property holds. Let 1 < p < cxz. Pick any
Ul G LP([0, x), m) and u2 LP([0, x), r), and consider the solution x (x, x2) of

X’l AXl -k-Bcr(y2-k-UI), y EXl,

x’2 (A d- LE)x2 + Bcr(Fx2) L(yl + U2), Y2 Fx2

with x(O) O. Consider the total outputfunction y (yl, Y2) (EXl, Fx2). Then y is in
Lp ([0, o:), ]r+rn) and

IlYlI < Mp(llull / Ilu211.)

for some constant Mp > O.

2.4. Not every feedback stabilizes. One may ask whether any F that would stabilize
when the saturation is not present would also provide finite gain for (2). Not surprisingly, the
answer is negative. In order to give an example, we need first a simple technical remark.

LEMMA 1. Consider the system J Ax + Bcr(Fx + u), where the matrix A is assumed
to have all eigenvalues in the imaginary axis and where each component ofor is a continuous

function whose range contains a neighborhood of the origin (this holds, for instance, if it is
an S-function). Furthermore, assume that the pair (A, B) is controllable. Then, given any
state xo n, there is some measurable essentially bounded control u steering the origin to

xo in finite time.

Proof. Since all eigenvalues of A have zero real part and the pair (A, B) is controllable,
for each e > 0 there is some control v0 for the system k Ax / Bu so that [w0(t)l < e for all
and v0 drives in finite time the origin to x0 (see, e.g., 12]). Considering that the range of tr

contains a neighborhood of the origin and using a measurable selection (Fillipov’s Theorem),
we see that there is a measurable control v which achieves the same transfer, for the system
Jc Ax + Bet(u). Now let, along the corresponding trajectory, u(t) v(t) Fx(t). It
follows that this achieves the desired transfer for Ax + Bcr(Fx + u). q

The next two examples show that even if A is neutrally stable, Theorem 1 may not be true
if F only satisfies the condition that A + BF is Hurwitz.

Example 1. Let

A=(0 -1 ) (01)0 B= F=-(1/2, 1),

and any cr so that cr (1/2) 1. Then both the origin and (- 1, 0)’ are equilibrium points of the
system

Jc Ax + Bcr(Fx).

By Lemma 1, there is some input u0 that steers the origin to (-1, 0)’ in some finite time To.
Consider the input u equal to u0 for 0 _< < To and to zero for > To. Then if x is the
trajectory of (2) corresponding to Ul, we have that x(t) (-1, 0)’ for all >_ To. Clearly, for
any 1 < p < cx, b/1 LP([0, x), ) and x LP([0, ), ]12). Therefore, system (3) is not
LP-stable for any _< p < z. If we use multiple inputs, a different example which includes
p cx is as follows.
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Example 2. Assume that m n 2. Let

A ( ), B ( 01 ), F ( -3 7
-1 2/"

Then A + BF F is Hurwitz. Let cr (or0, or0)’, where cro is the standard saturation function.
Then the system

2 cr(Fx + u),
(4)

x(0) (0, 0)’

is not LP-stable for any < p < oo. To see this, take a control v on some interval [0, T] that
steers (0, 0)’ to (1, 1)’. Let u v on [0, T] and u (0, 0)’ on (T, oo). Let x (Xl, x2)’ be
the solution of (4) corresponding to u. Then on IT, oo), we have Xl(t) x2(t) T + 1.
Thus (4) is not LP-stable for any < p < oo. (In fact, the trajectory is not even bounded for
a bounded input.)

3. Proofs of the main results. For notational convenience (to avoid having too many
negative signs in the formulas) we will prove the main theorem for systems written in the form

c Ax Bcr(Fx + u) + cO(v),
(5)

x(0) 0.

A trivial remark is needed before we start.
Remark 4. Assume that or1 k, m and tr2 k2 ]tn each satisfy a growth estimate

of the type IIri(u)ll _< Cllull, IIr2(o)ll _< CIIoll for u 6 , v 6 2. It follows from classical
linear systems theory that if the system . Ax is globally asymptotically stable--that is, A
is a Hurwitz matrix--then the controlled system k f(x, u, v) Ax + BCrl(u) + cr2(v) is
automatically also LP-stable for all < p < oo. We will be interested in the case in which A
is merely stable, but this remark will be used at various points.

We now prove Theorem 2. First note that we can assume that (A, B) is controllable.

3.1. Reduction to the controllable case. Suppose Theorem 2 is already known to be
true for controllable (A, B); we show how the general case follows. It is an elementary linear
system exercise to show that the stabilizable subspace S(A, B), for any two A, B, is invariant
under A; this follows for instance from its characterization as a sum of the reachable subspace
and the space of stable modes. Thus the restriction of A to S(A, B) is well defined, and it
is again neutrally stable. Now since 0 takes values in S(A, B), the trajectories of (5) lie in
S(A, B). So we may assume that (A, B) is stabilizable, i.e., S(A, B) n, since otherwise
we can restrict ourselves to S(A, B). Then, up to a change of coordinates, we may assume
that

A=(A1 A) B=(I )0 A3

where (A, B1) is controllable and A is neutrally stable. Assume that A1 is an r x r matrix
and B1 is an r m matrix.

Let ]I ]1 be given by () (0(1) O(r))’ for 6 r, where 0 is the
standard saturation function, i.e., Oo(t) sign (t) min{ 1, Itl}.

By our assumption that the result is known in the controllable case, there exists an m x r
matrix F1 and el > 0 so that the system

(6)
x (0) 0
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is LP-stable for all < p _< cxz. Let 1-’p be the LP-gain of this system, so [[Xlllzp
I’p(llull, / Ilwll) for all u 6 LP([0, cxz), Nm) and w 6 LP([0, x), r).

Since (A, B) is stabilizable, we can find an rn x n matrix E such that A + BE is Hurwitz.
Then the system

(7)
(A + BE)y + v,

y(0) 0

is Lm-stable for any _< p < cxz. Let yp be the Lm-gain of (7), so Y ’p v .
Take an e > 0 such that eL?’ BE _< . Let F (F1,0). We show that for this

choice of F and e, system (5) is LP-stable for any < p _< cxz. For this purpose, let
u LP([0, o), Nm), v LP([0, ), k). Letx be the solution of (5) corresponding to u, v.
Let y be the solution of

(8)
(A + BE)y + eO(v),

y(O) O.

Then we have IlYlI eL, and IIYlI eL’plloll (note that II0()11 min{L, tllll}
for all 6 Nk). Let z x y. Then z satisfies

Az Bcr(Fz + Fy + u) BEy,
z(O) o.

Write z (Zl, z2)t. Then we have z2 0 and Zl satisfies

1 AZl Ba(FlZl + Fy + u) B1Ey

z (0) O

Since B1 Ey B1E Y eL, nl E 1, we have

B1Eye =0( BEy).et
Then Zl satisfies

,1 Az Bo(Fz + Fy + u) + eaO
z (0) O.

By the LP-stability of (6) we get that

This shows that (5) is LP-stable, which concludes the proof that we may assume that (A, B)
is controllable.
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3.2. ProofofTheorem 2 assuming controllability. From elementary linear algebra, we
know that any neutrally stable matrix A is similar to a matrix

0 A2

where A1 is an r x r Hurwitz matrix and A2 is an (n r) (n r) skew-symmetric matrix.
So, up to a change of coordinates, we may assume that A is already in the form (9). In these
coordinates, we write

B Be

where Be is an (n r) x m matrix, and we write vectors as x (xl, x)’ and also 0 (01,0)’.
Consider the feedback law F (0, B). Then system (5), with this choice of F, can be written
as

(10)
21 AlXl Blo(Bx2 -Jr- u) q--

22 A2x2 B2ff(Bx2 nt- u) nt- e02(v)
xl(O) O, x2(O) O.

Since A1 is Hurwitz, it will be sufficient to show that there exists an e > 0 such that the
xz-subsystem is LP-stable (we may think of x2 as an additional input to the first subsystem
and apply Remark 4).

The controllability assumption on (A, B) implies that the pair (A2, B2 is also controllable.
Since A2 is skew-symmetric, the matrix/ A2 BzB; is Hurwitz. (Just observe that the
Lyapunov equation ’In-r + In-r --2BzB holds, and the pair (, B2) is controllable;
see 13, Ex. 4.6.7].) Therefore, the theorem is a consequence of the following lemma. This is
where the main parts of our argument lie (except for a small technical point, whose proof is
deferred to 3.5).

LEMMA 2. Let or, 0 be as in Theorem 2. Let A be a skew-symmetric matrix. Assume that
ft A BB’ is Hurwitz. Then there exists an e > 0 such that the system

(11)
2 Ax Br(B’x + u) + eO(v),

x(O) 0

is LP-stablefor all <_ p <_
Proof. Assume that cr (o" O’m)t. Let 0 < a < b < ec, K > 0 be constants and

ri IR [a, b], m, be measurable functions so that the components ri of
satisfy (i)-(iv) in Definition 2 with the respective ri ’s. We may assume that K is large enough
such that K > L. Let

r def min lim inf tri ()l.
i=1 I1

Then F > 0. Let e > 0 satisfy

(12) e <

where ?, is the L-gain of the initialized linear control system

(13)
(A BB’)y + u,

y(0) 0.
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By (12) there exists a 6 (0, 1/2] such that

(1 26)1’
g,/-lln

Let u 6 LP([0, o), ]m), /3 Lt’([0, Cx), k). Let y be the solution of

(14)
(A BB’)y + eO(v),

y(O) O.

Let x be the solution of (11) corresponding to u, v and let z x y. Then z satisfies

(15)
Az Bcr(B’z + u + B’y) + BBry,

z(O) o.

Let u + B’y and fi Bty. Then we get

(16)
(1 26)F

Now (15) can be written as

Az B (cr(Btz + ) )(17)
z(0) 0.

(We have brought the problem to one of a "matched uncertainty" type, in robust control terms,
if we think of fi as representing a source of uncertainty.)

]nLet (t)= B’z(t)+ ?t(t). For each < p < oo, consider the function Vo, p IR
given by

Vo, p(X) Ilxll p+l

p+l

Along the trajectories of (17), we have

--IIz(t)llP-i’(t)[r ((t)) O(t)] -!-Ilz(t)llP-’(t’(t)[r ((t)) (t)]
Since K is an S-bound for cr and considering (16), we have the following decay estimate"

(18)

f’O,p(Z(t)) < -]lz(t)llP-l’(t) (or ((t)) fi(t))

+(K+ (1- 26)1’) IIz(t)ll p- Ilfi(t)ll.

We next need to bound the first term in the right-hand side of (18). For that purpose, we will
partition [0, c) into two subsets. By the definition of 1’, there is some M1 > 1 so that

min inf Itri()l > (1-6)I’.
i--1 II_>M1

The first subset consists of those for which II’ (t)II M1V/-. For such t, trivially,

(19) ’(t) (or ((t)) (t)) >_ ’(t)o- ((t)) Ml/-ll(t)ll.
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Next we consider those for which [[’(t)ll > M1V/-. First we note some general facts about
any vector 6 ]m for which

(20) I111 > MI/-.

If we pick i0 so that ]iol maxi=l m{lil}, then Ii0l > M1, and therefore, by the choice of
M, Io’i0(io) > (1 8)I". We conclude that if satisfies (20) then

I111to() ioO-io(io) -- (1- s)r,

or equivalently

(1 -s)r

From this and (16) we have if I[(t)l[ > M1V/-,

(21)

’(t) (er ((t)) fi(t)) > ’(t)r ((t)) II’(t)ll IlO(t)ll

>_ ’(t)cr ((t))
/mllll’ ’(t)cr ((t))
(1 -)r

( 1 2) ’(t)a ((t))

_
1-8

’(t)r ((t)).
1-8

Note also that < for 0 < 6 < 1/2. Combining (19) and (21) we have a common
estimate valid for all > 0:

’(t) (r ((t)) fi(t)) >

Using this and (18) we get

(22)

(ZO, p(Z(t)) <_ -[[z(t)llP-l’(t) ((t))
1-8

/llz(t)ll p-1 K / II(t)]l 4- M14rll(t)ll

Let r diag(rl rm) with r() diag(r(l) 75m(m)) for 6 ]1m. Then
aI < r() < bI for all 6 m. We have for any 6 m,

(23)

v() r()11 Ii (i)i O’i (i)l 2

i=1

< K /2 (O’i (bi))2 <
i=1

Now we rewrite (17) in the form

(24)
,(t)z + B [r ((t)) (t) cr (’(t)) r ((t)) fi(t) + fi(t)],

z(0) 0,
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where (t) A Br ((t))B’. Then , satisfies the conditions of Corollary 1 below.
Therefore, for each < p < cxz, there exist a differentiable function Vl,p and positive real
numbers ap, bp, and Cp such that

(P1) apllxll p < Vl,p(X bpllxll p,
(P2) IlDVl,p(X)ll < CpllXll p-l,
(P3) DVl,p(x)A(t)x <-Ilxll p,

for all x 6 R" and > 0. (Note that the constants ap, bp, Cp depend only on A, B, a, b.)
Moreover Vl,p can be chosen so that

(P4) lim SUpp__,l+ Cp Cl < xz, and the limit VI,1 (x) limpl+ Vl,p(X) exists for all
X ]n.

Using (23) and (24), we get, for < p < ec,

(25)

dVl,p (Z(t))
dt

-IIz(t)ll p + cpllnllllz(t)llp- (ll(t)ll + bllfi(t)ll)

4-Cpllnllllz(t)ll p-1 {llv ((t))(t) -cr ((t))II}

< -IIz(t)ll p 4- Cpllnllllz(t)ll p-1 (]l(t)ll 4- bllfi(t)ll)

4-cpKIInllllz(t)llP-l’(t)tr ((t))

For 1 < p < cxz, let

(26) )p
KIInllcp(1 ,)

(Observe that this constant does not depend on the particular u and v being considered, it
depends only on the system and on p.) Finally, consider, for each < p < cxz, the following
function:

(27) Vp p Vo,p + Vl,p,

where p is given in (26). Using (22), (25), and the fact that b < K, for 1 < p < cxz, we have
along trajectories of (17),

(28)
dVp (z(t))

< _llz(t)llP / xpllz(t)llP_l(ll{t(t)l 4- II(t)ll)
dt

where

Xp p max {1 + K-t

For any > 0, integrating (28) from zero to t, we have

Vp (z(t)) + Ilz(s)llPds tCp Ilz(s)llP-l(ll(s)ll 4- II(s)ll)ds.

When p 1, this inequality is also true as an easy consequence of the Lebesgue dominated
convergence theorem (applied to a sequence {pJ }jl decreasing to 1). Thus the inequality is
true for all < p < o.

Applying H61der’s inequality to f IIz(s)llp-l(ll(s)ll / II(s)ll)ds, we conclude that for
alll <p<cxzandt>0,

(29) p-1Wp (z(t)) + Ilzll p < pllzll (llll + IIllp)LP[O,t] LP[O,t]
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Since Vp > O, we get that z Lp ([0, o), ]n) and

(30) Ilzll < Cp(llllLp + I111.).

Now sincez=x-y,=u+ B y, B’y, we have

, _< B Y I1 _< eKVp B v ,
_< Ilu / K’p n v ,

where yp is the LP-gain of (13). Combining this with (30) we have

IIxlIL _< pllUllL / eKyp(1 + 2cpllnll)llvllLe

This finishes the proof of the lemma, and hence our main theorem, for the case when 1 <

We now prove the lemma for p o. For this, we need to show that system (11) has the
uniform bounded input bounded state property, i.e., there exists a finite constant M such that

IIxlIL <_ M(IlulI / IIVlIL) for all u L([0, o), ]Rm) and v L([0, c), IRk). Letting
p 2, from (28) we have

dV2 (z(t))
(31)

dt
_< -IIz(t)ll (llz(t)ll- c2(llllLo / IIIIL))

Let/ IIIIL / IIIIL, Thus, f’2 is negative outside the ball of radius c2/ centered at the
origin. It follows that

v2 (z(t)) < sup v2() < +

First assume that 1. Then we have

alz(t)ll < V (z(t)) < + bg
3

which implies that

If/ > 1, we have

We then get that

Let

IlZllL <-- { )2tc23 3a2+3b2tc22 }1/2
;L2Jlz(t) 113

3
< V2 (z(t)) < ( + b;K22) [3

IIZIIL <-- { 223 +3b2/c22)2 }1/3
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and

We conclude that

Now the proof of Lemma 2 is complete. q

3.3. Proof of the output feedback theorem. We now provide a proof of Theorem 3.
We will show a somewhat stronger statement, namely, that the state trajectory x also satisfies
an estimate as required. The proof will be the usual Luenberger-observer construction, but a
bit of care has to be taken because of the nonlinearities.

Asymptotic observability means that there is some n x r matrix L such that A + LE is
Hurwitz. Let F be as in Theorem 2. Let e x x2. Then (xl, e)’ satisfies

X’l Ax1 -k- Bcr(Fx Fe +/gl),

k (A + LE)e + B (cr(Fx Fe + Ul) --cr(Fxl Fe)) + Lu2.

Let cr(FXl Fe + u) -tr(FXl Fe). Since II(t)ll Kllu(t)l] (here K is a
Lipschitz constant for or) and A + LE is Hurwitz,...we know that e is in LP([0, cxz), Nn) and

Ilell _< M(Ilu I1, / Ilu2ll) for some constant M > 0. Then the conclusion follows from
Theorem 2 applied to the Xl-SUbsystem.

Note that the conclusion of this theorem can be restated in terms of the finite-gain stability
of a standard systems interconnection

Yl P(u + Y2),

Y2 C(u2 + Yl),

where P denotes the input/output behavior of the original system E and C is the input/output
behavior of the controller with state space x2 and output y2.

3.4. Operator stability among different norms. We can actually prove a result
stronger than that stated in Theorem 2, namely, that the input-to-state operator (u, v) x
from LP([0, OO), ]1m) X LP([0, OO), ]1k) to LP([0, OQ), ]1n) is a bounded operator from
LP([0, ), m) LP([0, o), k) to Lq([0, oe), n), for any q _> p.

Remark 5. From (29), (30) we get that, for u LP([0, cx), m), v 6 LP([0, o), k),
andt >_ 0,

-1/pthen, Ilzll _< C (1111 / I111) with C Xpap Therefore we obtain for q > p,

(32) Ilzllq IlzllqLPllzllPt, C-Pcff(lltllL, + II]lt,)q

From this one can easily deduce that for any q > p the solution x of (11) satisfies

Ilxllq Mp,q(llull +
for some constants Mp,q > O. The same results then hold for the original system in The-
orem 2, as is clear from the reduction to (11). That is, for any u 6 LP([0, x)), m), V

Lp ([0, o), k), the solution x of (5) satisfies a similar inequality.



1204 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

3.5. A remark on robustness of a linear feedback. It is worth pointing out that the
same method used to prove Lemma 2 allows us to establish the next proposition, which is a
result regarding time-varying multiplicative uncertainties on a linear feedback law u -B’x.
For that, we need the following lemma.

LEMMA 3. Fix two positive real numbers c, d. Let A be an n n skew-symmetric matrix,
let B be an n m matrix, and assume that the pair (A, B) is controllable (or, equivalently,
that A BB’ is Hurwitz). Then there is a symmetric positive definite matrix P so that

(33) P(A BDB’) + (A’ BD’B’)P < -I,

for all those m m matrices D so that D + D’ > cl and IID d.

Proof. Since (A, B) is controllable, the same is true for (A, rB) for any r > 0; thus
A-rBB’ is Hurwitz for any r > 0. Pick P1 > 0sothat Pl(A-cBB’)+(A’-cBB’)P1 -21.
We will choose P of the form P1 +/I for a suitable/. Note that

2x’PI(A BDB’)x -21lxll 4- 2x’P1B(cI D)B’x,

where the last term has norm bounded above by C IIxll IIB’xll for some constant C which
depends on c and d. On the other hand,

26x’(A- BDB’)x -2x’BDB’x < -cllB’xll
Thus 2x’P(A- BDB’)x < -211xll + CIIxlllln’xll- cllB’xll2 and picking/ large enough
guarantees that this quadratic form is always less than -IIx 2.

COROLLARY 1. Let A and B be as in Lemma 3. Let c, d > 0 and A(t) A BD(t)B’,
where D(t) is any measurable m x m matrix such that D(t) + D’(t) > cI, for almost all
in [0, cx), and sup{llD(t)ll [0, cx:)} < d. Then for each < p < <x, there exist a

differentiablefunction Vp andpositive real numbers ap, bp, and Cp such that
(P0) Vp, ap, bp, Cp depend only on A, B, c, d;

andfor all x Nn, [0, o),
(P1) apllxll p <_ Vp(x) <_ bpllxllP;
(P2) IIOVp(x)ll <_ cpllxllP-1;
(P3) DVp(x)(t)x <-Ilxll p.
Moreover, we may choose Vp so that
(P4) limsupp__>l+ Cp Cl < x, and the limit Vl(X) "= limpl+ Vp(x) exists for all

x 11n.
Proof. Take Vp(x) Otp(x’Px)p/2, where Cp > 0 is a proper constant and P is chosen

as in Lemma 3. [3

As a direct application of Corollary 1, we get Corollary 2.
COROLLARY 2. Let A be an n x n skew-symmetric matrix and B be an n m matrix.

Assume that A BB’ is Hurwitz. Let D(t) be a measurable m x m matrix with bounded
entries. Assume also that there exists a constant a > 0 such that D(t) + D’(t) > aI for
almost all in [0, x). Then the initialized system

() (t)x q-u,

x(O) O,

where u LP([0, o), n) and (t) "= A BD(t)B’, is LP-stablefor <_ p <_ cx, and the
LP-gain depends only on p, a, A, B, and M

Proof. Let Vp be a function satisfying Conditions (P0)-(P3) in Corollary 1 with respect
to *. Along the trajectories of (;), we have

(/p(X(t)) <_ -IIx(t)ll p + cpllx(t)llp-l llu(t)ll

for some Cp > 0. The conclusion follows after applying Htilder’s inequality.
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4. Comparison with linear gains. From the proof of Lemma 2, we can also obtain
explicit bounds for the LP-gain for (11). For simplicity, we deal only with the case when
0 0 and we will assume that each component ri of cr satisfies a stronger estimate:

Yt I1, Icri(t)- ait[ <_ Ktri(t),

where ai > 0 are some constants. Of course this implies that (&ri(t)/dt) It=0 ai. Specif-
ically, we will compare these bounds with the LP-gain of the system that is obtained by
linearizing (11 ):

2 x BDu,
(34)

x(0) 0,

where A A BDB’ with D diag(al am). (Note that A is Hurwitz.) For the cases
p 1, 2 we have the following.

COROLLARY 3. Let A, B be as in Lemma 2 and cr be as above. Let G1 and G2 be,
respectively, the L 1_ and L2-gains ofthe system

k Ax Br(B’x + u),
(35)

x(0) 0.

Let ?’1, ?’2 be, respectively, the L 1_ and L2-gains of (34) and let d min{al am }. Then
we have

1. G1 < (- + 1)?’1,
2. G2 < 2 ’/ (K2 + K)?’2

(In the literature, ?’2 is called the "H-norm" of (34) and is usually denoted by Wll, where
W(s) is the transfer matrix for system (34).)

Proof. For each u Lp ([0, x), Nm), let x be the solution of (35) corresponding to u.
Let 2 B’x + u.

For the case p 1, consider the derivative of V IIx 2/2 along the trajectories of (35).
We get

"(/ (x) -2’r (2) + u’r (2)

<_ -2’r(2) + gllull

Integrating the above inequality from zero to cxz, we obtain

(36) 2’(s)r (2(s)) ds <_ KllulIL.

Let

v(t) -2(t) + D-let (2(t)) + u(t).

Then, we have
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Now (35) can be written as

Jc x- BDv(t),

x(O) O.

KBy the definition of ’1 we have Ilxll _< ’llollc _< (7- + 1)’lllull. Therefore

and Conclusion is then proved.
Now we show Conclusion 2. Since is Hurwitz, we take

c[Ixll
V2(x) + x’Px,

3

where c 2KII PBII and P is the positive definite symmetric matrix satisfying

(37) /’P + P, =-I.

Then, rewriting (35) as

c x + B (D, cr()- Du)

and proceeding similarly to the proof of Lemma 2, we have

)’2(X) -cllxll’r() / cllxllu’r()

-Ilxll 2 / 2x’eB (DYe -tr(Y) Du)

_< -Ilxll 2 / 2(11011 / K2) Ilenll Ilxll Ilull

From this we can get

(38) G2 _< 2(IIDII 4- K2)IIPBII <_ 2(K2 q- K)IIPBII.

Next we want to compare PB with ’2. First, let us compare PBD1/2 with 2, where 2
is the L2-gain of

Jc x + BDI/2u,
(39)

x(0) 0.

Notice that < IID-1/II,2. We now consider the Hankel norm IIWIIhanke for system (39).
Note that the matrix P is the observability Gramian for (39) (the output is just the state in
our case). The controllability Gramian for system (39) is defined to be the symmetric matrix
Q > 0 which satisfies

(40) Q + Q’ + BOB’= O.

We know that the Hankel norm for (39) is equal to

(41) ]]Wllhankel--- ()max(P Q)) 1/2

where ,max(’) denotes the largest eigenvalue, cf. [1 ]. We also know that the Ha-norm 2 for
(39) is related to the Hankel norm by the following inequalities:

(42) ’2 _< (2n + 1)][Wllhankel < (2n + 1)2.
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Now in our case, since ft A BDB’ and ’ -A BDB’, the controllability Gramian
Q is equal to I/2. Therefore the Hankel norm for (39) is just

Wllhanke (,max(e/2))l/2

Since P satisfies

(A’- BDB’)P + P(A BDB’) + I PA AP BDB’P PBDB’-4- I --O,

multiplying both sides by P on the right, we get

(43) PAP APP BDB’PP PBDB’P -t- P --O.

Now taking trace to both sides of (43), we get that

IIPBD/2112F Tr(P/2).

On the other hand we know that Tr(P/2) is equal to the sum of all the eigenvalues of
P/2. Therefore Tr(P/2) < n.max(P/2). Finally we get [IPBII < 11D-1/21111PBD1/21[ <

/- D-1/211a /2 D-l,-.max(P/2) < /-11 112 _< /-ffllO- 117’2. Thus

G2 < 2--(K2 + K)y2,

and this completes the proof.
Remark 6. The dimension of the state space does not appear in the bound of the estimate

in Conclusion 1 of Corollary 3. We suspect also that the estimate for G2 should be independent
of the dimension of the state space.

5. Nonzero initial states. We now turn to nonzero initial states. We start with an easy
observation.

Remark 7. Consider systems as in Theorem 2, but without controls, that is, any system
(S) given by k Ax + Ba(Fx), where A, B, a are as in Theorem 2 and F is chosen as in its
proof. It is well known that the origin is globally asymptotically stable, assuming for instance
controllability of the matrix pair (A, B). It is interesting to see that this fact also can be shown
as a conquence of our arguments. From the proof of Theorem 2, it is enough to show that the
system (S) k Ax Ba(B’x), with A skew-symmetric and (A, B) controllable, is globally
asymptotically stable with res.p.ect to the origin. But this follows trivially from (28), since we
have along the trajectories of (S) that d V2 (x (t))/dt < -Ilx (t)II 2. Thus V2 is a strict Lyapunov
function for this system without controls.

The previous remark suggests the study of relationships between LP-stability and global
asymptotic stability of the origin. We prove below that, even for nonlinear feedback laws,
LP-stability for finite p implies asymptotic stability.

5.1. Relations between state-space stability and L’-stability. We consider initialized
control systems of the type (1). If this system is LP-stable for some p [1, o) and if, in
addition, f satisfies some growth or regularity assumptions, we are able to draw conclusions
regarding the asymptotic behavior of the solutions of

(44) ./= f(x, 0).

We next define the various altemative properties of f under which we will be able to obtain
several such conclusions:
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(Hi,p) there exist ct 6 [0, p], 3 > 0, K1, K2 >_ 0, such that for all x 6 ]n with

IIx and for all u 6 Nm we have

IIf(x, u)ll _< ga(llxll / Ilull) / g2(llxll / Ilull);

(H2,p) there exist ot 6 [0, p], K1, K2 >_ 0, such that for all (x, u) 6 Nn m we have

IIf(x, u)ll _< g(llxll / Ilull) / g2(llxll / Ilull);

(H3) the function f is differentiable at (0, 0) with A de_.f Dxf(0, 0) and B de_____f Du f (0, 0).
Then we have the following lemma.
LEMMA 4. Let f n m

__
]n be a locally Lipschitz function. Assume that the

system

(45) 2 f (x, u), x(O) 0

is LP-stable for some p [1, oo) with LP-gain Gp. For each u LP([0, oo), ]Rm), let xu
denote the corresponding solution of (45). We can make thefollowing conclusions.

(1) If f satisfies (Hi,p), then, for each u, limt--,ooXu(t) O.
(2) If f satisfies (H,p), then there exists a constant C > 0 so that, for each u.

(46) IlxullL < C max (llullL, [[UIILpP/(P/I-)).
(3) If f satisfies (H3), then the linearized system

2 Ax + Bu, x(O) =O

is LP-stable with LP-gain ,p <_ ap (so, in this case, if (A, B) is controllable, then
A must be Hurwitz and the system (44) is locally exponentially stable).

Note that if system (45) is LP-stable, then f (0, 0) 0.

Proof. In what follows we write x, simply as x, when the control is clear from the context.
(1) Assume that the conclusion is not true for some u 6 LP([0, cx), Item). Then there

exists 31 > 0 so that lim suPt__, Ilx(t)ll > 231. Without loss of generality, we may assume
that 31 _< min(1, 3).

Take e > 0 and fix a time To > 0 so that

Ilulltro, _< , Ilxlltr0’, _< .
Since lim inft_-, x(t) 0, there exist T, T > To such that

(a) - < IIx(t)ll < ,fort e [T Tel"
(b) IIx(Z)- X(Zl)ll _>

Then using (Hi,p) and applying H61der’s inequality, we obtain

31 < Ilx(Z2) X(Zl)ll _< Ilf(x(s), u(s))llds
2

(47) < 2Kle(T2 T)(p-l/p + 2K2e(T2 T1)(p-/p,

(48) (T- T1) _< IIx(t)llPdt <_ e p.

Using (47) and (48), we get

31 < 2
K1 K2 p

-2 +
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Since e is arbitrary, we obtain a contradiction.
(2) For each T > 0, let/3r suPtt0,T [[x(t)[[ and fix an interval IT1, T2] in [0, T] such

that
(a) < Ilx(t)ll </T, fort 6 [T1, T2];
(b) IIx(T2) x(T1)ll .

Since (H2,p) holds, we obtain, using the LP-stability of (45) and H61der’s inequality, that

(49) ---T- < C1(T2- T1)(P-1)/PIIuIILp + C2(T2- Zl)(P-=)/Pllullp
2

for appropriate constants C1, C2, and

(5O) (T2- T1) < C3[[ul[ pLP

for some constant C3 > 0. From (49) and (50) we can easily conclude

p/(p+l-ot)(51) /3T < Cmax Ilull,,

where C > 0 is a constant independent of T. Since T is arbitrary, (46) holds.
(3) For each control u and e 0, let x be the trajectory of (45) corresponding to eu.

def
Then it is easy to see that z(t) converges, for each as e --+ 0, to the solution z(t) of

Az + Bu, z(O) =O.

We have z Gp u Lp. From this we can prove that z Gp u , which implies
that yp < Gp; cf. also 18].

Remark 8. One can notice that the finiteness of Gp was not used in the proofof Statement
(1). Only the fact that inputs in LP produce state trajectories in Lp is used.

If we assume reachability conditions on (45), together with LP-stability of the system
for some p 6 [1, cx) and a hypothesis as in Lemma 4, we can obtain information on the
asymptotic stability of system (45). We will focus on a special class of systems described by
(45) and our results are contained in the next lemma.

LEMMA 5. Let A be an n x n matrix, B be an n x m matrix, cr be an Im-valued S-function,
and f be a locally Lipschitzfunctionfrom ]R to ]Rm. We assume that (A, B) is controllable.
Consider the system ofdifferential equations

(52) Ax + Br(f(x))

and the control system

Jc Ax + Bet(f(x)+ u),
(53)

x(0) 0.

We can make thefollowing conclusions.
(i) Ifsystem (53) is LP-stablefor some p [1, cx), then system (52) is locally asymp-

totically stable with respect to the origin;
(ii) If the reachable setfrom zero of(53) is equal to n and ifsystem (53) is LP-stable

for some p [1, xz), then system (52) is globally asymptotically stable with respect to the
origin.
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Proof. We first show (i). Note that the system (53) satisfies (He,p) (with 0). Fix a
u E Lp ([0, ), ]m). Let Xu be the solution of (53) corresponding to u. From Lemma 4 we
know that Xu (t) -- 0 as cx.

To prove stability, we need some elementary reachability results for linear systems. By
our assumption we know that the system

(54) k Ax + Bu

is controllable. Any point x0 E n can be reached from zero by trajectories of (54) at time 1.
Moreoverwe can choose a Uxo on [0, that steers zero to xo and satisfies Uxo to, _< C IIx0 II,
where C > 0 is a constant depending on A, B (cf., e.g., [13]). By a measurable selection
it is also true that there is a measurable control v that steers zero to x0 for the system (S)
Jc Ax + Bet(v), provided that x0 is small enough. Moreover [[wllzt0,1l can be made small
if Ilx01l is small. So if we letu v(t) f(x(t)) on [0, 1], where x is the solution of (S), then
u steers zero to x0 for (S) at time 1. Let U be an open neighborhood of 0. For each 3 > 0,
let 0(3) > 0 be small enough such that, for each x0 with Ilxoll _< 0(), there exists a Uxo that
steers zero to x0 for (53) with Iluxollt0, < ,s. If x is the solution of (52) starting at x0, and
if we let u(t) Uxo(t) on [0, 1] and u(t) 0 on (1, ), then the solution Xu of (53) satisfies
Xu(t) x(t 1) on [1, x). By (46) we can take a 3 > 0 small enough such that for any x0
with Ilxoll _< 0(), the solution x of (52) starting at x0 stays in U. So system (52) is locally
stable.

We next show (ii). Local stability follows as in (i). To prove global attraction, note
that the reachability assumption implies that any trajectory x of (52) can be seen as a part
of a trajectory of (53) corresponding to a control in Lp. Now Lemma 4 provides that
x(t) --+ O. [3

5.2. Dissipation inequality and input-to-state stability. Next we give a slightly differ-
ent proof of Theorem 2, which results in a weaker statement (we now allow e to depend on p)
but which is somewhat simpler. Moreover, it results in a simple dissipation-type inequality,
from which conclusions about nonzero initial states will be evident. We will only sketch the
steps, as they parallel those in the previous proofs.

Assume that A is skew-symmetric and A BB’ is Hurwitz. Fix a 1 <_ p < first. Let
r, a, b, K, V0,p, Vl,p be as in the proof of Lemma 2. Let

,p--- KIInllcp,
1

ep
2K)p

Consider the system

(55) Jc Ax Br(B’x + u) + epO(v),

where the initial states are now arbitrary. Write Yc(t) B’x(t) + u(t).
Along the trajectories of (55), we have

9O,p(X(t)) -]lx(t)l]P-lYc’ (t)cr (.(t))

-+-Ilx(t)[[ p-1 (epX’(t)O (v(t)) + u’(t)cr (.(t)))
<_ --[[x(t)llP-l’(t)r ((t))

(56) +Kllx(t)llP-l llu(t)ll -+- Kepllx(t)ll p.
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(Compare this with (22).) Similar to (25) we can get (for p > 1)

Ql,p(X(t)) <_ -IIx(t)ll p + KcpllBII IIx(t)llP-12’(t)r (2(t))

(57) + Cp gllx(t)ll p-1 (llnll Ilu(t)ll + epllV(t)ll)

Again letting Vp(x) i.p go,p(X) -t- gl,p(X), we obtain

rp(X(t)) <_ --(1 g)pep)[Ix(t)l[ p + IIx(t)ll p-1 ((g + 1);kpl[U(t)[ -t-cpgepllv(t)ll)

--llx(t)ll p + IIx(t)ll p- ((g + 1).pllU(t)ll + cpgepllV(t)ll)

Let

Thus, for p > 1,

Xp max{(K + 1)1.p, cpKep}.

9p(X(t)) --llx(t)ll p + xpllx(t)llP-(llu(t)ll + IIv(t)ll)(58)

1211

/zP-lp <_ P- lolp/(p_l)#p nt_
p potP

Let

P ](p-1)/pOtp--
4(p-1)Xp

Then (58) can be written as

1 KpZp(X(t)) < ---llx(t)[I p + pcg-p(llu(t)l + ]lv(t)ll) p

4pSo if we let l?p 4Vp, rp )-g, we finally conclude, along all solutions of (55),

(59) Vp(x(t)) <_ -IIx(t)ll p + rp(llu(t)ll -t- Ilv(t)[I) p

This is sometimes called a dissipation inequality; see [7].
Take in particular p 2 and write V V2. The estimate (59) shows that V(x(t)) must

decrease if IIx(t)ll is larger than /-rs times the input magnitude. Thus, irrespective of the
initial state, the state trajectory is ultimately bounded, assuming that the inputs u and v are
bounded, and this asymptotic bound depends on an asymptotic bound on u and v. One way
to summarize this conclusion is by means of the estimate

(60) IIx(t)ll (llx(0)ll, t) -t- g (ll(u, v)lloo[0,t])
valid for all x (0), all > 0, and all essentially bounded u, v, where F is a function of class
K and/3 is a class-KL function (that is,/3 N_>o N>_o N>_0 is so that for each fixed

Arguing as in the proof of Lemma 2, we see that this provides LP-stability provided that
x(0) 0. But we also note in this case that it is possible to rewrite (58) in a "dissipation
inequality" form, as follows. First, by Young’s inequality, we have for any c,/z, v > 0 and
p>l,
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> 0, fl(., t) is a class-K function, and for each fixed s > 0, fl(s, .) is decreasing to zero as
c). This is the notion oflSS stability discussed in, e.g., [11, 10, 17, 15]; equation (60)

is a consequence of (59), which says that V is a Lyapunov ISS function. In fact, in our case
one can say more about the function ?’; namely, it can be taken to be linear. Indeed, from the
proof in [11, p. 441] one can take any ?’ > 0 o 2 o or4, where Or4(/) /-l and where the
oti’s are class-K functions, so that

l(llxll) V(x) =(llxll)

for all x n. Here we can choose or2 CCl, for some c > 1, where Cl is of the form
or(l) all2 W a213 and is thus a convex function. Since for any increasing convex function ct

and c > 1, and any d > 0, c-l(c(dl)) <_ cdl for all I, this gives a linear , as claimed.

6. More general input nonlinearities. Now we consider a broader class of input non-
linearities, allowing unbounded functions as well. The main result will be extended to this
case.

DEFINITION 4. We call E , an S-function if it can be written as E(t)
ottg(t) + or(t), where

ot >_ 0 is a constant,
g ---> [a, b] is measurable and a, b are strictly positive real numbers,
cr 1 ---> is an S-function.

We say that E (El }m)’ is an m-valued S-function if each E is an S-function. As
before if (1 m)’ Im, then E() (EI(I) ’m(m))’.

With this definition we have the following generalization of Theorem 1.
THEOREM 4. Let A, B be n x n, n x rn matrices, respectively, and E be an m-valued

S-function. Assume that A is neutrally stable. Then there exists an rn x n matrix F such that
the system

Ax + BE(Fx + u),
(61)

x (0) 0

is Le-stablefor all < p < o.

Proof. As in the proof of Theorem 2, we can assume without loss of generality that A is
skew-symmetric and (A, B) is controllable.

Assume that E (’1 "]m)’ with ,i(t) Otitgi(t) W cri(t). Let cr (o" tTm)
and G diag(ctlgl Otmgm) with G() diag(clgl(l) Olmgm(m)) for m.
Then E(:) G() + tr().

The ci’s split into two sets, A1 {oti, ci > 0} and A2 {cti, 0i 0}. We can assume
without loss of generality that

A {o/1 Or} and A2 {Ctr+l Ctm}, r < m.

Therefore system (61) becomes

c=Ax+B

o191

0 0

,Oo

Or gr
0 0

(Fx + u) + Btr(Fx + u).

I) ()Fl u, cr and let G diag(ctlgl Otrgr) withWrite B (Ba, B2), F F2 u
u2 :

GI() diag(ctlgl(l) Ctrgr(r)) for 6 r. The sizes of the matrices B1, B2, F1, F2
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are, respectively, n x r, n x (m r), r x n, (m r) x n. As for u l, U2, they are, respectively,
elements of ]r and ]1m-r The S-functions cr 1, cr 2 are, respectively, Ir- and Im-r-valued.
We rewrite (61) as

Jc Ax + BGI(Flx + Ul)(FlX + Ul)

(62) + B cr F1x -3r- /’/1) + B2cr 2 F2x -Jr- b/2),
x(0) o.

Let R(A, B1) ]1rn ]1n be the reachability matrix of (A, B1). (Here and below we will
identify matrices with the corresponding linear maps.)

Let D ImR(A, B1) and H D+/-. We have D H n. Clearly the subspace D
is invariant under A and Im(B1)

_
D. Since A is skew-symmetric, the subspace H is also

invariant under A. So there exists an orthogonal n x n matrix U such that

(63) UAU, ( AI 0 )O A2

where A1 and A2 are skew-symmetric and are restrictions of A to G and H, respectively.
So, up to an orthonormal change of basis, we can assume that A is already of the form (63).
According to this decomposition, D Im R(A, B1). Let s dim D rank R(A, B1).
Consider now

X2

F1 (Fll, F12),

Bll)B1 B12

F2 (F, F).

B21)B2 B22

Here, Xl E ]1 X2 E n-s and the sizes of Bll, B12, B21, B22 and Fll, F12, F21, F22 are,
respectively, s x r, (n- s) x r, s x (m- r), (n- s) x (m- r)and r x s, r x (n- s), (m-
r) xs,(m-r) x (n-s).

Since ImB1 C D, we have B12 0. Now system (62) becomes

kl AlXl d" BllGI(FllXl q’- F12x2 - Ul)(FllXl + F12x2 -+- Ul)
+ BllCr(FllXl + F12x2 "+" Ul) +" Bzlo’Z(F21xl "Jr F22x2 d" u2),

J2 A2x2 + B22t72(F21xl "k- F22x2 q-" U2)

Choose now F12 F21 0, F11 Btl, and F22 B2. We obtain

(--n’ -[-- u )u1 (al nllal(-ntllX1-[-ul)nll)X1-[- nllal 1x1
2-k-BllCr (-BllXl q- Ul) -b Bg.cr (-B22x2 + u),

Jc2 A2x2 + Br2(-B2x2 + u2).

In the above system, replacing or(.) by -r (-.) (still denoted by r), the system becomes

31 (al- nllal(-ntllXl -[--ul)nll)Xl q- nllal(-nllX1 -[’-Ul

2-Bll O’1 (BtllXl Ul) B21cr (B22x2

JC2 azx2- Bz2o2(B2x2- u2).

Since (A, B) is controllable, (A2, B22) is also controllable. It follows from Theorem 2 that
the x2-subsystem is LP-stable for all _< p _< cx. So there exists Cp > 0 such that [[x[[, <_

Cpllu2llt,.
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For 1 r, let di(t) cril(t)/t, if 5 O, and di(t) O, if O. Let 1()
diag(d () dr(r)). Then we can rewrite the Xl-SUbsystem as

,’ ]x+v,1 [A1 Bll(GI(-BllXl q- Ul) q- I(BllXl Ul

where

B21ty2(B2x2 u2)v BllGI( BllXl -+-Ul)b/1 - Blll(BllXl t/1)Ul-

We have

Ilvll C(llull + IIx211 + Iluzll)

for some C > 0.
If we let (t) G (-B’x (t) + u (t)) +1 (B’lX (t) u (t)), then the above equation

can be written as

.a(t) (a BlD(t)Ba)Xl(t) + v(t).

By definition of an S-function and an S-function, there exist two real numbers 61 and 62 such
that 0 < 8 < 82, and if we write D(t) diag(d (t), .-., dr(t)), then

81 <_ di(t) <_ 82

for 1 r. Since (A, B) is controllable, (A1, Bll) is controllable too. Then it follows
from Corollary 2 that

-2IlXl I1, _< CpllVllLp,
-2for some Cp > 0 depending on A1, Bll, 81, 82, and p. But we know that

[IvllL, < C(llulllL, -+-Ilu21lL, + Ilx2llL,) <_ CllulllL + C(1 -+-Cp)llu2llLp.
2 2Therefore we have IlxllL, <_ Cpllullz, for some constant Cp > O.

7. Counterexample: The nth order scalar integrator. The next result is a negative one,
and it concerns systems such as those in equation (2), except that the matrix A is not neutrally
stable but instead is assumed to have a nonsimple Jordan block for the zero eigenvalue. In
that case, we show that for any possible F which stabilizes the corresponding linear control
system

k Ax + B(Fx + u),

x(O) o,

the resulting system (Eu) is not in general LP-stable for any 1 < p < c. We first consider
the simplest case, namely the double integrator. The proof is of interest because the origin of
the corresponding system without inputs (but with the saturation) is globally asymptotically
stable. Thus the result is quite surprising. In the end we discuss the n-integrator for n > 3.

PROPOSITION 1. Let 1 < p < cx. Consider the following 2-dimensional initialized
control system:

(Sa,b) y --or (ax + by + u),
x (0) y(O) O,
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where a, b > O, tr is a scalar S-function, and inputs u belong to LP([0, ), I). Then (Sa,b)
is not LP-stable.

Proof. Up to a reparameterization of the time and a linear change of variables, it is enough
to show that the initialized control system

p -.o’(x + y + u),

x(0) y(0) 0,

where > 0, is not LP-stable. Now replacing a by a (note a is still an S-function) we
may assume that 1. Therefore all we need to show is that the system

k=y,

(S) -(x + y + u),
x (o) y(O) o

is not LP-stable. The proof is quite technical, but the idea is not difficult to understand. It is
based on the fact that the feedback u -y mes the system (S) have periodic trajectories,
with a control u whose no is propoional to that of the y-coordinate. But the x-coordinate
is the integral of y, so the ratio between the p-nos of x and u can be made to be large for
p < . (For p , one modifies the argument to reach states of large magnitude.)

Let us first fix a p in [1, ). Assume that (S) is LP-stable. Then the following holds:
there exists Cp > 0 so that, if u Lp ([0, ), ), then

(64)

where Yu is the second coordinate of (Xu, yu), the solution of (S) associated to u.
To see this, let q 2(p 1) 0 and

xylylq
Vq(X, y)

q+l

Then along the trajectory (Xu, yu) of (S) we have

9q ]yulq+2 + Xua(Xu + Yu + u)lyu]q.
q+l

1
(65) 9q + lYulq+2 < Klxullyulq

q+l

where K is an S-bound for r. From Lemma 4 we know that limt(Xu, Yu) (0, 0).
Integrating (65) from zero to and letting --+ cx, we end up with

q + 1
[Yu [q+2 < g [Xu [[Yu q.

Therefore, if p 1, we get that IlYullL1 < KIIxlIL,. If p > 1, applying H61der’s inequality,
we get

1 y0 (f0q + 1 lYuIZP <- KIIxulll lyul qp/(p-1)

Therefore,



1216 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

But q 2(p 1) 2p. Therefore

(66) IlYu I1 <- (2p 1)g IIx I1,.

Since (S) is LP-stable, Ilxull _< GpllUllLp, where Gp is the LP-gain of (S). So (64) indeed
holds.

Now we construct trajectories of (S) which contradict (64).
We consider the level sets of the following Lyapunov function:

V(x, y) y2 + G(x),

where G(x) 2f cr(s)ds.
Let Pl 2 infltl>_l Itr(t)l > 0 and define H by

0 if Ixl _< 1,
H(x)

Pl (Ixl- 1) if Ixl > 1.

We have

(67)

Note that along trajectories of

y2 + H(x) < V (x, y) < y2 + 2K Ix l.

(s) p -r(x),

V is constant.
Let us fix a constant V0 > max{ 1, 2K and let x- < 0 and x+ > 0 be such that G(x+)

G(x-) Vo. Since (S) is controllable, there exist a T1 > 0 and a u0 in LP([0, T1], I) such
that (Xuo (T), Yuo (T)) (0, /--). We can also assume that uo(t) 0 for > T1. For
> 0, consider (2o(t), 0(t)), the solution of (S") with (20(0), 0(0)) (0, qc-). Note that

V (2o(t), 0(t)) V0. Clearly this trajectory is periodic, since it lies in the closed curve
V(x) V0 and there are no equilibria there. Assume that the period is T.

Consider the sequence {u, }n= of inputs defined as follows:

uo(t) on [0, TI],

Un(t --o(t T1) on (TI, T1 + nT],
0 on (T1 -b nT, cx)

Then if (Xn, Yn) denotes the solution of (S) associated to u,,, we have for [T1, T1 + nT],

(Xn(t), yn(t)) (.0(t T1), 0(t T1)).

In this case (note that yn(t) Yuo(t) for [0, T] and yn(t) Yuo(t nT) for
[T1 + nT, z))

lUn(S)lpds luo(s)l p ds + n I0(s)lp ds,

ly2(s)l p ds lYuo(S)l p ds / n INg(s)lp ds

We conclude that

lim
IIyIILp (f I(s)lPds) 1/p

de.._.f Lp,vo.
n-o ]]UnllLp (ff [;o(s)[Pds)l/p
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According to (64), this quotient should be bounded independently of the choice of V0. We
next derive a contradiction by showing that this is not so.

Notice that for any r > 1, since )c0(t) 0(t), we have

f0 Io(s)lrds I0(s)lr-11co(s)lds.

Since V (x, y) V (x, -y), we have

(68) Io(s)lrds Io(s)lr-llco(s)lds 2 I(x)l

where I(x)l /Vo G(x) for x between x- and x+. (Note that the curve V(x) Vo can
be written as the union of the graphs of the functions y(x) +/Vo G(x). Thus we can
reparameterize the orbit in each of these two parts in terms of the variable x.)

Considering (67), we have Vo/(2K) < Ix-I, x/ <_ Vo/l / 1. Then it follows from (68)
that

fo
T

go(p-l)/2 g(o p-l)/2Io(s)lPds < 2 (x+ -x-) < 4 (Vo/Pl Af_ 1) C1 g(o p+l)/2

fo
T

fo
V/(2K)

I(s)lPds >_ 4 (No- 2Kx)p-l dx > Czg+1/2

where C1, C2 >" 0 are some constants. Finally, we get Lp, vo > CV/2 for some C > 0. But
according to (64), Lp, Vo <- Cp. Therefore, for V0 large enough we get a contradiction. So (S)
cannot be LP-stable for < p < .

We still need to establish the special case p cxz. We use again the level sets of V. Let
u on [0, To] for some To > 0 be an input such that (Xuo(To), yuo(To)) (0, 4-), for some
Vo > 0 which will be fixed below.

From (0, /-9-), follow the trajectory of

y,
(I) y /92,

on [To, To + 1], where /92 -or(-1) > 0. The trajectory (x, y) of (I), hence, reaches
/V +/92/2, +/92). Let

I/1 (V0 -+- P2)2 -+- G(V/-o q" P2/2) >- Vo + 2p2v/-VTo

Note that also V1 < V0 + C(/9- + 1) for some C > 0. Furthermore, the trajectory of (I)
can be viewed as a trajectory of (S) with u(t) -1 x(t) y(t) for To < < To + 1. Let

u -ul(To q- 1) q- Vo -+- p2/2 -+- o -+- P2 2V/O q- 3/2p2 -k 1.

Then, for To+ < _< T1, follow the trajectory (, y) of (S’) from (/-k-p2/2, /c--(0-’-/92) until
the resulting trajectory reaches (0, /) at T. This trajectory can also be considered
as a trajectory of (S) with ul(t) -(t) on (To + 1, T1]. Note that lul(t)l _< for
To+ < < T. Fix V0 such that < U < 3/-V. It is clear that on [T0, T1],
lul(t)l < Ul.

E andIf we iterate the above construction, we can build three sequences .),-o, [u,},_l,
T. }.X:o such that
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(1) gn+ ("fn "- /92)2 + G(Vn -- p2/2) > Vn + 2PZVn;
(2) U 2/Vn-1 + 3/2p2 + 1 < 3V/-Vn-1;
(3) on [Tn, Tn+], there exists an input u such that sup{lu"(t)l 6 [T, T+]} u,

and the trajectory of (S) associated to u goes from (0, x/-9-) to (0, /V,+).
Clearly limn Vn cxz and then limn__, Un cxz. Furthermore, let x- < 0 be such that
G(x2) Vn. Then Ix-I > 1/(2K)V,, for n large enough, which implies that limn Ix-I

Letttn Jn=0 be the sequence ofinputs which is equal to the concatenation of u, u u
on [0, Tn] and zero for > Tn. For n large enough, we have

(xan, y,)ll Ix-I,
tTn I1 b/n.

Since Ix/unl 1/(2K)4rn for n large enough, (S) is not L-stable. [3

For n integrators and n > 2, the proof that LP-stabilization is not possible is simpler (but
the result is far less interesting). We can argue as follows. Let tr be a scalar S-function. It
was proved in [4, 21 that, if n > 3, the n-integrator

31 --X2,

.n-1 Xn

JCn

is not globally asymptotically stabilizable by any possible linear feedback With this, it follows
from Lemma 5 that, if n > 3, the system

21 --X2,

n-1 Xn

2 -cr(Fx + u)

x(O) 0

is not LP-stable for any 1 < p < o and any row vector F.
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Abstract. For a locally Lipschitz real-valued function f on n and x, u in n our main result implies that if
x* is in Clarke’s subdifferential Of(x) "coming from the direction u" (in Chaney’s sense) such that x*(u) equals
the directional derivative ft(x; u), then Chaney’s second-order directional derivative f" (x; x*, u), when it exists,
coincides with the value at x* of the conjugate function of the Ben-Tal-Zowe second-order directional derivative,
provided that this value is finite.
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1. Introduction. Throughout this paper we consider a locally Lipschitz real-valued func-
tion f on 11n. In connection with second-order nonsmooth optimization problems, different
kinds of generalized second-order directional derivatives have been introduced, among which
are D2f(x; u, w) and f"(x; x*, u), respectively, due to Ben-Tal and Zowe [2, 3] and Chancy
[4-8] (their definitions are given in2 and 3). Since they do not always exist, one can consider
f’_’, f as in [4-8] and D2 f, D_. Our definitions for D2_, D2+ given in 3 are distinct from
those given by Penot [18] and Studniarski [24]. In their framework, some relations between
the second-order directional derivative of Ben-Tal and Zowe and the second-order epideriva-
tive of Rockafellar were recently obtained by Penot [19]. As noted in [14] our approach
has the advantage that if D:Zf D2+f at (x; u, w), then f’(x; u) exists, and our definition
degenerates to that of Ben-Tal and Zowe [3]. In the case where f is Ca, it is well known and
easy to verify that the second-order derivatives of Chancy and Ben-Tal-Zowe are given by

f"(x; x*, u) -(u, vZf(x)u),

D2f(x; u, w) -(u, V2f(x)u) + x*(w),

where x* Vf(x) (see (2.1) and (3.5)). This implies the following relationship between the
two derivatives:

(1.1) f"(x; x*, u) DZf(x; u, w) x*(w), Vw.

This relationship persists in some nonsmooth cases; for example, (1.1) is true if 8u f (x) {x*
and f"(x; x*, u) exists (see Definition 2.2 and Corollary 4.2). But (1.1) may fail to hold in
general. A simple max-function given in 6 shows that the right-hand side of (1.1) may not be
a constant function (of w); indeed it may be a (convex and) nonaffine function of w. Based on
the works of Ben-Tal and Zowe [3] the following weaker relation was established by Chancy
[5]:

(1.2) f"(x; x*, u) inf{D2f(x; u, w) x*(w) w ]n}( ])
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tDepartment of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
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for a very special class of nonsmooth functions. Here we show in Theorem 4.5 that (1.2)
holds in general provided that both sides of (1.2) exist in R. When f", D2f do not exist,
some (inequality) relationships for f_, f’_’, D2+, and D2 are also established. In addition to
the references cited above, studies of second-order directional derivatives (based on different
definitions or approach) have also been made in [10-13, 16, 20-22].

We end this section with a few standard definitions. Recall that Clarke’s generalized
upper directional derivative f(x; u) of f at x in the direction u and subdifferential Of(x) of

f at x are defined respectively [9] by

f(x; u) := lim sup -{f(y + tu) f(y)}
y--+x
tO

and

Of(x) "= {x* ]1 X*(U) <__ f(x; u) for any u Nn},

while the lower and upper Dini directional derivatives of f at x in the direction u are defined
by

D_f(x; u) :-- liminf-{f(x + tu) f(x)}
t.l,O

and

D+f(x; u) limsup {f(x + tu) f(x)}
,O -IfD_f(x; u) D+f(x; u), then the common value is denoted by f’ (x; u), i.e., the directional

derivative of f at x in the direction u. We denote the open and closed balls centered at x with
radius 3 by

B(x, 3) := {y 6 R IlY xll < } and B[x, 3] := {y I Ily xll _< },

respectively.

2. Chaney’s generalized second-order directional derivatives. To begin, let us recall
a few definitions from Chaney [5].

DEFINITION 2.1. Let u be a vector in Nn. Suppose that the sequence (Xk in N converges
to x. We say that (xk converges to x in the direction u, denoted by (xk --+u x, ifxg : x and
the sequence Ilull((xk x)/llx xll) converges to u.

DEFINITION 2.2. Let u be a vector in N Define the subset Ou f(x) of ]ln by

Ouf(X) :-- {x*: there exist sequences (xt) andx Of(xg) such that

(xg) ---u x and (x) x* }.

Thus, Ouf(X) is nonempty and Ouf(X) c_ Of(x) since the multifunction Of is upper semi-
continuous [9]; loosely speaking, O, f(X) consists of all those x* in Of(x) coming from the
direction u.

DEFINITION 2.3. Let u be a vector in Nn. Suppose that x* Ouf (X). Then f2(x; x*, u)
is defined to be the infimum ofall (extended real) numbers

lim inf {f(xk) f(x) x*(x x)}

taken over all triples ofsequences (x), (x), and (t) for which
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(a) t > Ofor each k and (x) converges to x,
(b) (0,) converges to 0 and ((x x)/t) converges to u,
(c) (x) converges to x* with x in bf(x) for each k.
Similarly, f_(x; x*, u) is defined by the supremum ofall (extended real) numbers

lim sup -,{f(x) f(x) x*(x. x)},
t;

taken over all triples of sequences (xi), (x), and (ti) for which (a), (b), and (c) all hold.
Clearly, f’_’ (x; x* u) < f+ (x, x u). Further, iff’_’ (x; x* u) f_(x; x* u), then we denote
this common value by f"(x; x*, u) and call it Chaney’s generalized second-order directional
derivative of f at x, x* in the direction u. It is easy to see that if f is a Cz-function, then

(2.1) f"(x Vf(x), u) V2-u f(x)u.
2

The following lemma will be used in 4.
LEMMA 2.4. Let x, u n and g, h" n

__
be locally Lipschitz at x. Let f g + h.

Then one has
(i) x* buf(X) ifand only if-x* bu(-f)(x). Moreover, ifx* buf(x), then

(--f)(x; --x*, u) f(x; x* u)

(ii) buf(X) bug(X) + huh(x). Equality holds if huh(x) is a singleton.
(iii) The set huh(x) contains vectors x_ and x*_ such that

x+* (u) D+h(x’, u) and x*_ (u) D_h(x; u).

(iv) if huh(x) {x*}, then h’(x; u) exists and h’(x; u) x*(u).
Proof. Part (i) follows readily from Definitions 2.2 and 2.3. For part (ii), suppose that

x* buf(X). By Definition 2.2 there exist sequences (x) and (x) such that (xk) ---u x
and x bf(xi) with (x) x*. Thus, x bg(xi) + bh(xi) by [9, Prop. 2.3.3], so

* * for each k. Since bf takesthere exist y bg(xi) and z bh(x) with y + zk x
values locally in a compact set [9], by considering a subsequence if necessary we can assume
that the sequences (y;) and (z) are convergent to some y* bg(x) and some z* bh(x),
respectively. By Definition 2.2, y* bug(X) and z* huh(x). It follows that x* y* + z* is
in bug(X) + huh(x), so the inclusion in (ii) holds. Similarly, by (i), we also have

bug(x) c_ buf(X) + bu(-h)(x) buf(X) huh(x).

Consequently,

buf(X) c_ bug(X) + huh(x) c_ buf (X) huh(x) + huh(x)

and all equalities must hold if huh(x) is a singleton. Part (iii) is taken from [13, Lem. 2.3],
and clearly (iv) follows from (iii). [3

Below we give a simple example of a convex (so semismooth 17]) function that satisfies
assumption (iv).

Example2.5. Let f: be defined by f(x)= Ixl. Then bf(0)= [-1, 1], bf(x)=
1 for x > 0, and bf(x) {- for x < 0. Hence bl f(0) and b_ f(0) {- }.
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3. Ben-Tal and Zowe’s generalized second-order directional derivatives. We begin
with the following definition extending that introduced by Ben-Tal and Zowe in [3] who
considered the case when f’(x; u) exists.

DEFINITION 3.1. The Ben-Tal and Zowe lower and upper generalized second-order di-
rectional derivatives of f at x in the directions u, w are defined, respectively, by

(3.1)

and

1D2_f(x; u, w) := lim }0f 7g{f(x + tu + t2w) f(x) tD+f(x; u)}

D+f(x; u, w) "= limsup {f(x + tu + t2w) f(x) tD_f(x; u)}.
o -If the values in (3.1) and (3.2) are equal, then the common value is simply denoted by

D2f(x; u, w). We note that it may befinite or infinite.
For all x, u Rn, it is easy to see that Df(x; u, .) is a locally Lipschitz function for

all x, u IR" (since f is locally Lipschitz), provided that this function is finite-valued. In
general, the Lipschitz constant K for f satisfies

2 2D+f(x; u, Wl) D+f(x; u, w2) + gllwl will YWl, W2 ]ln

Similar remarks for D2_ f (x’, u, .) are of course also valid. Note also that

(3.3) 2D2 f(x" u, w) < D+f(x’u w)

2(3.4) -D2_ f(x; u, w) D+(-f)(x," u, w).

Similar but different notions have appeared in the literature, e.g., in Penot 18] and Studniarski
[24]; these authors use D+f and D_f in the above definitions to replace D_f and D+f
respectively. An advantage of our adoption over the earlier approach is evidenced by the
following lemma taken from [14]. We include a proof here for the reader’s convenience (for
contrast to an earlier approach, see [24, Ex. 3.6]).

LEMMA 3.2. If D2f(x; u, w) and D2+f(x; u, w) are equal and finite, then f’(x; u)
exists.

Proof. Take a sequence (tk) $ 0 with

1 9.O2+f(x; u, w) lim -5{f (x -t- tku -t- tw) f(x) ttO_f(x; u)}.
k---oo

k

By assumption,

20- D2_f (x; u, w) D+f(x" w)

< lim inf -5{f(x at- ttu + tw) f(x) ttD+f(x; u)}
k--+c t

lim -5{f(x + tku -t- tw) f(x) tO_f(x; u)}
k---roe t

lim inf --{D_f(x; u) D+f(x; u)} < 0.
k--->o tk

Hence equality holds throughout, and consequently one must have D_f(x; u)
D+(x; u). [3
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Remark. Thus, in the situation ofLemma 3.2, one may use f’(x; u) to replace D+f(x; u)
and D_f(x" u) in Definition 3.1; that is, Definition 3.1 coincides with Ben-Tal and Zowe’s
definition in this special situation.

The following result was proved in [3] for the special case when f is strictly differentiable.
LEMMA 3.3. Let x n. If Ouf(X) {x*}, thenfor any w ]1n one has

2 ---X* 2D2 f(x’u w) x*(w) / D2 f(x; u 0) and D+f(x; u w) (w) + D+f(x’u O)

Proof. By Lebourg’s mean value theorem [9, Thm. 2.3.7], for each > 0, there exists

Ot (0, 1) and x? Of (x + tu + Ott2w) such that

x?(w) -{f(x + tu + tZw) f(x + tu)}.

Consider any sequence (tk) $ 0 and notice that x + tku + Otktw --u x; it follows that any
cluster point of (xt*) must be in Ouf(X) {x*} by Definition 2.2 and the assumption. Since

Of takes values locally in a compact set [9], we conclude that x[ -- x* as $ 0. Now the first
desired equality of this lemma follows from the definition of D2, that is,

D2_ f(x; u, w) lim inf
1
{tZx(w) -+- [f(x h- tu) f(x) tf’(x; u)]},O

X*(tO) + D2 f(x; u O)

where f’(x; u) exists by Lemma 2.4(iv). Similar considerations apply to D+. I-1
Remark. From the above lemma it is clear that if f is a C2-function, then

1 V2(3.5) D2f(x; u, w) f’(x; w) -+- -u f(x)u.

4. Conjugacy of f" to D2f. Recall from convex analysis [23] that if 4, are real-
valued functions on n, then the ("lower" and "upper") conjugate functions q. and p* are,
respectively, defined by

4.(x*) inf{4(w) -x*(w)’w n},

p*(x*) sup{(w) -x*(w) "w n}

for all x* 6 ]n. In this section, we shall show, with reasonable conditions, that if x* 6 0u f (x),
then the value of the (lower) conjugate function at x* of the function D2 f(x; u, .) lies between
f’_’(x; x*, u), f_(x; x*, u) and hence equals f"(x; x*, u) when the latter exists. Two different
sufficient conditions to ensure that this happens are given in Theorems 4.1 and 4.5. Similar
results are also discussed for DZ+f(x; u, .). The proof for Theorem 4.5 is rather lengthy; we
will construct an appropriate triple of sequences satisfying (a), (b), and (c) of Definition 2.3
for the Chaney derivative f_" (x; x*, u) from very mild assumptions of the theorem. The proof
of Theorem 4.1 is relatively easier, as an appropriate triple of sequences is at hand because of
the assumption that 0u f(x) is a singleton.

THEOREM 4.1. Let u, x n with Ouf (X) {x*}. Thenfor any w n, one has

2(4.1) f"(x" x* u) < D2 f(x" u w) x*(w) < D+f(x" u, w) x*(w) < f_(x" x* u)

Consequently,

f(x; x*, u) < inf{D2_ f (x; u, W) X*(W) W n}
(4.2)

+
// ,<sup{D f(x;u,w)-x*(w)’w6n}<f+(x;x ,u).
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Remark. Both the infimum and the supremum in (4.2) may be infinite (see Examples 6.1
and 6.2).

Proof. Consider any sequence (tk) $ 0 and take x*k Of (x + tu + t2 W). Then, as in the
2proof of Lemma 3.3, we have x + t,u + t;, w ---, x and x, -+ x thanks to the assumption

2Ouf(X) {x*}. Thus, the triple of sequences (x +tu + t;, w), (xk), (&) satisfies the properties
(a), (b), and (c) in Definition 2.3 for f2(x; x*, u). Hence,

x*f2(x; x*, u) <_ lim inf -{f(x + tu + tt w)- f(x) (tu +
k--o

k

2lim inf -{f(x + tku + t w) f(x) tkX*(U)} X*(W)
k-

k

2_< lim sup {f(x + tkU d- t tO) f(x) tkX*(tl)} X*(W)
k t

< f_(x; x*, u).

Since, by Lemma 2.4(iv), x*(u) may be replaced by f’(x; u), (4.1) is seen to hold. As (4.2)
follows immediately from (4.1), the proof is complete. [3

COROLLARY 4.2. Let x, u X and 8uf(X) {x*}. If f"(x; x*, u) exists, then so does
D2f(x; u, w) and f"(x; x*, u) D2f(x; u, w) -x*(w) D2f(x; u, O)for each w Nn.

To prepare for the proof of our main result (Theorem 4.5), we need the following technical
proposition. Part (i) is due to Ioffe [15, Prop. 1 ]; Part (ii) may be regarded as a second-order
version of (i). For convenience, we include both proofs here.

PROPOSITION 4.3. Let x, u In, and suppose that D2 f (x" u v) > O for all v in ]n
Thenfor any e, M > O, there exists T > 0 such that

(i) if the given u is zero, then

f(x) < f(x + tv) + tllvll

for any [0, T] and v B[0, M];
(ii) if the given u is nonzero, then

(4.3) f(x) < f(x + tu + t2v) tD+f(x; u) + etZllu -t- tvll 2

for any [0, T] and v B[0, M].
Proof. If the desired conclusion in (ii) is false, then there exist e0, M0 > 0, a sequence

(t) $ 0, and a sequence (v) in B [0, M0] such that

f(x) > f(x + &u + tv) &D+f(x; u) + sot[lu + &v[[ 2.

By considering a subsequence if necessary, we can assume that v v0. Hence, we have

where the equality holds because f is Lipschitzian near x. But this contradicts the assumption
that D2_ f (x’, u, v0) _> 0.
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For (i), one notes that De_ f (x’, 0, v) D_f(x," v) _> 0 for all v by the definitions and
the assumption. Further, if (i) is not true, then one has e0 > M0 > 0, a sequence (tk) $ 0, and
a sequence (Vk) in B[0, M0] such that

f(x) > f(x + tkv) + eotg w II.

Then, v # 0, so without loss of generality one can suppose that wg := wk/llwll w. Note
that rk "= t 0 and

E0 >
f(x + rw) f(x

Therefore, one has -e0 > D_f(x; w), contradicting the given assumption.
PROPOSITION 4.4. Let F n be a locally Lipschitzfunction; and suppose u O,

x are vectors in n such that
(I) D+F(x; u) O,

(II) inf{D2 F(x; u, w) w In} > O.
IfD2_ F(x’, u, w) < sforsome w n andO < s < 1/2(2+ [[ull)2, thenthere existsequences
(t) $ 0 and () in 1In with thefollowing propertiesfor each k:

2 2(1) B(x + tu + t w, t ), and so () x;
2(2) II(x + tu + t w )/tll < (2s)1/2(2 + Ilull);

(3) (x + tu + tw k)/t 0F();
(4) (F()- F(x))/t < s;
(5) (F()- F(x))/t >_ -s.

Proof. By assumptions (I), (II), applying Proposition 4.3(ii) with s and M := w[I + 1
one can find T > 0 such that

(4.4) -st2llu -t- toll z F(x + tu + t2v) F(x)

for all t [0, T] and v B[0, Ilwll + 1]. On the other hand, because of (I) and the assumption
D2_ F(x’, u, w) < s one can find a sequence (t) $ 0 such that

21/))- F(x)} < s(4.5) {F(x + tku + t

for all k. In addition, we can of course assume that

(4.6) t [0, T].

Let B := B[x + tu + tw, t]. Motivated by the Moreau-Yosida approximation [1], let k
be a minimum point of the function

y - F(y) q- IlY (x + tu + k W)II on Bk.
2t

In particular,

(4.7) 2 2F() + -II (x + tgu + t w)ll
2t

< F(x + tu + tw).

By definition of Bk, one can express k in the form

x + tu + t(w + v)
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with some v 6 B[0, 1]; it follows from (4.4) and (4.7) that

(4.8)
-stllu -t- t(w + vg)ll 2 F(g) F(x)

< F(x + tu + t2w)-F(x)--:-ll-(x / tgu + tw)ll.
2 it follows from (4.5) thatDividing by t

-llu + t(w + v)ll 2 e 2t? IIk (x + tku + tg w)ll

and so

11 (x + tu + t2w)ll (2e)1/2(1 q-Ilu + t(w + Vk)ll2) 1/2

< (2e)1/2(2 + Ilull) <

(provided that k is sufficiently large), because e < 1/2(2 + Ilull)2, Thus by deleting finitely
many terms if necessary, one can suppose that each is in the interior of B. Therefore, (2)
and (1) hold. It follows from the minimality of and results of Clarke [9, Props. 2.3.2 and
2.3.3] that

0 OF() +
w)k (X q- tku -+- t

so (3) holds. Part (4) follows clearly from (4.7) and (4.5). Finally, since the sequence (v) is
bounded, we can assume without loss of generality that it converges, say to some v0. Then,
by (I) and the Lipschitz property of F, we have

D2_ F(x’u, w + v0) _< lim inf
k---o

lim inf
k---- cx

lim inf
k---c

F(x + tu + t(w + vo)) F(x)
2

F(x + tu + t(w + v))- F(x)

F()- F(x)

By (II), it follows that -e < D2_ F(x’, u, w + v0) _< lim inf_+oo [(F(k) F(x))/t]’, thus, by
deleting finitely many terms if necessary, (5) holds.

Remark. In view of assumption (II), to may be regarded as an "approximate mini-
mum point" of D2_ f(X’U, ") on ]ln. If u 0, then as D2_ f(x’u, .) D_ f(x’, .) the true
minimum point (namely, zero) always exists; in this case, the natural choice for to is zero.
Explicitly we have the following counterpart of Proposition 4.4.

PROPOSITION 4.4*. Let F n . I be a locally Lipschitz function and x in n
such that

(II)* D_F(x; v) > Ofor all v In.
Let 0 < e with (2e) /2 < 1. Then there exist sequences (t) 4, 0 and () in R with the
following propertiesfor each k:

2(1)* e B(x, tt), so () --+ x;
2 1/2;(2)* II(x )/t _< (2e)

(3)* (x )/t 0F(t);
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(4)* (F()- F(x))/t < 0;
(5)* (F()- F(x))/t > -e.

Proof. Let M 1. By assumption (II)*, applying Proposition 4.30) one can find T > 0
such that

-211vll F(x + t2v) F(x) Yt2 [0, T], v B[0, 1].

2Take a sequence (tk) in [0, T 1/2] such that (tk) $ 0. Let , "= x + t; v, be a minimum point
of the function

y - F(y) + IlY xll/2t on B[x, t],

where each Vk B[0, 1]. Then

(4.9) F() < F(k)+ I1- xll2/2t < F(x) < F() + etllvll
2 1/2 1/2 1/2andinparticularll-xll/t < (2) I111 <_ (2) < 1, showing that is in the interior

of B[x, t2] so, as before, 0 OF(k) + ( x)/t. Thus, (1)*, (2)*, and (3)* are established.
Parts (4)* and (5)* also follow immediately from (4.9).

THEOREM 4.5. Let x, u, x* ]n satisfy thefollowing properties:
(I) x* Ouf(X) and x*(u) D+f(x; u).
(II) ct := inf{D2f(x; u, w) x*(w) w n} is a finite number

Then

f;’(x; x*, u) <_ inf{D2_f(x; u, w) x*(w) w n} f(x; x*, U).

Consequently, whenever f"(x; x*, u) exists and (I), (II) are satisfied, we have

f"(x; x*, u) inf{D2_f(x; u, w) x*(w) w e n}.

Remark 1. (I) is automatically satisfied by any x* Ouf(X) if either (a) Ouf(X) is a
singleton (see Lemma 2.4(iv)) or (b) f is semismooth (for definitions and basic properties see
[17]).

Remark 2. In the terminology ofconvex analysis reviewed at the beginning ofthis section,
the number c is the value at x* of the conjugate function of D2f(x; u, .). Thus, this theorem
implies that this value coincides with f" (x; x*, u) if the latter exists, and (I), (II) are satisfied.

Remark 3. Theorems 4.1 and 4.5 are independent; neither implies the other (see 6).
ProofofTheorem 4.5. We first consider the case when u 0. Then we define

(4.10) F "= f x* h,

where h(.) (all -xll2)/llull 2. A list of some properties of F are as follows.
(i) D+F(x; u) O.
(ii) inf{D2 F(x; u, w) w n} O.
(iii) D2 F(x; u, w) D2f(x; u, w) x*(w)
(iv) 0 6 OuF(x).
(v) F’_’(x; O, u) f’_’(x; x*, u) and F(x; O, u) f_(x; x*, u)

In fact, since Oh(x) {0}, (i) follows from (I), (iii) follows from

D2_F(x;u,w) =D2_f(x’,u,w)-D2x*(x’u, ,w)-D2h(x;u,w)
DZf(x; u, w) x*(w)
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and (iv) follows from the assumption x* 6 0u f(x) and Lemma 2.4(ii). Clearly (ii) follows
from (iii) and the definition of c. By (iv) the second-order derivatives in (v) are well de-
fined. Moreover, the sequences (xk), (x), (tk) satisfy (a), (b), and (c) in Definition 2.3 for
f’_’(x; x*, u) if and only if (x), (x; x*), (tk) satisfy the same for F"_(x; O, u) (note that, by

mX*Lemma 2.4 again, x, Of(x) if and only if x 6 0F(x)). Passing to the appropriate
limits in

1
{F(xk) F(x) 0} {f(x) f(x) x*(x x) [h(x) h(x)]},
tk

(v) is seen to hold.
Take (6rn) , 0 such that em < 1/2(2 + Ilull)2 for all m. By (ii), there exists Wm ]t

such that D2_ F (x; u, tom) < lm With any fixed m, one may apply Proposition 4.4 to the pair
(em, win) to obtain sequences (tmk)k 0 and (mk) satisfying the corresponding properties
(1)-(5) of Proposition 4.4 (with era, Wm in place of e, w); for example, (1) reads

2 2 Yk,]lmk (X -t- tmkU q- tmkWm)II < trek

which implies that

tmk
--U < tm + tm tom II.

Do this for each rn and select some km such that trekm]l tOm < n; in general one can ensure
further that (tmkm) ,, O. For Convenience we denote the sequences (tmkm)m and (mkm)m by
(rm), (r/m), respectively. Then we have, for all m, that

(1)
(2) II(x + rmU "JI- z-2mtOm r/m)/rm2 < (2em)1/2(2 A-Ilull);
(3) (x + z-mU + z-2mWm r/m)/z-m e OF(r/m);
(4) (F(r/tn)- F(x))/z-Zm <
(5) (F(r/m)- F(x))/z-2m >

Since z-mWm " O, it follows from (1), (2), and (3) that the three sequences

(r/m), (X-’z-mU-lt-z-2mtOrn--r/rn),z-m2 and(z’m)

have the properties (a), (b), and (c) in Definition 2.3 for F’__’ (x; 0, u); hence it follows from (4)
that

F(r/m)- F(x)F"_ (x, 0, u) _< lim inf _< 0,

which implies, by (v), that f2(x; x*, u) < or. Similarly, by (5) and (v), we have

F(r/m)- F(x)
0 < lim sup < F_(x;0, u),

so a < f_(x; x*, u). This proves the theorem for the case when u 0. Henceforth, we let
u 0. Then note that

D_f(x; 0) 0 and DZ_f(x; O, w) D_f(x; w)

for any w Nn. Hence, by (II), we have

ot inf{D_f(x; w)- x*(w); w 6 ]n} < 0.
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Since the function w D_f(x; w) x*(w) is positively homogeneous, the finiteness
assumption ofor implies that ot must be zero. Thus, in place of(4.10) ifone defines F := f-x*,
then it still satisfies (i)-(v) listed at the beginning of our proof (with ot 0, u 0). Take
(em) $ 0 such that (2em) 1/2 < for all m. By (ii), with any fixed m, one may apply
Proposition 4.4* to obtain sequences (tmg)k $ 0 and (,,)g satisfying (1)*-(5)* (with Ern in
place of e); then the triple of sequences (On), ((x rm)/rm2), (rm) (where /]m and rm are
defined as in the first part of the proof) satisfies properties (a), (b), and (c) of Definition 2.3
for F_ (x; 0, 0). Hence, the proof is completed as above for the case when u 0. [3

Dually, we have the following result.
THEOREM 4.6. Let x, u, x* N satisfy the properties:
(I) x* Ouf(X) and x*(u) D_f(x; u);
(II) g sup{D+f(x; u, w) x*(w) w Nn} is a finite number.

Then

f_(x" x*, u) >_ sup{D+f(x; u, w) x*(w) w e ]1n} f(x; x*,

Consequently, whenever f"(x; x*, u) exists and (I), (II)are satisfied, we have

f"(x; x*, u) sup{Df(x; u, w) x*(w) w n}.

Proof. It follows from Lemma 2.4(i) that x* Ou f (x) if and only if

-x* Ou(-f)(x) and (-f)’_’ (x; -x*, u) f_(x; x*, u).

Note also that D2_ (-f)(x’, u, w) -DZ+f (x’, u, w). Thus, replacing f and x* in Theorem
4.5 by -f and -x*, respectively, we obtain the required results. q

Combining Theorem 4.5 and Theorem 4.6, we have the following result.
THEOREM 4.7. Let x, u, x* n satisfy the properties:
(I) x* Ouf(X) and x*(u) f’(x; u);
(II) both constants ot and appearing in Theorems 4.5 and 4.6 arefinite;
(III) f"(x; x*, u) exists.

Then D2f(x; u, w) exists, and

f"(x; x*, u) D2f(x; u, w) x*(w) D2f(x; u, O)

for all w x
Proof. Combining Theorems 4.6 and 4.7 we have

(4.11)
f"(x; x*, u) inf{DZ_f (x; u, w) x*(w) w Nn}

sup{DZ+f(x; u, w) x*(w) w IR’}.

It follows that D2_ f(x; u, w) _> DZ+f(x u, w) and consequently D2f(x u, w) exists. Thus,
(4.11) implies that

f"(x; x*, u) D2f(x; u, w) x*(w),

for all w 6 ]n. [’]

5. On a special class of functions. In this section we apply the results in the preceding
one to real-valued functions f of the form f(x) Yi=l gi(hi(x)), studied in [3] and [5].
Here the real-valued functions gi and hi are as follows. It is assumed that

hi(x)
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and each hij is of class C2 on Nn. Moreover, it is assumed that each gi is of the class C2 on
a neighborhood of the set hi(n). Finally, we assume that for some x0 in Nn, g(hi(xo)) >_ 0
for each 1, 2 m. We shall henceforth keep x0 fixed.

In [3], Ben-Tal and Zowe showed that D2f(xo; u, w) exists for any u, w 6 IR and gave
the explicit formula
(5.1)

D2f(xo; u, v) - gi (hi(xo))[h’i(xo; u)]2

-I- g(hi(xo)) max{Vhij(xo) v-i- -u V2hij(xo)u j Ii(xo, u)},
i=1

where for each

Ii(xo, U)-- {j Ii(xo) Vhij(xo)" u-- max Vhij(xo). u]
jc:li(Xo)

and

li(Xo) {j hij(xo) max hij(xo)}
<j <Pi

(we emphasize that here D2f(xo; u, v) is finite thanks to (5.1)). Likewise, Chaney showed in
[5, Thm. 4.2] that for functionsofthis form, his second-order directional derivative f"(x; x*, u)
exists for each x* Ouf(X).

Let z 6 R" and z* Of(z). We recall from [9, Props. 2.3.12 and 2.3.9] that z* has the
form

(5.2)
Pi

Z* g;(hi(z)) wijVhij(z),
i=1 j=l

where for each / wij 1, wij > 0, and wij 0 if j g[ Ii (z). Similarly, we have the
following description for elements of Ou f(x).

LEMMA 5.1. Let xo Ouf(Xo). Then there exist .ij > 0, 1, 2 m, j
1, 2 Pi, such that

(1) for each i, yf.il .ij 1, )ij > O, and .ij 0 if j Ii (xo, u);
(2) X ’4m___l g(hi(xo)) --qP=l ’ijVhij (XO)"

Consequently, we have
(3) Xo(U) f’(xo, u)
Proof. By Definition 2.2 there exist sequences (Xk) u Xo and x Of(xk) with

(x) x. By (5.2) each x has the form

rn Pi

g;(hi(xk)) .i()Vhij(Xk)xk
i=1 j=l

jPi )Li(jk.) 1, i(jk.) 0, and )i(jk.) 0 if j ’ Ii(xk). By considering awhere for each i,
,,a(k)subsequence if necessary, we can assume that ,A,ij )k ij; hence,

Pi

X) g;(hi(xo)) ).ijVhij(xo),
i--1 j=l
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verifying (2). For (1), suppose ij > O. Then .i(jk.) > 0 for large k and so j li (x) for large
k. Thus, j Ii(xo) since li(x) li(xo) for large k. Hence

Ilull
hti(xo; u) lim {hi(Xk) hi(xo)}-, IIx x011

(5.3)
Ilull

lim {hij(Xk) hij(xo)} Vhij(xo)u,
k--, Ilx x011

showing that j li(xo; u). Therefore (1) holds. Finally, (5.3) also implies that YjPI ,kij
xVhij(xo)u h’i(xo;u) and hence (3) follows from (2) and the chain rule [3,
Lem. 3.1]. [q

We are now ready to provide a short proof of the following result of Chaney [5].
THEOREM 5.2. Let x Ou f(xo). Then

(5.4) f"(x0; x, u) inf{D2f(xo; u, v) x(v) v Nn}

and the common value is finite.
Proof. By (5.1) the fight-hand side is not +cxz. We will show it is not -cx. To do this,

we express x in the form stated in the preceding lemma. Since g(hi(xo)) >_ 0 by assumption
and since the maximum of any finite set of real numbers majorizes their convex combinations,
the formula (5.1) implies that

Pi

D2f(xo; u, V) >_ a -4c- g;(hi(xo)) )ij{Vhij(xo)v nt- . 72hij(xo)u},
i=1 j=l

mwhere Q Zi=I g’(hi(xo))[hi(xo; u)]2"
Lemma 5.1, we have for all v 6 ]t that

Taking the difference of (5.5) with (2) in

Pi

DZf(xo; u, v) x)(v) > Q -t- - i g(hi(xo)) ).ij" V2hij(XO)",
j--I

where the right-hand side is independent of v. Therefore condition (II) of Theorem 4.5 is
satisfied. Since condition (I) is also satisfied by assumption and part (3) of Lemma 5.1, we
see that Theorem 5.2 follows from Theorem 4.5.

II. Examples. In this section we give examples to show that Theorems 4.1 and 4.5 are
independent; that is, neither implies the other. Moreover, the relations established in these
theorems between Chaney’s generalized second-order directional derivative and that of Ben-
Tal and Zowe do not necessarily degenerate to the simpler relation (1.1), valid for C2-functions.
Even in the case when 0, f(x0) is a singleton, Examples 6.1 and 6.2 show that both the infimum
and supremum in (4.2) may still be +cx or -x. Thus, the assumption O,f(x) {x*} in
Theorem 4.1 does not imply the finiteness of ot in Theorem 4.5, and therefore Theorem 4.1
is not a corollary of Theorem 4.5. On the other hand, it may happen that c is finite but
0u f(x) is not a singleton, as Example 6.3 shows; therefore, Theorem 4.5 is not a corollary of
Theorem 4.1.

Example 6.1. Consider the cl-function f(x) "= x3/2 on IR. Let x0 0, u 1. Then
Ou f(xo) {Vf(xo) {0}. Since for any ut -+ u,

f (xo + tut) f (xo) (tUt)3/2
lim lim
t$0 2 t$0 2

it is seen that f"(x0; 0, u) +x. One can compute directly or apply (4.1) to conclude that
D2f(xo; u, w) +cxz for each w 6 R.
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-f provides an example showing that this phenomenon can also happen for -cx in place
of

Example 6.2. Let f(x) x3/2 sin(x-1/3) for x 0, and let f(0) 0. Then f is a
0. Then 0u f(x0) {x}. Now wecl-function and Vf(0) 0. Let x0 0, u 1, x0

take a sequence (tk) $ 0 with (tk + t)-1/3 2krr 2. Then sin(t + t2) 1/3 1 for each
k, so

D2 f(xo, u u) liminf
f(t + 2) t + tk2< lim inf 4/3 (-- 1) --0.

to 2 /o

By Theorem 4.1, it follows that f(xo; x, u) -00. Similarly, we also have

u) =+.D2+f (xo; u, u) > +z and f(xo xo,

Thus, the infimum appearing in (4.2) (for x x0, u 1) is -cx while the supremum is +cx,
even though 0u f (x0) is a singleton.

Example 6.3. Let h: /12 -- be defined by

h(x) max{fl(x), f2(x)} (x E I2),

where fl (Xl, x2) (Xl)2 + x2 and f2(xl, x2) xl + (X2)2 for all x (Xl, x2) E I2. Let
x0 (a, a) 2. By symmetry, it is clear that

h(.) fa(-) f2(’) and Vfl (x0)(.) Vfz(x0)(.) h’(x0; .)

on the subset G of I2 consisting of vectors of the form (c, c) with c 6 I. Note also that

VZfl (xo)(u, u) V2fz(xo)(u, u), Vu G.

Hence, by the formula of Ben-Tal and Zowe (see (5.1)), one has for each v 6 I2, u E G that

Dh(xo; u, v) max VC)(xo)v + fi(xo)(u, u): 1, 2

2V2fl(xo)(u u) + max{Vfi(xo)v: 2}.

Note that the fight-hand side is clearly convex but not affine in v since Vfl (xo) 5 ’f:z(xo).
Therefore, the function

(6.1) O2h(xo; u, .) x(.)
is also convex but not affine on 2, where x) O,h(xo). In particular, if we denote the
infimum and the supremum of the function (6.1) on 2 by ot and ,, respectively, then c must
be strictly smaller than ?,. By Theorem 5.2, this ot must be finite and must equal h"(x0; x, u).
It follows from Theorem 4.7 that y must be +x (this can also be seen directly from the fact
that the function is convex and nonaffine). Moreover, consider any sequence (x) of vectors
in 2 convergent to x0 in the direction u. Then, since

Oh(xk) co{Vfl(x), Vf2(xt)}

thanks to [9, Prop. 2.3.12], it is easily seen that

Ouh(xo) co{Vfl (x0), Vfz(x0)} co{(2a, 1), (1, 2a)},

which is a nondegenerate line segment. Thus, Theorems 5.2 and 4.5 are not corollaries of
Theorem 4.1.
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CONSISTENT APPROXIMATIONS FOR OPTIMAL CONTROL PROBLEMS
BASED ON RUNGE-KUTTA INTEGRATION*

A. SCHWARTZt AND E. POLAKt

Abstract. This paper explores the use of Runge-Kutta integration methods in the construction of families of
finite-dimensional, consistent approximations to nonsmooth, control and state constrained optimal control problems.
Consistency is defined in terms of epiconvergence of the approximating problems and hypoconvergence of their
optimality functions. A significant consequence of this concept of consistency is that stationary points and global
solutions of the approximating discrete-time optimal control problems can only converge to stationary points and
global solutions of the original optimal control problem. The construction of consistent approximations requires the
introduction of appropriate finite-dimensional subspaces of the space of controls and the extension of the standard
Runge-Kutta methods to piecewise-continuous functions.

It is shown that in solving discrete-time optimal control problems that result from Runge-Kutta integration, a
non-Euclidean inner product and norm must be used on the control space to avoid potentially serious ill-conditioning
effects.

Key words, optimal control, discretization theory, consistent approximations, Runge-Kutta integration
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1. Introduction. We consider approximations to constrained optimal control problems
resulting from the replacement of the differential equations that describe the system dynam-
ics with difference equations that arise from Runge-Kutta integration of those differential
equations. In particular, we show that there is a class of higher order, explicit Runge-Kutta
(RK) methods that provide consistent approximations to the original problem, with consis-

tency defined according to [24]. Consequently, we are assured that stationary points of the
approximating problems converge to stationary points of the original problem and that global
solutions (or strict local solutions with nonvanishing radii of attraction) of the approximating
problems converge to global (or local) solutions of the original problem, as the step-size of
the RK method is decreased.

The theory in [24] requires that the approximating problems be defined on finite-dimen-
sional subspaces of the control space to which RK methods can be extended. The selection
of the control subspaces affects both the accuracy of numerical integration and the accuracy
with which solutions of the original problem are approximated. Once the approximating
problems are defined, their numerical solution is carried out by means of standard mathematical
programming algorithms in the space of coefficients associated with the bases that define the
control subspaces. We construct two such families of control subspaces. The "natural" basis
functions for one family are piecewise polynomial functions and, for the other, piecewise
constant functions. Neither of these sets of basis functions is orthonormal. Hence, to preserve
the L2 inner product and norm used in the control subspace, a nonstandard inner product
and norm must be used in the associated space of coefficients. Failing to do so introduces a
"changed metric" effect that can adversely affect the performance of algorithms. The possible
severity of this phenomenon is demonstrated by our computational results in 6. To remove the
need to modify nonlinear programming software written for problems defined on a Euclidean
space, we introduce coordinate transformations that change our original bases in the control
space to an orthonormal set and change the associated coefficient space to a Euclidean space.

Daniel 13] presents one of the first attempts at characterizing, in a general framework,
consistency of approximations to an optimization problem as well as an application of this

*Received by the editors May 9, 1994; accepted for publication (in revised form) February 25, 1995. This
research was sponsored by National Science Foundation grant ECS-93-02926.

Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley,
CA 94720.
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framework to approximations ofoptimal control problems obtained using the Euler integration
formula. It can be shown that Daniel’s conditions for consistency imply epiconvergence [2,
14], i.e., the convergence, in the Kuratowski sense [3], of the constrained epigraphs of the
approximating problems to the constrained epigraph of the original problem. Epiconvergence
ensures convergence of the global minimizers (or strict local minimizers with nonvanishing
radii of attraction) of the approximating problems to global minimizers (or local minimizers)
of the original problem.

Polak, in [24], characterizes first-order optimality conditions in terms of zeros of opti-
mality functions. To define consistency of approximations, he augments the requirement of
epiconvergence of the approximating problems with a related requirement for their optimality
functions. As a result, consistency, in the Polak sense, ensures convergence of global (local)
solutions, and stationary points, of the approximating problems to global (local) solutions, and
stationary points, of the original problem. Furthermore, the Polak definition of consistency
indirectly imposes the requirement that the mathematical characterization of the constraints
of the approximating problems satisfy certain congruence conditions and that derivatives of
the approximating problem functions converge to those of the original problem. In addi-
tion to a definition of consistency, we find in [24] diagonalization strategies, in the form of
master algorithms, that call nonlinear programming algorithms as subroutines. These algo-
rithms enable one to obtain efficiently an approximate, numerical "solution" to an original
infinite-dimensional problem.

With the exception of [13] and [24], the analysis of the approximating properties of nu-
merical integration techniques (see, e.g., [7, 10, 11, 19, 20, 30]) in optimal control is not carried
in the framework of a general theory. Convergence of global solutions, or in some cases,
of stationary points, of approximating problems obtained using Euler integration to those of
the original problem was established in [7, 10, 11, 13, 19, 20, 24]. Of these, perhaps the
most extensive treatment can be found in [20]. The rate of convergence of stationary points
of approximating problems, obtained from discretization of unconstrained optimal control
problems using a class ofRK methods, to those of the original problem was explored in 15].

Organization. This paper is organized as follows. Section 2 summarizes the theory of
consistent approximations. Section 3 defines the optimal control problem and develops an op-
timality function for it. In 4 the approximating problems are constructed and epiconvergence
of the approximating problems is proved. In 5 optimality functions for the approximat-
ing problems are derived and are shown to hypoconverge to the optimality function for the
original problem. This completes the proof that the approximating problems are consistent
approximations to the original problem. Section 6 introduces a transformation that defines
orthonormal bases for the control subspaces and presents a rate of convergence result for the
most commonly used RK method, that is, RK4. Some numerical results are also included.

Because of the complexity of the notation in this paper, to assist the reader, we begin with
a glossary of notation.

Notation.

Spaces and elements.
In Euclidean n-space
X ]1 Cartesian product of r copies of ]t

Z,2[0,11 (L[0,1], (., ")Ln[0,1], IILi"t0.11)
L% finite-dimensional subspace of L.2[0, 1], 1, 2

1This is also true for collocation and other techniques (see, e.g., 12, 21, 26, 29, 31 ]).
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VA,N
WA,N
t
k,i
U [’gk,i
Vg(o)

F(x, w)

Sets.

N

q

A
B(x,p)

time samples of elements in L%, 1, 2
Ii x LM,2 [0, 1]
]n L1N or n L2N, HN C n,2
]n v or n 2N
(/, ]m mb/k) E X X

(/0 /N-1) E /N
r/ (, u) e H,2

" (, l) Ou

Functions.
inner product in Hilbert space 7-/
norm in Hilbert space 7-/

VA,N LN LN
WA,N HN HN, WA,N((, U)) (, VA,N(U))
zx, zx /N
tlc -+- ci A
control sample at time ric,i

grl(rl) T

directional derivative
right-hand side of difference equation produced by RK discretization

{0, 1,2
n d an integerJn:l

{0, 1,2 N- 1}
{1 q}
{1 r}
Runge-Kutta parameters
{x’ e lllx’- xll _< p}

Constraint sets.
U C Im
U C L,2
UN C LN
UN
H
HN
HN

xO(t)

xk

li____mi_.+cxzxi
limixi

Kx x

pointwise control constraint set
set of feasible controls

U eUN ::::: UJk e V

UN VA,NN L,
H In U C H,2
HN:nUNQHN

aN ]n X VA/(N)
Differential and difference equations.

solution at time of differential equation given r/-- (, u)"
initial condition and control input u

solution at time step k of difference equation, resulting from RK discretization,
for f/- (, fi)" initial condition and control samples t7

with WA,O
Sequences.

limit inferior

limit superior
{Xi }ieK converges to x
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2. Consistent approximations. Let be a normed linear space and B C a convex
set, and consider the problem

(2.1a) P min 7r(0)

where 7r B is (at least) lower semicontinuous and F C B is the feasible set. Next,
let N _6 1, 2, 3 }, let N be an infinite subset of N, and let {7-/n }NeN be a family of finite-
dimensional subspaces of such that N C 7-tN2 for all N1, N2 6 N such that N1 < N2.
Now consider a family of approximating problems

(2.1b) PN min I[rN(ON), N N,
/UFN

where lpN ’’/N --- ] is (at least) lower semicontinuous and FN C 7-/N (-] B.
In [24] we find a characterization of the consistency of the approximating problems PN

in terms of two concepts. The first is epiconvergence of the PN to P [2], which can be
shown to be equivalent to Kuratowski convergence [3] of the restricted epigraphs of the cost
functions of the approximating problems to the restricted epigraph of the original problem.
Epiconvergence does not involve derivatives of the cost function nor the specific descrip-
tion of the constraint sets, hence it is a kind of "zero-order" property. The second concept
consists of the characterization of stationary points as zeros of an "optimality function" and a
kind of upper semicontinuity property of the optimality functions of the approximating prob-
lems. Optimality functions do depend on derivatives and the specific description of the con-
straint set, hence they add important first-order and structural information.

DEFINITION 2.1. We will say that the problems in thefamily {PN NN converge epigraph-
ically (or epiconverge) to P (PN _Epi p) if

(a) for every O F, there exists a sequence {ON}NN, with ON FN, such that ON O
and limTtN(0N) < (0);

(b) for every infinite sequence {ON}NI, K C N, satisfying ON FN for all N K and
ON __+I 7, we have that O F andlimNeiN(ON) > (O).

There are two subsets involved in our formulation of this definition. The subset N is used
to provide nesting of the finite-dimensional subspaces N. The subset K C N is required so
that Definition 2.1 is equivalent to Kuratowski convergence.

In [2, 14, 24] we find the following result.
THEOREM 2.2. Suppose that PN ’Epi p.
(a) If, for N N, U is a global minimizer OfPN and is any accumulation point of the

sequence {ON}NN, then is a global minimizer ofP.
(b) If, for N N, U is a strict local minimizer of PN whose radius of attraction is

bounded awayfrom zero and is any accumulation point ofthe sequence {/N}NN, then is
a local minimizer of P.

Epigraphical convergence does not eliminate the possibility of stationary points of PN
converging to a nonstationary point of P--a most inconvenient outcome from a numerical
optimization point of view. For example, let ]2 with 0 (x, y), and let f(0)
fN(O) (X 2)2, N N. Choose

(2.2a) F {(x, y) ]21x2 - y2 2 _< 0},

(2.2b) FN - {(x, y) 6 ]21(x y)2(x2 + y2 2) < 0, X
2 q- y2 _< 2 + l/N}, N6N.

Then we see that PN --+ Epi p. Nevertheless, the point (1,1) is feasible and satisfies the F. John
optimality condition for all PN but is not a stationary point for the problem P. The reason for
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this is an incompatibility of the constraint sets FN with the constraint set F which shows up
only at the level of optimality conditions. Hypotheses precluding this pathology, at least for
first-order nonstationary points, were introduced in [24] using optimality functions as a tool
for ensuring a kind of "first-order" approximation result that implicitly enforces convergence
of derivatives and restricts the forms chosen for the description of the sets F and FN.

DEFINITION 2.3. We will say that a function 0 B I is an optimality function for P
if(i) 0(.) is (at least) upper semicontinuous; (ii) 0(r/) < Ofor all rl B; and (iii) for F,
0() 0 if is a local minimizerfor P. Similarly, we will say thatfunction ON HN --+ I is
an optimality functionfor PN if (i) ON(’) is (at least) upper semicontinuous; (ii) ON(tiN) < 0

for all ON HN; and (iii) ifN FN is a local minimizerfor PN, then ON(N) O.
DEFINITION 2.4. Consider the problems P, PN, defined in (2.1a,b). Let 0(.), ON(’),

N N, be optimalityfunctionsfor P, PN, respectively. We will say that the pairs (PN, ON) in
the sequence {(PN, ON)}NeN are consistent approximations to thepair (P, 0), if(i) PN ._.+Epi p
and (ii)for any sequence {I"N}NeK K C N, with ?N
lim 0v(r/u) _< 0(r/).

Note that part (ii) of Definition 2.4 rules out the possibility of stationary points (points
such that 0N(r/N) 0) for the approximating problems converging to nonstationary points of
the original problem. In the sequel, we will prove a stronger condition than is required by
Definition 2.4, namely, Kuratowski convergence of the hypographs of 0(.) to the hypograph
of 0(.) (that is, --ON _._.Epi

In addition to the characterization of consistency, the theory of consistent approximations
in [24] includes various master algorithm models for efficiently solving problems such as P.
Given a level of discretization defined by N, the master algorithms construct an approximating
problem PN, execute a nonlinear programming or discrete-time optimal control algorithm as
a subroutine for a certain number of iterations on PN, and then increase N. Then the process
is repeated. For specific examples, see 16, 25].

3. Problem definition. We will consider optimal control problems with dynamics de-
scribed by ordinary differential equations of the form

(3.1) k(t) h(x(t), u(t)) a.e. for

where x (t) 6 , u (t) 6 m, and hence h ]" x ]1m -- ]n.

TO establish continuity and differentiability of solutions of (3.1) with respect to controls,
one must assume that the controls are bounded in L[0, ]. However, the finite-dimensional
approximating control subspaces that we will introduce must be treated as Hilbert spaces.
This can cause complications in establishing the required approximation properties of the
optimality functions for the approximating problems that we will construct. To circumvent
this difficulty, we will, as in [24], assume that the controls are elements of the pre-Hilbert
space

(3.2a) L,2[0, 1] _6 (L[0, 1], (.,-)2, 11" 112),

which consists of the elements of L[0, 1] but is endowed with the L’[0, 1] inner product
and norm. Note that L,2[0, 1] is dense in Ln[0, 1].

We will define our optimal control problems on the pre-Hilbert space

(3.2b) Ho,2 __A ]ln X L,2[0 1] & (]1 X L[0, 1], (., ")H, II" IIH),

whose elements r/consist of pairs of initial states and controls, i.e., r/ (, u). Note that
H,2 is a dense subspace of the Hilbert space

(3.2c) H2 ]1n X zn[0, 1].
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The inner product (., .)/4 and norm II/ on H2, and hence also on Ho,2, are defined as
follows. For any r/= (, u) 6 H2 and 0’= (’, u’) 6 H2,

(3.2d) {r/, r/t)H A__ {, t) ..1.. (U, Ut)2,

where (, ’) denotes the Euclidean inner product, and the L2 inner product (u, u’)2 is defined
/x fd (u(t), u’by (u, u’)2 (t)) dr. Consequently, for any r/= (, u) 6 H2,

(3.2e) 2110112H (0, 0)n --I1112 + IlulI2.

Next, we introduce a compact, convex control constraint set U C B(0, ,Omax) __A {U G

mlll U _< ,Omax }, where Pmax is assumed to be sufficiently large to ensure that all the controls
u(.) with which we expect to deal take values in the interior of B(0, ,Omax). We then define the
set of admissible controls by

(3.3a) U {u 6 L,2[0, 1]lu(t) 6 U, a.e. on [0,1]}

and the set of admissible initial state-control pairs by

(3.3b) H]" x U C H,2.

The set H is contained in the larger set

(3.3c) B & ]1 X {/./ G L,2[0 1]lu(t) B(0,/gmax) a.e. on [0,1]} C Ho,2

inside which all of our results concerning differential equations are valid. Finally, solutions
of (3.1) corresponding to a particular r/6 B will be denoted by x0(.).

We will consider the canonical constrained minimax optimal control problem

(3.4a) CP min{o(r/)lqrc(r/) < 0},
061-I

where the objective function o B -- and the state endpoint constraint function c B --are defined by

(3.4b) 7to(r/) max f(0), Oc(r/) & max f
vqo vqc+qo

where the vth function f H is defined by

(3.4c) f (r/) (’ (, x’(1)),

with ( ]n x ]n ], and qo & 1, 2 qo }, qc = 1, 2 qc} (with qo and qc positive
integers). The set qc + qo - 1 + qo qc + qo }. In what follows, we will let q & 1, 2 q
with q qo + qc. By defining the feasible set F & {r/ 6 Hlc(r/) < 0}, we can write CP in
the equivalent form of problem P in (2.1a).

Various optimal control problems, such as nonautonomous, integral cost, and free-time
problems, can be transcribed into this canonical form. Also, the endpoint constraint in (3.4a)
can be discarded by setting 7rc (r/) _-- -o, and control unconstrained problems can be included
by setting U B(0, Pmax) and choosing Pmax sufficiently large to ensure that the solutions
u* (.) of CP take values in the interior of U.
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Properties of the defining functions. We will require the following assumptions.
Assumption 3.1. (a) The function h(., .) in (3.1) is continuously differentiable, and there

exists a Lipschitz constant x < x such that for all x’, x" n and v’, v" B(0, Pmax) the
following relations hold:

(3.5a) IIh(x’, v’) h(x", v")ll < [llx’ x"ll + IIv’

(3.5b) Ilhx(x’, v’) hx(x", v")ll [llx’ x"ll + Iio’- o"11],

(3.5c) Ilhu(x’, ’) hu(x", ")11 [llx’ x"ll + I1’- "11],

(b) The functions (., .), (., .), and (., .), with u q, are Lipschitz continuous on
bounded sets.

The following results can be found in [4].
THEOREM 3.2. IfAssumption 3.1 is satisfied, then
(i) there exists atc < cx such thatfor all 7’, 7" B andfor all [0, 1]

IIx"’(t) -x""(t)ll llrf
(ii) there exists an L < cx such thatfor all 7 B and all [0, 1]

IlxO(t)ll L(1 + I111);

(iii) the functions 7to B--+ and aPc B are Lipschitz continuous on bounded
sets;

(iv) thefunctions fv (.), v q, have continuous Gateaux differentials Df B x H,2 --+
I that have theform DfV(7;

(v) the gradients Vf :B --+ H,2, Vf(7) (Vf(7), VufV(7)), v q, are given
y

(3.6a)

(3.6b)

VfV(7) V(v(, x(1)) + pV’(0),

VufV(7)(t) hu(x(t), u(t))rpV’O(t), Yt [0, 1],

where pV’O(t) n is the solution to the adjoint equation

(3.6c) / =-hx(xO, u)rp, p(1) Vx((, xO(1)), E [0, 1],

and are Lipschitz continuous on bounded sets in B.

An optimality function. Referring to [9], the following result holds because ofTheorem
3.2.

THEOREM 3.3. For any 7 B let

(3.7a) 7tc(7)+ A max{0,

andfor any 7, 7’ B and cr > 0 let

(3.7b) P(7, r/’) A max{Po(7) Po(7’) -o’7tc(7’)+, aPc(7) c(7’)+}.

IfAssumption 3.1 is satisfied and H is a local minimizer ofthe problem CP, then

(3.8)

where d2P indicates the directional derivative ofP (., .) with respect to its second argument.
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Next we define an optimality function 0 B --+ for CP. For any r/, 0’ 6 B and v q,
we define a first-order quadratic approximation to f (.) at r/by

,(3.9a) f(r/, r/’) A f(o) + (Vf(0), 0’- 0}n + 11 oll
We define the optimality function, with the same fixed > 0 used in (3.7b), by

/ max f(0, ,’) c(,)+}0(0) minmax max](0 0’)- o(0)-ac(0)+,
qc+qoo’eH [ vqo

(3.9b)
The existence of the minimum in (3.9b) follows from the convexity of the constraint set H and
of the max functions in (3.9b) with respect to 0’ and the fact thin f (O, 0’) as II0’11
[6, Cor. 111.20, p. 46]. Note thin if f(0) - for all v 6 qc + qo, so that c(O) -,
then (3.9b) reduces to

1
(3.9c) 0(0) & minmax f(0) + (Vf(0), 0’ 0)n + 110’ 011 o(0).

oH vqo

Refeing once again to [4], we find the following result.
THEOREM 3.4. Let 0 B be defined by (3.9b). gAssumption 3.1 holds, then (i) 0(.)

is negative valued and continuous and (ii) the relation (3.8) holds ifand only ifO() O.

4. Approximating problems. The construction of a family of approximating problems
for our problem CP, in (3.4a),satisfying the axioms ofthe theo ofconsistent approximations,
requires the constction of nested families of finite-dimensional subspaces of the initial state-
control space H,2, approximating cost functions, and approximating constraint sets. Our
selection of these approximations is largely deteined by our intention to use explicit, fixed
step-size Runge-Kutta (RK) methods [8,17] for integrating the dynamic equations (3.1).

Finite-dimensional initial-state-control subspaces. We begin by defining families of
finite-dimensional subspaces HN, with HN n X LN C H,2, where the LN are finite-
dimensional subspaces ofL,2[0, ], spanned by piecewise-continuous functions to whichRK
methods can be extended. Hence, given an explicit, fixed step-size RK integration method,
using step-size A IN, we impose the following conditions on the subspaces LN.

(i) For any bounded subset S of B, there exists a x < such that for any 0 6 S HN
the RK method results in an integration eor no greater than x/N in solving the differential
equation (3.1).

(ii) The data used by the RK integration method are an initial state and a set of control
samples.2 We will require that each set of control samples coespon.d to a unique element
U6LN.

Condition (i) will be needed to prove that our approximating problems epiconverge to the
original problem. For the subspaces LN that we will present, we will actually be able to prove
more than first-order accuracy. Condition (ii) facilitates the definition of the approximating
problems and mes it possible to define gradients for the approximating cost and constraint
functions.

We will now show how the choice of an RK integration method affects the selection of
the subspaces LN. The generic, explicit fixed step-size, s-stage RK method computes an
approximate solution to a differential equation of the fo

(4.1a) k(t) h(t,x(t)), x(O) , [0, 1],

2The term control samples will be clarified shortly.
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where h x In -- II is continuous in and Lipschitz continuous in x. It does so by
solving the difference equation

2k+l 2k " A bi Kk,i, k E./V’& {0, 1 N- 1},(4. lb) 20 x (0) ,
i=1

with A 1/N, t & kA, and Kk,i defined by the recursion

K/,I =/t(t+cl A, 2k) Kl,i it t + c A, 2k + A ai,j Kk,j 2 s.
j=l

(4.1c)
The variable Y is the computed estimate of x(t).

The parameters ai,j, ci, and hi in (4.1b) and (4.1c) deteine the RK method. These
parameters e collected in the Butcher aay A [c, A, b]. The following assumption on the
b parameters will hold throughout this paper (conditions on the c parameters will be added
later).

Assumption 4.1. For all 6 s, bi > 0 and i= bi 1.
Remark 4.2. The condition= bi is satisfied by all convergent RK methods. Other

conditions must be satisfied to achieve higher order convergence for multistage RK methods.
Now, in our case, h(t, x) h(x, u(t)) and the elements u(.) of the subspaces LN will

be allowed to be discontinuous from the left at the points tk + ci (i.e., limt u(t) u(r),
for r t + ci ). To obtain an accurate integration method for such functions, the values
u(t + ci) must sometimes be replaced by left limits, as appropriate for the paicular choice
of the subspace LN. We will refer to these values as "control samples" and denote them by
u[r,i ], where we have introduced the notation

(4.2) r,i t + ci.
The times 75k, at which U[75k,i] is a left-limit are dictated by the definition of LN. Clearly if
u(.) is continuous at t + ci A, then u[t + ci A] u(t + ci A).

The recursion (4.1c) evaluates h(., .) s times for each time step k E A/’. If we collect the
corresponding s control samples into a matrix cok & (u[r,l]... u[r,s]), we can replace (4.1b)
and (4.1c) with

(4.3a) 2+ 2k + A bi Kk,i, 20 x(O) , k e A/’,
i=1

where K,i & Ki (2k, COk), which is defined by the recursion

Ki(x,)--h(x+&ai,jKj(x,),i], i=2 s,Kl(X, ) h(x, l),
/j=l

(4.3b)
where wi is the ith column of w.

We will define the control subspace LN in such a way that there is a one-to-one coe-
spondence between elements u LN and the samples of u[t + ci A] used by the RK method.
The definition of LN is somewhm complicmed by the fact that some of the ci elements of the
Butcher aay may have the same value. This causes the RK method to use samples at times

t + ci A more than once and hence leads to a reduction of the dimension in the associated
subspace LN. To keep track of the distinct values of the ci elements of the Butcher aay, we
define the ordered set of indices

(4.4a) I {il, i2 ir} {i SICj :/: Ci, Vj s, j < i}
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and let

(4.4b) Ij A {i slci cij, ij I}, j r.

Thus, the total number of distinct values taken by the elements Ci in the Butcher array is r.
For example, if c {0, 1/2, 1/2, 1 (as in the most commonly used fourth-order RK method),
then r 3, I {il 1, i2 2, i3 4}, I1 }, 12 {2, 3}, and 13 {4}. If each ci is
distinct, then r s, ij j, and Ij is the singleton {j }. Otherwise, r < s and ij > j.

Clearly, the r distinct sampling times in the interval [t, t+l], k e A/’, are given by
r,ij, j r, ij I. Corresponding to each sampling time there is a control sample u[r,# ].
The collection of these control samples can be viewed as a vector/7 6 X N X ][m, where
the symbol X N indicates the Cartesian product of N spaces. We will partition vectors r 6

X N X ]m into N blocks as

(4.5a) r (rio, rl rN-1),

where each block r e X Item, k e A/’, is of the form

(4.5b) r (r,... ,/4k),-r

and r e ]1m, j e r, corresponds to the samples u[r,# ], ij I, used by the RK integration
during the kth time interval. Our algebraic expressions are simplified if we treat r as the
rn x Nr matrix [r... r... rN_l.., rv_l]; i.e., we will identify X N X ]1 with the space
]mxNr of rn X Nr matrices. Similarly, in algebraic expressions, we will treat r as the rn x r
matrix [r... r]. The standard inner product on X N X ]m is the 12 inner product given by

(4.5c) (r, )12 (r,
N=O j=l

Let G be the r s matrix defined by

(4.5d) G

11

where, foreach j 6 r, lj (1, 1, 1) is arow vector ofdimension Iljl (lljl is the number of
elements in lj). Thenwe can associate the components r, k e A/’, ofa vector r N 3< m,
with the matrices co used by the RK method (4.3a,b) by setting wk rkG [rl... r,]G,
keN.

We now present, two control representations that define subspaces L/N C L,2[0, 1],
2, N N, of dimension Nrm such that N=I Lv and L2N are dense inUN=I

L,2 [0, ]. Both representations reduce to simple square pulses for Euler’s method (r 1).
The basis functions {eliN,k,j IN’r’mjj=l,=l,/=l, 1, 2, with el the/th unit vector in ]m and

,l, [0, 1] --+ , that we use to construct the spaces L are not orthonormal. Hence,
for numerical calculations, we associate with these spaces Nrm-dimensional spaces of real
coefficients of the form

(4.5e) -iA(]m)[jN ) i=12, N6N,LN X X (.,. II.llkN
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where the inner products and norms are chosen so that for any u, u’ Lv, with u(t)
N,r .lN,r i (t) and u (t)= Yj=l,k=lYj=l,k=l UJ N,j,I ’’N,j,k(t) . [0, 1]

(4.5f) (u,/,/’)2 (/,/’)/%, Ilul12 IIllzb,
-iwhere t7 LN is defined as in (4.5a, b). The spaces/v will be needed in defining gradients

for the cost and constraint functions of the approximating problems as well as in setting up
numerical implementations of optimal control algorithms. The reason that we choose an L2

-inorm preserving, nonstandard inner product on LN is that if we had elected to use the standard
12 inner product and norm on Lv (as is commonly done), we might have, unwittingly, caused
serious deterioration in the performance of numerical algorithms that solve the approximating

-iproblems in the coefficient spaces LN. The extent of this ill-conditioning effect is illustrated
in 6. Of course, if our basis for LN had been orthonormal, then a standard 12 inner product
would be the appropriate choice.

Representation (R1). Piecewise rth-order polynomials.
Assumption 4.3. For all s, ci [0, 1].
For each k A/’, define the sub-intervals T & [tk, tk+l) and define pulse functions

I’I (t) zx if T,(4.6a) U,k | 0 elsewhere;

and let

(4.6b) Lv
A {U L[O, 1][u(t)-- u/, ]1m,N,k,j (t), u,j t [0, 1]}

k=0 j=l

where

(4.6c) (t) A 1-iN,k,j N,k,j N,k (t)’ k A/’,

and qbN,k,j(t) is the jth Lagrange polynomial for the points {rk,# }ff=l’ ij I, defined by

(4.6d) CN,k,j(t) & r-L-H (t "gk,il)
k ./V’, j r,

1=1 (TJk,ij "gk,il)’
(lj)

with the property that N,k,j(TJk,it) 1 if j and N,k,j(’gk,il) 0 if : j. By construction
of the set I, it, ij I implies that rk,# zk,i if - j. Hence, the functions qN,k,j (’) are well
defined and the functions 1N,k,j(’) are linearly independent. For Lv we define the control
samples as

(4.6e) U[Sk,i] A [ bl(75k,i) if k,i Z,
k ./V’, I.lim u(t) if 75k, tk+l,

! trk,i

PROPOSITION 4.4. Let L1N be defined as in (4.6b), and let V1A,N L1N - X N X ]m be

defined by VA,N(U) fi, with u u[zk,ij], ij I, j r, k Jkf. Suppose Assumption 4.3
holds. Then V is invertible.A,N

Proof. Let u(t) Y7= Y=l u1 (t) be an arbitrary element of Lv Assump-N,k,j
tion 4.3 implies that Zk,# [t,tk+l]. Next, it follows from (4.6e) that U[rk,#]= uk4U,,(rt,/) u because of the interpolation property of Lagrange polynomials.
Hence VA,N
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/N-l,r-1The polynomial pulse functions apN,k,j (t) k=O,j=O are linearly independent but are neither
orthogonal nor normal with respect to the L2 inner product and norm. To complete the
definition of the spaces/ 1N in (4.5e), we now define the required inner product, which, in turn,
defines the norm. First, let u 6 LN and note that we can write each rth-order polynomial
piece j=/7k)N,k,j(t) in (4.6b) as a power series c P(t tk), where ot is an rn r matrix
of coefficients and the function P - ]r is defined by

(4.7) P(t) - [1 t/A... (t/A)r-1] T.

If/7 VA,N(U), then from Proposition 4.4, uJ oocP(cijA), j r, ij I. Hence,
/7k [/7 uk] ot T- where

(4.8) T- [P(ciA)P(ci2A)... P(ci, A)]
cil ci2 ci,

cr-1 r-1 cr-1il Ci2 ir

The matrix T-1 is a Vandermonde matrix and the r values Cij ij I, are distinct. Therefore,
T-1 is nonsingular and ot fiT. Hence, for each k A/’, u(t) fiTP(t tk) for
6 [t, t+l).
We now define the inner product between two vectors u, v 6 /N, with u (V,N)-I(/7)

and v (V -1A,N) (), by

(4.9a)

N-1

f0
A

(/7, ))L (l, 1))2- Z (U(tk + t), v(tk + t)) dt
k=0

(/7TP(t), kTP(t)) dt
k=0

N-1

fo
A

VkA trace (/7T P(t)P(t)r dtTr-r

k=0

N-1
-TA trace Mk Yk )’

k=0

where T was defined by (4.8), P (.) was defined in (4.6d), and

(4.9b) M1 A_. T P(t)P(t) T dt T T Hilb(r)T

is an r r symmetric, positive definite matrix with

(4.9c) Hilb(r)

1/2 1/3 1/r
1/2 1/3 1/4 1/(r+l)
1/3 1/4 1/5

.o

1/r 1/(r + 1) 1/(2r- 1) rr

the Hilbert matrix whose i, jth entry is 1/(i + j 1). Note that both Hilb(r) and T are
ill-conditioned matrices. However, the product in (4.9b) is well-conditioned (the product cor-
responds to switching from the power-series polynomial representation back to the Lagrange
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expansion). The matrix M1 is positive definite because Hilb(r) is positive definite and T is

G -ononsingular. Given fi 6 Lv, its norm is I1 2 (7,)
Remark 4.5. A special class of functions with representation R1 is the subspace of rth-

order, m-dimensional splines [5]. The dimension of the spline subspace is only a fraction of
the dimension of Lv. Our results for R can be extended to splines; this extension is presented
in [28].

Representation (R2). Piecewise constant functions.
For j 6 r, Ij defined in (4.4b), let

(4. Oa) [j A Z hi’
ilj

(4. lOb) dj A_. A E i, dO & O.
i=1

If all the C elements of the Butcher array have distinct values, then dj A ZiL1 bi. At this
point, we can replace Assumption 4.1 with the following weaker assumption.

Assumption 4.1’. For all j 6 r, ,j > 0 and dr A.
Note that Assumption 4.1’ implies that for all j 6 r, dj > dj-1 and that tk + dj

[tk, t+l], k 6 A/’.
Next, we introduce an additional assumption which is stronger than Assumption 4.3.
Assumption4.6. Forj 6 randij 6 I, dj_l < cijA < dj, sothatr,# [t+dj_,t+dj].

2With Tj = [tk + dj_, t + dj) define the basis functions N,,j , k A/’, j r,
by

(4.11a) 2 a { ift Tj,(N,k,j (t)
0 elsewhere

and let

(4.1 lb)

For Lv, we define the control samples as

u(r,#) if k ij T2
(4.1 lc) bl[lJk,ij] A k,j’

lim u(t) ifz,,# =tk +dj, k Af, ij I,j sr.
tk,ij

PROPOSITION 4.7. Let L2N be defined as in (4.1 lb)’, and let V2A,N L2N -+ X N X Irn be

defined by V2A,N(U) t/, with uJ U[rk,# ], j r, ij I, k .IV’. Suppose Assumptions 4.1’
and 4.6 hold. Then V2 is invertible.A,N

Proof. Assumption 4.1’ ensures that the support for each 2N,k,j(’) is of nonzero length.
This ensures a one-to-one correspondence between the elements of L2N and the vector coeffi-

cients u in (4.1 lb). Next, Assumption 4.6 together with the definition (4.1 lc) of u[.] implies
N-1that for any u 6 Lv, with u(t) k=0 j=l//N,,j2 (t), U[rk,j] fi for all k 6 ./V" and

j 6 r. Hence, V2 is invertible. [3A,N

To complete the definition, in (4.5e), of the spaces Lv we will now define the required
inner product and norm. We define the inner product between two vectors u, v 6 i(v, with
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U (V2 -1 (VA2,N)-I(), byA,N) (/) and v

N-ldjIj(fi, f))L = (u, v)2 E (u(tk + t), v(tk + t)) dt
k=O j=l -N-1

k=O j=l
N-1

(4.12a) A Z trace(tTM2),
k=0

where

1(4.12b) M2 "..
br

Since all/j > 0, ME is diagonal, positive definite. Given t7 [,, its norm is I111N
N

Remark 4.8. In place of(4.10b), we could have used the alternate definition dj A {= bi
and set tT u[r,j] for all j s, k A/’. In this way, samples corresponding to repeated
values of cj in the Butcher array would be treated as independent values and the space LN
would have to be correspondingly enlarged. However, Proposition 6.1 in 6 indicates that
(4.10b) is the preferable definition.

Definition of approximating problems. For N 11 let

(4.13a) HN 6__ iRn x LN

where LN L1N forrepresentation R10rLN LZN forrepresentation R2. Since HN C
it inherits the inner product from Hc,2 which, for r/’, r/" 6 HN, with r/’ (’, u’) and
r/= (", u"), is given by

(4.13b) (r/’, ") /x ,,) u")H (’, + (u’,

Also, for any 0 6 HN, IIoIIH (0, rt)H. Similarly, for N 6 N, we define the coefficient
spaces HN by

(4.14a) "N A ]n X N,
where LN L1N or LN L2N The inner product onN is defined by

(4.14b) (,,

and the norm correspondingly. Let WA,N HN -’N be defined by WA,N(]) (, V1A,N (u))
for representation R1 and WA U(O) ( V2A,N(U)) for representation R2, where r/= (, u).
Then we see that WA,N is a nonsingular map and, with our definition of the norms on HN,
provides an isometric isomorphism between HN and HN. Thus, we can use the spaces HN
and HN interchangeably.

Next, we define control constraint sets for the approximating problems as follows. Let U
be the convex, compact set used to define U in (3.3a). Then, with Xv < cxz, we define

UN / e Lvlu e U, j e r, 117TII < cv, j 2 r, ’v’k e A/"
(j-1)(r-1)

(4.15a)

(4.15b) UN e L2NIU U, Yj e r, k e A/"
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where Tj is the jth column of the matrix T, defined by its inverse in (4.8), and A 1/N, as
before. Finally, we define the constraint sets for the approximating problems by

(4.15c) HN A ]n X VA-,/(N) C HN,

and their reflections in coefficient space by
A ]n(4.15d) HN N C HN,

--2 V2--1
V for representation R1 and UN UN and VANwith UN UN and VA,N A,N A,N

for representation R2. We assume that Pmax was chosen large enough in (3.3c) to ensure that
HNCB.

Remark 4.9. The constraints on IItTk Tj I1 appearing in the definition of U1N were intro-

duced to ensure that each polynomial piece, rj__l//’(I)lN,k,j (’), of u Vv (tT) is Lipschitz
continuous on [t, tk+l] with Lipschitz constant toy, independent of N. This is needed to estab-
lish that the accuracy of the RK integration increases at least linearly with decreasing step-size
(Lemmas A. and 4.10(i), but see Remark A.2) and for the proofs of Theorems 4.2 and 5.6.
When the system dynamics are linear and time-invariant with respect to u and the RK method
is of order r, Lemma 4.10(i) is valid without this Lipschitz constant, and hence, the constraints
in the definition of Uv are not needed. It is not clear if the constraints on I1 Tj I1 are needed
in practice because if a sequence of controls converges to a piecewise Lipschitz continuous
function, then the members of that sequence will all be piecewise Lipschitz continuous (see
Remark 4.13 and Conjecture 5.11 added to the end of this paper).

Next, with rl (, u) HN and (, tT) WA,N(]) we will denote the solutions of

(4.3a,b), with w G k A/’, by {Y U}=0 or, equivalently, {Y U}k=0" The variable x is thus
the computed estimate of xO(t). Finally, for v 6 q, let fly ON ---> and fv U ---> ] be
defined by

(4.16) f(o) & (v(, y) fv(O) - (v(, Y), v q,

where ( (., .) was used to define f (.) in (3.4c). We can now state the approximating problems
as

(4.17a) CPN min {o,N(rl)lc,N(rl) 0},
r/6HN

where [to,N() A maxeqo fN(7) and lPc,N( A maxeqc+qo fN (rl), or equivalently, in the form
in which they must be solved numerically as

(4.17b) CPN min {ro,N()lrc,N() 0},
6(HN

where ro,N(O) A maxeq fv(O) and rc,N() A max,eqc+qo fN(O)" By defining the feasible
set as FN & { HNIc,N(O) 0}, we can write CPN in the equivalent fo of problem PN
in (2.1b).

Note that for any u U L%, 1, 2, where U was defined in (3.3a), fi V1A,N(u)
satisfies u U, fork , j r, because u(t) U for all [0, 1]. Hence, for representa-

2
tion R2, (4.15b,c)imply that H HN C HN. Conversely, UN (V,N)-I() U, and
therefore HN C HHN. Consequently, for representation R2, HN HHN. Unfounately,
for representation R1 HN H HN. First, H HN HN because elements u U L do
not necessarily satisfy the Lipschitz continuity constraint imposed by (4.15a). Second, if r 2
(except for the case r 2 and the Butcher aay elements c (0, 1)), HN HHN because,
given 6 generally VA,N()]] > IIll, [5, p. 24]. Hence, if {N (, RN)}NN,
N c N, is a sequence of approximate solutions to the problems CPN using representation R1,
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it is possible for ON to violate the control constraints in CP. However, as we will see, the limit
points of such a sequence do satisfy the control constraints in CP. This problem of constraint
violations for representation R1 could have been avoided by choosing HN & H N HN (as in
[24]) and lettingU & WA,N(HN). But the setU would then be difficult to characterize and
we would have to impose a Lipschitz continuity constraint directly on the set H which would
be unacceptable.

Nesting. The theory of consistent approximations is stated in terms of nested subspaces
HN. This allows the approximate solution of an approximating problem CPN to be used
as a "warm-start" for an algorithm solving an approximating problem CPN2 with a higher
discretization level (Ne > N1) (see [16, 25]).

For representation R1, for any N N, N > 1, Lv C LN, and therefore doubling the
discretization level nests the subspaces. If u Lv then V (u) can be determined fromA,2N

/--VA,N(U) using (4.7) and (4.8), as follows. For k A/" and j r, Uk kTP(cj/2N)
and -j tkTP((cj + 1)/2N). For representation R2, Lv C LN, where d is theU2k+l
smallest common denominator of the parameters bj, j s, in the Butcher array, which is
finite assuming, as is typically the case, that the bj are rational. Thus, the discretization
level must be increased by factors of d to achieve nesting. If u L and/ Ve (u)A,N

-ithen Ve (u) is given, for k e A/’, i, j r, and 1 d, by l)dk+l UJk forA,dN

dj_ < l/d < dj where dj is defined in (4.10b).
Epiconvergence. We are now ready to establish the epiconvergence of the approximating

problems. First we present convergence properties for the solutions computed by Runge-Kutta
integration on HN. The proof of the following lemma, given in the appendix, differs from
standard Runge-Kutta results because of the presence of (possibly discontinuous) controls in
the differential equations.

LEMMA 4.10. For representation R1, suppose thatAssumptions 3.1(a), 4.1’, and 4.3 hold.
For representation R2, suppose that Assumptions 3.1 (a), 4.1’, and 4.6 hold.

(i) Convergence. For any bounded subset S C B, there exist tc < cxz and N* < c, such
thatfor any rl S fq HN and N > N*,

(4.18a) [[x(t)- ZII_< --.., k {0, 1, N}.
N

(ii) Order ofConvergence. Additionally, suppose the Runge-Kutta method is order p (see
[8, 17]), and h(., .) is p times Lipschitz continuously differentiable. Let

dp_1
H) A_

r/ (, u) HNI dtp-1
(U(tl) u(t2)) </’ Vtl t2 [t tk+l), k Af

(4.18b)
where K’ < oo is independent of N. Then for representation R1, there exist x < oo and
N* < o such that, if S fq H), or if rl S f3 HN and h(x, u) (x) + Bu, where B is
an n x m constant matrix, thenfor any N >_ N*

I(

(4.18c) IlxO(t) 11 N----’ k 6 {0, N}.

The same result holdsfor representation R2for any rl S fq HN ifh(x, u) t(x) + Bu.
In proving consistency, we will need to add a version of Slater’s constraint qualification

on the problem CP.
Assumption 4.11. For every r/ 6 H such that c(r/) < 0, there exists a sequence {r/i }i1

such that/]i H, kIIc(l]i < O, and
THEOREM 4.12 (Epiconvergence). For representation R1, suppose that Assumptions 3.1,

4.1’, 4.3, and 4.11 hold and let d 2. For representation R2, suppose that Assumptions
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3.1, 4.1’, 4.6, and 4.11 hold and let d be the least common denominator for the elements
bj, j s, of the Butcher array. Let N {dl}lC=l Then the problems {CPN}Nr converge
epigraphically to the problem CP as N - x.

Proof. Let S C B be bounded. Then, by Assumption 3.1(b) and Lemma 4.10(i), there
exist x’, x < cx such that for any v 6 q and for any/’IN S (’] I-IN

-ON(4.19a) I/V(r/N) --/,(HN)I IV(N,XON(1)) (N, ’vN)I < x’IlxOU(1) xN <
N

Now, let v’ 6 qo be such that kilo(ON f’(ON). Then,

(4.19b) tlJo(r/N) tIJo N(r/N) fv’(r/N) qlJo N(r/N) < fv’(r/N) fv’(r/N) <
N

By reversing the roles of kIIo(r/N) and klIo,N(r/N) we can conclude that

(4.20a) Io(r/N) tPo,N(r/N)l <
-N

Similarly,

K"
(4.20b) ]c(r/N) c,N(r/N)] <

-N

Now, given r/ 6 H such that *c(r/) < 0, there exists, by Assumption 4.11, a sequence
S {r/i}irN, with r/i H, such that r/i r/ as CXZ (hence S is a bounded set) and
*c(r/i) < 0 for all i. Now, clearly for each i, there exist Ni 6 N and r/Ni liNg such that
(a) x/Ni < -1/2*c(r/i); (b) IIr/v r/ill < 1/Ni, since, for both control representations the
union of the subspaces HN is dense in H2, which contains H,2 and H N HN C HN; (c)
*c(r/’Ni) < 1/2*c(r/i) due to Theorem 3.2(iii); and (d) Ni < Ni+l. It follows from (4.20b)
that qc,N+k(r/’Ni) < c(r/N,) + x/Ni < 1/2*c(r/i) + x/Ni < 0 for any i,k

_
N. Now

consider the sequence S" {r/t}Mr defined as follows. If M Ni for some 6 N, then

r/t r/N, for M Ni, Ni + d, Ni + 2d Ni+l d. Then we see that *c,M(r/) < 0 for
IIall M 6 N, r/M --+ r/as M -- x (hence S" is bounded), and by (4.20a) and Theorem 3.2(iii)

that limMN o,M(r/t) *o(r/). Thus, part (a) of Definition 2.1 is satisfied.
Nowlet S- {r/N}NI, K C N, be a sequence with r/N (N, UN) HNand*c,N(r/N) <

0 for all N 6 K, and suppose that r/N / r/ (, u). First, we want to show that r/ 6 H.
For any v 6 ]m, let d(v, U) zx minv,u lip P’ll. Since VA,N(UN) 6 UN, 1, 2, for

each N, u 6 U for all k 6 A/’, j 6 r. For representation R1, limttO,,Nld(UN(t), U) 0
since elements UN 6 Uv are piecewise Lipschitz continuous polynomials, with Lipschitz
constant independent of N, defined over progressively smaller intervals. For representation
R2, d(uN(t), U) 0 for all N 6 N and 6 [0, 1] since UN 6 Uv is piecewise constant. This
implies that u 6 U; hence r/ 6 H. Furthermore, *c(r/) < 0 by (4.20b) and the continuity of
*c(’). Finally, by (4.20a) and Theorem 3.2(iii), limNK qo,N(r/N) o(r/). Thus, part (b) of
Definition 2.1 holds.

Remark 4.13. In [15], Hager empirically observes that methods with bj 0 for some
j, such as the modified Euler method, cannot be used to discretize optimal control problems.
This requirement, formalized in Assumption 4.1, is used in our proof of epiconvergence.
However, for representation R1, epiconvergence of PN to P can be established even if, for
some j,/j < 0. This is because of the Lipschitz continuity constraint imposed on the set U
in (4.15a); see Conjecture 5.11 added to the end of this paper.

3It can also be shown by contradiction thatd(uN(.), U) -- 0 a.e. on [0,1] without requiring, in (4.15a), elements
of Uv to have a uniform piecewise Lipschitz constant.
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Nonetheless, our experimental evidence suggests that using an RK method with bj < 0 is
unwise. For example, the third-order method with Butcher array b (-1/6, 8/9, 5/18), c

(0, 1/4, 1)andnonzeroentriesofA givenbya2,1 1/4,a3,1 -7/5,a3,2 12/5 was used to
discretize the problem (6.3) with discretization level N 10. The solutions Uv for different
values of Lipschitz constant Ku are plotted in Figure l(a). For comparison, the solutions
of the approximating problems produced with the third-order RK method with Butcher array
b (1/6, 2/3, 1/6), c (0, 1/2, 1) and nonzero entries ofA given by a2,1 1/2, a3,1 1,
a3,2 2 are presented in Figure (b). For both, with cu small, the quadratic polynomial pieces
in each time interval are forced to be fairly fiat. But, as ct: is increased, the solutions for the
"bad" method become increasingly worse and the control solutions remain pushed against
the Lipschitz continuity constraints. On the other hand, the solutions for the "good" method
become better as zt: is increased. In fact, when xt: is bigger than the Lipschitz constant of
the true solution u*, the Lipschitz continuity constraints are inactive for the "good" method
(see Remark 4.9). This is seen in Figure l(b) since the solutions for cv and Kt 10 are
identical. As xu is increased from 0.1 to 10, the error max,j ]Uv[Z’,j] u*(r,j)l goes from
0.0332 to 7.9992e-4 for the "good" method and goes from 0.0332 to 1.9119 for the "bad"
method.

The conditions imposed by Assumptions 4.3 and 4.6 on the c parameters of the Butcher
array are needed because of the discontinuites in the controls u 6 Lv, 1, 2.

Factors in selecting the control representation. The choice of selecting Lv
versus LN L depends on the relative importance of approximation error versus constraint
satisfaction. It follows from the proof of epiconvergence that irrespective of which repre-
sentation is used, if {0V}NeN is a sequence such that 0N 6 HN and ON 7, then 0 6 I-l.
Thus 0 satisfies the control constraints. However, as mentioned earlier, if representation R1
is used, then ON may not satisfy the control constraints for any finite N (except for the case
r 2 and c (0, 1)). Since a numerical solution must be obtained after a finite number of
iterations, representation R2 should be used if absolute satisfaction of control constraints is
required.

If some violation of control constraints is permissible, then representation R1 may be
preferable to representation R2 (although, see comment about transformation of simple con-
trol bounds in 6) because a tighter bound for the error of the approximate solution can be
established for R1 than for R2. To see this, let 0’v (, UN)’ N 6 N, be a local minimizer of
the finite-dimensional problem CPN. This solution is computed by setting O’v W,(6v),
where v is the result of a numerical algorithm implemented on a computer using the formulae
to be presented in the following sections The error, Ilu* *Ug 112, of the approximate control

,solutions Uv can be determined as follows. Assume that uv -+ as N -+ oo and that u*
is a local minimizer of CP (if the Uv solutions are uniformly strict minimizers, then u* must

IR be such that u* (r,j) forbe a local minimizer by Theorem 2.2). Let iT* X v >(

k A/’, j r (assuming u*(r,j) exists). Then, with iT* VA,V(u*v),N

]in, /,/, -1 -1 //, -1 /,--UNll2 _< VA,N (/*) 112 / VA,N (*) U*N 112 VA,N (*)112-- /N IIL.
(4.21)

By Proposition 5.5, the quantity I1* u is not affected by the choice of control rep-
resentations. For smooth, unconstrained problems discretized by symmetric RK methods, a
bound for 117" *N II/ can be found in [16, Thm. 3.1] (see Proposition 6.1 in this paper for

(7") I1= is the error between u* and thean improved bound for RK4). The quantity Ilu* V
element of Lv or L that interpolates u*(t) at r,j, k A/’, and j r. The piecewise
polynomials of representation R are generally better interpolators for u* (.), except for non-
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FIG. 1. Effect ofthe Lipschitz constant xu on the solution ofproblem (6.3) discretized with an RK method that
has (a) b < 0 and gets worse as xtj is increased and (b) all bj > 0 and gets better as tc is increased until the point
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smooth points, than the functions of R2. For u*(.) sufficiently smooth, Ilu* V(*)ll is
of order r for representation R1 (see [5]) but only first order of representation R2.

5. Optimality functions for the approximating problems. To develop optimality func-
tions for our approximating problems, we must determine the gradients of the cost and con-
straint functions for the approximating problems.

At each time step, the RK integration formula is a function of the current state estimate
k and the r control samples ik (fi ti,). So, let F n X X m) n be defined
by

(5.1) F(x, w) x + bi Ki(x, wG),
i=1

where w (w wr) m is being treated as the m x r matrix [w w ], G was
defined in (4.5d), and Ki(x, ) was defined in (4.3b) (w wG Nmxs). Then, refeing to
(4.3a,b), we see that for any (, ) s, with s defined in (4.14a),

(5.2) Y+l =F(Y,fi), Yo=, ke.
The derivative of F(., .) with respect to the jth component of w is, with lj defined in (4.4b),

Fw (x, w) A bi gi (x, wG)
i=1

lelj i=1

A bh.(g(x, ), w) + bih(Yi(x, ), mi) Kp(x, )
leI] i=1 p=l

(5.3)
where w wG and Yi (x, ) x + ai,j gj (x, ).

The next theorem provides an expression for the gradients of the functions f (.), v 6 q,
given by (4.16).

THEOREM 5.1. Let N , 0 HN, and Wa,N(O). Also, let MN NrxNr be the
N-block diagonal matrix defined by
(5.4) MN & diag[AM, AM AM],

where M M for representation R1 and M Me for representation R2. Then, for each
v q, the gradient of f(.), Vf HN HN, is given by

(5.Sa) Vf() (V#/(0), Vuf(0)) ((), V (()M’)),
where Va,N V a,N for representation R1, Va,N V2a,N for representation R2, and ()

((), ()) HN is defined by

(5.5b) y(O) Vff"(, Y) + P0

with ’ determined by the adjoint equationk

(5.5d) F( a)r-"Pk+l, PN (x (,X) k ,
and where Fx (., .) and Fw (., .) denote the partial derivatives of F(x, w) with respect to x
and the j th component of w.

Proof. First, we note that V is inveible by Proposition 4.4 and V2 is invegible byA,N A,N
--pProposition 4.7. Next, refeing to [23, p. 68], we see that (0) is the gradient of fN(O) with
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respect to . Similarly, u() is the gradient of fv() with respect to fi 6 X N Xr ]lm

endowed with the standard 12 inner product. Hence, the Gateaux differential off is given by

Df(oN; ON) Of(; ) ((), ) + ((), )12

(?(), ) + (?()M1, )L

(5.6) (y[(), ) + (VZ(y(6)M), u),
where (, u) H and (,) Wa,(O). Since by the definition of

Df(o) f(o;) (f(O) ) for all H, the desired result follows
from (5.6).

A simpler expression for u() for a ceaain class of RK methods can be found in [15].
() m andNote that for H, Wa,(O), we have u

Vuf  o t  ,ir ) S
where ij I, j r, and Vuf(o)[r,i] is computed according to (4.6e) or (4.11c).

Remark 5.2. At this point, we can draw one ve impoant conclusion. For evew
v q, the steepest descent direction, in , for the function f(.), at , is given by
-((), ()M) and not by -((), ()), which is the steepest descent direction
that one would obtain using the standard l inner product on m. The naive approach
of solving the discrete-time optimal control problem CP using the latter steepest descent
directions amounts to a change of metric that can result in severe ill-conditioning, as we will
illustrate in 6.

We can now define optimality functions for the approximating problems using the fo
of the optimality function presented in (3.9b) for the original problem. For CP, we define

0 H , with a > 0 and the set H defined in (4.15c) by

[ max f(, ’) c,()+ },0s(0)& min max max f(0 0’) o,S(0) ac,S(O)+,
qc+qo0 H qo

(5.8a)
max{0, c,S(0)}, and for v q,where c,S(0)+

(5.8b) f(, ’) f(o) + (f(o), ’ O)n + 11 Olin.

Ifneeded for apaiculnumerical algorithm (e.g., [22]), 0s () 0s(), where WA,s (0)
and

(5.9a) s() min ,
’

oN

with

(R)N(, ’) max{ max fv() 4- <(})(), ()MI), )’ >/ o,)v() (:r,v()+,
vqo

max fv()) q- ((})()), u())M1), ’-- ))/ c,N()+},
vqc+qo

(5.9b)
and the set I-IN is defined in (4.15d).

It should be obvious that these optimality functions are well defined because of the form
of the quadratic term and the fact that the minimum is taken over a set of finite dimension.
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The following theorem confirms that (5.8a) satisfies the definition for an optimality function.
The proof is essentially the same as the proof in [4, Thms. 3.6 and 3.7].

THEOREM 5.3. (i) 0U(’) is continuous.
(ii) For every rl HN, ON(O) O.
(iii) If I-IN is a local minimizerfor CPN, then Ou() O.
Remark 5.4. It can also be shown that Ou() 0 for 6 HN if and only if dzq/u(,

r/-r) > 0forall r/6 HN where q/N(/’], ’)maX{o,N()--o,N(’)--Crc,N(7’)+ I[tc,N(O)--

PROPOSITION 5.5. The stationary points for problem CPN, that is, the points HN
such that ON(O) O, do not depend on the control representation.

Proof. First, aN is such that ON(O) 0 if and only if (R)N(6, ’) 0 for all ’ I-IN.
The "if" direction is obvious. For the "only if" direction, U() min,,eu 1/2116’-- 611 +
(R)U(0, ’)} 0. This implies that (R)N(O, 6’) 0 because [)N (, 6t) is linear in 0’ whereas
1/2116’ 611N is quadratic in O’. Second, let 86 (3, 3t7) 6’ 6. Then, for each v q,

(5.9c) (((), u(r)Mvl), ’- r)RN ((r), 8g) + (u(r), /)/2,
since MN is nonsingular. Hence, (R)N(, ’) does not depend on the control representation.
Thus, the points such that N() 0 do not depend on the control representations.

Consistency of the approximations. To complete our demonstration of consistency of
approximations we will show that the optimality functions of the approximating problems
hypoconverge to the optimality function of the original problem. First we will present a
simple algebraic condition that implies convergence of the gradients. We will use the column
vector/ (/1.../gr) r 6 Rr, with components/gj defined in (4.10a), and the values dj defined
in (4.10b).

THEOREM 5.6. For representation R1, suppose that Assumptions 3.1, 4.1’, and 4.3 hold.
For representation R2, suppose that Assumptions 3.1, 4.1’, and 4.6 hold. For N N, let HN
be defined as in (4.13a), with LN Lu or LN L2

N, and let fv HN , v q, be

defined by (4.16). Let M M1 if LU L 1N, and let M M2 if LU L2N. Let S be a
bounded subset of B. If
(5.10a) M-1/9- 1,

where 1 is a column vector ofr ones, then there exist atc < and an N* < such thatfor
all o (, u) S f HN and N > N*,

(5.10b) IlVf(r/)- Vf(r/)llH <
-N

Proof. To simplify notation, we replace x by 2k and Pk by p. Let S C B be bounded,
and letr/ ( u) 6 SNHN Let/ VA,N(U) andO= ( ti) where VAN V forA,N
representation R1 and VA,N V2A,N for representation R2. For each j r and k 6 N’,
FoJ(2, tT) is given by (5.3). So, with Y,i _.6 2 + A yj-11 ai,jKj(, w) and w /G,
there exists X < cx such that

Ilfm(, ) Abhu(2, u)ll

i-1

< A2 E bihx(r,i, co)E KP(2g’
lelj i=1 p=l

K1A2,
(5.11a)

+ AEblhu(Yk,l,U)--Ajhu(k,U)- A E blllhu(Yk,l’ t) hu(ffk, U)l[
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where we used the Lipschitz continuity of hu(., .) and the fact that S bounded impli.es that
2k and tT are bounded, which implies that for all j r, [[hu(k, )11 and [[hx(Yk, )11 are
bounded. Therefore, it follows from (5.5c) that

(0) [Fm(2, )r/+ Fm(, )rp+]

(5.11b) A[/lhu( -1 Tu/c)P/+l brh (1, u)P+l] 4- O(A2),
where lim,x0 IO(A)/zXl < . From (5.5a), VA,N(Vuf(o)) (O)M. Therefore,
from (5.11b) we obtain

A rhu(k ) M- O(A2)
k .VA,N(Vuf(o))k-- s(blhu(k,)Tpk+l’’" , Pk+l) +,

(5.11c)
At this point we must deal with our two control representations separately. For represen-

tation R1, u(.) U is a Lipschitz continuous polynomial on each inteal [t, t+l), with
Lipschitz constant x given in (4.15a). Thus, for any ij, it I, with j, r and I defined in
(4.4a),

(5.12) Ilu 11 Ilu[,i] u[,/,]l] zuIl(ci c,)ll zu,
where Assumption 4.3 was used to justify the last inequality. Now, let

T(k H)-v r T(5.13a) D [lh Pg+l hu(k u) ]MPk+l
and let Dj, j r, denote the jth column of D, so that, from (5.1 lc),

(5.13b) Vuf(o)[r,i] VA,S( ufs(o)) oJ + O(A)

It follows from Assumptions 3.1(a) and 4.1’, (5.12), and the fact that fi+l is bounded for any

0 e S that there exists , z3 < , such that for any j r and ij I and with M-i,j denoting
the i, jth entry of M-,

i,j _< bi[hu(k,-i /,)]T M-1uk) hu(k, P+I i,j
i=1 i=1

(5.13c) < tc2lltT ullllP+lM-i,j
i=1

M-1i 1 since M is symmetric. Hence for any j 6 r,Also, if M- 1, then /=1 i,j

(5.13d) 11Dj hu(x, u)T+I 3A.

Therefore, from (5.13b),

(5.13e) Vuf(o)[r,i] h,(x, )vfi+l + O(A).

For representation R2, (.) is not Lipschitz continuous on [t, t+), so (5.12) does not hold.
However, since M M2 is diagonal, (5.13e) is seen to be true directly from (5.11c) if
M-= 1.

Next, since S is bounded, (i) by Lemmas 4.10(i) and A.4 there exists x4 < such that

I1 -xO(t)ll < 4 and I1+1 pO’(t+l)ll X4A and (ii) p+ and hu( u[r,/]) are
bounded. Thus, making use of Theorem 3.2(v), (5.13e), the fact that both xO(.) and p,O(.)
are Lipschitz continuous, and u[r,ij fi, we conclude that there exists x5 < such that

IIVuf(o)[,ij]- Vuf(o)[,i]ll
Ilhu(x(vk,i), u[v,i])Wp’(v,i) hu(, u[v,i wp+)I1- + O()

(5.14)
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Next, for j 6 r, ij 6 I, k 6 A/’, and 6 [0, 1] we have that

IlVuf(rl)(t) Vuffv(rl)(t)ll < IlVuf(rl)(t)- Vuf()[r,i]ll

+llVuf(o)[k,] V=f(0)[rk,]ll

(5.15a) + Vu ffv rl r,#

The second term in (5.15a) is of order O(A) by (5.14). We will show that the first and
third terms in (5.15a) are also of order O(A). First consider representation R1. It fol-
lows by inspection of (3.6b) in Theorem 3.2(v) that VufV(r/)(.) is Lipschitz continuous on

Irk, tk+l), k A/’, because u Lv is Lipschitz continuous on these intervals. Since

Vuf(r/)(.) LN, it is also Lipschitz continuous on these intervals. Finally, by Assumption
4.3, r,ij [t, t+l] for all k A/’. Thus, the first and third terms are of order O(A) for all

[0, 1]. For representation R2, Vuf(0)(.) HN is constant on [t + dj_l, tk + dj),
j r, and k A/’. Since u L is constant on these intervals, it again follows by inspection
of (3.6b) in Theorem 3.2(v) that Vu fv (0) (.) is Lipschitz continuous on these intervals. Finally,
by Assumption 4.6, k,ij - [tk Af_ dj-1, tk d- dj ], for all k A/" and j r. Since do 0 and
dr A, the first and third terms are of order O (A) for all [0, ]. We conclude that there
exist K"6 < (X) such that

(5.15b) IlVuf(ri)(t) uffv(O)(t)ll K6A, [0, 1],

which implies that

(5.15c) IlVuf(r/)- Vuffv(o)ll K6A.

Next we consider the gradient with respect to initial conditions . From Theorem 3.2(v)
and (5.5b), IlVf(o)- (r/)ll _< IIV’(, x(1))- VC(, 2N)II + IIP’(0)-/5 II. Thus,
since S is bounded, it follows from Assumption 3.1(b) and Lemmas 4.10 and A.4 that there
exists x7 < c such that

(5.16) IIVf(r/) (r/)ll 7(llx(1) -Nll + IIP’(0) fi)ll) TA.

Combining (5.15c) and (5.16), we see that there exists x < o such that for any r/u S A HN

(5.17) IlVf(0v)- Vf(0)IIH <
-N

The following proposition states conditions for (5.10a) to hold.
PROPOSITION 5.7. (a) Suppose M M1. Then (5.10a) holds ifand only ifthe coefficients

of the Butcher array satisfy

/= 1,.. r.(5.18) bjcJ-=
j=l

(b) Suppose M M2. Then (5.10a) holds ifand only iffor all j r, [j O.

Proof. (a) For M M1, it follows from (4.9b) that M-1/ 1 if and only if

(5.19a) T-r Hilb(s)-1 T-l/9- 1.
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Now, it is easy to see that

(5.19b) T-1/
Z’=I bjCij Z}=I bjcj 1/2

Z=I bjC_ y=lbjC;-1 1/r

where the last equality holds if and only if (5.18) holds. Note that T-1/9 is then the first column
of Hilb(r). Consequently,

(5.19c) Hilb(r)-1T-1/ Hilb(r) -1

1/r "0
which leads us to conclude that

(5.19d) M-1/ T-r

Ci

ci

Cir

C

cr-1

cr-1 "0 1
ir

(b) For M M2, given by (4.12b), M-1 is nonsingular if and only if/j 0. Also,
(5.10a) holds if and only if M1 . Clearly then, if )j O, (5.10a) holds because

(5.20) M1 ... =/. 13

b 1

Remark 5.8 The conditions (5.18) on the coefficients of the Butcher array for represen-
tation R1 are necessary conditions for the RK methods to be rth-order accurate [8, 17]. The
condition with in (5.18) is the same as the second part of Assumption 4.1’.

THEOREM 5.9. For representation R1, suppose that Assumptions 3.1, 4.1’, and 4.3 and
(5.18) hold and let d 2. For representation R2, suppose that Assumptions 3.1, 4.1’, and 4.6
hold and let d be the least common denominatorfor the elements bj, j s, of the Butcher
array. Let N zx {d }t=l and suppose that {rlN}NK, K C N, is such that tiN HN for all
N K and tiN -- rl as N cxz. Then ON(ON) ___K O(rl) as N -- cxz.

Proof. Let t H H -- I be defined by

,- [ max f(0, 0’) c(r)+ },(5.21a)t(r/ r/’)zx max max fV(0 r/’)-o(rl)--Crc(rl)+,veqc+q[ V6qo

and let N I-IN I-IN --+ be defined by

{ max fVN(O, rf)--c,N(rl)},k/N(O 0’)A max maxfv(Oveqo rl’)- l[ro,N(rl)--(71[tc,N(rl)+,veqc+q
(5.21b1
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so that 0(r/) min0,eH (r/, r/’) and 0N(r/) min0,eHN N(r/, r/’). Now, suppose that
{r/N}NsK is a sequence such that, for all N, r/N HN and r/N __+r r/. From the proof of
Theorem 4.12, r/ H. Let H be such that 0(r/) (r/, ), and let {r/}Nsr be any

Ksequence such that, for all N, r/N HN and r/N --+ . Then,

< k/(r/N, r/N) "- max max{f)’v(r/N, N) (iN’ r/q)}
I veqo

1/to(r/N) [O’!rc,N(r/N)+ O’l/rc(r/N)+]

JV (r/N, r/tN)--v(r/N,max
veqc+qo

(5.22)
It follows from Theorem 4.12, Theorem 5.6, Proposition 5.7, and the fact that {r/N}NeK is a
bounded set that each part of the max term on the right-hand side of (5.22) converges to zero

Kas N --+ cxz. The quantity t(r/g, r/) converges to 0(r/) since r/g ._..>K r/, r/g , and

(., .) is continuous. Thus, taking limits of both sides of (5.22), we obtain that li---lON(r/g) <
0(r/) (this proves that Definition 2.4 holds for the optimality functions of the approximating
problems). Now, for all N 6 K, let g I-IN be such that N(r/g) kIIg(r/g, g). Then,
O(r/N) < tP(r/N, g) and proceeding in a similar fashion as (5.22) and taking limits, we
see that 0(r/) < limOg(r/g).. Hence, together with the previous result, we can conclude that
ON(r/N) .._.K 0(r/) as N -- cxz.

Since the union of the spaces HN is dense in H,2 and Theorem 5.9 holds, it follows that
the hypographs of the optimality functions ON (’) converge to the hypograph of the optimality
function 0(-), in the Kuratowski sense, i.e., the --ON ...Epi

The following corollary is a direct result of Theorem 4.12 (epiconvergence) and Theorem
5.9.

COROLLARY 5.10 (consistency). For representation R1, suppose that Assumptions 3.1,
4.1’, 4.3, and 4.11 and (5.18) hold. For representation R2, suppose thatAssumptions 3.1, 4.1’,
4.6, and 4.11 hold. Let N {d/}t=l where d 2 for representation R1 and d is the least
common denominator of the bj, j s, for representation R2. Then, the approximating pairs
(CPN, ON), N N are consistent approximations to the pair (CP, 0).

6. Numerical results. The problems CPN can be solved using existing optimization
methods (e.g., [18] and [22]). These methods, however, are defined on a Euclidean space
and existing code would have to be modified for use on the coefficient spaces i 2.N’
To avoid this difficulty, we will now define a change of coordinates in coefficient space that
implicitly defines an orthonormal basis for the subspace L% and, hence, turns the coefficient
space into a Euclidean space.

Let LN L1N or Lv and, correspondingly, VA,N V1A,N or V2A,N" Recall from (5.5a) that,
for r (, u) HN and v q, Vuf(r/) VA-(u(O)MI), where (, ) WA,N(r/)

-pand (), defined in (5.5c), is the gradient of fN(’) with respect to the standard 12 inner
product on X )< m. The gradient of fv(’) with respect to the inner product on Lu is given

N

by Vufv(0) VA,u(Vufv(r/)) uV()M and satisfies

(6.1) (Vu f//(r/) U)2 (Vuf(6),) (-u(), /)i

for any 3u e HN and 3fi VA,N(b/) Introduce a new coefficient space, LN X N X
endowed with the standard 12 inner product and norm, and the transformation Q f_,u u
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defined by

.-:,1/2(6.2a) fi Q(t7) Ul,lN

where MN is defined in (5.4). Let (, fi), and for each v E q let fv ]n x LN ] be
defined by

(6.2b) V() a___ fV((, Q-l(t)))

Finally, let (, Q-I(/)). Then, by the chain rule,

(6.2c) VjYv(O) Q-l(vafv(O)) (o)mTv1/2.

Thus, (Vfiv(), /)/2 {Vfifv(), a/)Zv (Vufq(N), ab/N}2, where aft Q(6).
Implicitly, the transformation Q creates an orthonormal basis for LN because under this

transformation the inner-product and norm on LN are equal to the 12 inner-product and norm
on the coefficient space. With this transformation, the approximating problems CPN can be
solved using standard nonlinear programming methods without introducing ill-conditioning.
It is important to note, however, that control constraints are also transformed. Thus, the
constraint t E N becomes tMv1/2

6 N. For representation R1, since Mv1/2 is not
diagonal (except if r 1), this means that the transformed control constraints will, for each
k e A/’, involve linear combinations of the control samples fi, j r.

We will now present a numerical example that shows, in particular, that this transformation
can make a substantial difference in the performance of an algorithm.

Example. Consider the linear-quadratic problem taken from [15]

(6.3a) minf(u) f(u) zx
uU x2 (1)’

where x(t) (xl (t), x2(t))T and

(6.3b) "f
0.625x2 + 0.5XlU -]-0.5U2

X(0) 6 [0, 1].

The solution to this problem is given by

(6.4) u*(t) -(tanh(1 t) + 0.5) cosh(1 t)/cosh(1), E [0, 1],

with optimal cost x(1) e2 sinh(2)/(1 + e2)2 0.380797.
The approximating cost functions are fu(u) (0 1)V where { U}k=0 is the RK solution

for a given control u 6 LN. We discretized the dynamics using two common RK methods.
The first is a third-order method defined by the Butcher array A1 [c, A, b] with c
(0, 1/2, 1), b (1/6, 2/3, 1/6), and the nonzero entries of A are a2, 1/2, a3,1 -1, and
a3,2 2. The matrices MN used to define the transformation Q in (6.2a) are given by (5.4)
with

(6.5) M=MI=-gx, 2 16 2 M=M2=7 0 4 0
-1 2 4 0 0

We solved the approximating problems using steepest descent with the step-size deter-
mined by an Armijo rule augmented with a quadratic fit based on the value of fN (’) at the last
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TABLE
Conditioning effect of the transformation Q on approximating problems.

N

10 4
20 4
40 5
8O 5

Number of iterations

M Mi,i l,2 M I
19
19
23
24

two evaluations in the line search. The stopping criterion4 was IIull2 (3.1e 4)/N; and
the initial guess was u(t) O, [0, 1]. Table shows the number of iterations required to
solve the approximating problems for different discretization levels N with and without the
transformation (6.2a,b). We see that solving the discretized problems without the transforma-
tion requires about five times the number of iterations required for solving the problem with
the transformation. The situation can be even worse for other RK methods. The choice of
representation R1 versus representation R2 had no effect on the number of iterations required.

The second RK method is the fourth-order method RK4 defined by the Butcher array
A2 [c, A, b] with c (0, 1/2, 1/2, 1), b (1/6, 1/3, 1/3, 1/6) and the nonzero entries
of A are a2,1 a3,2 1/2 and a4,3 1. The matrices M1 and M2, equation (6.5), are the
same for this method, since c2 c3 1/2 implies r 3 and b2 2/3. We use this method
because it is very common and demonstrates the advantage of treating the samples arising
from repeated ci values in the Butcher array as the same sample (see Remark 4.8).

To see this advantage, let u* * u*N}N6N, N C N, be solutions of CPN, and suppose UN
where u* is a solution of CP. In [16, Thm. 3.1], Hager establishes, for symmetric RK methods
[1, 27], a tight upper bound on the error Ev VA,N(U*) VA,N (tTV) I1, of second order in

A 1/N for smooth, unconstrained problems. Note that VA,N(U*) u*(rk,j), k 6 A/" and
j 6 r, because u* (.) is smooth for smooth problems [26]. Hager used the problem given in
(6.4a) to demonstrate the tightness of this bound. For the particular RK method given by the
Butcher array Ae, we can state the following improved result (which, according to Proposition
5.5, does not depend on the control representation).

PROPOSITION 6.1. Let CP & minuu f(x (1)), u unconstrained. Suppose the approxi-
mating problems CPN are produced by discretizing CP with thefourth-order RK method with
Butcher array A2"c (0, 1/2, 1/2, 1), b- (1/6, 1/3, 1/3, 1/6)and the nonzero entries of
A are a2,1 a3,2 1/2 and a4,3 1. Further suppose that the conditions ofLemma 4.10(ii)
holdwithp --4. Let{Uu}Uer N C l,besolutionsofCPu andsupposeuu --+ where
is a solution ofCP. Then EN VA,N(U VA,N O(/k3).

Sketch of Proof. In 15], it is shown, using a reasonable nonsingularity assumption on
the Hessians of fu(’), that the accuracy of the solutions of the approximating problems is
determined by N times the size of the discrete-time gradient (using the standard 12 inner-
product) of the approximating problem at tT* VA,N(b/*), that is, Ev I[#(tT*)ll. This,
in turn, is a function of the accuracy of the state and adjoint approximations. For the RK
method under consideration, Hager shows that, for k 6 A/’, the variables tT u*(tk) and

fft3 u(t + A) are third-order approximations to u*(t) and u*(t + A), respectively. Thus,
we need only show that fi,2 u* (t/ + A/2) is a third-order approximation to u* (t + A/2).

Let Y/,2 ./ + A/2h(Y, t1) and Y/,3 Y/ + A/2h(Y,2,) represent certain
intermediate values used by the RK method at the kth time step. In Hager’s notation, Yk,2
y(1, k) and Yg,3 y(2, k). Hager introduces a clever transformation, specific to symmetric

4Higher precision was difficult to achieve when the Q transformation was not used.
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TABLE 2
Rate ofconvergence; conditioning effect ofthe transformation Q.

N EN
10 1.48e-4 7.91 2.86e-7 16.22
20 1.87e-5 7.99 1.76e-8 16.13
40 2.34e-6 7.62 1.09e-9 16.07
80 3.07e-7 6.80e- 11

Accuracy ofsolutions Number of iterations

Ev/eU EfN e/Ef2u M Mi, 1, 2 M - I

21
21
23
23

RK methods, for the adjoint variables so that they can be viewed as being calculated with
the same RK method used to compute the state variables but run backward in time. The
intermediate adjoint variables of interest here are denoted by q(2, k) and q(1, k). With this
transformation, the discrete-time gradients for the approximating problems have the same form
as the continuous-time gradient for the original problem. Since C2 3 1/2, u(fi*)
2A/3[1/2hu(Yk,2, ti:2)rq (1, k)+ 1/2hu(Yk,3, ti2)Tq(2, k)]. Further, since 2A/3hu(xu* (tk +

2A/2), u (tk + A/2))Tpu*(tk + A/2) 0, II#u(*)211 is bounded by 5A times the maximum
of (Yk,2 + Yk,3)/2- xU*(t: +/x/2)ll and II(q(2, k)+ q(1, k))/2- pU*(tk + /X/2)II. Let

w(k) ZX Yk + Yk 3
2 + h(Y * h(2 gt

2 - ,uk)+h 2k+-
A’ -,) )](6.6) 2 + --[h(, uk + h(2 + A’h(, u

where A’ A/2. Thus, w(k) is produced by the improved Euler rule applied to 2t. Since
the local truncation error for the improved Euler rule is of order O(A3) and 2k is of order
O(A4), IIw(k) xU*(t + A/2)II is of order O(A3). In the same way, it can be shown that
IIq(2, k) + q(1, k))/2 pU* (t + A/2)[I is O(A3). Thus, we can conclude that II)u (t7")2
O(A4) for all k 6 N’. This implies that the solutions of the approximating problems satisfy
-*J /,/*U N,k (’gk, j O (m3) for all k 6 iV" and j

Table 2 summarizes our numerical results using the RK method with Butcher array A2.
The first column gives the discretization level. Columns 2 and 3 show that doubling the
discretization results in an eightfold reduction in the control error. Thus, as predicted by
Proposition 6.1, Ev is O(A3). The next two columns, agreeing with Hager’s observations that
the optimal trajectories ofthe approximating problem converge to those ofthe original problem
with the same order as the order ofthe symmetric RK method, show that EfN
is of order O(A4). The numbers in columns 2 and 4 were obtained by solving the discretized
problems to full precision. Finally, we include in the last two columns the number of iterations
required to solve the approximate problem with and without the transformation Q. The
stopping criterion was the same as used for Table 1. As with the previous method, the effect of
the Q transformation is quite significant. The solution of the untransformed problem requires
about five times the number of iterations required to solve the transformed problem.

The last table shows the accuracy of the gradients for the approximating problems pro-
duced with the second RK method (Butcher array A4) evaluated at the control u(t) + 2t.
The first column shows the discretization level N. The second and third columns confirm that
the gradients, VfN(/) )uM}l, for the approximating problems converge to the gradients
of the original problem. Note that, based on the proof of Theorem 5.6, it is enough to show
that the gradients converge at the points 72k,ij k 6 N’, j 6 r, and ij I. The fourth column
of Table 3 shows that the gradients that result if one uses the standard 12 inner product on
X N X ]lm do not converge.
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TABLE 3
Convergence ofgradients.

M--M1
g [IVA,N(Vf(u))- VfN(fi)[[
10 1.67e-3
20 3.77e-4
40 9.94e-5
80 2.55e-5

M M2
[[VA,N(Vf(u)) Vfu(fi)ll

6.46e-4
8.31e-5
1.05e-5
1.33e-6

M=-I
1.48
1.48
1.48
1.48

7. Conclusion. We have shown that a large class of Runge-Kutta integration methods
can be used to construct consistent approximations to continuous-time optimal control prob-
lems. The construction of consistent approximations is not unique: it is determined by the
selection of families of finite-dimensional subspaces of the control space. Because the ele-
ments of these subspaces are discontinuous functions, appropriate extensions of Runge-Kutta
methods must be used. Not all convergent Runge-Kutta methods, however, produce consistent
approximations. This was observed both numerically and by failure to prove consistency of
approximation with these methods. We have considered two selections of control subspaces
in this paper, one defined by piecewise polynomial functions and one by piecewise constant
functions. Splines can also be used and are treated in [28]. Each selection has some advan-
tages and some disadvantages. A final selection has to be made on the basis of secondary
considerations such as the importance of approximate solutions satisfying the original control
constraints, the form that thecontrol constraints take in the discrete-time optimal problems or
the accuracy with which the differential equation is integrated.

As in our case, the basis functions that are used implicitly to define the finite-dimensional
control subspaces may turn out to be nonorthonormal. In this case care must be taken to
introduce a nonstandard inner product and corresponding norm in solving the resulting ap-
proximating discrete-time optimal control problems. Neglecting to do so amounts to a change
of coordinates that can lead to serious ill-conditioning. This ill-conditioning is demonstrated
in 6.

Finally, the use of the framework of consistent approximations opens up the possibility
of developing optimal discretization strategies, such as those considered for semi-infinite
programming in 16]. Such a strategy provides rules for selecting the number ofapproximating
problems to be used as well as the discretization level, the order of the RK method, and
the number of iterations of a particular optimization algorithm to be applied for each such
approximating problem, so as to minimize the computing time needed to reach a specified
degree of accuracy in solving an optimal control problem.

Appendix A. In this appendix we collect a few results used in the analysis of4 and 5.
We will continue to use the notation of 4, that is, A 1/N, tk kA, and rk,i t + ci A.

LEMMA A.1. For the representation R1, suppose that Assumptions 3.1(a), 4.1’, and 4.3
hold. For representation R2, suppose that Assumptions 3.1(a), 4.1’, and 4.6 hold. For any
bounded subset S C B, there exists a tc < cx such that for any rl (, u) S N HN,
II,ll _< x A2 for all k N’, where

(A.1) A__ Xrl(tk) Xrl(tk+l) -t- A bih(xO(tk), U[rk,i]), k iV’,
i=1

with xO(.) the solution of the differential equation (3.1) and U[’gk,i] defined by (4.6e)for
representation R1 and (4.11c)for representation R2.
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Proof. Let Dj and dj be as defined in (4.10), and for j 6 r let ij 1 where I is
given by (4.4a). Then, writing x(.) x0(.), since the solution of (3.1) satisfies x(tk+l)
x(tk) + "t/ h(x(t) u(t)) dr, we see thatJ tk

(A.2a)

[t+A bih(x(tk), t/[l’k,/] h(x(t), u(t)) dt
i=1

, tk

h(x(t), U[’gk,ij]) dt h(x(t), u(t)) dt
j=l tk+dj_ j=l Jtk+dj_

because dj dj-1 A/j, u[r,ij] u[’gk,i] for all Ij, do 0 and, by Assumption 4.1’,

dr A Yj=I/J A Y=I bj A. Since dj dj-1 > 0 by Assumption 4.1’ we have that

(A.2b)

t,+d

11611 _< IIh(x(t), U[’gk,ij]) h(x(t), u(t))ll dt
j=l tk +dj_

_< xl[llx(tk)- x(t)[I 4-Ilu[vk,#]- u(t)ll]dt,
j=l dt+dj_

where tel < ec is as in Assumption 3.1(a). Now, for 6 [t, t+l], there exists K2 < O such
that

(A.3) [tk+
IIx(tk) x(t)ll < IIh(x(t), u(t))ll dt <_ x2[llx(t)ll + 11 dt

d tk

by Assumption 3.1(a) and the fact that S is bounded. Also because S is bounded, it follows
from Theorem 3.2(ii)that there exists L < cx such that IIx(t)ll _< x3[llll + 1] _< L. Thus, for

[tk, tk+l], IIx(t)-x(t)ll < Ft+’ c2[Z + 1]dt Ax2(L + 1) Next, for representation R1Jtk
foranyk N’,j 6 r, andt 6 [t+d_l,t+dj),llu[r,#]-u(t)[[ < xuA, wherexu isusedin
(4.15a), since by construction, t7 6 UN is a Lipschitz continuous polynomial on [tk, t+l) with
Lipschitzconstanttcu independent ofN, r,# 6 [t, t+A]by Assumption4.3, and0 < dj <_ A
for j 0 r by Assumption 4.1’, which implies that [tk + dj_l, tk + dj) C [t, t + A).
The same holds for representation R2, since u 6 LZN is constant on 6 [t + dj_l, tk + d)
and r,/ 6 [t + dj-1, tk + dj] by Assumption 4.6. Therefore,

(A.4) [[kl[ --< tCl(tC2(L + 1) + tc)A dt tea dt tea2,
j=l dt+dj_ j=l at+dj_

where x K (tc2(L + 1) + try). This completes our proof. [3

Remark A.2. The result in Lemma A. can be shown to hold even if the constraints on
--1

[[uxT[[ in the definition (4.15a) of Uu were removed if h(x, u) it(x) + Bu and the RK
method is of order r. Starting from (A.2a), we have

(A.5a) 6k [t(x(t)) [t(x(t)) dt + A Dj Bu[rk,j] Bu(t) dt.
j=l vtk+d_ j=l

The first term is O(A2) by the argument already presented. For the remaining part, we see
that

(A.5b) B A bju[rk,j] u(t + tg) dt O,
j=l
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since a pth-order Runge-Kutta method, p > r, integrates the equation k u(t + tk) exactly
for any rth order polynomial u.

The next lemma concerns the functions Kk,i Ki (k, 09k) of the RK method defined by
(4.3a,b). The proof of this result is easily obtained from the proof for Lemma 222A in [8,
p. 131].

LEMMA A.3. Suppose Assumption 3.1(a) holds. Let S C B be bounded. Then there exists
L < cx and N* < cxz such thatfor all N > N*, S f3 HN, k A/’, and s,

(A.6) [[gk.i- h(, u[r.i])[[ < LA.

Next, we present a proof of Lemma 4.10.

Proof ofLemma 4.10. (i) Convergence. Let 0 (, u) S f3 HN, and for k .N" let
e xn(t). Then [le0ll 0 < xA and by adding and subtracting terms,

(A.7)

ek+l Ok A- A bi Kk,i x(tk+l)
i=1

ek "+- IXrt(tk) Xrt(tk+l) -k- A -bih(xO(tk)’ U[k’i])

-+-A bi [Kk,i h(xO(tk), U[TJk,i])]
i=1

The norm of the second term in this expression is bounded by X A2 by Lemma A. where
tel < c,. Using Lemma A.3, Assumption 3.1(a), and the fact that [bi[ < by Assumption
4.1’, we conclude for the third term that there exists x2 < cx such that

(A.8)

bi [gk,i h(x(tk), U[’gk,i])]
i=1

< A IlK,i- h(Y, u[TJk,i])l - m Ilh(X’, u[’gk,i])- h(xrl(tk), u[’gk,i])]l
i=1 i=1

< A2Ls A- Ax2sllell.

Thus, for all k 6 A/’,

(A.9) Ile+lll < (1 + x2/Xs)lle, + K3 A2,

where to3 tel + Ls. Solving (A.9), we see that for all k 6 A/’, Ilell 5 (1 + K2AS)N lie011 +
x3’ A _< tc A. This proves (4.18a).

(ii) Order of Convergence. We prove (4.18c) in two steps. First suppose that HN
HN ]1n X tq and let / (, Ul) 6 Sf3 HN be given. The expansion based on higher order
derivatives (see [8]) needed to prove (4.18c) requires smoothness of h(x, u) between time
steps. The stated assumptions provide enough smoothness if uniform piecewise smoothness
ofu (.) is assumed. Alternatively, the result can also be shown to hold without this assumption
on u if the differential equations describing the system dynamics are linear and time-invariant
with respect to u (as in Remark A.2). In either case, using the same type of reasoning as in
the proof of Lemma A.1, we conclude that there exists tc < cxz, independent of r/, such
that (4.18c) holds for representation R1. Next, to prove (4.18c) for representation R2, let
HN HZu " L. Let 72 (, U2) G S O HN2 be given, and let r/ (, u) 6 H with
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Ul (V,N)-I(v2A,N(u2)) so that V1A,N (Ul) Vt,N(U2). Then for any 6 [0, 1],

(A.10a)

IIx’ (t) -x(t)ll h(xO(s),u(s)) -h(x2(s),u2(s))ds

t~
<__ h(xrll(s)) h(xrl2(s)) -’1- B(Ul(S) u2(s))ds

--< /(1 Ilx’ (s) -xO2(s)llds / B(Ul(S) u2(s))ds

by Assumption 3.1(a). Using the Bellman-Gronwall lemma, we conclude that for any 6

[0, 1]

(A.10b) IIx0’ (t) xO(t)ll _< tce IIBII f0 (Ul(S) -u2(s))ds

Now, let :l(t) Ul(t), 6 [0, 11, zl(0) and 9(t) & u2(t), 6 [0, 1], Z2(0) . Let
z-I and z,-2 k N’, be the computed solutions of z (t) and z2(t), respectively, using the RK

-2 for all k 6 N" since V (u 1) V2method under consideration. We note that k Zk A,N A,N (u2)"
Then, since u is an rth-order polynomial, any pth-order RK method, p > r, integrates 1 (t)

-1 z (tt) for all k 6 N’. Also, from (4.3a,b),exactly. Thus z

(A.10c) ..[t+dj+ +
i=l j=l t+dj_

since r.j 6 [r + dj-1, t + dj) (by Assumption 4.6) with U2(’) constant on these intervals
and dr A by Assumption 4.1’. Since , we must have

(A.10d) Zl(tt)-z2(tg)=-=0 YkjV’.

Hence, we conclude that

IIf0(A.10e) (u (s) u.(s)) ds Ilzl(t) z2(t)ll 0.

Therefore,

-/71 __22IIxOZ(tk)--2Ok21l <--IIxOz(tk)--XO’(tk)ll-t-IIxO’(t)--’ll-t-llx < tc’lNp Yk 6N’,
(A.10f)
where we have used (A.10b) and (A.10e), the fact that IIx (t) 2 _< 2/NP since (4.18c)
holds for r/1 S f3 H by the first part of this discussion, and the fact that 21 -k
since Ul[’ik,i] U2[k,i]. Thus (4.18c) holds for representation R2 under the stated
conditions. [3

LEMMA A.4. Suppose that Assumptions 3.1, 4.1’, and 4.3 holdfor representation R and
that Assumptions 3.1,4.1’, and 4.6 holdfor representation R2. For any S C B bounded, there
exist tc < o and N* < oo such thatfor any 0 S fq HN and N > N*

K
(A.11) 113, p(t)ll <

N’ k 6 {0 N}, v s q,

-v Nwhere p (.) is the solution to the adjoint differential equation (3.6c) and {pk}=0 is the solution
to the corresponding adjoint difference equation (5.5d).
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zX pv (tk+l)Proof. Proceeding as in the proof of Lemma 4.10(i), if we define ek+l Pk/l
we can show that

(A.12) Ilekll Llllek+lll + L2 A2, k 6 A/’,

where L1, L2 < cx, using (i) the fact that

(A.13) Vk Fx(k, lk)Tk+l +1 "" A bihx(.k, u[z’k,i])Tk+l -- O(z2),
i--1

(ii) Lemma A.1 with h(x(tk), U[rk,i]) replaced by --hx(X(tk), U[rk,i]) r pv(tk+l), and (iii)
the result of Lemma 4.10(i) that IIx(tk) 7,11 _< /x for all k A/’. Now, by Assumption
3.1(b) and Lemma 4.10(i), there exists K1 < o such that

(A.14) IleNII II/v p(1)l[ II(x(,)r x(, x(1))rll tclllN x(1)]l < K2A,

where 2 XZl. Thus, solving (A. 15) we conclude that for all k 6 ./V’,

Ilell _< (t)Nllell + LA,
which, with (A. 17), proves (A. 14). q

Acknowledgments. We wish to thank the referees and associate editor for carefully
reading this paper, for pointing OUt an error in one of our proofs, and for their suggestions for
improving readability.

Note added in proof. The following conjecture concerns the constraints on IIkT I1 used

to define Us in (4.15a). Recall from Remark 4.9 that these constraints impose a Lipschitz

() that iscontinuity constraint on the individual polynomial pieces of u U VN
needed to ensure accurate RK integration for controls defined by representation R1. Clearly,
the addition ofthese constraints, which do not appear in the original problem CP, is a nuisance.
Conjecture 5.11 proposes conditions under which these constraints are not needed to define
consistent approximating problems (CPN, 0v) using control representation R1. Assumption
4.6 (needed for control representation R2) is required in place of Assumption 4.3.

CONJECTURE 5.11. Suppose that the approximating problems CPN are defined according
V_

--1
to (4.17a) with I-Is x A,v(UN), where

1
(5.23) UN { Lvl U ’j r, k A/’}.

Furthermore, assume that Assumptions 3.1, 4.1’, 4.6, and 4.11 and (5.18) hold. Let N
{}l=1.2t Then the approximating pairs (CPN, ON), N N, are consistent approximations to

the pair (CP, 0).
The basis for this conjecture is the fact that, according to Proposition 5.5, the control

samples of the approximating problem solutions do not depend on the control representation
and consistency for approximating problems defined with control representation R2 does not
require a piecewise Lipschitz continuity contraint on the controls. More details are provided
in [28].
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ON Le SUFFICIENT CONDITIONS AND THE GRADIENT PROJECTION
METHOD FOR OPTIMAL CONTROL PROBLEMS*

J. C. DUNN

Abstract. L2-1ocal convergence and active constraint identification theorems are proved for gradient projection
iterates in sets of L functions on [0, with range in a polyhedron U C ]Rm. These theorems extend earlier results
for U [0, x) C ]R and are based on an infinite-dimensional variant of the Karush-Kuhn-Tucker second-order
sufficient conditions in polyhedral subsets of ]Rn. The new sufficient conditions and convergence results proved here
are directly applicable to continuous-time optimal control problems with smooth nonconvex nonquadratic objective
functions and Hamiltonians that are quadratic in the control input vector u. In particular, these theorems apply
to nonconvex nonquadratic regulator problems with control-linear state equations and vector-valued inputs u(t)
satisfying unqualified affine inequality constraints at almost all in [0, ].

Key words, gradient projection, infinite-dimensional programs, affine inequality constraints, nonconvex objec-
tives, L2-1ocal optimality, second-order sufficient conditions, L2-1ocal convergence, active constraint identification,
optimal control, constrained inputs

AMS subject classifications. 49M07, 49M10, 49K15, 65K10, 90C06

1. Introduction. Infinite-dimensional extensions of the Karush-Kuhn-Tucker (KKT)
second-order sufficient conditions in nonnegative orthants are closely linked to the local con-
vergence properties of gradient projection iterates in the cone of nonnegative Le functions

]-[3]. Similar Le-local convergence and active constraint identification theorems are based
here on second-order sufficient conditions related to those in [4] for infinite-dimensional con-
strained minimization problems

(1.1a) min J(u),

(1.1b)
a.e.

s2- {u E Lm[O, l]’u(t) E U},

where U is a nonempty polyhedral convex set in ]m, LmOC [0, 1] is the vector space of essentially
bounded measurable functions u [0, 1] -- IRm, and J is a nonconvex real-valued function
with first and second Gfiteaux differentials satisfying structure and continuity assumptions that
are justifiable in a control-theoretic context, as explained below and in [2].

We assume that for all u in Lm[0, 1], there exist (p(u) E L [0, 1], S(u) E LmCxm[0, 1],
and K;(u) E L2mxm([0, 1] x [0, 1]), such that

(1.2a) d J(u v) (VJ(u), V)2 (VJ(u)(t), v(t))dt,

(1.2b) VJ(u)(t) dp(u)(t) + S(u)(t)u(t),

(1.3a)

(1.3b)

d2j(u v, w) (v, V2j(u)to}2 (v(t), (V2j(u)w)(t))dt,

(VeJ(u)v)(t) S(u)(t)v(t) + 1C(u)(t, s)v(s)ds,

*Received by the editors April 15, 1994; accepted for publication (in revised form) March 9, 1995. This research
was supported by NSF research grant DMS-9205240.

tMathematics Department, Box 8205, North Carolina State University, Raleigh, NC 27695-8205.
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for all v and w in t.[O, 1], and almost all in [0, 1] and (s, t) in [0, 1] x [0, ], with

def
(1.4a) lim [14(v) 4(u)11o lim ess sup l]4(v)(t) q(u)(t)ll O,

[[o-ullz0 I[o-ull2--+0 t6[0,1]

(1.4b) lim IIS(v) S(u)ll =f lim ess sup IIS(o)(t) S(u)(t)ll 0,
IIv-ullz0 IIv-ull20 t[0,1]

(1.4c)

(f0 lim I]/C(v) -/C(u)ll2 dej lim I[/C(o)(t, s) 1C(u)(t, s)ll2dtds O.
v-u IIz--+0 v-u IIz0

We also assume that the rnm matrices S(u)(t) and 1C(u)(t, s) are symmetric with 1C(u)(t, s)
1C(u)(s, t) and that the vector and matrix norms on m and ]mm in (1.2)-(1.4) are induced
by the standard Euclidean inner product (, 0) zim_-I il"]i on ]m. Portions of these con-
ditions are invoked in the I..2-1ocal optimality sufficiency analysis of [4] and the convergence
analysis of [2]; together, they insure that J is twice continuously Fr6chet differentiable on the
pre-Hilbert space {l_m[0, ], I1" I1=} and permit infinite-dimensional extensions of established
proof strategies for sufficient conditions, active constraint identification theorems, and local
convergence theorems for gradient projection iterations in polyhedral subsets of m.

Section 6 in [2] shows that conditions (1.2)-(1.4) are met by a large class of continuous-
time optimal control problems with Bolza objective functions

(1.5a) J(u) P (x(u)(1)) + fo (t, x(u)(t), u(t)) dr,

where x(u) [0, 1] IR’ is the unique (absolutely continuous) solution of an initial value
problem

dx
(t)

a.e.
(1.5b)

dt f (t, x(t), u(t))

(1.5c) x (0) x,
corresponding to u in l [0, 1 ]. In these equations, x is fixed in n, and the functions P, f,
and f0 map ]n to ]1 (]1 X ]n )< ]lm) to ]1n, and (/1 in x Im) to 1, respectively, and
satisfy suitable smoothness and growth restrictions. In particular, conditions (1.2)-(1.4) are
implied by Assumptions A1-A3 in [2], repeated below (or analogous weaker assumptions of
the Carath6odory type [40]).

ASSUMPTION 1.1.
(i) P is twice continuously differentiable.
(ii) For 0 n,

fi(t, X, u) qi(t, X) + (ri(t, x), u) -+- - (u, si(t, x)u),

wheresi(t,x) E ]1mxm issymmetric, andthefunctionsqi Ixn --+ ]l,t’i ]11 x]n ]]m,
and si x n

__
]Imrn and theirfirst and secondpartial derivatives with respect to x are

continuous on I n.
(iii) For n, the first partial derivatives of qi, ri, and si with respect to x are

bounded on I x n.
In such cases, conditions (1.2)-(1.4) hold with q(u)(t), S(u)(t), and 1C(u)(t, s) obtained

from partial Hessians of the Hamiltonian

H(t, ap, x, u) (, f (t, x, u)) + fo(t, x, u),
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solutions 7r(u) of the costate (adjoint) equations

d (t)
a.e. Of (t, x(t), u(t)) 7t Vfo (t, x(t), u(t))

dt Ox

(1) VP(x(u)(1)),

and fundamental solution matrices of the equations of variation for (1.5b) [2]. More specifi-
cally, Assumption 1.1 implies that conditions (1.2)-(1.4) hold with

S(u)(t) VuuH(t, ap(u)(t), x(u)(t), u(t))

so(t, x(u)(t)) -k- i(u)(t)si(t, x(u)(t)),
i=1

VJ(u)(t) Vun(t, (u)(t), x(u)(t), u(t))

(u)(t) + S(u)(t)u(t),

where

qb(u)(t) ro(t, x(u)(t)) + Oi(u)(t)ri(t, x(u)(t)).
i=1

In these expressions, the symbols , x, and u refer to vectors in R" or ]m when they appear in
H(t, , x, u), VuH(t, ap, x, u), and VuuH(t, 7t, x, u) and to vector-valuedfunctions on [0, 1]
with range in ]n or ]m when they appear in O(u) and x(u). Note that the structure condition
in Assumption 1.1 (ii) holds iff H is quadratic in the control input vector u Rm; this happens
for the important subclass of Bolza problems with nonconvex control-quadratic running costs

f0 and control-linear state equations (where 1.1(ii) holds with si(t, x) 0, for n).
Note also that Assumption 1.1 can be weakened if conditions (1.2)-(1.4) are needed only
in some 12 neighborhood of a function u. for which unique solutions x(u.) and O(u.) of
the state and costate equations are already known to exist. Local versions of (1.2)-(1.4) are
actually enough for the local optimality conditions in 4 (cf. [4]) and the local convergence
analysis in 5 and 6. We impose (1.2)-(1.4) in their global form to simplify the exposition.

The gradient projection scheme investigated here employs a Goldstein-Levitin-Polyak
iteration map [5], [6] and Bertsekas step length rule [7], i.e.,

(1.6a)

(1.6b)

with

(1.6c)

subject to

(1.6d)

and

u G(u)--g(a(u), u),

g(a, u) P(u aVJ(u)),

a(u) min a

(1.6e) J(u) J (g(a, u)) >_ cr (VJ(u), u g(a,

where is fixed in (0, cx), r and/ are fixed in (0, 1), and P is the L.2 metric projection map
for f2. The map P exists for the set f2 in (1.1b), even though {km[0, 1], II. 112} is incomplete.
To see this, note that Pt is continuous and nonexpansive and satisfies the Euclidean minimum
distance condition

u Puu min u II,
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for all u in ]t{m Hence, the rule

(1.7) v(t) a._e. P(u(t))

defines a mapping from IMP[0, 1] to f2 that satisfies the [..2 minimum distance condition

U V 112 min u 2,

for all u in/m[0, 1] and v defined by (1.7). Even in a pre-Hilbert space, there is at most one
such v for each u; hence v Pu and

(1.8) (Pau) (t) a._.e. Pv(u(t))

(cf. the projection theorem proof in [8]). We can now see that if VJ(u) is in/[0, 1] for all u
in/[0, 1], then g(a, .) is defined for all a > 0. Finally, if VJ (.) is continuous with respect
to the 12 metric, then the Bertsekas step length a (u) also exists (the Hilbert space proof for this
assertion in [9] does not depend on completeness and transfers directly to {[_m[0, 1], I1" 112}).

In view of (1.8), the projection operator P is readily computed for (1.1b) when U is an
orthant, box, simplex, or some such simple polyhedral set, as is often the case for optimal
control problems; moreover, the required gradients are also often cheaply computed for the
specially structured objective functions J in optimal control problems. Under these circum-
stances, the efficacy of a gradient projection method turns on the convergence behavior of its
approximate or asymptotically exact implementations in finite-dimensional subspaces con-
verging to/m[0, 1] from below. Computational experience [23], [29] and some theoretical
studies [24]-[29] show that convergence theories for the underlying infinite-dimensional algo-
rithm can play an important role in predicting this behavior, particularly when new qualitative
differences emerge in the infinite-dimensional limit. In the present context,/2-local and !_

local convergence theorems are qualitatively different in 1_[0, 1], and this fact has definite
quantitative computational implications even though all norms are (qualitatively) equivalent
on IR" (see [23] and the opening paragraphs in 5).

The convergence analysis in 5 and 6 proceeds from certain fundamental geometric
properties of the solution sets of finite systems of affine inequalities in IRm, i.e., the polyhedral
convex sets

(1.9) U {U ]x (ai, u) q- bi <_ 0; k}.

These properties are derived from the algebraic representation (1.9); however, (1.9) itself
is not needed and does not appear explicitly in our theorems or proofs. As in [26], [30],
[31 ], [4], key proof ideas are more readily grasped (and discovered) in this geometric frame-
work, and constraint qualifications are not required. In 2 we give the pertinent properties
of polyhedral convex sets U C IRm, and in 3 we sketch the proofs of second-order optimal-
ity conditions and local convergence theorems for gradient projection iterates in polyhedra.
The geometric sufficiency proof strategy outlined in 3 is then adapted in 4 to the specially
structured infinite-dimensional programs (1.1) satisfying (1.2)-(1.4). The resulting second-
order sufficient conditions for/2-local optimality in Theorem 4.1 consist of an l_2-coercivity
restriction on V2J formally analogous to the standard coercivity condition in polyhedra, a
norm-independent pointwise counterpart of strict complementarity in Cartesian products of
polyhedra, and a third requirement that amounts to a stronger version ofPontryagin’s necessary
condition in the ordinary differential equation (ODE) control problem context.

Theorem 4.1 adds significantly to the k2-1ocal sufficiency analysis in [4]. In [4], a two-
norm/-local optimality growth estimate of the form

(1.10) aoo, coo > 0 Vu S2 (llu- u, lloo < J(u)- J(u,) > cllu- u,l122)
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is deduced from the L2-coercivity condition, a weakened L strict complementarity condition,
and additional technical constraints imposed near point r in [0, 1], where u,(t) passes from
one open facet in the polyhedron U to another. The growth condition (1.10) then appears
along with the strengthened Pontryagin condition as a hypothesis in the L2-1ocal optimality
sufficiency theorem in [4]. In contrast, the proof technique employed here permits weaker
regularity hypotheses and strict complementarity conditions by fully exploiting the Pontrya-
gin condition. For additional ground-breaking L-local optimality sufficiency theorems and
related applications, see 10]-[22].

The convergence theorem in 5 and the active constraint identification theorem in 6
are based directly on a corollary of Theorem 4.1 that applies when the matrices S(u,)(t) are
essentially uniformly positive-definite on [0, at a minimizer u,, i.e., when there is a positive
number cp such that

(1.11) ( E ]m (, S(u,)(t)) > cpllll 2) a.e. in [0, 1].

Condition (1.11) is a natural requirement for nonconvex regulator problems with control-
quadratic running costs and control-linear state equations. For such problems,

S(u)(t) V2uuH(t, p(u)(t), x(u)(t), u(t)) so(t, x(u)(t)),

and so is often constant or dependent on only. An example in [23] shows that the weaker
Pontryagin-like hypothesis imposed in Theorem 4.1 will not support an L2-1ocal convergence
theory for gradient projection methods, hence (1.11) assumes a special importance for these
algorithms. In the control problem context, (1.11) is a strong variant of Legendre’s necessary
condition.

2. Polyhedra. Each nonempty polyhedron U in (1.9) is a union of d polyhedral faces
.T’ .T’a. Let aff i denote the affine hull of/, i.e., the smallest linear variety (translated
subspace) containing /. Let ri i and rb i denote the relative interior and relative boundary
of U/, i.e., the interior and boundary of U/relative to aff Ui. It is shown in [32] that the sets
ri Ui make a partition for U, i.e.,

d

U U ri .,(2.12a)
i=1

(2.12b) ri ’i (’1 ri j 0, 7 j.

In 17], the sets ri Ui are called openfacets.
At each u in U, let f’(u) be the unique face in {f’l f’d containing u in its relative

interior, and let A/’v(u) be the corresponding normal cone:

with

N(u) span JV’v(u), T(u) N(u)+/-.

In polyhedra U, the set-valued maps A/’v(.), N(.), and T(.) are constant on each open facet
ri Ui [30], [31], i.e., there exist cones A/] A/’, and subspace pairs (N, T1) (N,, Ta)
such that

(2.13a) A/’v(u) ./V/, N(u) Ni, T(u) Ti,
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for all d and u in ri U/; moreover,

(2.13b) aff . u + Ti

and

(2.13c) 9r/ (u + Ti) A U.

The partition (2.12) and the Euclidean projection map P induce a corresponding partition
of ]m that plays a central role in geometric characterizations of the convergence behavior of
gradient projection iterates in polyhedra [30], [31 and in the sets (1. lb) considered here. For
nonempty polyhedra U, the projection theorem asserts that Pt: is defined on ]m and that

u=/’(x) x-ueA;(u),

for all x in m and u in U. Hence (2.12) implies that

p r i r i + N’i

for 1 d, and therefore

d

]m U r f’i + N’i
i=1

with

r ,Ui + N’i f3 r Jcj. + N’j. ) 0,

Furthermore, each of the sets PjI [ri U/] has a nonempty interior in ]m obtained by adding
the relative interiors of / and .M/. This essential fact is noted in [33] and restated below in
our first lemma; a closely related result is proved in [31 ].

For x 6 Nm, Y C ]Rm, and r > 0, let dist (x, Y) infyey ]ly xll and B(x; r) {y
Item IlY x _< r }. For all y in Y, it can be seen that

dist (y, rb Y)- sup {r > 0" B(y; r) aff Y C Y},

with dist (y, rb Y) > 0 for all y in ri Y.
LEMMA 2.1. Let U be a polyhedral convex set in R with faces f’l Ud. Then for

i-1 d,

intPff [ri .Ui] ri i + ri N’i.

Moreover, suppose that u ri f’i, v ri Ni, w u + v, and Aw ]m, with

IIAwll < s min{dist (u, rb f’i), dist (v, rb A//)}.

Then Pt:(w + Aw) 6 ri f’i and dist (Pv(w + Aw), rb i) >_ s -IIAwll
Proof. Suppose that Aw 6 IR and IlAw]l < s. Write w + Aw x +y, with

X U at- eTi AW and y v + PNi AW. Note that Pxi AW < zxw and PNi AW <

IIAwll. Hence x ri Jci, y ri N’i, and therefore x Pv(w + Aw). This proves that
dist (Pte(w + Aw), rb i) > s IIAwll and that ri Jci + ri A// C int P [ri f’i].

Conversely, suppose that to 6 int pl [ri /]. Then there exist vectors u ri i and
v 6 .M/, and a real number r > 0, such that w u + v and (w + Av) pl [ri .i] for all
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Av E Ni, with Av < r. Now note that if Av E Ni and Pu (u + v + Av) u’ e ri i,
then (u + v + Av u’) e N’u (u’) A;/ c Ni, with (u u’) e T and (v + Av) e Ni.
But in this case, (u u’) 0 and (v + Av) e Ni. This proves that v ri N’i and hence
ri .i + ri .M/ D int p]l [ri Y:i]. [3

Note 2.1. Theorem 2.8 in [31] asserts that int (/+ At/) ri .i + ri N’i. The first
part of Lemma 2.1 is a corollary of this result; however, the sets e/l [ri /] have a more
immediate intuitive significance for our analysis, and the direct proof for Lemma 2.1 given
here is shorter than the proof in [31 ].

3. Optimality conditions and convergence theorems in polyhedra. In polyhedral sets
U C m, the essential contents of the KKT optimality conditions and the local convergence
theorems for gradient projection iterates are best expressed in a representation-free, multiplier-
free geometric language. We pursue this further below to motivate proof constructions for
the set S2 in (1.1), which is in some sense an infinite-dimensional limit of k-fold polyhedral
Cartesian products f2 U x U.

If J m _+ is twice continuously differentiable and if u, is a local minimizer for J
in the polyhedron U C m, then

(3.14a) VJ(u,) .A/’te(u,),

(3.14b) VV ff T(u,) (v, V2J(u,)v) >_ O.

Conversely, if

(3.15a) VJ(u,) ri jV’(u,)

and

(3.15b) cr > 0 Vv T(u,) (v, V2J(u,)v) >_ CT Ilvll a,
then u, is a local minimizer for J in U, and

(3.16) :qc > 0 :!3 > 0 Yu E U N B(u,; 3) J(u) J(u,) c Ilu u,[I 2.

Local minimizers that satisfy the sufficient conditions (3.15) are said to be nonsingular.
If u, lies in the interior of U in Nm, then ri N’(u,) rb N’v (u,) N’cr (u,) {0}, and

(3.14b) and (3.15b) reduce to the standard second-order necessary condition and sufficient
condition for unconstrained local minimizers. If u, is a frontier point of U, then ri N’v (u,) is
a nonempty proper subset ofN’v (u,) and (3.15a) is stronger than (3.14a); however, rb .Aft(u,)
is nowhere dense in the subspace N(u,) and is negligibly small compared with ri N’(u,) in
a measure-theoretic sense. Similarly, in Rm, the coercivity condition (3.15b) is equivalent to
the positive-definiteness condition

(3.17) VV G T(u,) v 0 :::} (v, V2J(u,)v} > 0,

and positive-definiteness is generic in the class oflinear operators that are positive-semidefinite
on a subspace T C Nm. In this sense, the gap between the standard necessary conditions
(3.14) and sufficient conditions (3.15) is not large in a polyhedron U C Rm. We note that the
geometric nondegeneracy condition (3.15a) proposed in [30] is equivalent to algebraic strict
complementarity in the KKT sufficient conditions [31 ].

The first-order necessary condition (3.14a) merely says that for all u in U, the correspond-
ing directional derivatives (VJ(u,), u u,) can’t be negative if u, is a local minimizer; this
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is clearly true in any convex set U. Since T(u,) is the orthogonal complement of N’u(u,),
it follows at once from (3.14a) that (VJ(u,), v) 0 for all v in T(u,). This result and the
second-order necessary condition (3.14b) are also immediately seen by noting that u, lies in
one of the open facets r Ui, and hence u, is a local minimizer for the restriction of J to the
translated subspace aff Ui u, + Ti u, + T(u,). The sufficiency of conditions (3.15) for
local optimality likewise rests on two simple observations. By continuity, the second-order
condition (3.15b) implies a similar coercivity condition in sufficiently small cones C(u,)
{v E Rm liPid(.,)vii _< ellvll}containingthesubspaceT(u,). Hence, by Taylor’s formula and
(3.14a), the increments J(u)- J(u,) must grow like [[u- u, 112 in the intersection of U with the
translated cone u, + C(u,) and sufficiently small balls B(u,, 8) {u E R Ilu u, < }.
On the other hand, if cN dist (-VJ(u,), rb N’:(u,)), then it follows easily from the
first-order condition (3.15a) that (VJ(u,), u u,) > cN IIe(u, (u u,)ll for all u in U.
In particular, for all u, in the intersection of U, B(u,; 8), and u, + C,(u,)c, we then have
(VJ(u,), u --u,} scNllu -u,ll scN-111u -u,l[ 2. Since the second-order term in Taylor’s
formula is of order O(llu u, l12), it now follows that J(u) J(u,) grows like Ilu u, 2 in
the intersection of U with u, + C,(u,) and B(u,, ), for sufficiently small > 0. A similar
argument is made in the proof of Theorem 4.1.

For polyhedral sets U C Rm, the counterpart of the gradient projection iteration map in
is

(3.18a) u --+ G(u)--g(a(u), u)= Pj(u- a(u)VJ(u)),

with

(3.18b) a(u) min a

subject to

(3.18c)

and

(3.18d) J(u) J (g(a, u)) > r (VJ(u), u g(a, u)).

The fundamental local convergence theorem for (3.18) asserts that an iterate sequence {ui}
passing sufficiently close to a nonsingular local minimizer u, will eventually enter and remain
in the open facet ri U(u,) and become an Armijo steepest descent sequence that converges
to u, r-linearly in the translated subspace u, / T(u,). The key elements in the proof for this
theorem are already present in the analyses of [7], [36], [37], and [35] for iterates of (3.18)
in the images of orthants and boxes under invertible linear transformations. Reference [30]
provides a self-contained fully geometric representation-free expression of this proof strategy
for arbitrary polyhedral sets and more generally for closed convex sets with embedded open
facets. The salient points in the geometric proof for nonsingular local minimizers u, in
polyhedral sets U are outlined below, in the language of 2.

Proof Outline 3.1. (i) Iterate sequences {ui} generated by (3.18) remain in any specified
neighborhood of u, provided u0 lies in a sufficiently small subneighborhood of u, in U, i.e.,
u, is a stable fixed point of the map (3.18).

(ii) The step lengths a(u) are bounded away from 0 in U near u,.
(iii) Since N’ (u,) is a cone, the strict complementarity condition (3.15a), Lemma 2.1,

and (ii) imply that u a(u)VJ(u) Pl[ri f’(u,)] and hence G(u) ri U(u,) in U
near u,.

(iv) The coercivity condition (3.15b) implies that the restriction of J to u, + T(u,) is
locally convex and grows like Ilu u, 2 near u,.
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(v) In ri 5(u,) near u,, G(u) u a(u)PT(u.)VJ(u) and G reduces to an uncon-
strained Armijo steepest descent iteration map for the restriction of J to u.+T(u,) D ri 2F(u.).

(vi) The Armijo steepest descent iteration in u. + T(u.) is locally linearly convergent
to u,.

Note 3.2. References [34] and [31 provide an active facet identification proof for C cost
functions J and arbitrary stationary points u, satisfying the nondegeneracy condition (3.15a);
however, this proof assumes that the iterate sequence {ui converges to u,. In contrast, the
active facet identification step in the foregoing proof outline is used to prove convergence of
iterate sequences confined to sufficiently small neighborhoods of u,. Other local convergence
proof strategies which do not require the active facet identification step are developed in [30]
and [33] for C cost functions and proper local minimizers that are isolated stationary points.
Extensions of the basic local convergence theorem have been proved for gradient projection
iterations in solution sets of finite systems of smooth inequality constraints [38] and in unions
of pairwise disjoint class CP-identifiable surfaces analogous to open facets [39].

4. k2-Local optimality sufficient conditions. The normal cone N’u(u), the associated
subspaces N(u) and T(u), and the optimality conditions in 3 all have formal counterparts
for the set in (1. lb). The formal necessary conditions are actually valid even though f2 is
not a polyhedron [4]; however, infinite-dimensional formal counterparts of the KKT sufficient
conditions need not imply local optimality in any norm [10] These points are developed
further below.

For u in km[0, 1] and in [0, 1] such that u(t) U, let

and put

In addition, let

N(u)(t) span N’v(u(t)), T(u) (t) N(u)(t) +/-

.h/’(u) {w e Lm[O, l] w(t) ae N’v(u(t))},

a.e
N(u) {w e Lm [0, 1]" w(t) N(u)(t)},

a.e
T(u) {w e Lm[0, 11 w(t) e T(u)(t)}.

Oti(U U
-1 [ri .T’i] 1 d,

where is the th polyhedral face in U. Note that for u in g2, the corresponding sets
oti(u) C [0, 1] are measurable and pairwise disjoint, and their union differs from [0, 1] by
a set of measure zero; moreover, the set-valued maps N’u(u(.)), N(u)(.), and T(u)(.) are
constant on each set oti(u) (2). It is therefore not difficult to prove that in the pre-Hilbert
space {km[0, 1], 112}, the set fife(u) is the cone of outer normals to f2 at u, the subspace
N(u) is the closure of the span of N’a(u), and for each v in Lm[0, 1], the rule

(4.19) VN(t) a._.e. PN(u)(t)V(t), vT(t) a..e. PT(u)(t)V(t)

defines essentially bounded measurable functions vN 6 N(u) and vr 6 T(u), with v vN + vv
and (vN, vr)2 0 [4]. Thus, N(u) and T(u) are complementary orthogonal closed subspaces
in {Lm[O, 1], II" 112}, and vN and vr are the k2 metric projections of v into N(u) and T(u). In
fact, N(u) and T(u) are clearly pointwise orthogonal in the sense that

(4.20) Yv N(u) Yw T(u) (v(t), w(t)) a._e. O.
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Formal counterparts of the KKT necessary conditions in polyhedra may now be stated
as follows. Suppose that J Lm[0, 1] --+ 1 has first and second Gteaux differential repre-
sentations (1.2a) and (1.3a), witb gradient vectors VJ(u) in l_m[0, 1] and Hessian operators
V2j (u) lm[0, 1] --+ I’m [0, ]. If U, is a local minimizer for the restriction of J to any line
in f2, then

(4.21a) VJ(u,) A/’(u,),

(4.21b) Vv T(u,) (v, V2J(u,)v)2 > O.

The inclusion (4.21 a) is just a special case of the well-known elementary first-order necessary
condition for optimality in convex feasible sets; however, the second-order condition (4.2 lb)
is a nontrivial assertion since S2 is not a polyhedron and the subspace T (u,) is not contained in
the cone of feasible directions to f2 at u,. When the map w (w, 72J(u,)to)2 is continuous
with respect to the norm ll2, condition (4.21b) can be proved by demonstrating that T(u,)
is a subspace in the [..2 closure of the cone of feasible directions at u, [4]. It is also shown in
[4]’that (4.21b) is generallyfalse if the mapping w --+ (w, V2J(u,)w)2 is merely continuous
in the I.. norm.

Conditions (4.21) apply if u, is any local minimizer on lines in ; however, more can be
said when u, is an 1_9-local minimizer in , and the structure/continuity conditions (1.2)-(1.4)
are met. Under these circumstances, it is shown in [4] that for almost all in [0, 1 ],

(4.22a)

where

U H(u, ,t)- H(u, u,(t),t) > O,

(4.22b) H(u, , t) (VJ(u,)(t), u,(t)) + -( u,(t), S(u,)(t) ( u,(t))).

In the control problem context, condition (4.22) amounts to the Pontryagin minimum principle.
We note that (4.22) has no analogue in n, where all norms are equivalent.

The KKT strict complementarity and coercivity conditions in (3.15) have obvious formal
counterparts as well in the pre-Hilbert space {l_m[0, 1], I1" 112}, namely,

(4.23) VJ(u,) 6 ri Aft(u,)

and

(4.24) CT > 0 Yv Y(u,) (v V2J(u,)v)2 > CT Ilvll

where ri now means interior relative to the subspace N(u,) and the L2 norm. Unfortunately,
these conditions are vacuous in f2 since the L2 relative interior of the normal cone A/’(u,) is
typically empty. Nonvacuous sufficient conditions for L-local optimality are obtained in [4]
by interpreting ri as the interior ofjV’(u,) relative to N(u,) and the L norm (4.23); however,
this L strict complementarity condition is quite stringent, since it amounts to requiring that the
distance from -VJ(u,)(t) to the relative boundary of A/’t: (u,(t)) in N(u,(t)) is essentially
bounded away from zero on [0, 1]. The latter condition typically can’t hold in commonly
encountered situations where VJ(u,)(.) and u,(.) are continuous at points in the set

,(u,) {r 6 [0, 1] :lj 6 {1 d}, r 60otj(u,)}.

(Here Oaj(u,) denotes the boundary of otj(u,) relative to [0, 1].) Improved sufficient con-
ditions for k-local optimality are based in [4] on the much weaker strict complementarity
condition

(4.25a) /z [,(u,)] 0,
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(4.25b)
d

’v’fl C U int 0/i (b/,)
i=1

(fl compact = 3c > 0 A(u,)(t) > c a.e. in fl),

where

(4.25c) A(u,)(t) dist (-VJ(u,)(t), rb ./V’u(u,(t)))

and

(4.25d) rb JV’v(u,(t)) .hfv(u,(t)) \ ri JV’v(u,(t)).

We note that vanishingly small values of A(u,)(t) are likely to occur only near points in the
set y (u,), where -VJ(u,)(t) crosses a common boundary of contiguous normal cones in U.
Condition (4.25b) merely requires that A (u,)(t) is essentially bounded away from zero in the
exterior of any open neighborhood of y(u,) in [0, 1].

It is shown in [4] that (4.24) and (4.25) imply the L-local optimality growth estimate
(1.10) when (1.2)-(1.3) hold with a weaker two-norm version of (1.4) and when VJ(u,)(.),
S(u,)(.), and the set-valued map T(u,) (.) meet certain additional local restrictions near points
in the set y (u,); the latter restrictions compensate for the weakened L strict complementarity
condition (4.25) by insuring that (4.24) lifts from T(u,) to a larger subspace . It is also shown
in [4] that the L-local optimality growth condition (1.10) implies LZ-local optimality when
(1.2)-(1.4) hold and u, satisfies the following strengthened variant of the Pontryagin condition
(4.22) for some cp > 0 and almost all in [0, 1]:

(4.26) e U
1

H(u, ,t)- H(u, u,(t), t) > cp[l- u,(t)ll 2

We now make full use of (4.26) to prove sharper L2-1ocal optimality sufficient conditions
directly. In the following theorem, the weakened L strict complementarity condition (4.25)
is replaced by the still weaker norm-independent pointwise strict complementarity condition

(4.27) VJ(u,)(t) ri A/’u(u,(t)) a.e. in [0, 1].

We note that (4.22) (and afortiori, (4.26)) need not hold at an L-local minimizer. We also
note that (4.27) is the natural norm-independent formal counterpart of the geometric KKT
strict complementarity condition in finite-dimensional k-fold Cartesian products U U
and that (4.27) cannot replace (4.25) in the I..-local optimality sufficiency analysis of [4].
Condition (4.27) works in the present 12 analysis only because of the strengthened Pontryagin
condition (4.26).

THEOREM 4.1, Suppose that J satisfies the structure requirements (1.2a), (1.3),
(1.4b), and (1.4c) with VJ(u) Lm[0, 1 ]. In addition, assume that the 12-coercivity condition
(4.24), the strengthenedPontryagin condition (4.26), and the pointwise strict complementarity
condition (4.27) hold at the point u, in the set g2 in (1.1b). Then u, is an kZ-local minimizer

of J in f2; more specifically, for each c2 in the interval 0 < c2 < min {cv, cp }, there is a
corresponding 62 > 0 such that

(4.28) J(u) J(u,) > c21lu u [[2

for all u in the intersection of f2 and the ball

B2(u,, 2) {u G [-m [0, 1] "llu u, ll2 < 2}.
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Proof. For each u in , let 0 be a corresponding measurable set in [0, 1], and put
Vu(t) u,(t) for in p, v,(t) u(t) for in 0 [0, 1] \ 0, and w, v, u,. Now write
(pc qgc)c ([0, 1] [0, 1]) \ (q9 qgc), and

J(u) J(u,) (VJ(u,), Wu): + =(Wu,
Z

]+ (VJ(u,)(t), u(t) u,(t)) + (u(t) u,(t), S(u,)(t) (u(t) u,(t))) dt

+ -1 f f c  c,c (u(t) u,(t), 1C(u,)(t, s) (u(t) u,(t)))dtds + r(u, u u,).

The growth condition (4.28) is obtained by estimating each term in the right side of the
foregoing expression with appropriate choices for

Recall that/z [[0, 1] \ /d=l Ore(U,)] =0and N’v(u,(t)) A// fore --1 d and

ui(u,) u-1 [re /]. Note that the function dist (. rb A//) ]1m It{ is continuous,
and

Yt 6 cti(b/,) A(u,)(t) dist (-VJ(u,)(t), rb N’i),

for 1 d. Since VJ(u,)(.) is measurable and u, satisfies the pointwise strict comple-
mentarity condition (4.27), it follows that A(u,)(.) is measurable, with

A(u,)(t) > 0 a.e. in [0,1],

and, therefore,

lim /z [0, 1] A(u.)(t) < 0.
n--- cx n

Consequently, for each p > 0 there is a measurable set/ C [0, 1] and a positive number c
such that

(4.29a) /z [/3c] < p,

(4.29b) Yt 6/3 A(u,)(t) > c,

where/c [0, 11 \/.
Now fix c2 in the interval 0 < c2 < min {cr, cp }. Choose v > 0 so that for all measurable

sets q) C [0, 1],

lz[q)] <_ v = (f foxco IlK;(u,)(t, s)ll2dtds _< (men {cr, Cp} C2).

By (4.27) and (4.29), there is a measurable set/ C [0, 1] and a c > 0 such that

/z [/3c] 2

and

(4.30) vt vo N(u,)(t) I111 <_ c := -VJ(u,)(t) -t- rl JV’u(u,(t)).
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Fix e (0, 1], with

(1 ) cw 3llVJ(u,)ll >_ (min{cr, cp} + c).

By (1.2a), (1.3), (1.4b), (1.4c), and Taylor’s theorem in 1, there is a sufficiently small
(0, c] such that

2c 1 V2
3 211 J(u,)ll2 > (min{cr, c,} + C2)

and

1
Vu B2(u," 3), Ir(u, u u,)l < (min {cr cp} c2)Ilu u, 2

2-

Put 32 6/ff, 0 {t 6 [0, 1] Ilu(t) u,(t)l[ < 3}, and 0 0c tO c (0 N )c. Note
that for all u in f3 B2(u,, 2), lz[Oc] < -,/z[qg] < v and Ilwull _< _< c. Hence, (4.26)
and the preceding estimates imply that

J(u) J(u,) > {VJ(u,), Wu}2 q- -(tOu, V2J(u,)Wu}2

/c, Ilu(t) u,(t)ll2dt - (min {cr, c,} c2)Ilu u, ll,

for all u in f2 fq B2 (u,; 32). We now complete the proofby estimating the sum ofthe derivatives
on the right side of this inequality.

Let (w)N and (w)r be the 1_2 metric projections ofw into N(u,) and T(u,), and consider the
cone C, {w 6 ["m [0, 1] II(w)IIz _< llwll=}. Suppose that u 6 f2 and Wu Vu-U,

Then conditions (4.27) and (4.24) imply that (VJ (u,), Wu)z > 0 and

(Wu, V2j(u,)Wu)2 > ((Wu)r, VJ(u,)(Wu)r)2

-IIV2/(u,)l12 (211(Wu)ll211(Wu)rll2 / II(wu)ll2)
>_ ((1- ,2)cv- 3,11V2j(u,)ll)

1
> (min{cr, ce} + c2)Ilwull

2

and, therefore,

(4.31)
1

(VJ(u,), Vu u,)2 q- "x(Vu u,, V2J(u,)(Vu u,))2
z

> (min{cv, cp} + c2) Ilu(t) u,(t)ll2dt.

On the other hand, suppose that u 6 f2 N B2(u,; 32) and Wu C. Put c3-1(Wu)N
and, note that ( 6 Kl(u,) and I1 I1 _< c since N(u,) and T(u,) are pointwise orthogonal;
therefore, (w,)(t) [[eu,)t)w(t)[[ <_ [[wu(t)[I almost everywhere in [0, 1]. According
to (4.30), we then have -VJ(u,) + 6 A/’n (u,), in which case (-VJ(u,) + , Wu)2 < 0 and,
therefore,

C/ 2 ff2C/ 2(V/(u,), Wu)2 >_ -II(wu),ll2 >_ ----Ilwull2.
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Hence, (4.31) holds once again, and thus

J(u) J(u,) > - (min{cv, c,} + c2) Ilu(t) u,(t)ll2dt + -c, Ilu(t) u,(t)ll2dt

1
(min {cv, cp} c2)lib/ //,1122

4

1
> -c2llbt bt,

2

2 2,

for all u in S2 N Be (u,; 32) [-]

COROLLARY 4.2. Assume that the hypotheses of Theorem 4.1 hold, with the Pontryagin
condition (4.26) replaced by the stronger Legendre coercivity condition (1.11). Then u, is an
kZ-local minimizer of J in 2, and the growth condition (4.28) holds near u,.

Note 4.1. For Bolza cost functions (1.5) satisfying (1.2a), (1.3), (1.4b), and (1.4c), the
function H in the necessary condition (4.22) coincides with the Hamiltonian H in 1, and
condition (4.22) reduces to the Pontryagin minimum principle.

Note 4.2. For the special case U [0, cxz) treated in [1 ], conditions (1.11) and (4.26) are
equivalent. In general, (1.11) is considerably stronger than (4.26), but is still a natural hypoth-
esis for nonconvex nonquadratic regulator optimal control problems with control-quadratic
running costs and control-linear dynamic equations in (1.5).

5. k2-Loeal convergence. It can happen that iterate sequences {ui generated by (1.6)
converge to a minimizer u, in the norm 112 from all u0 in some k neighborhood of u,, and
yet fail to converge to u, in the norm 112 from starting points u0 that are arbitrarily close to
u, in the /2 sense [2]. In such cases, refined approximate finite-dimensional implementations
of (1.6) are sure to converge (nearly) to u, only from starting points u0 that are exceedingly
close to u, in quadrature approximations of the norm 112. For practical purposes, this means
that the location ofjump discontinuities in u, or thin boundary layers, where u,(t) is changing
rapidly, must be known very precisely in advance and built into u0, or (1.6) may not improve u0
in any useful sense. As in [2], we therefore seek conditions on u, that insure I..2 convergence
of the iterates of (1.6) from all starting points u0 in some /2 neighborhood of u,.

Note that every k-local minimizer is a fixed point of the gradient projection map (1.6)
since all such minimizers satisfy the necessary condition (4.21a). Moreover, the sufficient
conditions in Theorem 4.1 can hold at u, and yet every /2 neighborhood of u, can contain a
continuum of k-local minimizers that are actually k-local stable attractors for (1.6) [23,
Ex. 4]. Something more than the hypotheses in Theorem 4.1 is therefore needed to support an
k2-1ocal convergence theory for gradient projection methods, or any other standard nonlinear
programming algorithms that have a fixed point at each u, satisfying (4.21a). In the following
analysis, hypothesis (4.26) is replaced by the stronger Legendre coercivity condition (1.11) on
S(u,), and Corollary 4.2 and (1.11) are then used much as the proof outline of3 uses the KKT
strict complementarity and coercivity conditions in m. More specifically, the hypotheses in
Corollary 4.2, the structure/continuity conditions (1.2b)-(1.4a), and local bounds for the step
lengths a(u) in (1.6) imply that for each u in small I..2 neighborhoods of u, in f2, there is a

corresponding subspace (u) T(u*) such that G(u) falls in (u, + (u)) A f2 and V2J(bt,)
is coercive on (u) (condition (1.11) is the key to the extension of coercivity from T(u,)
to (u)). Furthermore, since u, is an kZ-locally stable fixed point of G when the uniform
growth condition (4.28) is satisfied [30], it follows that for Ilu0 u, 112 sufficiently small, the
subsequent G-iterates ui are confined to an /2 neighborhood where the preceding assertions

are true and where J is convex near u, on the translated subspaces u, + (ui-). Although G
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no longer reduces to an unconstrained Armijo steepest descent map in the infinite-dimensional
setting of (1.1), it is now possible to prove local convergence for {ui directly, with estimates
from [9] for gradient projection iteration maps and convex cost functions.

LEMMA 5.1. Let J satisfy the structure requirements (1.2)-(1.4) and suppose
that the Legendre coercivity condition (1.11), the 12-coercivity condition (4.24), and the point-
wise strict complementarity condition (4.27) in Corollary 4.2 hoM at a point u, in the set 2 in
(1.1b). Thenfor some > 0 and each u in f2 N B2(u,; e), there is a corresponding subspace
i’(u) D T(u,) in km[0, 1] such that

(5.32a) G(u) E (u, + "(u)) F3 f2

and

(5.32b) ’v’v E B2(u,; ) Vw "(u) (w, VgJ(v)w)2 > O,

where G is the gradient projection map (1.6) on
Proof. Recall that for each u in U, .T’(u) is the unique face .T} C U such that u ri .T’i

(see 2). Thus, for all u in 2 and almost all in [0, 1], .F(u(t)) is defined and u(t) ri JC(u(t)).
We will prove that for some > 0 and p > 0, and for each u in B2(u,; e), there is a
corresponding set (p C [0, 1] such that

(5.33a) min {dist (u,(t), rb .F(u,(t))), dist (-a(u)VJ(u,)(t), rb A/’u(u,)(t))} > p,

(5.33b) Ilu(t) a(u)VJ(u)(t) (u,(t) a(u)VJ(u,)(t)) < P,

for all in (pc [0, \ (p. Hence, by Lemma 2.1,

G(u)(t) PL(U(t) --a(u)VJ(u)(t)) ri U(u,(t)) C u,(t) + T(u,)(t),

for all in (pc; thus (5.32a) holds with

(5.34a)

and

aoe.(u) {v E Lm[O, 1] v(t) E (u)(t)}

]m, tE(p,
(5.34b) (u)(t)

T(u,)(t), (pc.

Moreover,/z[(p] and are small enough to insure that the coercivity condition (4.24) extends
from T(u,) to the larger subspace i’(u) and also that (5.32b) holds in the ball B2(u,; e).

Conditions (1.2a), (1.3), (1.4b), and (1.4c) imply that J is twice continuously Fr6chet
differentiable relative to the norm 112, hence VJ is locally Lipschitz continuous near u,
in this norm. A minor modification of the proof for Lemma A.2 in [38] shows that there are
numbers 3 > 0 and a > 0 such that for all u in F3 B2(u," ),

1
a(u) > a and IIV2J(u) V2j(u,)ll2 min {cr, ce},

where cr and ce are the positive numbers in the coercivity conditions (4.24) and (1.11), and
a(u) isthe step lengthin (1.6). Now choose v 6 (0, 1] sothatfor allmeasurable sets (p C [0, 1],

IIKS(u)(t, s)112dtds < min {CT, Cp }.
--2



k SUFFICIENT CONDITIONS AND GRADIENT PROJECTION 1285

With reference to (4.27) and the resulting condition (4.29) in the proof of Theorem 4.1, there
is a measurable set/3 in [0, 1] and a number ce > 0 such that/z[flc] < v/3, -VJ(u,)(t)
ri N’u(u,(t)), and dist (-VJ(u,)(t), rb N’u(u,)(t)) > ce, for all in/3. Since N’u(u,(t))
is a cone, it follows that for all a > 0,

-aVJ(u,)(t) ri N’u(u,(t))

and

dist (-aVJ(u,)(t), rb N’u(u,)(t)) > ace,

for all in/3. Furthermore, by construction, the set-valued map f’(u,(.)) is constant on each
of the measurable sets oti(u,), with u,(t) ri U(u,)(t) almost everywhere in [0, 1]. Hence
dist (u,(.), rb 3c(u,(.)) is measurable and positive almost everywhere in [0, 1], and there is
a number co) > 0 and a corresponding set

co {t 6 [0, 1]:dist (u,(t), rb f’(u,(t))) > co)}

such that/z[coc] < v/3. The estimate (5.33a) is now seen to hold for all in (coc to c)c
with p min {c, act}. By (1.2b) and (1.4), can be reduced further if necessary, so that for
some L > 0 and all u in B2(u,; 3),

PIIVJ(u)(t) VJ(u,)(t)ll <_ - -t- tllu(t) u,(t)ll

almost everywhere in [0, ], and (1 + gL) 3 < , where g is the step length upper bound in
(1.6). For u in f2, let 0 {t [0, 1] Ilu(t) u,(t)ll <_ 8} and (p 0 tO coc tO tic. Put
e 3 4rb-/3 and note that for all u in f2 N B2(u,; e), conditions (5.33) hold almost everywhere
in (pc with p min {c,o, ace}. Finally, note that lz[Oc] < and/z[(p] < v, and construct

(u) with (5.34) for u in f2 B2(u,; ). With (4.24) and (1.11), we now find that for all u in
f2 f"l B2(u,; e) and w in (u),

(tO, V2j(bt,)w)2 [ (to(t), S(u,)(t)w(t)}dt + [ (w(t), S(u,)(t)w(t)}dt

+ff  c  c,c
f min{cv’cp}llwll2>_ cr IIw(t)ll2dt 21- Cp IIw(t)ll2dt

2 2

> min {cr ce }11 w 112

Hence, (w, V2j(v)w)2 > (w, V2j(u,)w)2 IIV2j(v) V2j(u,)ll211wll >_ O, for all v in

B2(u,; 5) and w in "]’(u).
Note 5.1. Reference [36] establishes a positive lower bound for a(u) on bounded subsets

of simple polyhedra in ]R when VJ is Lipschitz continuous on bounded sets. In infinite-
dimensional spaces, this Lipschitz continuity hypothesis does not automatically follow from
continuity of the second derivative of J, since closed bounded sets are not compact in such
spaces. On the other hand, the step length bound in [38] applies when VJ is merely Lipschitz
continuous near stationary points, and this local property is implied by continuity ofthe second
derivative.
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THEOREM 5.2. Let J satisfy the structure requirements (1.2)-(1.4) and sup-
pose that the Legendre coercivity condition (1.11), the L2-coercivity condition (4.24), and the
pointwise strict complementarity condition (4.27) in Corollary 4.2 hold at a point u, in the
set S2 in (1.1b). Then there are numbers 3 > 0 and ) [0, 1) such thatfor each sequence {ui}
generated by the gradient projection iteration (1.6),

u0 G f-)B2(u,; 3) == ’V’i >_ 1 J(ui+)- J(u,) < . (J(ui)- J(u,)).

Furthermore, the corresponding norms Ilui u, 112 are bounded above by a real sequence that
converges to zero geometrically, with ratio s/c-.

Proof. By Corollary 4.2 and Lemma 5.1, there are positive numbers and a such that
a(u) is bounded away from zero by a and conditions (4.28) and (5.32) hold at each u in
f20 B2(u,; ). Condition (4.28) and the basic continuity and descent properties of G insure
that u, is an 12 stable fixed point of G [30]. Hence, there is a 3 6 (0, ] such that for all
sequences {ui} generated by (1.6),

u0 G O B2(u,, 3) =: ’V’i > 0, ui f2 CI B:z(u,; ).

The remainder of the proof employs local versions of estimates developed in [9] for
convex J.

Assume that the G-iterate sequence {ui is confined to N B2(u,; e). By (5.32a), we
then have

U (U, -- ?(Ui-1)) O O B2(u,; ),

for > 1. By (5.32b), this implies that

J(ui)-- J(u,) <_ (VJ(ui), ui- u,)2,

for > 1. Since Ui+I P (ui a(ui)VJ(ui)), the orthogonality condition in the projection
theorem gives

(Ui a(ui)VJ(ui) Ui+l, u, Ui+l)2 < 0

and

(Ui a(ui)VJ(ui) Ui+l, ui Ui+l)2 < 0.

Hence,

(VJ(ui), ui -/A,)2 (VJ(ui), u Ui+l)2 -- (VJ(ui), ui+ u,)2
1

< (%rJ(ui), Ui Ui+l)2 "- //a(.igi) IlUi+l u,[12 (VJ(ui), ui Ui+l),

for all > 1. Now put ri J(ui) J(u,) and note that a(ui) is bounded below by a and
that cr(VJ(ui), ui Ui+l)2 is bounded above by ri ri+l, where r is the step length rule
parameter in (1.6). Note also that c21]Ui/l u, ll is bounded above by 2ri+l, and hence by
2ri. Consequently, for all > 1,

O<_ri< ri--ri+lcr -I- k,(2ri)1/2(ri--ri+l)ty

By completing the square on the right side of this estimate, we find that for > 1,

0 <_ ri+l <_ .ri
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and

with

Ilui u, ll2 <
C2

2c2a_o.-- [3
(1 + V/1 + 2c2a_)2"

6. k2-Local active facet identification. In [31 ], it is shown that if VJ is continuous and
u, satisfies the geometric strict complementarity condition (3.15a) in a polyhedral set U C m,
then iterates of the projection map (3.18) that converge to u, are eventually confined to the
activefacet ri ,T’(u,) at u,. A similar conclusion can be reached by the analysis in [30] under
the stronger local Lipschitz continuity hypothesis needed for the local convergence theory
(see Note 3.2). We now prove an asymptotic counterpart of the latter result for the gradient
projection map (1.6). This theorem subsumes the active constraint identification result in [2]
for U [0, oo). Results of a similar nature are established in [41] and [42] for constrained
compact fixed point problems and discrete-time approximations to optimal control problems.
Reference [43] formulates an active constraint identification theorem and a local convergence
theorem for an infinite-dimensional variant of the projected Newton scheme in [36] applied
to optimal control problems with bounded scalar inputs.

Fix u, in f2 and for each u in f2 put

(6.35) Z(u) {t [0, 1] u(t) U, u,(t) U and ’(u(t)) f’(u,(t))}.

By construction, u identifies the active facets ri U(u,(t)) for in the index set Z(u).
THEOREM 6.1. Suppose that J is mice continuously Frchet differentiable relative to the

norm 112 and satisfies conditions (1.2), (1.4a), and (1.4b). Assume that the pointwise strict
complementarity condition (4.27) holds atpoint u* in the set f2 in (1.1b). Thenfor all gradient
projection iterate sequences {ui generated by (1.6),

lim Ilui u, l12 0 = lim lz[Z(ui)c] O,

where Z(ui) is defined by (6.35) and Z(ui) [0, 1] \ Z(ui).
Proof. For u 6 f2 and j d, let otj(u) u -1 [ri j] as before. By construction,

cj (u) N oti (u) 0 for j -76 k, with

/, [0, 11\ cj(u) --0,

and thus

Note that

/ 1] \ U (oj(u) ot(u,) O.
j,k=l

d

j=l

Hence [0, 1] \ Z(u) differs from [.-Jj#t (otj(u)n by a set of measure zero, and it
therefore suffices to show that for all j, k 1 d,

(6.36) j -76 k =, lim n 0.

We now use Lemma 2.1 to prove (6.36).
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Suppose that {Ui} is generated by (1.6) and that limi Ilui u, ll= 0. Since J
is twice continuously differentiable relative to I1" I1, the map VJ(.) is locally Lipschitz
continuous relative to IIz; hence, for some a > 0, the step lengths a(ui) are bounded away
from zero by a for all i. Fix e > 0, k and j - k. By (4.27) and the resulting condition
(4.29), there is a measurable set/3 C O/k(u,) and a c > 0 such that/z[o/k(u,) \/] < 5,
-VJ(u,)(t) ri JV’u(u,(t)), and dist (-VJ(u,)(t), rb N’u(u,(t))) > c, for all in/3.
Since dist (u,(.), rb ) is measurable and positive on O/(u,), there is a measurable set co C
O/(u,) andaco > 0suchthat/x[o/(u,)\co] < 5,u,(t) 6 ri f’k, anddist (u,(t),rb ) > c,
for all in co. Put p min{co, act}, and note that N’(u,(t)) is a cone. Hence, for all and
all in/ n co,

min{dist (-a(ui)VJ(u,)(t), rb N’c(u,(t))), dist (u,(t), rb U(u,(t)))} > p.

Since limi__, Ilui u, ll2 0, conditions (1.4a), (1.4b) imply that for some L > 0 and all
sufficiently large i,

P (t) u,(t)IlVJ(ui)(t) VJ(u,)(t) + tllui

almost everywhere in [0, 1], where is the step length upper bound in (1.6). Now let r/
P and Oi {t O/(u,) Ilui(t) u,(t)[I < r/}, and note that for sufficiently large and2(l+L)

almost all in Oi,

Ilui(t) a(ui)VJ(ui)(t) (u,(t) a(ui)VJ(u,)(t))11 < P.

Hence, Lemma 2.1 insures that for sufficiently large i,

Ui+l(t)-- Pu(ui(t)- a(ui)VJ(ui)(t)) ri .(u,(t)) ri ’
almost everywhere in/3 n co n Oi; thus

[O/j(Ui+I) n O/k(U,) n 1 n co n Oi] 0,

since ri j n ri U 0 for j k. In addition, since convergence in the norm I1" 112
implies convergence in measure, it follows that/z[o/k(u,) \ Oil < and, therefore,/z[o/(u,) \
(n co f’l Oi)] < e, for sufficiently large i. In the limit as --+ cx, we now obtain

0 < limsup ]-[O/j(/gi+I)[") O/k(bt*)]

< limsup IJL[O/j(Ui+I) n O/k(U,) (q/3

+ lim sup /Z[o/j(b/i+l) n O/k(U,) I’l (O/k(/,/,) \ (/ O co N 0i))]

Since e is an arbitrarily small positive number, this proves (6.36).
Note 6.1. Theorem 6.1 and its proof remain valid for objective functions J with gradi-

ents that are locally Lipschitz continuous relative to the norm 112; this weaker hypothesis
automatically holds for the twice continuously Fr6chet differentiable functions of interest
here.

Acknowledgment. The author is grateful to the referees for several helpful comments on
exposition and a valuable observation pertaining to the proof of Theorem 4.1. In the original
version of this paper, Theorem 4.1 invoked the strict complementarity condition (4.25), and
one of the referees noticed that the weaker condition (4.29) seemed to serve equally well in
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place of (4.25). The proof originally designed for (4.25) does indeed work for (4.29), and
appears here virtually unchanged, apart from notational adjustments and new material in the
second paragraph. The new material establishes measurability of A(u,)(.), proves that the
proposed condition (4.29) is actually equivalent to the weak pointwise strict complementarity
condition (4.27), and links (4.29) to KKT strict complementarity in Cartesian products of
polyhedra.

REFERENCES

J.C. DUNN AND f. TIAN, Variants of the Kuhn-Tucker sufficient conditions in cones ofnon-negativefunctions,
SIAM J. Control Optim., 30 (1992), pp. 1361-1384.

[2] T. TIAN AND J. C. DUNN, On the gradientprojection methodfor optimal control problems with nonnegative 12
inputs, SIAM J. Control Optim., 32 (1994), pp. 516-537.

[3] T. TIAN, Convergence Analysis ofa Projected GradientMethodfor a Class ofOptimal Control Problems, Ph.D.
Dissertation, North Carolina State University, Raleigh, NC, 1992.

[4] J. C. DUNN, Second order optimality conditions in sets of k functions with range in a polyhedron, SIAM J.
Control Optim., 33 (1995), pp. 1603-1635.

[5] A.A. GOLDSTEIN, Convex programming in Hilbert space, Bull. Amer. Math. Soc., 70 (1964), pp. 709-710.
[6] E. S. LEVITIN and B. T. POLJAI, Constrained minimization problems, USSR Comp. Math. Phys., 6 (1966),

pp. 1-50.
[7] D.P. BERTSEKAS, On the Goldstein-Levitin-Polyak gradientprojection method, IEEE Trans. Automat. Control,

AC-10 (1976), pp. 174-184.
[8] D.G. LUENBERGER, Optimization by Vector Space Methods, Wiley, New York, 1969.
[9] J. C. DUNN, Global and asymptotic convergence rate estimates for a class ofprojected gradient processes,

SIAM J. Control. Optim., 19 (1981), pp. 368-400.
10] H. MAURER AND J. ZOWE, First and second-order necessary and sufficient optimality conditions for infinite-

dimensional programming problems, Math. Programming, 16 (1979), pp. 98-110.
11 H. MAURER, First and second order sufficient optimality conditions in mathematicalprogramming and optimal

control, Math. Programming Study, 14 (1981), pp. 163-177.
12] ., The two-norm approach for second order sufficiency conditions in mathematical programming and

optimal control, Tech. Rept. 6/92 N, Inst. f. Angew. Math. Inform., Universitit MOnster, 1992.
[13] Solution differentiability for parametric nonlinear control problems with control-state constraints,

Control Cybernet., 23 (1994), pp. 201-227.
[14] A.S. DONTCnEV, W. W. HAGER, A. B. POORE, AND B. YANG, Optimality, stability and convergence in nonlinear

control, Appl. Math. Optim., 31 (1995), pp. 297-326.
[15] g. ZEIDAN, Sufficient conditions for the generalized problem ofBolza, Trans. Amer. Math. Soc., 275 (1983),

pp. 561-586.
[16] , Sufficiency criteria via focal points and via coupled points, SIAM J. Control Optim., 30 (1992),

pp. 82-98.
17] D. ORRELL AND V. ZEIDAN, Another Jacobi sufficiency criterion for optimal control with smooth constraints,

J. Optim. Theory Appl., 58 (1988), pp. 283-300.
18] W. ALT, The Lagrange-Newton methodfor infinite-dimensional optimization problems, Numer. Funct. Anal.

Optim., 11 (1990), pp. 201-224.
[19] W. ALT AND K. MALANOWSKI, The Lagrange-Newton methodfor nonlinear optimal control problems, Comp.

Optim. Appl., 2 (1993), pp. 77-100.
[20] K. MALANOWSKI, Sensitivity analysis of optimization problems in Hilbert space, with application to optimal

control, Appl. Math. Optim., 21 (1990), pp. 1-20.
[21 ,Second order conditions and constraint qualifications in stability and sensitivity analysis ofsolutions

to optimization problems in Hilbert space, Appl. Math. Optim., 25 (1992), pp. 51-79.
[22] ,Two-norm approach in stability and sensitivity analysis ofoptimization and optimal controlproblems,

Adv. Math. Sci. Appl., 2 (1993), pp. 397-443.
[23] J. C. DUNN, Gradient-related constrained minimization algorithms in function spaces: Convergence proper-

ties and computational implications, in Large Scale Optimization: State of the Art, Kluwer Academic
Publishers, Dordrecht, 1994.

[24] ,Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals,
SIAM J. Control Optim., 17 (1979), pp. 187-211.

[25] G. C. HUGHES AND J. C. DUNN, Newton-Goldstein convergence rates for convex constrained minimization
problems with singular solutions, Appl. Math. Optim., 12 (1984), pp. 203-230.

[26] J. C. DUNN, Extremal types for certain t_P-minimization problems and associated large scale nonlinear pro-
grams, Appl. Math. Optim., 10 (1983), pp. 303-335.



1290 J.C. DUNN

[27] J.C. DUNN AND E. W. SACHS, The effects ofperturbations on the convergence rates ofoptimization algorithms,
Appl. Math. Optim., l0 (1983), pp. 143-157.

[28] E. W. SACHS, Rates of convergence for adaptive Newton methods, J. Optim. Theory Appl., 48 (1986),
pp. 175-190.

[29] J.C. DUNN, Diagonally modified conditional gradient methodsfor input constrained optimal controlproblems,
SIAM J. Control Optim., 24 (1986), pp. 1177-1191.

[30] ,On the convergence ofprojected gradientprocesses to singular criticalpoints, J. Optim. Theory Appl.,
55 (1987), pp. 203-215.

[31] J. V. BURKE AND J. J. MORI, On the identification of active constraints, SIAM J. Numer. Anal., 25 (1988),
pp. 1197-1211.

[32] R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[33] J.C. DUNN, A subspace decomposition principlefor scaled gradientprojection methods: Local theory, SIAM

J. Control Optim., 31 (1993),pp. 219-246.
[34] E H. CALAMAI AND J. J. MORI, Projected gradient methodsfor linearly constrainedproblems, Math. Program-

ming, 39 (1987), pp. 93-116.
[35] E. M. GAFNI AND D. P. BERTSEKAS, Two-metric projection methods for constrained minimization, SIAM J.

Control Optim., 22 (1984), pp. 936-964.
[36] D. E BERTSEKAS, Projected Newton methods for optimization problems with simple constraints, SIAM J.

Control Optim., 20 (1982), pp. 221-246.
[37] Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York, 1982.
[38] M. GAWANDE AND J. C. DUNN, Variable metric gradientprojection processes in convexfeasible sets defined by

nonlinear inequalities, Appl. Math. Optim., 17 (1988), pp. 103-119.
[39] S.J. WRIGHT, Identifiable surfaces in constrained optimization, SIAM J. Optim., 31 (1993), pp. 1063-1079.
[40] E. A. CODDINGTON AND N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill, New York,

1974.
[41] C.T. KELLEY AND E. W. SACHS, Multi-level algorithms for constrained compactfixed point problems, SIAM

J. Sci. Comput., 15 (1994), pp. 645-667.
[42] ,Mesh independence ofthe gradientprojection methodfor optimal controlproblems, SIAM J. Control

Optim., 30 (1992), pp. 477-493.
[43] ,Solution ofoptimal controlproblems by apointwise projectedNewton method, Rept. CRSC-TR93-13,

Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, 1993.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 34, No. 4, pp. 1291-1299, July 1996

() 1996 Society for Industrial and Applied Mathematics
009

LARGE-TIME LOCAL CONTROLLABILITY VIA HOMOGENEOUS
APPROXIMATIONS*

HENRY HERMES

Abstract. If all points in a neighborhood of a rest solution of an n-dimensional, affine control system can
be attained in some sufficiently large time tl > 0, we say that the system is large-time locally controllable at
the rest solution. Sufficient conditions for large-time local controllability are given in terms of small-time local
controllability of homogeneous approximating systems. The major result, Theorem 3, is a geometric test for large-
time local controllability in terms of the (coordinate-free) structure of Lie products of the vector fields which define
the system, evaluated at the rest solution. Large-time local controllability has implications for the problem of the
existence of an asymptotically stabilizing feedback control.

Key words, homogeneous approximations, local controllability, Lie algebras
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Introduction. We study the problem of when, for sufficiently large time, can one reach
all points in a neighborhood of the origin by solutions of the nonlinear, affine, single input
control system on ]t

(1) x (x) + u Y(x), x (0) 0, Y(0) 0

with initial data x(0) 0. Here X and Y are assumed real analytic vector fields on ]n,
while the admissible control set, denoted fU, consists of Lebesgue-measurable functions
u [0, cx) -+ [-or, or], ot > 0. The attainable set at time t, i.e., the set of all points that can
be reached in time by solutions of (1) using controls u 6 fU, will be denoted A]’ (t). System
(1) is small-time locally controllable (STLC) at zero if given any tl > 0, ot > 0, 0 6 intA(tl).
We define system (1) to be large-time locally controllable (LTLC) at zero if given any ot > 0
there exists a tl > 0 such that 0 6 intA]’ (tl). STLC corresponds to the ability to correct small
deviations from the reference solution, corresponding to u 0, in arbitrarily small time. It
has been extensively studied (see [4]-[6], [9]) with a major computable, sufficient condition
given by Sussmann in 11 ]. Large-time local controllability is more basic to the question of
asymptotic stabilization of the zero solution of (1) via feedback control. Indeed, if the time
reversal system of system (1), i.e., k -X(x) + vY, is LTLC at zero, it follows that for any
point p in some neighborhood of zero there exists a control u 6 fU such that the corresponding
solution x(t, u) of system (1) for initial data x(0) p satisfies limt__,x(t, u) 0. This
is an obvious necessary condition for the existence of an asymptotically stabilizing feedback
control 1 ]. Our sufficient condition for large-time local controllability will be given in terms
of Lie brackets of X and Y evaluated at zero; hence it suffices to study system (1) since the
bracket structure of the time-reversed system is the same (up to signs) as that of system (1).

The methods, here, depend on high-order homogeneous approximations of system (1).
A dilation, 3r, is a map from ]t to ]1 of the form 6rx (rlx rnxn) e > O, 1 < rl <_
r2 <_ <_ rn integers. A polynomial h n

__
1 is homogeneous of degree m with respect

to 3 if h(3rx) emh(x). The set of polynomials homogeneous of degree m will be denoted
Pm. Po consists of constant functions, and we set Pm= {0} if m < 0. A vector field X (x)
j=l aj(x)O/Oxj on n is homogeneous of degree m with respect to 6 if aj Prj+m-1. This
definition (while not universally used; e.g., see [8], [4]) agrees with the classical definition;
i.e., a vector field X (x) Ax linear in the local coordinates is homogeneous of degree 1 with
respect to the standard dilation 1 having rl r2 rn 1.

*Received by the editors May 20, 1994; accepted for publication (in revised form) March 10, 1995. This research
was supported by NSF grant DMS-9301039.

Department of Mathematics, University of Colorado, Boulder, CO 80309.
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A vector field X homogeneous of degree m will usually be denoted S(m). In 1, we will
not make local coordinate changes, and it is convenient for later results of2 to not necessarily
assume Y(x) 0!0xl in the given coordinates. Expand X and Y in terms of homogeneous
vector fields as

(2)
X(x) x(m)(x) + x(m+l)(x) .ql_...,

Y(x) y(-e (x) + y(2-e)(x) +’. ",

where X (0) 0 implies X(m) (0) 0 and Y (0) : 0 implies e >_ 1 and we assume that the
leading terms X(m) y(-e) are not zero vector fields. The homogeneous approximation of (1)
relative to the dilation used in (2) is

(3) 2 X(m) (x) "31- vY(-t) (x).

A basic result in the study of STLC is the following theorem.
THEOREM 1 (see [9], [2]). If there exists a dilation 3r for which m in the expansion

ofX (or m < 1 and m + > O) and the approximating system (3) is STLC at zero, then
system (1) is STLC at zero. If system (3) is STLC at zero and has m > 1, then system (1) is
LTLC.

The first statement in the above theorem can be found in [9, Thm. 3.2]. The second
statement is a consequence of [2, Rem. 2.5]. The basic idea in the proof is to make the
variable changes r e-(m-1)st or t(r) e(m-1)sv2 and xS(r) 3ersX(t(r), U). Let A[(t)
denote the attainable set, at time t, of system (1) with controls u 6 f2; let A(r) denote the
attainable set, at time r, of the approximating system (3) with controls in fU andA (r) denote
the attainable set at time r for the system x satisfies. Then one can show

A(r) r .ore-s(m+e-1)esA1 (e(m-)s’c)

and 0 6 int A(r) implies 0 6 int A(r) for s sufficiently large. Thus if m 1, the first
statement of Theorem follows, but for m > 1, the time e(m-)s’c may be very large for large
s. Indeed s s(r) and hence e(m-)s(r)’c need not tend to zero as r --+ 0 (Example 1.1 has
such behavior), so for m > 1 we cannot conclude that STLC of (3) implies STLC of (1).

Examples are given of systems for which the only STLC homogeneous approximating
systems have m > 2; i.e., the original system is LTLC and can be shown to not be STLC at
zero. These examples involve guessing a dilation; the results that can be concluded depend on
the dilation chosen. Furthermore, no changes in the local coordinates used to initially describe
the vector fields in (1) are made.

In 2 the main result is Theorem 3, which gives a "geometric" sufficient condition for
large-time local controllability in terms of the (coordinate-free) structure of Lie products of X
and Y evaluated at zero. Example 2.1 illustrates the nature of Theorem 3 and introduces some
notation. The proof of Theorem 3 uses weight-induced filtrations of the Lie algebra, L(X, Y),
generated by X and Y and is constructive in that the preferred local coordinates, dilation, and
STLC approximating system can be computed, although this is not necessary for applications
of the theorem. This construction is illustrated in Example 2.2.

Our notation will be (ad X, Y) [X, Y], the Lie product of vector fields X, Y, and
inductively (ad+lX, Y) IX, (adX, Y)]. For S a subset of L(X, Y), S(O) denotes the
elements of S evaluated at zero. We assume, throughout, that dim L(X, Y)(0) n, and all
examples will satisfy this. For X a smooth vector field on ]t and p 6 IRn, we will often use
exp(X)(p) to denote the solution, at time t, of 2 X (x), x(0) p.
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1. Examples.
Example 1.1. We consider the system

(4) 21=u, 22--x, 23--x23+xl4.
Here X(x) xO/Ox2 + (x32 + x4)O/Ox3, Y O/Ox,. If one chooses the standard dilation 31,
then X(x) X(3)(x) + X(4)(x) with XO)(x) x O/Ox2 + x32 O/Ox3, x(g)(x) x4 O/Ox3,
and Y y(0) O/OXl. The homogeneous approximating system (3) becomes 2 XO1 (x) +
u(t)Y and is STLC. Indeed, this is an "odd" system; i.e., the brackets which are linearly
independent at zero are Y, (ad Y, X) and (ad(ad3 Y, X), X), which all have an odd number
of factors Y. This approximating system is a cubic integrator and hence admits a smooth
asymptotic stabilizing feedback control (see [3]), which is therefore a local asymptotically
stabilizing feedback control for (4). By Theorem 1, system (4) is LTLC. However, in the
original system, the bracket (ad4 Y, X)(0) is linearly independent of Y, (ad Y, X)(0) and is
an obstruction to small-time local controllability (see [10]); i.e., the original system is not
STLC. Had one chosen the dilation as 3 with r (1, 3, 4), the expansion of X becomes
X(X) X(1)(x) "- X(6)(x) with X(1)(x) x O/Ox2 "[- x O/Ox3, X(6)(x) x O/Ox3,
y y(0), and the approximating system 2 x(a)(x) ’t- u(t)Y is not STLC.

This example illustrates the importance of the choice of dilation. This choice, and the
proper choice of local coordinates, will be dealt with in 2.

Example 1.2. On IR3, consider the system

i.e., X(x) (x31 + x21x3) O/Ox2 + (x + x) O/Ox3, Y O/OXl. If we choose the stan-
dard dilation , then the homogeneous approximating system is 2 X(2)(x) + uY() with
X(2) (x) x O/Ox3, y(O) y. This system is not STLC, and we gain no information.

If we choose with r (1, 1, 3), then x e P3 Pr2+-l, x2 e P5 Pr3+3-1, and
the homogeneous approximating system is 2 X(3)(x) + uY() with X(3)(x) x O/Ox2 +x O/Ox3. This approximating system is an "odd" system; the relevant brackets which are
linearly independent at zero are Y, (ad3 Y, X) and (ads (ad Y, X), X). Theorem applies with
m > 1, showing that the original system is LTLC.

However, had we chosen with r (1, 3, 15), then x e P3 Pr2+l-1, x2
5 e P15

Pr3+ 1-1, while the remaining terms are of higher homogeneous order. Relative to this dilation,
the approximating system is 2 X(1)(x) + uY( with x(l(x) x O/Ox2 + x52 O/Ox3. This
approximation is STLC; since the approximating vector field of X is homogeneous of degree
one, Theorem applies with m 1, and system (5) is actually STLC. [3

In we have not changed local coordinates; i.e., in the examples the dilation was changed
but the local coordinates relative to which the vector fields were described were not changed.
Linearity of a vector field, in chosen local coordinates, is homogeneity of degree one with
respect to the standard dilation 31. But linearity is not a coordinate-free notion, and neither
is homogeneity relative to a given dilation. Example 1.2 illustrates the role of choosing the
"correct" dilation, but the approach was by guessing, i.e., not constructive. Section 2 will
deal with a coordinate-free construction based on the bracket structure, at zero, of the original
vector fields X, Y. If the construction can be accomplished, system (1) will be LTLC. Behind
the scenes (as seen in the proof of Theorem 3) the construction leads to the proper local
coordinates and dilation relative to which the approximating system should be considered.

2. A constructive test for large-time local controllability. Before stating and proving
the main theorem of this section, we give an example to illustrate notation and ideas which
will be involved in this theorem.
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(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2,1) (2, 2) (2, 3) (2, 4) (2, 5)

(3,1) (3, 2) (3, 3) (3, 4) (3, 5)
X

(4,1) (4, 2) (4, 3) (4, 4) (4, 5)

FIG. 1.

Example 2.1. On N3, consider the system

(6) 2 b/, 2 Xl, 3 Xl
2 -- X23,i.e., X(x) x O/OX2 + (X21 + X)O/OX3, Y O/Oxl. The relevant brackets are IX, Y](x)

O/Ox2 + 2xl O/Ox3, (ad2Y, X) 2O/Ox3, and (ad3[X, Y], X) -60/Ox3. We denote a
bracket with k factors Y and factors X to be a bracket of type (k, ) and graph them on
integer lattice points of the plane as in Figure 1.

Since small-time local controllability at zero implies large-time local controllability, one
should certainly .first check the constructive sufficient conditions for the former as given in
11 ]; see also [6], [7]. In this example, one does not have small-time local controllability; the

(2,1) bracket gives an obstruction (see [10]).
The brackets in Figure which do not vanish at zero are marked with an . In general,

we begin by examining the first row (i.e., brackets of the form (adJ X, Y), j 0, 1, 2 and
let m be such that the brackets (1, ), > (m + 1) are zero when evaluated at zero. Note that
we may have brackets of type (1, ), _< m, equal to zero when evaluated at zero. If a (1, j)
bracket is ever zero at zero, since X (0) 0, we will have the (1, ) brackets zero at zero for
> j. In the above example choose m 1. Now for any integer k > 1, we consider a line

through the point (1, m) (1, 1) with slope -k/(mk + 1). In the above example, choose
k 2. If we can find such a line so that all brackets to its right vanish at zero, while if we
slide the line to the left parallel to itself, the increases in rank of the set of brackets (evaluated
at zero) encountered occur at brackets of type (odd, anything) or (even, even), i.e., "good"
brackets in the sense of Sussmann 11 ], then the original system is LTLC. In this example, the
original line encounters the brackets (1,1) and (3,4). As we slide the line to the left, the next
bracket which is not zero at zero is (1,0), and these three, at zero, span R3. Thus system (6)
is LTLC.

This illustrates the idea, and an example, of the application of Theorem 3. The proof
will proceed by showing that the existence of such a line implies that we can choose local
coordinates and a dilation relative to which the approximating system of (1) has the form

x(k+ 1) (X) + bl y(-mk) (X), or for system (6) in the above example, 2 X(3 (x) +u y(-2) (x),
which is STLC at zero. Then large-time local controllability follows by Theorem 1.

Before stating and proving Theorem 3, some preliminary results on homogeneous vector
fields are needed.

PROPOSITION 2.1. If V(m is a vector field homogeneous of degree m with respect to a
dilation 3r and v(m)(x) --j--1 aj(x) O/Oxj, then aj(O) 0 if rj 5 (1 m).

Proof. V(m homogeneous of degree m implies aj E Prj+m-1. Recall that Pe {0} if
< 0; P0 consists of constant polynomials, and polynomials in Pe vanish at zero if > 0.

Thus aj (0) 0 except when rj 1 m.
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PROPOSITION 2.2. Let W(x) Ej--1 bj(x) OlOxj and have expansion in terms of ho-
mogeneous vector fields relative to a dilation 3r, W(x) w(m)(x) + w(m+l)(x) + Let

nW(k)(x) Y4= bk)(x) O/Oxj. Then bj(O) bm)(o) for rj m, bj(O) bm+l)(O) for
rj -m, bj (0) bm+2) (0)for rj -m 1, etc.

Proof. This follows immediately from Proposition 2.1.
PROPOSITION 2.3. X is homogeneous ofdegree m ifand only if Xh P+m-1 whenever

hP.
Proof. If X(x) aj(x) O/Oxj is homogeneous of degree m, aj Prj+m-1, while

h P implies Oh/Oxj Pk-rj. Thus Xh -aj Oh/Oxj P+m-. Conversely, if
aj Oh/Oxj P+m- for h Pk, this implies aj Pr+m- or X is homogeneous of degree

m. [3

PROPOSITION 2.4. IfX(m) is homogeneous ofdegree m and y(e) is homogeneous ofdegree
e., then [X(m), y(e)] is homogeneous ofdegree (m + 1).

Proof. By Proposition 2.3, for h P, [X(m), Y(e)]h x(m)(Y(e)h) Y(e)(x(m)h)
Pk+m+e-2 Pk+(m+e-1)-l, which implies that [X(m), Y(e)] is homogeneous of degree

(m+e- 1).
DEFINITION. An extended filtration, , of L(X, Y) at zero is a sequence of subspaces

{Fj -o < j < o} ofL(X, Y) such thatfor all integers i, j
(i) Fj C Fj+,
(ii) [Fi, Fj] Fi+j,
(iii) j Fj L(X, Y),
(iv) X Fj with j < 0 implies X (0) --O.
Such filtrations of L(X, Y) will be constructed as follows. Assign integer weights to

X, Y, denoted wt X, wt Y (negative integers are permitted), and let the weight of a Lie product
be the sum of the weights of its factors. The weight-induced filtration " then has subspace
Fj consisting of all elements in L(X, Y) having weight _< j. Note that condition (iv) puts a
severe restriction on the admissible weights that one can assign to X and Y.

Filtration-induced local coordinates and dilations. Let -= {Fj "-cx < j < c}
be an extended filtration of L(X, Y) at zero and n dim F(0), -x < k < <. Property
(iv) shows that nk 0 if k < 0, while dim L(X, Y)(O) n means dim FN(0) n for some
integer N. Choose X X. C F1 such that they are linearly independent at zero. Adjoin

X.1+1 X.2 F such that XI (0) X2 (0) are linearly independent, and continue
in this fashion to get Xzr X,r. with

(7) XTg e Fj, nj-1 + 1 < < nj.

Let j > be the smallest integer such that nj 5 O. Choose ri j for < <_ nj, ri j + 1
for nj < < nj+l, and so on. The dilation 3 with r (r rn) chosen as above is called
thefiltration-induced dilation. In a specific problem, vector fields are initially given relative to
some local coordinates--say, x (xl Xn)--for a neighborhood of zero. Define a local
coordinate change y o- (x), where

(8) x q)(y) (exp yXr,) o...o (exp ynXr.)(O).

Then q) is a local diffeomorphism with o(0) 0, and the coordinates y (y Yn) are
local coordinates induced by the filtration.

As mentioned in the introduction, in some recent papers a vector field X (x) yj= aj (x) 0/0xj
was defined to be homogeneous of degree m if aj Pr-m, j 1 n. We have instead
changed the definition to aj Pr+m-1 in order to be in keeping with classical terminology.



1296 HENRY HERMES

The next theorem is merely a translation of [4, Thm. 2.1] from the previous definition of vector
field homogeneity to the one being used here.

THEOREM 2 (see [4, Thin. 2.1]). Let Fj -oe < j < oc be an extendedfiltration
at zero for L(X, Y) with y (yl Yn) induced local coordinates and 6r the induced
dilation. Then if X Fl-m,

(9) X(y) x(m)(y) -Jr- x(m+l)(y) +’’’,

where X) is homogeneous ofdegree j with respect to 6r.
Now assume that a lattice of bracket types (k, ) as in Figure has been drawn. The main

result of this section is the following theorem.
THEOREM 3. Assume dim L(X, Y)(0) n for system (1) and that there exists an m such

that the bracket (1, m + 1), evaluated at zero, is zero (and hence this will be truefor brackets
of type (1, ), g > rn + 1, since X (0) 0). Iffor some integer k > 1 one can draw a line
through the (1, m) point in the lattice with slope -k/(mk + 1) such that

(a) all brackets to the right of the line vanish at zero. All (even, odd) brackets on the line
vanish at zero.

(b) as you slide the line to the left parallel to itself, each time that you reach a bracket

of type (even, odd) which when evaluated at zero is not zero, its value at zero is a linear
combination of brackets (at zero) to the right of the line.
Then system (1) is LTLC.

Remark 1. If we were to allow k 0, the line would have slope zero. Condition (a) is
vacuously satisfied with "to the right" replaced as above. If condition (b) is satisfied as you
slide the line down (rather than to the left), the original system would be STLC at zero.

Remark 2. Ifm 0, i.e., (ad X, Y)(0) 0, one can consider a line through the (1,0) point
of slope -k with k > arbitrary. However, ifm > 1, the limiting (but not attainable) possible
slope is 1/m. Indeed, the possible slope values lie in the interval (- 1/m, 1 /(m + 1).
Choosing rn large may be advantageous.

Remark 3. There is no loss of generality in assuming that the local coordinates are such
nthat Y O/Oxl and, using some feedback if necessary, X(x) )-j=aaj(x)O/Oxj. This

ensures that O/Ox cannot also occur as some nontrivial product of the vector fields X, Y
evaluated at zero. Thus if we expand Y as a sum of homogeneous vector fields relative to a
(weight) filtration-induced dilation as in Theorem 2, the leading term will not vanish at zero.

Proof Assign wt X -k, wt Y mk + 1. This makes the weight of the (1, m) bracket
one; brackets of types (i, j) which lie on the line will have weight one, and those to the fight
of the line will have weights less than or equal to zero and hence belong to Fj with j < 0,
where f" Fj - < j < x} is our candidate for a weight-induced filtration. But by (a),
such brackets vanish at zero; hence condition (iv) of an extended filtration at zero is satisfied,
and our weight assignment does give such a filtration. Brackets of type (i, j) which lie on or
to the left of the line will have positive weights, and their values at zero could be nonzero.

Let be the filtration-induced dilation and y (y Yn) be the induced local coor-
dinates. By Theorem 3, in these coordinates and relative to this dilation, we can write

X(y) x(k+l)(y) -t- x(k+2)(y) +...,
(10)

y(y) y(-m)(y) + y(-m)(y) +....

The homogeneous approximation of system (1) is then

(11) , X(’+(y) + uy(-mO(y)

with y(-m)(0) 7 0 by Remark 3. The proof proceeds by showing that condition (b) implies
that system (11) is STLC at zero. In particular, we first show that if W is an ordered product of
X, Y of (even, odd) type which does not vanish at zero but is a linear combination of brackets



LARGE-TIME LOCAL CONTROLLABILITY 1297

(evaluated at zero) already encountered, then this same ordered product of X(k+l) y(-mk)
vanishes at zero.

LEMMA 1. Let W Fk; hence in the induced local coordinates, and relative to the
induced dilation, by Theorem 2

W(y) W(1-k)(y) -t- W(2-k)(y) +....

lf W(O) 7 0 but is a linear combination ofelements in Fe(O) for < k, then w(l-k)(0) 0.
Proof. Suppose W(y) -j= bj(y) O/Oyj. Then W(0), alinearcombination ofelements

of Fe(O) for < k, implies bj(O) 0 for rj k by Proposition 2.2. Now let w(m-k)(y)
nj= bm)(y) O/Oyj, m 1, 2 From Proposition 2.1 we see bm)(o) 0 except if

rj 1 + k m. In other words, bj (0) bm) (0) for rj 1 + k m. Then with m 1 we

have 0 bj (0) bJ) (0) for rj k and hence W(-k) (0) O.
We continue with the proof of Theorem 3. Suppose that W is an ordered product of X, Y

of type (s, ) and hence of weight (sink + s k) which we call m, i.e., W Fml and

(12) W(y) W(1-m’)(y) nt- W(2-m’)(y) -t-...

Then the term of lowest homogeneous order, i.e., W(1-ml), is the same ordered product of
X(k+l) and y(-mk). Hypothesis (b), together with Lemma 1, shows that any product of the
vector fields X(k+l), y(-mk) of type (even, odd) vanishes at zero.

LEMMA 2. dim L(X, Y)(0) n implies dim L(X(k+l), Y(-mk))(O) n.

Proof. Let W Fe be a product of factors X, Y such that W(0) Fe_l(0). As in (12),
expand W as W(y) W(1-e)(y) + W(2-e)(y) + Then W1-e) will be the same ordered
product of X(k+l), y(-mk) as W was of X, Y. From Proposition 2.2, if we write W(0)
with in the quotient space Fe(O)/Fe_l(O), 0 Fe_l(0), then W(1-e)(0) . If we assign
wt X(k+l) -k, wt y(-mk) =mk + and let {Gj -cxz < j < } be the weight-
induced filtration of L(X(k+, y(-mk)), this shows dim Gj(O) dim Fj(O) for all j, from
which the result follows.

To complete the proofofTheorem 3, we again note that hypothesis (b) and Lemma imply
that for the approximating system (11), the (even, odd) brackets evaluated at zero are zero.
Since dim L(X(+1, Y(-mk))(O) n, Sussmann’s theorem [11] applied to the approximating
system shows that it is STLC at zero. Theorem 1 now applies to make system (1) LTLC.

We next give another example to illustrate the use of Theorem 3 to show large-time
local controllability. Furthermore, to see how the details of the proof of this theorem work
in a specific example, we compute the filtration-induced local coordinates and dilation and
the approximating system relative to them. Then Lemma can be illustrated as we check
small-time local controllability of the approximating system.

Example 2.2. On R5 we consider a system of the form (1) with

0 0 0 0
Y(x)-(13) X(x) Xl-x2

-I- (x nt-- xx4)-x -I- x5-x4 --1- x Ox5, OXl

The relevant brackets, which do not vanish at zero, are

(adX, Y)(0) (ad Y, X) (0) -6Y(0)
0xl Ox. 0x5

(ad4y, X)(0)
Ox3’

[(ad3y, X), X](0) 6x4
V(0) [(ad3y, X), [(ad2y, X), XI](0) 12

and

These are, respectively, of types (1,0), (1,1), (3,1), (4,1), (3,2), and (5,3).
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(1 O) 1, 1) 1 2)

(5;1) (5;2"),

(1,3) (1,4) (1,5)

(2,,3) (2,,4)(2,,5)
3,3, 4) (3,o5)

FIG. 2.

Here the (1,1) bracket is linearly independent of the (1,0) bracket, while brackets of the
form (1, e), e > 2, vanish at zero. We choose m 1. The "bad" bracket is that of type (4,1),
and we see that we need a line having a slope so that the (5,3) bracket is encountered before
the (4,1). Choose k 2, giving a line of slope -2/3 through the point (1,1). As seen in
Figure 2, this line meets the requirements of Theorem 3, and the system is LTLC.

It is instructive to essentially follow the steps of the proof of Theorem 3 for this ex-
ample. For m and k 2, the weight assignments are wt X -2 and wt Y 3.
Then wt(adX, Y) 1, wt(ad3y, x) 7, wt(ad4y, x) 10, wt[(ad3y, x),x] 5,
and wt[(ad3y, X), [(ad2Y, X), X]] 9. The weight-induced filtration is with r
(1, 3, 5, 7, 9). Also, XN1 -’-(adX, Y) 6 F1, Xr2 Y 6 F3, Xzr3 [(ad3y, X), X] 6 Fs,
X (ad3 Y, X) 6 FT, and Xr5 [(ad3 Y, X), [(ad2y, X), X]] 6 F9. The filtration-induced
local coordinates are obtained from the diffeomorphism

x q)(y) (exp YlX,r,) o... o (exp ysXr,)(0)

Y2
Yl

4y32yl + 12ylY2Y3 + 12y5
6y3

3yyl 6y4

Abusing notation by letting X (y), Y(y) again denote the original vector fields X, Y in the new
y-coordinates, the system k X(x) + uY with X (x), Y(x) given by (13) transforms into

Y2

(1/2)yly Y4 q- u
(14) y/3

(y4/12) (yy3/2) (y2y/2) + YlY2Y4

X(y) + ur(y).

0
1
0

yy2

yly yy3

Then relative to the filtration-induced dilation, X (y) X(3) (y) + X(4) (y), Y (y) y(-2) (y) +
Y(-) (y), where

x(a)(Y) Y2y + ((yy2/2) Y4)y3 + (Y/3)y4,
2 3/2))+ (YlY2Y4 (Y2Y3/2) (YY2
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X(4)(y) (y24/12)y5
0r(-2) (Y) oy27--- + Yl Y2 oyT- 4

y(-1)(y) _yly2
0

2 025

0
YlY3,

OY5

The homogeneous approximating system is X(3) (y) + u y(-2 (y), which is STLC (it is an
"odd" system). One should note that (adey(-2, X(3)(0) 0 as promised by Lemma 1; i.e.,
the approximation is such that the "bad brackets" of the original system vanish at zero for the
approximating system.

Example 2.3. On IR5 consider system (1) with

0 0 0 0
x(x) + + x?xs)a-gx3 + X Tx4 + x?

The relevant brackets not vanishing at zero are Y(0) O/OXl, (adX, Y)(0) O/Ox2,
(ad3y, X)(0) -6 O/Ox5, [(ad3y, X), X](0) 6 O/Ox4, [(ad3y, X), (ad2y, X)](0)
-12 O/Ox3, and (ad4y, X)(0) 24 O/Ox3. These are, respectively, of types (1,0), (1,1),
(3,1), (3,2), (5,2), and (4,1). Plotting them on Figure 2, one sees that no line through a (1, m),
m > 1 point, with slope -1/m < -k/(km + 1) < -1/(m + 1), can encounter the (5,2)
bracket before the (4,1). Thus Theorem 3 will not apply. ]
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EQUIVALENT SUBGRADIENT VERSIONS OF HAMILTONIAN AND
EULER-LAGRANGE EQUATIONS IN VARIATIONAL ANALYSIS*

R. TYRRELL ROCKAFELLAR

Abstract. Much effort in recent years has gone into generalizing the classical Hamiltonian and Euler-Lagrange
equations of the calculus of variations so as to encompass problems in optimal control and a greater variety of
integrands and constraints. These generalizations, in which nonsmoothness abounds and gradients are systematically
replaced by subgradients, have succeeded in furnishing necessary conditions for optimality that reduce to the classical
ones in the classical setting, but important issues have remained unsettled, especially concerning the exact relationship
of the subgradient versions of the Hamiltonian equations versus those of the Euler-Lagrange equations. Here it is
shown that new, tighter subgradient versions of these equations are actually equivalent to each other. The theory of
epi-convergence of convex functions provides the technical basis for this development.

Key words. Euler-Lagrange equations, Hamiltonian equations, variational analysis, nonsmooth analysis, sub-
gradients, optimality

AMS subject classifications. 49B 10, 49B34

1. Introduction. In the classical theory of minimization problems involving an integral
functional ftt01 L(t, x(t), Jc(t))dt with Lagrangian expression L(t, x, v) on [to,
a key role in analyzing the optimality of an arc x(.) [to, tl] -+ n is played by the Euler-
Lagrange equation

(1.1) [7(t) Vx L(t, x(t), Jc(t)) for p(t) VoL(t, x(t), Jc(t)).

When L(t, x, v) is twice differentiable and the Hessian matrix in v is positive definite, the
Legendre transform can be applied in the v argument to get a Hamiltonian H(t, x, p) in terms of
which the Euler-Lagrange equation can be expressed equivalently as the Hamiltonian system

Jc(t) VpH(t, x(t), p(t)), -p(t) VxH (t, x(t), p(t)).

The differentiability assumptions in this scheme have long posed difficulties, however.
Many problems of interest fail to meet all the criteria for utilizing the Legendre transform;

in such cases (1.2) may only be a consequence of (1.1), not equivalent to it. Then the arcs
x(.) and p(.) can have "comers" where their derivatives are discontinuous. Tonelli’s theory
for the existence of optimal arcs demands an even broader setting; that is, problems must be
studied with x(.) merely assumed to be absolutely continuous, so that (1.1) and (1.2), to the
degree that they are valid, have to be interpreted in an almost everywhere sense.

Questions of existence have also challenged the suitability of classical assumptions in
other ways. Tonelli showed that the convexity of L (t, x, v) in v is a crucial property. If this is
lacking, a convexification process can be introduced to achieve it as a justifiable sort of regu-
larization (or relaxation) of a given problem, but convexification can disrupt differentiability.
Thus, Lagrangians L need to be admitted for which certain derivatives may be absent. The
theory of optimal control has pushed this direction of generalization much further through
the recognition that a vast range of applications can be covered "neoclassically" in terms of
Lagrangians that are not even continuous everywhere and can take on the value cxz, as a de-
vice for representing constraints on x(t) and k(t) through infinite penalization when they are
violated.

*Received by the editors August 26, 1994; accepted for publication (in revised form) March 13, 1995. This work
was supported in part by National Science Foundation grant DMS-9200303 at the University of Washington and by
U.S.-Israel Science Foundation grant 90-00455.

Department of Mathematics, University of Washington, 354350, Seattle, WA 98115-4350.
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As far as possible in the face of this far-reaching extension of the classical framework,
one would nonetheless like to make sense of the Euler-Lagrange and Hamiltonian equations
as necessary conditions for optimality. The Hamiltonian can always be defined by appealing
to the Legendre-Fenchel transform of convex analysis instead of the Legendre transform
as

(1.3) H(t,x, p) sup{(p, v) L(t,x, v)},

where (p, v) denotes the inner product of two vectors p and v in ]n. Provided that L(t, x, v)
as a function of v is convex and lower semicontinuous, one has

(1.4) L(t, x, v) sup {(p, v) H(t, x, p)},
pE]I{

so that a one-to-one correspondence is set up between Lagrangians and Hamiltonians without
calling for their differentiability. In the possible absence of gradients of L and H, the idea is
to try to rewrite (1.1) and (1.2) in terms of some kind of "subgradients."

This program was first carried out in the fully convex case, where L(t, x, v) is convex as
a function of (x, v) (rather than just v), which corresponds to H(t, x, p) being concave in x
and convex in p. Subgradients of convex analysis were used by Rockafellar [2], [3], [4] to
establish an Euler-Lagrange condition

(1.5) (D(t), p(t)) OL(t, x(t), 2(t)) a.e.

and a Hamiltonian condition

(1.6) (- D(t),k(t)) e OH(t, x(t), p(t)) a.e. t,

where in (1.5) the subgradients are those of L(t,., .) as a convex function while in (1.6)
they are those of H(t,., .) in the special sense employed for concave-convex functions. The
equivalence of these Euler-Lagrange and Hamiltonian conditions was shown through the
dualization rules for subgradient relations in convex analysis.

In a major advance, Clarke [5], [6] developed a robust concept of subgradient that could
serve for nonconvex functions and be used in pushing the Euler-Lagrange and Hamiltonian
conditions further. This concept has evolved considerably since its introduction, both in the
pattern of definition and the role of the convex hull operation. The subgradients in question
can now be described in several ways, but for purposes here it is easiest to start with proximal
subgradients and then take limits.

Consider a function f IRa (where denotes the extended reals). A vector z is a
proximal subgradient of f at if f() is finite, and for some p > 0 and 3 > 0 one has

12f (y) > f@) + (z, y Y) gply y when lY-/91 8.

It is a subgradient in the general sense, expressed by z Of@), if there are sequences y --and z -- z such that z is a proximal subgradient of f at y and f(y) -+ f(). It is a
subgradient in the horizon sense, expressed by z Of(), if this condition holds with the
modification that, instead of z -+ z, one has )z -+ z for some sequence of scalars ) N O.
(In these expressions and below, we use the superscript v as the generic index for sequences.)

When f is continuously differentiable, Of() consists of just the gradient Vf@), while

Of() has just the zero vector. When f is convex, Of@) is a closed, convex set, the same as
the subgradient set of convex analysis, which if nonempty has Of@) as its recession cone. In
general, however, Of() and Of() are not convex, although they are always closed. Seeking
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a subgradient set that always would be both closed and convex, Clarke, although his notation
was different and his definition followed an alternate route, ended up with the set

f() cl con [Of@)
where "cl" stands for closure and "con" for convex hull. He especially emphasized the case
where f is Lipschitz continuous around ; then 0f@) is a nonempty compact set, whereas

0f() {0}, so the formula simplifies to f() con Of ($). See Loewen [7] for a recent
exposition furnishing the details.

Nowadays the convexification in this definition is no longer seen as essential for most
applications, thanks to improvements in subgradient calculus achieved by Mordukhovich,
Ioffe, and others. In the treatment of the class of problems under discussion here, which was
Clarke’s chief concern, it has a natural genesis in taking weak limits, however, and the question
of the extent to which it is needed has been harder to answer.

With full recourse to such convexification, Clarke was able to demonstrate in some situ-
ations where L(t,., .) is locally Lipschitz continuous [8] the necessity of the Euler-Lagrange
condition in the form

(D(t), p(t)) L(t, x(t), 2(t)) a.e. t,

where the subgradient set L(t, x(t), 2(t)) refers to the function L(t,., .) at (x(t), 2(t)) and,
because of the Lipschitz continuity, equals con OL(t, x(t), 2(t)). On the other hand, he
established in some other situations [9] where H(t,., .) is locally Lipschitz continuous the
necessity of the Hamiltonian condition in the form

(-[9(t), 2(t)) gH(t, x(t), p(t)) a.e. t,

where the subgradient set H(t,x(t),k(t)) is that of H(t,., .) at (x(t), p(t)) and, again
because of the Lipschitz continuity, is the same as con OH(t, x(t), p(t)). (See [6], [10] for
an overview of this development.)

Although Clarke’s conditions (1.7) and (1.8) reduce to (1.1) and (1.2) in the classical case
and to (1.5) and (1.6) in the convex case, and then are equivalent, neither necessarily implies
the other in general, even when both L(t,., .) and H(t,., .) are locally Lipschitz continuous.
Their precise relationship has therefore been a mystery.

Loewen and Rockafellar [11 showed, in building on Clarke’s results, that for a major
class of problems the Euler-Lagrange condition (1.7) and Hamiltonian condition (1.8) do at
least have to hold simultaneously for some arc p(.) when x (.) is optimal. Rockafellar proved in
[12, Thm. 5.1] that when H(t,., .) is locally Lipschitz continuous the Hamiltonian condition
implies

(1.9) (/5(t), 2(t)) con {(--w, v) (w, p(t)) OL(t, x(t), v), p(t) OvL(t, x(t), v)},
which is a form of the Euler-Lagrange condition suggested by Mordukhovich [13], [14],
[15]. For Hamiltonians arising from bounded differential inclusions, Ioffe [16] established
that this implication is an equivalence. Also identified in Rockafellar [12, Thm. 3.4] is a
broadly applicable case, beyond the known classical and convex ones, where (1.7) and (1.8)
are equivalent even with L replaced by OL.

More recent work of Loewen and Rockafellar in 17] raised the possibility of establishing
the Euler-Lagrange condition in the form

(1.10) /(t) con {w (w, p(t)) OL(t, x(t), 2(t))} a.e.t
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with the companion property that

(1.11) p(t) OoL(t, x(t), Jc(t)) a.e.t.

They were able to do this in a case where L is the indicator of a possibly unbounded differential
inclusion, which should allow extension to other Lagrangians L through consideration of
epigraphical mappings. This case also covers, for instance, the case where L is the indicator
of a Lipschitz continuous differential inclusion of the kind underlying Clarke’s Hamiltonian
results. Such an Euler-Lagrange condition has also been obtained by Mordukhovich 18] for
a class of nonconvex differential inclusions and by Ioffe and Rockafellar 19] for certain finite
functions L. In the special case where L(t, x, v) is essentially strictly convex in v, which
corresponds in the theory of the Legendre-Fenchel transform to H(t, x, p) being smooth in
p, a case used as a technical stepping stone in 17], (1.9) comes out as saying the same thing as
(1.10) and (1.11). In general, though, the combination of (1.10) with (1.11) is distinctly sharper
than the versions of Euler-Lagrange in (1.7) and (1.9) because the process of convexification
is much more limited.

Here we sidestep the exploration of the full range of situations in which the Euler-
Lagrange condition in the form of (1.10) might be necessary for the optimality of an arc
x(.). Instead we focus on the relationship between (1.10) and a corresponding version of the
Hamiltonian condition, namely,

(1.12) /5(t) con {w I(- w, c(t)) OH(t, x(t), p(t))} a.e.t

along with

(1.13) Jc(t) OpH(t,x(t), p(t)) a.e.t.

This is sharper than the Hamiltonian condition (1.8) and has not previously been considered.
We’ll show it is in fact equivalent to (1.10) in the kinds of circumstances that are typically
present in derivations of necessary conditions for the optimality of an arc x(.). Efforts aimed
at enlarging the range of cases in which the Euler-Lagrange condition holds in the version
(1.10) can thus count on the side benefit of improving Clarke’s Hamiltonian condition in a
hitherto unsuspected way.

The following theorem is our main result. Through [17] it brings to light, among other
things, that (1.8) can be strengthened to (1.12) in Clarke’s context [9].

In stating this theorem, we say that the Lagrangian L has the epi-continuityproperty along
x(.) if, for almost every t, there is an open set O(t) containing x(t) such that:

(a) L(t,., .) is lower semicontinuous on O(t) x
(b) for every point (,
there is a sequence v with L(t, x, v) L(t, , f)).

Clearly (a) and (b) are satisfied in particular when L(t,., .) is continuous on O(t) x Itn.
THEOREM 1.1. Let L(t, x, v) be convex in v (possibly with the value cx3), and let H (t, x, p)

be defined by (1.3). Let x(.) be an arc along which L has the epi-continuity property. Suppose
for almost every that

(1.14) (w, O) OL(t, x(t), c(t)) = w O,

this being true in particular if L(t,., .) is Lipschitz continuous around (x(t), c(t)). Then
version (1.10) of the Euler-Lagrange condition is equivalent to version (1.12) of the Hamil-
tonian condition and automatically entails (1.11) and (1.13). The same holds when (1.14) is
replaced by

(1.15) (w, 0) 8H(t, x(t), p(t)) == w O,

this being true in particular if H(t, ., .) is Lipschitz continuous around (x(t), p(t)).
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The epi-continuity property invoked in Theorem 1.1 concerns the continuity of the set-
valued mapping that associates with each x the epigraph of the function L(t, x, .), as will
become clearer in the next section. Assumption (1.14) concerns a kind of localized Lipschitz
continuity of this mapping. Such properties of epigraphical mappings have long been implicit
in most developments of the subject, in consequence for instance of Lipschitz assumptions
placed on L or H, or on some underlying differential inclusion mapping, but their effects on
subgradients have not been explored directly. Here they emerge finally in the foreground.
Also coming on stage for the first time in such a setting, through the technique we will
use to prove Theorem 1.1, will be a number of tools of convex analysis. These include
Fenchel’s duality theorem in convex optimization, Moreau’s theory ofproximal regularizations
of convex functions, Wijsman’s epi-continuity theorem for the Legendre-Fenchel transform,
and Attouch’s theorem on convergence of subgradients.

2. Dualization framework and epi-continuity. For the task to be accomplished, the
argument doesn’t matter; all questions revolve around properties that hold for a fixed t.

We therefore suppress t. We consider an open subset 0 of Nm and take L(x, v) to be an
expression defined for (x, v) 6 0 Nn such that, for each x 6 O, L(x, .) is a convex, lower
semicontinuous (lsc) function on Nn that is proper, i.e., although possibly extended real-valued
does not take on -cx and is not identically cxz. In the targeted applications to Euler-Lagrange
and Hamiltonian conditions we’ll have m n, but for the sake of other potential uses of
the results to be obtained we allow the dimensions m and n to differ. We define H(x, p) for
(x,p) 0 xRnby

(2.1) H(x, p) sup{(p, v)- L(x, v)}.
1)E]

The Legendre-Fenchel transformation, on which this formula is based, has the property that
for each x O, H(x, .) is, like L(x, .), a proper, convex, lsc function on R", moreover with

(2.2) L(x, v) sup{(p, v)- H(x, p)}.

This symmetric relationship between L and H will enable us to apply any result proved for
either function to the other function as well. We can later interpret O as a neighborhood of
some particular point of Rm that happens to be under scrutiny.

The lower semicontinuity of L(x, v) in v and of H(x, p) in p has already been incorpo-
rated into our framework, but nothing has been said yet about continuity properties relative to
x. At the very least we’ll need L(x, v) to be lsc in (x, v) O x IR and similarly for H(x, p)
in (x, p); but we’re going to go further, clarifying along the way the property that provides
the simplest dualization scheme and best supports our subsequent analysis. We’ll be working
with the concept of epi-continuity in the dependence of the functions L(x, .) and H(x, .)
on x.

Recall that the epigraph of a function f ]R --+ IR is the set

epi f {(y, o) IR" x JR lot > f(y)}.

In general, a sequence of functions f IR --+ IR is said to epi-converge to a function

f IR --+ IK if the corresponding epigraphs converge, meaning that

epi f lim sup epi f lim inf epi f
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in the Painlev6-Kuratowski sense as subsets of ]n x ]t. This is true if and only if

(2.3)
lim info f (v) > f(v)

lim sup f" (vv) < f(v)

for every sequence vV
__

v,

for some sequence v --+ v.

Epi-convergence was introduced for proper, lsc, convex functions by Wijsman [20], who
proved that the Legendre-Fenchel transformation was continuous with respect to it. For more
background on this topic, see Wets [21 and Salinetti and Wets [22].

PROPOSITION 2.1. The following six properties are equivalent and imply in particular
that L and H are lsc in both arguments jointly, asfunctions on 0 Nn.

(a) The set epi L(x, .) in N IR depends continuously on x O.
(b) Whenever x --+ 2 in O, thefunction L(x, .) epi-converges to L(2, .).
(c) For any (2, f)) 0 ]x and sequence x --+ 2, one has

liminf, L(x, v) > L(2, f)) for every sequence v --+ f,

lim sup L(x, v) < L(2, f)) for some sequence v

(d) The set epi H (x, .) in ]R x IR depends continuously on x e O.
(e) Whenever x - 2 in O, thefunction H(x, .) epi-converges to H(2, .).
(f) For any (2, ) 0 x Rn and sequence x -- 2, one has

lim inf, H(x, pV) > H(2, ) for every sequence p" --+ [,
lim sup, H(x, p’) < H(2, ) for some sequence pV --+ [.

Proof. Conditions (a) and (b) mean the same, by the definition of epi-convergence, and
(c) characterizes this property in accordance with the facts just cited. This pattern holds
for (d), (e), and (f) as well. But because L(x, .) and H(x, .) are proper convex functions
conjugate to each other under the Legendre-Fenchel transformation, which preserves epi-
convergence according to Wijsman’s theorem, (b) is equivalent to (e). Hence, all the conditions
are equivalent to each other.

For short, we’ll say that the epi-continuity assumption is satisfied when the six equivalent
properties in Proposition 2.1 are present. Obviously this is true in particular when L is
continuous on O x ]tn (through (c)), or when H is continuous on O x n (through (f)). In
typical applications the epi-continuity assumption merely means (through property (c)) that,
in addition to taking L(x, v) to be lsc in (x, v), rather than just in x, we suppose that whenever
(2, ) is a point of O x ]R where L is finite and {x is a sequence in O converging to 2, there
must be a sequence {v converging to for which L(x, v) converges to L(2, f)).

Note that the epi-continuity condition used in the hypothesis of Theorem 1.1 merely re-
quires for almost every that this should hold relative to some neighborhood O(t) of x(t).
Proposition 2.1 shows that the condition in question could be expressed in terms of the Hamil-
tonian just as well as the Lagrangian. It’s actually symmetric between the two functions (as
long as the Lagrangian is lsc and convex with respect to v).

The study of subgradients of L and H with respect to both of their arguments in O x IRn

requires working with the definition in in terms of limits of proximal subgradients. But
subgradients of L in the v argument and ofH in the p argument enjoy the benefits ofconvexity.
Convex analysis informs us that

(2.4) p 6 OvL(x, v) = V 6 OpH(x, p) L(x, v) + H(x, p) (p, v)

(cf. [1, Thm. 23.5]), where from (2.1) and (2.2) we know that L(x, v) + H(x, p) > (v, p) for
all choices of (x, v, p) 60 x R x Nn.
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PROPOSITION 2.2. Under the e_pi-continuity assumption,

(w, p) OL(x, v) === p OvL(x, v),
(2.5)

(w, v) OH(x, p) == v OpH(x, p).

Proof. Due to symmetry, it suffices to deal with the first of these implications. Suppose
(Co, ) OL(2, f)). By definition there exist (x v, v v) --+ (2, ) and (w, p) --+ (if),/3)
such that (w, p) is a proximal subgradient of L at (x v, v), and L(x, v) --+ L(2, f)). The
proximal subgradient condition refers to the existence of p > 0 and 3v > 0 such that

p. x.l: :)L(x, ) > L(x ) + ((w", p’), (x, ) (x ))- (Ix + I v

when ](x x, v v)[ _< . In taking x x we see that the convex function

f’(v) "= L(x, v) -(p’, v v} + 1/2P’lV vVl 2

must have a local minimum at v. This implies that 0 6 Of(v) OvL(x, v) p or,
in other words, p OvL(x, vV), a subgradient condition that, because of the convexity of
L(x, v) in v, can be written as the inequality

L(x, v) > L(x, v) + (p, v v} for all v e ]1n.

Consider now an arbitrary v 6 IRn for which L(2, v) < oo. Our epi-continuity assumption
ensures the existence of a sequence Ov --+ v with L(x, f) -- L(x, v). For each index v we
have

L(x, ) >_ L(x, ) + (p",

In passing to the limit as v oe and using the fact that L(x, v) --+ L(, v) in particular,
we obtain

L(Y, v) >_ L(Y, F) + (, v-

We have shown this inequality to hold for any v with L(2, v) finite, but it holds trivially when
L(2, v) oo. Hence it holds for all v 6 ]1n confirming that/3

Proposition 2.2 suggests approaching the subgradients of L and H in general by looking
at the set

(2.6) M "= {(x, v, p) 6 0 x n x ]ln[ properties (2.4) hold}
and the set-valued mappings

(2.7)
SL" (X, , p) { I(W, P) e OL(x, )},
SH "(x, v, p)- {w [(w, v) OH(x, p)}.

The graph of SL, consisting by definition of all (x, v, p, w) such that w e SL (x, v, p), is the
same then as the graph of 0L, except for a permutation of arguments; likewise for the graph
of SH in comparison with the graph of 0 H.

PROPOSITION 2.3. Under the epi-continuity assumption, M is closed in 0 x N x IRn and
thefunctions (x, v, p) w- L(x, v) and (x, v, p) - H(x, p) are finite and continuous on M.
Moreover, the effective domains ofthe set-valued mappings S and SH on 0 x N x Nn (the
effective domains being the sets on which the mappings are nonempty-valued) lie in M, and
the graphs ofthese mappings are closed as subsets of 0 x R x IR x Nn.
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Proof. We can view M as the graph of the mapping G that associates with each x 60
the set of all (v, p) 6 ]n x ]n such that p is a subgradient of the convex function L(x, .) at v.
According to Attouch’s theorem on subgradient convergence (see [23]), the epi-convergence
of L(x v, .) to L(x, .) implies the set convergence of G(x) to G(x). In particular, this entails
the closedness of the graph of G in O x ]t x ]]n.

As functions of (x, v, p), both L(x, v) and H(x, p) are lower semicontinuous by Propo-
sition 2.1 and never take on -oc. But on M they are related by H(x, p) (v, p) L(x, v)
and L(x, v) (v, p) H(x, p), so they cannot take on ec either and must be upper semi-
continuous as well. Hence they are finite and continuous on M.

The assertion about the effective domains of SL and S/-/just restates Proposition 2.2.
Verifying the closedness of the graphs of SL and S/4 comes down to verifying the closedness
of the graphs of 0L and 0 H. The graph of L consists by definition of the closure, in a special
way relative to 0 x x ]1 X ]1 of the set of all (x, v, w, p) such that (w, p) is a proximal
subgradient of L at (x, v). The closure consists of all limits of sequences (x, v, w, p)
that not only converge themselves but have the additional property that the values L(x, v)
converge. But whenever (w, p) is a proximal subgradient of L at (x, vv) we have in
particular that p is a proximal subgradient of the convex function L(x, .) at v. This implies
p OvL(x, v), hence (x, v, p) M. The convergence of the values L(x, v) is then
automatic because L is continuous as a function on M. Thus, the special feature of the closure
process falls away, and the graph of 0L is seen to be a closed set in the ordinary sense relative
to O x IR x lt X ]1 For 0H the argument is parallel, rq

Our strategy for proving Theorem 1.1 is now perhaps becoming clear. Under the epi-
continuity assumption, we need only come up with additional conditions on a point (2, ,/3) 6

M that guarantee the sets S (2, ,/3) and -SI-I(2, f), ) have the same convex hull. The fact
that these sets don’t necessarily agree in advance of taking convex hulls is evident from simple
examples. For instance, if L(x, v) c(x) + l(v) for a finite, continuous function c on R and
a proper, lsc, convex function on Rn, we have H(x, p) -c(x) + h(p) with h the proper,
lsc, convex function on IR conjugate to 1. Then M is the product of ]1{ with the graph of O1,
and for (2, ,/3) 6 M we see that

&(y, 0,/) 0c(7), s.(, , p) -0(-c)().

While 0c(2) is the set of subgradients of c at 2 as defined in the manner explained, from limits of
proximal subgradients introduced "from below,"-0(-c)(2) has the analogous interpretation
with proximal subgradients introduced instead "from above." These two sets are known often
to differ for a nonsmooth function c, although they have the same convex hull when c is
Lipschitz continuous on a neighborhood of 2.

The key to further progress will be the following regularizedfunctions associated with L
and H:

(2.8)
{Rl(X, U) inf L(x, v) + -lv ul

lJE

IRl-i(x,u) inf H(x, p) + glp u[ 2
pE]I{

where I" is the Euclidean norm. Also important will be the correspondingproximal mappings:

(2.9)
{ 2]Pi(x, u) arg min L(x, v) + lv ul

Pl-i(x, u) arg rn,in H(x, p) + SIP ul
p6R
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In dealing with these regularized functions and proximal mappings for a fixed u, we draw
heavily on the theory of Moreau [24]; see also Rockafellar [1, Thm. 31.5]. For any fixed
x 6 O, the functions u RL (x, u) and u - RH (x, u) are finite, convex, and continuously
differentiable on Rn. They satisfy the identity

2(2.10) RL(X, u) + ell(x, u) lul
The mappings u Pz (x, u) and u - PH(X, u) are single-valued from ]R into R and
nonexpansiveglobally Lipschitz continuous with constant land related by

(2.11) P(x, u) + PH(X, u) u,

(2.12) PL(X, u) VRH(X, u), PH(X, u) VRL(X, u).

The proximal mappings PL and P/-/ are especially of interest in providing a convenient
parameterization of M in terms of (x, u).

PROPOSITION 2.4. Under the epi-continuity assumption, RL(X, u) and RH(X, u) are not

just continuous in u but with respect to (x, u) 0 Nn. This holds also for PL (x, u)
and PH(X, u). The one-to-one correspondence between points (x, v, p) M and points
(X, lg) 0 X ]n that is set up by the relations

+ p, v, p (P,x, u, Px, u)
is then a homeomorphism.

Proof. From the theory of epi-convergence [21], [23], the convex functions L(x, .) epi-
converge to L(x, .) if and only if the regularized functions R(x, .) converge pointwise on
IR" to R (x, .). These regularized functions being not only convex but finite, their pointwise
convergence implies uniform convergence on all bounded subsets of R (cf. [1, Thm. 10.8]),
and then their gradient mappings VR(x, .) converge in such a manner to VRt-I(X, .) as
well [1, Thm. 24.5]. The assertions about R and P, and similarly those about RH and
PH, thus follow from the meaning of the epi-continuity assumption as designating the six
conditions in Proposition 2.1. (The indicated correspondence is one-to-one because the ele-
ments v P(x, u) and p PH(X, u) satisfy (2.11) and are characterized by the relations
0 OoL(x, v) + (v u) and 0

The gradients of R (x, u) and RH(X, u) with respect to u are pinpointed by (2.12); but
we can also determine, or at least estimate, subgradients with respect to (x, u).

PROPOSITION 2.5. Under the epi-continuity assumption, consider any (, (t) 0 x R
and let PL (2, ) and PH(, ). Then

ORc (Y, Ft)

OR,(, ) c (w, p) p O, (w, O) e 0(, ) },

ORi-i(Y, Ft) C (w, v) v O, (w, O)

]2Proof. Let f(x, v, u) L(x, v) + glv u so that Ra(x, u) min, f (x, v, u). For
(2, /) the minimum is attained uniquely at . A general calculus rule in [25, Thm. 3.1] gives
us

3R(2, /) C {(w, p)[ (w, O, p) e Of(X, f, Ft) },
3Rc(2, t) C {(w, p) (w, O, p) e Of(2, f, Ft)},
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2but also in terms of the smooth function f0 (x, v, u) := 7 Iv u we have (cf. [7, Lem. 5A. 1 ])
that

af(2, f;, ) [OL(2, ) x {0}] -t- Vfo(2, , 5),

af(2, f, ) [OL(2, ) x {0}],
where Vf0(2, , 7) (0, tT, ). The combination of these two sets of relations yields
the inclusions claimed in the proposition for O RE (2, [t) and ORL (2, (t). Those for O RH(2,
and ORH(2, t) follow by symmetry.

Lipschitz continuity of the regularized functions with respect to x will be critical to us at
a certain stage. This property is the subject of the next proposition.

PROPOSITION 2.6. Under the epi-continuity assumption, thefollowingfourproperties are
equivalent to each other at a point (2, ft 0 x IRn.

(a) RE is Lipschitz continuous around (2,
(b) RE (x, (t) is Lipschitz continuous in x around 2.
(c) RH is Lipschitz continuous around (2,
(d) RH(X, (t) is Lipschitz continuous in x around 2.

Theseproperties arepresent inparticular when the unique vectors f) and satisfying
and (2, f, ) M are such that

(2.13) (w,0) 6 0L(2, fi) == w 0

or such that

(2.14) (w, 0) aH(2, p) w 0.

As a special case, the first of these two conditions is implied by L being Lipschitz continuous
around (2, ), whereas the second is implied by H being Lipschitz continuous around (2, ).

Proof. The equivalence is apparent from the identity in (2.10) and the fact that RE (x, u)
and Rt-l(X, u) are finite, convex functions of u, hence locally Lipschitz continuous in u. (As
a matter of fact, they are globally Lipschitz continuous in u with constant 1.)

By a result of Rockafellar [26], the function RE, because of its lower semicontinuity
on O ]n (Proposition 2.1), is Lipschitz continuous around (2, fi) if and only if the set

ORE (2, ) contains only (0, 0). This is true under (2.13) by virtue of the second inclusion in
Proposition 2.5. In the same way, (2.14) suffices for Lipschitz continuity of R/.

If L is Lipschitz continuous around (2, ), so that OL(2, fi) {(0, 0)} by the result
cited, we have (2.13) trivially. Likewise, if H is Lipschitz continuous around (2,/3), so that
OH(2,/3) {(0, 0)}, we have (2.14) trivially. [3

For the record, conditions (2.13) and (2.14) aren’t equivalent to each other, and they
therefore cannot actually be equivalent to the Lipschitz continuity property in Proposition 2.6
but merely sufficient for it. This is seen through the example of L(x, v) x4/3v2 on I 1,
which is convex in v and continuously differentiable in (x, v). Since VL(O, 0) (0, 0), the
point (2, ,/3) (0, 0, 0) belongs to M. We have OL(0, 0) (0, 0)} because L is Lipschitz
continuous around (0, 0); thus (2.13) is satisfied. But (2.14) isn’t satisfied, which is seen as
follows. Our choice of L corresponds to

pZ/4x4/3 whenx - 0,
H(x, p) 0 when x 0 and p 0,

ee when x 0 and p - 0.

Away from x 0, H is twice continuously differentiable, so its gradients VH(x, p)
(- p2/3xT/3, p/2x4/3) are proximal subgradients. We aim at constructing a nonzero vector
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(tb, 0) in OH(0, 0) in accordance with the definition of that set in terms of limits of prox-
imal subgradients. Consider any sequence ’a0 and let x (tv)6, pV (t)5. Then
(x v, p) (2,/3) (0, 0) and H(x, p) (tv)2/4 --+ 0. Let (w, vv) VH(x, p)
(- (t)-4, (t)-3/2). Then for ) (t)4 we have )’,0 and .(w, v) (-1, t/2) --(-1, 0). This limit vector belongs to OH(O, 0) and demonstrates that (2.14) fails.

3. The main arguments. With this foundation in place, we can turn to the subgradient
arguments that lead to the equivalence relation in Theorem 1.1.

LEMMA 3.1. Under the epi-continuity assumption, suppose that (fro, ) is a proximal
subgradient to L at a point (2, f) 0 x ]Rn; in other words, L(2, f)) is finite and there exist
p > O and 3 > O such that

(3.1) 12 12L(x, v) > L(2, f)) + (Co, x 2) nt- {, v f)} -PlX 2 gplv f)

when x O, Ix-Y[ <3, v-f)l <3.

Then there exists e (0, 3) such that

(3.2)
2 12L(x, v) >_ L(Y, f) + (ffv, x 2) + (, v f)) Tplx 21 gplv f)

for all v 6 IR when x O, Ix-Y1 <_e.

Proof. We can write (3.1) equivalently as

12(3.3) p-lL(2, f)+(p o, x-2)-glx-2 < f(x) when x E O, Ix-2l <3,

where

The question is whether (3.3) will continue to hold when the constraint Iv l < 3 is dropped
in the definition of f, at least if 3 is replaced by some smaller value in (3.3).

We can answer this by applying the facts about proximal regularization to the function

(x, v) := { p-x L(x, v) when Iv l < 3,
when Iv l > 3,

in terms of which we have f(x) R(x, ?) for fi + p-1/3. Here (x, .) is the sum of
two convex functions, namely p-lL(x, .) and the indicator of {v [Iv [ < 3}. For x 2,
the effective domain of the first function meets the interior of the effective domain of the
second, and this is enough to guarantee through the convergence theorem of McLinden and
Bergstrom [27] that whenever x --+ 2 and L(x, .) epi-converges to L(2, .), the sum L(x, .)
epi-converges to L(2, .). It follows then from our epi-continuity assumption that, for x in
some open neighborhood O’ of 2 within O, L(x, .) depends epi-continuously on x.

Through Proposition 2.4 we conclude that the associated proximal mapping P-, which
gives the unique minimizing v in the formula for f, is continuous on O’ x IRn. Moreover, the
minimum defining f(2) is attained at because of the proximal subgradient inequality; thus,

P’(2, t7) . There must, then, exist an e (0, 3) such that when x O’ and Ix 21 < e
we have IP(x, fi) 1 < 3. For such x the constraint Iv 1 < 3 in the formula for f(x)
is inactive. Since the function of v being minimized in this formula is convex, the constraint
can in this case be suppressed without affecting the minimum value that is attained.
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LEMMA 3.2. Under the epi-continuity assumption, suppose (tb,/3) is a proximal subgra-
dient ofL at a point (2, f)) 0 IRn and let (t f) + . If R1-1 is Lipschitz continuous around
(2, (t), then (-tb, ) 6 0RH(2, if) con 0R/-/(2, t).

Proof. We start by noting that in particular (tb,/3) 6 OL(2, ), hence/3 6 OvL(2, fi) by
Proposition 2.2. Thus (2, fi,/3) 6 M. We have

(3.4) VuRH(2, )

by (2.11); this will be needed later.
Through Lemma 3.1 the proximal subgradient condition can be identified with the exis-

tence of p > 0 and e > 0 such that (3.2) holds. Replacing the second occurrence of p in (3.2)
by p + 1, which certainly maintains the inequality, we get

(3.5) 2F(2) + (f), x 2) gplx 2 < F(x) when Ix-21<e

for the function

12F(x) "= inf {L(x, v) (, v f) + -(p + l)lv O },
G]I

which has F(2) L(2, fO. As a consequence of (3.5) we certainly have tb 6 OF(2).
To carry the analysis of tb further, we’ll make use of Fenchel’s duality theorem 1, Thm.

31.1 to represent F in a different way. For any fixed x the definition of F(x) can be interpreted
as saying that

F(x)- inf {go(v)- (v)}
vN

2for the convex function o(v) L(x, v) + lv 1 and the concave function (v)
(, v f) -plv Because p is finite everywhere, the effective domains of these
functions overlap in the manner required by the duality theorem in question, and we are able
to conclude from it that

-F(x) inf {o*(p)- p*(p)}
pEN

for the functions q)* and p* conjugate to q9 and gt. From the definition of the convex conjugate
q)* we calculate that

12q)*(p) sup {(p, v) L(x, v) "lv f)
VE

2 2 12 2inf {L(x,v)/71vl -(0+p,v)+lOWPl -I0+P +101
v

112 221O+Pl2 gl0 -R(x,O+p)=Rn(x,+p)-gl

where the final steps use definition (2.8) and the identity (2.10). The definition of the concave
conjugate ap* yields

2 -1 27t*(p) inf {(p,v)-(, v f)) W plv- f)l (P, f) P IP- [I

Out of these calculations we get

2-F(x) inf {Ri-l(X, f) + p) 11
pEN

(p, ) -t- 1/2P-alp -/31},
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which can be transformed to

(3.6) 12-,oF(x) inf {pRt-i(x, f + p) + IP (Pf) +/3)[ 2} P(P + 1)lfi
pE

In terms of H(x, p) "= pRH(x, f) + p) this has the interpretation that

(3.7) 2pF(x) -R’ff(x, (t) + -p(p + 1)11 for fi pfi +/3.

Proposition 2.4 assures us that H(x, p) is finite and continuous in (x, p) 60 ]Rn. It
is convex in p besides. We can therefore apply our proximal regularization results to this
function in place of H. By assumption, H is Lipschitz continuous around (Y,/3). We have
pf) OpH(Y, ) by (3.4), hence also/3 P’ff(2, fi) and p V1,R’ff(2, fi).

By means of Proposition 2.6 we see that R" is Lipschitz continuous around (2, t). The
fact that tb 6 OF(Y) gives us in (3.7) that pgv Ox(-R’ff)(2, fi). But by the Lipschitz
continuity of R’(., tT) at 2 the Clarke subgradient relation x(-R’ff)(2, fi) -xR’ff(2, fi)
holds, i.e., con Ox(-R’ff)(2, tT) -con OxR’ff(2, fi) (cf. [5], [7]). Therefore

(3.8) --ptb G con OxR’ff(Y, fi).

Next we analyze the set Ox R’ff(Y, t). Because of the Lipschitz continuity of R" around
(2, fi), the rule holds that

Ox R’ff(Y, fi) C w 3 v with (w, v) e 0R(Y, (t)

(see [7, Lem. 5A.3]). Now Proposition 2.5, as applied with H in place of H (using the fact
that fi p +/3 with pf) OpR’(Y, t)), says that

o c {(w, pO, (w, pO) e o fi( , },
where from the choice of H we have OH(Y, ) pORI-I(Y, t). In combination with (3.8),
this gives us (-tb, ) con ORal(Y, (t), as claimed.

THEOREM 3.3. Under the epi-continuity assumption, consider the mappings SL and SI-I
of (2.7) at a point (2, f), [) such that either SL (2, f), ) or S14 (2, f), ) is nonempty or merely
(2, f), ) M. Suppose for f f) + that R(., (t) is Lipschitz continuous around Y
or, equivalently, that RI(., f) is Lipschitz continuous around 2. Then both S(2, f), ) and
SI (2, f), ) are nonempty and compact, and

con S (2, ,/3) -con SI4(Y, f), ).

Proof. In all cases we have (2, ,/3) 6 M, since otherwise both S(Y, ,/3) and
S/-/(2, ,/5) are empty by Proposition 2.3. The equivalence of the Lipschitz continuity as-
sumptions is shown by Proposition 2.6, which also reveals that they imply that RL and R/are
Lipschitz continuous around (2,

It will be demonstrated that there is a compact set W such that whenever tb 6 S (2, ,/3)
we have tb 6 W and -tb 6 con S/-/(2, ,/3). The full conclusion of the theorem will follow
then by symmetry.

By the definition of subgradients in general, the relation tb 6 S (2, ,/3) implies the
existence of proximal subgradients (wv, pV) to L at points (x, v) (2, ) such that
(w, p) -- (tb,/3). The points u v + p then converge to t7 so that eventually (x v, u)
lies in the neighborhood of (2, t7) in which R/is Lipschitz continuous. Once this is true, we
can apply Lemma 3.2 at (x, u v) to ascertain that (-w, v) ORt-l(X, u). In the limit this
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yields (-tb, ) 6 RI4(2, t). In particular, tb belongs to the image W of RH(Y, (t) under
the projection (w, v) w- -w. This image set W is compact because R/_/(2, t) is compact
(in consequence of the Lipschitz continuity of R/). Since RH(x, u) con 0 Ri4(x, u),
the inclusion for 0RI4(, t) in Proposition 2.5 gives us

(-, ) con {(-w, v) v f), (-w, f)) e OH(2, D)}.
This implies that -tb 6 con S/-/(2, ,/5) as required.

The proof of Theorem 3.3 discloses an additional property of the mappings SL and S/-/,
which is worth noting. Recall that a set-valued mapping is locally bounded at a given point if
some neighborhood of that point has bounded image under the mapping.

PROPOSITION 3.4. Under the hypothesis ofTheorem 3.3, the mappings SL and SI-I are lo-
cally bounded at (2, f, ). The same is true also ofthe mappings (x, v, p) con S (x, v, p)
and (x, v, p) - con Si4(x, v, p), which in this case must, like S and SI4, have closed graphs
relative to some neighborhood of (2, f), ).

Thus, whenever (x, v, p) --+ (2, f), ) and w con S (x, v, p), the sequence
{w must be bounded, and all of its cluster points must belong to con S/ (2, ,/3); likewise
with SL replaced by S14.

Proof. This comes from the observation in the proof of Theorem 3.3 that when (x, v / p)
belongs to the neighborhood of (2, +/3) on which R/4 is Lipschitz continuous, we have
Sc (x, v, p) C w (-w, v) 6 Rc (x, v)}. The mappingR is known to be locally bounded
on such a neighborhood. The local boundedness of S along with the closedness of its graph
(Proposition 2.3) ensures the same properties of the mapping con SL. The case of St-/follows
by symmetry. [

In conclusion we summarize how the results we have obtained fit together to produce the
main result stated in 1.

Proof of Theorem 1.1. Let Lt L(t,., .) and Ht H(t,., .). The assumption that
L has the epi-continuity property along the arc x(.) puts us for almost every in the pic-
ture of Lt and Ht satisfying the epi-continuity assumption of 2 relative to some open set
O(t) containing x(t). Then by Proposition 2.2, if either (w, p(t)) OLt(x(t),Jc(t)) or

(-w,k(t)) OHt(x(t), p(t))we have p(t) OvLt(x(t),2(t))and2(t) 3pHt(x(t), p(t)).
Thus, the Euler-Lagrange condition (1.10) and the Hamiltonian condition (1.12) automatically
give (1.11) and (1.13). The equivalence of (1.10) and (1.12) follows from Theorem 3.3 when-
ever the regularized function R, happens to be Lipschitz continuous around (x(t), 2(t)) for
almost every t, or equivalently, the function R/-/, is Lipschitz continuous around (x(t), p(t)) for
almost every t. Proposition 2.6 shows that such cases occur under the additional assumptions
furnished in Theorem 1.1. q
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AN A PRIORI ESTIMATE FOR DISCRETE APPROXIMATIONS
IN NONLINEAR OPTIMAL CONTROL*

ASEN L. DONTCHEVt

Abstract. We examine the convergence of an approximate discretization applied to the first-order optimality
conditions for a nonlinear optimal control problem with convex control constraints. Under an assumption of the
coercivity type we prove the existence of an optimal control for the original problem such that its L distance from
the approximating sequence is proportional to the error. In a corollary we give conditions for Riemann integrability
of the optimal control.
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1. Introduction. In this paper we obtain an a priori error estimate for a discrete approx-
imation provided by the Euler scheme to a nonlinear optimal control problem with convex
control constraints. We show that if the sequence of successive approximations satisfies a
coercivity-type condition, then for a sufficiently fine approximation there exists an optimal
control, the L distance from which to the approximating sequence is proportional to the
error.

An excellent survey of earlier works on computational optimal control, including discrete
approximations, is contained in Polak [48]. Based on an unpublished work by J.-R Aubin
and J.-L. Lions, Daniel [16] (see also his papers [14], [15]) developed an abstract approach
for proving convergence of discrete approximations of optimal control problems, parallel
to the direct method of the calculus of variations (but formally independent of it; see also
[55]). In a series of papers Cullum [11]-[ 13] showed value and solution convergence of Euler
approximations, applying virtually the same idea. In 11 the problem is linear-convex, 12]
considers problems of Mayer’s type that are linear in control, and [13] is an extension of
12] for a state and control constrained problem. More recent results on convergence analysis
of algorithms involving discrete approximations are contained in [26], [37], [46], [49]-[51 ],
[61]. There is also a body of work in Russian focusing mainly on convergence of discrete
approximations combined with Tikhonov’s regularization; see [2], [51-[7], [28], [38], [54].

As typical in perturbation analysis of optimal control, the sequence of optimal values
of perturbed (approximating) problems converges to the optimal value of the corresponding
relaxed problem (e.g., in the sense of Warga [59]); then the value convergence is equivalent to
the relaxability of the continuous problem. This was observed first by Mordukhovich [43]; see
also [44] and [25, Ch. 6]. In an earlier paper Cullum 13] proved that a sequence of solutions of
the discretized problem converges to a solution of the relaxed problem; instead of relaxability
she used necessary conditions for optimality of the relaxed problem.

Compared with the extensive literature on computational optimal control, see the mono-
graphs [30], [39], [47], [53], [54]; there are relatively few results available providing error
estimates for discrete approximations in optimal control. Hager [33] considered higher or-
der schemes applied to unconstrained problems, obtaining error estimates under appropriate
smoothness assumptions. Related results are given in [52]. Error estimates for the Euler
scheme applied to state and control constrained convex optimal control problems were de-
rived in [17]; see also [1], [40]-[42]. As usual in numerical analysis, the estimation of the
error provided by a discrete approximation is limited by the regularity of the solution. In a

*Received by the editors June 19, 1994; accepted for publication (in revised form) March 28, 1995. This research
was supported by National Science Foundation grant DMS 9404431.

Mathematical Reviews, 416 Fourth Street, Ann Arbor, M148107.
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recent paper [21 we consider a nonlinear optimal control problem obtaining an a posteriori
error estimate. More specifically, we show in [21 that, if an optimal solution of the contin-
uous problem satisfies a coercivity-type condition, then for a sufficiently small mesh spacing
h there exists a local minimizer of the corresponding discrete problem at a distance from the
optimal solution that is proportional to the averaged modulus of continuity r(u*; h) of the
optimal control u*. The only assumption for the regularity of the optimal control is Riemann
integrability; i.e., the optimal control may have infinitely many points of discontinuity (but
must be almost everywhere continuous). If the optimal control is of bounded variation, then
we automatically obtain that the error is O (h).

In a series of papers Hager [32], [34]-[36] studied approximations to dual problems in
optimal control. Dual problems can be defined in various ways, depending on the assumed
spaces for the variables and the constraints. By choosing appropriate spaces one may obtain
dual problems that are tractable numerically. The dual approach is exceptionally efficient when
one deals with entropy-like minimization problems; see, e.g., [4]. In [19], [20] we applied
dual methods to a class of best approximation problems with applications in computer-aided
geometric design.

Another approach is based on the dynamic programming formulation related to the
Hamilton-Jacobi equation. The Hamilton-Jacobi equation typically has a nonsmooth (vis-
cosity) solution whose computation requires special procedures. An overview of a priori error
estimates for the approximation of optimal control problems by discrete models is given in
[9]; see also [3], [8], [10], [29], [31].

Related to the subject of the present paper is the work on discrete approximations of
differential inclusions; for a survey see [24]. In a recent paper [23] we approximated the
Hausdorff distance between the sets of solutions to a controlled boundary value problem and
its discrete approximation. For other results in this direction, including higher order schemes
and error estimates for the reachable set, see [56]-[58], [60].

Although discrete approximations are primarily intended for computations, they are also
a useful tool for obtaining purely theoretical results. The idea of using broken lines to prove
existence of solutions to differential equations goes back to Euler. Apparently one can use
various approximations, depending on the purpose of the study. For instance, one can de-
rive necessary optimality conditions from necessary conditions for a discretized problem by
passing to a limit when the step size goes to zero; for a recent paper using this approach see
[45]. Depending on the kind of approximation one may obtain various necessary or sufficient
optimality conditions.

In 2 we present our error estimate. A proof of this result is given in 3 and is based on
an abstract lemma of inverse mapping type for a sequence of set-valued maps. As a corollary
we obtain that if the problem has a unique optimal control and a certain coercivity condition
is fulfilled for any regular partition, then the optimal control is Riemann integrable. Section 4
contains a discussion of numerical results.

2. The error estimate. We consider the nonlinear optimal control problem

(1) minimize g(x(t), u(t))dt

subject to

2(t) f(x(t), u(t)) for a.e. 6 [0, 1], x(0) a;

u(t) U for a.e. [0, 1],u LC,x Wl’,
where x(t) Rn, U is a closed and convex set in Rm, g R x Rm -+ R, f R x R -+ Rn,
and a is a fixed vector in Rn. Throughout L is the space of essentially bounded vector
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functions in [0, 1] with the norm u II.o= ess sup{lu(t)l 0 < < and W1, is the space
of functions with values in R that are Lipschitz continuous on [0, 1 equipped with the norm
x IIw,o=ll x I1o + I1oo. We denote by I" any norm in R and by the superscript r

the transposition.
Assuming that the functions f and g are continuously differentiable, we write the first-

order conditions (Pontryagin maximum principle) as a variational inequality of the form

(2) 2(t) f(x(t), u(t)), x(O) a;

(3) (t) -VxH(x(t), u(t), X(t)), X(1) 0;

(4) VuH(x(t), u(t), X(t)) N(U; u(t)),

for a.e. 6 [0, 1], where X is the adjoint variable, H is the Hamiltonian, H(x, u, X)
g (x, u) + Xrf(x, u), VxH is the derivative of H with respect to x, and N(U; u) is the normal
cone to the set U at the point u; that is,

{y 6 Rm yr (v u) < 0 for each v 6 U}
N(U; u)

0

Suppose that to solve problem (2)-(4) we use a discrete approximation provided by the
Euler scheme. More specifically, let N be a natural number; let h 1/N be the mesh spacing;
let ti ih; and let xi, ui, Xi denote approximations of x(t), u(t), and X(t), respectively, at

ti. The Euler scheme applied to the variational inequality (2)-(4) results in a finite-dimensional
variational inequality. There are various numerical techniques for solving such problems; in
this paper we shall not discuss this topic. We suppose that, after applying a numerical procedure
with certain accuracy, a sequence of vectors (xN, UN, XN) C= RNn X RNm X RNn is available
that satisfy the following approximation to (2)-(4):

(5) Xi+l Xi + hf(xi, Ui) -1" h3, xo a;

(6) Xi Xi+I -- hVxH(xi, lli, Xi+I) -- ho/N, XN O"N"

(7) VuH(xi, bli, Xi+I) At- Ki
N N(U; lli) O, N 1.

Here the vector/N (3/N,/.N, ,O"N,x/N),3/N Rn,0.N, E Rn,tc/N E Rm,i 0,1,...,N-
1, cr N G Rn represents the accuracy ofthe algorithm used for solving the discretized problem.
We denote by xv (.) and XN (.) the piecewise linear and continuous extensions over [0, 1] of
xN and XN, respectively, and by uv(.) the piecewise constant extension of uN over [0, 1],
which is continuous from the right across the grid points ti.

in our previous paper with W. Hager [21] we showed that if a given optimal control u*
and the corresponding state x* and adjoint variable X* for the continuous problem (1) satisfy
certain conditions, then there exists a solution of the discretized problem that is "close" to
(u*, x*, X*). In this paper we are concerned with the converse estimate; namely, we consider
the distance from a given sequence of solutions of the approximating problem (5)-(7) to the
set of solutions of the continuous problem (1). More precisely, in Theorem 1 we give an
answer to the question of under what conditions on a sequence of successive approximations
xN, uN, XN there exists an optimal control u* of the original problem (1) such that its L
distance from uu (.) is proportional to the step size h and to the error eN.

THEOREM 1. Assume that the sequence (xiN uy, L/N) is contained in a compact set 2( C
Rn x Rm x Rn for all O, 1 N andfor all N and that thefunctions f and g are twice



1318 ASEN L. DONTCHEV

continuously differentiable in an open set containing 2(. Let there exist a constant ot > 0 such
thatfor every sufficiently large N

(8) fo fo[x (t)Qu(t)x(t) + 2xr (t)Su(t)u(t) + u7 (t)Ru(t)u(t)]dt > ot lu(t)12dt

for all x(.) E wl’2, u(.) E L2, x(0) --O, 2(t) Au(t)x(t) + BN(t)u(t),u(t) U- U
a.e. in [0, 1], where AN Vxf(XN, uN), BN Vuf(XN, uN), RN V2uuH(xN, uN, )N),
SN V2xuH(xN, uN, )N), QN V2xxH(xN, uN, ,,N). Then there exist positive constants c,
and an integer N* such thatfor every N > N* for which

max I/NI(9)
0<i<N-1

there exist an isolated local minimizer (X*N (’), U*N (’)) of the continuous problem (1) and a

corresponding adjoint variable L*u (.) such that

X*N (’) XN (’) IIw,. + ,,N (.) ,N (.) IIw’.

(10) + u*N (’) uN (’) IIL__< c(h + max0<i<N-11/N I).

In the statement of the theorem we use the uniform grid in [0, 1], i.e. with a constant step
size h. The same result holds for any regular partition of [0, 1] in which the maximal step size
goes to zero. From Theorem 1 we obtain the following corollary.

COROLLARY 1. Let problem (1) have no more than one optimal solution, let

lim max I/NI 0,
N cx O N-1

and letfor every regularpartition of[0, 1] in N intervals the sequence (XN, UN, N) obtained

from (5)-(7) satisfy coercivity condition (8). Then there exists a (unique) optimal controlfor
(1), which is Riemann integrable.

Proof. Theorem 1 implies that problem (1) has a solution (x*, u*) that is unique and
satisfies (10). Then for every regular partition {ti U

i=0’

maxo<i<N-lSUPti<_t<t,+lu*(t) -u*(ti)l -+ 0 as N --+

which implies Riemann integrability of u*.
The coercivity condition (8) is a stability-type condition which implies that the inverse

of the linearization of (5)-(7) is Lipschitzian around the reference sequence uniformly in
N. For instance, it holds when the Hamiltonian is convex in x and strongly convex in u
in a neighborhood of a solution and the sequence of successive approximations is in this
neighborhood. Practically, during computations one may check whether there exists a constant
c > 0 such that

for all N, x, u, and t, which is a computationally available procedure. The consistency con-
dition (9) means that the error of solving the discretized problems is to be sufficiently small
when increasing the number N. Note that a finer discretization results in higher dimensions of
the discrete problem and, in turn, is more likely to lead to accumulation of various errors ac-
companying the computations. The practical validity of the error model adopted in Theorem
may vary from problem to problem and from computer to computer.
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3. Proof of Theorem 1. The proof is based on the following abstract inverse-function-
type result for a sequence of set-valued maps.

LEMMA 1. Let (X, p) be a complete metric space, let Y be a linear normed space, and
let Ba (x) be the closed ball centered at x with radius a. Let N be a sequence in X, let (R)N be
a sequence ofset-valued mapsfrom X to Y with 0 (U(U)for all N, and let )U X --+ Y
be a sequence offunctions. Suppose thatfor each N there exists afunction qU Y --+ X with
thefollowing properties.

(A1) u kilN(O) and there exists a constant > 0 such thatfor every N

N(Y) (R)vl(y) for every y B#(O).

(A2) There exists a constant , > 0 such that kiiN is Lipschitz in B(O) with constant

for every N.
(A3) For every > 0 there exists ot > 0 such thatfor every N

)N(U) --(N(I)) I1 p(u, o)

whenever u, v e B(N), N 1, 2
Thenfor every c > y there exists A > 0 such thatfor every Nfor which

N(N) A

there exists v e (()N N)-1 (0) satisfying

(11) P(b#/, ’N) --. C )N(N) II.

Moreover, if (R)1 is single-valued near O, then there exists exactly one v with the above
properties.

ProofofLemma 1. Let c > y and let > 0 be so small that

(12) 0 < ’e < and < c.
1 -e,

Let A > 0 be such that

(13) A< min{ fl c}ce+l’c

and let

(14) rN --c qbN(N) II-
Define the function

dPN(X

Let N be such that N(N) I1_< A, and letx e BrN(N). Using (A3), (13), and (14) we have

N(x) I1--<11 qu(x) --N(N) + N(N) II--< 6rN -k- A <_ A(1 q-ce) _</3.

Then from (A2), (A3), (12), and (14) we obtain

P(N, dPN(X)) P(qN(O), klIN()N(X))) y )N(x)

Y )N(x) --(U(U) -[" N(N) 11 ’rN -b ’rN/C < rN.
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Hence, (I)N maps BrN (N) into itself. Moreover, if x’, x" BrN (N), then

p(dPN(X’), di)N(Xtt)) p(tllN((/)N(X’)) klIN((/)N(Xtt)))

<-- / CN(x’)- CN(Xit) II_< p(x’, x") < p(x’, x").

Thus PN is a contraction from Bru (N) to Bru (N). By the contraction mapping principle for
every N there exists 6 Bru (U) such that / U(). The definition of U yields that

6 ((R)U CU) -1 (0). If (R)V is locally single-valued near 0, then is the unique fixed
point of U in BrN (U). This completes the proof of Lemma 1. [3

ProofofTheorem 1. We apply Lemma with the specifications

X { (x, ,k, u) 6 W’ W1’ x L, x(0) a}, Y L Rn,

Jc f (x, u) (JC N) .ql_ AN(X XN) -[- BN(U UN)

+ VxH(x, u, ) ( N) Aru(k N) QN(X xN) SN(U UN)

--VuH(x u, I) 21- Vu HN -- RN(U uN) 2t- STN(X XN) -JI- Ov( AN) Ku

(T N

{N(

( N) AN(X XN) BN(U UN)
( fN) 21 ATN() .N)

__
QN(X xN) ql_ SN(U uN)

--VuHN RN(U UN) STN(X XN) B() N) -4y KN .qt_ N(U; u)

,k(1) --O"N

where VuHN(t) VuH(xN(ti),uN(t),)N(ti+I)) for [ti, ti+l) and N,r]N, KN are
assumed piecewise constant and continuous from the right across the time grid. Clearly,
0 (U(U).

Let (p, q, r) 6 L, s Rn, and denote y (p, q, r, s). Then 6 (R)v (y) if and only
if (x,), u) satisfies the relations

(15) Jc ANX + BNU + p + OlN, x(O) a;

(16) --ArN QNX SNU + q + jN, )(1) S .ql_

(17) RNu + Svx + BfvL + r + yg e N(U; u)

for a.e. e [0, 1], where OlN jN ANXN BNtIN, 1N fN -Jr- ATN)N + QNxN +
SNttN, YN VuHN RNuN S;xN B)N teN. We show first that there exists a
function tPu(y) (XN(y), IN(Y), UN(y)) e (R)v(y) that satisfies conditions (A1), (A2) of
Lemma 1.

Under the coercivity condition (8) the system (15)-(17) is equivalent to the linear-
quadratic problem of minimizing

(18) --X(1)T (s+crN)-FO.5 [xT QNx+uTRNu-F2xT SNu--(q+flN)Tx+(r+yN)Tu]dt

subject to

(19) Yc ANX + BNU -Jr- p + OlN, u(t) U for a.e. 6 [0, 1], x(0) a.
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Let wN(p) be the solution of

ANW "+" p + OIN, w(O) a.

Changing the state variable x z + tON(p) we obtain the following problem equivalent to
(18): minimize

(20)

-z(1)z (s + O"N) -- 0.5 [ZT QNZ 2r- u T RNU -+- 2Z SNU

--(q + N 2QNWN(p))Tz -+- (r + ’U + 2SvWN(p))Tu]dt

subject to

(21) , ANZ 2r- BNU, u(t) U, a.e. 6 [0, 1], z(0) 0.

Let N L2 L2 be the linear and bounded input-state map for system (21); that is,

(NU)(t) N(t, V)BN(V)u()d,

where N is the fundamental matrix solution to ANZ. Note that the conjugate map is

(rNX)(t) BN(t)r dPN(T, t)rxQ:)dz,

and, since the components of AN and BN are bounded in L, there exists a constant C

independent of N such that the operator norm satisfies

(22) N I1 C1.

Denote

CN[S](t) --Bv(t)N(1, t) (s + O’N)

I)N(Y) Tu(--q fiN -- 2QNtON(p)) -- r + ?’U + 2SvWN(p) + CN(S),

(23) 7ZN CrNQNCN + 2NSN + RN;

and let {u 6 L2 u(t) U for a.e. 6 [0, 1]}. Then problem (20) can be rewritten as

(24) minimize 0.5(u, "[’N u) 2t- (VN(y), U) subject to u 6 Q,

where (., .) is the L2 scalar product. The set is a closed and convex subset of the space L2

and the coercivity condition (8) is equivalent to

(25) (u, "Nu " Ol u 112 for all u 6 fa- .
It is a standard observation that, under (25), for every y 6 L x Rn there exists a unique
solution uN(y) of the problem (24). Thus there exist an unique optimal state xN(y) and an
unique optimal adjoint variable )vN(y); that is, the function qN(Y) (XN(y),)’,N(Y), UN(y))
is well defined for all y 6 L x Rn. Hence assumption (A1) of Lemma 1 holds. To show that
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qN(Y) is Lipschitzian we apply a well-known argument; see, e.g., [18, Ch. 2]. For any
" satisfyy’, y" 6 Y the corresponding solutions uN, uu

(’]N u’ 2c- VN(y’), U" U’) >_ O,

(’JN ut’ -- VN(y"), U’ U") > O.

Combining these two inequalities with (25) we obtain that

1
(26) u’ "N- /AN IILz- VN(y’)- VN(y")I1.

Using (22) and the boundedness in L of the matrices AN, BN, QN, SN we conclude that for
every y Y there exists a unique optimal control UN(y) of problem (18) that is Lipschitzian in
y from L to L2 with a Lipschitz constant independent of N. The Gronwall lemma and (22)
applied to the state and adjoint equations yield that the optimal state xN(y) and the optimal
adjoint variable )N(Y) are Lipschitzian with respect to y from L x R to W1’2 uniformly in
N. Furthermore, the coercivity condition (8) implies that for some c1 > 0,

uTRN(t)u >_ CllUl2 for a.e. 6 [0, 1],

whenever u 6 U U; see [27]. By repeating the argument in deriving (26) for optimality
condition (17), we obtain that the optimal control UN(y) is Lipschitzian in y from L to
Lc uniformly in N. The Gronwall lemma applied to the state and adjoint equations yields
that XN(y) and )N(Y) are Lipschitzian in y from L x Rn to W1, uniformly in N. Hence,
condition (A2) of Lemma 1 is satisfied.

Let us show that 4N satisfies (A3) at N(’) (xN (’),)N (.), UN (.)) uniformly in N as a
function from W’ x W1, x L x R to Lc. Denote (x, u) and consider the first
component of bN. From the continuity of the derivative Vf it follows that for any > 0 there
exists c > 0 such that for every ( with ( fin IIL <_ ,

vf(() Vf((N IILo .
If ’1, ’2 Bot((N), then

f(l)- f(2)- Vf(N)(’I- 2)IILoo ’- ’2

The proof of (A3) for the remaining components of qN is completely analogous.
Thus we can apply Lemma 1, obtaining that there exist constants c and A such that if

U(U) < A, then there exists , 6 ((R)U --4U)-1 (0) satisfying (11). It remains to estimate
4N(N) I[- The relations (5)-(7) imply that U X and satisfies

Jc(t) f (x(ti), u(t)) + 3N (t);

.(t) -VxH(x(ti), u(t), )(ti+l)) + 0N(t), 3(1)

VuH(x(ti), u(t), )(ti+l)) + teN(t) - N(U; u(t))

for [ti, ti+l), 0, N 1. Applying the Gronwall lemma to the adjoint equation
and using the assumption that xN (.), uN (.) are bounded in L and f, g and their derivatives
are continuous, we obtain that )N (.) is bounded in L. Hence, the sequence of the derivatives
(kN (.),)N (.)) is bounded in Lo. Then
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CN(N) I1 max0<i<N-1 suPti<t<_ti+ {[l f(xN (ti), lgN (t)) f (xN (t), lg
N (t))l

+ ]VxH(xN(ti), uN(t), )vm(ti+l)) VxH(XN(t), uN(t), )vN(t))[

+ IVuH(xN (ti), bl
N (t), .U (ti+l)) VuHN (x(t), lg

N (/), AN (t)) l]

+ IE/I + Irgl}

< c2h + max0<i<N-11qN I,

where c2 is a constant independent of N. Take 3 > 0 and N* such that c2/N* + 3 < A.
From Lemma 1, if N > N* and maxo<i<N-11qNI _< , then there exist x*N, u*N, and ).N
satisfying the estimate (10) and the maximum principle (2)-(4). The last step of the proof is to
show that (x*N, u*N) is an isolated local solution of (1). Clearly, the values of the derivatives
of f and H at (x*N u*N ,k’N), denoted A* * * *

N, BN, QN, SN, RN, are close in L to the values
of the corresponding matrix functions AN, BN, QN, SN, RN defined in the statement of the
theorem. Then the operator Rv defined as in (23), where AN, BN, QN, SN, RN are replaced
by Av, Bv, Qv, Sv, Rv, satisfies (25). It is known that (8) (or, equivalently, (25)), together
with the maximum principle (2)-(4), is a second-order sufficient condition for an isolated local
minimum; see, e.g., [21, App. 1 ]. The proof is complete.

4. A computational example. If the final state in problem (1) is fixed, e.g. x (1) b,
then using Lemma 1 one can easily prove a result completely analogous to that in Theorem 1
on the additional assumption that there exists c > 0 such that the ball Bc(b) is in the reachable
set of the linearized system (15) for all N (for a related analysis see [22]). As an illustration
we consider the problem

subject to

minimize 0.5 u(t)2dt

31 X2,

-2 /g,

Xl (0) 0, Xl (2) 5/6,

X2(0) 0, Xl (2) 1/2,

U >0, [0,2].

The optimal control is a nonsmooth function in time, that is,

1-t for [0, 1),
u*(t)

0 for [1, 2];

and the first-order optimality conditions result in a boundary-value problem with nonsmooth
right-hand side

3 X2

)2 max{0, )v2},

1 --0,
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FIG. 1. The dependence ofthe relative accuracy on h for 10-6.

(27)

Xl (0) 0, Xl (2) 5/6,

x2(0) 0, x1(2) 1/2,

We applied the Euler discretization scheme to the latter problem and solved the resulting finite-
dimensional problem by the shooting method with a quadratic penalty. The unconstrained
optimization problem is solved with the help of the BFGS code of MATLAB on HP Apollo
workstation 715/50.

It turns out that even for the simple linear-quadratic problem considered one observes
effects in the line of the theoretical analysis. Figure 1 shows the dependence of the relative
accuracy u* (.)-uN (.) I1 ! h on the mesh spacing h when the tolerance in the stopping test is
e 10-6. We see that this relative accuracy is bounded, hence the convergence rate is O (h) as
proved theoretically. Note that the computational time for h 5 x 10-4 was 1.9542 x 104 sec.
In Fig. 2 the same dependence is obtained for the tolerance e 10-3. in this case, for
h < 5 x 10-3 the relative accuracy significantly increases; that is, for a tolerance comparable
with the mesh spacing, there is no first-order convergence. Figure 3 shows the exact and the
approximate optimal controls for e 10-6 and h 0.05.

An area for future research is error analysis of higher order approximations (e.g., Runge-
Kutta schemes) applied to constrained optimal control problems. We did some computations
for problem (27) with the standard second-order Runge-Kutta scheme. The dependence of
the relative accuracy on h is given in Fig. 4; it indicates O(h2) convergence.

In the author’s opinion the abstract result in Lemma can be applied to variational
problems with integral state and control constraints, as well as with systems governed by
abstract (functional or partial) differential equations. The main steps in such an analysis will
be to prove the consistency and stability of the approximation considered. A direct application
of the abstract scheme may fail for stiff systems where, in general, the stability condition fails.
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FIG. 3. The exact and approximate optimal controlsfor h 0.05 and 10-6.

The presence of state constraints considerably complicates the analysis of nonlinear opti-
mal control problems. The main difficulty here is to find a compromise between the require-
ments for differentiability of the functions involved and the coercivity conditions guaranteeing
stability. An O(h) estimate for the L2 norm of the error for the optimal control was obtained
in 17] for a convex problem with linear inequality state and control constraints. We do not
know whether such an estimate holds with a stronger norm, for example, in L.
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A NEVANLINNA-PICK APPROACH TO TIME-DOMAIN CONSTRAINED
CONTROL*

HICTOR ROTSTEIN

Abstract. In this paper, generalized Nevanlinna-Pick theory is used to solve a time-domain constrained
control problem for linear time-invariant discrete-time systems. First it is shown that if constraints are imposed
only over a finite horizon (i.e., only on the first n samples), then the problem reduces to a finite-dimensional convex
minimization problem. Subsequently it is shown that if these problems are conveniently modified, then letting the
horizon length go to infinity produces a solution to the infinite-horizon problem.

Key words. 7-(oo control, interpolation theory, time-domain constraints

AMS subject classifications. 93B36, 93B28

1. Introduction. Consider the standard setup for linear time-invariant 7-t control illus-
trated in Fig. 1. The objective is to design a controller that minimizes the worst-case/2-norm of
the controlled variable y, assuming that the disturbance w lies in a (weighted) ball of 12 signals.
Numerous control problems can be reduced to this setup, including problems of disturbance
rejection, robust stability, and signal tracking [6, 7]. Suppose, for instance, that one wants to
track a given signal r with the output y. In order to formulate this as an 7-t problem, one
starts by modeling the input by the set

W {- Ww s.t. Ilwll2 1},

where W is a stable weighting function reflecting the frequency content of r, and r 6 )42.

Then, if Te; denotes the closed-loop transfer function between ? and ? y, the7 objective
becomes the minimization of the norm of WTe;. (The energy of the control action is usu-
ally also penalized to guarantee the properness of the optimal controller.) If the resulting norm
is "small," then good tracking can be guaranteed for all signals in W and hence, in particular,
for r. This procedure has two main drawbacks. First, since performance for a fixed signal r
is replaced by performance for a set of signals kV, the result will be generically conservative.
This difficulty can be partially alleviated by taking the tracking signal into account when for-
mulating the 7- objective, as proposed in [3]. Second, the 7-/ norm provides a bound on
the/2-norm of the tracking error, but very little can be inferred about the time response of the
signal, in particular over the first few samples.

Specifications for the time responses of the closed-loop system, such as the one consid-
ered in the previous paragraph, are not amicable to standard 7-/ control. Therefore, until
recently, one was left with a trial-and-error procedure, by which weighting functions (such as
W in the example above) were iteratively adjusted in an attempt to enforce the specifications.
In the absence of a formal procedure for constructing weighting functions from time-domain
specifications, this trial-and-error procedure may become arduous and time consuming, with-
out guarantees of producing a solution, even if one exists. This problem gave rise to interest
in a theory that would include both the objective and time-domain constraints. The first
attempts in this direction were to use the Youla lemma [6] to parameterize all feasible (i.e.,
resulting from stabilizing controllers) closed-loop transfer functions and then compute the
free variable in the parameterization through a constrained optimization procedure [2, 13].
Although this constitutes in principle a reasonable approach, it is not completely satisfactory

*Received by the editors June 1, 1993; accepted for publication (in revised form) March 30, 1995.
tDepartment of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

(hector@ee.technion.ac.il).
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FIG. 1. Standard 7-[ setup.

since it provides little insight into the problem and the computation of a solution becomes very
expensive, even for relatively modest problems.

A different approach to the 7-( constrained problem was initiated by Helton and Sideris in
[8], where Lawson’s algorithm for solving the Nehari problem was modified to accommodate
time-domain constraints. The resulting program is a combination of Lawson’s and quadratic
programming steps; it is in the latter that constraints appear. The original idea had several
drawbacks, including the lack of a proof of convergence and the fact that it was tailored for a
specific 7-( problem and cannot be extended directly into the general setup. Also, the approach
was based on imposing the constrains only over a finite horizon, i.e., up to a time instant n 1.
Although this is intuitively plausible, since by stability one expects that the responses will
achieve some steady-state value for n sufficiently large, it turned out to be problematic in the
subsequent developments. The first two difficulties were largely overcome in 14, 15, 17]. In
17] the problem considered by Helton and Sideris, i.e., a scalar one-block 7-( problem with

constraints imposed over a finite horizon, was solved by resorting to Nehari’s theorem. In
addition to providing a better understanding of some of its properties, the approach reduced
the problem to a finite-dimensional convex minimization, thus establishing the convergence
issue. Also, the special structure of the objective function was exploited to obtain an algorithm
for solving the minimization with relatively low computational complexity. Subsequently, in
15], the setup of Fig. 2 was considered. Here the objective is to guarantee an 7-( norm bound
between wf and yf while satisfying some time-domain specifications between wt and Yt. It
was shown that, although technically more involved, the general problem can be reduced to
a generalized version of the one considered in [17], and hence it inherits its main properties,
including convexity and the bound on the computational complexity. It is interesting to remark
that previous approaches to the problem scaled badly to the multivariable case. The original
problem has been extended in several different directions; for instance, in 19-21 a mixed
loo/7-[c problem is solved by using similar techniques.

The aim ofthe present paper is to solve the time-domain constrained 7-( problem by using
existing results in interpolation theory. The study was motivated by the facts that a variety of
solution techniques have been used to solve the standard 7-/ problem and that the interplay
of the various approaches has provided considerable additional knowledge. In particular, the
interested reader may consult 12] for a pointer to relevant literature in interpolation theory
and its role in the progress of the field. Since the main motivation of this paper is to obtain
further insights into the problem, a simple instance of the setup illustrated in Fig. 2 will be
considered, thus sacrificing generality in order to get cleaner results.

The paper is organized as follows. Section 2 is devoted to a review of relevant results
in interpolation theory, more specifically a particular generalization of the Nevanlinna-Pick
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FIG. 2. Time-domain constrained 7-[ setup.

theory borrowed from 1 ]. Section 3 describes the prototype problem which is studied in this
paper. Section 4 contains the solution of the problem when constraints are imposed only over a
finite number of sample points, and constitutes the interpolation counterpart of 17]. Section 5
contains the major new contribution of this paper, namely, the construction of a solution when
constraints are imposed over an infinite horizon, i.e., for all sampling instants. It is worth
stressing that this result does not follow in a straightforward manner from the finite-horizon
case considered in 17] and 5]. In fact, it is not clear at this point that just letting the horizon
length go to infinity will eventually produce a solution to the original problem, and a special
construction is required to guarantee this fact. Section 6 contains the conclusions and a brief
discussion of other approaches to the infinite-horizon problem.

2. Preliminaries on interpolation theory. It is well known that interpolation theory
can be used to solve numerous linear system problems. For instance, [9, 10] used a result of
Nevanlinna-Pick to study the robust stabilization problem, while used the same tool to
solve a version of the problem. A common simplifying assumption in these works is that
all interpolation points have multiplicity one; since in the present case some multiplicities are
assumed to be larger than one (see the discussion below), a result which is more general than
the standard is required and reviewed next, adapted from the comprehensive book ].

Some notation is needed in order to formulate the problem and its solution. Consider the
closed unit disk 79 {z Izl _< and let denote the set of complex functions analytic
on the interior of 79 and essentially bounded on 79. Let f(z) 7-/; then ]lf(z)l]o "-" ess
sup0 If(eJ)l and the closed unit ball in 7-/ is denoted byB. Let RT-/ denote the subset
of real rational transfer function of 7-/ andBT (BR) denote the set of functions in
7-/ with norm less than (less than or equal to) 1. Finally, let 11 denote the set of absolutely
summable sequences; i.e., if f {fl, f2 6 l, then ]lfll i-0 IjSI < ec.

In the original Nevanlinna-Pick formulation, the data are given by some points zl, z2
Zr in the interior of 79, zi zj for j, and some interpolation values wl, w2 Wr. The
aim is then to find conditions under which there exists a function f 6 BR (orBT) such
that f (zi) wi and possibly to parameterize all such solutions. A related classical problem
is the Carath6odory interpolation problem, in which the data are a polynomial of the form

f(z) fo + flz +... + fnzn

and the objective is to find necessary and sufficient conditions for the existence of a function

f 6/37-t (orB) such that

f(z) fo + flz +... + fnz + zn+ fn (z)

for some fn (z) 7-[.
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Nevanlinna-Pick and Carath6odory problems may be considered in a unified way by
introducing the following formulation.

PROBLEM 1. Find necessary and sufficient conditions under which there exists an f E

137-[ (or 13T7-[) such that

(1) Resz=zof(z)C_(zl A)-1 C+.
Zo E79

Problem is a special case of the much broader theory considered in 1 but suffices for
the purposes of this paper. The next two examples (see also Examples 18.5.1 and 22.2.1 in
1 ]) show that the claim that the interpolation condition (1) includes the original Nevanlinna-
Pick and Carath6odory problems as special cases is indeed justified. These examples are
instrumental in solving the time-domain constrained 7-t problem.

Example 2.1. Let 1-" diag{zi} E C,rr and take

A=F,
C_ liT= [1 1 1] 6 r,
C+ It01 t02 //)r];

then the interpolation constraint is satisfied if and only if

(2) f(zi) wi, 1 r.

Example 2.2. Let Inn denote the n n identity matrix, and Af ](n+l)(n+l),

0 0

Take

A=Af,
C_ eT [1 0 0] e ]1n+l,
C+ [f0 f fn];

then the interpolation constraint (1) is satisfied if and only if f (z) can be written as

(3) f (z) fo + fz h- f2z2 +"’-+- fnzn +’".

Now consider the Stein (or discrete-time Lyapunov) equation

(4) M a7-MA + C_ C_ C+r C+.
Under the condition that A has all its eigenvalues in D, a Hermitian solution to (4) exists and
is unique. The solution M is called the generalized Pick matrix associated with Problem
and plays a key role for finding necessary and sufficient conditions for the solvability of the
interpolation problem.

THEOREM 2.3. Let M solve (4). Then there exist a transfer function f (z)
(13Tlo) such that (1) is satisfied ifand only ifM is positive definite (positive semidefinite).

Proof. See Theorem 18.5.1 of [1 and the note on page 404 therein.
It is also possible to parameterize all solutions to the interpolation problem cited above, but

Theorem 2.3 suffices for the purposes ofthe present paper. Necessary and sufficient conditions
for the existence of a solution to the Nevanlinna-Pick and Carath6odory interpolation problems
follow easily from the theorem.
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FIG. 3. The prototype problem.

COROLLARY 2.4. Let P be the standard Pick matrix

(5)
1-- tOi tOj ]P
1 zi zj ij

Then there is a transferfunction f(z) e 13o such that (2) is satisfied if and only if P is
positive definite.

Proof. Some simple algebra shows that P given by (5) satisfies (4) for A, C_, and C+
considered in Example 2.1.

COROLLARY 2.5. Let .Tn be the matrix

(6) .T

o o fo

Then there is a transferfunction f (z) 13 such that (3) is satisfied if and only if .T’n is
a contraction (i.e.,-(.T’n) < 1).

Proof. Again, some simple algebra shows that Mc I .TT.Tn solves (4) for A, C_,
and C+ considered in Example 2.2. Since this matrix is positive semidefinite if and only if
-(’n) < 1, the corollary follows from Theorem 2.3.

3. The control problem and its formulation. The purpose of this section is twofold.
First the control problem which will be studied in the rest of the paper is introduced. Then the
problem is formulated to resemble an interpolation problem.

3.1. Prototype problem. As anticipated in the introduction, the example to be con-
sidered next is not introduced due to its intrinsic significance but rather because it allows a
transparent derivation while keeping technical details and notation as simple as possible. More
general cases, like problems involving multivariable one-block 7-/ objectives or time-domain
constraints over several transfer functions, can be derived by using a generalized version of
the interpolation theory reviewed in the previous section and a more involved notation.

Consider the disturbance rejection problem illustrated in Fig. 3. Here G Go/(1 +
A V-1) is a linear time-invariant discrete-time plant with nominal finite-dimensional transfer
function Go. A is assumed to be stable and such that II/x < 1 but otherwise unknown. V is a
weighting function assumed to be finite dimensional and outer (i.e., both V and V-1 6 7"H).
Let t(z) 1/(1 + GoC) denote the nominal transfer function from w to y. If C stabilizes the
nominal closed loop, then (z) can be expanded as (z) =0 tkZk.

The prototype control problem considered in this paper is to design a controller C(z)
such that
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O1) C internally stabilizes the closed loop for all A’s that satisfy the conditions stated
above.

02) The nominal closed-loop transfer function from w to y is such that, for every k,

(7) lbk < tk < ubk,

where the two sequences lb {Ibo, lbl and ub {ubo, Ubl are assumed to be in ll.
The control problem is hence a combination of robust stabilization O 1 and nominal perfor-
mance 02. Necessary and sufficient conditions for the existence of a controller satisfying O 1
are well documented in the literature.

LEMMA 3.1. A controller C satisfies 01 ifand only if

(8) IlV-1/(1 + GoC)ll < 1.

Proof. See, for instance, [5]. [3

It follows from the lemma that O 1 gives rise to an 7-( control problem, while 02 imposes
time-domain constraints.

3.2. Problem formulation. Given Go and Vo as above, the robust stabilization problem
is said to be solvable (strictly solvable) if there exists a controller C such that (8) holds
(respectively, holds with strict inequality). Necessary and sufficient conditions for solvability
using interpolation theory have been known for some time.

LEMMA 3.2. Let Go have rz zeros Z Zrz and rp poles Zrz+l Zrz+rp in the interior

of79, zi 7 zj for 7 j, and V be as above. Then the robust stabilization problem is solvable
(strictly solvable) ifand only if the Pick matrix (5) is positive semidefinite (positive definite),
with wi V-l(zi), i= rz, wi O, rz + l r rz + rp.

For further discussion on the relationship between interpolation theory and robust stabi-
lization, see [12].

The next step is to reformulate the control problem into a form that resembles the gener-
alized Nevanlinna-Pick problem reviewed in 2.

THEOREM 3.3. Let Go have r zeros zl Zrz and rp poles Zrz+l Zrzq_rp in the
interior of 79, zi zj for 5/: j. Then the control problem considered in the previous section

has a solution ifand only if there exist f such that

(9) f (zi) V-1 (zi) "-" wi, 1 rz,

(10) f(zi) O, rz + rz + rp,
(11) lbk < tk < ub Vk,

and (z) V (z)f (z).
Proof. Let f(z) V-(z) denote the weighted sensitivity transfer function.l+Go(z)C(z)

Then, from Lemma 3.2, f , Ilfll _< 1, and conditions (9), (10) are equivalent to the
robust stability of the closed loop. Finally, condition (11) is a restatement of (7). [3

The problem considered in Theorem 3.3 is similar to an interpolation problem, except
that the coefficients f are not given some specific values (as in a Carath6odory problem) or
left unspecified (as in a Nevanlinna-Pick problem) but are constrained by inequalities. For
this reason, it is referred to as a constrained interpolation problem (CIP). In the next section,
it is shown that Theorem 2.3 can be used to obtain necessary and sufficient conditions for the
solvability ofthe CIP if constraints are imposed only over a finite horizon. For future reference
let r r + ru.

4. The finite-horizon case. Suppose that one wants to impose the constraint bk < t <_
ubk only for k _< n < cx or, equivalently, that there exists an n in (1 l) such that -lbk and ub
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are arbitrarily large for k > n. By the causality of V (z) zY’/=0 vi (11) may be written as
the matrix inequality

vo 0 0 fo
vl vo ". 0 fl ublbl

Vn Un-1 0 fn

or, in a compact notation,

(12) lbn _< Vnfn _< ubn.

The value n is referred to as the horizon length, and the corresponding constrained interpolation
problem is called CIP,,. Note that in a CIP,,, constraints are imposed over n + 1 samples. With
a small abuse of notation, the original problem CIP is said to have constraints over an infinite
horizon, while the robust stabilization problem is referred to as the unconstrained problem.

From (12), CIPn has only a finite number ofconstraints; as shown in the following theorem,
this implies that it can be reduced to a finite-dimensional minimization problem

THEOREM 4.1. Let Go, V be as above, and assume that the unconstrained problem
is strictly solvable. Then the CIPn has a solution if and only if there exists a vector fn
[fo fl"" f]r n+ satisfying (12) such that ’(/r(fn)) < 1, where ’(/(fn) denotes the
largest singular value of the matrix

with

O

Zl z21
Zrz Z2

2Zrz + Zr +

21 Zr Z

tO1 tOlZl tOlZl
2

S z2ll)r llOr Zr ll)r

0

fo f fn
0 fo fn-

0 0 fo

Zr +

Z

IlO Z7

rz ZF

and P is the Pick matrix (5).
Proof. Assuming that the f/’s are fixed, CIPn reduces to the generalized Nevanlinna-Pick

interpolation problem of finding f e/377-/ such that

f (zi toi 1 rz
f (zi) O, rz + 1 r,

f(z) fo -k- fz -k- f2z2 d-’" nt- fnZ "+-"’.
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Let A r 0 ], where F and Af are as defined in Examples 2.1 and 2.2 respectively. Let0 Af

C_ [lit e],
C+ [Wl 11)2 Wr fo fl fn].

From Examples 2.1 and 2.2, the interpolation problem has a solution if and only the corre-
sponding generalized Pick matrix M(fn) in Theorem 2.3 is positive definite. It is claimed
that

(4 M(f
(S. S.Ir

To see this, begin by partitioning M as

Mll M12 ]M
M21 M22

compatible with the structure of A. Then if M satisfies the Stein equation (4),

(15) Mll 1-’MllI" + liT wwT,
(16) M22 afM22Af + ele fnfn T,
(17) M12 1-" MlzAT + lie’( WfnT,

where Wn [Wl Wrz 0 0] T. From (15), (16), and Examples 2.1 and 2.2,

Mll P,

M22 I -.T’T.Tn,
Multiplying the left-hand side of (17) by el,

and by e2,

M12el li Wfo,

M12e2 I-’M12el wfl 1-’ll I-’wf0 wfl.

Continuing this process, one gets

M12 S- sl.’n
as required. Note that M(.) depends quadratically on fn [f0 fl fn]T.

By Lemma 3.2 and the assumption on strict solvability of the unconstrained problem, P
is positive definite and hence invertible. M is then positive semidefinite if and only if

I ,Tn,"n (S Sln)T P-I(s sl,.’n) . O,

which is equivalent to

p (,’Tn,"n (S sl.’n)T p-1 (S sly’n)) 1,

where p denotes the spectral radius, or to

(18) "ff([ p_l/2(SOn_ SI..T.n) ]) <_1.
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It follows from these calculations that CIPn has a solution if and only if there exists a vector

fn satisfying (12) such that (18) holds. [3

The block diagonal terms of M in (14) show that if the CIP is solvable, then the associ-
ated Nevanlinna-Pick and Carath6odory problems also have a solution; the condition is not
sufficient, because of the off-diagonal terms in M.

Theorem 4.1 reduces the solution of an optimization problem with constraints over
a finite horizon to a finite-dimensional optimization problem, namely, the minimization of
the largest singular value of Nfin) subject to constraints on fn. Given the linear dependence
of Nfin) on fn, and the linearity of the constraints, the optimization problem is convex but
in general nondifferentiable. Since, in addition, a large number of variables and constraints
are usually involved, solving this problem can be difficult; in particular, general procedures
for nondifferentiable programming may not produce a solution at a reasonable cost. An
algorithm for solving this type of problems based on the ellipsoid algorithm was outlined in
[14, 15, 17].

5. The infinite-horizon case. A first approach to solving the infinite horizon problem
would be to take a horizon length n large and compute a vector fn that satisfies the constraints
(12) and minimizes (]Q(fn))- Letting/Z ’(M(fn)), if/xn > 1, then no solution to CIP
exists; but if/zn < 1, then one could construct a solution fn (Z) to CIP and then check whether
(7) is also satisfied for k > n. Note, however, that for/zn < 1 the solution is highly nonunique
and there is no systematic way of selecting fn (Z) SO that the violation of the constraints is
minimized or driven to zero. To circumvent this difficulty, one could select a particular solution
(e.g., the minimum entropy one) to the CIP and keep increasing the horizon length in the
hope that constraints for all time instants will eventually be satisfied.

Unfortunately, research on the finite-horizon problem using a Nehari approach 15, 17]
shows that the infinite-horizon case may not always be addressed directly by taking the limit
for the horizon length going to infinity. This is because little can be said about the time-domain
behavior after the horizon (i.e., for k > n), which turns out to be unacceptable if the optimal
solution (in terms of the 7-/ norm) is pursued. This difficulty was circumvented by solving an
approximate problem in which the closed-loop poles are constrained to lie in a disk of radius
p < 1; the fact that all poles have an absolute value strictly less than induces a decay rate
on the time responses and hence implies a good (i.e., small) behavior for k > n if the horizon
length n is taken to be larger than some precomputable bound. One can then argue that under
some suitable continuity condition, letting p -- 1 would produce in the limit a solution to the
infinite-horizon problem. However, since continuity properties are hard to ascertain (note that
both the problem and the constraints should be continuous in some sense), a more direct
approach is pursued in this section.

LEMMA 5.1. The set of transfer functions f(z) such that t(z) V(z)f(z) satisfies the
time-domain constraints (7) is compact as a subset of

Proof. The proof is based on the fact that both ub and lb are assumed to be in 11. Let

S t(z) tz s.t. lbk <_ tk <_ ubk Yk C .
k=O

The first step is to show that US is compact as a subset of/1; since the norm bounds the
7-/ norm, the lemma will follow.

The space 11 is complete and US is closed, and hence it suffices to show that for every
e > 0 it is possible to cover US with a finite number of balls of 11 with radius e [4, p. 59].
Thus, let e > 0 be given. By the assumption -=0 Ilbl < , --o lubl < , there exists
an N such that
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(19) [lbk[ < /4,
k=N

(20) , lubkl < /4,
k=N

implying Y---N Itl < e/2 6 9vS. Now consider the set

{[to tl tN-1] ]IN s.t. lbk < t < ub, 0 <_ k < n}.

.)E’8N is a closed and bounded set inN, andhence there exist a finite number ofballs B(/ e/2),
with center at/ [t tN_l] and radius e/2 that cover USu. Define

[tt tN_100 ...],

and consider the balls 13(t ) Q ll. Consider now any 6 f’S. By construction, there exists
N- ioan io such that Yk=0 Irk t < e/2, and then

N-1

k=0 k=N

< e/2+e/2=e.

Since the finite number of balls 13(f ) covers US, the set is compact Since V-1 6 7,
the proof follows.

Let f(n)(z) denote the minimum entropy solution to CIPn, and let i(n) (z) denote

i(n) fg + fz 1_ f;z2 _Jr_...-t- f2zn,

i.e., its projection over the space generated by 1, z z }. From Lemma 5.1, an accumu-
lation point for the sequence of transfer functions {f(n)} constitutes a natural candidate for
solving the infinite-horizon problem. Unfortunately, the resulting accumulation point does not
necessarily satisfy the interpolation constraints (9), (10), which are satisfied by f(n) and not by
f(n). One could enforce constraints (9), (1 O) on (n) by modifying the minimization problem
to include the constraints explicitly, but it is not clear how this would affect the convergence to
the optimal solution. Instead, if the CIPn are modified so that (9), (1 O) are only approximately
satisfied by f(n, it is possible to establish that a solution to the infinite-horizon problem can be
computed by letting the horizon length n go to infinity. More explicitly, consider the following
modification of the CIPn problem.

PROBLEM 2 (MCIPn). Find f B’F7-[ such that

(21)

(22)

f(zi) Wi,

f(zi) 0,

Ib < tk < ub,

<_
k=O

1,..., rz,

rz + 1 rz + rs,

O<k<n,

rz,

i=rz+l r,

where < 1.
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A careful choice of e now shows that the solvability of the MCIPn eventually implies the
solvability of the infinite-horizon problem.

THEOREM 5.2. Let > e > maxi=l [zi 1. Then the infinite-horizon problem is solvable

if and only if there exists an N such that the MCIPn is solvablefor all n > N.
Proof. Suppose that there exists N such that the MCIPn is solvable for all n > N, and let

f(n) denote a solution for the MCIPn. As before, f(n) can be the minimum entropy solution
for definiteness. Let f(n) be defined as in the proof of Lemma 5.1"

f(n) { f(n) if k < n
k 0 ifk>n

(i.e., f(n) is found by truncating f(n)), and consider the sequence of functions {f(n)}.. It is
clear that f(n) satisfies the constraint (11) for all n, and hence Lemma 5.1 implies that there
exists a convergent subsequence {f }. Let f lim f. Then it is claimed that f solves
the infinite-horizon problem. To see this, note that the interpolation constraints (9) and (10),
are satisfied in the limit due to the additional constraints (21) and (22) in the MCIP. The
constraint (1 l) is also satisfied because all f(n) do satisfy it, and the conditions on lb and ub
imply that f E 7-/. Finally [If < because ’(.f’n) [If for n -- ec.

To prove the converse, assume that f solves the CIP. Then f is a feasible point for the
CIPn for all n, and hence it suffices to show that there exists an N such that f also satisfies
(21) and (22) for each n > N. Since f satisfies (11), Y-j0 3z[ 0 for rz + 1 r,
and

fjz < Iziln+l IJ)l, rz + r.
j=n+l

Since f satisfies the time-domain constraints, j=0 IJ)l < ec, implying that there exists an

N such that }2j-N+ fl < 1. Then, if n > N,

or

for all rz r; hence f satisfies the additional constraint (22). A similar argument
proves that f satisfies (21), and hence the MCIPn is feasible for all n _> N. This concludes
the proof. 1

The condition in Theorem 5.2 is hard to check, since it involves the solution of MCIPn
for arbitrarily large values of n, and solving the associated optimization problem becomes
progressively more expensive as n increases. In practice, this inconvenience can be circum-
vented as follows. First, solve the optimization problem associated with MCIPn for n large;
the horizon length is related to the location of the singularities zi, 1 r. Then check
if either f(, perturbed to satisfy the interpolation constraints, also satisfies the norm bound
or f(n) has a reasonable time behavior after the horizon. The first choice is justified by The-
orem 5.2, since it implies that the finite impulse response solution f(" to the corresponding
MCIPn eventually provides an approximate solution to the infinite-horizon problem. On the
other hand, numerical experience suggests that picking f(n) often yields a solution to the
infinite-horizon problem, specially if/3 is significantly smaller than one.
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6. Conclusions. In this paper the time-domain constrainedo problem has been stud-
ied, using interpolation theory. If constraints are imposed over a finite horizon, then a gen-
eralized Nevanlinna-Pick theorem from can be used to reduce the problem into a finite-
dimensional, convex minimization. Theorem 4.1 shows that the solution to this problem is
less than or equal to if and only if there exists a solution to the original constrained o
problem. If constraints are imposed over an infinite horizon, then Theorem 5.2 shows that a
solution exists if and only if the solution to a sequence of finite-dimensional convex problems
is bounded by one. It is worth stressing that the additional insight provided by the interpolation
theory approach allowed the solution to the infinite-horizon case, since previous works have
concentrated on the finite-horizon problem. After the submission of this manuscript, substan-
tial progress has been achieved in the solution to the infinite-horizon problem, partially fueled
by the convergence theorem presented in 5. For instance, in 16] the normal convergence
of the finite-horizon solutions is established under no assumptions on the bounds ub and lb
and without introducing additional constraints. In 18] the assumptions are stronger, but again
convergence is established without resorting to the approximate interpolation constraints.

This work can be extended in several directions. First, although attention has been focused
in finding necessary and sufficient conditions for the solvability of the constrained problem,
state-space formulas for the computation of an actual solution (i.e., a controller) may be given
by using the corresponding results in interpolation theory. Then, the one-block multivariable
7-(c problem can be solved, and the feasibility of solving the general four-block 7-/c could be
investigated. Also, the problem of imposing time-domain constraints on a transfer function
while bounding the o-norm of another transfer function can be addressed. Although the
finite-horizon problem is apparently easy to extend to this case as well, it is not clear at this
point if the infinite-horizon result will extend as nicely. This is also true for the multivariable
case and is currently under investigation.

Acknowledgments. The author wishes to thank Prof. Athanasios Sideris for his sugges-
tion of using approximate interpolation constraints for the infinite-horizon problem, and the
anonymous reviewers for their remarks and suggestions.
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PARTIALLY OBSERVED DIFFERENTIAL GAMES, INFINITE-DIMENSIONAL
HAMILTON-JACOBI-ISAACS EQUATIONS, AND NONLINEARH CONTROL*
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Abstract. This paper presents new results for partially observed nonlinear differential games. Using the concept
of information state, we solve this problem in terms ofan infinite-dimensional partial differential equation, which turns
out to be the Hamilton-Jacobi-Isaacs (HJI) equation for partially observed differential games. We give definitions of
smooth and viscosity solutions and prove that the value function is a viscosity solution of the HJI equation. We prove
a verification theorem, which implies that the optimal controls are separated in that they depend on the observations
through the information state. This constitutes a separation principle for partially observed differential games. We
also present some new results concerning the certainty equivalence principle under certain standard assumptions. Our
results are applied to a nonlinear output feedback H robust control problem.

Key words, partially observed differential games, infinite-dimensional partial differential equations, viscosity
solutions, nonlinear H robust control

AMS subject classifications. 90D25, 93B36, 93C10, 93C41, 49L25, 35R15

1. Introduction. The nonlinear Ha robust control problem has generated considerable
activity in recent years, and important contributions have been made by a number of authors;
see [1]-[3], [5], [8], [9], [12], [16], [20]-[24], [26], [29]-[35]. The state feedback problem
is reasonably well understood, although the issue of controller synthesis for continuous-time
systems remains outstanding. This is because the value functions solving the various partial
differential equations (PDEs) that have been proposed need not be smooth--a standard diffi-
culty even for simple deterministic optimal control problems. The output feedback problem is
much more difficult, and various approaches have been suggested in the literature. Perhaps the
most general of these approaches was initiated in [24], [25], where the concept of information
state was used to solve a partially observed dynamic game, and applied in [23] to solve the
output feedback Ha problem (see also the discussion in [6]). The results in [24], [23] are
presented in the discrete-time context for technical simplicity, although the system-theoretic
ideas are valid in continuous-time also; ideed, the key equations were presented in [25], [32]
and later in [6]. The purpose of this paper is to commence the task of developing a mathe-
matical theory for continuous-time partially observed differential games and output feedback
Ha robust control.

The information state Pt Pt (x) is the solution of a first-order PDE and takes values
in a suitable infinite-dimensional Banach space Pt 6 A:’ (here, x 6 R is the state of the
system being controlled, so A’ is a space of real-valued functions of x). The partially observed
differential game that we consider can be transformed into an equivalent game with full state
information, and this leads via dynamic programming to a value or optimal cost function
W(p, t) that "solves" a PDE on A" [0, T]. This PDE is a nonlinear first-order equation
and is the correct Hamilton-Jacobi-Isaacs (HJI) equation for partially observed differential
games. This HJI equation appears to be new, and we are not aware ofany results in the literature
concerning this type of infinite-dimensional PDE. It is not clear what if anything the results
in [7] have to say about this HJI equation. In the case of partially observed stochastic control,
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the idea of information state is familiar, a theory has been developed 14], 17], [27], and the
dynamic programming equation is an infinite-dimensional nonlinear second-order PDE.

The particular class of prob!ems that we consider in this paper is presented in 2. This
class should be regarded as a prototype class, and the ideas and principles we develop are
expected to apply in much more general contexts. The relevant information state is defined
in 3, and some if its properties are analyzed for use in later sections. In particular, the key
representation theorem is given. In 4, the value function and HJI equation are defined and
studied. Definitions of smooth and viscosity solutions are given. We prove that the value
function is a viscosity solution of the HJI equation. We do not know a proof of a uniqueness
or comparison theorem for equations of this type, and consequently our definition of viscosity
solution should be regarded as a provisional one. While in general it is not expected that
smooth solutions will exist, a verification theorem is proven in 5 assuming a smooth solution
exists, yielding that the optimal control is a separated control in the sense that it depends on
the observations via the information state. The certainty equivalence principle proposed in [5]
and [9] is considered in 6. We explain how this principle fits into the general information state
framework and show that, under a generalization of the standard assumptions, the certainty
equivalence controller can be optimal at certain values of the information state. The standard
assumptions are very stringent and are unlikely to hold in general, and we explain what can
happen in such an event. In 7, we apply our results to a relatively simple nonlinearH control
problem, viz., finite horizon disturbance attenuation. The solution is expressed in terms of two
PDEs, a finite-dimensional one for the information state and an infinite-dimensional equation
for the value function. Infinite horizon H problems are closely related to the theory of
dissipative systems 18], [36], and we present the relevant partial differential inequality (PDI)
for the output feedback problem. Finally, we make some comments concerning more general
cases.

2. Problem formulation. We consider the class of nonlinear partially observed deter-
ministic systems described by the state space equations

I Jc(t) f(x(t), u(t)) + g(x(t), w(t)),
(2.1) ! y(t) h(x(t)) + w(t).

Here, x(t) R denotes the state of the system and is not directly measurable; instead,
an output quantity y(t) Rp is observed. The control input is u(t) 6 U C Rm, and
to(t) Rp is regarded as an opposing disturbance input. The functions f R x Rm Rn,
g Rn Rp --+ Rnxm, and h R -- R are assumed bounded and smooth with bounded
derivatives of orders up to three, say. The set U is compact.

Most of this paper is concerned with a differential game problem on a finite-time horizon
[0, T], and we use the following type of admissible strategies. The admissible disturbances
are the square integrable functions

w W(t) L2([t, T], RP),

while the admissible controls are the nonanticipating (causal) maps

where

u Y(t) -+ b/(t),

b/(t) L2([t, T], U), Y(t) L2([t, T], RP).

The nonanticipating property means that if Yl, Y2 G 3;(t) and yl (r) y2(r) a.e. r 6 [t, s],
then u[yl](r) II[yz](r) a.e. r 6 It, s] (cf. the Elliott-Kalton notion of strategy [10], [11]).
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We will denote by U(t) the class of such nonanticipating strategies for which (2.1) and (3.2)
(for u u[y]) have unique solutions.

We next introduce several function spaces that will be used in the sequel. The Banach
space of continuous functions with at most linear growth is denoted

where the norm is defined by

Denote by

,9( {p E C(Rn) "11 p I1< },

Ip(x)l
p II-- sup

xER /lxl

,1 {p E CI(Rn) "11 P II1< }

the Banach space of continuously differentiable functions with bounded derivatives equipped
with norm

Ip(x)l
P II1-- sup + sup Vxp(x)l,

xERn + Ix xR

where Vxp is the gradient of p. Also, we need to define the function space

79 {p 6 C(Rn) p(x) <_ -CllXl + C2 VX G Rn, for some C > 0, C2 R}.

Note that the subsets 79 O 2, C X and 79 n 2,1 C 2’1 are open in their respective topologies.
As sets, ,.,1 C ,’’, but 2"1 is not a subspace of 2, as Banach spaces.

The minimax differential game is defined as follows. The payoff is

J(u, w, xo) ot(xo) + [L(x(t), u[y](t)) ’2e(w(t))] dt + (x(T)),

where the initial state x(0) x0 is in general unknown. The functions L Rn R R,
Rp --+ R, and Rn -- R are assumed bounded and smooth with bounded derivatives of

orders up to three, and c 6 79 f) 2,. The assumptions imply that J is well defined and bounded
uniformly in w E V(0) and u 6 U(0). We will also assume that L > 0, > 0, > 0. The
controller’s objective is to minimize J, while the disturbances attempt to maximize J. For
u 6 U(0) define the functional

J (u) sup J (u, w, x0).
w]/V(O), xoR

The problem addressed in this paper is that of minimizing J(u) over u 6 U(0). This is
a partially observed minimax differential game. Note that x0 is regarded as an unknown
opponent also.

3. Information state. The key to solving the partially observed game is to replace it by
an equivalent one with full state information. The difficulty is that the new state is infinite
dimensional in general.

To this end, for fixed output path y 6 3(0) and control u E/at(0), define the information
state by

(3.1) pt(x) ot(xo) + [L(x(s), u(s)) 2e (y(s) h(x(s)))] ds,
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where x(.) is the solution of

(3.2) k(s) f(x(s), u(s)) + g(x(s), y(s) h(x(s))), 0 < s < t,

with terminal condition x (t) x. This quantity describes the worst-case performance up to
time using the control u, which is consistent with the observed output and the constraint
x(t) x. It summarizes the observed information in a way that is suitable for fulfilling the
control objective. The information state evolves according to the dynamics

I [9, F(pt, u(t), y(t)),
(3.3)

/ P0

where F is the differential operator

(3.4) F(p, u, y) -Vp (f (., u) + g(., y h)) / L(., u) ,2e(y h),

defined on a domain in A’ R Rp mapping into Z. (Note that F is not continuous on
X Rm Rp but is continuous from Z R Rp to ,-’.)

The smoothness of pt(x) and consequently the sense in which (3.3) is to be understood
depends on the smoothness of the initial data ot (the other data are assumed smooth) and on
the regularity of u (.) and y (.).

DEFINITION 3.1. We say that a function pt(x) is a smooth solution of the dynamics (3.3)
if or 79 ,1; and when u lg(O) and y 3;(0) are continuous,

(i) pt(x) is ofclass C(R" [0, T]) and
(ii) pt(x) satisfies (3.3) in R (0, T) in the usual sense.

LEMMA 3.2. If ot 79 fq Z, then pt(x) is the unique smooth solution of (3.3), andfor
any u lg(O) and y 3;(0), the information state pt evolves in 79 f) Z as

(3.5) pt D 0 ,.1 [0, T]

whenever ot 79 X1. Moreover, the map - Pt from [0, T] into 79 fq ,9( is continuous,
with modulus ofcontinuity independent ofu Lt(O), y 3;(0).

Proof. 1. Let c 79 f) X1, u L/(0) f) C([0, T], Rm), and y 3;(0) fq C([0, T], RP).
Then by the method of characteristics (see, e.g., [13]), we see that (3.3) has a unique solution
given by (3.1) that is of class C 1, and moreover, the gradient has the representation

Vp,(x) Vx(X(0))
(3.6) f0+ [VxL(x(s), u(s)) + ?’2Vw (y(s) h(x(s))) Vxh(x(s))]E(s)ds,

where x(.) is the solution of (3.2) and

(s) [Vx f(X(S), u(s)) + Vxg(X(S), y(s) h(x(s)))
(3.7)

-Vwg(x(s), y(s) h(x(s))Vxh(x(s))]U,(s),

0 < s < t, where E (t) I.
2. These formulas are also valid for u 6/g(0), y 6 3(0), by an approximation argument

using continuous functions, as follows. Let u --+ u in L/(0) and yi
__

y in 3)(0) as --where each u and yi is continuous. We claim that

(3.8) lim sup P- Pt II1=0,
i--- cx 0<t<T

where pi and p. denote the corresponding solutions of (3.3) with initial data
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To prove this, let X (’) and x(.) denote the corresponding solutions of (3.2) with terminal
data x (t) x, x (t) x. Then a standard estimate using the Gronwall and Holder inequalities
gives

]xi (s) X(S)[

for s [0, t], where K > 0 is independent of [0, T], x e Rn. This implies

P (x) Pt (x)l _< It (x (0)) c (x (0))1

0+ [IL(x (s), u (s)) L(x(s), u(s))l + l(y (s) h(x (s))) g.(y(s) h(x(s)))l] ds

<_ (Ix (0) x(0)l) / g [Ix (s) x(s)l + lu (s) u(s)l / ly (s) y(s)l] ds

_< g(ll u- u IIL + yi_y

uniformly, where p is a modulus of continuity function for oe. A similar estimate for
IVxp (x) VxPt(x)l can be obtained using (3.6). This proves (3.8).

3. Note that by assumption and (3.6), Vx pt(x) is bounded uniformly in (x, t) 11n x
[0, T]. This implies Pt ,.,1. The fact that Pt 7 f’l ,.,1 follows from the estimate (3.13).

4. Finally, we claim that there exists a modulus function ,o depending on c but independent
of u and y such that

(3.9) Pt Pt II1_< p(Itx tll).

To prove (3.9), assume < x. Let x (.) (i 1, 2) denote the solution of (3.2) with
terminal data x (ti) x. Now

Ix2(t) -xl < Kit- tll,

and for 0 < s < 1, using Gronwall’s inequality,

Ixl(s) xZ(s)l _< Klxl(t 1) x2(tl)l < Kitx tl.
Therefore

ptl(x)l < Iot(xX(0)) --ct(xl(0))l + .In [IL(xZ(s)’ u(s)) L(xl(s), u(s))lIpt2(x)

+Kle(y(s) h(x2(s))) e(y(s) h(x(s)))l]ds

4-L [IL(x2(s)’ u(s))] 4- Klg(x2(s), y(s) h(x2(s)))l] ds

p(lxX(0)- xl(0)l)+ KJo IxX(s) -xl(s)lds + Kitx- tl[

< p(Kltx- tll) 4- Kit2

uniformly in x, u, y. A similar estimate for [Vxpt2(x) VxPt(x)[ can be obtained using
(3.6). This completes the proof.

If ot is not differentiable, then (3.3) can be interpreted in the viscosity sense 13], [28].
DEFINITION 3.3. We say that afunction Pt (x) C(Rn [0, T]) is a viscosity subsolution

ofthe dynamics (3.3) if DN?(, and iffor all C(Rn), 6 LI[0, T], whenever there
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exists (x’, t’) R (0, T) with pt,(x’) + fl (s) ds -dp(x’) maxx,Oi,[o,rl(pt(x) +
f (s) ds dp(x)), then

lim inf ess inf{ap(t) ,-(f(x, u(t)) + g(x, y(t) h(x))) 4- L(x, u(t))
(3.10) 0

-y2e(y(t)-h(x)) Ix-x’l <3, I,k-Vx4,(x’)l_<3} >_0;

or a viscosity supersolution of the dynamics (3.3) if ot e 79 (q 2(, and iffor all dp C(Rn),

ft 6 L 110, T], wheneverthere exists (x’, t’) R (0, T) with pt,(x’)4-f (S) ds-qb(x’)
minx.ORn[o,r](pt(x) 4- f p(s) ds qb(x)), then

lim sup esssup{(t) X. (f (x, u(t)) 4- g(x, y(t) h(x))) 4- L(x, u(t))
(3.11) 6 It-t’l<

-V2e(y(t)-h(x)) Ix x’l < 3, IX Vx(X’)l <3}<0;

or a viscosity solution if it is both a subsolution and a supersolution.
LEMMA 3.4. Ifot 79 f3 2(, then pt(x) is the unique viscosity solution of(3.3). Moreover,

for any u bl(O) and y 3)(0), the information state Pt evolves in 79 (q ,.Y as

(3.12) P 79 f) ,9(, e [0, T],

whenever ot 79 N ,.
Proof. Let c e 79 fq A:’, u 6 /g(0), and y e 3(0). From the formula (3.1) and from

well-known continuity properties of ODEs, it is not hard to show that pt(x) C(Rn [0, T]),
and we omit the details. The fact that pt(x) is the unique viscosity solution of (3.3) follows
from the results in [28].

To show that Pt 79 X, we must prove the estimate

(3.13) c 11xl 2 -< pt(x) _< -llXl 4- 2 for all x e Rn, 0 _< < T,

where the constants are independent of u 6/g(0), y 6 3(0) but may depend on or. To this
end, let x(.) be the solution of (3.2). Then for 0 < r < s < < T, we have

(3.14) Ix(s)l < Ix(r)] + Kls- rl
for some constant K > 0. A similar inequality holds if s < r. Therefore,

Pt (x) <_ ot (x (0)) 4- KT
< -cllx(O)] + c2 + KT
< -CllX] 4- cIKT + c2 + KT.

This proves the upper bound in (3.13). The lower bound is proven similarly. [3

LEMMA 3.5. The map (p, t) w- pr from 79 A A" [0, T] into 79 A 2( is continuous, where
Pr denotes the solution of(3.3) at time T with initial data Pt P. In addition, ifu bl(O) and
y 3)(0) are continuous, then the map Pt from [0, T] into is ,-Frechet differentiable
with continuous derivative - F(pt, u(t), y(t)).

Proof. 1. Proof of first assertion. Fix p 6 79 A’, and consider p2 6 79 A A and
0 < < 2 < T. If u 6 /(tl), y 6 32(tl), then the natural truncations of u and y belong
to/g(t2) and 32(t2), respectively. Similarly, if u 6 /J(t2), y 6 3)(t2) are given, then one
can extend them to elements of/g(t ) and 3(t 1) by setting them equal to arbitrary but fixed
elements of U and Rp, respectively, on [t t2]. We use this convention to avoid any ambiguity
in the sequel. We claim that there exist a constant K > 0 and modulus function p that may
depend on p suck that

(3.15) p- p2 I1 g p-p2 4-p(lt- tl),
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wherep (i 1, 2) denotes the solution of (3.3) at time T with initial data Pli pi, and inputs
u(.), y(.), with interpretations as explained above. This inequality implies that (p, t) w- Pr
is continuous at (p, 1) 6 79 C) , x [0, T] (since (3.15) holds also if 2 < tl).

Fix x and let x (.) denote the corresponding solutions of (3.2) with terminal data x (T)
x. Then XI(s) X2(S) for 2 _< s _< T (in particular xl(t2) x2(t2)),

and

Using these estimates,

Ix(t) x(tZ)l _< KI t2 tl

Ix2(t2)1 Ix + K.

Ip(x) pZr(x)l _< Ipl(xl(tl)) pZ(xZ(t2))l

4- ]., IL(x (s), u(s)) yzg(y(s) h(x (s)))l ds

< Ip(xl(tl)) pl(x2(t2)) 4- Ipl(x2(t2)) p2(x(t2)) 4- Kit2

<- Pp’(lx(t) -x2(t2))l)4- pl_ pe (1 / Ix2(t))4- Kit-< pp,(Kit2 tl[) 4- K pa p2 (1 4-Ixl) / Kit2 tl.
This estimate implies (3.15) with p(s) pp (KIs[) 4- KIs[.

2. Proof of second assertion. Let ot 6 79 f A", and assume that u and y are continuous.
We must prove that

Pt+6 Pt F(pt, u(t), y(t))3
(3.1 6) lim 0.

0

Since pt(x) is of class C we have

Ipt+(x) pt(x) F(pt, u(t), y(t))(x)6l

ft
t+- [f(ps, u(s), y(s))(x) f(pt, u(t), y(t))(x)] ds

[t+< [IVxps(x) Vxpt(x)llf(x, u(s)) + g(x, y(s) h(x))l

+ IVxpt(x)llf(x, u(s)) f(x, u(t)) + g(x)(y(s) y(t))[

4- IL(x, u(s)) L(x, u(t))l 4- ?’2Kly(s) y(t)l] ds

1 ft
t+a

< [KlVxps(x) Vxpt(x)l

+ Klf(x, u(s)) f(x, u(t))l + K(1 + ?,2)ly(s) y(t)l

+ It(x, u(s)) Z(x, u(t))l] ds

1 [t+< Cp(ls tl) ds --+ O,

as --+ 0 uniformly, where p denotes a suitable modulus of continuity function. This follows
because of our assumptions on the data and using (3.6), and is enough to prove (3.1 6).
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Using the definition (3.1), we have the following key representation theorem.
THEOREM 3.6. For any u U(0) we have

(3.17) J(u) sup {(Pr, cb) Po or},
yeN(0)

where (p, ) SUPxeRn (p(x) + (X)) is the "sup-pairing" [24].
Proof. For any w 6 I/V(0), an output y 6 3;(0) can be defined by solving the ODE

(2.1) with u(t) u[y](t), 0 < < T. Conversely, given any y 6 3;(0), a disturbance
w 6 /V(0) is defined by solving the ODE (3.2) with u(t) u[y](t), 0 < < T, and setting

w(t) -h(x(t)) + y(t), 0 < < T. Therefore there is a natural bijection between I/V(0)
and 32(0) (for each u). Consequently,

J(u) sup
to]/)(O), xoR I fo ]ot(xo) + [L(x(t), u[y](t)) ,2(w(t))] dt + (x(T))

sup
yy(0), x0R

sup
y32(O), xR

I fo
T

or(x0) q- [L(x(t), u[y](t)) ?’2g(y(t) h(x(t)))] dt nt- Cb(x(T))

I foc(xo) + [L(x(t), u[y](t)) ?,2g(y(t) h(x(t)))] dt + (x(r))

x(T) x}
sup {pT(X) -Jr" (X)}

y))(0), xR

sup {(PT, ) PO 0}. 71
yy(0)

The equivalent differential game with full state information is to minimize the right-hand
side of (3.17) over u U(0) subject to the infinite-dimensional dynamics (3.3).

We conclude this section with a brief discussion of an "adjoint" information state qt,

which runs backward in time and has the interesting property that the sup-pairing (Pt, qt) is
constant [24]. The adjoint information state is defined for fixed u /J(t) and y 32(t) by

(3.18) qt(x) [L(x(s), u(s)) ’2e (y(s) h(x(s)))] ds + dp(x(T)),

where x(.) is the solution of (3.2) on [t, T] with initial data x(t) x. The dynamics for the
adjoint information state are

I ts -F(-qs, u(s), y(s)), s [t, T],
(3.19) / qT=.

THEOREM 3.7. The sup-pairing ofthe information state and the adjoint information state
is constant and expressed as

(3.20) (Pt, qt) is independent of [0, T].

Proof. The assertion can be verified easily by combining the definitions (3.1) and (3.18).
Alternatively, suppose Pt and qt are smooth solutions of (3.3) and (3.19), respectively. Define
v(t) (Pt, qt) pt((t)) + q((t)). Then VxPt((t)) -Vxqt(Yc(t)) and
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Opt Oqt
b(t) ---(.(tl) + -0--(.(tl)

VxPt(Yc(t))" (f(Yc(t), u(t)) + g(Yc(t), y(t) h(Y(t))))

+ L(Y(t), u(t)) ?,2e(y h(Y(t)))

Vxqt(Y(t)). (f(Y(t), u(t)) + g(Y(t), y(t) h(Y(t))))

L(Y(t), u(t)) + y2g(y h(Yc(t))) O.

This shows that v(t) (ct, q0) (Pr, ) is constant, as required. [3

4. Value function and the HJI equation. Given Theorem 3.6, one can now apply dy-
namic programming methods to solve the equivalent problem and, hence, the original partially
observed problem. The value function is defined for (p, t) 6 79 N A’ x [0, T] by

(4.1) W(p,t)- inf sup {(pr,) pt=p}.
uU(t) yy(t)

This function is finite, as the following lemma shows.
LEMMA 4.1. For all (p, t) 7) N [0, T] we have

(4.2) (p, O) K < W(p, t) < K + (p, O)

for some constant K > O.
Proof. For any u 6 U(t) and y 6 Y(t) we have

pr(x(rll+(x(r) p(x(t))+ [L(x(s), u[y](s))-,e(y(sl-h(x(sl)lds+(x(r)l

< p(x(t)) + K,

where K > 0 does not depend on u, y, and hence

(Pr, ) sup{p(x(T)) + *(x(r/_< sup{p(x(t)) + K} (p, 0) + g.
x(T) x(t)

This proves the upper bound in (4.2).
To obtain the lower estimate in (4.2), select x 6 argmax p. Then

(pr, ) >_ p(x) + [L(x(s), [y](s)) e(y(s) h(x(s)))] ds +

where x(.) is the solution of (2.1) with initial data x(t) x.
In the next lemma, B(0, R) denotes the ball of radius R centered at 0 in Rn.
LEMMA 4.2. Fix pl 79 fq 2(. Then there exist 3

3 implies that argmaxxRn(pZ(x) + P(x)) C B(O, R).
Proof. Since p 6 79 and is bounded, pl(x) + (x) < -clxl / c2 / K. Then for

p2 G ,,
p:2(x)+(x)- pl(x)-+-(x)-+-(pZ(x)--pl(x)) <-clxl-k-cz-+-K-+-II pZ_pl (l+[x[).

Set 31 c/2. Then for p2 pl I[< 31,

(4.3) p(x) / (x) <_ -c’ Ixl / c’2,

/2,’where c Cl c2 c2 + K + 3.
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p2(xi) SUPxeR p2(x (p2 0) < d-O.Next, select a sequence xi such that limi o

Fix e > 0. Then for all large i,

and hence

(p2 )_ e < p2(xi) <--CllXi + C2

(4.4) IXi <_ R

for some constant R > 0 depending on pl and 31. Thus the sequence Xi is bounded, and any
limit point x2 satisfies Ix21 _< g 1. Hence argmaxxeRn(p2(x) + (x)) C B(O, RI). rq

THEOREM 4.3. The valuefunction W(p, t) defined by (4.1) is continuous, denoted

W C(D rq x [0, T]).

Proof. Fix (p, ) ID rq A" x [0, T]. Given 8 > 0, we will show that there exists 3 > 0
(depending on pl) such that p2 p I1< and It2 tl < imply

(4.5) IW(p, 1) W(p2, t2)l _< 8.

The proof of this assertion is based on the proof of 11, Thm. 3.2].
Assume that 0 < < 2 < T and 0 < 3 < 31, where 3 , R are as in Lemma 4.2, and

that p2 pl < , t2 ll < 3.
Choose u U(t) such that

W(p1,t 1)> sup {(Pr,)}-8/3,
y(tl)

where pl is the solution of (3.3) with initial data p, pl and using this u and any y. For
any y y(t2) define Y(t 1) by

0, <s <t2

(s)
y(s), 2 <_ s < T.

Define fi 6 U(t2) by

fi[y] u[] for all y y(t2).

Select y 6 y(t2) such that

w&, 2) _< (p, ,) + /3,

where p2 is the solution of (3.3) with initial data ptZ2 p2 and using fi and y. Then

(4.6) W(p2, 2) W(p1, 1) < (p, ) (p,, ) + 28/3 p(x2) plT(x2 d-- 26/3,

where x2 6 argmax{p2 + @}. By Lemma 4.2, since @ is bounded, Ix21 _< R a. Then using
u(s) u[.](s) and (s),s [t , T], ands 6 [t2, T], inequality (3.15)of Lemma 3.5 implies
that

p2T(X2 p(x2) _< (g3 + p(lt2 tll))(1 + Ix21) <_ (g3 + p(It2 tl))(1 + el).

Therefore there exists 32 < 31 such that 3 < 32 implies, using (4.6),

(4.7) W(p2, 2) W(p ) <_ 8.
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The proof of the opposite inequality is similar. Choose u 6 U(t2) such that

W(p2,t2)> sup {(p2r,)}-e/3,
yey(t2)

where ps2 is the solution of (3.3) with initial data pt22 p2 and using u and any y. For all

y 6 3;(tl), define y 6 (t2) by y y on [t2, T]. Fix u0 6 U. Define fi U(t 1) by

u0, _< S _< 2,
fi[Y]

u[](s), 2 < s _< T.

Now choose y 6 Y(t 1) such that

W(p 1) _< (plT, t) -- e/3,

where ps is the solution of (3.3) with initial data P]l pl and using fi and y. Therefore,

W(p 1, 1) W(p2, 2) < (p, *) (p2T, *) + 2e/3,

and proceeding as above there exists 83 < 82 such that 8 < 83 implies

(4.8) W(p 1) W(p2, z) _< e.

Inequalities (4.7) and (4.8) are both valid for 8 < 83, hence (4.5). [3

The principle of optimality (dynamic programming principle) for this problem is as fol-
lows.

THEOREM 4.4. For any 0 < < r < T we have

(4.9) W(p, t) inf sup {W(pr, r) Pt P}.
uU(t) y3;(t)

Proof. The proof uses the same methods as in [10], [11 ].
Indeed, let R(p, t) denote the right-hand side of (4.9), and fix e > 0. Choose u 6 U(p, t)

such that

R(p, t) >_ sup {W(pr, r)} e.
yey(t)

For any q 6 D f3 A’ there exists !12 U(q, r) such that

W(q, r) > sup {(pr, )} e,
yY(t)

where Pr q. Define u3 6 U(p, t) by

(p, y)(s),
il3(y)(s)

112(pr, y)(s),

Then for any y 6 32(t) we have, using the control u3,

hence

t<s<_r,

r<s<T.

R(p, t) >_ W(pr, r) e

> (Pr, ) 2e;

(Pr, ) < R(p, t) + 2e for all y 6 3;(t).
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Therefore

This implies

(4.10)

sup {(Pr, )} < R(p, t)+ 2e (using 113).
yY(t)

W(p, t) < R(p, t) + 2e.

(4.11)

Then

To prove the opposite inequality, choose u 6 U(p, t) such that

W(p,t) >_ sup {(pr,)}-e.
yY(t)

R(p, t) < sup {W(pr, r)},
yY(t)

and there exists yl Y(t) such that

R(p, t) < W(pr, r) + e.

For each y y(r), define Y(t) by

(S) / yl(s)’ < S < r,

/ y(s), r < s < T.

Then define fi 6 U(q, r) (q Pr results from u, yl, and Pt P) by fi(y)(s) u@)(s),
r <s < T. Then

W(pr, r) <_ sup {(pr, ) Pr q },
yey(r)

and there exists y2 6 y(r) such that

W(pr, r) <_ (Pr, ) + e.

Define y3 Y(t) by

Therefore we have

<s <r,
y3(s)

y2(s), r <s < T.

R(p, t) <_ W(pr, r) + e <_ (Pr, ) + 2e,

which implies, by (4.11),

(4.12) R(p, t) <_ sup {(Pr, )} + 2e _< W(p, t) + 3e.
yy(t)

Since e > 0 was arbitrary, inequalities (4.10) and (4.12) imply (4.9). 71

Equation (4.9) leads to the dynamic programming equation (DPE)

(4.13)
+ inf sup (Vp W(p, t), F(p, u, y)) 0 in 79 fq ,.g x (0, T),
uU yRP

W(p, T) (p, ) in 79fqA’.

In (4.13), VpW(p, t) denotes the gradient of W with respect to p and, if it exists, belongs to
the dual space A’* and (., p) denotes the value of) 6 A’* at p 6 A’. In view of the structure of
F (see (3.4)), the order of inf and sup in (4.13) is immaterial; i.e., the Isaacs condition holds.
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The DPE (4.13) is the appropriate Hamilton-Jacobi-Isaacs (HJI) equation for the partially
observed differential game.

We will make use of two classes C c C c C(D N A" x [0, T]) of test functions. We take

4 6 C to mean that
(i) q is X’-Frechet differentiable, with derivative denoted (Vp4 04,,-);

04,(ii) the Frechet derivative (Vp4, 57) is continuous on 73 71 A" [0, T]; and 4 6 C
means that in addition

(iii) the Frechet derivative (X7p4 04,,57) is continuous on 73 71A"1 [0, T].
These classes of functions will be used to define smooth and viscosity solutions of (4.13).

LEMMA 4.5. Let p 73 ,V so that pr(X) is a smooth solution of (3.3) on [t, T] with
initial data Pt P, and let 4 C. Then we have the following version of the fundamental
theorem ofcalculus:

(4.14) (Pr, r) (p,, t) + --(p,, s) nt- (Vp(D(Ps, s), F(ps, u(s), y(s))) ds.

Proof. Let u and y be continuous. Then the function r - ck(Pr, r) is continuously
differentiable, and so by the usual fundamental theorem of calculus, (4.14) holds.

By an approximation argument, (4.14) holds for all u 6/g(t), y 6 3)(t) as follows. Let
u --+ u in/g(0) and yi

__
y in 3;(0) as -- cx, where each u and yi is continuous. Then

(4.15) (p, r) (p, t) + -(p, s) 4- (Vp(p, s), F(p, u (s), yi (s))) ds.

We claim that

(4.16) lim q(p, r) (D(pr, r), lim q(Pl, t) O(pt, t),

and

fr [0( lgi yi 1limi_, - Ps, S) + (Vp Ps, S), F(ps, (s), (s))) ds

(4.17)

(p, s) + (Vp(Ps, s), F(p,, u(s), y(s))) ds,

where p! and p. denote the corresponding solutions of (3.3) with initial data p 6 D C X at
time t. By (3.8) in Lemma 3.2, (4.16) follows directly by continuity. Thus it remains to prove
(4.1 7). This can be done by showing that

(p, s) + (VpO(p, s), F(p, u (s), yi (s)))

o(ps, s) (Vp(Ps, s), F(p, u(s), y(s))) ds

(p, s) (p,, s) + [(%(p, s) %(p, s), f(p, u(s), y(s)))

+I(%(P, s), f(p, ,i(s), yi(s)) f(p,, u(s), y(s)))[]ds

04) 04)
<_ --(p, s) .-(p, s) + Vp(p, s) Vpb(p,, s) [I.I1 F(p, u(s), y(s))

+ Vp4)(p, s)II.ll f(p, ui(s), yi(s))- f(p,, u(s), y(s))Illds --> 0
(4.18)
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as . Here, denotes the norm on &" as in 2 and II, indicates the norm on the
dual space &’*. We treat each term as follows

Given e > 0, the compactness of [t, r], the assumed continuity of the partial derivatives,
and the uniform convergence (3.8) imply that for sufficiently large,

sup Vpb(p, s) Vpqb(ps, s) I1,_< e,
t<s<r

(4.19)
sup p,,s)- .(p,,s) e.
t<s<r

This also implies

(4.20) sup gp(p, s)I1, g.
t<s<r

Next, because of (3.8) and the assumed bounds on the problem data, we have

(4.21) sup F(ps, u(s), y(s))I1 K.
t<s<r

Finally, it is not hard to verify the estimate

II-F(ps, u(s), y(s))F(p, bli (s), yi(s)) ds

< K sup p- ps 111 +K (1 + sup p 111(4.22)
t<s<r k, t<s<r !

fr [lu (s) u(s)l + ly (s) y(s)l] ds

Therefore using (4.19), (4.20), (4.21), (4.22) in (4.18), we have

ftr(4.18) < re + TKe + K [lui(s) u(s)l + lyi(s) y(s)l]ds < Ke

for all sufficiently large, for a suitable constant K > 0 not depending on i. This completes
the proof. [3

DEFINITION 4.6. Afunction W 79 N 2’ x [0, T] --+ R is called a smooth solution of the
DeE (4.13) if

(i) W C;
(ii) W satisfies (4.13) in 79 fq 2( (0, T) in the usual sense.

In general, it is too much to expect that the DPE will have smooth solutions, and so one
must appeal to a weaker notion of solution. To this end, we will show that the value function
W is a viscosity solution of (4.13) in a suitable sense. The definition we provide below is
consistent with our definition of smooth solution and is a generalization of it. We do not
know a proof of uniqueness, and it may be the case that the definition has to be modified to
achieve this. Consequently, Definition 4.7 is a provisional one. An abstract formulation of the
viscosity solution definition is given in 13]. It is not clear at present how our definition relates
to those appearing in [7], [17], [27]; indeed, the PDE (4.13) does not appear to be covered by
existing theory.

DEFINITION 4.7 (provisional viscosity solution). We say that afunction W C(79 fq 2(

[0, T]) is a viscosity subsolution of the DPE (4.13) if for all ck C, whenever
there exists (p’, t’) 79 ,.1 X (0, T) with W(p’, t’) (p’, t’) max(p,t)e79cXx[O,T]
(W(p, t) cb(p, t)) O, then

(4.23) O---(p’, t’) + inf sup (Vpb(p’, t’), F(p’, u, y)) > O;
uU yRP
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a viscosity supersolution of the DPE (4.13) iffor all qb C, whenever there exists (p’, t’) 6

) N ,1 )< (0, T) with W(pt, t’) (pt, t) min(p,t)vnxto,rl(W(p, t) $(p, t)) O,
then

(4.24)
Ot

(p’ t’) + inf sup (Vp(p’ t’) F(p’ u y)) < 0;
uU yRP

and a viscosity solution if it is both a subsolution and a supersolution.
The proof that W is a viscosity solution of (4.13) requires the following result (cf. [11,

Lem. 4.3]).
LEMMA 4.8. Let C. Assume that satisfies

O t’(4.25) 0(p’’) + inf sup (Vp (p’, t’), F(p’, u y)) -0,
ueU yRp

where 0 > O, p’ , t’ [0, T]. Then there exists o > 0, u U(t’) such thatfor all
< o, Y

(4.26) (p, s) + (Vp(Ps, s), F(p, [y](s), y(s))) ds -0/2.

Similarly, if satisfies

(4.27) O(p,, t’) + inf sup (Vp(p’, t’), F(p’, u, y)) > O,
Ot uU yeRP

where 0 > O, p’ D X1, t’ [0, T], then there exists 31 > O, y 6 (t’) such thatfor all
3 < 3, u e U(t’)

(4.a (p, s + (p(p,, sl, (p,, u[y](sl, y(sll) s o/.

Proof. Write

A(p, t, u, y) ---(p, t) + (Vpb(p, t), F(p, u, y)).

Since 4 6 C,A 79fqA"1 x [0, T] x U x Rp R is continuous. In fact, for P-P’ II1< v,
It t’[ < v (v > 0 small), we have the estimate

IA(p, t, u, y) A(p’, t’, u’, Y’)I (P, t) (p’, t’)
(4.29)

+ Vp(p, t)- Vp(p’, r)II, +r(ll p- p’ II1 +tu- u’l + ly- y’l),

where K > 0 depends on p’, t’, and v.
By (4.25), inf, SUpy A(p’, t’, u, y) -0. Select u0 6 argminu SUpy A(p’, t’, u, y),

which does not depend on y because the Isaacs condition holds. Therefore

A(p’, t’, u0, y) 5 -0 for all y Rp.

Define u 6 U(t’) by u[y] uo. Let y Y(t’). As in (3.9), Lemma 3.2, the map s Ps
from [t’, T] into D G X is continuous, with modulus of continuity independent of u, y. Thus
there exists 30 > 0 such that if 3 < 30 and t’ s t’ + 3, then

A(p, s, u[y](s), y(s)) -0/2.

Integrating from t’ to t’ + gives (4.26).
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To prove (4.28), we note that (4.27) implies the existence of Y0 6 Rp (independent of u)
such that

A (p’, t’, u, Y0) > 0 for all u 6 U.

Define y 6 3;(t’)by y Y0, and let u 6 U(t’). Then by continuity, with 3 < 31 (some 31 > 0),
t’ _< s _< t’ + 3 implies

A(ps, s, u[y](s), y(s)) > 0/2.

Integrating from t’ to t’ + 3 gives (4.28).
THEOREM 4.9. The value function W(p, t) defined by (4.1) is a continuous viscosity

solution of the DPE (4.13).
Proof. To show that W(p, t) is a viscosity subsolution, assume there exist

) [--1 ,1 )< (0, T) with W(p’, t’) dp(p’, t’) max(p,t)ecVx[O,T](W(p, t) dp(p, t)) O.
We must show that 4 satisfies (4.23). If not, then there exists 0 > 0 such that (4.25) holds.
By Lemma 4.8, (4.26) holds, which implies

(4.30) inf sup (ps, s) + (Vpdp(ps, s), F(p,, u[y](s), y(s)) ds <-30/2.
ueU(t’) ye3;(t’) [J t’

Now

W(p’, t’) tp(p’, t’) and W(p, t) <_ (p, t);

hence the dynamic programming principle (4.9) with t’, r t’ + 3 implies

0 < inf sup {b(pt,+, t’ -k" 3) qb(p’, t’)}.
ueU(t’) yey(t’)

Since 4 6 C, Lemma 4.5 and this inequality imply

(4.31) 0 _< inf sup (Ps, s) + (Vpqb(ps, s), F(ps, u[y](s), y(s))) ds
ueU(t’) y3;(t’) J t’

But (4.31 contradicts (4.30), hence (4.23) is valid. Therefore W(p, t) is a viscosity subsolution
of (4.13).

Now suppose there exists 49 C, (p’, t’) 79 N ,)(1 X (0, T) with

W(p’, t’) q(p’, t’) min (W(p, t) (p, t)) O.
(p,t)6Dfq?( [0, T]

If (4.24) does not hold, then there exists 0 > 0 such that (4.27) holds. Then by Lemma 4.8,
(4.28) holds, implying

(4.32) inf sup (p, s) + (Vpqb(p, s), f(ps, u[y](s), y(s)) ds > 30/2.
ueU(t’) y3)(t’) [d t’

Now

W(p’, t’) (p’, t’) and W(p, t) >_ dp(p, t),

and by dynamic programming,

0 > inf sup {q(pt,+a, t’ + 3) q(p’, t’)}.
u6U(t’) y63)(t’)

This implies

(4.33) 0 > inf sup (Ps s)+ (Vpb(ps s) F(ps u[y](s) y(s))) ds
uU(t’) y3)(t, -contradicting (4.32). Therefore W(p, t) is a viscosity supersolution of (4.13).
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5. Verification theorem. The main reason for defining value functions and using dy-
namic programming is to determine optimal controls. Typically, some type of smoothness is
required. The following theorem says essentially that if both (3.3) and (4.13) have smooth
solutions, then the optimal control is obtained by finding the control value u* (p, t) that attains
the minimum in (4.13) as

(5.1) u*[y](t) u*(p[y]t, t).

This control is an information state feedback controller and depends on the output y via the
information state. This is a type of separation principle for this partially observed differential
game.

THEOREM 5.1. Assume that there exists a smooth solution V of the DPE (4.13). If there
exist u* U(t), y* y(t) such that

(5.2) u*(s) 6 argmin{(VpW(ps, S),-Vxps. f(.,u)+ L(., u))},
uEU

(5.3) y*(s) argmax{(VpW(p,,s),-VxPs g(., y h) ?,2e(y h))}
yERP

fora.e.s [t, T],thenu* isoptimalfortheinitialdata (p, t) 79A2( [0, T]andlTV(p, t)
W(p, t), where (p, t) 79 (q X. In particular, for (p, t) (, 0) D X x [0, T] the
control u* solves the partially observed minimax differential game.

Proof. Since pt(x) and W(p, t) are smooth solutions (t r T, Pt P X1),
Lemma 4.5 implies

(5.4) W(pr, r) (Pt, t) + (p, s) + (Vp(p,, s), f(p, u(s), y(s))) ds.

Fix y* 6 (t) as in (5.3). Then for any u 6 U(t), we have, using the DPE (4.13) and
(5.4) with r T,

r
(p,t) (p,s)+(%(p,s),F(p,u[y*l(s),y*(s))) ds+(pr,*)

(pr, ),

withequality for u u* as in (5.2). Therefore (p, t) W(p, t).
Conversely, let u u* and e > 0. Then there exists y 6 (t) such that

W(p, t) (pr, ) + e.

Using (5.4) and r T, this gives

W(p,t) (p,t) + (ps, s) + (VpW(ps, S), f(p,,u*(s), y(s))) ds + e

(p, t) + (p, s) + (Vp(ps, s), f(ps, u*(s), y(s))) ds + e

W(p, t) + e.

Hence W(p, t) W(p, t).
We conclude that W(p, t) W(p, t), and in fact

ff(,0)=J(u*)= inf J(u),
ueU(0)

proving the optimality of u*. q
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6. Relation to certainty equivalence. In this section we explain how the certainty equiv-
alence principle [5], [9], [6] fits into the general framework developed in this paper. This issue
was treated in discrete-time in [24], [21 and in the case of continuous-time bilinear systems
in [32], [33]; see also [6]. The certainty equivalence principle is as follows.

Consider a state feedback differential game with value function V (x, t) satisfying the
DPE-- + inf sup {VxV. (f(x, u) + g(x, w)) y2g(w) + L(x, u)} 0 in R x (0, T),

uU wRP

V(x,T)=(x) inRn.
(6.
Equation (6.1) is a nonlinear first-order PDE and need not possess smooth solutions; thus (6.1)
must also be interpreted in the viscosity sense in general. The value function V (x, t) is the
unique viscosity solution of (6.1) and is bounded Lipschitz continuous. Let u (x, t) denote
the optimal state feedback control (if it exists), i.e., the control value attaining the minimum
in (6.1). The minimum stress estimate is defined by

(6.2) 2(t) argmax(p(x)+ g(x, t)).
xR

In [9] it is proven (for a closely related problem) that the certainty equivalence controller

(6.3) lgce(t) us(f(t), t)

is optimal provided (i) pt(x) is a smooth solution of (3.3), (ii) V(x, t) is a smooth solution of
(6.1), and, most significantly, (iii) Y(t) is unique.

The following theorem provides a new interpretation of the certainty equivalence con-
troller (see also [6], [21], [24], [32], [33]).

THEOREM 6.1. Fix a point (pl, 1) 79 fq 2( (0, T), and assume that
(i) V(x, t) Vt(x) is a smooth solution of(6.1);
(ii) the quantity

(6.4) Ytl (p 1) argmax(pl(x) + Vt (x))
xR

is unique (i.e., the maximum is attained at a unique point).
Then thefunction W C(79 f3 ,V [0, T]) defined by

(6.5) (p, t) (p, Vt)

(sup-pairing) is V-Gateaux differentiable at (pl, 1) and satisfies the DPE (4.13) at (pl, tl).
Further, the optimal control at the point (p l, is given by

bts(6.6) Utl(p (Yt(pl),t )= Uce(t ).

Proof. 1. We claim first that the Gateaux derivative 0p if" (p l, 1) is given by

(6.7) OpV(P 1) E7,1 (pl),

where Ex 2(* is the evaluation map

(6.8) (Ex, q) q(x), (q X).

For brevity, write t(pl), dp(p) (p, V), V(x) Vt,(x), and let q 6 &’, e > 0.
Since pl 79f),, qb(pl + eq) is finite for all e sufficiently small, and q(pl + eq) --+ f(pl),
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Y --> Y as e -- 0 by hypothesis (iii), where argmaxxRn (p(x) + eq(x) + Vt(x)). We
must show that

4)(p + eq) (p)
(6.9) lim q(Y).

e-O E

Now

qS(p + eq) --O(pl) > pl(.) + eq(f) + V(Y) (p(Y,) + V(Y,)) eq(Y),

and hence

0(p + 8q) b(p)
lim inf > q (2).

e--+O 8

Similarly,

b(p + eq) --dp(p 1) <_ pl(Ye) + eq(Y) + V(e) (pl(2e) + g(.e)) eq(yce),

and hence

0(p + eq) (pl)
lim sup < q(Y).
e-+O 8

These two inequalities prove (6.9), establishing the claim.
2. It follows from Danskin’s theorem (see [5, App.]) that

(6.10) O---(pl’ t) -O--(y’ ),

VxV(Y.,t 1) -Vxpl(y).

The gradient Vxp is well defined since p
3. Next substitute the derivatives calculated above into the left-hand side of DPE (4.13)

to yield

(6.11)

OW(p, ) + inf sup(OplTV(p 1), F(p u, y))
Ot ueu yGRP

OV
(Y, t)+ inf sup (E, -Vxpl.(f ., u)+g(., y h))+L(., u)-v2g(h- y))
Ot uEUyRP
-inf sup [VxV(Y, tl) (f(Y,u) + g(Yc, w)) vZ(w) + L(Y,u)]
uU wRP

+ inf sup [Vx V(Y, tl) (f(Y, u) + g(Y, y h)) V2(y h) + L(ff’, u)]uU yRP

"-0.

This proves that if" satisfies the DPE at (p l, 1).
4. Finally, the above calculation yields explicitly the formula (6.6).
Remark 6.2. If the minimum stress estimate (6.4) is not unique, i.e. contains more than

one point, then in general the function ff’(p, t) defined by (6.5) is not a solution of (4.13). To
see this, we know from Lemma 4.2 that Y Yt (pl) is compact. The proof of Theorem 6.1
shows that

(6.12) OpV(p 1, 1) >_ max E.
x-t (pl)
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Hence in place of (6.11), Theorem 6.1, we have (for x 6 2)

(pl, 1) + inf sup(OplTV(p 1), F(p u, y))
Ot ueU yeRP

OV
> (x, 1) + inf sup sup(Ex, -Vxp (f(., u) + g(., y h)) + L(., u) e(h y))

Ot uUyRP xG2

-inf sup [VxV(x, tl) (f(x, u) + g(x, w)) ?,2e(w) + L(x, u)]
uU toeRP

+inf sup sup [Vx V(x, tl) (f(x, u) + g(x, y h)) ?,2e(y h) + L(x, u)]
u6U y6RP x6Yc

> -inf sup [VxV(x, tl) (f(x, u) + g(x, w)) y2e(w) + L(x, u)]
uGU weRP

+supinf sup [Vx V(x, tl) (f (x, u) + g(x, y h)) y2g(y h) + L(x, u)]
xYcuU yRP

>0.
(6.13)
This inequality can be strict in general. This calculation suggests that W(p, t) is a subsolution
of (4.13), but not in general a solution, and consequently

(6.14) W(p, t) >_ V(p, t).

7. H control. As an application of the above results, we consider a relatively simple
nonlinear H control problem, viz. finite-horizon disturbance attenuation. Some comments
on the infinite-horizon problem will be made in 8.2. We follow closely the approach initiated
in [4], [23]. We emphasize that we provide both necessary and sufficient conditions in terms
of two PDEsmone defined on a finite-dimensional space Rn, the other defined on an infinite-
dimensional space 79 fq ,’.

Associated with the system (2.1) is the performance output z (not measured) given by

(7.1) z(t) l(x(t), u(t)).

12To maintain consistency with earlier notation, we set L(x, u) ll(x u) and 0. We
assume that zero is an equilibrium; that is, f (0, 0) 0, g(0, 0) 0, h (0) 0, (0, 0) 0.

Given , > 0 and a fixed time interval [0, T], the disturbance attenuation H problem is
to find an output feedback control u 6 U(0) such that the resulting closed loop system Eu is

finite gain [0, T], i.e.,

(7.2) [z(t)[ 2 dt < - g.(w(t)) dt + 13(xo) for all w W(0),

for some function
Clearly, Eu is finite gain on [0, T] if and only if

(7.3) J (u) < 0 for p0 ot -/3.

THEOREM 7.1. If there exists a solution of the finite-time H problem, then there exist
solutions of the PDEs (3.3) and (4.13) such that Po - and W(-/3, 0) 0 for some

(x) > 0 with (0) O. Conversely, if there exist smooth solutions of the PDEs (3.3) and
(4.13) such that Po - and W(-, O) O, for some l(x) > 0 with t3(0) O, then the
controller u* defined by (5.1), (5.2) solves the finite-time H problem.

Proof. 1. Assume that a control u 6 U(0) solves the finite-time H problem, and set

P0 =-/3u. Then

J (u) _< 0,
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and in fact

o (_.o, o) <_ w(-’, o) <_ o,

as in Lemma 4.1. Thus W(-fl’’, 0) 0. Solutions to the PDEs (3.3) and (4.13) exist
according to the results in earlier sections in the viscosity sense.

2. Conversely, if (3.3) and (4.13) have smooth solutions, then the verification Theorem
5.1 implies that the control u* given by (5.1), (5.2) is optimal. Therefore, with P0 -fl,

J (u*) w(-/, o) o,

which implies that Zu* is finite gain on [0, T]. U

8. Remarks.

8.1. General partially observed differential games. We expect that the results devel-
oped in this paper will extend to much more general situations. However, additional technical
difficulties arise. For instance, suppose (2.1) is replaced by

(8.1)
k(t) f (x(t), u(t)) + g(x(t), w(t)),

y(t) h(x(t)) + v(t),

where v(.) is a second independent and unknown disturbance input. In this case, the function
F(p, u, y) governing the information state dynamics is nonlinear:

(82) F(p, u, y) sup{-Vxp (f(-, u) + g(., w)) + L(., u) }/2e(W, y h)}.

A consequence of this is that (3.3) does not in general have smooth solutions (even if c is
smooth). This complicates substantially the proof that the value function W(p, t) is a viscosity
solution of the corresponding HJI equation (4.13).

8.2. Infinite-horizonH control. The theory of dissipative systems 18], [36] provides
apowerful framework for treating infinite-horizonH problems, and many ofthe articles listed
in the reference section make use of this theory. In the state feedback case, one is led to a
partial differential inequality (PDI); see, e.g., [2], [18], [20], [34], [36]. In particular, it is
shown in [2] and [20] that the PDI can be interpreted in the viscosity sense.

In the discrete-time case, the infinite-horizon output feedbackH problem was discussed
in [23], and an infinite-dimensional dissipation inequality was used. The continuous-time
analogue of this inequality is an infinite-dimensional PDI, closely related to the steady-state
version of (4.13). The PDI is

(8.3)

inf sup (Vp W, F(p, u, y)) < 0 in 79 f) &’,
uEU yERP
W(p) >_ (p, O) in D ,,
w(-) =o.

A theory of infinite-horizon H control can be developed using this type of equation; see
[16]. It is possible to prove the existence of a function W(p) satisfying (8.3) in the viscosity
sense (i.e., as a viscosity supersolution), using a stationary version of the definition given in

4. An explicit storage function for the closed-loop system is defined in 15].
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Abstract. The concept of a robust control Lyapunov function (rclf) is introduced, and it is shown that the
existence of an rclf for a control-affine system is equivalent to robust stabilizability via continuous state feedback.
This extends Artstein’s theorem on nonlinear stabilizability to systems with disturbances. It is then shown that every
rclf satisfies the steady-state Hamilton-Jacobi-Isaacs (HJI) equation associated with a meaningful game and that
every member of a class of pointwise min-norm control laws is optimal for such a game. These control laws have
desirable properties of optimality and can be computed directly from the rclf without solving the HJ! equation for the
upper value function.
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1. Introduction. The relationship between stability and optimality has been a central
issue in the optimal stabilization problem ever since the advent of the steady-state Hamilton-
Jacobi-Bellman (HJB) equation. Optimal feedback systems enjoy many desirable properties
beyond stability, provided the optimality is meaningful, that is, provided the associated cost
functional places suitable penalty on the state and control. For example, linear-quadratic
optimal control systems have favorable gain and phase margins and reduced sensitivity 1].
Similar robustness properties have been shown to hold also for nonlinear control systems
that are optimal with respect to meaningful cost functionals [14]. Another consequence of
optimality is that control effort is not wasted to counteract beneficial nonlinearities. Optimality
is thus a discriminating measure by which to select from among the entire set of stabilizing
control laws those with desirable properties. Unfortunately, its usefulness as a synthesis tool
for nonlinear systems is hampered by the computational burden associated with the HJB
equation. In this paper we explore the links between stability and optimality with the aim of
developing a synthesis strategy that achieves the desirable properties of optimality but avoids
HJB computations.

An important link between stability and optimality is well known; the value function for
a meaningful optimal stabilization problem is also a Lyapunov function for the closed-loop
system. In short,

Every meaningful valuefunction is a Lyapunovfunction.
One purpose of this paper is to establish the converse link. We show that every Lyapunov
function for every stable closed-loop system is also a value function for a meaningful optimal
stabilization problem. In short,

Every Lyapunovfunction is a meaningful valuefunction.
While the first link has implications for the analysis of optimal feedback control systems, this
converse link will have implications for their synthesis.

For systems with control inputs, the property of interest is stabilizability rather than
stability. We therefore base our theory on the control Lyapunov function (clf) [2, 39, 34]
rather than the Lyapunov function. Although quite old, the clf concept was not formalized
until Artstein proved that the existence of a clf for a control-affine system is equivalent to

*Received by the editors November 18, 1993; accepted for publication (in revised form) April 17, 1995. This
research was supported by Department of Energy grant DE-FG-02-88-ER-13939, Air Force Office of Scientific
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Center for Control Engineering and Computation, Department of Electrical and Computer Engineering, Uni-
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stabilizability via continuous (ordinary) state feedback [2]. The above converse link between
stability and optimality can be restated as

Every clf is a meaningful valuefunction.
This will be a corollary of a more general result that we prove for the robust stabilizability
of systems with both control and disturbance inputs. We first extend Artstein’s theorem to
such systems by introducing the robust control Lyapunovfunction (rclf) and showing that its
existence is equivalent to robust stabilizability via continuous state feedback. We then show
that every rclf is an upper value function for a meaningful two-person zero-sum differential
game, the opposing players being the control and the disturbance. In short,

Every rclf is a meaningful upper valuefunction.
To prove this, we show that every rclf solves the steady-state Hamilton-Jacobi-Isaacs (HJI)
equation associated with a meaningful game. As a consequence of this result, if an rclf is
known, we can construct a feedback law that is optimal with respect to a meaningful cost
functional. Moreover, we can accomplish this without solving the HJI equation for the upper
value function. In fact, we do not even need to construct the cost functional because we can
calculate the optimal feedback directly from the rclf without recourse to the HJI equation.
Indeed, we provide a formula that generates a class of such optimal control laws and that
involves only the rclf, the system equations, and design parameters. The control laws given by
our formula are called pointwise min-norm control laws, and each one inherits the desirable
properties of optimality because

Every pointwise min-norm control law is optimalfor a meaningful game.
Let us now summarize the synthesis strategy suggested by our results. The first step is to find
an rclf for our system. Fortunately, techniques for the systematic construction of rclfs for many
classes of nonlinear systems are beginning to appear [28, 25, 32, 7, 29, 12, 26]. Even feedback
linearization can be viewed as such a technique for systems with no disturbances [13]. Once
an rclf is known, we choose design parameters and use our formula to generate a pointwise
min-norm control law. This control law will have the desirable properties of optimality even
though its construction is independent of any cost functional or HJI equation.

Our results represent a missing ingredient in Lyapunov design. We provide a systematic,
optimality-based method for choosing a control law once an rclf is known. To fully appreciate
the importance of this contribution, one should recall that other methods for choosing the
control law, based on the cancellation or domination of nonlinear terms, do not necessarily
possess the desirable properties of optimality and may lead to poor robustness and wasted
control effort. Let us illustrate this point on an elementary example. Suppose we wish to
robustly stabilize the first-order system

(1) 2 -x -t-u -t- wx,

where u is the control input and w is the disturbance input satisfying Iw(t)l -<. 1. A control
law suggested by feedback linearization would cancel the nonlinearity -x as

(2) u x 2x.

This control law obviously (globally) asymptotically stabilizes the equilibrium at x 0 for
any admissible disturbance w(t). However, it is an absurd choice because the term x in (2)
represents control effort wasted to cancel a beneficial nonlinearity. Moreover, this term is
actually positive feedback that increases the risk of instability. It is easy to find a better control
law for this simple system, but what we desire is a systematic method for choosing the con-
trol law that prevents wasteful mistakes like (2). The method we propose in this paper is based
on the pointwise min-norm control law. For this example, the simplest pointwise min-norm
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FIG. 1. A comparison between the control laws (2) and (5).
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FIG. 2. A comparison between the control laws (3) and (5).

control law is

x -2x whenx2 <2,
(3) u

0 when x2 > 2.

For the sake of comparison, we also solved the HJI equation associated with the system (1)
and the cost functional

(4) J [x2 + u2]dt.

The resulting optimal feedback law is

(5) U X
3

X X V’/X4 2x9 + 2.

The three control laws (2), (3), and (5) are plotted in Figs. and 2. We see that the control
laws (3) and (5), both of which are optimal with respect to a meaningful cost functional, are
very similar. They both recognize the benefit of the nonlinearity -x3 in (1) and accordingly
expend little control effort for large signals; moreover, these control laws are never positive
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feedback. The main difference between them lies in their synthesis. The pointwise min-norm
control law (3) came from a simple formula, while the control law (5) required the solution
of an HJI equation. In general, the pointwise min-norm calculation is feasible, but the HJI
calculation is not.

We can interpret our results in this paper as a solution to an inverse optimal stabilization
problem in a differential game setting. The first inverse problem to be formulated and solved
was for linear time-invariant systems 17, 1 ], where the authors identified those stabilizing
gain matrices that were also optimal with respect to some quadratic cost. Inverse problems for
nonlinear systems have since been considered but with more limited success. As described in
the survey paper 14], the task is to choose a candidate value function and then to construct
a meaningful cost functional so that the corresponding HJB equation holds. For open-loop
stable nonlinear systems, one can obtain a solution by choosing the candidate value function to
be a Lyapunov function for the open-loop system 16, 14]. In this paper, we extend this result
to open-loop unstable systems by choosing the candidate value function to be a clf for the
system. We provide a further generalization by solving an inverse optimal robust stabilization
problem for systems with disturbances; we show that every rclf is an upper value function for
a meaningful game.

This paper is organized as follows. We briefly list some notation and terminology in 2.
This includes a review of continuity concepts for set-valued maps and statement of Michael’s
selection theorem. We use set-valued maps throughout this paper for three reasons. First, they
arise naturally in optimization problems as the subdifferentials of convex functions; second,
they allow us to weaken some assumptions; and third, they generate more concise notation.

In 3 we formulate the robust stabilization problem of achieving the guaranteed global
stability of the closed-loop system in the presence of any admissible disturbance. In this
formulation, we assume knowledge of a bounded set in which the disturbance is allowed
to take its values. The guaranteed stability formulation has a long history (see for example
[20, 15, 11, 6, 8] and the references therein), and it includes as a special case the quadratic
stability of linear systems (see the recent survey [10] for references). In 4 we introduce
the rclf and prove that its existence is sufficient for a system to be robustly stabilizable via
continuous state feedback. In 5 we show that the existence of an rclf is also necessary for
robust stabilizability. This necessity result relies on a converse Lyapunov theorem recently
proved in [24]. Many Lyapunov-based controller designs for guaranteed stability can be cast
in our rclf framework [20, 15, 11, 6-8, 28, 25, 32, 29, 12]; in particular, the control Lyapunov
function defined in [31 for quadratic stability is a special kind of rclf.

In 6 we do not assume knowledge of a bounded set in which the disturbance is allowed
to take its values. We instead consider the design objective of achieving the input-to-state
stability of the closed-loop system (with the disturbance regarded as the input). This type of
stability was introduced in [33] and is becoming a popular tool in the Lyapunov design and
analysis of nonlinear systems. In 6 we show that input-to-state stabilizability is equivalent
to the existence of an rclf for an auxiliary system.

In 7 we define the class of pointwise min-norm control laws described above. Our
formula for this class of control laws generates those values of the control that minimize
the instantaneous control effort while maintaining some desired negativity of the worst case
Lyapunov derivative. In 8-10 we show that each pointwise min-norm control law is optimal
for a meaningful game and that every rclf solves the steady-state HJI equation associated with
such a game. In 8 and 9 we consider cost functionals defined over the infinite horizon, in
which case we require the disturbances to vanish at the equilibrium. In 10 we allow persistent
disturbances and consider cost functionals defined over a finite horizon determined by the time
required to reach a given target set.
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2. Notation and terminology. In what follows, Z and Y are metric spaces with both
metrics denoted by d(., .) and X is a Hilbert space with inner product (., .) (or .r. and
norm I1o I1o

For a subset C C Z and a point z 6 Z, we let either d(z, C) or Izlc denote the number
inf d(z, ) 6 C }. We let denote the closure of C, we let int C denote the interior of C,
and we let OC - \ int C denote the boundary of C. For a sequence {Ci of subsets of Z,
we let Limsup Ci denote the set z 6 Z lim inf d(z, Ci) 0 of cluster points of sequences
Zi Ci.

By A Z ,- Y we mean a set-valued map A mapping points in Z to subsets of Y. For
such maps we let Graph(A) denote the set (z, y) Z x Y y A(z)}. We say A is upper
semicontinuous (usc) at a point z Z when for every open set N C Y satisfying A(z) C N
there exists an open neighborhood M of z such that A() C N for all M. We say A
is lower semicontinuous (lsc) at a point z Z when for every open set N C Y satisfying
A(z) N there exists an open neighborhood M of z such that A() N for all

M (where denotes the empty set). An equivalent definition of lower semicontinuity is
as follows ([5, Def. 1.4.2; 19, Thm. 11.2.9]). A is lsc at a point z Z when for every sequence
{zi Z converging to z and every y A(z) there exists a sequence {Yi Y converging to y
and N 1 such that Yi A (zi) for all N. We say A is continuous at a point z Z when it
is both usc and lsc at z. We say A is locally Lipschitz when for each z Z there exists an open
neighborhood M of z and a constant L 0 such that for all 1, e M we have y A(I)
implies d(y, A()) L d(, ). Michael’s selection theorem [19, Thm. 11.4.1] states that
if Y is a Banach space and A is lsc with nonempty closed convex values, then A admits a
continuous selection, that is, there exists a continuous (single-valued) function a Z Y
such that a(z) A (z) for all z Z.

We let Bx denote the closed unit ball of X, abbreviated B when no confusion is likely to
arise. For a subset D C X we let IIDII denote the number sup{ Ilxll x D}. For R we

let D denote the set {x x D }. We let co(D) denote the convex hull of D, and we let

(D) denote the closed convex hull of D. We let D denote the set {x X (x, D) {0} }.
If D is convex andx D, we let No(x) C X denote the nodal cone to D atx. For x X{0}
we let sgn(x) denote the vector x/llxll. If W is another noed space, we let B(X, W) denote
the noed space ofbounded linear operators from X to W. For a convex function h X R
we let Oh X X denote the subdifferential of h. We let denote the closed interval [0, ).
We say a function X is of class E when is continuous, strictly increasing, and

X (0) 0. We say X is of class E when X is of class E and satisfies X (r) as r .
We say a function x is of class EE when (., t) is of class E for each fixed

and (r, t) decreases to zero as for each fixed r . By C we mean having
a continuous (first) derivative, and by smooth we mean having continuous derivatives of any
order.

3. Robust stabilizability. Let us consider three finite-dimensional Euclidean spaces" the
state space iV, the control space H, and the disturbance space IA;. Given a continuous function

f :, H )/V -- ,V we define the differential equation

(6) 2 f(x, u, w),

where x(t) is the state trajectory taking values in A’ and satisfying an initial condition x(0)
xo, u(t) is the control input taking values in H, and w(t) is the disturbance input taking values
in 14;. Associated with the control and disturbance are constraints given by set-valued maps
U A" -, H and W A" l/V, respectively. The system E is (6) together with these
constraints, E :-- (f, U, W). Our standing assumptions on E are as follows.
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A1. For each (x, w) 6 2" x l/V, the mapping u e-> f(x, u, w) is affine.
A2. The control constraint U is lsc with nonempty closed convex values.
A3. The disturbance constraint W is usc with nonempty compact values.

Our most restrictive assumption is A 1, which requires that the system be affine in the control
variable. It may be possible to remove this assumption by considering relaxed controls as
in [2].

A control law for E is a continuous function k 2’ - /g that satisfies the control
constraint U; that is, for each x 6 2" we have k(x) U(x). Assumption A2 together with
Michael’s theorem guarantee the existence of a control law for E. Each control law k for I3
defines a closed-loop differential equation

(7) 2 f (x, k(x), w).

We let C(13) denote the set of all functions Ug 2" x R. --+/g such that Ug (x, t) is continuous
in x for each fixed P and locally bounded and (Lebesgue) measurable in for each
fixed x 6 2". These functions Ug are called generic controls, and they need not satisfy the
control constraint U. We give the obvious meaning to the abuse of notation k(x) C(E) for
a control law k defined on 2" so that the set of control laws for 13 can be regarded as a subset
of the set of genetic controls C(E). Similarly, we let D(E) denote the set of all functions
1/.) 2" X X R+ -> " such that ll)a(X hi, t) is continuous in (x, u) for each fixed 6 R
and measurable in for each fixed (x, u) 2" x/g, and furthermore Wa (x, u, t) W(x) for
all (x, u, t) 6 2" x/g x/L. These functions Wa are called admissible disturbances, and they
are required to satisfy the disturbance constraint W. Again, we allow the abuse of notation
tOa(t) 79(13) and UOa(X U) )(13) for functions defined on/L and 2" x/g, respectively.
Implicit throughout this paper is the assumption that D(E) is nonempty.

It follows from assumption A3 19, Prop. 11.2.3] and standard existence theorems that for
every generic control Ug C(E) and every admissible disturbance Wa D(E), solutions to
the differential equation

(8) Jc f (x, Ug(X, t), ll)a(X, big(X, t), t))
exist locally from every initial condition and bounded solutions can be extended for all > 0.
Note that we are not requiting the uniqueness of solutions. To summarize, we have defined
generic controls that need not satisfy the constraint U, and we have defined control laws and
admissible disturbances that are required to satisfy the constraints U and W, respectively.

Our formulation allows the constraint sets U and W to vary with the state x as in [3].
Sometimes we can parameterize these set-valued maps to obtain an equivalent formulation
with constant constraints. For example, suppose 2" l/Y R and W(x) [-x2, x2] for
all x R. We can parameterize W by setting w x2 with [-1, 1]; we then obtain
an equivalent formulation with a constant disturbance constraint W [-1, ]. Continuous
parameterizations always exist for continuous set-valued maps with nonempty compact convex
values [4, Thm. 1.7.2]. However, even if such a parameterization for U exists, it may lead to an
equivalent formulation that violates assumption A1. Furthermore, by allowing state-varying
control constraints, we can sometimes satisfy assumption A by redefining the control without
introducing less practical relaxed controls. For example, suppose we have 2" L/- R and

fo(x, w) + (x + u) where U [-1, is a constant control constraint. This system is
not affine in the control u. However, if we redefine the control by setting (x + u)3, we
obtain a system that is now affine in the control but that has a state-varying control constraint

[(x- l)3, (x + 1)3].
Given a control law k for E, we will consider two types of robust stability for the closed-

loop system (7). If f(0, k(0), w) 0 for every w W(0), then the system has a robust
equilibrium solution x(t) =_ 0 and we can possibly achieve the global uniform asymptotic
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stability of this equilibrium solution. Otherwise we can only hope to achieve convergence to
some compact residual set containing the point x 0.

DEFINITION 3.1. Let S2 be a compact subset of 2, such that 0 f2. The solutions of (7) are
robustly globally uniformly asymptotically stable with respect to (RGUAS-S2) when there
exists a class 1C function such thatfor any initial condition xo 2, and any admissible
disturbance w Wa D()2), all solutions x(t) starting from xo exist for all > 0 and
satisfy Ix(t)[ < /(Ix0l, t)for all > O. The solutions of (7) are RGUAS when they are

RGUAS-{0}.
This type of robust stability, defined for example in [24], is uniform with respect to

admissible disturbances. Note that RGUAS-f2 implies that the residual set is (robustly)
positively invariant. We next define three types of stabilizability for the system )2 in the order
of decreasing restrictiveness.

DEFINITION 3.2. The system )2 is robustly asymptotically stabilizable (RAS) when there
exists a control law k such that the solutions of (7) are RGUAS. The system )2 is robustly
practically stabilizable (RPS) whenfor every e > 0 there exists a control law k and a compact
set f2 C 2, satisfying 0 S2 C eB such that the solutions of (7) are RGUAS-f2. The system E
is robustly stabilizable (RS) when there exists a control law k and a compact set f2 C 2,

satisfying 0 f2 such that the solutions of (7) are RGUAS-.
Clearly RAS := RPS = RS. The difference between RPS and RS is that if the system

is RPS, then the residual set f2 can be made arbitrarily small by choice of the control law,
whereas if the system is only RS, then there is a lower limit on the size of . However, even if
the system is only RS, we can often make f2 arbitrarily small in some directions by allowing
it to grow in others.

Although we have described our system in finite-dimensional spaces 2,,/g, and /V, many
of the results in this paper can easily be modified to be valid also in infinite dimensions. For
example, the results in 4 can be extended to the case where 2’ and are Banach spaces
and V is a metric space, provided one assumes or can guarantee the existence of solutions
to (8). Likewise, the results in 7-10 can be extended to the case where 2" is a Banach space
and V is a metric space.

4. Robust control Lyapunov functions. Our main tool is the robust control Lyapunov
function (rclf) defined for a system )2. The rclf represents an extension of the control Lyapunov
function (clf) [2, 39, 34] to systems with disturbances. In this section we show that the existence
of an rclf implies robust stabilizability, and in 5 we show that its existence is necessary for
robust stabilizability. These results extend Artstein’s theorem [2, Thm. 5.1] to systems with
disturbances.

Let 4(2") denote the class of continuous positive definite functions on 2", that is, con-
tinuous functions ot 2" --+ P such thatot(0) 0 andot(x) > 0 forx 6 2"\ {0}.
Let AK(2"), respectively 4(2"), denote the set of those functions ot 6 4(2") for which
there exists a class/, respectively class K, function ) such that or(x) > (llxll) for all
x 6 2". To each C function V 6 4(2") we associate the Lyapunov derivative LfV
2" /g /V --+ R defined by LfV(x, u, tO) :-- VV(x) f(x, u, w). Because V has a min-
imum at x 0, we have Lf V (0, u, to) 0 for all (u, w) 6 b/ V. Given c 6 R, we let
f2c(V) := {x 6 2" V(x) < c} denote the c-sublevel set of V. Note that if V 6 4(2"),
then 2c(V) is compact for all c 6 R.

DEFINITION 4.1. A C function V t(2") is an rclffor the system )2 when there exists
c R such that

(9) inf sup Lf V (x u, 11)) < 0
uU(x) wW(x)

for all x 2" \ S2c(V). We let cv R denote the smallest value of c for which (9) is satis-

fiedfo all x 2" \ f2c(V).
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Definition 4.1 reduces to the usual clf definition when c 0, U(x) is constant, and
W(x) =_ {0} (no disturbances). The main result of this section is the following.

THEOREM 4.2. Let E satisfy assumptions A1-A3. If there exists an rclf V for , then 12
is RS. Iffurthermore cv O, then is RPS.

We will prove this theorem through a series of simple propositions. Let V be an rclf
for 12; then Lf V is continuous, which together with A3 implies that we can define the worst
case Lyapunov derivative DU V 2( x Lt -+ R by the maximum

(10) DfV(x,u) := max LfV(x,u, w).
wW(x)

Note that Df V (0, u) 0 for all u
PROPOSITION 4.3. Df V is usc and for each x iV, the mapping u - DU V(x, u)

is convex. Furthermore, there exists a continuous function ot 2( R. such that or(O) 0
andfor all x 2( \ f2cv (V) we have

(11) inf Df V(x, u) < -or(x) < O.
uU(x)

Proof. The upper semicontinuity of DT V follows from A3 and [5, Thm. 1.4.16]. Now for
each fixed x 6 A’, the function Df V (x, u) is the pointwise maximum of the family of affine
functions {LTV(x, u, w) w W(x)} (assumption A1), and it follows that DfV(x, u) is
convex in u. Next, it follows from [5, Thm. 1.4.16] and (9) that the left-hand side of (11) is
usc and strictly negative on A" \ f2cv (V). The existence of a function ot satisfying (11) can
then be deduced from [18, Prob. 5X]. [3

At each point x 6 A" \ 2c (V), the negative number -or(x) in Proposition 4.3 represents
a certain level of negativity of the worst case Lyapunov derivative that can be guaranteed by
values of the control in U(x). This negativity margin ot is not unique and will be regarded as a
design parameter in later sections. Note that ot 6 4(A’) when Cv 0. Given an rclf V for I2
and a negativity margin ot as in Proposition 4.3, we define set-valued maps Lv, Kv P( " lJ
as

(12)

(13)

Lv(x := {u U DVx, u < -x)},
Kv(x) := U(x) C) Lv(x).

At each x 6 A’, the set Kv(x) C U(x) C is the set of all possible values of the control that
satisfy the control constraint and make the worst-case Lyapunov derivative at least as negative
as -c(x). Therefore, if we can find a control law k for 12 such that k(x) Kv(x) for all
x V \ f2c(V), then k will render the solutions of (7) RGUAS-c(V). Our goal is to show
that such a k exists.

PROPOSITION 4.4. Kv is Isc with nonempty closed convex values on 2( \ cv (V).
Proof. We define the set-valued map K, A" b/by

(14) K,(x) :-- U(x) f’) {u lt Df V(x, u) < -or(x)}.
From Proposition 4.3 and [4, Prop. 1.10.4] we see that K, is lsc with nonempty convex values
on A" \ c (V). Fix x0 6 2’ \ f2c (V). Let 2"(u) denote the convex indicator function of
the set U(x0); then 2- is closed and proper (in the sense of convex analysis) because U(xo)
is closed and nonempty. It follows from [30, Thms. 9.3 and 9.4] that the mapping u -Df V(xo, u) + 2-(u) is closed and proper. It then follows from [30, Thm. 7.6] that K,(xo)
{u 6 lg Df V(xo, u) + Z(u) < -ot(xo)} {u 6b/ Df V(xo, u) + Z(u) < -c(xo)}
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Kv(xo). Now any set-valued map whose values are the closures of the values of a lsc map is
itself lsc, and thus Kv is lsc with nonempty closed convex values on

PROPOSITION 4.5. For every c > cv there exists a control law k for
Kv(x) for all x 2( \ c(V).

Proof. It follows from Proposition 4.4 and Michael’s theorem that there exists a continuous
functionq iV\f2cv(V) -- L/suchthat4(x) 6 Kv(x) foreveryx X \ 2cv(V). Fixc > cv
and consider the set-valued map Kc ,V . bl defined by

U(x) when x int f2c (V),
(15) Kc(x) :--

{4(x)} when x A" \ int2c(V).

It follows from A2 that Kc is lsc with nonempty closed convex values and thus admits a
continuous selection k (Michael’s theorem). Now k(x) U (x) for all x 6 ,Y, which means
k is a control law for 52; moreover, k(x) dp(x) Kv(x) for x

Proof of Theorem 4.2. Fix c > cv and let k be as in Proposition 4.5. Then for all
x 6 A’\f2c(V)wehave DfV(x,k(x)) <-or(x). It follows that V(t) <-c(x(t)) (for almost
all t) along solutions x(t) of (7) that lie outside f2c(V), and standard Lyapunov arguments
show that the solutions of (7) are RGUAS-f2c(V). We thus conclude that 52 is RS. If cv O,
then for any e > 0 we can choose c > 0 above such that f2c(V) C eB, and we then conclude
that E is RPS.

When cv 0, we can prove that E is RAS rather than RPS provided V has the following
additional property [2, 39, 34].

DEFINITION 4.6. An rclf V for 52 satisfies the continuous control property (ccp) when
cv 0 and there exists u U(O) such that for every e > 0 there exists 3 > 0 such that
0 < Ilxll < implies

(16) inf {DyE(x, u) u U(x), Ilu ull < } < 0.

V satisfies the small control property (scp) when it satisfies the ccp with u O.
COROLLARY 4.7. If there is an rclffor E that satisfies the ccp, then 52 is RAS.
Proof. Let p be a class/C function such that pe) < 3 for each (e, 3)-pair described in

Definition 4.6. We define a new control constraint U A" /d as

/ U(x) when IIx > P (1),
(17) U(x) :=

t
U(x) f [u + p-l(llxll)n] when Ilxll < p(1).

It follows from Definition 4.6 that U is lsc with nonempty closed convex values (see [19,
Prop. 11.2.4]) and that V is an rclf for the new system E "= (f, U, W) with cv 0. The
corresponding set-valued map Kv is then lsc with nonempty closed convex values on all
of A’, and it follows from Michael’s theorem that there exists a control law k for 52 such that
k(x) Kv(x) for all x A’. Now k is also a control law for the original system 52, and
standard Lyapunov arguments show that the solutions of the resulting closed-loop system are
RGUAS.

Note that the control law k given in the above proof satisfies k(0) u. If V satisfies
the scp, then by taking u 0 we obtain a robustly asymptotically stabilizing control law k
with k(0) 0.

We conclude this section by mentioning that if the control constraint U has nonempty
interior for all x A" (in addition to satisfying assumption A2), then the control law k in
Theorem 4.2 and Corollary 4.7 can be chosen to be smooth except possibly at the point 0 A’.
The proof of this fact is similar to Artstein’s original proof in [2]. However, such smoothness
cannot be achieved in general when A" is an infinite-dimensional Banach space.

1We thank the anonymous reviewer for showing us this smooth version of our results.



1374 R.A. FREEMAN AND R V. KOKOTOVIC

5. Necessary conditions. Theorem 4.2 and Corollary 4.7 provide sufficient conditions
for robust stabilizability in terms of the existence of an rclf. In this section we explore the
necessity of these conditions using the recent converse Lyapunov theorem of [24], which was
proved under the assumption that the closed-loop system is locally Lipschitz. We make this
assumption in the following theorem, but we believe that it can be removed by modifying the
proof in [24].

THEOREM 5.1. Suppose the disturbance constraint W is locally Lipschitz with nonempty
compact convex values, and suppose E is RS via a control law k that renders locally Lipschitz
the mapping (x, w) --+ f(x, k(x), w). Then there is a smooth rclf V for . If in addition
is RAS via such a control law k, then there is a smooth rclf V for that satisfies the ccp.

Proof. It follows from [5, Thm. 9.6.2] that we may assume W(x) =-- B without loss of
generality. Let f2 denote the compact residual set in the definition of RS. It follows from [24,
Thm. 2] that there exists a smooth function V0 &" -- P and class/Co functions X1, X2, and

X3 such that X(Ixln) < Vo(x) < X2(Ixln)for all x , and furthermore DfVo(x, k(x)) <
-X3(Ix[) for all x ,-t" \ f2. Because S2 is compact, there exists c > 0 and a smooth function
V ,A(,) such that V(x) Vo(x) for allx ,Y\ g2c(V). It follows that V is an rclffor E.
If E is RAS via such a control law k, then we take f2 {0} and V V0 to obtain a smooth
rclf that satisfies the ccp. U

Note that in this theorem, assumptions A1-A3 have been replaced by an assumption on
the disturbance constraint W alone. This theorem establishes the necessity of the existence
of an rclf for both robust stabilizability and robust asymptotic stabilizability. The key part
of our formulation that leads to this necessity is that there are no restrictions (other than
measurability) on the time-variation of the admissible disturbances. In contrast, adaptive
control formulations require the disturbances to be constant or slowly varying. If we were
to so restrict the time-variation of the admissible disturbances, then the existence of an rclf
would become a sufficient, but not necessary, condition for robust stabilizability.

6. Input-to-state stabilizability. In this section we describe an alternative problem for-
mulation using the definition of input-to-state stability in [33]. Rather than consider distur-
bances that take values in a known compact set, we instead assume no knowledge of such a set
and look for a control law that renders the closed-loop system input-to-state stable (ISS) with
respect to the disturbance input. The ISS property is stronger than bounded-input/bounded-
state stability together with the global asymptotic stability of the nominal (zero-input) sys-
tem [36]. It is closely related to Lyapunov stability, and many authors have used the ISS
property in conjunction with the Lyapunov-based design and analysis of nonlinear systems
[35, 24, 27, 38, 40, 37]. In this section we show that ISS-stabilizability is equivalent to the
existence of an rclf for an auxiliary system.

In Definition 6.1 and Corollaries 6.2 and 6.3, we consider disturbances w(t) in the set
/2(W) of all measurable essentially bounded functions from / to kV, with the essential
supremum denoted by I]" I1. Given a continuous function f describing the system dynamics
and a control constraint U, we define the ISS-stabilizability of the pair (f, U) as follows.

DEFINITION 6.1. The closed-loop system (7) is globally input-to-state stable (ISS) when
there exists a class 1Cfunction and a class 1Cfunction X such thatfor any xo 2( and any
disturbance w E(kV), all solutions x(t) starting from xo exist for all > 0 and satisfy
]lx(t)]l </([Ix01l, t) + x(llwll)for all > O. Thepair (f U) is ISS-stabilizable when there
exists a control law k such that the closed-loop system (7) is ISS.

Given a class/Co function p, we let Wp ,Y kV denote the set-valued map defined by
W(x) := P(llx II)B; note that Wp satisfies A3. We associate with the pair (f, U) the auxiliary
system E :----- (f, U, W;). Our first result is a consequence of Corollary 4.7 and states that the
existence of an rclf for some such auxiliary system E implies the ISS-stabilizability of (f, U).
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COROLLARY 6.2. Let the pair (f U) satisfy assumptions A1 and A2. Suppose there exists
a class function p such that the system Ep (f, U, Wp) has an rclf V that satisfies the
ccp. Then the pair (f, U) is ISS-stabilizable.

Proof. It follows from the proof of Corollary 4.7 that there exists a control law k for Eo
and a negativity margin ot 4(&’) such that Df V(x, k(x)) < -(x) for all x 6 &’. In other
words, w Wo(x) implies LfV(x, k(x), w) < -c(x). From the definition of Wo, we know
thatw 6 Wp(x) if and only if [[wl[ < P(llxl[). Thus forall (x, w) 6 A" x l/V, Ilxl[ > p-(llwl[)
implies LfV(x, k(x), w) -or(x). In the terminology of [24, 21], the function V is an ISS-
Lyapunov function for (7), and it follows from [21, Prop. 3.1.7] that the closed-loop system (7)
is ISS. [3

We next use [24, Thm. 3] to prove a converse of the previous result.
COROLLARY 6.3. Suppose the pair (f, U) is ISS-stabilizable via a control law k that

renders locally Lipschitz the mapping (x, w) -- f(x, k(x), w). Then there exists a class 1o
function p such that the system Z,o := (f, U, Wp) has a smooth rclf V that satisfies the ccp.

Proof. It follows from the converse ISS-Lyapunov theorem [24, Thm. 3] that there exists
an ISS-Lyapunov function for (7), namely, that there exists a smooth function V 6 4(,V)
and class/C functions X3 and ( such that for all (x, w) 6 A’ x l/V, [Ixl[ > (([Iwl[) implies
LfV(x, k(x), w) < -X3([[x[[). Ifwe define the class /C functionp := (-,then w W,o(x)
implies LfV(x, k(x), w) < -X3([[x[[). It follows that DfV(x, k(x)) < -X(iixl[) for all
x &’. We conclude that V is an rclf for that satisfies the ccp. [3

7. Pointwise min-norm control laws. We have shown that the existence of an rclf im-
plies robust stabilizability, but how do we use our knowledge of an rclf to construct a robustly
stabilizing control law k.9 For systems without disturbances, constructive proofs of Artstein’s
theorem with explicit formulas for k are given in [39, 34, 23, 22, 21]. In these papers, different
formulas are given for different constant control constraints (a formula for the unconstrained
control case U(x) =-- H is given in [39, 34], a formula for the control constraint U(x) =_ B
is given in [23], and a formula for the constraint of positive controls is given in [22]). In
this section our goal is to provide a formula for k that results in a robustly stabilizing control
law for systems with disturbances, works for a general nonconstant control constraint U (x),
and naturally incorporates the negativity margin ot as a design parameter. Moreover, we will
show in following sections that the control laws generated by our formula, called pointwise
min-norm control laws, are in fact optimal for meaningful games. We introduce the following
additional assumptions on the system E:

A4. The control constraint U is such that Graph(U) is closed.
A5. The disturbance constraint W is lsc.

Let V be an rclf for E, and let Lv and Kv be the set-valued maps defined in (12) and (13). It
follows from Proposition 4.4 that we can define mv &’ --+/J by

argmin{l[u[[ u Kv(x)} whenx 6 A" \ f2cv(V),(18) m v (x)
0 when x 6 S2cv (g).

This is called a minimal selectionfor V. It is not unique because the definition of Kv depends
on the choice of the negativity margin ot in Proposition 4.3.

PROPOSITION 7.1. Let E satisfy assumptions A1-A5, and let V be an rclffor E. Then
every minimal selection my for V is continuous on ,V \ f2cv (V). Iffurthermore V satisfies
the scp, then there is a minimal selection m v for V that is continuous on X.

Proof. It follows from A5, Proposition 4.3, and [5, Thm. 1.4.16] that DU V is continuous.
Thus from A4 we see that Graph(Kv) Graph(U) q Graph(Lv) is closed. Now from
Proposition 4.4 we know that Kv is lsc on ,Y \ f2c (V), and it follows from [5, Prop. 9.3.2]
that Graph(m v) is closed relative to &" \ f2c (V) x/g. Also, it follows from [5, Lem. 9.3.1 that
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the mapping x + Ilmv(x)ll is usc on 2, \ S2cv(V), which implies that mv is locally bounded
on 2’ \ S2cv (V). Because the dimension of/,/is finite, the closedness of Graph(my) and the
local boundedness of mv on 2" \ f2cv (V) imply the continuity of rn v on 2" \ f2cv (V). Next
suppose V satisfies the scp; then from the the proof of Corollary 4.7 there exists a choice for
in Proposition 4.3 such that Kv admits a continuous selection k with k(0) 0. From (18) we
have 0 < Ilmv(x)ll < IIk(x)ll for all x 6 2", and therefore mv is continuous at x 0.

As a result of Proposition 7.1, minimal selections mv for V can be used to generate
robustly stabilizing control laws for E.

DEFINITION 7.2. Let V be an rclffor E. If V satisfies the scp, then every control law k
for E that is also a minimal selectionfor V is called pointwise min-norm for V. If V does not

satisfy the scp, then every control law kfor E that satisfies k(x mv (x for all x 2"\ f2c V)
for some c > cv and some minimal selection mv for V is called pointwise min-normfor V.

Pointwise min-norm control laws are so named because at each point x (except possibly
inside some sublevel set of V), their value is the unique element of b/of minimum norm that
satisfies the control constraint U (x) and makes the worst case Lyapunov derivative at least as
negative as -c (x). These control laws naturally incorporate the negativity margin ot as a design
parameter. Note that if V satisfies the scp, then only those choices for the negativity margin
that lead to continuous minimal selections mv for V will generate pointwise min-norm control
laws for V.

We can compute the value of a pointwise min-norm control law at any point x by solving
the static minimization problem (18). This is a convex programming problem on the control
space and is completely determined by the data E, V, and c. One of the constraints
in this problem depends on Df V, and the calculation of Df V(x, u) in (10) for any fixed
(x, u) 6 2" x/g is itself a static nonlinear programming problem on the disturbance space /V.
We will show in the next sections that every pointwise min-norm control law is optimal for
a meaningful differential game, and therefore our formula (18) allows us to compute such a
control law by solving a static rather than dynamic programming problem. Furthermore, this
static programming problem has a simple explicit solution in the following special cases.

Jointly affine systems. Suppose the function f is jointly affine in the control and distur-
bance; that is, suppose the system (6) can be written as

(19) 5: fo(x) + fl(x)u + fz(x)W

for continuous functions fo 2" 2", fl :2" -- B(bl, 2"), and f2:2" --+ B(V, 2").
Suppose also that the control and disturbance constraints are given by U(x)
B, respectively. Let V be an rclf for this system; then from (10) we have

(20) Of V(x,u) VV(x). fo(x) + VV(x). fl(x)u + ]]VV(x)./2(x)l
We choose a negativity margin ot according to (11) and use (20) to write

(21) DuV(x, u) + or(x) 7to(x) + 7t((x) u

wth 0(x):= VV(x).fo(x)+llvv(). f(x)ll+(x) nd ()’= [VV(x)./1()] . hen
from (13) we have

(22) Kv(x) {u lg Po(x) + ((x)u < 0}.
It now follows from (18) and the projection theorem that

70(x) 7 (x)
(23) my(x) 7tl(X) p(x) when x 2" \ f2c(V) and P0(x) > 0,

0 when x 6 c (V) or 0(x) < 0.
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This explicit formula for mv depends on the negativity margin ot through the function aP0 and
has the continuity properties described in Proposition 7.1. Note that there is never division by
zero in this expression because the set Kv(x) is nonempty for all x 2( \ f2cv (V) (Proposi-
tion 4.4). Because of the symmetry of the unit ball, this expression is also valid under control
constraints of the form U (x) p(x)B for a continuous function p X’ P.

This formula (23) generates the control law (3) for the system (1) in 1 as follows. For
this system we have fo(x) -x3, fl(x) 1, and f:z(x) x. We choose V(x) 1x2 so that
VV(x) x, and we choose c(x) x2. Then we obtain aP0(x) -x4 + 2x2 and Pl (x) x,
and the formula (23) yields the control law (3).

Feedback |inearizable systems. We now apply the formula (23) to the class of (globally)
feedback linearizable systems with no disturbances. Suppose there are coordinates in which
our system is

(24) .ic Fx + G [g0(x) + 1 (X) b/I,
where the matrix pair (F, G) is stabilizable and the continuous functions g0 A’ --+
and gl A" --+ /3(L/, L/) are such that g0(0) 0 and el(X) is nonsingular for all x 6 A’.
Suppose also that the control constraint is U(x) =//. The control law suggested by feedback
linearization would cancel nonlinearities and apply linear feedback as

(25) k(x) [g (x)] -1 [-g0(x)+ Kx],
where K is a stabilizing gain matrix for the pair (F, G). Unfortunately, this control law (25)
may not have good robustness properties and might waste control effort to counteract ben-
eficial nonlinearities. We instead construct a pointwise min-norm control law by using the
formula (23) as follows. We first choose symmetric positive definite matrices P and Q such
that the Lyapunov matrix equation

(26) P (F + GK) + (F + GK)T
P -Q

is satisfied. Then V (x) :-- x T Px is a clf that satisfies the scp, and an appropriate choice for
the negativity margin is or(x) :--- ex T Qx for some e 6 (0, 1). In this case, the function
above is

(27) o(x) 2xT P [Fx + G go(x)] + exT Qx

and the formula (23) becomes

(28) my(x) 2Xr PG g (x) g(x)GT Px
when 7r0(x) > 0,

0

Po(x) g(x)GT Px

when 7t0(x) < 0.

The design parameters in this expression are e, P, and Q; and their choices are constrained
by e (0, 1) and the Lyapunov matrix equation (26). This minimal selection mv is contin-
uous everywhere (Proposition 7.1) and, therefore, defines a pointwise min-norm control law
k(x) := my(x). Although both control laws (28) and (25) globally asymptotically stabilize
the system (24), the control law (28) is optimal with respect to a meaningful cost functional
(as shown in the next sections) whereas the control law (25) is not (in general). The potential
advantage of (28) over (25) was illustrated in the comparison of the control laws (3) and (2)
in 1.
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We end this section with a discussion of the role of the negativity margin or. This function
represents the desired negativity of the Lyapunov derivative and can be adjusted to achieve
a trade-off between the control effort and the rate of convergence of the state to zero. For
example, if ot is a negativity margin, then so is ect for every e (0, 1). For each such e we
then obtain a different pointwise min-norm control law k for E. In general, smaller values of e
will lead to smaller control magnitudes and slower convergence. Moreover, by adjusting the
shape of ct we can place more cost on some states and less cost on others. Thus the function
should be regarded as a design parameter to be adjusted according to design specifications.

8. Inverse optimal robust stabilization. Our goal in the next three sections is to show
that every pointwise min-norm control law is optimal for a meaningful game. We accomplish
this by showing that every rclf solves the steady-state HJI equation associated with such a
game. These results represent a solution to an inverse optimal robust stabilization problem
for nonlinear systems with disturbances. As a consequence of these results, we can use
formulas (18) and (23) to compute optimal robustly stabilizing control laws without solving
the HJI equation for the upper value function, provided an rclf is known.

In this section and the next, we assume that the scp is satisfied, which in particular implies
that the disturbances vanish at the equilibrium point. In this case our system is RAS and we
can therefore consider cost functionals defined over the infinite horizon. In 10 we remove
the scp assumption and allow persistent disturbances, in which case we must consider cost
functionals defined over a finite horizon determined by the time required to reach a given target
set.

We assume that the system E satisfies A1-A5 plus the following assumption on the control
constraint.

A6. There exists a continuous function zr A’ - P such that zr(x) > 0 and rc(x)B C
U(x) for all x A’.

One can show that, under assumption A2, assumption A6 is equivalent to the assumption
that 0 int U(x) for all x ,. Our cost functionals will be characterized by functions
q ,V R and r A’ L/- R, which satisfy the following specifications.

S 1. q satisfies q 4K (A’).
$2. r is continuous, and for each fixed x A" we have r (x, u) ?’x (ll u IIx) for some

convex class/C function ’x and some norm IIx
Using such a pair (q, r), we form a two-person zero-sum differential game (q, r) by con-
sidering a cost functional J parameterized by the initial condition x0 A’. In this game,
the control tries to minimize J and the disturbance tries to maximize J. Given x0
ug C(E), and Wa 7)(E) we define the cost

(29) J(ug, wa, x; xo) "= q(x) + r(x, ue,)]dt,

where the integration is taken along the solution x(t) of the differential equation (8) starting
from the initial condition x0. Because such solutions are not necessarily unique, we included
in our notation J(ue,, wa, x; xo) the dependence on the particular state trajectory x along
which we integrate. If the solution x(t) cannot be extended for all > 0, then we set

J(ug, w, x; xo) := o. Also, because q is bounded from below by a class/ function of
the norm, J < c implies x(t) 0 as . We define the upper value function
] A’ P U {c} of the game by the equation

(30) ](x0) := inf sup sup J(ug, Wa, x; x.o).
Ug Wa X

The first supremum is taken over all solutions x(t) of (8) starting from x0 (this supremum
is superfluous if solutions are unique), the second supremum is taken over all admissible
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disturbances W E /)(]), and the infimum is taken over all generic controls U_g 6 C(E).
When this infimum is achieved by some Ug C(E) for some x0 6 2, such that J(xo) < cxz,
we say that ug is optimalfrom xo. We say a control law k* for E is optimalfor (q, r) when k*
is optimal from every x0 6 2,. Such an optimal control law minimizes the worst case cost for
every initial condition. Also, because J < cx only if x(t) -- 0 as --+ cx, every optimal
control law drives the state (robustly) to zero from any initial condition.

Before we proceed, we introduce the notion of a strong rclf. If V is an rclf for E, then
Proposition 4.3 guarantees the existence of a negativity margin oe that is nonzero outside some
compact set. We say that V is a strong rclf when ot can be chosen to be bounded awayfrom
zero outside some compact set. If cv 0, this means that we can choose ot 6 AK (2,) instead
of merely ot 6 4(2,). We will see below that this stronger property will lead to a function q
in (29) that belongs to 4K (2,) rather than just to 4(2,), thus guaranteeing that J < cx only
if x(t) --+ 0 as -- ec. The restriction to strong rclf’s is not important in practice; it
follows from results in [33] that if an rclf is known, then the construction of a strong rclf is
straightforward.

Let V be a strong rclf for E that satisfies the scp, and let k* be a pointwise min-norm
control law for V associated with a negativity margin c 6 4 (2,). Theorem 8.1 states that
there exists a pair (q, r) satisfying S 1 and $2 such that k* is optimal for (q, r) with V being
the corresponding upper value function. In simple terms, every pointwise min-norm control
law is optimal and every (strong) rclf is an upper value function. This theorem is only of
interest when such a game (q, r) is meaningful, and we claim that this is indeed the case.
First of all, it follows from S 1 and $2 that the integrand in (29) is bounded below by a class/C
function of IIx II; thus J < cx only if the objective of driving the state to zero is achieved.
Furthermore, for each fixed x 2’ the integrand is a convex function of u with a global
minimum at the point u 0; thus there is always a higher penalty for values of u further away
from zero and there are no local minima other than u 0. In fact, integrands satisfying S 1
and $2 are a generalization of the familiar quadratic integrand xr Qx + urRu for symmetric
positive definite matrices Q and R. Next, the disturbance w is given two advantages in the
game consistent with the goal of robust stabilization. First, there is no direct cost on w in (29);
and second, w is allowed to base its strategy on knowledge of the strategy of the control u
(we consider the upper value of the game). Finally, the control law k* is optimal with respect
to all generic controls Ug C(E), not just those that satisfy the control constraint; in other
words, we do not allow the possibility of reducing the guaranteed cost by relaxing the control
constraint.

To prove optimality rather than suboptimality, we need to assume that the effect of a certain
worst case disturbance (one that maximizes the Lyapunov derivative) can be approximated
arbitrarily closely by admissible disturbances. A worst case disturbance is a function w*
2" x b/ 142 such that Lf V(x, u, w*(x, u)) Df V(x, u) and w*(x, u) W(x) for all
(x, u) 6 2" x L/. Such a function w* may be discontinuous and thus not belong to the set
79(E) of admissible disturbances. Our approximation condition is as follows.

DC. For every x0 6 2", every Ug C(E), and every A > 0 there exists w/x 6 D(E)
and a solution XA(t) of (8) starting from x0 (with Wa wa) such that either
J(ug, WA, XA; X0) CXZ or for every T > 0 we have

(31) Lf g(xzx, Ug, W/x) dt >/ Df g(xzx, ug) dt A.

If this condition is not true for our system, then we can only prove suboptimality. We now
state one of the main results of this paper.

THEOREM 8.1. Let E satisfy assumptions A1-A6, let V be a strong rclffor E which

satisfies the scp, and let k* be a pointwise min-norm control law for V associated with a
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negativity margin ot K (2,). Then there exists a pair (q, r) satisfying S 1 and $2 such that
J(k*, Wa, x; xo) < V(xo) for every xo 2,, every wa D(E), and every solution x(t) ofthe
closed-loop system

(32) f(x, k*(x), Wa)

startingfrom xo. If, furthermore, DC is true, then ](xo) V (xo)for all xo 2,, which means
k* is optimalfor (q, r).

The proof of this theorem involves several steps and will be presented in the next section.
The main idea is to construct the functions q and r in such a way that V satisfies the steady-state
HJI equation

(33) 0 min max [q(x) + r(x, u) + LfV(x, u, to)]
uelg wW(x)

for all x 6 2,. We accomplish this by constructing a continuous function r that satisfies $2
and that has two additional properties. First, r must be such that the function q defined by

(34) 0 q(x) + r(x, k*(x)) + Df V(x, k*(x))

satisfies S 1; and second, r must be such that the equality

(35) min[r(x, u) + Df V(x, u)] r(x,k*(x)) + Df V(x,k*(x))

holds for all x ,-t’. Once we find such a function r, it will follow from (34) and (35) that the
HJI equation (33) is true.

9. Proof of Theorem 8.1. We begin with a careful construction of the function r in (29).
We first define a set-valued map C 2, --/4 as

(36) C(x) co([zr(x)B] tO {k*(x),-k*(x)}).
The values of C are compact and convex, and for each x 6 2’ we have 0 6 int C (x) and C (x)
-C(x). Furthermore, it follows from [19, Thms. 11.2.7 and 11.2.10] that C is continuous on 2,.

Associated with C is the Minkowski distance functional r 2, /g --+ P defined as

(37) cr (x, u) "= inf {9 > 0 u )C(x) }.
PROPOSITION 9.1. For each x 2,, cr (x, is a norm on /4. Also, cr is continuous on

X x/4.

Proof. The first statement follows from [30, Thm. 15.2], and we have left to prove that o-

is continuous. Fix (x0, u0) 6 2’ b/and let {(xi, ui)} 2" /4 be a sequence converging
to (x0, u0). Define cri := cr(xi, ui) and o’0 :-- a(xo, u0); we need to show that ai --> a0 or,
equivalently, that every subsequence of {cri has in turn a subsequence that converges to a0. Let
{o’ij be a subsequence of {ai }, and define Cj := C(xij) and Co := C(xo). It follows from (37)
that there exists a sequence wj /4 such that wj 0 Cj and u# or# wj for all j > 1. It then
follows from [19, Thm. II.2.2] that the sequence {wj has a subsequence {wjk that converges
to some w0 Co. We claim that wo OCo. Indeed, because wjk OCj, we know there exists
a sequence of unit vectors {vk /4 such that vk Ncjk(wj) for all k > 1. The unit sphere
in/4 is compact, and thus Limsup Ncj(wj) contains a unit vector. It then follows from [5, Cor.
7.6.5] that Nco (wo) 5/: {0}, which means wo OCo. We can now show that crijk --+ cro. First
suppose u0 0; then a0 0 and u/ o’ij Wj 0, and because b0jk ---> W0 # 0, it follows
that rijk --+ 0 r0. Next suppose u0 : 0. By the continuity of the inner product and the
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continuity of sgn(.) away from zero, we have (sgn(wo), sgn(uijk)) (sgn(wo), sgn(wjk)) --(sgn(wo), sgn(wo))= 1 and (sgn(wo), sgn(u0) (sgn(wo), sgn(uo)), and it follows that
uo )wo for some ) > 0. Because wo 8Co, we have ) or0, and thus ui -* uo implies
ijt Wjk tToWO. Now because wjk --+ wo O, we have tTij 70 as desired.

We next define a set-valued map D A’ --.* b/as

(38)

D(x) := 8uDf V(x, k*(x))

[w DV(x,) > DeV(x,*(x))+(w,u-*(x)) Vu .
Thus D(x) is the partial (convex) subdifferential with respect to u of the worst case Lyapunov
derivative Df V, evaluated at (x, k*(x)). It follows from Lemma 12.1 and [19, Cor. 11.2.1]
that D is usc on A’ and has nonempty, convex, compact values. The next two propositions
follow from the pointwise min-norm property of k*.

PROPOSITION 9.2. If x ,9( is such that k*(x) O, then Df V(x, k*(x)) -or(x) and
O D(x).

Proof. Recall that k* is the minimal selection for V associated with c. Fix x A" and
suppose k*(x) O. It follows from A6, (13), and (18) that Df V(x, 0) > -or(x). Because the
mapping u - DfV(x, u) is continuous and U(x) is convex, the intermediate value theorem
gives DfV(x,k*(x))=-c(x). Suppose 0 D(x); then from (38) we have -(x)
DfV(x, k*(x)) < DfV(x, u) for all u L/, but this contradicts (11) because k*(x) 0
implies x 2( \ f2cv(V). [3

PROPOSITION 9.3. There exist continuous functions IX, v 2( --+ P such that Ix(x) <
d(O, D(x)) and IID(x)ll < v(x) for all x ,V, with Ix having the additional property that
Ix(x) > 0 ifand only if k*(x) O.

Proof. Because D is usc with nonempty bounded values, it follows from [5, Lem.
9.3.1] that the map x - IIO(x)ll is usc on , and the map x - d(O, D(x)) is lsc on A’.
The existence of v then follows from [18, Prob. 5X]. Let G C ,V denote the open set
G {x 6 A’ k* (x) - 0}; it then follows from Proposition 9.2 and [18, Prob. 5X] that there
exists a continuous function Ix0 G -+ /L such that 0 < Ix0(x) < d(0, D(x)) for all x 6 G.
We define Ix by setting Ix(x) := 0 when k*(x) 0 and otherwise

IIk*(x)ll
(39) Ix(x) :=

1 q-IIk*(x)ll 4- z0(x)
z0(x).

This function Ix has the desired properties. [3

These functions Ix and v should be regarded as continuous "lower" and "upper" bounds
(respectively) on the set-valued map D. We will now use them to construct the function r in
the cost functional (29). Let c0 .A(A’) be such that (c c0) 4K(A’); for example, take

or0 :-- cot for some e (0, 1). We next construct continuous functions a, b A’ --+ R+ as

{ min [Ix(x)rr(x) ,0(x) } when k*(x) O,(40) a(x) := (x,k*(x))
0 when k* (x) 0;

(41) b(x) := v(x)max {llk*(x)ll, 7r(x)}.
It follows from Propositions 9.1 and 9.3 that a is continuous with a(x) > 0 whenever
k*(x) 5 O. Also, we see from Proposition 9.3 that b is continuous with b(x) > 0 for all
x 6 A’. Furthermore, for all x 6 A’ we have 0 < a(x) < Ix(x)zr(x) < v(x)rc(x) < b(x). We
use a and b to define a function 9/ A’ x/L --+ R+ as

a(x)s when 0 < s < or(x, k*(x)),
(42) F (x, s)

b(x)s + or(x, k*(x)) [a(x) b(x)] when or(x, k*(x)) < s.
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x(S)

slope b(x),

cr (x, *(x))

FIG. 3. Thefunction ’x(S) when k*(x) 5/: O.

It follows from the continuity of a, b, a, and k* that ?, is continuous. Now fix x X’ and
consider the function ’x R --+ P given by ?’x(S) ?,(x, s). Suppose k*(x) 0; then for
all s > 0 we have yx(S) b(x)s with b(x) > 0, and thus ’x is a (linear) convex class/C
function. Now suppose k*(x) 0; then 0 < a(x) < b(x) and we see from (42) that ’x is
a (piecewise-linear) convex class/C function (see Fig. 3). Our choice for ?, is not unique; in
fact, redefining y for s > a(x, k*(x)) + 1 to be anything preserving convexity and continuity
(for example, replacing the linear growth with quadratic growth) will not alter our results.

We now choose the functions q and r in (29) as

(43)

(44)

r(x, u) := ?’(x, a(x, u)),
q(x) := --r(x, k*(x)) Df V(x, k*(x))

for all (x, u) 6 A:’ x b/. Clearly q and r are continuous, and it follows from Proposition 9.1
and the properties of , discussed above that r satisfies $2. We next show that q satisfies S 1.
We see from (42) and (40) that r(x, k*(x)) a(x) or(x, k*(x)) < to(x) for all x 6 X’. Now
DfV(x, k*(x)) < -or(x) for all x 6 A’, and it follows from (44) that q(x) >/or(x) do(x)
for all x 6 X’. By inspection we have q(0) 0, and because (or or0) 6 4K (X’), it follows
that q 6 4K (X’). We now show that the function r satisfies the key equation (35).

PROPOSITION 9.4. It is truefor all x ,Y that

(45) min [r(x, u) + Df V(x, u)] r(x, k*(x)) + Df V(x, k*(x)).
uelg

Proof. We fix x 6 X’. Because r + Df V is convex in u, (45) is true if and only if
0 Ou(r + Df V)(x, k*(x)), where 0u denotes the partial subdifferential with respect to u.
From [30, Thm. 23.8] and (38) we see that this condition is equivalent to the condition
0 Our(X, k*(x)) + D(x).

First suppose k*(x) 0. Then from (36) we have C(x) rc.(x)B, and it follows
from (37) that a(x, u) Ilull/r(x) for all u b/. Thus Oua(X, O) (1/zc(x))B. Now we
have a(x, k*(x)) a(x, 0) 0, which means ,(x, s) b(x)s for all s > 0; and it follows
from (43) and (41) that Our(X, k*(x)) b(x) Oua(X, k*(x)) (b(x)/rr(x))B v(x)B. Now
IIO(x)ll < v(x) and so 0 6 [v(x)B] + D(x) Our(x, k*(x)) + D(x) as desired.
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Next suppose k*(x) =/: O. We need to compute Our(x, k*(x)). Now tr(x, k*(x)) > 0, and
it follows immediately from (42) (see Fig. 3) that

(46) OsF(x, or(x, k*(x))) [a(x), b(x)],
where 0s denotes the partial subdifferential with respect to s. We next compute 0utr (x, k* (x)).
Let E "= {u Lt tr(x, u) < or(x, k*(x)) denote the sublevel set of cr at k*(x), and let Ne
denote the normal cone to E at k*(x). From (36) and (37) we have E C IIk*(x)lln, and it
follows that k*(x) Ne. It then follows from [30, Cor. 23.7.1] that there exists . > 0 such
that . sgn(k*(x)) 6 Outr(x, k*(x)). We now calculate the value of .. From the definition of
the subdifferential, it follows that tr(x, ) > or(x, k*(x)) + () sgn(k*(x)), k*(x)) for all

U. Setting 0 we obtain 0 > or(x, k*(x)) + (. sgn(k*(x)), -k*(x)), which implies
tr(x, k*(x)) < ;llk*(x)ll. Setting 2k*(x) we obtain 2tr(x, k*(x)) > or(x, k*(x)) +
(.sgn(k*(x)), k*(x)), which implies r(x, k*(x)) > ;llk*(x)ll. We have thus shown that
; r(x, k*(x))/llk*(x)ll. Now if IIk*(x)ll < rr(x) we have or(x, k*(x)) IIk*(x)ll/r(x)
and thus , 1/zr(x). Otherwise Ilk*(x)ll > rr(x), which means or(x, k*(x)) 1 and we
have . 1/llk*(x)ll. It follows from (41) that ) v(x)/b(x), and thus from Lemma 12.2
we obtain

[ v(X)
sgn(k*(x)) + {k*(47) Outr(x, k*(x)) Ne f3 - (x)}

It then follows from the projection theorem that d(0, OuCr(x, k*(x))) v(x)/b(x). We next
show that IlOucr(x, k*(x))ll < 1/rr(x). If IIk*(x)ll < rr(x), then OuCr(x, k*(x)) is a singleton,
which means IlOucr(x, k*(x))ll d(0, OuCr(x, k*(x))) v(x)/b(x) 1/zr(x). Next suppose
IIk*(x)ll > 7r(x) andletw 6 Outr(x, k*(x)); then from (47) wehave w 6 Ne\{0}, whichmeans
H := k*(x) + {w}-L] is a supporting hyperplane of E. Let v d(0, H) sgn(w); then from
the projection theorem we have v 6 H, which means H v + {w }+/-]. Because zr (x)B C E
we have Iloll d(0, H) > zr(x) > 0, which means H v + {v}+/-]. Now v(x)/b(x)
1/llk*(x)ll for IIk*(x)ll > zr(x), and it follows from (47) that w sgn(k*(x))/llk*(x)ll+wl for

some//)1 {k*(x)} +/-. Thus (w, k*(x)) (sgn(k*(x))/llk*(x)ll, k*(x)) 1. Also, because

k*(x) H, we have k*(x) v + Vl for some Vl 6 {v} +/- and so (v, k*(x)) (v, v) 110112,
Now sgn(w) sgn(v), which means (w, k*(x))/llwll (p, k*(x))/1111, and substituting
from above we obtain 1/llwll Ilvll. Because Iloll > rr(x), we have Ilwll < 1/rr(x); and
because w was arbitrary we conclude that IlOur(x, k*(x))ll < 1/zr(x). We summarize these
results as

v(x) 1
(48) d(0, Outr(x, k*(x))) < IlOur(x, k*(x))ll < .b(x) 7r(x)

It follows from (43), (46), and the chain rule [9, Thm. 2.3.9] that

Our(X, k*(x)) -6-6{0 rl O,(x, or(x, k*(x))), ( OuCr(x, k*(x))]

(49) E-6{r/ 0 [a(x), b(x)], Outr(x, k*(x))}.

We now use (48) and (49) to show that

(5O) Ne N {u U /x(x) < Ilull v(x)} Our(X, k*(x)).

Let w Ne be such that/z(x) < Ilwll v(x), Because k*(x) O, we have/z(x) > 0,
which means w - 0. It then follows from [30, Cor. 23.7.1] that there exists > 0 such that
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3w Oua(X, k*(x)). From (48) we have 3/z(x) < ]]wll < 1/7r(x), and it follows from (40)
that (1/3) > (x)(x) a(x). Also from (48)we have v(x)/b(x)
which means (1/) b(x). Thus (1/) 6 [a(x), b(x)], and it follows from (49) that w
(1/6)6w 8,r(x, k*(x)). The choice for w was arbitrary, and thus (50) is true.

Now k*(x) O, and it follows from Proposition 9.2 that DfV(x, k*(x)) -u(x). It
thus follows from (12) that Lv(x) {u DuV(x, u) DTV(X, k*(x))} is the sublevel
set of DT V at k*(x). Let NL denote the nodal cone to Lv(x) at k*(x), let Nu denote the
nodal cone to U(x) at k*(x), and let Nr denote the nodal cone to Kv(x) at k*(x). Now
it follows from (11) that 0 e int[Lv(x) U(x)], and so from (13) and [5, Table 4.3] we
have N Nu + NL. Recall that k*(x) is the element of Kv(x) of minimum no; this
together with the projection theorem implies -k* (x) 6 N. Also, it follows from A6 and (36)
that E C C(x) C U(x), and therefore Nu C Ne. It then follows that -k*(x) Ne + NL.
Thus there exist ve 6 Ne and VL NL such that -k*(x) ve + VL. Our goal is to
show that--VL N {0}. Now -k*(x)N, which means VL O. Suppose v O;
then --VL k*(x) Ne. Otherwise we use the linearity of the inner product to obtain

(re, sgn(k*(x)))+ (VL, sgn(k*(x))) (-k*(x), sgn(k*(x))) -Ilk*(x)ll, and thus

(sgn(--VL) sgn(k*(x))) Ilvell (sgn(ve), sgn(k*(x)))+ ]lk*(x)]]

IIvll (sgn(ve), sgn(k*(x)))+ IIk*(x)ll
ve + k* (x)ll

(sgn(ve), sgn(k*(x))).

Thus the angle between --VL and k*(x) is smaller than the angle between ve and k*(x). Now
ve Ne, and it follows from the convexity of Ne and the symmetry of Ne around k* (x) that
--VL Ne. We have thus shown that --VL Ne \ {0}.

Now VL NL \ {0}, and it follows from [30, Cor. 23.7.1] that there exists > 0 such
that 6VL D(x). From Proposition 9.3 we have/z(x) < IlSVLII < v(x); and because
--SVL Ne, we have from (50) that --SVL Our(X, k*(x)). Therefore 0 --OVL + 8v
Our(X, k*(x)) + D(x), and the proof is complete. [3

An immediate consequence of (44) and Proposition 9.4 are the equalities

(51)

(52)

(53)

0 q(x) + r(x,k*(x)) + DfV(x,k*(x)),
q(x) + min [r(x, u) + Df V(x, u)],

uELt

min max [q(x) + r(x, u) + LTV(X, u, w)],
uElg wW(x)

which hold for all x 6 A’. Therefore, the rclf V satisfies the steady-state HJI equation
associated with the cost functional J. We are now ready to prove Theorem 8.1.

Let JT(Ug, Wa, X; xo) denote the cost J in (29) truncated at time T, again setting JT :-" cx
when the solution does not exist over [0, T]"

(54)
T

JT(Ug, Wa, X; Xo) := [q(x) + r(x, Ug)]dt.

Fix x0 6 A’ and Wa D(E), and let x(t) be a solution of the closed-loop system (32) starting
from x0. Because k* renders the solutions of (32) RGUAS, the solution x(t) exists for all



INVERSE OPTIMALITY IN ROBUST STABILIZATION 1385

> 0 and furthermore x(t) --+ 0 as --+ cx. Thus we can integrate LfV along x(t) and
use (10) and (51) to obtain for all T > 0

V(xo) V(x(T)) Lf V(x, k*(x), wa) dt

>/ V(x(r)) Df V(x, k*(x)) dt

(55) >/ V(x(T)) + [q(x) + r(x, k*(x))ldt.

Thus V(x(T)) + Jr(k*, Wa, x; xo) < V(xo) for all T > 0; and because V(x(T)) --+ 0 as
T cxz, we can take the limit to obtain J (k*, Wa, x; xo) < V (xo).

Next fix xo 2(, Ug 6 C(E), and A > 0, and suppose condition DC is true. Then there
exists wzx 6 D(E) and a solution x,x(t) of (8) starting from x0 (with Wa w/x) such that
either J(ug, w/x, x/x; x0) c or for every T > 0 we have

(56) LfV(x/x, Ug, WA)dt >/ DfV(x/x, ug) dt A.

If J(lgg, 1/)A, XA; X0) OO, then trivially we have J(lgg,//)A, XA; X0) V(xo)-- A. Otherwise
x,x(t) --+ 0 as cxz and we can integrate LfV along the solution xzx as above and use (56)
and (52) to obtain for all T > 0

V(xo) V(xzx(T)) LfV(xx, Ug, wA)dt

< V(xzx(r)) + A- Dfg(x/x, ug) dt

(57) < V(xA(T)) + A + [q(xzx) + r(xzx, Ug)]dt.

Thus V(xzx(T))+Jr(ug, wzx, x/; xo) > g(xo)-A forall r > 0; andbecause V(xzx(r)) -- 0
as T -- , we obtain J(u_g, wzx, xzx; xo) > V(xo) A in the limit. Because A was arbitrary,
it follows from (30) that J(xo) > V(xo). Recall from above that k* guarantees J < V (x0);
it follows that ](x0) V(xo) and that k* is optimal from x0. The initial condition x0 was
arbitrary, and the proof is complete.

10. Inverse optimal robust stabilization: finite horizon. We next extend the results of
the previous two sections to the case where the scp is not satisfied. In this case, persistent
disturbances may make convergence to the origin impossible, and so to obtain finite costs we
introduce a terminal time for our game. Given a nonempty bounded target set A C A" and a
solution x(t) of the differential equation (8), we define the terminal time Tx as

(58) T^ := inf{T>0 x(t) 6A for all > T}.

Thus Tx represents the first time the solution enters the target set A without ever again leaving.
If the solution x(t) does not exist for all > 0 or is not eventually contained in A, then we
set Tx :-- cx. In addition to a terminal time for our game, we introduce a terminal cost

qf A" -- /L according to the following specification.
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$3. qf satisfies qf A(X).
Using a triple (q, r, qf) satisfying S 1-$3, we will define a gameA(q, r, qf) for each nonempty
bounded set A C A" by considering a cost functional JA parameterized by the initial condition

x0 6 X. Given xo Y, Ug C(E), and Wa D(E) we define

(59) J^(ug, Wa, x; xo) qf(x(T^)) + [q(x) + r(x, Ug)]dt,

where the integration is taken along the (possibly nonunique) solution x(t) of the differential
equation (8) starting from the initial condition x0. If TA cx, then we set Jx (ug, wa, x; x0)
cx. We define the upper value function ]^ X’ -- /L t_J zx} of the game by the equation

(60) J^ (x0) := inf sup sup Jx (ug, wa, x; xo).
llO X

The first supremum is taken over all solutions x(t) of (8) starting from x0 (this supremum
is superfluous if solutions are unique), the second supremum is taken over all admissible
disturbances Wa D(E), and the infimum is taken over all generic controls ug C(E).
When the infimum in (60) is achieved by some Ug C(E) for some x0 6 A" such that

]x (x0) < c, we say that Ug is optimalfrom xo. We say a control law k* for E is optimalfor
(q, r, qf) when k* is optimal from every x0 6 A’. Note that every optimal control law is

robustly stabilizing in the sense that every closed-loop trajectory is eventually contained in A.
Let V be a strong rclf for E. We say a nonempty bounded set A C A" is an admissible

target set for V when there exists c > cv such that c(V) C A. If cv 0, then any
bounded set A containing a neighborhood of the origin is an admissible target set for V; this
is consistent with practical stabilizability. For each admissible target set A* for V, we define
a nonempty set K(V, A*) of pointwise min-norm control laws as follows. We say a control
law k for E belongs to K(V, A*) when it is pointwise min-norm for V with the associated
constant c > cv satisfying f2c(V) C A* and the associated negativity margin ot being bounded
away from zero outside some compact set. Theorem 10.1 states that for every control law
k* K(V, A*) there exists a triple (q, r, qf) satisfying S1-$3 such that k* is optimal for
x(q, r, qf) for every A A*, with V being the corresponding upper value function. Each
game ^(q, r, qf) is meaningful for the same reasons the game of 8 was meaningful; the
difference here is the terminal time T^ and the terminal cost qf. Our choice for the terminal
time in (58) is consistent with the stabilization objective: the game ends when we enter the
target set A permanently. Ifwe enter and then leave again, the game continues. We must allow
for the possibility of the trajectory leaving A because there does not necessarily exist a control
that renders A positively invariant. Our technical condition on the admissible disturbances
now depends on A as follows:

DCA. For every x0 R’, every Ug C(E), and every A > 0 there exists w/x D(E)
and a solution x,x(t) of (8) starting from x0 (with w w/x) such that either

J^ (Ug, WA, X6; X0) CXZ or

(61) Lf V (xA, Ug, wA) dt > Of V(XA, big) dt A.

As in the previous section, if DCx is not true, then we may achieve suboptimality rather than
optimality. We now state the main result of this section.

THEOREM 10.1. Let E satisfy assumptions A1-A6, let V be a strong rclffor E, let A*
be an admissible target setfor V, and let k* K(V, A*). Then there exists a triple (q, r, qf
satisfying S1-$3 such that JA(k*, Wa, x; xo) < V(xo)for every admissible target set A D A*,
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every Xo 2,, every tO )(E), and every solution x(t) of (32) starting from xo. If
furthermore DCA is true, then ]^ (xo) V(xo) for all xo 2,, which means k* is optimalfor

(q, r, qf ).
The proof of this theorem is similar to the proof of Theorem 8.1. From Definition 7.2

and the definition of K(V, A*) above, there exist c > cv and a minimal selection my of V
such that f2c(V) C A* and k*(x) my(x) for all x 2, \ f2c(V), with the associated
negativity margin c being bounded away from zero outside some compact set. We choose
qf(x) := V(x) for all x 2,; this choice satisfies $3. We define C(x), a(x, u), and D(x)
as in (36)-(38). Proposition 9.1 remains true, but Propositions 9.2 and 9.3 become weaker as
follows (we omit their proofs).

PROPOSITION 10.2. If x 2, \ S2c(V) and k*(x) :0, then Df V(x, k*(x)) =-or(x) and
O q[ O(x).

PROPOSITION 10.3. There exist continuous functions IX, v 2, P such that Ix(x) <
d(O, D(x)) for all x 2, \ f2c(V) and IID(x)ll < p(x) for all x 2,, with Ix having the
additional property that Ix(x) > 0 ifand only if k* (x) 5/: O.

Because ot is bounded away from zero outside a compact set, it follows from (11) that
there exist c0 6 A(2,) and > 0 such that c(x) c0(x) > " for all x 2, \ f2c(V). We
then define a(x), b(x), y(x, s), and r(x, u) as in (40)-(43). It follows that r satisfies $2. Our
next task is to construct the function q. We first show that there exist continuous functions
dl, d2:2, -- R such that dl (x) > 0 for all x 6 2, and

(62) r(x, u) + Df V(x, u) >/ d(x) Ilull + d2(x)

for all (x, u) 6 2’ x L/. First, it follows from (37) and (41) that b(x)a(x, u) > v(x) Ilull for
all (x, u) 6 2" x b/. It then follows from (42) and (43) that

(63)

r(x, u) > b(x)a(x, u).+ a(x, k*(x)) [a(x) b(x)]
> v(x)Ilull / a(x, k*(x)) [a(x) b(x)]

for all (x, u) 6 2" b/. For each x 6 2" choose Wx D(x); then it follows from (38) and
Proposition 10.3 that

Df V(x, u) > Df V(x, k*(x)) + (wx, u k*(x))
Vf V (x, k* (X)) Wx u Wx k* (x)ll

(64) > Of W(x, k*(x)) -IlD(x)ll. Ilul]- v(x)Ilk*(x)ll

for all (x, u) 2" x b/. We add the inequalities (63) and (64) to obtain

(65)

r(x, u) + Df V(x, u) > [v(x) IID(x)ll]llull + (x, k*(x)) [a(x) b(x)]
+ Of V(x, k*(x)) v(x) IIk*(x)ll

for all (x, u) 6 2" x b/. It follows from Proposition 10.3, [18, Prob. 5X], and the lower
semicontinuity of the mapping x - v(x) [[D(x)1] that there exists a continuous function

dl 2" -- R such that0 < all(X) < v(x)- ]lD(x)l] for allx2". Thus if we define
d2(x) a(x, k*(x)) [a(x) b(x)] + Df V(x, k*(x)) v(x) [[k*(x)ll for all x 6 2", then d2
is continuous and (65) implies (62).

We next define a function o9 2" --+ R+ for all x 6 2" as

(66) o9 (x) :=
r(x, k*(x)) + Df V(x, k*(x)) -de(x)

dl(x)
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Thus w is continuous and it follows from (62) that Ilk*(x)ll w(x) for all x 6 2’. Also,
from (62) we see that for all (x, u) 6 A’ H such that Ilull > o(x) we have r(x, u) +
Df V(x, u) > dl(X) Ilull q- d2(x) > r(x, k*(x)) + Df V(x, k*(x)). Therefore

inf [r(x, u) + Df V(x, u)]

(67)

inf [r(x, u) + Df V(x, u)]
uEw(x)B

min [r(x, u) + DTV(X, u)]
uEo(x)B

for all x 6 A’, where the second line follows from the continuity of r + Df V and the compact-
ness of co(x)B. Now [5, Thm. 1.4.16] implies that the right-hand side of (67) is continuous
on A’, and so the mapping

(68) x - min [r(x, u) + DT V(x, u)]

is well defined and continuous on X. Let 1 ,Ate (,) be such that oil (x) < ff for all x X.
We define q for all x 6 X as

(69) q(x) "= max [ O/I(X), -min[r(x, u) + DfV(x, u)] ].
Thus q is continuous with q (0) 0 and q > 0/1, and it follows that q AK (A’) as required
in S 1. With this choice for q, it is true for all x 6 R" that

(70) q(x) + min [r(x, u) + DU V(x, u)] > 0.
uLt

One can use Propositions 10.2 and 10.3 in the proof of Proposition 9.4 to show that (45) is
true for x 2( \ f2c(V), and so we have

(71) q(x) max{cl(X), -r(x, k*(x)) DTV(X, k*(x))}

for all such x. Now -r(x,k*(x)) Df V(x,k*(x)) u(x) -Go(x) > I(X) for all
such x, which means

(72) q(x) -r(x, k*(x)) DuV(x, k*(x))

for all such x. Therefore, it is true for all x P( \ S2c(V) that

(73) 0 q(x) + r(x, k*(x)) + Df V(x, k*(x))

(74) q(x) + min [r(x, u) + Df V(x, u)].

Thus the HJI inequality (70) is true for all x 6 A’, whereas the HJI equality (74) is true
whenever x 2( \ g2c(V). We are now ready to prove Theorem 10.1.

Proof of Theorem 10.1. Let A D A* be an admissible target set for V, let x0
let Wa 79(E), and let x(t) be a solution of the closed-loop system (32) starting from x0.
Because k* renders the solutions of (32) RGUAS-f2c(V) and f2c(V) C A, it follows from (58)
that T^ < o. Thus we can integrate Lf V along x(t) to obtain

(75) 0 V(xo) V(x(TA)) + Lf V(x, k*(x), Wa) dr.
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Because qf V, we can add this zero quantity (75) to (59) and use (10) to obtain

(76)

JA(k*, wa, X;Xo) V(xo)-- [q(x)-k-r(x,k*(x))-+-LfV(x,k*(x), Wa)]dt

< V(xo) + [q(x) + r(x, k*(x)) + Df V(x, k*(x))]dt.

Now k* renders the set f2c(V) robustly positively invariant, and so from (58) we have x(t)
2( \ f2c(V) for all 6 [0, T^). It then follows from (73) that the integrand in (76) is zero for
all 6 [0, Tx), and thus we have J^ (k*, Wa, x; xo) < V (xo).

Next fix xo ,V, Ug C(E), and A > 0, and suppose condition DC^ is true. Then there
exists wzx 6 79(53) and a solution xzx (t) of (8) starting from x0 (with Wa w/) such that
either J^(ug, wzx, x/x; x0) o or

(77) fo r^

Lf V(x/x, Ug, w/) dt > fo r^

Of V(XA, rig) dt A.

If Jx(Ug, wA, xa; xo) cx, then trivially we have JA(blg, WA,XA; Xo) V(xo) A. Other-
wise TA < cx and we can integrate Lf V along the solution xzx as above and use (77) and (70)
to obtain

JA(blg, WA, XA;XO) g(xo) -- [q(x/x) + r(x/x, Ug) -k- Lf V(x/x, Ug, Wzx)]dt

> V(xo) A + [q(x/x) + r(xA, Ug) + Df V(x/x, Ug)]dt

(78) > V(xo) A.

Because A was arbitrary, it follows from (60) that ]A (x0) > V (x0). Recall from above that k*
guarantees Jx < V (x0); it follows that ]x (x0) V (x0) and that k* is optimal from x0. The
initial condition x0 was arbitrary, and the proof is complete.

11. Conclusion. We have introduced the robust control Lyapunov function and shown
that its existence is equivalent to robust stabilizability. Also, we have solved an inverse
optimal robust stabilization problem by showing that every rclf is an upper value function
for a meaningful game and that every pointwise min-norm control law is optimal for such a
game. Our formulas (18) and (23) can be used to generate control laws that have the desirable
properties of optimality but do not require the solution of an HJI equation.

Our results motivate further research in the development of methods for the construction
rclf’s for uncertain nonlinear systems. Recent breakthroughs in this area include recursive
backstepping techniques [25, 32, 29]. In this paper we provided a method for choosing a
reasonable control law given an rclf, but the overall system performance will ultimately be
determined by the choice ofthe rclf itself. This point is illustrated in 12], where it is shown that
an improper choice of the rclf can lead to undesirable behavior no matter how the associated
control law is chosen. Methods for improving the choices of rclf’s, when combined with
the results in this paper on choosing control laws, will constitute a promising strategy for the
design of controllers for uncertain nonlinear systems.

12. Appendix. We include here two simple lemmas whose proofs we could not find
elsewhere.

LEMMA 12.1. Let Z be a metric space, let Y be a finite-dimensional Hilbert space, and
let h Z Y --+ R be continuous. If the mapping y - h(z, y) is convexfor every z Z,
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then the partial subdifferential Oyh Z x Y ,, Y is usc on Z x Y and has nonempty, convex,
compact values.

Proof. It follows from [30, Thm. 23.4] that Oyh has nonempty, convex, compact values.
To prove upper semicontinuity, fix (z0, Y0) 6 Z x Y and let {(zi, yi)} Z x Y converge to
(z0, Y0). Let {wi} Y be any sequence such that wi Oyh(zi, Yi) for all > 1. It follows
from [19, Thm. II.2.2] that we need only show that {wi has a subsequence converging to
some wo Oyh(zo, yo). First we show that {wi is bounded. From the definition of Oyh we
have (wi, v Yi) < h(zi, v) h(zi, yi) for all v 6 Y and all > 1. It follows from the
continuity of h and the compactness of the unit sphere in Y that there exists M 6 R such that
(wi, e) < M for all unit vectors e 6 Y and all > 1, and we conclude that {wi is bounded.
Let {w#} be a convergent subsequence of {wi} with limit w0 6 Y. Fix v 6 Y; then for all
j > we have (wij, v y#) < h(z#, v) h(z#, y#). It follows from the continuity of the
inner product and h that (wo, v Yo) < h(zo, v) h(zo, yo). This holds for all v 6 Y, and so

Wo Oyh(zo, Yo) as desired.
LEMMA 12.2. Let Y be a finite-dimensional Hilbert space, and let h Y --+ R be a

sublinearfunctional. For each y e Y, let Ey { Y h() < h (y) denote the sublevel
set of h at y and Ne(y) denote the normal cone to Ey at y. Then Oh(y) 7 Ofor all y Y,
andfor every y Y such that h(y) 0 we have

(79) Oh(y) Ne(y) p + {y}+/-],
where p is any member of Oh (y).

Proof. It follows from [30, Thm. 23.41 that Oh(y) is nonempty for all y Y. Let y Y
be such that h (y) 0, and let p 6 h (y). We first show that w, y) h (y) for all w 6 Oh (y).
Indeed, w Oh(y) impliesh() > h(y)+(w, -y) for all 6 Y. Taking 0we
obtain 0 > h(y) + (w,-y), which means (w, y) > h(y), and taking 2y we obtain
h(2y) 2h(y) > h(y) + (w, y), which means (w, y) < h(y). It then follows that for any
w Oh(y) we have (w p, y) h(y) h(y) 0, which means w 6 [p + {y}+/-]. Now
because h is sublinear and h(y) 7 O, we know that y does not minimize h, and it follows from
[30, Cor. 23.7.1] that Oh(y) C Ne(y). We have thus shown that Oh(y) C Ne(y) p+{y}+/-].

Next suppose w Ne(y) Cq p + {y}+/-]. Because (p, y) h(y) 0, we have 0 p +
{y}+/-], which means w 0. It then follows from [30, Cor. 23.7.1] that )w Oh(y) for some
) > 0. From above we have )w 6 [p + {y}+/-], and it follows that ()w w) 6 {y}+/- and
so (. 1)(w, y) 0. Now (w, y) ()w, y)/) h(y)/) O, and it follows that . 1.
Therefore w .w Oh(y), and we have shown that N(y) p + {y}+/-] C Oh(y).
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Abstract. In this paper, we employ our lifting method to study the structured singular value applied to input/output
operators of control systems. We moreover give a new criterion which guarantees that the structured singular value
equals its upper bound defined by D-scalings.
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1. Introduction. Let A be a linear operator on a Hilbert space , and let A be an algebra
of operators on . The structured singular value of A (relative to A) is the number

lz,x(A)- 1/inf{llXIl’X 6 A, -1 6 r(AX)}.

This quantity was introduced by Doyle and Safonov [6, 12] under a more restrictive context, and
it has proved to be a powerful tool in robust system analysis and design. In system analysis, the
structured singular value gives a measure ofrobust stability with respect to certain perturbation
measures. Unfortunately,/zzx (A) is very difficult to calculate, and in practice an upper bound
for it is used. This upper bound is defined by

",x(A) inf{llXAX-ll X A’, X invertible},

where A’ is the commutant of the algebra A.
In 1, 5], we formulated a lifting technique for the study of the structured singular value.

The basic idea is that zx(A) can be shown to be equal to the structured singular value of
an operator on a bigger Hilbert space. (In [1] this was done for finite-dimensional Hilbert
spaces, and then in [5] this was extended to the infinite-dimensional case.) The problem with
these results is that the size of the ampliation necessary to get zx (A) equal to a structured
singular value was equal to the dimension of the underlying Hilbert space. Hence in the
infinite-dimensional case we needed an infinite ampliation. In this work, we will show that
in fact one can always get by with a finite lifting. (Note that in this paper we will be using
the terms "ampliation" and "lifting" interchangeably.) For the block diagonal algebras of
interest in robust control, the ampliation only depends on the number of blocks of the given
perturbation structure. (See Theorem 4.1 below.) We moreover give a new result when
A(A) =/zx (A), that is, when no lifting is necessary and so zx (A) gives a nonconservative
measure of robustness. (See Theorem 5.3.) This is then used to derive an elegant result of
Shamma 13, 14] on Toeplitz operators. See also [7, 9, 10] for related work in this area.

We now briefly sketch the contents of this paper. In 2, we give some background results
which will be needed in the proof of Theorem 4.1. In 3, we derive a number of useful facts
about the relative numerical range. Then in 4, we state and prove our new version of the
lifting theorem relating the structured singular value and its upper bound. In 5, we give new
conditions when/z --/2. These are applied in 6 to give a new proof of the aforementioned
result of Shamma. Finally, in 7, we give a system-theoretic interpretation of our lifting
methodology.
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2. Preliminary results. Denote by ,() the algebra of all bounded linear operators
on the (complex, separable) Hilbert space . Fix an operator A () and a subalgebra
A C (g). The numbers/zzx (A) and zx (A) have already been defined in the Introduction.
Observe that A C A" and A" (A’)’ A’ so that we have the inequalities

/zzx (A) </.t/v,(A), zx (A) zx,,(A).

Observe that the algebras A considered in [6] consisted of block diagonal matrices, so
our approach is more general in this respect. In the following proposition we summarize some
of the elementary properties of/zzx; see Doyle [6] or [1] for proofs. We will denote by IITIIsp
the spectral radius of the operator T.

LEMMA 2.1. (i)/zzx(A) sup{llAXllsp:X 6 A, IlXll _< 1};
(ii)/zzx is upper semicontinuous;
(iii) if is finite dimensional, then A is continuous;
(iv)/zzx (A) < zx (A).
In our study we will need further singular values which we now define. For n

1, 2 c} we denote by g(n) the orthogonal sum of n copies of g and by T(n) the or-
thogonal of n copies of T Z(g). Operators on (n) can be represented as n n matrices of
operators in (g), and T(n) is represented by a diagonal matrix, with diagonal entries equal
to T.

Denote by An the algebra of all operators on g(n) whose matrix entries belong to A, and
observe that (An)" (mtt)n and (An) (At) (n) {T (n) T 6 A’}. Therefore we will

" and A’n respectively.denote these algebras by A
LEMMA 2.2. For every finite number n we have

Izzx (A) < #/Xn (A (n)) < #Xn+1 (A(n+l)) < /ZZXo (A()) < (A)

and

/zzx,,(A) < ktA(A(n)) < /ZA" (A(n+l)) < bt/xL(A()) < zx(A)
n+l

Proof. It is clearly sufficient to prove the first sequence of inequalities. Observe that for
every X 6 An and for rn > n we can define an operator Y 6 Am by Y X 0. Clearly
cr(A(n)x) cr(A(m)Y) U {0} and hence -1 6 cr(A(n)X) implies -1 6 r(A(m)Y). Since
/zzx(A) /zzx (A(1)), this proves the first three inequalities. The last one follows because

/zzxo (a()) < zx(A()) zx (a).
We will now state (without proof) several results from [1-5] which we will need.
LEMMA 2.3 (see [5]). Let A be afinite-dimensional C*-algebra. Then A kas onlyfinitely

many equivalence classes ofcyclic representations.
LEMMA 2.4 (see [5]). Let the sequence Yj of operators on and the sequence hj

satisfy
(i) supj rank Y < c, supj Y < ;
(ii) limj_ (Yj I)hj 0;
(iii) limj__, I[hj 1.

Then lim infn- Yj lisp > 1.
LEMMA 2.5 (see [4]). Let 7-[ be a Hilbert space, T (7-[), and Dj ,() be invertible

so that
To lim Dj TD-.

j-+

Ifthe set Dj D- j 1, 2 is contained in afinite-dimensional subspace, then To sp

]]Tllsp.



1394 HARI BERCOVICI, CIPRIAN FOIAS, AND ALLEN TANNENBAUM

3. Relative numerical range. We will also need some results in what follows about the
relative numerical range. Let 7-t be a complex separable Hilbert space, and let (7-() denote
the set of bounded linear operators on . Let T1 Tin, Q (7-/). Then we define the
following relative numerical ranges:

WQ(TI,..., Tm) := {. cn’ " n--,lim((Tjhn, hn))jm=l

hn ’, hn 1, nolim Qhn 0]
and

W(Zl Zm):-- { c C , nlim((Tjhn, hn))j=lrn

hn 7-[, Ilhn 1, n--olim Qhn 0, hn -’+ 0 weakly}.
LEMMA 3.1. W T1 Tm) is a compact convex subset ofcmo
Proof. The compactness is immediate since W(T Tm) is a closed bounded subset

of Cm. As for the convexity, let () Am), tx (Ix Ixm) W(T Tm),
and let the sequences of unit vectors

}n=l, ’{kn }n=l C

satisfy

j lim (Tjhn, hn),
n--+o

IXj lim (Tjkn, kn), j m,

lim Qhn 0 lim Qkn I[, hn --+ O, kn 0 weakly.
n--o n---o

Next for n fixed choose Nn > n such that

1
I(hn, k)l < -, ](Tjhn, k,)l + I(Tj*h,, ku)l 5 -,

n n

Then for any 0 6 [0, 1 ],

gn "= "/-hn -}-w/] -OkN., n>2,

satisfies the following conditions:

Ilgnl[ 2 1 + 2v/O(1 O)9(hn, kN.) --+ 1,
1

[[gn 2 >
2

gn -- 0 weakly, Qgn o,

I(Tjgn, gn) O.j (1 O)Ixjl <_ Ol(Tjhn, hn) ,jl "k- (1 O)](TjkN., kN,,) Ixjl

+x/O(l’--- 01
0 as n

n

Thus replacing the gn by gn/Ilgn we immediately conclude that

Ok + (1 -O)Ix W2(T Tin),

as required. U



STRUCTURED SINGULAR VALUE 1395

LEMMA 3.2. WQ (T1 Tm) is the union ofall segments

{0. + (1 -0)/z 0 __< 0 _< 1},

where ; W(T1 Tm) and lz ((Tj h, h))= for some h ker Q, h 1.
Proof. Let 0, (Lj )j% ]db (l&j m)j=l be as above and let the sequence {h,}n=lC

satisfy Ilhnll-- 1, hn 0weakly, Qhn 0 strongly, and (Tjhn, hn) Lj for j 1 m.
Then as in the proof of Lemma 3.1, we obtain that

gn V/’hn + /1 -Oh, n=l,2

satisfies the conditions

Ilgn 1, Qgn --+ o,

and

(Tg,,, g,,) OXj + ( O)zj,

Therefore

ox + ( -o) We(T Tm).

Conversely, if ap (apj)jm__ WQ(Tx Tm), then

1/tj lim Tj gn gn j m,
n---- oo

for some sequence {gn}=l C 7-/such that ]lgnll 1, Qg, o. Without loss of generality
we can assume that g, converges weakly to some h’ ker Q.

If Ilh’ll = 1, then gn converges strongly to h’ and 7tj (Tjh’, h’), j 1, 2 m.
Clearly then

ap 0X + (I O)((Tjh, h))jm=l

withh h’,O 0, andX W(T1,..., Tm).Ifllh’ll 0, then gt belongs to W(T1 Tm)
and hence ap 0gt + (1 0)/z with 0 and/z arbitrary. Finally we consider the case
when h’ 0 and Ilh’ll g: 1. The vectors h, (gn h’)/llg h’ll converge weakly to zero,
Qh ---> 0, and h h’/llh’ll is a unit vector in ker Q. Clearly then

apj (1 -Ilhll 2) lim (Tjh,, hn)+ Ilhll2(Tj’h, h),
n-+x

and therefore

where

{OX + (1 -O)((Tjh, h))jm= "0 <_ 0 <_ 1},

) "= lim ((Tjhn, hn))jm=l e Wg(T Tm).
n--.o

This concludes the proof. ]

COROLLARY 3.3. For all T, Q .(), the set

Wa (r) { X nlim Thn, hn )" h, H, hn 1, n-,lim Qhn 0]
is a compact convex set.



1396 HARI BERCOVICI, CIPRIAN FOIAS, AND ALLEN TANNENBAUM

Proof. First notice that by an application of the classical Toeplitz-Hausdorff theorem to
TO "= PT lker Q, where P denotes the orthogonal projection of 7-( onto ker Q, we see that
the set

W(TQ) {(Th, h)" Ilhll 1, h e ker Q}

is compact and convex. Therefore the convex hull of

is the union of all segments

{0;L + (1 -0)/ 0 < 0 < 1},

where and/x run over W(T) and W(TQ), respectively. But according to Lemma 3.2, this
union is precisely WQ(T).

Remark. Corollary 3.3 was proven in [3] using a completely different argument that was
based on an approximation lemma, which is of independent interest.

Finally, for the proof of our lifting theorem (to be given in 4), we will need the following
elementary fact.

LEMMA 3.4. Let 2 denote a finite-dimensional normed space and S be a set of lin-
ear functionals on Z. Suppose that for every z Z there exists a sequence ’n S such
that limnoo n(Z) O. Then there exists a sequence n in the convex hull of S such that
limn---,oo lien O.

Proof. Since Z is finite dimensional, S is contained in the dual Z’ of Z. We may also
assume that S is a convex set. To prove the lemma we must show that the closure of S contains
zero. If it did not then the Hahn-Banach theorem would imply the existence of a vector z
and of a number e > 0 such that 9e(z) > e for all e S. This is contrary to the assumption
of the lemma.

4. Ampliations of perturbations. In this section, we will formulate and prove a new
lifting result relating/z/x (A) and /x (A). For finite-dimensional g, a lifting result of this type
was first proven in ]. The result was then generalized to the infinite-dimensional case in
[5]. (For another proof of this type of lifting result in finite dimensions, see [7].) In these
theorems, the lifting or ampliation of the operator A and perturbation structure A depends on
the dimension of g. Thus if g is infinite dimensional, we get an infinite lifting. In the new
result proven below, we only have to lift up to the dimension of A’, which in the cases of
interest in the control applications of this theory only depends on the number of blocks of the
given perturbation structure.

The notation will be that used in 2.
THEOREM 4.1. Assume that A’ is a .-algebra offinite dimension n. Then

zx (A) IZA,(A(n)),
for every A

Proof. The argument starts as in the proof of Theorem 3 in 1] and of Theorem of [5].
,,(a (n))Without loss of generality, we may assume that /x (A) 1. We must show that/ZA

1. Choose a sequence of invertible operators Xj A’ such that IlXjAXlll A(A).
Since XjAX belongs to the finite-dimensional space generated by A’AA’, we may assume

that the sequence XjAX converges to some operator A0 such that IIA011 1. Obviously

IIXAoX- >_ IIA011 for every invertible operator X A’. In particular we have

II(l X)Ao(I + X + X2 -t"’" .)11 >_ 1,
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for X A’ with X < 1. Fix an operator X a A’ and a sequence ej > 0 converging to zero.
There exist vectors hj with IIh 1 such that

II(I ejX)Ao(l + ejX + eX2 +...)hill 2 >

This can be rewritten as

(AAohj, hj) + 2ejg(A(AoX XAo)hj, hj) + O(e) >_ 1 e
or, equivalently,

2ej(A(AoX XAo)hj, hj) + O(e) >_ ((I AAo)hj, hj) e >_ -e.
Dividing by ej and letting ej --+ 0 as j --+ cx, we see from the last equation that

(1)

(2)
((I AAo)hj, hi) -+ O,

liminf91.(A(AoX XAo)hj, hj) > O.
j--+o

We easily conclude that

(3) liminfgt((X AXAo)hj, hj) > O.
j---> cx

Set

* AoXAo.Q I A0A0, T X

Then from (1), (3), we see that

(4) Qhj ---> O, liminfB(Thj, hj) > O.
j---> oo

Applying the above argument to (X for any ( 6 0D (the unit circle), we see that there
()a sequence hj Ilhfexists 1, such that

(5) Qh) --> O, liminf91((Thj, hj) >_ O.

We claim that 0 6 WQ,o(T). Indeed, if this were not the case, Corollary 3.3 would imply
the existence of ( 6 0D such that

lim inf 9( Thj hj < O,
j--+cx

for all sequences of unit vectors hj such that Ohj ----> O, which would contradict (5).
Thus, we have shown that for each X 6 A’, there exists a sequence of unit vectors hj c

such that

(6) (I AAo)hj --+ 0 and ((X- AXAo)hj, hj) ---> O.

Let

Atsa :’-- {X- X* X e

Consider now a subspace D C Atsa of real dimension n such that Atsa D + RI. Set
Z {X AXAo X D}, and for every unit vector h define a linear functional
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e(h) on Z by e(h)(T) (Th, h), T Z. Then Lemma 3.4 applied to the set Sk {e(h)
I1(I AAo)hll < Ilk} implies the existence of linear functionals ek in the convex hull of Sk
such that Ile _< 1/k. Observe furthermore that the real dimension of Z is at most n 1.
Then from a standard result (see, e.g., 11, p; 73], each ek is a convex combination of at most
n functionals g(h), say k 1= tk)(h )), where otk) >_ 0, --j=ln otj(k) 1, and the hjq
are unit vectors in g, such that

(I AAo)hJk) / k,

Let us define unit vectors Uk (n) by

(7) 1/2 (k)

j=l

and observe that limk_((Xn) A(n)x(n)A(on))uk, Uk) O, for every X 6 A’. Taking
X Y*Y we obtain

(8) lim (lly(n)Aon)ukll- IIr(")ukll) -0,

for every Y 6 A’.
Consider now the spaces T/k A’nA(onUk and/Ck AtnUk. Lemma 2.3 implies that, by

passing to appropriate subsequences, we may assume that all the representations X -+ X{’ 17-/k
(respectively X ---> X(nIICk) are unitarily equivalent. It follows that we can find partial
isometries Uk, Vk in A such that UkT’/k ]’/1 and Vk/Ck =/C. Dropping again to appropriate
subsequences, we may assume that the limits u limk+ UkA(omuk and v limk VkUk
exist. Then (8) implies that

Y(n)u Y(n) v II,

for every Y A’. Therefore there exists a partial isometry W 6 A such that

wy(n)l,t y(n)v,

for every Y 6 At. Ofcourse, W can be chosen to be equal to zero on the orthogonal complement
of A’,,u and thus to have finite rank at most n. The partial isometries Rk := VWUk are in
A, they have uniformly bounded rank, and

--(n) ,
lim (RkA0 l)uk lim V/, (WUkA(on)llk VkRk) O.
k--+ xz k--> cxz

Therefore Lemma 2.4 implies that

lim inf RA(on) lisp > 1.

Finally, since Rk commutes with X(n) X At, and we have

x)n) ekA(n)xn)-l ---> RkA(on)

in norm as j ---> o. Lemma 2.5 shows that

eA(on) lisp RkA(n)lisp.
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Consequently, we have

Thus,

liminf IIRA(n)llsp liminf IIRA(0n[I > 1.

tzzxz(A (n)) > liminf llA(n)Xllsp > A(A),
k--+x

which completes the proof of the theorem.
Remark. In the cases of interest in control,

ll A,

and so one has from Theorem 4.1 that

5. Conditions for/z =/2. In this section, we will discuss some new conditions when
/z =/2 without any need for lifting or ampliation. In the finite-dimensional case, there have
been some results of this kind, the most famous of which is that of Doyle [6], who showed
that no lifting is necessary for perturbation structures with three or fewer blocks.

We begin by noting that in the proof of Theorem 4.1, we established a useful property of
the critical operators A0 in the closed A’ similarity orbit

Ozx,(A) {XAX- X A’}

of A. Namely, if we call critical any A0 (.gzx, (A) satisfying

limsup II(! eX)Ao(I X)-ll >_ IlA0ll, Yx A’,
0

then the first part of the proof of Theorem 4.1 establishes the following.
LEMMA 5.1. If Ao is a critical operator in O/,(A), then it enjoys the following prop-

erty (0):

0 Wa(llAoll2X AXAo), X A’,

where Q A0 2! AA0.
Indeed, property ((.9) is a reformulation of equation (6) in the case in which the norm of

A0 may be different from 1.
The next lemma is the key step in adapting the proof of Theorem 4.1 to show that

/zzx (A)

in several interesting cases.
LEMMA 5.2. Let Ao be an operator on which satisfies the essential version ofprop-

erty (0), property (0), namely,

0 W(llaollX aXao), X

where Q IlA0lll AAo. Then there exists a sequence {h}= C , IIhll-- 1, k
1, 2 such that

Qh 0 strongly and ((llA011X AXAo)h, h) O,

for all X A’.
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Proof. Without loss of generality we can assume that IlA01] 1. Let X1 Xn be
an algebraic basis of A’. (Note that A’ is finite dimensional.) Set Tj := Xj AXjAo,
j 1 n. Then by virtue of Lemma 3.1, W(T1 Tn) is convex and compact. If
0 q W(T1 Tn), there exists (1/r n) 6 C and 15 > 0 such that

Set

Property (69) implies that there exists a sequence {gk}kl C g, Ilgkll 1, gk --+ 0 weakly
such that (Tg, gk) --+ 0. Without loss of generality (by passing to a subsequence ifnecessary),
we can assume that

for k ---> oo. Thus

Hence

(Tjgc, g,) --+ j, j n,

z (z z.) e W(T Tn).

j=l j--1

which is a contradiction. We therefore conclude that 0 W(T Tn), i.e., there exists
a sequence {h}= C satisfying the properties IIhll 1, k 1, 2 IIQhll O,
hk ---> 0 weakly, and

((Xj A)XjAo)hlc, htc) (Tjhk, hk) ---> O,

for all j 1, 2 n. This implies that

((X AXAo)h, hk) ---> O,

for all X A’. [q

We can now state the second main result of this paper.
THEOREM 5.3. If there exists a critical operator Ao satisfying property (90 in the closed

A’-orbit of A, then

/ZA" (A) --/2x (A).

Proof. We only have to note that because of Lemma 5.2, we need not take direct sums in
the proof of Theorem 4.1. More precisely, referring to equation (7) in the proof of Theorem
4.1, we can take u h, where

{hk}k=l

is the sequence provided by Lemma 5.2. The proof then proceeds exactly as in Theorem 4.1
with A0 replacing A(on), X replacing X(n), and Y replacing y(n).
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Remark. Under the hypotheses of Theorem 5.3, when A" A (which happens in all
cases of interest in control), we have that

/zzx (A) =/2/ (A).

Let L(A’AA’) denote the linear space generated by

A’AA’ {XAY X, Y A’}.

Obviously L(A’AA’) is finite dimensional and therefore closed. Hence Ozx,(A) C L(A’AA’).
COROLLARY 5.4. Iffor every B L(A’AA’), B 7 O, the norm of B is not attained (that

is, there is no h 7-[ such that Bh n IIh 0), then

lz zx,, A t2 zx A

Proof. The critical operator A0 constructed in the first part of the proof of Theorem 4.1
belongs to L(A’AA’), and therefore its norm is not attained. However in equation (6), we can
assume that the sequence {hj }j_-i is weakly convergent, say hj --+ h weakly. Without loss of
generality, we may assume that A011 1. Then (6) shows that

(I AAo)h O.

Therefore if h 0, we would have

IIA0hll2 Ilhll2 IIA011Zllhll 2 0,

and so the norm of A0 would be attained. We conclude that hj --+ 0 weakly, and so A0 satisfies
property (690). The required result now follows by Theorem 5.3. [3

Remark. Note that Corollary 5.4 applies only to infinite-dimensional Hilbert spaces g.
Example. We would like to give an explicit example to which Corollary 5.4 applies. Let

Aj be an operator on a Hilbert space gj (j 1 n) for which the norm is not attained.
(For example, take gj L2((0, 1)) and let Aj be the muliplication operator f(x) - xf(x)
for x (0, 1) and f L2((0, 1)).) Set

and let A be the algebra of operators on g of the form

X 0 0
0 X2 0

0 0 Xn
with Xj (j), j 1, 2 n. Then A’ is formed by the diagonal operators

lg 0 0
0 ,2I2 0

0 0 )nl

for )j C, j 1, 2 n, and Ij denotes the identity operator on j, j 1, 2 n.
Let A be any operator on , the n n block matrix representation of which has entries in the
set {0, A1 An) with only one nonzero entry in each row and column. Then it is easy to
check that L(A’AA’) has the property required in Corollary 5.4, and therefore

/zzx,, (A) =/2/ (A).
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6. Toeplitz operators. In this section, we want to use our lifting methodology to derive
a beautiful result of Shamma 13, 14] on the structured singular value of a Toeplitz operator,
i.e., a linear time-invariant system.

Accordingly, set H2(Cn) and let A denote the multiplication (analytic Toeplitz)
operator on defined by

(Ah)(z) A(z)h(z), Izl < 1, h ,
where

A(z) Izl < 1[a],=,
has H entries. Let A’ be any .-subalgebra of/(cn), the elements of which are regarded
as multiplication operators on g. Note that in this case, A" A is the algebra generated by
operators of the form

(Bh)(z) B(z)h(z), Izl < 1, h E g,

with B(z)X XB(z), Izl < 1, X E A’, as well as of the form

h Yh
ha Yha

with Y 6/2(H2(C)) arbitrary. We can now state the following lemma.
LEMMA 6.1. Let Ao be an analytic Toeplitz operator. Then ifAo has property (0), it also

has property ((Do).
Proof. Without loss of generality we may assume IIA011 1. Let X 6 A’ and let

hj, j 1, 2 be a sequence of unit vectors satisfying

(9) I1(I A;Ao)hjll 2 ---> O, ((X A;XAo)hj, hj) O.

Note that since I AAo > 0, the first condition in (9) is equivalent to

((I A;Ao)hj, hi) -- O.

Let U denote the canonical unilateral shift on H2(Cn), that is,

(Uh)(z) "= zh(z), Izl < 1, h g.

As is well known, we can view H2(C") as a subspace of L(cn). In particular, in this
representation the relations (9) are equivalent to

o2rr(llhj(eit)]]
IlAo(eit)hj(eit)lle)dt -- O,

(10) [(Xhj(eit), hj(eit)) (XAo(eit)hj(eit), hj(eit))]dt -- O.

Note that X is an n x n matrix with constant coefficients. Therefore in (10), hj can be replaced
by Uhj for any k > 0 without changing the values of the integrals. We infer that

II(/- A;Ao)UJhjll2 --> O, ((X A;XAo)UJhj, uk2hj) -- O,
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for any sequence {kj }j=l of natural numbers Since for any g, h

I(gkg, h)l- I(g, g*kh)l < Ilgllllg*hll -- O, k -- o,

we can choose kj sufficiently large to guarantee that

I(UJhj, h)l <_

for any h of the form

(11) h (zm3pk)=l O<_m<j, <p<n,

where 3p is the Kronecker delta. Thus

U; h h) --+ 0 as j --+ o,

for all vectors of the form (1 1). Since these vectors form an orthonormal basis of g, we see
that Uk hj 0 weakly, which concludes the proof of the lemma. [3

COROLLARY 6.2 (see [13, 14]). For A and A’ as above, we have that

/xzx(A)=/2A(A).

Proof. First, note that any operator B in L(A’AA’) is also an analytic Toeplitz operator
In particular, the critical operator A0 obtained in the proof of Theorem 4.1 is a multiplication
operator given by

Ao(z) [a,(z)]],=l, Izl < 1.

By Lemma 5.1, the operator A0 has property (69) and thus also property (O), by virtue of
Lemma 6.1. The conclusion now follows from Theorem 5.3. [3

7. Structured singular value of input/output operators. In this section, we will put
some of the above results into a system-theoretic framework. Accordingly, let 2+ be the
space of square summable one-sided sequences in C, let C denote the set of all bounded
linear operators on g2+. Further, let Z e2+(Cn) -- e+(Cn) be an arbitrary bounded linear
operator. Thus A defines a (possibly) time-varying system. (Here 2+ (Cn) denotes the space
of square summable sequences in C, i.e., the space of finite energy vector-valued signals
with n components.) Then we want to interpret /(A) as a structured singular value on an
extended space with an enhanced perturbation structure. Note in this case is the Hilbert
space e2+ (cn).

Define the algebra of perturbations

31 0 0
0 32 0

A :--" 3 C,i n

0 0 3,,

Then the commutant of A is the finite-dimensional C*-algebra

dl 0 0
0 d2 0

A’ di C,i n

0 0 dn

Note that a constant d 6 C defines an operator on

_
via multiplication.
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From Theorem 4.1, it follows that the/z upper bound given by the infimum of XAX-alI
over all constant X-scales equals/2zx (A). We now have the following interpretation ofzx (A).
We lift A to A (n) (n) (n). Then

A1 _0 0 0
0 A2 0 0

(Zn)’t /j e m

0 0 An

(An)tt is a space of time-varying perturbations and we have from Theorem 4.1 that

zx (A)

This is true for arbitrary time-varying systems A. When A is Toeplitz, i.e., the system is time
invariant, then as we have seen (Corollary 6.2, [13, 14]),

zx(A) --/zzx(A).
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A TURNPIKE THEORY FOR INFINITE-HORIZON OPEN-LOOP COMPETITIVE
PROCESSES*

D. CARLSON AND A. HAURIE

Abstract. This paper deals with a class of dynamic discrete time open-loop games played over an infinite time
horizon. The equilibrium concept is defined in the sense ofovertaking optimal responses by the players to the program
choices of the opponents. We extend to this dynamic game framework the results obtained by Rosen for concave static
games. We prove existence, uniqueness, and asymptotic stability (also called the turnpike property) of overtaking
equilibrium programs for a class of games satisfying a strong concavity assumption (strict diagonal concavity).

Key words, dynamic games, overtaking equilibrium, infinite-horizon dynamic games, open-loop equilibrium
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1. Introduction. This paper deals with a class of dynamic competitive process models
defined over an infinite time horizon. We use overtaking optimality to deal with unbounded
payoffs. This optimality concept has been used to study optimal economic growth models
in [28], [21], [3], [7] and in dynamic games [4], [18], [25], [20]. We prove existence and
uniqueness of open-loop equilibria and asymptotic stability of the equilibrium programs under
a strict diagonal concavity-convexity assumption for the Hamiltonians associated with the
extremal dynamic programs ofeach player. This assumption is very close to the one introduced
by Rosen [26] in his study of static concave games.

The theory of asymptotic optimality of dynamical systems has been mainly motivated
by the modeling of optimal economic growth processes. Von Weizicker [28] was the first to
propose the use of the overtaking optimality concept to compare accumulation programs over
infinite time horizons. These economic growth models developed under two formulations:
either in continuous time (see, e.g., [9], [10], [12], [5]) or in discrete time (see, e.g., [3],
[21 ]). A major result in these theories is the turnpike property which links existence as well as
necessary and sufficiency conditions with the asymptotic stability of the solutions of an asso-
ciated Hamiltonian system. This property is easily derived from the convexity-concavity of
the Hamiltonian [23], when the stream of payoffs is undiscounted. For the discounted case,
Cass and Shell [12], Brock and Scheinkman [6], and Rockafellar [24] have obtained the same
property under a stricter curvature assumption. The whole theory extends to optimal control,
both in the deterministic and stochastic frameworks, as exposed in [7], 17].

The class of competitive processes considered encompasses the oligopoly paradigm, rep-
resenting the competition among a few firms on a single market, which is a cornerstone of
microeconomic theory (see, e.g., [15]). The Cournot equilibrium [13], extended by Nash [22]
to a general game format, has been used in many economic models. Rosen [26], in a sem-
inal paper gave a condition, called strict diagonal concavity, for existence, uniqueness, and
stability of a gradient-path following method for Nash-Cournot equilibria in static m-player
games. Linking game theory and asymptotic economic growth models has been attempted in
several papers. Brock [4] proposed the first study, in continuous time, of differential games
with infinite time horizon. In a more general setting, the asymptotic stability of the solutions
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of the pseudo Hamiltonian systems associated with open-loop differential games was studied
in [18]. More recently, in [19], a continuous time piecewise deterministic differential game
model of oligopoly has been studied and conditions for asymptotic stability have been stated.

In the present paper we consider a dynamic competitive process modeled in discrete time
and we provide a complete theory of existence, uniqueness, and asymptotic stability. We
obtain these results under conditions very similar to Rosen’s strict diagonal concavity. In a
sense, the present paper can be seen as an extension of Rosen’s work to a dynamic setting.

We would like now to address those "mathematical economists" who don’t read further
as soon as they have detected that a paper deals with an open-loop equilibrium concept on an
infinite horizon. The recent polarization of interest on subgame perfectness in dynamic games
(see [27] for a definition of this concept) and the famous Folk theorem for infinite-horizon
games (see 16] for a discussion of modem game theory) have indeed diminished the interest
of economists for the open-loop equilibrium solution concept. The first concept is close to, in
spirit, but more general than the feedback-Nash equilibrium solution (see 1 for a complete
discussion of this concept); it is of limited applicability in a truly dynamical setting (i.e., not
a repeated game setting) since a complete and general theory of feedback-Nash equilibria is
still to be developed. The Folk theorem (see [20] for a statement in the realm of multistage
games) establishes that, on an infinite time horizon, any solution dominating the feedback-
Nash equilibrium solution can be transformed into a subgame perfect equilibrium; this result is
based on an information structure allowing the players to remember a preplay agreement and
to retaliate if the agreed upon trajectory is not implemented. Both concepts present attractive
features. We claim, however, that the exploration of the properties of open-loop solutions
deserves continuing interest.

To give full mathematical respectability to open-loop equilibria we only have to assume
an information structure whereby each player knows only the initial state of the process and
has to choose a control for the entire infinite time horizon. Then the open-loop equilibrium
solution is similar to a static game concept, except that the players’ actions are now described
as functions of time.

In 19] it is shown how this paradigm can be used in a more complex information structure,
called piecewise deterministic games, where the information on the state occurs at "random
stopping time" as the outcome of a random jump process. The game studied in 19] is akin
to a sequential game with continuous state and action spaces. It has been shown in [19] that
the dynamic programming solution of this type of game is closely linked with the turnpike
property of an associated class of infinite-horizon open-loop games.

This gives already two good reasons for studying this interesting class of equilibria. A
third one is more operational. Most of the large-scale computable market models which have
been developed in operations research studies have been based on the open-loop equilibrium
concept. This has been the case in the modeling of energy markets and this is the current trend
when dealing with the modeling of environmental management. Of course, the feedback-
Nash concept usually does not lend itself to a numerical computation with the exception
of two extreme cases: the linear quadratic game structure (with some difficulties for the
infinite-horizon case, see, e.g., [8]) and the affine dynamics one (see [2] for a discussion
of the difficulties in solving dynamic programming equilibrium equations). Therefore the
operational representation of competition through capital accumulation or capacity expansion
for large-scale models remains, for the moment, in the realm of open-loop games.

As in the economic growth problem, the justification for considering an infinite time
horizon stems from the necessity to give, at the end of any finite horizon, a bequest value to
the accumulated stocks (capital goods). These values should express the utility of these stocks
in further economic activity, hence providing a justification for a never-ending process. From
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an operational viewpoint, the theory developed in the present paper would give a theoretical
justification for adopting as approximate terminal conditions for a long but finite-horizon
model the steady-state equilibrium, which should be the attractor if the horizon is infinite.

The paper is organized as follows. In 2 we explore the turnpike property for a general
class of competitive process models, permitting, as in [21 for the single-player case, a nonau-
tonomous dynamic. In 3 we show that the conditions used to insure asymptotic stability also
imply existence of overtaking equilibria. In 4 we show that, in addition we get uniqueness.
Finally in 5 we present a class of examples to which the results given below are applicable.

2. Turnpikes for discrete time overtaking equilibria. In this section we define the
concept of an overtaking equilibrium for a class of games which represent infinite-horizon
dynamic competition among m firms. We give conditions under which all the overtaking
equilibrium programs, emanating from different initial states, bunch together at infinity.

2.1. Competitive programs. We consider a competitive process defined by the following
data:

(i) There is an infinite sequence of stages or time periods k 0, 1, 2
(ii) A set M --" m of m players (or firms) is represented at period k by a state

x 6 N, where/’/j is a given positive integer (we denote n nl at- at- nm). This state is,
e.g., the production capacity of firm j.

(iii) For each j 6 M, a program for player j is defined as an infinite sequence xj (x 6

Nn k 0, 1 ). An M-program is defined as x (x k 0, ((xj)jet k
O, 1, ...).

(iv) Along an M-program, the reward accumulation process for player j is defined as

K-1

(1) tpjr (X) Z(ij k k A4 2,..Lj (x K
k=0

where flj 6 (0, 1] is the discount factor for player j ((flj) denotes the kth power of flj),
n -x. TheLj ]1nj N [,.J {--O} j 6 M, are given functions and Axf Xf+1

k (Xk Axe) represents, e.g., the net income to firm j when the market price is aexpression Lj
function of total supply Yjet x minus the cost for the capacity adjustment Axe.

2.2. Optimality. Given an M-program x* we denote by [x*(J); xj] the M-program ob-
tained when player j changes unilaterally his program to xj.

DEFINITION 2.1. An M-program x* is an equilibrium at x if
1. x* x,
2. limtc tpfl (x*) < cx for all j M,
3. lim inf/__, (bjr (x*) qjr ([x.<j; xj ])) > 0 for all programs xj such that x x

for all j M.
Ifonly thefirst and third conditions hold, the M-program x* is calledan overtaking equilibrium
at x.

2.3. Optimality conditions. Let us introduce for j 6 M and pj ]nj the Hamiltonians

n n x Itxnj I [,.J {(x)}, defined as

(2) Hf (x, pj) sup{L(x, zj) + pj zj }.
zj

Here pj is called a j-supporting price vector. A sequence

p (pk.k_O, ((Pjk)jet’k-O, 1

will be called an M-price schedule.
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Assumption 2.2. We assume that the Hamiltonians Hf are concave in xj, convex in pj.
For an (overtaking) equilibrium the following necessary conditions hold.
THEOREM 2.3. Under Assumption 2.2, if x* is an overtaking equilibrium at initial state

x, then there exists an M-price schedule p* such that

_k+l*(3)

...k+l* 1"(4) AP* + aj vj e -3x, Hf (xk*, p+ ),

for all j e M, where we have denoted otj (1 T )"

Proof. See [3], [211 for a proof of Theorem 2.3.
Equations (3), (4) were called pseudo-Hamiltonian systems in [18]. These conditions

are incomplete since only initial conditions are specified for the M-programs and not their
associated M-price schedules. In the single-player case, this system is made complete by
invoking the turnpike property, which provides an asymptotic transversality condition. Due
to the coupling among the players, the system (3), (4) considered here does not fully enjoy
the rich geometric structure found in the classical optimization setting (for instance the saddle
point behavior of Hamiltonian systems in the autonomous case). In the next two sections
we provide conditions under which the turnpike property holds for these pseudo-Hamiltonian
systems.

2.4. A Turnpike result for the undiscounted case. Let us first consider the case where
flj 1 for all j 6 M. Then, clearly, we have to deal with overtaking equilibria since the
sequence of accumulated rewards can be unbounded.

Assumption 2.4 (strict diagonal concavity-convexity assumption (SDCCA)). We assume
that the combined Hamiltonian jm Hf(x, pj) is strictly diagonally concave in x, convex
in p. That is,

jM

for all (j, 2j,/3j,/Sj) and (’j, j, j, j), such that

(6) :6: e OpjH(., #j ), Yr OpjH(, #j ),

(7) j -OxUf(}, #j), gj e -OxUf(2, #j).

LEMMA 2.5. Assume flj 1 for all j M. Let i and i be o (overtaking) equilibria
at }o and 2, respectively, with their respective associated M-price schedules and . Then
under Assumptions 2.2 and 2.4 thefollowing inequali holds:

jM

(9)

(10)

(11)

(12)

Proof. According to Theorem 2.3 we have

_k+lA) Op, Hj(.k pj ),

A. e _axjH(k, pjk+l),
k+l

-k k =k+lApj -Ox Hf (2 pj ).
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Then (8) follows directly from Assumption 2.4. V]

We now prove the turnpike theorem, under Assumption 2.4, for the class of strongly
diagonally supported (overtaking) equilibria defined below.

DEFINITION 2.6. We say that the (overtaking) equilibrium M-program f is strongly diag-
onally supported by the M-price schedule if, for every e > O, there exists a > 0 such that
for all k 0, 1 IIx -11 / lip-/311 > e implies

jEM

for all (xj, pj) and (zcj, j), such that

(14) yrj OpjH(x, pj),

(15) j -OxjHf(x, pj).

Remark 2.7. In the autonomous case, treated in more detail in 2.7, the stricter inequal-
ity (13) is obtained as a consequence ofAssumption 2.4 or inequality (5) when the state variable
x remains in a compact set (this is known as the Atsumi lemma in the single-player case).
In the general nonautonomous case, the condition (13) is certainly more restrictive and not
always easy to verify. The case of discounted payoffs is a special case of the general nonau-
tonomous case and it exhibits a special structure that permits these strong support properties to
be modified in such as way as to be useful. This is particularly true if this nonautonomy arises
only as a result of the discounting. We pursue these developments in 2.6 and 2.7 below.

THEOREM 2.8. Suppose Assumptions 2.2 and 2.4 hold. Assume j 1 for all j M.
Let i, with its associated M-price schedule f, be a strongly diagonally supported (overtak-
ing) equilibrium at o such that

lim sup (, /3k) < .
k--o

Let f be another (overtaking) equilibrium at 2 with its associated M-price schedule
such that

lim sup (,/) < .
k--+cx

Then

(16) lim I1(k k,/ _/k)l 0.
k-->o

Proof. Assume (16) does not hold. Then, according to equation (13) of Definition 2.6 we
have

K

(17) lim k..0jeM [(A/3jk. A/3)’(jk. jk.)+ (/3jk.+l ~k+l),(Ajk. A)] x
K--x: pj

However the left-hand side of the above expression is also equal to lim/(__, V (K), where

(18) V(K) [(/3ff+1-/ff+l)t(3ff+l 9+1) (,,0_/j0.)t()j0. 3j0.)]pj
jEM

If the M-programs and their associated M-price schedules are bounded, then so should be
V(K) for all K. This contradicts (17). V]

Remark 2.9. This turnpike result is very much in the spirit of McKenzie [21] since it is
established for nonautonomous systems as well as a nonconstant turnpike. The special case
of autonomous systems will be considered in more detail in 2.7.
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2.5. Conditions for SDCCA.
k (x, zj) is concave in (xj zj) and assume that the total rewardLEMMA 2.10. Assume Lj

function ’:OeM Lj (x, zj) is diagonally strictly concave in (x, z), i.e., it verifies

(19) [(z) z)’() ga + (x) x2)(O r/)] < O,
jeM

for all

x z)),
x, z),

Then Assumption 2.4 holds true.

; E OzjL)(x 1,

(x z).(? Oz Lj

(x, zj) in (xj zj) implies that each HamiltonianProof. The concavity of Lj
supt + pj
zi

defined in (2) is convex in pj, for j 6 M. This property with (19) imply that (5) holds true

for all (j, j,/3j,/3j) and (:j, :j, j, j), such that (6) and (7) are satisfied. [q

Remark 2.11. In the special case when the functions L(., .) are twice continuously
(x, z)differentiable the strict diagonal concavity in (x, z) ofthe total reward function YOM Lj

may be verified by applying the conditions given in Rosen [26, Thm. 6, p. 528].

2.6. The turnpike property with discounting. We have seen that concavity-convexity
of the Hamiltonians and SDCCA, when combined with the strong support property, imply
the turnpike property for overtaking equilibria when the infinite-horizon payoffs are not dis-
counted. Discounting the payoffs could be considered as a form of a nonautonomous system.
However, in that case, the condition of strong diagonal support will not be easily satisfied. To
give a workable turnpike theorem for the discounted case, i.e., when fly < 1 for at least one
j, we must strengthen the support property of Definition 2.6 by a curvature condition.

THEOREM 2.12. Suppose Assumptions 2.2 and 2.4 hoM. Let and f be two overtaking
equilibria at o and o, respectively, with associated M-price schedules f and } such that

lim sup (k, p)II < and lim sup (, 5) <
k--+x k-->c

and additionally satisfy thefollowing property.
For each e > 0 there exists > 0 so that whenever

one has

(20)

for all

(21)

(22)

Then

jeM

jeM

k+l

_k+l

lim ( ,/3k /3) 0.
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Proof. The proof of this result is a straightforward adaptation of the proof of Theo-
rem 2.8.

Remark 2.13. The condition (20) is clearly a strengthening of (13). This condition indeed
is analogous to the conditions found in the papers of Cass and Shell, Brock and Scheinkman,
and Rockafellar, et. al., which are nicely collected in 11 ].

2.7. The autonomous case. We now focus our study on the case when the functions Lj
k (x, zj) =-- Lj (x, )). In this case, the optimality conditionsare independent of time k (i.e., Lj zj

become

AX)
_

Opj Hj (xk, pl-t-1),
_k+l k+lAp q- otj pj e --Ox, Hj (x p ),

where

Hj (x, pj) sup Lj (x, zj) + p} zj }.
Zj E,nj

The above conditions define an autonomous pseudo-Hamiltonian system and the possibility
arises that there exists a steady-state equilibrium. That is, a pair ($,/3) IRn x IRn which
satisfies

0 Op, Hi(2, j),

aj j e -Ox, Hi(2, fij ).

When a unique steady-state equilibrium exists, the turnpike propegies discussed above provide
conditions when the pair (2, ) becomes an attractor for all bounded (ovegaking) equilibria.
Moreover, in this case, the suppog propeies and curvature assumptions along a trajectory
described on the nonautonomous case become simpler.

DEFINITION 2.14. Let ( fi) be a steady-state equilibrium. We say that the strong diagonal
support proper for (, fi) holds iffor each > 0 there exists > 0 so that whenever
IIx + lip P > , one has

]
jeM

(23) > a +
jeM

for all j e M and pairs (j, j) satising

j Ox Hj (x, pj and j -Op Hj (x, pj

Remark 2.15. If x is an M-program with an associated M-price schedule p such that

IIx - + liP 11 > ,
_+1 A4’ and A4 (23)then ming the substitutions xj x), pj pj j j in

immediately shows that the steady state (, ) satisfies (20). This leads immediately to the
following result.

THEOREM 2.16. Assume that (, ) is a unique steady-state equilibrium that has the
strong diagonal supportproper given by (23). Thenfor any M-program x with an associated
M-price schedule p that satisfies

lim sup (x, P)II < ,
k
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we have

lim (x -, p -/) 0.
k---o

Proof. Theorem 2.16 follows immediately from the above remark and Theorem
2.12.

In a discrete time infinite-horizon optimal control problem with discount factor/ 6 (0, 1 ],
a steady-state equilibrium Y is assured to be an attractor of overtaking equilibria by requiting
the Hamiltonian of the system to be a-concave in x and b-convex in p for values of a > 0 and
b > 0 for which the inequality

holds (see, e.g., Rockafellar [24] or Brock and Scheinkman [6]). We conclude this section by
extending this result to the case considered here.

DEFINITION 2.17. Let a (al, a2 am) and b (bl, b2 bm) be two vectors

in m with aj > 0 and bj > 0 for all j 6 M. We say that the combined Hamiltonian

ZjM Hj (x, pj is strictly diagonally a-concave in x, b-convex in p if

is strictly diagonally concave in x, convex in p.
THEOREM 2.18. Assume that there exists a unique steady-state equilibrium, (Y, fi). Let

a (al, a2 am) and b (b, b2 bin) be o vectors in m with aj > 0 and bj > 0

for all j M, and assume that the combined Hamiltonian is strictly diagonally a-concave
in x, b-convex in p. Further, let x be a bounded equilibrium M-program with an associated
M-price schedule p that also remains bounded. Then, if the discount rates , j M, satis
the inequalities

the M-program
Pro@ Let be a bounded M-program and let p be its associated M-price schedule (which

is also bounded). Then we have the following inclusions for all k N and j M:

Axf bp+1 Op) Hj(xk, + ajllxfll 2 b"llp)k+l ll2

g +g a4 - (x, + a4

-b

Thus, as a consequence of our SDCCAs, we have for each k N that

je
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jeM

j (x) j) -4- aj Ilxf j 2

Summing from k 0 to k K we may write

v() > EE ;lly/ :11
k=O jeM

where, as before,

V(K) EE +1__ /j Ax -’[- (X 3j) Apjk.
k=O jM

This inequality may be equivalently written as

K

k=O ]eM

> EE a- ,iq-,l.
k=O jM

To conclude this proof we see, from above, that if the M-program x does not converge to Y,
then limK V(K) cx because of (24). This, however, is a contradiction since we may
equivalently write

showing that V(K) must remain bounded for all K. [q

Remark 2.19. In the above results we have extended the classical asymptotic turnpike
theory to a dynamic game framework with separated dynamics. The fact that each firm controls
a distinct dynamical system and that the coupling between the players occurs only through
the rewards is essential. An indication of the increased complexities of coupled dynamics is
given in Haurie and Leitmann [18].

Remark 2.20. The assumption of the existence and uniqueness of the steady-state equilib-
rium (2,/3) requires the solution of a nonlinear system of inclusions. In the single-player case,
the study of solutions of these systems was considered by Rockafellar [24] (see in particular
Theorem 5). In particular, he showed that if the Hamiltonian is a-concave in x and b-convex
in p, and if there exists a unique steady-state equilibrium for the undiscounted case ot 0 (i.e.,
fl 1), then for all ot > 0 sufficiently small there exists a unique steady-state equilibrium
pair (Y,/3). This theory has yet to be developed for the multi-player case considered here.
In addition, the relationship between the steady-state equilibrium and the solution of a related
family of mathematical programming problems was studied, again in the single-player case,
by Feinstein and Luenberger [14]. In that work the "implicit programming problem" is de-
fined and the solutions to this optimization problem are shown to correspond to a steady-state
equilibrium pair. For the multi-player case, we direct the reader to 19] in which an "implicit
static equilibrium" is defined with properties analogous to those presented in 14].
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3. Existence ofequilibria. In this section we extend Rosen’s approach to show existence
of equilibria in dynamic autonomous competitive processes, under sufficient smoothness and
compactness conditions. Basically we reduce the existence proof to a fixed-point argument
for a point-to-set mapping constructed from an associated class of infinite-horizon concave
optimization problems.

3.1. Existence of overtaking equilibria in the undiscounted case. Our proof of ex-
istence of an overtaking equilibrium for undiscounted dynamic competitive processes uses
extensively sufficient overtaking optimality conditions for single-player optimization prob-
lems (see [7, Chap. 2]). For this appeal to sufficiency conditions the existence of a bounded
attractor to all good programs is important. This is the reason why our existence theory
is restricted to autonomous systems for which a steady-state equilibrium provides such an
attractor.

Remark 3.1. Existence of overtaking optimal control for autonomous systems (discrete or
continuous time) can be established through a reduction to finite cost argument (see, e.g., [7]).
There is a difficulty in extending this approach to the case of dynamic open-loop games. It
comes from the inherent time-dependency introduced by the other players’ decisions. Our ap-
proach circumvents this difficulty by implementing a reduction to finite costs for an associated
class of infinite-horizon concave optimization problems.

We first make the following assumptions.
Assumption 3.2. The functions Lj ]tn X ]txnj "-’+ I are strictly concave in (xj, zj and

additionally we have that and are continuous on 7 ]tnj for each j 6 MOZj
Assumption 3.3. There exists a unique steady-state equilibrium 2 6 In and a correspond-

ing constant M-price schedule/5 6 IR satisfying

0 e Op Hj (2, [j),
(25)

0 e Ox Hj (2, fij ).

To achieve our result we must assure that all admissible M-programs lie in a compact set.
Thus we make the following additional assumption.

Assumption 3.4. For each j M there exists a closed bounded set Xj C RnJ such that
each M-program, x, satisfies x Xj for each k 6 N. Additionally we introduce the following
notation.

(i) We let 2 denote the set of all M-programs that start at x and converge to 2, the
unique steady-state equilibrium.

(ii) We define the family of functionals p f x f N, K e N, by the formula

K.
k=O jM

We view f2 as a subset of all bounded sequences in In endowed with the topology of
pointwise convergence.

DEFINITION 3.5. Let x, y f2. We say that y 6 F (x) if

lim inf (pK (X, y) pK (X, Z)) > O,
K---> (:x:)

for all M-programs z such that z x. That is, y is an overtaking optimal solution of
the infinite-horizon optimization problem whose objective functional is defined by pg (X, .).
Hence 1-’ (x) can be viewed as the set of optimal responses by all players to an M-program
(x).
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THEOREM 3.6. Under the above assumptions, there exists an overtaking equilibriumfor
the infinite-horizon dynamic game.

Proof. To prove our result we prove that the set-valued map F f2 ---> 2a has a fixed
point using the Kakutani fixed-point theorem. To do this we need to show that

1. for each x 6 , the set F (x) is nonempty, convex, and compact.
2. the map F(.) has a closed graph. That is, if (y/, x/) is a sequence in f2 x f2 that

converges to (y, x) and additionally satisfies

Yl I" (X/)

for all 1, 2 then y F (x).
We begin by first showing, for each x f2, that F (x) is nonempty. To see this we fix

x f2, let (0l)lC=l be an unbounded strictly increasing sequence of positive integers, and define
for each 1, 2 the M-programs Xl as

if k <x/=
2 ifk>Ol,

for k 1, 2 Now consider the problem of maximizing the functional 9/(x/, .) defined by
the formula

k=O jeM

k=O jeM

over all M-programs starting at x. Observe that for each k > Ol, the terms of y (X/, Z) are non-
positive and in fact equal zero whenever we take z 2j. From this it follows easily that there
exists an M-program, say z, for which y (x/, z) > -x and, moreover, since each term ofan M-
program lies in a compact subset ofNn, it also follows that y (x/, z) is bounded above. There-
fore, there exists an M-program Yl that maximizes ?, (x/, z) as desired. Furthermore, as a result
of the strict concavity assumptions given above, it follows that Yl E 1-’ (x/) and we also have

lim y/ 2.
k---> (x

This asymptotic stability property was proved by Brock in [3] (see also [7]). In this way
we generate the sequence (y/) in S2, a compact set. Thus we can assume that the sequence
(y/) converges to an M-program y ft. Additionally, we also know that the sequence (x/)
converges to our original M-program x. We now show that y 1-’ (x). To this end we note
that for each 1, 2 there exists an M-price schedule Pl such that

_k+l)Ayl e Opi Hj Ix[j) Ylj
k

tllj

k+l)" 15 -Ox.., yl, pl,

or equivalently that

k+l
Plj qo Zj

(26)
0API Oxj

Lj ([x[j) Ylj ]k k)AYlj

Lj ([x[j) Ylj
k kAYlj)



1416 D. CARLSON AND A. HAURIE

Holding k 6 N fixed and letting -- c in the above gives us that

0
(27) pjk.+l lim p+l -Lj ([x(j) yj] Aye)

l--+c lj OZj

and

0

That is, we can associate with y 2 an M-price schedule p and, moreover, since x, y
we have lim__, p) =/3j as well. Therefore, by appealing to standard sufficient conditions
for overtaking optimality we obtain y I" (x) as desired Further it is easy to see that, as a
result of our concavity assumptions on Lj, F (x) is a convex set.

Since 1-’ (x) is a subset of f2, a compact set, the compactness of 1-" (x) follows immediately
once we show that it is closed. To see this let (y) be a sequence in F (x) that converges to y
and let (p/) be the sequence of corresponding M-price schedules. By a direct adaptation of
the above argument it can be shown that there is an M-price schedule p associated with y that
converges to/3 as k cx. Hence y I" (x), giving us the desired compactness condition.

It remains to prove that the graph of F is closed. To see this let (y/, x/) -- (y, x) as-- be such that Yl I" (X/) for each 6 N. Further we let (p/) be a sequence of associated
M-price schedules, satisfying (26). Then, once again, letting -+ cx one sees that there exists
an M-price schedule p associated with x such that Pl -+ P. Thus proceeding as above we see
that y 6 F (x), which gives us the closed graph property.

We have just shown that the conditions needed to apply Kakutani’s fixed-point theorem
are satisfied. Therefore there exists x* 6 F(x*). The proof that the M-program x* is an
overtaking equilibrium now follows as in Rosen [26, Thm. ].

3.2. Existence of equilibria in discounted competitive processes. Under the assump-
tions made above to establish the existence of an overtaking equilibrium, it is easy to treat the
case of autonomous games with discounting. Indeed, by requiring all admissible M-programs
to satisfy the compact constraints x Xj for all j 6 M and k 6 N and having/3j 6 (0, 1), it

follows that the functionals/oK N, K N, now given by

K

]kpK(x’ Y) EE [(j)Lj ([xj yj Ay)]
k=0 jeM

are bounded both above and below for all K N. Thus, the existence of an equilibrium can
be assured by an easy modification of the above argument. To do this we enlarge f2 to be
the set of all M-programs satisfying the initial condition x and now define 1-" f2 -- 2a as
follows"

For an M-program x e f2 we let 1-’ (x) denote the set of all M-programs
y f2 such that

pK (X, y) max pK (X, Z).
z

Further, the positive discounting eliminates the need to define the associated problems
using the functional 9/(’, "). Therefore we state the following result without proof.

THEOREM 3.7. Let j > Ofor j M and let Assumptions 3.2-3.4 hold. Then there exists
an overtaking equilibriumfor the discounted autonomous infinite-horizon dynamic game.

Remark 3.8. Both ofthe existence results given above are for autonomous dynamic games
only. We observe however that our arguments would be applicable in the nonautonomous case
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if one could assume that the sets F (x) are nonempty. To make this conclusion would require
one to appeal to corresponding nonautonomous existence theorems for optimality (overtaking
optimality in the discounted case). This of course would require some growth restrictions on

k(x, )l < Aj for all (x, zj) j M and k 6 N)..) (e.g., ILj zjthe functions Lj (.,

4. Uniqueness of equilibria. In Rosen’s paper [26], the strict diagonal concavity con-
dition was introduced essentially to assure uniqueness of equilibria. In 2 we introduced a
similar assumption to get asymptotic stability of equilibrium programs. Indeed this condition
also leads to uniqueness.

THEOREM 4.1. If the assumptions of Theorem 2.8 hold and there exists an overtaking
equilibrium at x, then it is unique.

Proof. Assume that : and are two distinct equilibria at x, with their respective M-price
schedules 13 and . According to the necessary conditions, for all k 0, there exist

^k ~k

(30) s) -ax, Hf(.,/3j), sg) -0x, Hf (X’,/3j)

such that

(31)

Adding over k 0 K we get

(32)

K

k=0 jM

K

k=O jM

Now, when K --+ cx, the right-hand side of (32) tends to a strictly positive number, due to
SDCCA, whereas the left-hand side, which collapses to

(33) E [(/+1 /+l)t(.ff+l /ff+l)+ (/jO. /jO.)t(pjO. __/jO.)]
j6M

goes to zero, due to the turnpike property. This is a contradiction; hence the overtaking
equilibrium is unique. [3

5. Example. We consider the following class of games as an example where the con-
ditions stated in this paper are easy to check. We assume that Lj n ]tnj ]t has the
form

Lj (x, zj) gj (xj, zj) -4- Gj (x),

for j 1, 2 m. Thus the accumulated reward for the jth player over [0, K], K > 0 an
integer, is given as

K-1

k=O
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In this formulation there is a separation between the control of each player and the state
variables of the other players. We assume that the functions gj (., .) are concave and that the
combined G’s are strictly diagonally concave. In this way it is easy to see that the combined
Hamiltonians, defined by

t/jx, pj sup {/x, z + pj-z}
zNnJ

sup {gj(xj, z) + pj z} + Gj(x)

I(x, p) + G(x),

are strictly diagonally concave in x and convex in p since each of the Hamiltonians, , are
concave in xj and convex in pj. We further observe that the Hamiltonian dynamical system
that is necessary for an equilibrium becomes, when flj 1,

zx8 + Vx O (x ) 8).
The conditions for a steady-state equilibrium become

0 Opj Hj (2j, #j),

-Vx() e -Ox, Ij(c, ).

Thus to insure that the turnpike property holds, we require this steady state 2 to be strongly
diagonally supported by/5. That is, for each e > 0 there exists 3 > 0 so that if IIx 7 +
P -/5 > , one has

[( )’r + % )’0] + (x )’(v,O(x) Vx, o()) >
jM jM

for all (7rj, Oj), j 6 M, satisfying

This condition is insured if the steady-state equilibrium is unique and the programs remain in
a compact set. Indeed this is a consequence of the strict diagonal concavity for the combined
G’s and of the concavity-convexity property of each Hj. The fact that the strong support
property is a consequence of compactness and strict diagonal concavity would be an easy
adaptation of Atsumi’s lemma (see [7]).

6. Conclusion. In this paper we have shown that, for infinite-horizon competitive pro-
cesses defined over dynamical systems where the players only interact through the payoff
functionals but control their own separate dynamics, an assumption very similar to the one
made by Rosen in his seminal study of uniqueness of equilibria in static concave games brings
together global asymptotic stability of equilibrium trajectories, existence, and uniqueness of
overtaking equilibria at each initial state. This extends the so-called turnpike theory of optimal
economic processes to a competitive case.
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THE GENERALIZED SOLUTIONS OF NONLINEAR OPTIMIZATION
PROBLEMS WITH IMPULSE CONTROL*

BORIS M. MILLER

Abstract. The optimal control problem described by a nonlinear ordinary differential equation is considered with
unbounded controls. The aim of this paper is to provide a representation of generalized (discontinuous) solutions in
terms of differential equations with a measure. By using the method of discontinuous time change the problem with
nonlinear dependence on the unbounded controls can be reduced to the simpler one with bounded controls. These
results are applied to solving the problem of generalized (discontinuous) solution representation in the dynamic system
with impulse-type controls.

Key words, nonlinear systems, impulse control, generalized solutions, discontinuous time change

AMS subject classification. 49B05

1. Introduction. In this paper we discuss the control of a nonlinear dynamic system
whose state is governed by the nonlinear differential equation

(1) Jc(t) F(x(t), u(t), w(t), t),

where F(x(t), u(t), w(t), t) is a given function, x(t) Rn, [0, T], x(t) xo is an initial
condition, and u(t) and w(t) are measurable controls on [0, T]: u(t) R is an ordinary
control component, and w(t) R is a generalized one. The former component corresponds
to the bounded control

(2) u(t) 6 U C R,
where U is a closed and bounded subset of R, and the latter corresponds to control which is
unbounded in the norm but bounded in the integral sense so that

(3) w(t) W C Rm,

(4) IIw(t) Ildt <_ M <

where W is a subset of R and M is a constant.
The optimization problems with impulse and ordinary controls occur in flight dynamics

[5], [7], [8]: for example, the positions of the exhaust vanes of the space vehicle can be
considered the bounded control inputs, and the jet flow rate could be impulse (unbounded)
controls. Another example of such type of optimization problem is one of observation control
[2], [8] for discrete-continuous systems where two different types of observation controls
characterize the possibility ofcontrolling both the composition ofobservations and their timing
and density.

Condition (4) means that the admissible controls can be taken as functions that are as close
as desired to the impulse or generalized functions. As a result, the solution of the optimal
control problem in system (1) with absolutely continuous paths {x(.)} under constraints (2)-
(4) may not exist within the class of measurable ordinary or relaxed control functions. Thus,

*Received by the editors December 16, 1994; accepted for publication (in revised form) April 25, 1995. This
research was supported in part by National Science Foundation grant CMS 94-1447s and International Association
for the Promotion of Cooperation with Scientists from the Independent States of the Former Soviet Union (INTAS)
grant 94-697.

tlnstitute for Information Transmission Problems, 19 Bolshoy Karetny per., Moscow 101447, Russia
(bmiller@ippi.ac.msk.su).
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the concept of a solution should be extended to consider the possible discontinuous behavior
of the optimal path under the impulse control action.

If the function F(x, u, w, t) is linear on w, i.e.,

F(x, u, w, t) f(x, u, t) + B(t)w,

where the matrix-valued function B(.) is continuous, the concept of solution can be easily
extended, interpreting equation (1) as one with measure of the following type [6], 16]:

dx(t) f (x(t), u(t), t)dt + B(t)dtz(t).

However, if the function B(.) is discontinuous or depends on the other control u(.),
i.e., B B(t, u), then the representation of the optimal solution by the above equation can
be incorrect without a special "constancy" condition. For the investigation of optimization
problems with impulse controls in the system

dx(t) f(x(t), u(t), t)dt + B(t, u(t))dt(t),

the special method that we refer to as the method ofdiscontinuous time change was introduced
by Rishel [15]. Rishel’s approach is to introduce a new independent variable with respect
to which trajectories become absolutely continuous. This leads to the consideration of an
auxiliary control problem with bounded controls in which the time variable plays the role of
a component of the state variable. This approach enables us to reduce the original optimiza-
tion problem to the equivalent auxiliary one with bounded controls and to deduce optimality
conditions for the original optimal process.

The general approach, based on the idea ofreplacing time with a new independent variable,
was applied to the class of nonlinear systems by Warga [20]-[22], who considered nonlinear
systems with an arbitrary dependence on unbounded components ofcontrol. Warga’s approach
provides an effective tool for the investigation of the optimization problems and gives the
general representation of optimal paths by the discontinuous time change. We are going to
give a further extension of this method, namely, to derive the representation of generalized
(discontinuous) solution in optimization problems in terms of differential equations with a
measure.

Some results in this area were obtained for special classes of systems, for example, when
B(.) depends on the state variable x and only, i.e., B B(x, t). If B(x, t) satisfies the
Frobenius-type condition [1], [9], [11], [14], [18], it is possible to derive the representation of
a generalized solution in the form of a nonlinear differential equation with a measure.

In recent works [10], [12], [13] this representation was obtained for nonlinear systems
with the function F(x, u, w, t) in (1) in the form

F(x, u, w, t) f(x, u, v, t) -t- B(x, u, v, t)w

with additional variable v, which satisfies the equation

IIw(s)ll

and can be used to describe the dependence of state variables and constraints upon the varying
control resource. The complete survey of results concerning the applications of the discontin-
uous time change method to representation of the generalized solutions and derivation of the
optimality conditions can be found in 11 ].

However, if the function F(x, u, w, t) is nonlinear with respect to w or there are special
constraints on variations of state variables, we need a further investigation of this concept to
obtain the representation of generalized solutions by differential equation with a measure.
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In this paper we consider the concept of a generalized solution as a pointwise limit of
some sequence of ordinary solutions on the set of continuity of this generalized solution.
The application of Warga’s approach [20], [21] to the problem with constraint (4) gives a
very natural form of auxiliary system for representation of the generalized solution with an
additional variable "new time." In this case the function q9 in the equation for the "new time"
can be taken in the form p 1 + ]lwl], as in the cases mentioned above [10]-[13]. Then,
our next steps in the representation of generalized solution, such as Theorems 3.1, 3.2, and
3.3, follow directly from the results presented in [21 with slight modifications. Section 4 is
devoted to the study of representation problem for the right-hand side of the auxiliary system
in the "control" form along the lines of [22]. This is the key problem for the representation
of the generalized solution by the sampling of some control in the auxiliary system. Here,
the main result shows that in the case of the regular behavior of F(x, u, w, t) at infinity, we
can obtain this representation of the right-hand side of auxiliary system. Now, in the regular
case we can derive the differential equation with a measure for any generalized solution of
system (1). Results presented in 5 (Theorems 5.1 and 5.3) yield the representation of any
generalized solution in the form of a generalized equation with a measure, that is, similarly
to the representation of weak solutions for the controlled systems, described by the ordinary
differential equations with a nonconvex fight-hand side [6]. Finally, in 6 we return to the
original optimization problem to formulate the existence condition for the optimal generalized
solution.

2. Problem statement and assumptions. Let the controllable system be described by
(1) with the state variable x(t) E Rn and controls {u(t), w(t)} satisfying (2)-(4).

We shall assume that vector function F is continuous with respect to (x, u, w, t) E
Rn+k+m+l and that for any (u, w, t) U x W [0, T] the function F satisfies a Lipschitz
condition, i.e.,

(5) IlF(x, u, w, t) F(x2, u, to, t)ll < LI(1 q- Ilwll)(llXl xell)

for any xl, x2 G Rn with constant L1 > 0.
We shall also assume that F (x, u, w, t) has linear growth in both x and w, i.e.,

(6) IlF(x, u, w, t)ll t2(1 -}-Ilxll)(1 + Ilwll)

for any (x, u, w, t) with constant L2 > 0.
Our purpose is to consider the optimal control problem for system (1) with the following

performance criterion, which must be minimized:

(7) J[x(.), u(.), w(.)] o0(x(0), x(t)),

where P0 is continuous with respect to all the variables, and controls {u(.), w(.)} satisfy the
constraints (2)-(4) also to the following terminal and phase constraints:

(8) h(x(O), x(T)) O, S(x(O), x(T)) < O,

(9) g(x(t), t) < 0 for 6 [0, T].

Here h, S, and g are RN-, RN2-, and RN3-valued continuous functions, respectively, and (8)
and (9) can be understood as componentwise relations.

To take into account the possible impulse behavior of the control component w(.) we
shall consider the following definition of generalized (discontinuous) solution of system (1).

DEFINITION 2.1. A right continuous function x(.) of bounded variation on the inter-
val [0, T] is said to be a generalized solution of the system (1) if there exists a sequence of
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admissible controls {Un (’), //)n (.)} satisfying the constraints (2)-(4) such that the correspond-
ing sequence {xn(.)} ofsolutions of(l) with the initial condition xn(O) x(O-) converges to
x(.) at all the points of its continuity.

In other words the generalized solution is a limit of sequence of ordinary solutions in the
sense of weak-* topology in the space of right continuous functions with bounded variation.

A solution of optimization problem will be sought in the class of generalized solutions.
We shall require that constraints (8) and (9) hold for a generalized solution, whereas (8) and
(9) hold only in the limit for the sequence of ordinary solutions that approximates the former
one.

DEFINITION 2.2. A right continuous function x(.) of bounded variation on the interval
[0, T] is said to be the admissible generalized solution ofthe system (1) under the constraints
(8) and (9) if

(i) {x(.)} satisfies the constraints (8) and (9) in the sense

h(x(O-), x(T)) O, S(x(O-), x(T)) <_ O,

g(x(t),t)<O for t6[0, T];

(ii) there exists a sequence ofadmissible controls {un (.), wn(.)} satisfying the constraints
(2)-(4) such that the corresponding sequence {x (.)} of solutions of system (1) converges to
x(.) at all points of continuity and, in addition,

limxn(0) x(0-), limxn(T) x(T),
n

lim sup gk(Xn (t), t) <_ 0 for k N3.
[0,T]

DEFINITION 2.3. An admissible generalized solution {x(-)} is said to be the optimal
generalized solution if the inequality

p0(x(0--), x(T)) < go0(x(0-), x(T))

Ekes placefor any admissible generalized solution {x (.) }.
Remark 2.1 These definitions are in accord with the definition of the solution of general

optimization problem formulated in [21, Thm. VI.4.2].
Our purpose is to characterize the generalized solution with the aid of auxiliary control

system by the method of the discontinuous time change. The next step is to derive the equation
for the generalized solution in the form of special differential inclusion with a measure and,
finally, to prove the existence theorem for the solution of the optimization problem.

3. Generalized solutions and their representation by discontinuous time change.
The application of discontinuous time change for the representation of generalized solutions
of system (1) needs the consideration of some auxiliary controlled system whose fight-hand
side is bounded for arbitrary state variables.

Consider the auxiliary controllable system of differential equations for the pair y(s) R
and r/(s) 6 R 1, defined on the interval [0, T1], where T1 < T + M:

F(y(s), Ul(S), LOl(S), O(s))

((s) ) 1 / llw(s)ll
(10) P(y(s), u(s), w(s), o(s))

(s)
1 / Wl (s)II

with the initial conditions

y(0) x (0), 0 (0) 0
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and the controls in the form of functions u (S) and w (s), which satisfy the constraints

(11) Ul(S) U, w(s) W.

In the auxiliary system (10) and (11) the function F(x, u, w, t), sets U and W, and constants
T and M are the same as in (1)-(4).

Remark 3.1. This choice of auxiliary system corresponds to the one of function q) [20],
[21 ], which is a "rate" of time change, in the form

0(x, u, w, t) + w II.
The right-hand side of (10) satisfies a Lipschitz condition with respect to y, and it has linear
growth in the usual sense, as follows from the inequalities (5) and (6).

There exists an interconnection between the systems (1) and (10) and their solutions,
specified by the following theorems.

THEOREM 3.1. Let the triple offunctions {x(.), u(.), w(.)} satisfy (1) and the controls
{u(.), w(.)} be measurable and satisfy the constraints (2)-(4).

Then there exist the set offunctions {y(.), r/(.), u (.), Wl (.)} defined on some interval
[0, T1], where

r/(T1) T,

which satisfy the system (10) with the initial condition y(O) x(O), and the measurable
controls {ul (.), w (.)}, which satisfy the constraints (11) such thatfor any [0, T]

(12) x(t) y(F(t)),

where

(13) 1-’(t) inf{s O(s) > t}.

,. THEOREM 3.2. Let x(.) be a generalized solution of system (1). Then there exists a
sequence ofadmissible controls {u(.), w(.)} satisfying (11), on some interval [0, T], T <
T + M, such that the corresponding sequence of solutions of the system (10) with initial
conditions

yn (0) x(O-), n (0) 0

converges uniformly on [0, T] to thepair offunctions {y(.), r/(.) }, and the generalized solution
x(.) can be represented on [0, T] by the relation (12), where the function 1-’(.) is defined by
(13), and E(T) T by definition.

Remark 3.2. These results follow directly from theorems VI.4.4 and VI.4.5 in Warga’s
book [21] if the original system is autonomous, i.e., F(x, u, w, t) F(x, w, u). However,
Warga’s arguments remain valid in the nonautonomous case without any change. For our
problem the assumptions of theorem VI.4.4 [21] follow by choosing, in Warga’s notation,
qg(v, u, b) 1 + Ilwll, where Warga’s u represents our (u, w). (Note that all the solutions of
original and transformed problems are confined to a compact set, due to assumptions (4) and
(5).) The assumptions of theorem VI.4.5 should be slightly modified; namely, the condition

(14) IlF(Xl, u, w) F(x2, u, w)ll Lllx x211

is replaced by

(15) IIF(x, u, w, t) F(x2, U, tO, t)ll < LI(1 + Ilwll)llx xll.
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However, the proof of Warga’s theorem VI.4.5 [21] remains valid with slight modifications if
assumption (14) is replaced by (15). To modify the proof of theorem VI.4.5 [2 1] we should
(using the notation of [2 1 ])

(i) replace Cl in (2) with 2Cl (L + 1)--here L is the upper bound of the variation of the
system (1) solution;

(ii) replace cl in (5) with c1(1 + Ilw(t)ll);
(iii) and replace, in step 2, in the first inequality for e(s)

e(v)dr with "(1 + Ilw(v)ll)e(v)dv,

which (using Holder’s inequality) yields relation (7) in the form

e(s) < 11-ot-fllLc’,

where (in Warga’s notation)

c"-- 2cl (1 + Iw(t)l)dt, c’ c" exp(c") < 2(L + 1)Cl exp(2(L + 1)c1).

Now, for every generalized solution of the system (1) we have the representation by the
sequence of ordinary solutions of the auxiliary system (1 0). However, for the solution of the
optimization problem we should find more appropriate representation of generalized solution.
Again, consider the sequence of solutions of the auxiliary system (10), which converges
uniformly to some pair of functions {y(.), /](.)}. As follows from the theory of differential
inclusions and by virtue of continuity properties of function F(y, u, w,/]) [6] this pair satisfies
the differential inclusion

(16)
r(s) ) e conv (/(yl(s), Ul, Wl, (S)) u U, w

where the set in the right-hand side of (1 6) is a closed convex hull of the right-hand sides of
the system (10) for every (y,/]).

Assume that there exists an appropriate representation of the set in the right-hand side of
(16); i.e., there exists the Rn+l-valued vector-function G(y, 09,/]) and. some closed bounded
set in a vector space of appropriate dimension such that for any (y,/]) 6 Rn+l

(17)
conv (/(y, u, w,/]) Ul U, Wl W) (/(y, U, W,/])

G(y, ,/]) {G(y, 09,/]) 109

In addition, assume that G(y, 09,/]) is continuous with respect to (y, 09,/]) and for any
fixed 09 6 f2 this function satisfies the Lipschitz condition and has a linear growth with respect
to (y,/]), i.e.,

(18) G(Yl, 09,/] 1) G (Y2, 09, /]2) L{II Y Y2 + r -/]2 l}

and

(19) IIG(y, 09, )11 t(a + IlYlI+ I)

for any y, Y2 Rn,/]l,/]2 R1 with some constant L > 0.
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Then, due to convexity of the set G(y, , rl) and the boundedness of the set f2 for any
solution {y(.), r/(.)} satisfying the differential inclusion (16), there exists a measurable control
co(.) such that co(s) 6 f2 almost everywhere on [0, T1] and {y(.), r/(.)} satisfy the system

(s) ) G(y(s) co(s), rl(s))
i(s)

on [0, T1] [6].
Now it is possible to formulate the following result concerning representation of the

generalized solution.
THEOREM 3.3. Let there exist the vectorfunction G(y, co, rl) and the set f2 satisfying the

conditions (17)-(19). Then for any generalized solution x(.) of the system (1) there exists a
control co(s) g2 defined on some interval [0, T1] such that

x(t) y(1-’(t)),

where

F(t) inf{s 0(s) > t}

and the pair offunctions {y(.), r/(.)} satisfies the differential equation

((s)) =G(y(s)’co(s)rl(s))fl(s)
with the initial conditions

y(O) x(O-), rl(O) 0

and terminal condition

o(T)-- T.

Assumptions conceming the existence of appropriate function G(y, co, r/) and the set f2
seem to be very artificial; however, it is possible to demonstrate that in the "regular" case they
are fulfilled.

4. Existence of the G function in the regular case. We shall say that we consider the
"regular" case if the function F(x, u, w, t) demonstrates the regular behavior for large values
of variable w.

DEFINITION 4.1. F (x, u, w, t) is said to be regular at infinity if
(i) it is continuous with respect to all variables and has a Lipschitz property with respect

to x and t, i.e.,

IIF(x’, u, w, t’) F(x, u, w, t)ll _< L(1 + Ilwll)(llx x’ll+ t’ I)

for any x’, x Rn, t’, [0, T], u U, w W;
(ii)for any pair ofvectors (u, e)" u 6 U, e 6 E {llell there exists

F(x, Un, tOn, t)
(20) lim (x, u, e, t)

1 -t-Ilwnl]

tOn
Un -’-"> U, ---> e, IIwll--> 00, Un U, wn W,

1 + IIw.II
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where (x, u, e, t) is continuous with respect to all the variables and the limit in (20) is
independent of the choice ofsequence {Un, Wn }.

In this case, introduce the new control variable co, defined by the relation

(21) co =co(w)
1 + Ilwll

Function (21) maps the unbounded set W in a one-to-one manner to the set co(W), which
is a subset of interior of the unit ball in Rm. The map that is inverse to (21) is

w(o)

This inverse map is defined and continuous on the interior of the unit ball in Rm.
Substitution of the control co co(W) instead of w 6 W into (10) for/ gives

F(y, Ul, wl, r/) (1 IIoll)F y, Ul, 1 i1o11’ r/ ((y, u l, co, r/).
1 -I1oll

Now we can demonstrate that in the regular case G is almost the same as desired
by Theorem 3.3. First, one can prove that (y, u l, co, r/) is continuous with respect to
(y, rl, Ul, co) R" R U x co(W). (Here the last set is the closure ofthe set co(W).) The
continuity of this function is evident if Ilcoll < 1 due to continuity of superposition of con-
tinuous functions. Thus, if we consider an arbitrary point (y, r/, u l, co), where I1oll and

n COn COnco co(W), then there exists a sequence {u co’}, such that u 6 U, < 1, co(W),
n conand u --+ u --+ co. Moreover, for every con 6 co(W) we can define

con
W W

such that

0
n

wn , co,
q--Ilwnll

and

(22) d(y, u’, co", ) ff’(y, un, wn, ).

By regularity condition, the function in the right-hand side of (22) has a limit if u" --+ u
and w’/(1 + w II) o, and this limit is independent of the sequence {u’, w choice.
Therefore, G can be extended by continuity to the closure of the set co(W). We will use the
same symbol G for the extended function.

Consider the relation

(23)

The first term in the right-hand side of (23) can be estimated by the value L(]ly’m Y]I+
r/’ r/ I), due to the Lipschitz property of original function F(x, u, w, t), and the last term

cottends to zero if (u’ co’) --+ (u co) because ofthe regularity condition. Hence G(y’ u r/’)1,

( (y, u 1, w, r/) if (y’, u’ co’, 0’) (Y, u l, w, r/), and the function G is continuous. More-
over, it is a Lipschitz one and has a linear growth.
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Now for the final construction of the requested function G(y, , r/) we can use an ana-
lytical description of convex hall of the bounded set ((y, U, co(W), r/) by the Carath6odory
theorem [6]. Hence, the function G(y,-, O) and set f2 can be represented in the form- [bli,coi, Oli, 1 n + 2] Ui E f, coi co(W), o/i 0, 0/i 1

n+2

G(y,-, O)

_
otiS(y, tl i, COi, )"

i=1

Remark 4.1. Following the results of [20], [21], we note that the homeomorphism
w o(w) w/(1 / Ilwll) of W onto its image co(W) defines a metric compactification
(2, Z, ) of W in the terminology of Warga’s book [21]. However, we consider it possible
to bring in the construction procedure to clarify it in our specific case.

As an example of application of this procedure we can handle control problems for the
system, which is sublinear with respect to unbounded control [1], [3], [10], [12]-[14], [17],
18]. Let it be described by the equations

Jc(t) f (x(t), v(t), u(t), t) q- B(x(t), v(t), u(t), t)w,
)(t) w(t)II,

where u 6 U, w 6 K, U is a compact subset, and K is a convex cone, and the functions f
and B are continuous. Then for all e 6 Ilell there exists a limit

f +Bwlim Be
1 / Ilwll

if w o, w!(1 + w II) -+ e, and the right-hand side of auxiliary system is described by
the function

(1 -IIoll) f + B
1

(1 -[loll)f / Bco,
G(y, z, u, , o) Iio911,

1 -I1o11,

where 0 < oll _< 1. If the set

(y, z, U, O, co(K)) {l Rn+2 (y, z, u, rl, co) u U, co K fq {11o911 _< 1}}

is convex for any y, z, and r/, then one can introduce a new pair of control variables (c, e)
0 < ot < 1, e 6 K N {llell _< 1}, which describes the set 0(y, z, U, r, co(K)) in the following
way:

{ otf+(1-o)Be o[O, 1] }(y, z, U, rl, co(K)) (1 a)llell e 6 K N {llel[ _< 1}
ot u EU

This gives the following description of auxiliary system with the right-hand side:

G(y, z, , 0) (1 o)llell

where - ot, e, u
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such that

E 2---{0_<c_< 1, eEKCq{llell<_l}, uU}.

If the set G (y, z, S2, ) is convex for any y, z, and 0, we shall obtain the desired representation;
otherwise we should use the procedure of convexification using the Carath6odory theorem [6].

5. Representation of the generalized solution via the differential equation with mea-
sure. This part of the paper is devoted to the representation of generalized solutions by the
special type of differential equations with a measure.

Let us consider the function x(.), which is the generalized solution of the system (1) on
the interval [0, T]. The function x(.) has the bounded variation and is continuous from the
right; thus it admits the representation [4]

(24) x(t) x(O) -t- xC(t) -t- E Ax(z),
r<t

where

zXx(r) x(r) x(r-)

and xc (.) is a continuous function. For all components in (24) one can derive the representation
in the form of special differential inclusion.

To formulate this result, we introduce the set Gl(y, rl) Rn, where 11 GI(y, rl) if the
extended vector (/1,0) 6 G(y, S2, 0), i.e.,

GI(y, rl)

G (y co, tl)
G2(y, co, rl)

Gn (y, co, rl)
Gn+ (y, co, O) 0

This set is nonempty, because it contains all the partial limits of sequences of the type

F(y, Igi, Wi, ) }1 -t-IIw/ll

such that Ui U, wi W, and Ilwill . Any of such sequences is uniformly bounded
for fixed (y, r/) by virtue of the inequalities (6), and hence, the set of its all partial limits is
nonempty. By definition of G(y, co, rl) and f2, the set G(y, f2, ) contains all partial limits of
the sequences

[in+ ln+l R

1 F(y, Ui, 113i,

+ I1/1[

/+1 + [[will

uiEU I;ll)i W

hence it contains all partial limits with Wi c and l+ -- 0.
The set G(y, ) is convex and closed for all (y, r/), because it is the cross section of the

convex and closed set G(y, f2, rl).
Let us also introduce the conic hull of the set G (y, r/), denoted by con G (y, r/), where

con G (y, r/) 6 R ili,
i=1

/i 0, k>l,
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The next theorem yields the representation of a generalized solution.
THEOREM 5.1. Let the set ofright-hand sides ofthe system (10) be represented in theform

(17) with the appropriate function G(y, co, rl) and set S2. Then for any generalized solution
x(.) there exists a scalar nonnegative regular measure V(dt), defined on the Borel subsets of
the interval [0, T] such that thefunction

v(t) V{[0, t]}

has the representation

v(t) i)(s)ds + v (t) + Av(r),
r<t

where i(t) is the derivative of v(.) defined almost everywhere in [0, T]; v (t) is a continu-
ous nondecreasing function whose set ofgrowth points has zero Lebesgue measure (i.e., the
corresponding measure VS(dt) is singular with respect to the Lebesgue measure); Av(r)
v(r) v(r--) are the jumps of thefunction v(.); and

v(T) V{[0, T]} < M

such that the generalized solution x(.) can be represented in theform

x(t) x(O-) + xa(t) q- X (t) d- Ax(z),
r_<t

where
(i) x (t) is absolutely continuous with respect to the Lebesgue measure and its derivative

satisfies the differential inclusion

(25) 2a(t) c-b-fiV F(x(t), U, W, t) + con Gl(x(t), t) a.e. in [0, T];

(ii) x (t) is absolutely continuous with respect to the measure V (dt) and its derivative
with respect to the measure V (dt) satisfies the differential inclusion

(26)
dx (t) Gl (x(t), t) a.e. in [0, T]
dye(t)

with respect to V (dt);

(iii) and

x(r) x(r) x(r-) yr(v(r)) x(r-),

where yr(.) satisfies, on the interval [0, Av(z)], the differential inclusion

Vr(s) Gl(yr(s), z)

with the initial condition

y(O) X(r-).

Proof. According to Theorem 3.3, x(t) y(F(t)), where I’(t) inf{s [0, T1]
r/(s) > t} and the pair (y(s), tl(s)) satisfies the differential equation

y(s) ) G(y(s) co(s) O(s)),(s)
y(0) x(0--), t/(0) 0,
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with some measurable control o)(s) 6 a.e. in [0, T1]. By virtue of results obtained in [9],
F (.) is right continuous and monotonically increasing; therefore, it admits the representation

r(t) f’(s)ds + rs(t) + /xr(r),
:<t

where la(t) is a derivative of 1-’(.), -’s (t) is a continuous nondecreasing function such that the
corresponding measure -’s (dt) is singular with respect to the Lebesgue measure, and

/r(r) r(r)- r(r-).

The interval [0, T] can be represented as a union of three disjoint subsets:

[0, T] D U D U Dar,
where D. is a support of absolutely continuous component of the measure F(dt), D, is a
support of the measure -’s (dt), and Dr is a union of no more than countable set of points r
such that F (r) F (r -) > 0.

The generalized solution satisfies the integral relation

x(t) y(1-’(t)) x(0) + fo
r(t)

which can be rewritten

(27)

(s)ds,

for(t)x(t) x(O) + (s)l{s rl(s)-Dr}ds 4-
dO

y(s)l{s rl(s) Dar}ds

x(O) 4- fo
r(t)

x(O) 4- fo
r(t)

(s)I {s l(s)-Dar }ds 4- (s)ds
r<t d r(r-)

(s)l{s l(s)-Dar}ds + Z Ax(r),
z<_t

where I {. means the indicator function.
Substituting the variable r/(s) into the first integral in (27) and using the relation

1-’(r/(s)) s, which is valid if ri(s)gDar, we obtain

r(t)

,(s)l(s o(s)EOarIds j,(F(q(s)))l{s o(s)EOar}ds
,10

(28)

(r())(l()ar + drs(r))

f0 f0p(r(r))P(r)dr + p(r(r))drs(r) x(t) + xS(t).

The union of relations (27) and (28) gives the following representation for x(t):

x(t) x(O-) 4- X (t) 4- x (t) 4- Ax(r),

fo(r(t))I{r’r-gDIdr(r) ,(r(r))I{r’rEDrIdr(r)
dO

(29)

where

xa(t) )(r(r))l(r)dr
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and x (.) is absolutely continuous with respect to the Lebesgue measure;

(3o) x (t) )(r())dr (r),

and x (.) is absolutely continuous with respect to measure (dr); and

Ax(r) y(l-’(r)) y(l"(r--)) (s)ds
J F(r-)

is the jump of the function x(.) at the point r Def.
We are able to show that xa(.), x(.), and jumps Ax(r) are the same as claimed in the

theorem. First, define the measure V(dr) by the relation

(31) V (a, b]} 1-’ (a, b]} (b a).

Since

1-" (a, b]} > (b a),

the measure V (dt) is regular and nonnegative. Further,

and

V{[0, T]}- F(T)- T < M

VS(dt) FS(dt), Av(r) V(r} AF(r).

Consider (29). As on the subset D. the derivative of F (.) exists a.e. and satisfies inequalities

0 < (-’(t)
4(r(t))

< oc,

then r(F(t)) > 0 a.e. in [0, T], and the derivative of xa(.) exists and satisfies the relation

(r(t))
2a(t)

0(1-’(t))
a.e. in [0, T].

Now we prove that 2 (t) satisfies the inclusion (25). As was proven in [12], the control
function co(1-’(t)) is Lebesgue measurable; hence,

(32) ((l-’(t)))=(1-" (t))
G(y(I’(t)), w ([’(t)), r/(F (t)))- G(x(t),w(F(t)), t)

a.e. in [0, r].
The set G(x, f2, t) is the convex hull of closure of the set/(x, v, w, t); hence by the

Carath6odory theorem [6] for all co 6 the set {(oti, li), 1 n + 2} exists such that

n+2

Ol O,

_
Ol 1, e P X V, tO, t),

i=1

and

(33)
n+2 n+2

G x co, t)= il Ol il Ol
12
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where l/1 is a vector of the first n components of vector li and l/2 is the (n + 1)-th component
of this vector.

If l/2 > 0, then, due to continuity of/(x, u, w, t), there exists a pair (ui, wi), ui
U, wi W, such that

( l ) =ff’(x, ui, wi, t).
12i

If I/2 0, then 1 Gl(x, t) by the definition of the set Gl(x, t). Now we can derive the
representation

n+2

( l](t) ) i{i .12i (t) > O}G(x(t), co(r(t)), t) Z Oti(t)
li (t)i=1

n+2 ( l](t) ) l{i lZi (t) O}
i=1

with some Lebesgue-measurable function {ci(t), li(t),//(t)}, 1 n + 2. Hence the
derivative of xa(t) is equal to

n+2

Oti(t)l] (t)
i=1)a (t)
n+2

Oti(t)12i (t)
i=1

and one can derive the following representation for 2 (t)"
n+2 oti(t)12i (t)

Jca(t)-- Z n+2 l(t)i--1 Oti(t)12i(t)
i=1

(34/
n+2

Oti (t
"q-

n+2
i=1 Oti(t)12i(t)

i=1

Denote

a.e. in [0, T],

I{i’lZi(t) > 0}

li (t)I{i "12i (t) 0}.

oti(t)12i (t)
l{i "12i (t) > O}(35) //l(t)

n+2

oti(t)12i (t)
i=l

and

(36) fl2i (t)
Oli(l)

I{i "12i (t) O}
n+2

oti(t)12i (t)
i=l

Then

n+2

(37) /3/l(t) > 0, Z/3/1 (t) 1,
i=1
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and

Vectors 1 (t)/(12i(t)) in the first sum of (34) satisfy the inclusion

E F(x(t), U, W, t),

and vectors l/1 (t) in the second sum satisfy the inclusion

lli (t) G (x(t), t).

Hence the derivative a (t) has the representation

n+2 n+2

a(,) lli (,)F(x(t), Ui(t), tO/(/), t) + 2i (t)lli (t),
i=1 i=1

where l)(t) Gl(x(t) t)and functions/l(t) /2i(t) satisfy the relations (37), (38). This
proves the theorem’s claim for the component xa (t).

Now we consider the function xS(t) represented by the equation (30) and note that
(F(t)) 0 on the subset D D,. Then, similar consideration applied to the compo-
nent x (t) gives the inclusion

ys (F(t)) G (x(t), t)

and the relation

x (t) (r)dv (r), (r) G (x(r), r),

proves the theorem for the component x (t).
Since on the interval [F(r-), F(r)], where r/(s) r 6 D Dr, the derivative of /(s)

is also equal to zero,

(s) G(y(s), r).

Therefore, if s 6 IF(r-), F(r)], then y(s) satisfies the above differential inclusion with
the initial condition y(1-’(r-) x(r-). Letting

yr(s) y(r(z-) + s)

for s 6 [0, Av(r)] [0, AF(r)], we obtain the assertion of the theorem for the jumps of x(.).
This completes the proof. [3

In the case of the regular function F(x, u, tO, t) we can give a more precise statement
about the representation of the generalized solution. First we prove the theorem concerning
the description of the set G l(x, t).

THEOREM 5.2. If F(x, u, w, t) is regular at infinity, then

G (X, t) conv(x, U, E, t),

where

b(x, U, E, t) {1 Rn (x, u, e, t)l u 6 U, e E E {llell} 1}.
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Proof. By the definition of regularity, if vector 6 (x, U, E, t), i.e., there exist u 6 U
and e 6 E such that (x, u, e, t), then for any sequence Wn 6 W such that Wn
00, Wn/(1 + Wn II) --+ e, we have

F(x, u, Wn, t)
lim (x, u, e, t).

1 -t-IlWn[I

Since [Iwnl[--+ ec, limn 1/(1 + IlWnll) 0.
Hence, the extended vector

0
e G(x, f2, t),

where 6 G (x, t) by definition of the set G (x, t). Therefore, by convexity of G (x, t)

(39) conv (x, U, E, t) c_C_ G (x, t).

To prove the inverse inclusion, note that if G I(x, t), then

0
G(x, S2, t) F(x, U, W, t).

Hence there exists the set of pairs {oti, li }, 1 n + 2, such that

C > 0, C /?(x U, W, t)
i=1

0

and

(40) O/i
0 i--1 0

Then for every there exists the sequence {Un, w }, un U, w W, such that

If(x? it) 1IAn tO

( //1 ) _linm ilw-i(
0

+ IIw’nl
and due to uniform boundedness of sequence {u/, Wn/(1 -t- IIw II)} one can extract the subse-
quence {U/nk, tOnk such that

1,1
Wnk

Un -+ U and
1 + Ilwnk

Then l (x, u e t), and with (40) it means

Hence

(41)

e E if k oc.

(l) (conv(x,U,E,t))0 0

G (x, t) _c conv (x, U, E, t),

and combining (39) with (41) we complete the proof.
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We can now formulate the result concerning the representation of generalized solution by
the differential equation with a measure.

THEOREM 5.3. Let thefunction F(x, u, w, t) be regular and the set ofvectors

(42) = {I= ( 11 ) E
I1 F(x, u, w, t)
12 to

be convexfor any (x, t).
Thenfor any generalized solution x(.) of the system (1) there exist
(i) the regular nonnegative measure V(dt) on the interval [0, T], which satisfies the

constraint

V{[O,T]} <_M;

(ii) the set of both Lebesgue- and V-measurable controls

{uo(t), wo(t), fli (t), fl[(t), ui(t), ei(t)},

which satisfy the constraints

uo(t) e U, wo(t) e W, fli(t) >_ O,

i=1 n+2,

(s), (s) [ (s)} 1 n 4- 2,{U e

which are defined on every interval [0, Av(v)] for all r Dv and satisfy the constraints

n+2

(s) U,U e (s) E, 13 (s) > O, (s) 1,
i=1

a.e. in the interval [0, &v(r)]
such that the generalized solution x(t) and thefunction v(t) V{[0, t]} satisfy the equations

x(t) x(O) + F(x(r), uo(r), wo(’), r)dr

(43) + ?(’c)(x(v), ui(r), el(v), r)dr
i=1

4- / (’g)qg(X(’g), Ui(’g), ei (z’), r)dv (r) + Ax(r),
v<t

where

a.e. in the interval [0, T];
(iii) the set ofLebesgue-measurable controls

Ax(r) y(Av(r)) x(v-)

and yr(s) is the solution of the differential equation

(44)
n+2

(s), (s) r)(s) fl[ (s)(yr(s), bl e
i=1

n+2

Ui(t) U, ei(t) E, fl[(t) > O, ff-fl(t) 1,
i=1
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with the initial condition yr(0) x(r-), and

(45) v(t) Ilwo(r)lldr + i ()d + v’(t) +
i=1 r<t

Proof. By definition of the measure V(dt), according to (31), the derivative of v(t)
V [0, t] is equal to

)(t) I(t)- 1,

and, as follows from (32) and (33), the pair of functions {X (’), V (’)} satisfies the equations

(46)

where l](t) and l(t) are the components of the vector function G(x(t), co(F(t)), t), i.e.,

li (t) ) G(x(t), o(r’(t)), t),
12i (t)

and the assembly of coefficients ill(t) and/3i2(t) is defined by (35), (36).
If lZi(t) > O, then there exists a pair of vectors ui(t) U, wi(t) W, such that

(47)
1](t)
12i(t)

F(x(t), ui(t), wi(t), t)

and

-l(t)
(48)

12i (t)
--Ilwi(t)ll,

and if l(t) 0, then

(49) 1 (t) G (x(t), t) conv (x(t), U, E, t).

The substitution of relations (47)-(49) into (46) gives

jca(t) )(50) )a (t)

n+2 (F(x(t),li(t),Wi(t),t))n+2Z/3/1(t)i--1 Ilwi(t)ll
-t- j2i(t)i=l 1

For the first term in the right-hand side of (50), due to convexity of the set (42) and the
relation (37), there exists a pair of functions {u0(t), w0(t)}, such that uo(t) U, wo(t) W
a.e. in [0, T], and

(51)

Using the standard procedure of measurable selection [23], this functions {u0(t) }, {w0(t)
can be shown to be measurable with respect to Lebesgue measure.
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The second term in the right-hand side of (51) can be represented in the form

i(t) l(t) // (t)
.+2 1

i=1 \i=1 i=1 -/?(t)
i=1

where the components in the sum satisfy the inclusion

( ) (GI(x(t) t) )12(t)
1 1

because of its convexity. Then there exists an assembly of functions

{k(t), uk(t), ek(t), k 1 n + 2}

n+2which satisfy the constraints (t) 0,= (t) l, u(t) U, e(t) E a.e. in [0, T]
such that

() n+2= V(t) (*(x(t),u(t),e(t),t) )n+2 1
i=1 ?(t) k=l

i=1

and

(52)

where

j2i(t)(l(t) )
n+2

=Z fl(t)
i=1 i--1

n+2

Oi (t) yi(t) [(t).
k=l

If the functions {/3/, Ui, ei are selected to be Lebesgue measurable, then substitution of
relation (50) and (52) into (46) proves the representations (43) and (45) for the absolutely
continuous part of functions {x(.), v(.)}).

By the same arguments we can prove the representation for the singular components of
functions {x(.), v(.)}. From the relations (26) it follows that the derivative of the function
x (t) with respect to the measure V (dt) equals

n+2dx(t)

_
fl(t)O(x(t), ui(t), ei(t), t),

dye(t)
i--1

where the functions ui(t), ei(t) are VS-measurable and

n+2

(t) > O, Z fl(t) 1.
i=1

Therefore, if we complete the definition of Lebesgue-measurable functions {U (t), ei (t)} in
relation (52), which are defined on the set D,, by VS-measurable functions {ui(t), ei(t)}, we
obtain statement (ii) of this theorem. The proof of statement (iii) can be obtained by the same
arguments.

Now we can return to the original optimization problem. The results obtained above
give us the opportunity to prove the theorem, which ensures the existence of the generalized
solution for the original optimization problem.
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6. Existence ofa solution for problem ofgeneralized optimization. Here, we shall use
the approach based on the auxiliary control problem. Consider the auxiliary control problem
for the system

(53)
j(s) ) G(y(s) co(s) O(s))(s)

with control which subjects it to the constraint

(54) co(s)

on the interval [0, T1 ], with T1 satisfying the inequality

(55) T < T + M

with the terminal and phase constraints

(56) S(y(O), y(T1)) < O, h(y(O), y(T1)) O, r/(T1) T,

(57) g(y(s), r/(s)) <_ 0 for any s 6 [0, T1],

and the following performance criterion, which should be minimized:

(58) J’[y(.), co(.), T1] 990(y(0), y(T1)).

If the set of admissible controls in the original optimization problem is nonempty, then
the set of controls satisfying the constraints (54)-(57) is also nonempty, and one can prove the
equivalence of the original and auxiliary problems.

THEOREM 6.1. Let the set ofgeneralized solutions ofthe system (1) under constraints (2),
(3) and (8), (9) be bounded and nonempty. Then there exists an optimal generalized solution.

Both in the regular case and in the case of convexity of the set (42), this optimal solution
admits the representation by the differential equation with a measure in the form (43), (44)
and appropriate elements (i), (ii), (iii) that could be understood as the generalized controls.

THEOREM 6.2. The optimizationproblem (1)-(3), (7)-(9) and the auxiliaryproblem (53)-
(58) are equivalent; i.e., if the pair {y0(.), r/0(.)} is the solution ofauxiliary problem, then the
path x(t) y(1-’(t)) is the optimal generalized solution of the original problem.

Conversely, ifthe assumptions ofTheorem 5.3 hold and ifx(.) is the optimal generalized
solution ofthe originalproblem, then there exists the optimal solution ofthe auxiliary problem
{y0(.), r/0(.)} such that the relations (12) and (13) take place.

Remark 6.1. These two theorems follow directly from the results of theorems VI.4.4 and
VI.4.5 in [21 and Theorems 3.2 and 5.3.

Remark 6.2. This result can be considered the main result of our work because it gives a
very useful tool for investigation of the generalized optimization problems. One of the most
useful features ofthis approach is that it gives the opportunity to derive necessary and sufficient
conditions of optimality. Examples of its application in this area can be found in [1 ], [11],
[15], [16], [20], [22], where the method of discontinuous time change was used for derivation
of necessary conditions of optimality in the maximum principle form.

Acknowledgments. The author is very grateful to the anonymous referees for their valu-
able comments and suggestions, which strengthened this paper.
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A DIFFERENTIAL GAME WITH TWO PLAYERS AND ONE TARGET*

PIERRE CARDALIAGUETt

Abstract. We study a two-player differential game in which one of the players wants the state of the system
to reach an open target, while the other player wants the state of the system to avoid this target. We show that the
victory domains of the players form a partition of the complement of the target. One of them can be characterized by
the mean of geometrical conditions (as a "discriminating domain"). Finally we show that the common boundary of
the victory domains enjoys a semipermeability property.

Key words, differential games, pursuit-and-evasion games, viability theory
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Let

(1)
x’(t) f(x(t), u(t), v(t)), for almost every > 0,

u(t) U, v(t) V,
x(O) xo

be a two-controlled dynamical system and f2 be an open subset of ]N. The open set f2 shall
be called the target. In this paper, we investigate the differential game where the first playerm
Ursula, playing with u--wants the state of the system to reach f2 in finite time. The second
player--Victor, playing with vmwants the state of the system to avoid f2 forever. So Ursula
wins if the trajectory x(.) reaches the target f2 in finite time, while Victor wins if the trajectory
avoids the target forever. This game is called the target problem.

The target problem has been studied often since Isaacs’ pioneer work [21]. It is one
of the most interesting game of kind (by opposition, in Isaacs’ terminology, to the games
of degree). Many examples of application can be found in [21] and also in [20], [8], and
[6]. In their monographs [22], [23], Krasovskii and Subbotin have proved that, from any
initial position x0, either Ursula or Victor wins against any action of her (his) adversary. This
result is called the alternative theorem. In Krasovskii and Subbotin’s result, the game is
played in the framework of the positional strategies. Specifically, in equation (1), the controls
u(t) and v(t) are replaced by positional strategies, i.e., maps (without a priori regularity)
/ ]+ X ]U .> U and + x ]U _.__> V. Then the differential equation (1) has in general
no solution and Krasovskii and Subbotin had to provide another definition of solution for the
differential equation; these solutions are called the constructive motions. In general, they are
not solutions to (1) in the Carath6odory sense, but they are limits of step-by-step motions which
are solutions to equation (1). So, for the initial differential system, the alternative theorem
gives information only on an approximated game.

Our main purpose in this paper is to show that, starting from any initial position, either
Ursula or Victor can realize exactly her (his) objective, against any action ofher (his) opponent,
provided that the game is played in the framework of Elliot-Kalton nonanticipative strategies
(we recall the definition below). The nonanticipative strategies cannot be played simultane-
ously by Ursula and Victor because the player who plays the nonanticipative strategy needs
knowledge of the control played by his opponent to play. So the game cannot be put in the
so-called normal form unlike differential games in the class of positional strategies. But this is

*Received by the editors August 1, 1994; accepted for publication (in revised form) April 26, 1995.
CEREMADE, Universit6 Paris-Dauphine, Place du Mar6chal de Lattre de Tassigny, 75775 Paris cedex 16,

France.
In Krasovskii and Subbotin’s terminology, this approximated problem is called the game of (AA N" approach,

e denoting a small positive parameter of approximation.
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not surprising because we show below that knowledge of the opponent’s strategy is in general
necessary for Victor to realize exactly his objective, while it is useless for Ursula. This fact
was pointed out in several examples of differential games since Isaacs.

We also intend to characterize, by geometric conditions, the set of initial positions x0
from which Ursula (resp., Victor) may win against any action of her (resp., his) adversary;
this set is called Ursula’s (resp., Victor’s) victory domain.2 The characterization of the victory
domains enables us to solve numerically the target problem (see the joint work [9]). It is
also close to one of the characterizations of the stable bridges (see [23]) for the problem of
the (.A//, .N’) approach. Our systematic use of the geometric conditions to study the victory
domains distinguishes this investigation from previous studies.

Thanks to this characterization we shall provide a proof of the barrier phenomenon. This
phenomenon is the key point in Isaacs’ construction of the victory domains of the target
problem. It is shown in [21 that, if the boundary of the victory domains is smooth, then each
player can prevent the state of the system from crossing this boundary in one direction. Since
then, this result has been generalized under less restrictive assumptions on the regularity of
the boundary. It has also been proved in the case of control theory, without any assumption
on regularity of the boundary (see Quincampoix [25]). Our result is an extension of this last
one to the two-player differential games.

We make some remarks about the proofs. The proof of the main theorem (Theorem 2.1)
uses some results of viability theory [4] and in particular the measurable viability theorem (see
[18]). In the characterization of one of the victory domains, we use the same considerations
previously used in the method of program iterations developed by (encov (see [11]-[13]).
The proof of Theorem 2.3 seems to be closely related to the proofs of Krasovskii and Subbotin
for the characterization of the stable bridges. Let us finally emphasize that Theorems 2.1
and 2.3 have been discovered, independently and simultaneously, by a Polish mathematician,
Plaskacz. The proof of Lemma 4.1 is basically his proof.

This paper is organized as follows. In 1, we define the nonanticipative strategies and
some sets that play a central role throughout the paper: the discriminating and leadership
domains and the discriminating and leadership kernel of a closed set. The main results of
this paper are concerned with the interpretation theorems of the discriminating and leadership
domains and of the characterization theorems of the discriminating and leadership kernels
for the nonanticipative strategies (2). These results shall be applied in 3 to the target
problem. We show that the victory domains of the players can be characterized by means of
the discriminating and leadership kernels. Moreover, we prove that the victory domains form
a partition of the complement of the target. We also prove a so-called barrier phenomenon
which states that some particular trajectories starting from the boundary ofthe victory domains
remain in a neighbourhood of this boundary.

Finally, 4 and 5 are devoted, respectively, to the proofs of the interpretation theorems
and of the characterization theorems.

1. Definitions, assumptions, and notation.

1.1. The nonanticipative strategies. The first definitions of nonanticipative strategies
can be found in [27], [28]. Such strategies have been intensively studied (see for instance 14],
[15], [20], [16], [19]), but they were mainly applied to problems of games of degree.

Let us now recall the definition of the nonanticipative strategies. If we denote by

L/= {u(.) [0, +o[-- U, measurable application },
(2)

]2 {v(.) "[0, +cxz[-+ V, measurable application

2We give a rigorous definition of the victory domains in 3. This set plays a major role in the target problem.
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the sets of time-measurable controls, nonanticipative strategies are defined in the following
way.

DEFINITION 1.1. We say that a map ot 12 bl is a nonanticipative strategy (for Ursula)
if it satisfies the following condition. For any s > 0 and for any Vl(.) and v2(.) belonging
to V, such that Vl (.) and v2(.) coincide almost everywhere on [0, s], the images or(v1(.)) and
ot (v2 (.)) coincide almost everywhere on [0, s ].

Nonanticipative strategies 13 H --+ 12 (for Victor) are defined in the same way. Namely,
for any s > 0 andfor any Ul(.) and u2(.) belonging to bl, such that Ul(.) and u(.) coincide
almost everywhere on [0, s], the images fl(U (.)) and fl(u(.)) coincide almost everywhere on
[0, s].

1.2. The proximal normals. Proximal normals generalize to the closed sets the usual
definition of the outward normals.

DEFINITION 1.2. Let K be a closed subset ofJRv and x belong to K. A vector p ]Riv is
a proximal normal to K at x if

dl,:(x + p)- IlPll,

where dr(y) :-- minzer IIz YlI.
The set ofproximal normals to a closed set K at a point x is denoted by NPr (x). (Note

that I1" always denotes the Euclidean norm.)
So a vector p is a proximal normal to a closed set K at a point x K if the open ball

centered in x + p and of radius IlPll does not intersect K. Let us point out that the closed
ball centered in x + p and of radius P intersects K at least at the point x. Roughly speaking,
this ball is tangent to K at x.

1.3. The discriminating and leadership domains and kernels.
DEFINITION 1.3. Let H IRN IR --+ IR be a map. A closed set D is a domain for H if

D satisfies

Yx D, Vp NPo(x), H(x, p) <_ O.

We shall study in detail the following two cases:
If the map H is defined by

(3) H(x, p) sup inf(f(x, u, v), p),

then the domains for H are called discriminating domains for f. (See [1], [3], [4] for an
equivalent definition.)

If H is defined by

(4) H(x, p)"= inf sup(f(x, u, v), p),

then the domains for H are called leadership domains for f (see [10]). Leadership domains
are always discriminating domains. The converse is false in general.

In 10], we proved the following theorem.
THEOREM 1.1. Let H IRN x IRN be a lower semicontinuous map. Any closed subset K

oflRN contains a largest closed domainfor H. This set is called the kernel of K for H.
So any closed domain for H contained in a closed K is contained in the kernel of K for

H. Moreover, this kernel is itself a domain for H. The kernel of K for H may be empty if K
does not contain any domain for H.
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If the map H is defined by (3), then the kernel of K for H is called the discriminating
kernel of K for f and is denoted by Discf(K).

If the map H is defined by (4), then the kernel of K for H is called the leadership kernel
of K for f and is denoted by Leadf (K).

Note in particular that for any closed set K, Leadf (K) C Discf (K).
1.4. Assumptions and notation. We summarize here the assumptions we shall need on

the dynamics throughout this paper. The first ones are concerned with the regularity properties
of f"

(5)

(i)

(ii)
(iii)

U and V are metric compact spaces,

f" IN U x V ]iN is continuous,

f (., u, v) is an -Lipschitz map for any u and v.

For the study of the discriminating domains and kernels, we also require some convexity
properties3"

(6) { (i)
(ii)

V is a convex compact subset of Id (d 6 1*),

f is affine in v.

When (5) is satisfied, we shall denote by x[x0, u(.), v(.)] the unique solution of the
differential equation

(7)
x’(t) f(x(t), u(t), v(t)) for almost every > 0,

x(0) x0,

where x0 6 ]IN, b/(.) , and v(.) 6 V.
o

We shall also denote by B the closed unit ball of the state space NN, while B shall denote
the open unit ball. Moreover, the distance map to a closed set K shall be denoted by dr"

dr(x) "= min IIY xll.
y6K

For any positive e, K + eB shall denote the closed set

K + B := {y ]N dr(y) < }.

2. Statement of the main results.

2.1. Discriminating domains and kernels. We first provide an interpretation of dis-
criminating domains for nonanticipative strategies.

The following theorem states that the discriminating domains are sets in which Victor can
ensure that the state of the system remains as soon as he knows what Ursula plays.

THEOREM 2.1 (interpretation theorem). Assume that f satisfies (5) and (6) and that D is
a closed subset ofN. Then, the closed set D is a discriminating domain for f if and only
if, for any xo belonging to D, there exists a nonanticipative strategy r, such that, for any u (.)
belonging to H, the solution x[xo, u(.), fl(u(.))] remains in D on [0, +cx). Namely,

Yt > O, x[xo, u(.), fl(u(.))](t) D.

3By affine, we mean of the form

f(x, u, v) a(x, u) + B(x, u)v.
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(Recall that x[xo, u(.), /3(u(.))] is the solution to (7) with v(.) :--- (u(.)).)
Section 4 is devoted to the proof of Theorem 2.1.
Remark. Theorem 2.1 still holds true even if we only assume that D is a locally compact

set. But in this case, we have to modify the statement of the theorem: A locally compact set D
is a discriminating domain if and only if there exist a nonanticipative strategy/3 and a positive
time T, such that, for any control u(-) belonging to/g, the solution x [x0, u(.),/ (u (.))] remains
in D on [0, T].

If a discriminating domain D is contained in a closed set K, then Victor can ensure
that the state of the system remains in D and so in K. This is in particular the case for the
discriminating kernel of K. We prove here a kind of converse: If Victor can ensure that the
state of the system remains in K, then the initial position of the system necessarily belongs to
the discriminating kernel of K.

THEOREM 2.2 (characterization theorem). Let K be a closed subset of IlN and f satisfy
(5) and (6). Then, the discriminating kernel ofKfor f is equal to the set ofpoints xo belonging
to K for which there exists a nonanticipative strategy bl such that,for any u(.)
the solution x[xo, u(.), /3(u(.))] remains in K.

Proof of Theorem 2.2. From Theorem 2.1, for any x0 belonging to Discf(K), there
exists a nonanticipative strategy / /g -- )2 such that, for any u(.) 6 L/, the solution
x[xo, u(.),/(u(.))] remains in Discf(K) on [0, +cx), and so in K.

To prove the converse, let x0 belong to K but not to Discf(K). Let/3 be a nonantici-
pative strategy for Ursula. We have to construct a control u(.) 6 /g such that the solution
x[xo, u(.),/3(u(.))] leaves K in finite time.

For that purpose, let us recall that the viability kernel of a closed set C for a Marchaud
set-valued map4 F N __+ V is the set of initial positions from which starts at least a
solution of the differential inclusion for F which remains in K forever. The viability kernel
of K for F is a (maybe empty) closed subset of K. It is denoted by ViabF(K). (Most results
on viability theory can be found in Aubin’s monograph [4].)

In 10], we have proved that the discriminating kernel of a closed set can be obtained as
decreasing intersections of viability kernels. Namely, if we define the sequence of closed sets

K1 "= K,
Ki+I :-- ’uEU Viabf(.,u,v)(Ki),

where f(., u, V) denotes the set-valued map x vEv f(x, u, v), then

N Ki Discf (K).

Since xo q Discf(K), there is some i0 6 1* such that x0 belongs to Kio but not to Ki0+l.
From the very definition of Ki0+l, there exists u 6 U, such that x0 does not belong

to Viabf.,u,v(Kio). Thus any solution to the differential inclusion for f(., u, V) starting
from x0 leaves Kio in finite time. The solution x[xo, u,/3(Ul)] is a solution to the differential
inclusion for f(., Ul, V), so there is a time tl such that x[xo, Ul, fl(Ul)](tl) does not belong
to Kio.

We set u(.) := Ul on [0, tl]. If x :-- x[xo, u(.),/3(u(.))](t) does not belong to

Kio-1, then we set t2 := tl. Otherwise, Xl belongs to Kio-1, but not to Kio. So there ex-
ists u. 6 U such that Xl does not belong to Viabf.,u:,v(K). We define an intermediate
control fi(.) by fi(s) := u(s) on [0, tl] and fi(s) := u2 on [tl, +cx). Since/ is nonantici-
pative, x[xo, tT(.),/3(tT(.))](tl) equals Xl. Moreover, x[xo, fi(.),/3(/(.))] is a solution to the

4I.e., an upper semicontinuous set-valued map, with closed convex values and a linear growth (see [4]).
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differential inclusion for f(., u2, V) on [tl, +cxz). Thus there is a time t2 >_ tl such that
x[x, iT(.), fl((.))](t2) does not belong to Kio-. Now set u(s) tT(s) on It1, t2]. Since tT(.)
and u(.) coincide on [0, t2] and since fl is nonanticipative, x[xo, u(.), fl(u(.))](t2) does not
belong to Kio- 1.

Thus it is possible to define by induction a nondecreasing sequence (ti) and a control u (.)
on [0, ti] such that x[x0, u(.), fl(u(.))](ti) does not belong to Kio+l-i. In particular, for i0,
x[xo, u(.), fl(u(’))](tio) does not belong to K K. So we have constructed a control u(.)
such that the solution x [x0, u (.), fl (u (.)) leaves K in finite time. U

2.2. Leadership domains and kernels. If Ursula has a spy (she plays nonanticipative
strategies), then leadership domains are the sets in which Victor can almost ensure that the
state of the system remains.

THEOREM 2.3 (interpretation theorem). Assume that f satisfies (5) and that D is a closed
subset of IlN. Then, the closed set D is a leadership domain for f if and only if, for any xo
belonging to D, for any nonanticipative strategy ot ]) --+ bl, for any positive , andfor any
time T > O, there exists a control v(.) ]) such that the solution x[xo, or(v(.)), v(.)] remains5

in D + B on [0, T].
The proof of Theorem 2.3 is provided in 4.
Remark. (1) Unfortunately, it is sometimes impossible to find a time-measurable control

v (.) such that x [x0, ot (v (.)), v (.)] remains in the leadership domain D. For example, set
D "= {0} (subset of ) and f(x, u, v) {u + v}, where u and v belong to [-1, 1]. If the
nonanticipative strategy is

ot(v(.))(t) v(t) if v(t) O,
(8) c(v(.))(t) 1 if v(t) O,

then there is no control v(.) such that the solution x(.) :-- x[0, or(v(.)), v(.)] remains in D
(because x’(t) 0 for almost every > 0).

So, in general, Victor needs knowledge of Ursula’s control to prevent the state of the
system from leaving K.

(2) Theorem 2.3 still holds true even if we only assume that D is a locally compact set.
But in this case, we have to modify the statement of the theorem: A locally compact set D is
a leadership domain if and only if, for any x0 belonging to D, there exists a positive T such
that, for any nonanticipative strategy ot and for any > 0, there is some control v(.) 6 V such
that the solution x[xo, or(v(.)), v(.)] remains in D + B on [0, T].

We now characterize the leadership kernel of a closed set.
THEOREM 2.4 (characterization theorem). Let K be a closed subset of]u and f satisfy

(5). Then, the leadership kernel of K for f is equal to the set ofpoints xo belonging to K
such that, for any nonanticipative strategy ]) --+ bl, for any > O, andfor any T > O,
there exists a control v(.) )2 such that the solution x[xo, or(v(.)), v(.)] remains in K + B
on [0, T].

Theorem 2.4 yields, in particular, Corollary 2.1.
COROLLARY 2.1. If Xo belongs to K but not to Leadf(K), there exist positive T and

and a nonanticipative strategy ot ]2 --+ bl, such that for any control v(.) , the
solution x[xo, c(v(.)), v(.)] leaves K + B before T (i.e., there is a time < T such that
dt(x[xo, (v), v](t)) is larger than ).

The proof of Theorem 2.4 is provided in 5.
3. Applications for the target problem. Let be an open target ofU and f satisfy

(5), (6). We recall briefly the target problem. Two players, Ursula and Victor, control the

5Let us recall that we denote by D + B the set of points x such that do (x) <_ .
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dynamical system

x’(t) f(x(t), u(t), v(t)).

Ursula, acting on u, wants the state of the system to reach the target , while Victor, acting
on v, wants the state of the system to avoid .

3.1. The alternative theorem. Let us define now the victory domains of each player.
DEFINITION 3.1 (victory domains).

Victor’s victory domain is the set of initial positions xo q S2 for which Victor can find
a nonanticipative strategy lg -- ]2 such thatfor any time-measurable control u(.) 12
played by Ursula, the solution x[xo, u(.), /3(u(.))] avoids f2 for any > O, i.e.,

Vt >_ O, x[xo, u(.), /3(u(.))](t) S2.

Ursula’s victory domain is the set of initial positions xo q 2for which Ursula canfind
a nonanticipative strategy ot 12 lg, positive , and T such that, for any v(.) lg played
by Victor, the solution x[xo, or(v(.)), v(.)] reaches the set f2 {x dc(x) >_ } before T.
Namely,

t < T, dc(X[Xo, ct(v(.)), v(.)](t)) >_ .
Remark. Note that , C S2.
Theorems 2.2 and 2.4 yield the following results.
THEOREM 3.1 (alternative theorem). Assume that f satisfies (5) and (6). Set K := ]1u \’.

Then
Victor’s victory domain is equal to Discf(K).
Ursula’s victory domain is equal to K\Leadf(K).

Assume moreover that

(9) Leadf(K) Discf(K).

Then the victory domains of the two playersform a partition of the closed set K.
Note that equality (9) is fulfilled as soon as Isaacs’ condition holds:

(x, p) 6 ]2N, supinf(f(x, u, v), p) infsup(f(x, u, v), p).
U 1) U

If equality (9) does not hold true, there are initial conditions x0 (where x0 belongs to Discf (K)
but not to Leadf(K)) from which Victor wins if he knows Ursula’s control and from which
Ursula wins if she knows Victor’s control.

Let us recall that a similar alternative theorem has been obtained by Krasovskii and
Subbotin in the framework of the positional strategies (see [23]).

Here we characterize the victory domains by means of geometric conditions (as discrim-
inating and leadership kernels of a closed set). This characterization is used in the joint work
with Quincampoix and Saint-Pierre [9] to compute numerically the victory domains (see also
[30] and [26] in the framework of control theory).

3.2. The barrier phenomenon. Since the kernel of a closed set for a map H IRN x
IRN -- IR is the maximal domain for H contained in K, it enjoys some particular properties
at its boundary. We have proved in 10] the following theorem.

THEOREM 3.2. Assume that the map H ]RN x ]RN -- ]R is continuous and positively
homogeneous in the second variable. Let D denote the kernel ofa closed set Kfor H. Assume
that a point x belongs to 0D but not to 0 K. Then
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(1) if v NPz)(x),

(2) if tx NPN\D(x),

H(x,v) <0.

H(x, -Ix) > O.

Let us point out that (1) follows from the very definition of the domains for H (recall that D
is itself a domain for H). So the important part of the theorem is the second assertion.

Let us further point out that, if Ix 6 NPN\(x), then the ball x + Ix+ Ix B is contained in

D. Roughly speaking, Ix is an inward proximal normal. So, if the boundary of D has nonzero
outward and inward proximal normals (Ix -v up to a positive multiplicative coefficient),
then H(x, v) 0. In the case when H(x, p) := sup, infv(f(x, u, v), p), (1) and (2) can be
interpreted as a generalized definition of Isaacs’ equation:

(10) supinf(f(x, u, v), p) 0,

where p is an outward normal to the smooth boundary of the victory domains.
Isaacs’ equation plays a main role in two-player differential game theory. See for instance

[21 ], [7] and the references therein. Smooth surfaces satisfying (10) are called semipermeable
surfaces by Isaacs. The reason is that both players can prevent the state of the system from
crossing this surface in one direction. In general, the boundary of the victory domains is not
smooth, and Isaacs’ methods do not work anymore. We prove below that, in any case, the
boundary of the victory domains is almost semipermeable. Similar results have been obtained
by Quincampoix in the framework of control theory6 (see [25]).

THEOREM 3.3. Assume that f satisfies (5) and (6). Let xo belong to ODiscf(K) but not
to 0 K. If lg -- )2 is a winning nonanticipative strategy7 for Victor, then there is a time
T > 0 such that, for any positive , Ursula canfind a control u (.) bl such that the solution
x[xo, u(.), /(u(.))] remains in ODiscf(K) + eB on [0, T], i.e.,

Yt < T,

So Ursula can ensure that the state of the system almost remains on the boundary ofher victory
domain.

ProofofTheorem 3.3. The proof of this result is a direct application of the second remark
following Theorem 2.1 applied to the dynamics g defined by

tx ]U, (t E , gf 6 9, g(x, fi, ):= f(x, , fi),

where 0 "= V and 17’ U. Indeed, choose xo 60Discf(K)\OK and R > 0 such that

xo + RB is contained in K. From Theorem 3.2, the set D "= Discf(K)\K satisfies the
following condition on x0 + RB:

Yx 6 xo + R , Yp 6 NPf(x), supinf(f(x, u, v), -p) > 0.

Since sup, infv (f (x, u, v), -p) inf sup (g(x, fi, f), p), we have proved that the locally

compact set/} Cl (x0 + R/]) is a leadership domain. So the second remark following Theorem
2.1 can be applied.

6Quincampoix’s results are concerned with the boundary of the viability kernel and of the invariance kernel (see
also the monograph [4]). The reader may refer to [29] for the case where the dynamics are only upper semicontinuous.

7A winning nonanticipative strategy for Victor is a strategy which ensures that the state of the system remains in
K forever, and so in Discf(K).
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4. Proof of the interpretation theorems. We prove in this section Theorems 2.1 and
2.3. The proof for the discriminating domains involves results of viability theory. The proof
for the leadership domains uses more technical estimates.

4.1. Proof for the discriminating domains.

4.1.1. Necessary condition. Let D be a closed set which enjoys the discriminating prop-
erty. By definition, for any x0 D, there exists a nonanticipative strategy fl H -+ V such
that for any u(.) H, the solution x[xo, u(.), fl(u(.))] remains in D. Let us show that D is a
discriminating domain.

For that purpose, fix x0 D, fl a nonanticipative strategy as above, and p NPo (x0).
We have to prove that SUPu infv (f (x0, u, v), p) < 0. Assume on the contrary that

supinf(f(xo, u, v), p) > a > O.

There is some fi 6 U such that

(11) Vv 6 V, inf(f(xo, fi, v), p) > a.

If we set u(t) t7 for any t, the solution x(.) x[xo, u(.), fl(u(.))] remains in D forever
from the very definition of ft. Since the open ball centered in x0 + p and of radius P does
not intersect D (p is a proximal normal to D at x0), x (.) satisfies

(12) Yt >_ 0, IIx(t) (xo + p)ll Ilpll.

Let us compute now the derivative of Ilx(t) (xo -t- P)ll 2"

dl
---IIx(t) (x0 + P)ll a (x’(t), x(t) (xo -t- p))
dr2

(f(x(t), , (u)(t)), x(t) xo)

-(f(x(t), (t, (u)(t)), p)

_< IIx(t) xoll(llf(x(t), ?, fl(u)(t))ll + ellPll)

--(f (xo, , fl(u)(t)), p}

<_ --a/2

for almost every small enough (recall that f is g-Lipschitz and satisfies (11)). Thus

IIx(t) (xo + p)ll a _< Ilpll 2 (at) < Ilpll 2

for small enough. This contradicts (12). Thus we have proved that any closed set D satisfying
the discriminating property satisfies also sup, info (f(xo, u, v), p) < 0, for any xo 6 D and
any proximal normal p to D at x. This means that D is a discriminating domain.

4.1.2. Sufficient condition, Assume now that D is a discriminating domain. Let x0
belong to D. We want to define a nonanticipative strategy/3 /g --+ )2, such that for any u(.)
belonging to L/, the solution x[xo, u(.), fl(u(.))] remains in D.

For that purpose, we introduce the following set-valued map:

B(u(.)) {v(.) 6 ; x[xo, u(.), v(.)] remains in D}.

The set-valued map B(.) /g , V has nonempty values. Indeed D is a discriminating domain
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and the measurable viability theorem8 18] states that, for any x0 e D, for any u (.) N+ ---> U
measurable, there exists a solution x (.) of the differential inclusion

x’(t) e f(x(t), u(t), V) for almost all > 0,
(13)

x(0) x0,

which remains in D. Usual selections theorems state (see also Theorem 3.1.1 of 17]) that the
solutions to (13) are the same as the solutions to

x’(t) f(x(t), u(t), v(t)) for almost all > 0,
v (t) 6 V for almost all > 0,
x(0) x0.

Thus there exists a control v(.) belonging to ]2 such that x(.) x[xo, u(.), v(.)], i.e., v(.) 6

B(u(.)).
We claim that B(.) has compact values for the weak topology of the Hilbert space

L2([0, +cx[, Id, e-t) (which is L2([0, +cxz), ]d) supplied with the Euclidean norm
IIv(.)llL f Ilv(t)ll2e-tdt) and that B(.) is a nonanticipative set-valued map. Recall
that V C d.

B(.) has weakly compact values. Since V is a convex compact subset of IRd, ]2 is weakly
compact. Let vp(.) belong to B(u(.)). Up to a subsequence (again denoted by Vp(.)), Vp(.)
converges for the weak topology to some control v(.) belonging to ]2. Thus, from Alaoglu and
Ascoli theorems, the solutions x[xo, u(.), Vp(.)] converge to the solution x[xo, u(.), v(.)] for
the compact convergence because f is affine in v (for more details, see for instance the proof
of the Convergence Theorem 2.4.4 in [4]). Thus x[xo, u(.), v(.)] remains in D on [0, +cx),
i.e., v(.) belongs to B(u(.)). So B(.) has nonempty, compact values.

The set-valued map B(.) is nonanticipative. We say that the set-valued map B L/ ]2

is nonanticipative if, for any s > 0, u and u2 belonging to/4 coincide almost everywhere
on [0, s], then, for any Vl belonging to B(ul), one can find v2 belonging to B(u2) which
coincides with vl almost everywhere on [0, s]. We now check that the set-valued map B(-) is
nonanticipative.

Indeed, since ul and u2 coincide almost everywhere on [0, T], x[xo, u2, Vl] remains in D
on [0, T], from the very definition of Vl. Set v2(.) := v (.) on [0, T]. The measurable viability
theorem yields the existence of a control v(.) such that the solution to the differential equation
for f(., u(t), v(t)), starting at time T from x[xo, u, vl](T), remains in D. Set v2(.) := v(.)
on (T, +cxz). Then v2(.) belongs to B(u(.)) and coincides almost everywhere on [0, T] with
v(.).

Thus, to prove Theorem 2.1, it is enough to find a nonanticipative selection of B(.), i.e.,
a nonanticipative map/3 :/4 --+ Y such that

Yu(.) e/4, fl(u(.)) B(u(.)).

The following lemma provides the existence of a nonanticipative selection of nonantici-
pative set-valued maps. This lemma is due to Plaskacz [24].

LEMMA 4.1 (Plaskacz). Let B(.) /4 --+ be a nonanticipative set-valued map with
nonempty, closed valuesfor the weak topology of L2(N+, V, e-t). Then there is a nonantici-
pative selection (.) of B(.).

8To apply this result, we have to recall that, under assumptions (5) and (6), the following statements are equivalent
(see [10]):

(1) D is a discriminating domain for f.
(2)x D, Yu U, f(x,u, V)f)TD(x) 0, where TD(X) :"- {V G ]N liminfho+ do(x +hv)/h =0}.
Thus, if D is a discriminating domain, for any u (.) e/a’, the following condition is fulfilled:

Yx D, f(x, u(t), V) (q To(x) 0 for almost every > 0.

So we can apply Theorem of 18].
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Since this result is still unpublished, we provide a proof of Lemma 4.1 in the Appendix
for the convenience of the reader.

4.2. Proof for the leadership domains. Let us now prove Theorem 2.3.

4.2.1. Sufficient condition. Suppose that D is not a leadership domain. We have to
contradict the conclusion of Theorem 2.3, i.e., to find some x0 belonging to D and some
positive and T and we have to build a nonanticipative strategy or(.), such that, for any v
belonging to V, the solution x[x0, or(v), v] leaves D + B before T.

Since D is not a leadership domain, there are some x0 D and some proximal normal
v NPD(XO)such that

inf sup(f (x0, u, v), v) 2a > 0.

Without loss of generality, we can assume that v 1. (Recall that NPD (x0) is closed and
convex and that 0 belongs to NPD(XO).)

Since the maps f (., u, v) are -Lipschitz for any u and v,

[Yy x0+B inf sup(f(y, u, v), v) > a.
1)

The set-valued map

I
inf (f(y, u, v), v) > a}

yxo+ B I

is measurable and has nonempty closed values. (It has a closed graph.) Thus Measurable
Selection Theorem 8.1.3 of [5] states that there exists a measurable selection zr V U of
this set-valued map.

Define now the map ct(.) V --+ H in the following way:

Yv(.) 6 V, ot(v(.))(t) :r(v(t)).

Note that or(v(.)) is measurable because it is the composition of two measurable maps. More-
over, ct (.) is obviously a nonanticipative strategy.

aLet M be a bound of IIf(’, ", ")11 on Ix0 / B] U V. Fix v(.) 6 V and set x(.) "=

x[xo, or(v(.)), v(.)]. We claim that, for any 6 [0, _g],a

(14) (x(t)- xo, v) > at and IIx(t)- x011 Mt.

If our claim holds true, we can make the following statement.
LEMMA 4.2. Let D be a closed subset ofN and x belong to D. Assume that v is a

2aproximal normal to D at x. Let M and a be positive. Then, for any 0 < < -fir, one has

Ily-xll <Mt, [ := do(y) >at
(y x, v) >_ at I

M2t2

Set { := inf{ a 2a /2--7’ -r} and [a-]{. (Note that both {and are positive.) Combining
equation (14) with Lemma 4.2 yields dD(x({)) > . Since { and do not depend on v(.), we
have defined a nonanticipative strategy c(.) such that, for any v(.) belonging to H, the solution
to x[xo, c(v(.)), v(.)] leaves D + B before L This is the desired conclusion.
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a aTo prove that (14) holds true, note that, for < --g, x(t) belongs to x0 + . Thus the
following estimates hold:

I a ](x’(t), v) > a and IIx’(t)ll M for almost all 0, -We obtain (14) after integration, using the fact that (llx(t)ll)’ IIx’(t)ll for almost every
>0. fq

ProofofLemma 4.2. Let us first prove that, if y and are as in Lemma 4.2, then y belongs
to the ball x + p + v B-

IIx + v yll 2 IIx yll 2(y x, v) + Ilvll Ilvll + M2t2 2at.

Thus, for 6 (0, 2a), IIx + v y is not greater than vii, which means that y belongs to
x 4- v 4-Ilvlln.

Since v is a proximal normal, the distance from y to D is less than or equal to the distance
from y to the complement of x + v + v B. Thus

doCy) > Ilvll Ilx + v yl[ > Ilvll [llvll + M2t2 2at]1/2.

Since, for s 6 [-1, 0], one has 1 [1 + s] >_ -g, the proof is complete, rq

4.2.2. Necessary condition. Wenow suppose that D is a leadership domain. Fix x0 6 D,
ot a nonanticipative strategy, > 0, and T > 0. We construct a control v(.) such that the
solution x[xo, c(v(.)), v(.)] remains in D + CB on [0, T].

The proof is divided into three steps. We first state two lemmas. Then we construct the
control v(.). Finally, we prove that v(.) satisfies the required condition.

Preliminary lemmas. Throughout the proof, we keep the notation of the following lemma,
which shall be proved later.

LEMMA 4.3. With the notation and the assumptions ofTheorem 2.1, there is some radius R
such that,for any u(.) belonging to bt and any v(.) belonging to )), the solution x[xo, u(.), v(.)]
remains in xo + RB on [0, 2T]. We denote by M a bound of f (’, ", ")II on (xo / RB) x U x V.

In particular, Lemma 4.3 states that we can proceed as if f is bounded by M, because we
study the solutions only on [0, T].

We now need the following lemma.
LEMMA 4.4. Assume that the map f satisfies (5) and is bounded by M. Let D be a

leadership domain. Let Y D and y belong to the projection of Y. onto D. Choose f) V
such that

sup(f(2, u, O), 2 y) < O.

There are positive constants c and r (which depend only on g. and M) such that, for any
u(.) bl, thefollowing estimate holds true:

Vt < r, dD(X[X, U(.), O](t))2 _< Ct2 q d2D(Y.)e2et.

Lemma 4.4 is proved below.
We are now ready to construct the control v(-). (We keep the notation of Lemmas 4.3

and 4.4.)
Construction of v(.). Fix a 6 (0, r) small enough such that

e27"e- 2M2a2e2Te if_ ca2 < :
e2ca- 1
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Let (tp ap)p<_T/a be a subdivision of [0, T]. We define v(.) recursively, in such a way that
v(.) is constant on any interval [tp, tp+l).

On [0, tl), we set v(t) Vl, where Vl is any element of V.
Assume we have defined v(.) on [0, tp). For simplicity, we set Xp x[xo, (v), v](tp).

Since c is nonanticipative, Xp only depends on the restriction of v(.) to [0, tp].
If Xp belongs to D, we set v(t) := Vp+l on [tp, tp+l), where Vp+l is any element of V.
If xp does not belong to D, then let yp be a projection of xp onto D. Since D is a

leadership domain and Xp yp is a proximal normal to D at yp, there exists Vp+l such that
supu (f (yp, u, Up+l) Xp yp) < O. Then we set v(.) "= l)p+ on [tp, tp+l).

From now on, we set x(t) := x[xo, (v), v](t).
do(x(t)) <_ for [0, T]. To show this, we apply Lemma 4.4 with u(.) "= ct(v(.)).

Note that in the worst case (i.e., the case when suptet0,rl do(x(t)) is maximum), the X(tp) do
not belong to D once p > 1.

If belongs to [tp, tp+l), then v(t) Vp+l, where Vp+l satisfies

sup(f (yp, u, Up+l), Xp yp) <_ O.

Since yp is a projection of Xp onto D, we can apply Lemma 4.4 to get

do(x(t)) <_ c(t tp)2 + do(Xp)e2ea

because a < r.
Applying Lemma 4.4 again yields

By induction we obtain

d20 (Xp) < ca2 + d20 (Xp_ 1)e2ca

i-1

dD(Xp)2 < d2D(Xl)e2pea -[- ca2 e2jea.
j=O

Note that, for any _< T, there is p < T/a such that tp < < tp+l. Moreover,

d2D(Xl) < IIx0- xlll 2 < M2a2

because f is bounded by M. So we have finally proved that

e2re
Yt < T, do(x(t))2 < M2a2e2re + ca2

e2ea- 1

From the very definition ofa, the right-hand side is smaller than e2. Thus, we have constructed
a control v(.) such that, on [0, T],

dD(X[Xo, or(v(.)), v(.)](t)) < e,

as desired.

Proof of Lemma 4.3. For simplicity, we set x(.) "= x[xo, u(.), v(.)], and
) :- SUPu supv IIf(x0, u, v)ll. The derivative of Ilx(t) x01l is not larger than IIx’(t)ll for
almost every t. Thus, for almost every t, one has

d
__dllx(t)- x011 IIx’(t)ll

IIf(x(t), u(t), v(t))ll. + ellx(t) x011
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because f is e-Lipschitz. Gronwall’s lemma yields

Ilx(t)- 2coil _< 1].

x [ee2T 1], Lemma 4.3 follows.Thus, if we set R 2
ProofofLemma 4.4. For simplicity, set x(t) :-- x[x, u(.), ](t). Let < T for which the

derivative of x(-) exists and is equal to f(x(t), u(t), 2). Recall also that f is e-Lipschitz and
bounded by M. So we have the following estimate:

llx(t) yll 2 (f(x(t), u(t), f), x(t) y)

< (f(y, u(t), f), x(t) y) +
<_ (f (y, u(t), f)), Y y) + MIIx(t) 11 + ellx() yll a.

Recall that (f(y, u, f) 2 y) < 0 for any u of U. Since Ill(’, ", ")11 is bounded by M, the
distance between x(t) and Y is not larger than Mr. Thus

(]lX(t)-yl]2) <M2t+ellx(t)_yl]2.

This inequality is fulfilled for almost every > 0. Gronwall’s lemma yields

M2 M2

(15) ’v’t _> 0, IIx(t) yll 2 < ]IY yll2e2et tg -+- - [e2et -1].

M2 M2 [e2et 1] vanishes at 0, and q’(0) 0. ThusNote that the map 4 --+ --7- + -there are positive constants c and r (which depend only on M and ) such that

M2 M2
[e2et- 1] < ct2vt o, r], ---e-t + -In particular, (15) yields

Vt [0, r), d2o(x(t)) < IIx(t) Yll 2 < d(Y)e2et + ct2.

So we have proved Lemma 4.4.

5. Proof of the characterization theorem for the leadership kernel. In this section,
we prove Theorem 2.4.

From now on, symbols involving c (like c (.), if(.)), always denote nonanticipative strate-
gies from V to

Set

L {xo K Vot(.), V > O, VT > O,
:Iv(.) 6 such that
Yt < T, x[xo, or(v(.)), v(.)](t) K + eB].

We have to show that L Leadf(K).
Inclusion Leadf(K) C L follows directly from Theorem 2.1. To prove the opposite

inclusion, it is sufficient to show that L is a leadership domain, because Leadf (K) contains
any leadership domain contained in K. For that purpose, we first prove that L is closed and
then that L is a leadership domain.
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L is closed. This claim is a consequence of the following lemma.
LEMMA 5.1. If x belongs to K but not to L, there exist positive O, , and T and a

nonanticipative strategy ot such that, for any y x + qB, for any control v(.) ]2, the
solution x[y, or(v), v] leaves K + B before T.

In particular, the complement of L is open, and thus L is closed.

Proof of Lemma 5.1. From the very definition of L, there are positive e and T and
a nonanticipative strategy or, such that for any control v of V, there is some < T with
x[x, or(v), v](t) K + 2B.

Since f is Lipschitz and V is compact, by Gronwall’s lemma, there exists some 0 > 0
such that, for any v 6 A/’, for any y 6 x + r/B,

IIx[y, a(v), v](t) x[x, or(v), v](t)II _< e, for _< T.

Thus

dr(x[y, cg(v), v](t))
>_ dl,:(x[xo, or(v), v](t)) IIx[y, c(v), v](t) x[xo, or(v), v](t)ll e.

This proves the lemma. [3

L is a leadership domain. Assume that L is not a leadership domain. Then there is some

x0 6 L such that

(16)
3or(.), e >0, T >0, such thatYv(.) V

3t < T with x[xo, or(v(.)), v(.)](t) L + e B.

We are going to prove that, if x0 satisfies (16), then it satisfies

(17)
BoT(.), g > 0, ? > 0, such that Vv(.)

Bt < ]F with x[xo, if(v(.)), v(.)](t)

Since (17) contradicts x0 6 L, L is necessarily a leadership domain.
Let x0 belong to L, and assume that x0 satisfies (16). Let E be the closure of

{y L + eB [v 6 "12 and < T with y x[xo, or(v), v](t)}.

The set E is compact, because f has a linear growth. Moreover, E fq L 0. For x 6 E, we
define x > 0, x > 0, Tx > 0, and Otx (.) by the following statements:

If x K, then r/x := dx(x)/2, x := Ox, Tx := 0, and Crx(.) := c(.). (Recall that or(.)
is defined by (16).)

If x 6 K, then r/x, x, Tx, and otx (.) are defined as in Lemma 5.1.
Note that E C xe(x + Ox B). Thus there exist Xl Xp belonging to E such that

(18)
p

E C U(Xi -[" xiB).
i=1

We are now ready to define

g := min ex, and 2? T + max Txi.
i=1 p i--1 p

TO define o7, let us first define the hitting time of E"

Yv(.) V, p(v(.))"= inf{t >_ 0 x[xo, or(v), v](t) 6 E}.
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Assumption (16) yields that p(v(.)) <_ T for any v(.) belonging to V. Moreover, x[xo, or(v(.)),
v(.)](p(v(.))) belongs to E, because E is closed.

We are now ready to define 07(v(.)).
On [0, p(v(.))[, we set 07(v(.))(t) :--- ot(v(.))(t).
On [p(v(.)), +oo), we set 07(v(.))(t) oti(v(.))(t p(v(.))), where is the smallest

integer for which x[xo, or(v), v](p(v(.))) belongs to xi + rliB (such an exists from (18)).
We have to prove that 07 is a nonanticipative strategy and that , g, 1?, and 07(.) satisfy the

conclusion of (1 7), i.e.,

Vv(.) V, 3t _< 7, such that x[xo, 07(v(.)), v(.)](t) K +
07 is a nonanticipative strategy. Let > 0 and let Vl and v2 belong to V, such that Vl and

v2 coincide almost everywhere on [0, t]. Let

t’ max{s < 07(vl) 07(v2) on [0, s]}.

Note that x[x0, 07(vl), Vl] and x[x0, 07(v2), v2] coincide on [0, t’]. We have to prove that t’ t.
For that purpose, we have to discuss two cases.

(i) Assume that t’ < p(vl). Then for any s < t’,x[xo, 07(Vl), vii(s) x[xo, 07(v2), vz](s)
does not belong to E. Since E is closed, there is 0 > 0 such that /9(l)1) > t’ + 0 and
p(v2) > t’+ 0.

From the very definition of 07, 07(Vl) equals c(vl) on [0, t’ + 0], and 07(v2) equals ot(v2)
on [0, t’ + 0]. Since ot is nonanticipative, 07(va) and 07(v2) coincide almost everywhere on
[0, min(t, t’ + 0)]. So t’ min(t, t’ + 0), and thus t’ t.

(ii) Assume now that t’ >_ p(v). Since 07(Vl) and 07(v2) coincide almost everywhere on
[0, t’], one has p(v) /9(1)2). We denote by p this common value. Let be the smallest
integer such that x[xo, 07(Vl), v](p) x[xo, 07(v2), 1)2](/9) belongs to xi + rli B.

From the very definition of 07, 07(vl)(t) oti(Vl)(t p) on [p, 00) and 07(vz)(t)
oti(v2)(t p) on [p, x). Since O/i is nonanticipative and since Vl and v2 coincide almost
everywhere on [p, t], 07(Vl) and 07(v2) coincide almost everywhere on [p, t]. Thus t’.

In both cases we have proved that, for any >_ 0, if v and v2 coincide almost everywhere
on [0, t], then 07(vl) and 07(v2) coincide almost everywhere on [0, t]. So 07 is nonanticipative., (-, , and 07(.) satisfy (17). Let v belong to V. We want to prove that x(.) "=

x[xo, 07(v), v] leaves K + g before
From the very definitions of 07(v) and or, x(.) reaches E at a time p(v) <_ T. Let be the

smallest integer such that x(p(v)) belongs to xi + I’]i B. Suppose either xi K or xi K. If
x K, then

dK(x(p(v))) > dK(xi) [[xi x(P(V))II >_ 27i Y]i -.
If xi K, then since 07(v)(.) i(" p(v)) on [p(v), oo), x(.) leaves K + iB before
p(v) + T/ < 1?; this follows from Lemma 5.1 and from the very definition of oti(.). In both
cases, x(.) leaves K + gB before

So we have proved that (16) implies (1 7) and so the proof is complete.

6. Appendix. We now provide a proof of the following lemma.
LEMMA 6.1 (Plaskacz). Let B(.) bl --> V be a nonanticipative set-valued map with

nonempty, closed valuesfor the weak topology ofL2(]+, V, e-t). There is a nonanticipative
selection [3(.) of B(.).

Proof ofLemma 6.1. Let/5 be the set of the set-valued maps A L/-- V with weak5,
compact nonempty values, which are nonanticipative and which moreover satisfy A(u(.)) C
B(u(.)) for any u(.) belonging to A//.
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There is a natural partial order on/3:

[A1 -< A2] 1: [u(.) e .A/I, Al(U(’)) C A2(u(’))].

The proof is divided into two steps. In the first step, we prove that the order

_
is inductive.

Then Zorn’s lemma yields the existence of minimal set-valued maps for -<_. In the second step,
we show that minimal set-valued maps are maps, which achieves the proof.

+/- is inductive. For this purpose, let (Az)zeA be a totally ordered subset of/3. We denote
by A the set-valued map

Yu(.) E lg, A(u(.)) := N Az(u(.)).
)CA

Then obviously, A +/- Az for any ) E A. We have to prove that A belongs to B. So we have
to show that (1) for any u(.) 6 b/, A(u(.)) is nonempty, weakly compact, and contained in
B(u(.)) and (2) A is a nonanticipative set-valued map.

(1) For any u(.) 6 H, Az(u(.)) is a nonempty and weakly compact set, and the family
(Az (u(.))) is totally ordered for the inclusion. Since the decreasing intersection of nonempty
compact sets is nonempty and compact, A has nonempty weakly compact values. For any
u(.) b/, for any ) A, Az(u(.)) is contained in B(u(.)). Thus A(u(.)) is contained in
(u(.)).

(2) It remains to prove that A is nonanticipative. Let s >_ 0, and assume that U (-)
coincides with u2(.) on [0, s]. Let Vl(.) belong to A(ul(.)). We have to find v2(.) E A(u2(.))
which coincides with vl (-) on [0, s].

Since vl (.) belongs to A(u(.)), Vl (.) belongs to Az (Ul (.)) for any ) A. The set-valued
maps Az are nonanticipative, so, for each ., there exists v(.) 6 Az(u2(.)), which coincides
with va (.) on [0, s].

Fix ) 6 A, and set

Pz "= closure{v’(.)I Az,-< Az},

where the closure denotes the weak closure. Note that, for any w(.) belonging to l)2 (’) Az, +/-

Az }, w(-) coincides with vl (-) on [0, s]. We use the following lemma to prove that this property
also holds true for any w(-) 6 Pz.

LEMMA 6.2. Let E be a subset of ]2 such that there exist 1)1(’) 12 and s > 0 with

Yw E, w =-- v almost everywhere on [0, s].

Then the weak closure of E also enjoys thefollowing property:

Yw E, w 1)1 almost everywhere on [0, s].

Proof. Let w belong to/. There exists a sequence Wp E which converges weakly to
w. Thus,

Yt <_ s, Wp(Cr)d -- w(r)dcr.

Since, by assumption, Wp and 1)1 coincide on [0, s], one has

f0Vt 6 [0, s], Wp(cr)dcr v (r)dcr.
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So,

Yt [0, s], w(a)da v(a)da.

Thus w coincides with Vl almost everywhere on [0, s].
Lemma 6.2 states that the elements of Pz coincide with vl (.) on [0, s]. The family Pz is

a decreasing family of weakly compact sets and Px is contained in Az(u2(.)) for any .. Thus
the set P defined by

P’=AP
is nonempty and compact. Moreover,

[LEA, PcA(u2(’))]= [PCAA(u2(’))=A(u2(’))]
Since, for any v2(.) belonging to P, v2(.) belongs to Px, v(.) coincides with vl(.) almost
everywhere on [0, s]. So there exists v2(.) which belongs to A(u(.)) and coincides with vl (.)
on [0, s].

For any s > 0, for any u (-) and u2(.) which coincide almost everywhere on [0, s], for any
vl(.) belonging to A(ul(.)), there exists v2(.) E A(u2(.)) which coincides with vl(.) almost
everywhere on [0, s]. Thus A is nonanticipative, with nonempty compact values, and with a
graph contained in the graph of B, i.e., A belongs to/3.

We have proved that the partial order on/ is inductive. Zorn’s lemma states that there
exist minimal elements for this order. Let fl(.) 6/3 be such a minimal element. We claim that
fl(.) is a map. If our claim holds true, fl(.) is a nonanticipative selection of B from the very
definition of B, and the proof of Lemma 6.1 is complete.

Minimal set-valued mapsfor -< are maps. Assume that, contrary to our claim, the minimal
set-valued map fl is not a map. There exists tT(.) 6 b/, such that the cardinal of fl(tT(.)) is
larger than 1. Let (.) belong to fl((.)). We are going to construct a set-valued map A 6/3,
such that A

_
fl and A(tT(.)) {(.)} (in particular, A #- fl). Thus we obtain a contradiction,

because, from the assumption, fl is supposed to be minimal.
For any u(.) b/, we define A(u(.)) in the following way.

If u(.) tT(.), we set A(t(.)) :-- {(.)}.
If u(.) does not coincide with tT(.) on any interval [0, s] (s > 0), then we set A(u(.))

(u(.)).
If u(.) coincides with t(.) on some interval [0, t], let [0, s] be the maximal interval on

which (.) and u(-) coincide. Then we set

A(u(.)) "= {to(.) E fl(u(.)) w(.) (.) a.e. on [0, s]}.

Note that A(u(.)) C fl(u(.)) for any u(.) belonging to .M and that A((.)) {(.)}. So
it remains to prove that A belongs to B.

Since fl is nonanticipative and has nonempty values, A has nonempty values. The graph
of A is contained in the graph of fl, and thus is contained in the graph of B. Moreover, the
values of fl are weakly compact, so by Lemma 6.2 the values of A are also weakly compact.

Next we prove that A is nonanticipative. For this purpose, let s > 0 and assume that u (-)
and u(.) coincide almost everywhere on [0, s]. Without loss of generality, we also assume
that [0, s] is the maximal interval on which/’/1 (’) and u2(.) coincide. Let v belong to A (ul (.)).
We have to find v2(.) A(u2(.)) which coincides with v (.) on [0, s]. There are two cases.
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(1) ul(.) does not coincide with (.) on any interval [0, t] (t > 0). In this case, vl(.)
belongs to/3(u1(.)). Note moreover that u2(.) does not coincide with iT(.) on any interval
[0, t] (t > 0), because Ul(.) and u.(.) coincide on [0, s]. Since/3 is nonanticipative, there is
v2(.) which belongs to fl(u2(.)) A(u2(.)) and which coincides with Vl (.) on [0, s].

(2) ul (.) coincides with tT(.) on [0, t]. We denote by [0, t] the maximal interval on which
Ul (.) and fi(.) coincide and by [0, t2] the maximal interval on which u2(.) and tT(.) coincide.
Note that, from the construction of A, Vl (.) and (.) coincide on [0, tl].

We have to find v2(.) 6 A(u2(.)) which coincides with Vl(.) almost everywhere on [0, s].
From the construction of A, this is equivalent to finding v2(.) 6/3(u2(.)) which coincides with
1) (’) on [0, s] and with fi(.) on [0, t2].

We first prove that, in the set {s, tl, t2}, there are two elements that are equal and smaller
than or equal to the third one. Indeed, assume for instance that s > t > t2. Then

Ul(’) U2(’) on [0, s], }Ul(.) =-- /(.) on [0, tl] = u2(.) fi(.) on [0, tl].

So t2 tl. The other cases (i.e., tl _> t2 _> s, and so on) can be treated in the same way. To
find the desired v(.), we have to study three cases.

(1) S > tl t2. Since/3 is nonanticipative, we can find v2(.) 6 fl(u2(.)) which coincides
with Vl(.) on [0, s]. Since v(.) coincides with (.) on [0, t], v2(.) coincides with (.) on
[0, t2] because tl t2 and s > re. Thus v(.) belongs to A(u2(.)) and coincides with Vl(.)
on [0, s].

(2) tl > s t2. The same argument applies.
(3) t2 > s tl. Since fl is nonanticipative, we can find v(.) 6 fl(u2(.)) which coincides

with (.) on [0, t2]. In particular, v2(.) belongs to A(u2(.)) from the construction of A. Since
(.) coincides with Vl (.) on [0, tl], v2(.) and Vl (.) coincide on [0, s] because s tl and s < t2.

So in any case, we have found v2(.) 6 A(u2(.)) which coincides with vl (.) on [0, s]. Thus
A is nonanticipative, which completes the proof. [q
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INFORMATION CAPACITY OF CHANNELS WITH PARTIALLY UNKNOWN
NOISE. II. INFINITE-DIMENSIONAL CHANNELS*

C. R. BAKER? AND I.-E CHAO

Abstract. Information capacity is considered for a communication channel in which the noise is the sum of a
known Gaussian component and an independent component with unknown statistical distributions. A lower bound on
capacity is sought; the unknown noise component is thus assumed to be under the control of an adversary--ajammer.
The problem is modeled as a zero-sum two-person game with mutual information as the payoff function. Appropriate
constraints are determined on the transmitted signal and the unknown noise component. Although the usual conditions
sufficient for application of the general form of the yon Neumann minimax theorem are shown not to hold, a solution is
obtained for the game: a saddle value, saddle point, and minimax strategy for the jammer are obtained. The essential
effect of jamming is to convert the infinite-dimensional channel into a finite-dimensional channel having the same
constraints, with the dimensionality depending upon the problem parameters: the covariance of the known Gaussian
noise component and the constraints on the transmitted signal and the unknown noise component.

Key words. Shannon theory, channel capacity, information capacity, jamming

AMS subject classifications. 94A15, 94A40, 90D80

1. Introduction. The subject ofthis paper is a communication channel in which the noise
is the sum of a known Gaussian component and an independent component with unknown
statistical distributions. An example is when the interference is the sum of a Gaussian receiver
noise and an unknown noise in the transmission medium. One may then ask for the worst-case
capacity of the channel; that is, when "nature" chooses the unknown noise component to be
that which is least favorable to the channel user, or coder. A natural way to view this problem
is that of a jamming channel, where the unknown noise is controlled by a hostile jammer who
seeks to minimize the information capacity of the channel.

Information capacity of such a channel is determined in [7] under the assumption that the
channel is finite dimensional. By "information capacity" we mean here a saddle point solution
to a zero-sum two-person game in which mutual information is the payoff function and the
admissible strategies for coder and jammer are determined by constraints on the stochastic
signals of the coder and jammer.

In this paper this problem is solved for the infinite-dimensional channel: a channel in
which all sample paths belong to a real separable Hilbert space, H, with inner product
(., .) and norm II" II. A concrete example is when H is the M-fold product of L2[0, T];
f in H is of the form f (fl, f2 fM), each j belonging to L2[0, T]; and Ilfll

M 2 1/2Zi=I f fi (t)dt)]
Very substantial differences exist between this problem and that for the finite-dimensional

channel. In the latter, the initial problem can be reformulated so that a saddle point solution is
guaranteed by the von Neumann minimax theorem. Moreover, the solution can be obtained,
after some development, by application of constrained optimization and the Kuhn-Tucker
conditions. For the infinite-dimensional channel, it will be seen that the von Neumann theorem
cannot be applied. Thus, one does not know in advance whether a saddle value exists, much
less a saddle point. Moreover, constrained optimization is not available. Nevertheless, we
shall prove the existence of a saddle point, obtain the saddle value, and in the process give a
minimax strategy for the jammer.

*Received by the editors August 2, 1993; accepted for publication (in revised form) May 1, 1995. This research
was supported by NSF grant NCR87113726 and ONR contract N00014-92-C-0094.

?Carolinian Systems Research Corp., Chapel Hill, NC 27514-3002, and Department of Statistics, University of
North Carolina, Chapel Hill, NC 27599-3260.

Department of Mathematics, National Central University, Chungli, Taiwan, Republic of China.
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The results have potential interest from several viewpoints. One, of course, is that mutual
information is a mathematical quantity that accompanies every finite measure on a measurable
product space. Game-theoretic formulations with mutual information as payoff function may
be of interest to model and analyze various competitions (e.g., in economics), quite aside from
communication over noisy channels. For such applications, more general models than those
suitable for an additive-interference communication channel may be needed; some results in
this direction are given in 1 ]. Additional generality can be added in various ways; for example,
as in [5], finitely additive measures can be included. The problem in a communication channel
framework is of long standing, first enunciated by Blachman [10] and Dobrushin [12] as an
intrinsic measure of a channel’s ability to convey information. A sufficient rationale for the
present work and [7] is to give a solution to the game-theoretic problem first described by
these authors over 35 years ago.

The results may also have practical use in obtaining coding capacity of communication
channels. Information capacity is often used to obtain coding capacity in the sense that the
former is typically an upper bound on the latter, and for Gaussian channels, the two are equal,
at least for dimension-limited channels [4], [5], where the elements of the code word set must
each satisfy an energy constraint. The finite-dimensional results of [7] are sufficient for this
purpose in the case of the discrete-time channel. However, for continuous-time channels,
one obtains the upper bound on coding capacity in the classical approach by computing the
information capacity for each value of T, thus obtaining a quantity Cr, and then taking
limsupr_,Cr/T. Cr is computed for the channel having sample functions in L2[0, T] or
its M-fold product.

Another approach to coding capacity of continuous-time channels is given in [4] and [5],
where, rather than having the transmission time period increase and included in the constraint,
the length of transmission is fixed and the dimensionality of the code word set is incorporated
into the constraint. The motivation is that complexity can be as important in cost analysis as
the time of transmissionuperhaps more so--and that implemented communication channels
are necessarily time limited. In this framework, the development involves computation of
limsupn_,C(n)/n, where n is the permitted dimensionality of the code word set and C(n)
is the capacity of the L2[0,T] channel when the coder is subject to this constraint.

For solving the first of the two problems just described, knowledge of the information
capacity for the infinite-dimensional channel appears necessary; for the second, it seems at least
helpful. Thus, the solution of the problem considered here appears to be a usefulmperhaps
essential--step in order to obtain coding capacity for continuous-time channels subject to
jamming. Finally, we note that the basic problemAa channel where the noise is the sum of
a known Gaussian component and an independent component with unknown distributionsm
arises very frequently in applications.

Channels such as those analyzed here are usually characterized as "compound," which
refers to a channel known only to the extent that it belongs to a specified family. The family
of channels admitted here is defined by energy-type constraints on the jammer and the coder
which take into account the properties of the ambient Gaussian noise.

Recent work on the game-theoretic analysis of information capacity has primarily been
done by McEliece and his collaborators 11 ], 18], 19]. Although their work includes analysis
ofsome quantized channels, its intersection with our work is for an essentially one-dimensional
Gaussian channel in which the jammer controls all of the noise.

The present work is for the general channel; there is no limitation such as stationarity,
memory, or univariate nature. It is anticipated that limv__,CT/T can be given in terms of
spectral densities for the stationary Gaussian channel subject tojamming. This can presumably
be obtained through limiting arguments based on the results given here, in the same way that
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the results of [3] have been used to obtain limr__, Cr/T of stationary Gaussian channels
without jamming [6].

Previous publications on analysis of channels subject to jamming include papers in
which either coding capacity or minimization of mean-square signal distortion is the cri-
terion. Among the former is the Gaussian arbitrarily varying channel (AVC). As analyzed
in the existing literature (e.g., [14], [15]), this is an inherently discrete-parameter channel in
which the noise is the sum of a known Gaussian process with independent components and
(usually) constant variance and a jamming process with unknown statistical properties, with
the transmitted signal and the jamming process subject to average or peak power constraints.
Comparisons with our approach will thus first require applications of the results of [7] to obtain
coding capacity for discrete-time channels. However, extension of the published AVC models
and methods to general infinite-dimensional channels is not immediately obvious, especially
for continuous-time channels.

An approach to modeling and analysis of jamming channels that can be applied to
continuous-time channels has been taken by Basar and Basar [9]. Their work involves the use
of mean-square signal distortion as the criterion of optimality and is not directly comparable
to our approach.

Additional discussion of related work is contained in [7].

2. Mathematical model. The channel sample paths are described by Y X + W + J,
where X is the coder’s signal, W is the ambient Gaussian noise, and J is the noise component
controlled by the jammer. X, W, and J are mutually independent. These quantities are
described by the probabilities/zx,/xw, and/zj on the Borel sets of H; all are assumed countably
additive and second order (i.e., fn Ilxll2dt(x) < oe) so that their covariance operators are
necessarily trace class. The (average) mutual information of interest is

f. [ dlzxrI (X, Y) I (/Zxr,) log
dlzx (R) lzrxH

(x, Y)I dxv(x, y),

where/Zx (R)/zr denotes product measure and/zxr (A) /Zx (R)/zw (R)/zj (x, w, v) (x,
x + w + v) E A}. I(lzxr) o,z when lzxr is not absolutely continuous with respect to

l.tx (R) t.tr.
Under these assumptions, x, w, and + have covariance operators Rx, Rw, and R+"

e.g., (Rwu, v) fH (x, u/(x, v)dl=tw(x). We assume without loss of generality (WLOG)
that Rw is strictly positive on H and that all probabilities are zero-mean.

The assumptions imply the existence of a self-adjoint operator S, possibly unbounded, sat-

/1/2(i _]_ S)/;? 1/2 1/2 .K, /?1/2 /? 1/2,isfying Rw + Rj --w --w or, equivalently, Rj Rw "’w where range(..w C
79(S), the domain of S [3]. The operator (I + S)-1 exists, since S is nonnegative and nec-

essarily bounded, since range(R 1/2a
w C range(Rw + Rj) 1/2 Rw n>_l ,knen (R) en, where

.n > 0 and .n > .n+l for all n > 1, -> ) < cxz, {en, n > is a complete orthonormal
set (CONS) for H, and (e, (R) en)V (en, v) en.

The constraints on the coder are given by tzx[range(R1/2aw]- and E,x Ilxll2w _<
where for x in range(Rlw/2), Ilxll2w IIRvl/2xll 2. Such constraints are necessary for the
capacity without jamming to be finite [2]. This constraint amounts to a RKHS (reproducing
kernel Hilbert space) constraint on the coder’s energy in terms of the RKHS of the ambient
channel noise covariance. As such, it limits the amount of energy that the coder can place into
regions where the ambient noise energy is small.

The jammer’s constraint is given by Ezj]lxl[ 2 <_ P2. The stronger constraints
/? 1/21/xj[range(..w j 1 and Euj Ilxllv < P2 might be thought reasonable, since they are consis-

tent with those imposed on the coder. However, they are too strong; the jammer would not be
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able to have any effect on the information capacity under these constraints. This can be seen
from the results of [3]; from Theorem 3 of that paper, if S is nonnegative and has zero as the
only limit point of its spectrum, then the capacity is equal to P1/2. This situation would hold if

1/2one used the constraints #j[range(Rw )] and E.j Ilx IIw _< e2, since the inequality (using
/1/2 1/2the fact that Rj "’w SRw is the same as Trace S < P2. Thus, the jammer’s constraint

must be weaker than that of the coder.
The constraint Euj ]Ix][ 2 < P2 places a constraint on the total jammer energy but not on

the relative jammer/noise energy. In terms of frequency, this means that the jammer can use
signals that have relatively large energy compared to the noise energy in appropriate frequency
ranges. Such a constraint has an immediate intuitive interpretation. The jammer’s optimum
policy should be that of adding the available energy to the ambient noise energy in such a
way that the sum provides maximum interference to the coder. The jammer will thus want to
place the available energy in regions available to the coder in which the noise energy is small,
and this is provided by the above constraint. The use of the RKHS constraint E, ]Ix ]]v < P2
would permit the jammer to place the available energy in regions that are available to the coder
and with the same flexibility as permitted to the coder. However, it also limits the jammer’s
energy relative to the ambient noise energy and is evidently too strong for the jammer to have
an effect. This may be regarded as somewhat surprising and is one of the first differences that
one sees in going from the finite-dimensional to the infinite-dimensional channel. It means
that, with the coder selecting the optimum strategy, the jammer cannot reduce the information
capacity if the energy limitation on the jammer is subject to the same type ofRKHS constraint
as that applied to the coder, regardless of the value of P2, i.e., regardless of the total amount
of energy available to the jammer. As already mentioned, the constraint applied to the coder
is implied by any constraint that gives finite information capacity in the absence of jamming.

In the form given above, there is no constraint on the probability distribution of the jam-
mer’s signal other than E, [[X[[ 2 <_ P2. However, it follows from [16] that for a given Rj,

the information capacity (coder’s viewpoint) will be minimized by taking/zj to be Gauss-
ian. Thus, the jammer should always choose IZs to be Gaussian, and this will be assumed
henceforth. With this assumption, the jamming channel is a special case of the mismatched
Gaussian channel: a Gaussian channel such that the constraint covariance Rw is not the same
as the noise covariance [3].

The jammer’s strategy is now uniquely determined by the choice of the operator S. For a
given strategy, the mutual information can be expressed as [3]

I(#xr) F(z, c) -- log [1 + zn(1 "- O/n)-l]

where (Zn) and (Otn) are defined as follows. The coder’s covariance operator Rx is given by

Rx rn(Rw + Rj)SUn @ (Rw + Rj)SUn,
n

where {un, n >_ is a CONS in H, r > 0 for n > 1, and Yn r. < o. Then

. (SU*u, U*u.) and z. rnll(l + S)1/2S*ull 2,

where U* is the unitary operator satisfying (Rw + Rj)I/2 "’w/’l/2(I / S) 1/2 U*.
The problem to be considered is to determine if there exists a saddle value for the zero-sum

two-person game with I (#x,Y) as the payoff function; further, if a saddle value exists, then
determine whether a saddle point exists; if such a point exists, then give its definition. That
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is, we seek to determine whether

(1) sup inf F (z, or) inf sup F (z, or),
ot

where the sup and inf are taken over the admissible signals for the coder and jammer, re-
spectively. If this equality holds, then it defines the saddle value. In that case, one seeks to
determine if the saddle value is actually attained by an admissible pair (z, oe), i.e., if a saddle
point exists.

The admissible strategies for the coder and the jammer are given by the two constraints
defined above. For the coder, the constraint is given by n Zn P1. Let C be the set of all
densely defined symmetric nonnegative linear operators S on H such that the domain of S

/71/2 /71/2 1/2contains the range of --w .The constraint on the jammer is that Rj "w SRw for some S
in C such that Trace "w ’-w < P2.

The smallest limit point of the spectrum of S will be denoted by 0. The set of limit points
of the spectrum (_-- the essential spectrum, Cress(S)) of S consists of all eigenvalues of infinite
multiplicity, limit points of distinct eigenvalues, and other points of the continuous spectrum.
As usual, S is said to have pure point spectrum if it has a CONS of eigenvectors. In this case,
the continuous spectrum may not be empty, since any limit point of distinct eigenvalues which
is itself not an eigenvalue will belong to the continuous spectrum. The sequence (l/n) will
denote the eigenvalues of S that are strictly less than 0, repeated according to their multiplicity;
{Vn, n > 1 will denote the corresponding eigenvectors. The following result is essential to
our development.

LEMMA 1 (see [3, Thm. 3 and Cor. 4]). Suppose that the jammer’s strategy is fixed and
(WLOG) order (l/n) as a nondecreasing sequence.

(1) Suppose that 0 < cx. The information capacity Cw(P1) is then given asfollows.
(a) If {l/n, n > 1} is not empty andn(0 l/n) P1, then

1 Elogl 1 +0 ] 1PI+yKm=I (l/m-O)
Cw(P1)

n=l + l/n 2 + 0

(b) If{tin, n > 1} is empty, then Cw(P1) P1/[2(1 + 0)].
(c) In (a), the capacity can be attained ifand only if PI n>_ (0 l/n). In that case,

/71/2 /71/2it is uniquely attained by a Gaussian lzx with covariance Rx Yn>_ "gn’u Un ( U Un’
where un Urn and vn (0 l/n)(1 + l/n)-1; for all n > 1 if (l/n) is an infinite sequence;
for 1 < n <_ K and Vn 0 for n > K when (l/n) is a finite sequence with K elements.

If P1 > n_>l(0 l/n), then capacity can be approached as closely as desired by using a
covariance Rx of the aboveform. In (b), the capacity cannot be attained.

(d) If {tin, n > 1 is not empty, (l/n) is an infinite sequence, and P1 < n(0 l/n),
then an integer M exists such that Ml/,/+l > P1 + Y-x l/i > Ml/vt and then

Cw(P1)
i=1 M(1 + l/i)

(e) If{l/n, n > is not empty, (l/n) is afinite sequence containing exactly L elements,
and P1 < n(0 l/n), then thefollowing hold:

(i) If P1 + -/=1 l/i > Lt/L, then the capacity is given as in (d), with M L;
(ii) lfMl/M+ > P + l/i >_ Ml/vt for some M < L, then the capacity is

given as in (d).
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(2) If 0 oc, then the information capacity is obtained (and only obtained) by using a
Gaussian lZx having M-dimensional support, with M the smallest integer such that M?/M+I >

+ YiM=I ?/i > M?/M. The capacity Cw(PI) is then given by

Cw(P1)
i=1 M(1 + ?/i)

LEMMA 2. A minimax strategyfor the jammer, if it exists, requires an operator S having
pure point spectrum with 0 < oo and all eigenvalues < 0 with only a finite number being
zero. If {?/n, n >_ 1 is not empty, then a minimax strategy requires that P1 > n>1(0 ?/n)
and that P1 +Y ?/n > M?/M for all ?/M.

Proof. If the smallest limit point of the spectrum is infinite, then it must occur as a
limit point of eigenvalues and then S has pure point spectrum. Suppose that ?/n /z 0 x.
Applying the expression for information capacity given in (2) of Lemma 1, let M be the
smallest integer such that M?/M+I > P1 + }-/M= ?/i > M?/M. Let K < M be such that
?/K < ?/M. (If no such K exists, then the following argument applies with ?/K replaced by ?/g,

since then P +1 ?/i > M?/M.) An increase of 6 in the value of ?/K will result in a strict
decrease in the value of Cw(P1). Define a sequence (?/) such that ?/ ?/n forn {K, M+ },
?/K ?/K-+-6, ?/M+I yM+l-6, with6and6 satisfyingM(?/M+--6) > P1-Jr- ?/i-l-6 >_
max(M?/M, MYK + Me). Ajammer covariance defined by the operator S’ having eigenvalues
(?/) will give the same value of the integer M defined in (2) of Lemma as given by the
original S. To ensure that the constraint on the jammer remains satisfied by the new sequence

1/2./ 1/2?/n), one notes that for RW o"w trace-class, its trace equals that of S1/2RwS1/ [21, p. 31]
so that the sequence (?/n) affects the constraint only through the value of> ?/ (Rw vk, v).
Thus, selecting strictly positive 6 and 6 such that the two preceding inequalities are satisfied
and 6/6 > (RwVK, I)K) / (RwI)M+I, I)M+I), the operator S’ having eigenvalues (?/) will still
satisfy the constraint on the jammer and will provide a strictly smaller value of Cw(P1).
This shows that 0 < oo is necessary for a minimax strategy. A similar argument shows that a
jammer strategy as in parts (d) and (e) of (1) ofLemma cannot be minimax. Thus, a minimax
strategy requires that P1 > Yn (0 ?/,,) if (?/n) is not empty; from [3, Lem. 4], this implies
the inequality P + ]lM?/n >" M?/M for all ?/M.

Attention can now be restricted to jammer strategies such that 0 < x. Moreover, since
only those eigenvalues of S that are < 0 affect (by (1) of Lemma 1) the value of Cw(P1),
a minimax strategy requires that all eigenvalues of S not exceed 0; otherwise, eigenvalues
that exceed 0 will require part of the jammer’s energy while not contributing to the reduction
in mutual information. Since 0 > 0, it follows from Lemma 1(1) that 0 should be strictly
positive and thus that only a finite number of eigenvalues can equal zero.

Finally, to see that S must have pure point spectrum to provide a minimax policy, suppose
that 0 is in the continuous spectrum of S. If 0 is the only point in the continuous spectrum,
then it must occur as the limit of distinct eigenvalues, since if 0 is in the continuous spectrum,
then every interval containing 0 must contain a point of the spectrum that is distinct from 0
[20, p. 364]. In that case, those eigenvalues must obviously be less than 0 if S is to be a
minimax strategy.

Now suppose that S is any nonnegative and symmetric operator satisfying the constraint on
the jammer and such that 0, the smallest value in Cress (S), is a point of the continuous spectrum
and not a limit point of distinct eigenvalues. The eigenvalues of S that are less than 0 must
then be finite in number. Let {vi, > 1} be a CONS in H and {vl VK} the eigenvectors
of S corresponding to its eigenvalues {?/1 ?/K }. Define the operator S1 to have pure point
spectrum with eigenvectors {vi, > 1 and eigenvalues given by {?/1 ?/K, 01 01 };
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that is, 01 is an eigenvalue of infinite multiplicity corresponding to the eigenvectors Vn, n >_
K + }. Suppose first that 01 0 and K > 0. The operator S S1 is symmetric and

1/2 1/2nonnegative so that Rw S- S1)Rw is self-adjoint, nonnegative, and trace-class. Ifthe latter
operator has trace equal to zero, then it is identically zero, and this would then require that
1/2,1/2 1/2 1/2 Since range (/1/2Rw o"w Rw S1 Rw t"w is dense in H, this last equality would require

/?1/2./1/2 /D1/20 /1/2that S S1 on H As this is false, P2 > j>_l (’-w ’--w vj, vj) > ]j_>l \"w Ol-,w vj, vj).
From the last two inequalities, the K smallest eigenvalues of S1 can be increased with S1 still
satisfying the constraint on the jammer and decreasing (from (1 (a)) of Lemma 1) the mutual
information in comparison with that obtained using the operator S. If K 0, then 01 can be
taken strictly greater than 0 while satisfying the constraint on the jammer and again reducing
(from (1 (b)) of Lemma 1) the mutual information from that obtained using S. Thus, in order
that S define a minimax strategy for the jammer, it is necessary that the continuous spectrum
of S be empty except when S has an infinite sequence of eigenvalues and 0 is the limit point
of those eigenvalues (from below) and not an eigenvalue of S; 0 is then the only point in the
continuous spectrum.

Applying Lemma 2 and Lemma (1), the coder’s optimum strategy (when it exists) re-
quires choosing a Gaussian signal process with the covariance operator Rx defined in terms of
the eigenvalues of the ambient noise covariance Rw, the eigenvalues and associated orthonor-

/?l/2.ff/1/mal eigenvectors of the operator S defining the jamming covariance Rj "-w "w and the
1/2(I 1/2U*unitary operator U satisfying (Rw + Rj) 1/2 RW - -F S) The problem now reduces

to determining the jammer’s minimax strategy (if it exists), which is to select a Gaussian
jamming process with covariance operator Rj such that the value of Cw(P1) is minimized.
Lemma 2 defines properties that the operator S must satisfy if a minimax strategy is to be
realized.

An important question at this point is whether the game has a solution. Does a saddle
value exist? If so, is there a saddle point? Such questions are usually answered by appealing
to the von Neumann minimax theorem, which we now consider.

General forms of the von Neumann minimax theorems are given, for example, in [8].
For a concave/convex function such as F, a saddle value will exist if the set of admissible
z constitutes a compact convex set in a linear topological space HI, the set of admissible
ot constitutes a compact convex subset of a linear topological space H2, and (on the set of
admissible (z, c)) F is continuous in z (resp., or) for each fixed c (resp., z) [8, Thm. 3.5]. For
reflexive spaces H1 and H2, this criterion can be satisfied by using the weak topology. From
[8, Cor. 3.7], both a saddle value and a saddle point will exist if the spaces H1 and H2 are
reflexive Banach spaces and if the set of admissible z (resp., admissible or) is a closed and
bounded subset of H1 (resp., H2). As defined, the continuity conditions are satisfied by F and
the set of admissible z constitutes a closed and bounded subset of the nonreflexive space
Of course, the admissible z constitute a bounded set in the reflexive space ep for 1 < p <
However, this set is not closed in any of the reflexive/p spaces. This can be proven by a
construction and argument based on the Baire category theorem. A more general result is

given by the following proposition.
PROPOSITION 1. The set ofadmissible z is not a closed and bounded subset ofany reflexive

Banach space.
Proof. First, for reflexive Banach spaces, convergence in the weak* topology 13, p. 420]

is the same as convergence in the weak topology from the definitions of the two topologies.
Thus, from 17, Thm. 2.e.7], if a separable Banach space Y is reflexive, then there exists no
bounded linear operator T: el -+ Y having bounded inverse (on the range of T in Y). Let Y
be any reflexive Banach spacemnot necessarily separable--containing the set of admissible
z. By linearity, it is seen that Y must contain all of el. Let T be the natural injection from
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1 into Y Tx is x viewed as an element of Y. Suppose that T maps the set of admissible z
into a bounded and closed set in Y. Applying linearity, T must then also map the unit ball

B1 {z k>_l IZkl < 1} into a bounded and closed set in Y. T is then continuous on 1; this
fact, the separability of 1, and the fact that T[B1] is closed imply that T[B1] is a complete
separable metric space under the Y norm metric. By the open mapping theorem 13, p. 57],
the operator T-1 is continuous on T[B1] and, by linearity and the definition of B1, must be
continuous on the range ofT. The closure ofrange (T) is separable, since range (T) is separable
and T is continuous; reflexive 13, p. 67]; and thus a separable reflexive Banach space under
the Y norm, contains 1 as a subspace, and T-1 is continuous on 1. This contradicts Theorem
2.e.7 of 17]. [3

This result shows that the general form of the yon Neumann minimax theorem cannot be
applied to guarantee the existence of a saddle point (or even a saddle value). We shall prove,
however, that a saddle point exists, determine the saddle value, and give a minimax strategy
for the jammer.

LEMMA 3 (see [7]). Define (lKrn, ), (Z?), (9, g:, and T: asfollows,for K >_ O, rn > K+ 1"

where O is the solution to 1 + 0 g(0), and

0 < 0 < P/K,

i>K+l,

i<K,

Z? O }/Km, > 1.

A unique solution existsfor 0. IfP < (m 1)P2/.m and it is required that the coder’s
covariance satisfy zn 0 for all n > m + 1, then the jamming problem has a saddle point
(z* y*), with ’i

m ,m for < rn and }"i* 0 for > m; ztem),i Z’ for < rn and

z 0for > m; and K(m) the smallest integer k such that 0’ > Tn. This K(m) satisfies
mK(m) <_ rn 2, and P >_ K(m)P2/ Y.j=K<m+ ’J"

The condition P < (m 1)P2/)Vm assumed in Lemma 3 will of course be satisfied for
all sufficiently large m; in fact, for all rn _> k, where k is such that P <_ kP2/(k+ .j)

LEMMA 4. IfK is any integer >_ 0 such that P < (K + 1)P2/ />_:+2 )vi, thenO > :
for all rn >_ K + 1.

Proof. We will show that g: (T/) > + T’ for all rn > K + 1. This will prove the
statements, since otherwise one would have 0 < T/ for some m; since g: (0) is a strictly
decreasing function of 0 for fixed rn and K, this would give

I + T > 1+ 0 g;(O) > g(T) > + T.
To see that gz (T/) > 1 + T/, this inequality is equivalent to

rnm )i[e2 + Zj=K+I ’’j "[- K)K+I]

i=K+I (P2 -l-" Zk%K+I Zk)[e2 + Zn%K+I )Vn -t- K.K+I "+- PXil

P2 + jm__K+ .j + K.K+
P2 + km=K+ Zk + (P1 + K))K+
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or

i=K+I

This holds if

P1 (’K+I Xi) ] m

<P+ " ).
P2 -+- }n=K+ ) "+" K).K+ -t" P .

k=K+l

P1)K+I .i < P2 P2 + .j + (K + 1),kK+l
i=K+2 j=K+2

which is satisfied, since LHS < P2.K+ (K + 1).
Now define TK and gK by

P1XK+I
P2 + j=K+I J + K.K+I

gx(O) i

i=K+I P2 +- j=K+ j "+ (P1 KO)).i
0<0 <_ P1/K,

and let 0r be the solution to 1 + 0 gr(O). It is obvious that Tr limm T/; we now show
that the equation 1 + 0 gr(O) has a unique solution, 0K, and that 0K limm 0.

LEMMA 5. (a) g (0) is a strictly decreasingfunction ofm forfixed K and O.
(b) 0 is a strictly decreasingfunction ofm.
(c) OK is uniquely defined and OK limm--,o 0.
(d) OK > Tr ifand only if

ZiO=K+l [P1 (K+I )Li)l.il[P2 -- Yj=K+I )’J "+" KJK+I + P1)i]-1 _< P2.
(e) OK > TK ifand only ifO > Tfor all rn > K + 1.

Proof. (a) It is immediate that [g+ (0)]- > [g. (0)]-1 if 0 < P1 /K.
(b) Since g(O) is a strictly decreasing function of m, the solution to 1 + 0 g.+l (0)

must be strictly less than the solution to + 0 gr (0).
(c) Let f(O) 1 +0. f is continuous and strictly monotone increasing, gK is continuous

and strictly monotone decreasing, and f(0) < gK(O). If P1/K >_ P2/Zj>K+I )Lj, then

f(P1/K) + P/K > + P2/ :-4>_r+1 )j gr(P1/K). Thus a unique solution exists to

f gr if Pi/K >_ P2/Y’j>_r+l ,kj. If P1/K < P2/j>_r+ ;j, then the same result holds,
since then f(Pz/j>_r+l *j) > g(P2/j>_r+l )J).

Since (0.) is monotone decreasing as rn increases and is boundedbelow by zero, limm 0
00 exists. Since gr(O) limm g(O) for 0 > 0, gr(Oo) limm g(Oo) > lim SUPm g(O)
lim SUPm(1 +0.) 1 +00. Conversely, gK(O0) limm gK(O() < lim supm g(O) 1 +0o.
Thus, + 00 gr(00); since this solution is unique, 00 OK.

(d) gr(Tr) > 1 + Tr, since otherwise (proceeding as in the proof of part (c)) the
solution to gr(O) 1 + 0 will occur for 0 < Tr. The inequality of (d) then follows from
gI(TK) < (1 + TK)-1.

(e) As in the proof of (d), 0. > T/ if and only if g (T/) > + T/, and this occurs if
and only if

rn P1 (g+l )Li))LiK+
rn

i= P2 + j=K+I )J + K.K+I + el)i

The left-hand side of this inequality is a strictly increasing function of m. Moreover,

gKK+I(0+1) 1 + 0KK+I )K+I
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so that

0KK+I P2 + PIXK+I
>

PI,K+I TKK+1.
(K + 1))K+I P2 + (K + 1))K+I

Thus, limm--,09 0 > limm09 T <=> 0c > T/ for all m > K + 1. 1
The following theorem is the main result of this paper. It will be seen (in Remark 2 below)

that the effect of the jammer is essentially to convert the infinite-dimensional channel into a
channel of dimension _< K + (0 _< K < x). This integer K will be defined in terms of P1,
P2, and the eigenvalues ()n) of Rw.

THEOREM 1. The jamming problem has a saddle value and a saddle point. The saddle
value is given by

I(/xxy)-- ’ log 1+
n>K+l

(P1 KOK))n ] K

P2 + Zi>K+I Xi
.ql_

_
log(1 + OK),

where 0i is the unique solution of

1+0=
n_ P2 q- Zj>K+I J t_ (el KO).n

for 0 < 0 <_ P1/K and K is the smallest integer k > 0 such that

* Oc *for all > 1 Vi* Ofr < K andA saddle point is given by (z*, *), where z

[P2 -- Zj>K+I )j](1 + 0/c)
l + ),i* for > K + I.

P2 t_ i>K+l ,i dr- (PI KOK))i

A minimax strategy for the jammer is to choose S to have pure point spectrum with
eigenvalues (,) and corresponding eigenvectors {e,, n > }. The resulting maximin strategy
for the coder is given by (l(c)) ofLemma 1.

Proof. Define Z {(zi)’zi 0 for/ > 1 and Zi>l zi P1}. For m such that P1 <
mP2/i>m .i, zm (Zi) E Z Zi 0 for > m }. P (i) ’i Sl)i, l)i) for a CONS
{l)i,i >_ 1}, S EC,, i>l)i{Sei,ei) <_ P2},ITM {(’i) 1-’ "’j 0forj > m}, where C is
the set of all densely defined symmetric nonnegative linear operators whose domain contains

/1/2the range of --w To prove the existence of a saddle value, it is sufficient [8] to show that
supz infr F(z, ),) >_ infv supz F(z, V). Note that supz infv F(z, /) >_ SUpzm infz F(z, ,)
SUpzminfvm F(Z ’) F(Zm m’(m))’ where (zm is defined in Lemma 3.

Thus, supz infr F(z, ,) > lim infm09 F(zm, mk(m)) lim infm--,09 g Ei>_ log[ +
z/(1 + ’i(mm),i)]. Define ko =-- liminfm09k(m) liminfm09{k 0n > Tm} K
(Lemma 5), with K defined as in the theorem. From the definitions of mk(m), zm, ’*, and
z* lim, 0c 0c implies rn ,

/K(m),i ti and zn --+ z[ for all > 1 as m . By Fatou’s
lemma,

(2) lim inf log 1 +
rn---09 2

i=1

1 Zz > log +1 + ?’c,i i=1
-q- i*

Thus, supz infr F(z, ,) > F(z*, ,*) I (/Zxy), as given in the theorem.
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Conversely, one notes that Yi* /z OK and that -ic__l (OK /i*) P1. Thus, by (i(a)) of
Lemma 1, F(z*, y*) supz F(z, y*) > infr supz F(z, y). This shows that

inf sup F(z, y) _< F(z*, y*) < sup inf F(z, y)
F Z Z F

and completes the proof of existence of a saddle value and saddle point and their definitions
as given in the theorem. The stated minimax strategy for the jammer is obvious and then
determines the coder’s optimum strategy from Lemma (1). [3

Remark 1. The integer K defined in the theorem must be smaller than the smallest integer
k satisfying P1 < (k + 1)P2/-j-g+2 ,kj. This follows from Lemma 4 and Theorem 3 of [7]
and yields the following result.

COROLLARY 1. The saddle value of F on A has the upper bound

F(,g) < log 1+
2 K+I

where K is the smallest integer k satisfying P1 < (k -t- 1)P2/j=k+2 )j"
Proof. From (l(a)) of Lemma 1, the right side of the first inequality is the value of

the channel capacity that would be obtained if the jammer used (gn) such that Yn 0 for
n < K + and Yn P1 /(K + 1) for n > K + 1. In that case, yn=l n)n -’n=/+a Y’(P1/[K + 1]) n>_/+2 )n < P2. This F is thus an admissible strategy for the jammer, and the
result follows. [3

Remark 2. The capacity of the channel in the absence of jamming is PI/2; see [2] or
(K + 1) log 1 + P/(K + 1)], one sees that the minimum effect[3]. Since P/2 limr 7

of jamming can be immediately gauged by determining the value of K, the largest integer
such that PI > KP2/yn=r+ ,k,, and applying the above corollary. Since the capacity of the
(K + 1)-dimensional channel in the absence ofjamming is 7 (K + 1) log 1 + P/(K + 1) ],
one can view the effect ofjamming as converting the infinite-dimensional channel into a finite-
dimensional channel. The value of this K depends on all the channel parameters: the coder’s
constraint P1, the jammer’s constraint P2, and the covariance operator of the ambient Gaussian
noise.

COROLLARY 2. The jammer’s minimax strategy satisfies P1 n> (OK ’;).
Remark 3. The statement of the theorem can be interpreted by considering the sum of

the jamming and the ambient noise when the jammer selects the minimax strategy given
in the theorem. Define K as in the theorem; K is the largest integer k such that Yk* 0.
Corresponding to the eigenvectors {en, n > 1 of Rw + Rj, the eigenvalues are given by )j
for j _< K, while for j > K the eigenvalues are equal to .j (1 + ,j*). Thus, as j -- cx, the
eigenvalues converge upward to ,j(1 -+- OK). Since the coder will typically wish to place the
transmitted signal energy, as much as possible, according to smaller eigenvalues of the total
channel noise, the effect of the jamming is to increase those smaller eigenvalues by a factor
that converges upward to (1 + 0r).

3. Concluding comments. The above development and that of [7] provide a complete
solution for the information capacity of the Gaussian channel with jamming in which the
coder’s constraint covariance is matched to the ambient noise covariance. An extension of
interest is to obtain similar results when the coder constraint and the ambient noise covariance
are mismatched.

In addition to the main result, several of the results may be regarded as unexpected and/or
of particular interest. They include the following:

1. The constraint applied to the jammer must be of a weaker type than that applied to the
coder. This can be interpreted to mean that the jammer must have more flexibility in choosing



1472 c.R. BAKER AND I.-F. CHAO

the distribution of the available jamming energy as a function of frequency. If this flexibility
is the same as that of the coder, then the jammer cannot decrease the information capacity of
the channel, regardless of the amount of available jamming energy.

2. With the constraints applied in this paper, which enable the jammer to reduce the
information capacity, the usual sufficient conditions [8] for application of the von Neumann
minimax theorem are not satisfied: thus, existence of a saddle point (or even a saddle value) is
not guaranteed by applying the von Neumann theorem. Nevertheless, a solution is shown to
exist, and the saddle value, a saddle point, and a minimax strategy for thejammer are obtained.

3. The essential effect of jamming is to convert the infinite-dimensional channel into
a finite-dimensional channel with the same energy limitations on coder and jammer. The
"effective dimensionality" of the channel is determined by the problem parameters: the noise
covariance and the constraints.
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A UNIQUENESS RESULT FOR THE LINEAR SYSTEM OF ELASTICITY
AND ITS CONTROL THEORETICAL CONSEQUENCES*

ENRIQUE ZUAZUAt

Abstract. We consider the time-dependent linear system of three-dimensional elasticity for an homogeneous
and isotropic elastic body f2 with Dirichlet boundary conditions. We prove that when the domain f2 is of class C
and is not symmetric with respect to a plane parallel to x3 0, any solution whose first two components vanish in
some open subset of f2 for a large enough time interval has to be identically zero. The proof of this uniqueness result
can be reduced to show that solutions of the scalar wave equation with zero Dirichlet boundary conditions that are of
the form u(x, y, z, t) qg(x, y, t) + q/(z, t) have to be identically zero. This result depends not only on the length
of the time interval but also on the geometry of the domain. As a consequence of this uniqueness result we prove
that the linear system of elasticity is approximately controllable by means of planar volume forces with zero third
component. We show that these results fail for some Lipschitz domains that are piecewise smooth and symmetric
with respect to the plane x3 0.

Key words, linear system of elasticity, evolution equations, Dirichlet boundary conditions, planar deformations,
uniqueness, eigenfunctions, controllability

AMS subject classifications. 73C02, 73C15, 35L10, 93B05

1. Introduction and main results. Let us consider an homogeneous and isotropic elastic
n-dimensional body occupying a bounded domain g2 ofn (n 2, 3) of class C
is of class C, and f2 is locally at one side of

Let o9 be an open and nonempty subset of g2 and T > 0. We denote by )fo the characteristic
function of

We consider the system of linear elasticity with a control (volume force) supported in
and with homogeneous boundary conditions of Dirichlet type:

(1.1)
lltt ]A/,/ ( --/x)Vdivu
u=0

u(0) u, u(0) u

in g2 (0, T),
on F x (0, T),
in

where/z, ; > 0 are Lam6’s constants.
We assume that f 6 (L2(f2 x (0, T)))n is of the form

(1.2) f (f fn-1, 0),

i.e., the nth component of f vanishes.
The initial data (u, u l) are supposed to be in H (H(f2))n x (L2(f2))n. Under these

conditions, system (1.1) admits a unique solution (u, ut) C([0, T]; H).
We are interested in the controllability properties of this system under restriction (1.2)

on the set of controls. More precisely, we investigate its approximate controllability. In other
words, we want to know whether, for T large enough, the set

R(T) {(u(T), ut(T)) f (L2("2)< (0, T)))n satisfying (1.2)}

is dense in H for all initial data (u, u) 6 H.
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EEC grant SC1"-CT91-0732.
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Thus, for instance in three space dimensions, we are trying to understand the final con-
figurations that an elastic body may reach by means of the action of arbitrary planar volume
forces.

In the absence of restriction (1.2) on the set of controls, the approximate controllability
is well known and is a consequence of the following uniqueness result, which turns out to be
an immediate corollary of Holmgren’s uniqueness theorem: If q) is a solution of

q)tt -/zA0 (,k +/z)Vdiwp 0 in fax (0, T),
(1.3)

q) 0 on lP x (0, T)

in the class C([0, T]; (L2())n) f-) cl([0, T]; (H-1 ())n) such that

(/91 (/gn_ f/9 0 in co x (0, T)

and T is large enough, then q) =_ 0 in fax (0, T).
In that case (i.e., without restriction (1.2)) the control time is

T(f2)
26 (fa; co)

the quantity n being defined as follows. For any open subset 69 of

(1.4) n("; (.9) sup inf g(V),
xe2\O (x’O)

where (x; 69) denotes the set of curves in 2 joining x and 69 and g(.) denotes the length of
the curve. We set n ("2; ) O.

Since fa is bounded and smooth, it is clear that 6n(2; O) is finite for any open and
nonempty subset (.9 of

When restriction (1.2) is introduced in the set of controls, the approximate controllability
cannot be obtained directly from Holmgren’s uniqueness theorem, and we are led to investigate
the following uniqueness or unique continuation problem: If 0 is a solution of (1.3) in the
class C([0, T]; (L2())n) O C1 ([0, T]; (H-1 (2))n) such that

q91 (/gn_ 0 in co x (0, T)

and T is large enough, can we deduce that, necessarily, 0 _= 0 in f2 x (0, T)?
In this paper we give the following positive answer to this problem.
THEOREM 1.1. Suppose that f2 is a bounded domain ofclass C2. When n 3, we assume

also that either
(i) an open subset of Of is contained in a plane oftheform x3 c

or
(ii) fa is not symmetric with respect to a plane parallel to x3 O.

Then there exists some T*(f2) > 0 such that if q) is a solution of(1.3) in the class C([0, T];
(L2(f2))n) N C1 ([0, T]; (n-1 (f2))n) satisfying (1.5) with

2(2; co)
T > + T* (f2),

then p =- 0 in fa x (0, T).
As a consequence of Holmgren’s uniqueness theorem, the proof of Theorem 1.1 can be

reduced to the following uniqueness result for scalar wave equations.
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THEOREM 1.2. Let us suppose that f2 satisfies the assumptions of Theorem 1.1. Assume
that T > T* (f2). Then, if

7z(x, t) a(xl xn-l, t) 4- b(xn, t)

is a solution ofthe scalar wave equation

(1.6) 0 in x (0, T),rtt -/jA1/f () 4- ]j)- 0 on x (0, T),

necessarily =_ 0 in f2 x (0, T).
The proof of Theorem 1.2 can be reduced to the following elliptic version of it.
THEOREM 1.3. Let us suppose that f2 satisfies the assumptions of Theorem 1.1. Then, if

(1.7) (x) p(x xn-) + cos
/Z + 2z

x" +/3

is an eigenfunction ofthe elliptic eigenvalue problem

024> K2q in 2,

for some c, t, x I necessarily, 4> 0 in f2.
Remark 1.4. Observe that in. Theorem 1.1 the uniqueness time for the system of elasticity

under the weak restriction (1.5) is, in general, larger than the classical uniqueness time that
one obtains when all components vanish (i.e., larger than 23,(f2; co)/). Indeed, under
restriction (1.5) the uniqueness time is increased by the quantity T* (f2). We will give below
some sharp estimates on this quantity that depend strongly on the geometry of the domain
(not only on its size!). In some cases T*(f2) 0 so that the uniqueness time under restriction
(1.5) coincides with the classical one. But in general, T* (f2) > 0.

Note that when co f2, the uniqueness time in Theorems 1.1 and 1.2 coincide since
(; ) O.

Remark 1.5. The assumption on the C2 regularity on the domain f2 is sharp in the sense
that the results above fail for some piecewise C2 domains.

For instance, as we will see in 7, in dimension n 2 when f2 is the polygonal domain

(1.9)
Iv/>, 2/zx,/v -1 < x2 < 1-+2txx,/ l,

Theorems 1.1, 1.2, and 1.3 do not hold. Moreover, Theorems 1.1 and 1.2 do not hold for any
time T > 0.

As we will see below analogous counterexamples may be constructed in three space
dimensions (see 7).

However, there is a way of relaxing the C2 assumption on f2, as we will see in Theorem
1.8 below.

When n 3, we need the nonsymmetry assumption in order to prove Theorem 1.3. This
assumption is not sharp. Indeed, we can construct C2 domains which are symmetric with
respect to the plane x3 0 and where the results above hold. Given f2 we define the domain

142 Ix6 RS" (x,x2, V/)V + 2/zx,/v/-) 6 f2 /
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Let us choose an ellipsoid S2 such that the corresponding 14; is a ball of 3. Observe that if
there exists 4 defined in f2 satisfying (1.7), (1.8), then

0(X) t Xl, X2, //, + 21ZX3/ p(x Xn_l) + ctCOS --Xn -- 1is an eigenfunction of the elliptic eigenvalue problem

--/zA9 x25 in W,
o=0 onSW.

Such an eigenfunction does not exist since, as is well known, when W is a ball of 3, the
eigenfunctions are ofthe form 0(x) a (Ix I)b(0), where b is an eigenfunction ofthe Laplacian
over the unit sphere.

We have constructed an ellipsoid which is smooth and symmetric with respect to x3 0,
where the results above hold. In 5 we will discuss with more detail the assumption on the
nonsymmetry of the domain.

In order to give an estimate on the time T*() it is convenient to introduce some notation.
By 2n-1 C ]n-1 and 1 C we denote respectively the projections of on the

hyperplane Xn 0 and on the axis Oxn. On the other hand, by n-1 C n-1 (resp., H1 C )
we denote the union of the projections on the hyperplane Xn 0 (resp., on the axis Oxn) of all
those components of the boundary O that can be written in the form Xn h (xl xn-1)
with h of class C2 and such that

V’h (Xl Xn-1)

or

. + 2/z

A’h(xl Xn_l) O.

By V’ and A’ we denote the gradient and Laplacian in the variables (Xl Xn-1).
The following proposition provides an estimate on the value T* (f2).
PROPOSITION 1.6. Let us suppose that f2 satisfies the assumptions of Theorem 1.1. Then

the results above hold with

T*() 2min ---8n-1(2n-’/An-1), 1(;)

By n-1 and ;1 we denote the (n 1)- and one-dimensional versions of the quantity n
defined in (1.4).

Since f2 is of class C2 (to be of class C would suffice), it is clear that Hn-1 is nonempty
and therefore T*(f2) is finite.

Remark 1.7. When dealing with a particular domain f2 the estimate above on T*(f2)
might be eventually improved. However, in 6 we will show that the value given to T* (f2) in
Proposition 1.6 is, in general, sharp. [3

The proof of Theorem 1.1 shows, roughly, that Theorem 1.1 holds if and only if the
uniqueness result for the elliptic problem (1.7), (1.8) of Theorem 1.3 holds. A careful analysis
of this elliptic problem allows us to relax C2 regularity assumption on f2. Indeed, we have the
following result.

THEOREM 1.8. The results above hold if f2 satisfies thefollowingfour conditions:
a) is a piecewise C2-bounded domain.
b) Some open and nonempty C2 component of I" can be written in the form Xn

h(x Xn-1) with IV’hl2- (k + 2/z)//z or A’h 0 everywhere on that component.
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c) There exists a point of a C2 component of the boundary of 92 where the tangent
hyperplane to 2 exists, and it is parallel to the axis Oxn.

d) When n 3, either
dl an open subset ofthe boundary of 92 is contained on aplane oftheform x3 c

or
d2) 92 is not symmetric with respect to a plane oftheform x3 c.

Moreover, under these conditons, the definition ofT* (92) given in Proposition 1.6 remains
valid.

As a consequence of Theorems 1.1 and 1.8 we have the following approximate control-
lability result.

THEOREM 1.9. Let us suppose that 92 satisfies the assumptions of Theorem 1.8. Then, if
(f; o)

T >2+ T*

system 1.1 is approximately controllable at time T under the constraint (1.2). Moreprecisely,
for all (u, u) and (v, v 1) in H and e > 0 there exists f (L2(92 (0, T)))n obeying (1.2)
such that the solution of (1.1) satisfies

(1.10) [llu(T)- v[I 2 ]/ad())n " Ilut(Z)- vlll2z<)), _< e.

In other words, R(T) is dense in H.
The fact that Theorems 1.1 and 1.8 imply Theorem 1.9 can be proven by rather classical

arguments in control theory.
Remark 1.10. According to Theorem 1.8, the results above hold when 92 is the n-

dimensional cube 92 (0, 1)n with T*(92) 0. In fact, they hold in any cylinder f2
(R) (0, l), where (R) is a bounded and piecewise C2 domain of ]Rn-1.

In this case, when Dirichlet boundary conditions are replaced by periodic ones, it is easy
to check explicitly that the exact controllability does not hold with L2-controls satisfying (1.2),
i.e., R(T) 5 H (see 9). In other words, (1.10) does not hold with e 0 for all initial and
final data. We do not have an explicit counterexample for Dirichlet boundary conditions, but
very probably the same happens.

Without the constraint (1.2), exact controllability with (L2(f2 (0, T)))n-controls holds
for a certain class of co’s. For instance, if w is a neighborhood of the boundary of 92 exact
controllability holds with control time, T(f2) diam(92 \ o)/.v/- (see [4]). In fact, in order
to have exact controllability, it is sufficient to take as support of the controls a set w of the
form o = 92 fq (.9, where (9 is an open neighborhood in n of a subset of the boundary of 92
of the form

r’(x) {x r.(x -x). v(x) > 0}

for any x ]Rn. (By v(x) we denote the outward unit normal to f2 at x 6 1-’.) [3

Remark 1.1 1. The same type of example shows that Theorem 1.1 and its counterpart in
the more general setting of Theorem 1.8 are sharp in the sense that if, instead of (1.5), we
impose the weaker condition

qgl n-2 0 in w (0, T)

and periodic boundary conditions, then uniqueness fails (see 9.2).
The rest of this paper is organized as follows. In 2 we prove the elliptic version of the

uniqueness result, i.e., Theorem 1.3. In 3 we prove Theorem 1.2. In 4 we prove the main
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uniqueness results for the system of elasticity, Theorems 1.1 and 1.8. In 5 we discuss the
assumption on the nonsymmetry of the domain and formulate some open problems that may
lead to the characterization of those symmetric domains where the results above hold. In 6 we
show that the uniqueness time in Theorem 1.1 and the estimate on T* (f2) given in Proposition
1.6 are sharp. In 7 we discuss how to extend the counterexample of Remark 1.5 to three
space dimensions. In 8 we derive the controllability result stated in Theorem 1.9. Finally, in

9 we give two examples of noncontrollability as mentioned in Remarks 1.10 and 1.11.
In the sequel we will denote by V’, A’, div’, and curl’ the (n 1)-dimensional gradient,

Laplacian, divergence, and curl operators in the variables (xl Xn-).
Some of the results of this article were announced in [6].

2. Proof of Theorem 1.3. First, we prove Theorem 1.3 in the case n 3 under the
additional assumption d). Then, we prove it when n 2 under the more general assumptions.

2.1. The case n = 3. Due to the Dirichlet boundary conditions it is obvious that if ot 0,
then 4 0. Thus, without loss of generality we can assume that ot -1.

On the other hand, if an open subset of the boundary of is contained on a plane of the
form x3 c, then necessarily, p is constant on an open subset of fa2, the projection of fa on

x3 0. Since p satisfies the elliptic equation

-/zA’p tc2p in -2

by elliptic unique continuation, we deduce that p is constant everywhere in f22. But then

b 4 (x3), and since it satisfies Dirichlet boundary conditions on 1-’, we deduce that 0.
Let us consider the case where is not symmetric with respect to a plane parallel to

X 0. Let x = (x, x2
, x) be a point of a C2 component of Of where the tangent plane to

Of is parallel to the axis Ox3. Obviously, such a point exists when 2 is bounded and of class
C 1. Without loss of generality we may assume that x 0.

Let us introduce the cross section of at the level x3 x 0, i.e., the set

"20 {(Xl, X2) E ]2" (Xl, X2, 0) E

Clearly, f20 is a two-dimensional domain of class C2 in a neighborhood of (Xl, X2)
y0.

Let us now consider a small neighborhood of y0 in 0,

x2) "1 x x2 I< e },

and a C2 trajectory

Z" [0, 1] 0(’g) (Xl(’g) Xn--l(’g))

such that 0 (0) belongs to the interior of Aft, 0 (1) (x, x2), and 0’(1) , the outward unit
normal vector to 0fao. This trajectory is the projection on f20 of a C2-trajectory on 0S2 (which
we denote by a or(r) (Xl(r),x2(r),x3(r))) such that a(1) x.

Taking into account that the tangent hyperplane to fl at x is parallel to the Ox3 axis, we
deduce that, necessarily,

(2.1) IdX3(V) I--+ oo asr--+ 1-.

In view of the structure of the eigenfunction q and the fact that 4 vanishes on 0fa, along
this trajectory cr r(r) we have

(2.2) x3(r)
/)v + 2/z

[arc cos(p(xl (r), x2(’g))) /].
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Then

dx3(r)
(2.3)

dr

/X 4- 21z(V’p(x(v), xz(r)) (x(r), x(r)))
tcV/1- p(x (r), xz(r))) 2

We now observe that p solves the following elliptic equation in f20"

(2.4) --/zA’p --/2p in f2o, p cos(/3) on 3f2o.

Since f20 is locally of class C2 at y0 (x0, x20), the classical regularity theory for elliptic
equations (see, for instance, [2, 8.11]) guarantees that p 6 C1’ (-). Therefore V’p remains
bounded as (xl, x2) y0. Thus, in view of (2.1) and (2.3) we deduce that Ip(y)l 1.
Without loss of generality we may assume that p(yO) 1. But then/3 2kzr for some k 6 Z
and the function 4 is even with respect to x3.

On the other hand, over F we have

(2.5) x3
/) +

[arc cos(p(xl, x2)) ].

This implies that f2 is symmetric with respect to x3 0 in the set where p(xl, x2) > 1. Thus,
if inf p > 1, f2 is symmetric with respect to x3 0, and this contradicts the nonsymmetry
assumption. Then, necessarily, there exists a point yl in the interior of 20 where p(y)
and V’p(y) 0. In this case, the symmetry of has to be analyzed with more care. Indeed,
in principle, the symmetry of the domain may be broken since, for instance, on the upper
half of 1-’, x3 may achieve its maximum at this point yl of 0 but at the lower half of 1", x3
may keep decreasing in a neighborhood of y by switching from one branch to another of the
function arc cos. It is easy to see that this second possibility may not arise without introducing
discontinuities on the boundary of

Thus, f2 is symmetric. This concludes the proof of Theorem 1.3 when n = 3.
Remark 2.1. Note that if p(y) 1 at the upper point ofthe boundary where x3 achieves

its maximum, we have

/L + 21z 3p(yl)/Ox,
Ox v/l_ Ip(y))l 2

for ot 1, 2. But these quantities are not well defined since both numerator and denominator
vanish. Applying l’H6pital’s rule we obtain

3x3 /X + 2tz 32p(y)/3x2
1 lim

(x,x)--y OXot X _p(yl)Op(yl)/Ox/v/1 Ip(y))12

L + 2lz 32p(y)/Ox2 K + 2lz 32p(y)/Ox2
to2 p(yl)lo 2 l

Thus,

INZ’x3(yl)l 2 12 + 122 X + 2/z A,p(yl) + 2/z X + 2//,-p(yl)
X2 ]d,

Thus the surface 1-’ may not be C in a neighborhood of this point in which x3 achieves its
maximal value with p(y) -1. Indeed, if it were C, we would have IV’x3(yl)l 0. The
computation above is justified since y is in the interior of 0 and therefore p is C in a
neighborhood of yl.
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Remark 2.2. Observe that this proof applies under the following assumptions:
a) f2 is piecewise of class C1’.
b) There exists a point on a C1’ component of 02 where the plane tangent to 2 is parallel

to the plane x3 0.
c) f2 is not symmetric with respect to a plane of the form x3 c.
Therefore, in particular, it applies under the assumptions of Theorem 1.8. [3

2.2, The case n = 2. The proof of the case n 3 applies as well and reduces the analysis
to the situation where [p(y)l 1. (Note that y0 reduces to y0 Xl0.) Let us assume, without
loss of generality, that p(xl) 1. Note that since p solves the one-dimensional version of
(2.4), p(xl) cos(tcxl//-ff + 0) for some , > 1 and real 0. If , 1, then p’(xl) O,
and therefore, by the computation of Remark 2.1, we deduce that

[Ox2(x)/OXl[2 L+2/z

which is finite. This contradicts (2.1).
Suppose now that , > 1. Taking into account that [Pl < 1 for all X in f20, we deduce

that Xl has to lie in an interval to one side of Xl where cos(tcXl/v/- + 0)1 _< 1/,. But then

/. + 2/z
x2 [arc cos(p(xl))

is monotonous, and thereforethe boundary of f2 is included in a set that does not contain any
closed curve. This concludes the proof of Theorem 1.3 when n 2.

Remark 2.3. Note that when n 2, we do not need any symmetry assumption on
because the sole solution of the one-dimensional version of (2.4) such that p 1 on the
boundary of a one-dimensional interval and takes values Pl < 1 everywhere satisfies p’ 0
on the boundary. As we will see in 5, the two-dimensional version of this property seems to
be much more delicate (it could be even false), and therefore we require the extra nonsymmetry
assumption when n 3.

3. Proof of Theorem 1.2. First we observe that, under the assumptions of Theorem 1.2,
may be written as

a(xl Xn-1, t) + b(xn, t),

where a and b are solutions of the following wave equation in space dimensions n and 1,
respectively:

(3.1) att -/zA’a 0 in Qn-1 x (0, T),

(3.2)
02b

b,, (, + 2/)-z-- 0 in 1 (0, T),

where n-1 and 1 (ll, 12) are, respectively, the projections of 2 on the hyperplane xn 0
and the axis Oxn.

In order to prove Theorem 1.2, in view of Theorem 1.3, it is sufficient to show that ap is
a solution of the wave equation (1.6) in separated variables. More precisely, it is sufficient to
prove that is of the form

(x, t) A(t)$(x)
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with A such that

-A" tcZA

for some c, fl . Thus

a=at+fl inL/x (0, T)

lit (Xn, t) in b/x (0, T),

where/, b + at + fl is a (new) solution of (3.2). In other words, in the set L/ (0, T),
depends only on Xn and t.

If f2 C L/ , since 0 on 0fl x (0, T), this clearly implies that _= 0. If not, we
observe that by Holmgren’s uniqueness theorem (see [3] or [4, Chap. 1]) a has to be of the
same form in a larger set. The latter contains

,-2n_l (n- "2n-1; l[) r ’n- ’n-1; l/[)

as soon as T > 26_l(f2n-1; b/)//. Since f2 C n-1 x , we deduce that

(Sn-l(n-1; ) T
Sn-l(n-1; ) )(3.5) P b(xn, t) everywhere in f2 x

V/_ff
and, in view of the boundary conditions that satisfies, this implies that 0.

Case 2: Since a and b solve the wave equations (3.1) and (3.2), respectively, we have

02b
() / 2/z -/z V’h(xl Xn-1) 12)22 (h(xl Xn-1), t)

Ob
(3.6) -IzAth(xl Xn-1)-xn (h(xl Xn-1), t) 0

for all (Xl Xn-1) bl and 6 (0, T).

and with q as in (1.7), (1.8).
Let ?’ be an open andnonempty subset ofF that can be represented as Xn h (x Xn--

for (Xl Xn- 1) in some open subset/g of fin- with

(3.3) IVth (Xl Xn_l)12 + 2/Z
or A’h - 0 for all

Obviously, as soon as is bounded and of class C2, such a subset exists. Note also that,
by hypothesis, this set exists if is in the conditions of Theorem 1.8.

Since 7t vanishes on the boundary of , we have

(3.4) a(xl Xn_l, t) -b(h(Xl Xn_l) t) (X Xn_l) l/l, 0 < < T.

We distinguish two cases.
Case 1. The image of h b/--+ It reduces to a point; i.e., h is constant in/g, and thus the

subset of the boundary that we are considering is a hyperplane parallel to x 0.
0Case 2. The image of h contains an interval (Xn, xn) with x < xn.

Let us discuss these two cases separately.
Case 1: In view of (3.4) we have

a a(t) in the cylinder b/ (0, T).

According to (3.1), we have art 0, and therefore a is linear in t, i.e.,
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From (3.3) and (3.6) we deduce immediately that b is of the form

(3.7) b(xn, t) A(t)B(xn) + C(t) in L/x (0, T).

Since b solves the wave equation (3.2) we have

A"(t)B(xn) () -1- 21z)A(t)B"(xn) + C"(t) O.

Taking one derivative of this equation with respect to xn we see that

A"(t)B’(xn) () nt- 2lz)A(t)B’"(Xn) O.

Thus A and B satisfy

(3.8) A"(t) -() + 2/z)2A(t)

and

(3.9) -B"’

for some real number 2, and therefore they are necessarily of the form

and

B(xn) 0/2eix" nt- fl2e-ix" nt- y

for some complex numbers u, 0/2, /1, /2, Y, and .
It is also easy to check that C C(t) has to be a linear function of t.

On the other hand, (3.4) implies

a(xl Xn_l, t) -A(t)D(Xl Xn_l) C(t) in b/x (0, T),

where D(x xn-1) B(h(x
Since a satisfies the wave equation (3.1), the function D D(xl Xn-1) has to satisfy

the elliptic equation

+
(3.11) -ZX’D 2D.

/z

All this implies, in particular, that p has the form

P(xl xn, t) A(t)(x) in L/x (Xn, Xn) X (0, T),
(3.12) / (x) D(xl Xn--1) + B(xn)

as in Theorem 1.3.
By Holmgren’s uniqueness theorem it is easy to see that has to preserve this form in a

larger set. Indeed, since b satisfies the wave equation (3.2) and has the form (3.7) with A and
B satisfying (3.8) and (3.9), by unique continuation of solutions of the one-dimensional wave
equation, b has to preserve this structure in the set

( 10 0 /))max(12 xn, xn 11) max(12 x,, x
(3.3 a

,/z +
r

,/ +-
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if

0 11).max(12 xn, x

0 11) 1(1 (X2, Xn)).Note that max(/2 x xn
According to (3.10), (3.11) and taking into account that a solves the wave equation (3.1),

by Holmgren’s uniqueness theorem it is easy to see that a keeps the same structure in the set

(3.14) 2 (1 )
as soon as

Suppose that

1 (’1; (XOn Xn))(3.15) T > To with To 2min 6n_j(f2-l; b/),
/) + 2/z

Then either a is of the form (3.10), (3.11) in the set (3.14) or b is of the form (3.7) in the set
(3.13). In any case, as soon as (3.15) holds, p is of the form (3.12) in x (To, T To).

The analysis of the two different cases above shows that the minimal time for uniqueness
is the quantity T* (S2) introduced in Proposition 1.6. Indeed, if in (3.15) we take, instead ofH
(resp., (Xn, xn)) the union of all sets H (resp., all intervals (Xn, xn)) where the above applies,
the time To defined in (3.15) coincides with T*(f2).

4. Proof of Theorem 1.1. In view of (1.5) we have

(4.1) divq)
OXn

in co (0, T).

Using the first n equations of (1.3) we deduce that

(4.2)
Odivq9 02(t9n

0 in co (0, T)
Oxj OxjOx,,

for j-- n-1.
Combining (4.2) with the fact that

OxjOx,,
=0 in co (0, T) fori, j n-1

we see that

OXjOXn
=0 in co (0, T) for j= n-1.

For each j 6 {1 n 1}, the vector-valued function 02q)/OXjOXn solves the system
of elasticity (1.3). Thus, applying Holmgren’s uniqueness theorem we deduce that

o9) .(s2; co))0299 =0 inQ1 =x ’ T-
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Therefore,

(4.3) (t9 tO(Xl Xn_l, t) a(xn, t) in Q1

with p (Pl Pn) and a (o fin).
From (1.5) we deduce that

(4.4) pj and aj are independent of x in co x (0, T) for j n 1.

On the other hand, 4 dive0 solves the scalar wave equation

(4.5) tt (X + 2/z)Ab 0 in f2 x (0, T).

Since

3b 3divcp 02q9
Oxj Oxj OxOx,

=0 in cox(0, T) forj=l n-1

as a consequence of Holmgren’s uniqueness theorem (this time applied to (4.5)) we deduce
that

n(’; co)
T

n("; co) )0q
=0 in Q2=f2x

/)+2/z

for j n 1, i.e., 4 4 (Xn, t) in Q2.
But, according to (4.3),

b div’ (Pl Pn-

in Q Q c) Q2. Therefore, div’ (/91 IOn ) is independent of (x Xn- ), i.e.,

3p 3pn-
(4.6) Ox--- +"" + OXn-

c(t) in Q.

We now distinguish dimensions n 2 and n 3.
When n 3, w curkp satisfies the wave equation

(4.7) Wtt [Aw 0 in f2 x (0, T).

Moreover, (1.5) implies that w3 vanishes in co (0, T). Thus, by Holmgren’s uniqueness
theorem we deduce that

(4.8) w3 0 in O l.

But

w3 curl’(p,/92).

Therefore, (4.8) implies the existence of a potential p p(x, X2, t) such that (/91, P2) V’p.
In view of (4.4) and (4.6) we see that p obeys

A’p =c(t)
p },(t). (x, x2) + q(t)

in Q1,
in {(x, t) 6 Q1 "x G co}.
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Thus, by elliptic unique continuation,

p }/(t) (Xl, X2) q- q(t)

and then

in Q1

Therefore,

Vtp-- (/91,/92) ’(t)

oj yj o’j(x3, t) in Q1

for j 1, 2. But since tp satisfies Dirichlet boundary conditions, we deduce that

0j --0in Q1 for j 1,2.

When n 2, (4.6) implies that/91 C(t)Xl qt_ d(t) in Q1 and therefore q91 (Xl, X2, t)
c(t)Xl + d(t) al (x2, t) in Q1. But then 01 cannot be identically zero on the boundary of the
bounded domain fl except if

Thus, in both cases, it is sufficient to prove that qgn 0 in Q 1. Indeed, ifpn -= 0 in Q 1, then
the initial data for q9 at time T/2 are identically zero, i.e., o(x, T/2)

_
qot(x, T/2) =_ O.

The system (1.3) being reversible in time, by uniqueness of solutions, we deduce q9 0
everywhere.

We have

n,tt llAn () -[- )02qgn/OX2n 0 in

(/9n /9 (Xl Xn-- 1, t) an (Xn, t) in Q 1,

o 0 on 1-’ x (0, T).

But then, as an immediate consequence of Theorem 1.2,

5. Discussion on the nonsymrnetry assumption. In this section we analyze the non-
symmetry assumption that we have introduced in dimension n 3. As was pointed out in
Remark 1.5, the nonsymmetry assumption is required only for the proof of Theorem 1.3.

When analyzing the uniqueness property stated in Theorem 1.3 for a smooth domain
of ]K3 which is symmetric with respect to x3 0, the proof of Theorem 1.3 leads naturally to
the following question: Is there any smooth domain (.9 (of class C2) of2 such that for some
x 1R the elliptic problem

(5.1) -lzA’p tcZp in O, p on

admits a solution of class C2 such that

(5.2) IIPlI 1, V’p - 0 everywhere on 069?

If such a domain (.9 and function p exist with -1 < p < in the interior of (.9, we can
construct a smooth domain f2 of R3, symmetric with respect to x3 0, 69 being its cross
section at the level x3 0, and where the uniqueness property of Theorem 1.3 fails. Indeed,
it is sufficient to define the upper half of the boundary of f2 as being given by the graph of the
function

(5.3) x3
/)v + 2/z

[arc cos(p(xl, x2)



1486 ENRIQUE ZUAZUA

with fl such that cosfl 1. In this case, the function

(5.4) ok(x) p(xl, x2) -cos
/.) +

satisfies (1.8) in this domain f2 without being identically zero.
When p achieves the extremal values and/or -1 in the interior of (.9, the same can be

done. But in this case the surface 0f2 is not of class C at those points where (x, xa) are such
that p achieves those values, as the computations of Remark 2.1 show.

Therefore, the existence of this type of domain (.9 and function p satisfying (5.1) and
(5.2) is relevant to understand the uniqueness property stated in Theorem 1.3 in the frame of
symmetric domains.

In dimension n 2, one has to analyze the one-dimensional version of (5.1), (5.2). As we
pointed out in Remark 2.3, there is no open connected domain (9 in R where these properties
hold. Thus, Theorem 1.3 holds without nonsymmetry assumptions.

This question may be addressed in a different way. Assume that
and symmetric with respect to the plane x3 0. Suppose that the upper surface of 0f2 is the
graph of a function h h(xl, xa). Then, taking into account that

x3+/3dp(x) p(x, xa) cos
/) + 2/

vanishes on the boundary, we have

p(x, X2) COS
%/) + 2/z

Since/3 has to be such that cos/5 1, we can assume that/3 0. Taking into account that
--/zA’p tcZp in (9 we deduce that

( tc .h(xl,x2)) inO=O.(5.5) -/Xv/) + 2/zA’h + tc() + 2/2 -/x[V’h[2)cotg
/.) +

In order to understand the uniqueness property of Theorem 1.3 without the symmetry
assumption we have to analyze the existence of tc and h such that (5.5) has a smooth solution
so that Oh/OB -cxz on 0(.9. (By B we denote the normal outward unit vector to 0(9.)

In one space dimension (when (9 is an interval of R), it is easy to see that all solutions of
(5.5) develop singularities so that they are not Lipschitz.

6. Optimality of the time of uniqueness. In this section we prove that, in general, the
uniqueness times given in Theorems 1.1 and 1.2 are sharp.

6.1. Scalar wave equations. In this section we prove the optimality of the uniqueness
time T* (f2) given in Proposition 1.6. For the sake of simplicity we consider the bidimensional
case n 2.

Let us consider the following polygonal domain in IR2 (see Figure 1):

[ ( ) (1 ). xl 3 3= (Xl,Xa) E x -, 2g 4
<x2 <

4

(6.1) [.-J (XI,X2) E --/,-- X (--1, 1)" -- <

Xl

where ), ///() + 2/).
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0.5

-0.5

-0,6 -0.4 -0,2 0 0,2 0,4 0.6 0.8

FIG. 1. Polygonal domain f2 as in (6.1) with , 2 and lz 1.

In this case

Then

and therefore

f2n-1 f21 (-?,, 3?’/2),

f2 (-, ),

U._=bt ( 3)
u -,

3?’/2,

T* (f2)

Let us prove that this uniqueness time T* (f2) is optimal in the context of Theorem 1.2.
Let b be an even and x-periodic function with period ?’ that solves the wave equation

btt- lzbxx O.

Let us choose b so that its support in the interval [-?’, ?’ is concentrated in the union of two
very small intervals to the right of -?’ and 0, respectively, i.e.,

supp(b) c [-?’, -?’ + e] U [0, e].
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Then set

1/r(Xl, X2, t) b(Xl, t) b(Yx2, t).

It is easy to check that solves (1.6) in the cylinder

((,-e) (,-e))fax
2V/-fi 2/-fi

Since this is true for any e > 0 and T*(2) ?,/v/fi, this implies that the uniqueness time
T* (f2) is sharp.

Note that
lying in the strip },/2 < xl < 3,/2 as soon as the support of b(., t) enters this region.

As pointed out in Remark 1.4, this shows that the uniqueness time given in Theorem 1.1
is sharp when co

6.2. System of elasticity. In this section we prove that, in general, the uniqueness time
given in Theorem 1.1 is optimal.

Let fa be the unit ball of IR3. It is easy to check that T*(2) 0. Then the uniqueness
time in Theorem 1.1 reduces to the classical one:

233(;
T(f2)

Suppose that co is a neighborhood of the boundary:

co={x

with r < 1. Then T(f2) 2(1 r)/q’-fi.
Let 99 be a solution of (1.3) with data at time 0 with support contained in a small

ball around the origin of radius e. It is easy to see that go vanishes on co on the time interval
(-(1 r e)//-, (1 r e)//-). Since e is arbitrarily small, this implies that T() is
sharp.

7. Counterexamples to the uniqueness results. In this section we develop the two-
dimensional counterexample mentioned in Remark 1.5. We also show how it can be extended
to three space dimensions.

7.1. Dimension n = 2. Let us consider the following polygonal domain f2 in dimension
n 2 (see Figure 2):

+ +
(7.1)

+ 2/zx,/,/-fi -1 < x2 < 1-IV/)V + 21xx/

Let b be an even and x-periodic function with period //x/() + 2/,) that solves the wave
equation

btt IXbxx = O.

Then

/-x2 ,t)r(Xl, X2, t) = b(xl, t) b
/)+ 2/Z
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0.5

-0.5

-1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

FIG. 2. Polygonal domain f2 as in (7.1) with ) 2 and lz 1.

solves (1.6) for all > 0. This shows that Theorem 1.2 does not hold in this domain f2 for
any T > 0.

On the other hand, 99 (0, p) is a nontrivial solution of (1.3) that satisfies (1.5) for any
T > 0. Thus Theorem 1.1 does not hold either.

In a similar way, the function

2zr/) + 2/z
(x) cos

d-fi Xl) cos(27rx2)

solves the elliptic eigenvalue problem (1.8) in this domain for

K
2 47r2(, k- 2/z).

This shows that Theorem 1.3 also fails.

7.2. Dimension n 3. In this section we show how the example above can be extended
to dimension n 3.

Let us denote by (R) a planar bounded and piecewise smooth domain of ]K2. Let p
p(xl, x2) be the first eigenfunction of -A’ in Hd (tO), i.e.,

-lzA1p =tc2p in tO,
p=0 on0(R),

K"2 being the first eigenvalue. Since p is bounded, we can assume that Ilpllo( 1. Note
that p > 0 in to.
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FIG. 3. Domain S2 as in (7.2) when (R) (-1, 1) x (-1, 1) with and lz such that L + 21z t2.

Let us consider the function

,X3(x, x2, x3) p(xl, x2) sin
)v + 2/,

It is easy to check that b satisfies

02 2-/zAq () +/,)x2 tc in (R) x R.

Let us consider now the surfaces S and $2 in R corresponding to the graphs of the
folowing two functions:

/) + 2# v/)v + 2#(7.2) x3 --arcsin(p(xl, X2)) and x3 ---arcsin(p(x, x2)).
K K

These two surfaces define the upper and lower boundaries of a piecewise smooth bounded
domain f2 ofR whichis contained in (R)x (-7r/2, 7r/2). By definition 4 0on Of2. Therefore
Theorem 1.3 does not hold in this domain.

This type of set f2 reproduces the structure of the polygonal domain given in 7.1.
In these domains the hypothesis c) of Theorem 1.8 fails since there is no point of the

boundary of f2 where the tangent plane is orthogonal to the plane x3 0. Note that, at the
points of the boundary of f2 where x3 0, the tangent plane does not exist since the tangent
planes of the upper and lower surfaces & and $2 do not match.

In Figures 3 and 4 we see the domain f2 when (R) is an square and a disk of IR2.
Note that when (R) is smooth, the corresponding domain f2 is Lipschitz. This can be proven

easily by using the fact that the normal derivative of p at O(R) is strictly negative. However, as
is seen in Figure 3, when 6) is the square, the corresponding domain f2 is not Lipschitz. This
is due to the fact that the derivative of the eigenfunction p in the direction of a diagonal of 6)

vanishes at the corner.
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-o.5 -o.5
-1 -1

FIG. 4. Domain S2 as in (7.2),when (R) is the unit disk oflR with , and lz such that ) + 21 tc 2.

8. Proof of Theorem 1.9. We prove Theorem 1.9 following the approach of Lions [5]
and Fabre, Puel, and Zuazua [1 ].

First we observe that it is sufficient to consider the case where u u 0. Indeed,
given any initial and final data (u, ul), (v, v 1) H and any e > 0, let w be the solution of
(1.1) with initial data (u, u) and right-hand side f 0. Then, set t u w. It is easy
to check that finding f (Le(f2 (0, T)))" such that (1.10) holds is equivalent to finding
f (Le(f2 (0, T)))n so that the solution fi of (1.1) with this control and zero initial data
satisfies

(lift(T)- v + w(T)ll + IIt,(T)- v + wt(T)ll(2()).) 1/2
()),,

_< s.

Therefore, in the sequel we will assume that u =/,/l 0.
Given any (v, v 1) 6 H and e > 0 we introduce the functional J 7-[ (L2(ff2))

(H- (f2)) -- R, defined as follows:

’fo f f. l , ow,j(o,a) (1 /’.’/1,,- "dx /(

where (., .) denotes the duality product between (H (f2))" and (H- (f2)) and q) is the solution
of

q)tt tzAq) () +/z)Vdiv99 0 in x (0, T),
(8.2) q9 0 on 1-’ (0, T),

qg(x, T) qg(x), gt(x, T) 0 (x) in

The functional J is coercive in 7-/. More precisely, we have the following result.
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LEMMA 8.1. Under the assumptions of Theorem 1.8,

(8.3) lim inf > e.
,(0,,),_ ii(go0, go)ll

Proof. Let us consider a sequence ((p, tp]) in 7-/such that

Nj II(go, go))ll as j --+ Cxz.

We introduce the normalized initial data

and the corresponding solutions of (8.2):

We have

Nj L(Ig3j,1 nt- ...+ ij,n_l l2) dxdt -+- +2

We distinguish the following two cases:
(i)

""IT/ 12 ,2)dxdt>O.lim inf (Iqj,1 -- -- I)j,n
j-+o

(ii) there exists a subsequence (denoted by the index j to simplify the notation) such that

(8.4) LT L 12(Iq3j,1 +’’’ + Ij,n_12)dxdt -’+ 0 as j --> .
In the first case we clearly have

lim inf Ij /Nj
j-+o

Let us consider the second case. Since (q3j., 93)) is bounded in 7-/, we can extract a subsequence
^1 q31(still denoted by the index j) such that (q3j., oj) --+ (b weakly in as j --+ cxz. Let us

denote by g3 the corresponding solutions of (8.2). In view of (8.4) we have

ql n--1 0 in w x (0, T)

and therefore, as a consequence of Theorem 1.8, (q3, (1) 0. Thus

(8.5) ^1(q3j., q)j) -+ (0, 0) weakly in

From (8.5) we deduce that

(8.6) li.m inf
Ij

liminf NJ Lr L, jj j T (Iq3j,l 2 +."-k-Iq3j,n-,I2) dxdt + e > e.

Therefore, (8.3) holds.
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As a consequence of the coercivity property (8.3), it is easy to check that the infimum of J
over 7-/is achieved at some (3, if1) 7-/. At this minimizer (g3, 31) the optimality conditions

(8.7) (931/91 Jr-’’’ + n-lPn-1) dxdt v adx + (v, P) < ell(P, P)IIT/

are satisfied for all (p0, p) 7-(, where q3 denotes the solution of (8.2) corresponding to the
minimizer (q3, q31) and p is the solution of (8.2) with data (p0, pl).

Observe that if u solves (1.1) with u u 0 and f q3, then

(8.8) (,p, +... H- n-lPn-,)dxdt blt(T pdx (u(T),

Combining (8.7) and (8.8) we obtain

f(v ut(T)), pO dx / (v u(T), p) <_ ell(P, Pa)llT/

for all (p0, pl) 6 , and this is equivalent to

II(u(T) v0, u(T) )11 _<

9. Two examples of noneontrollability. In this section we develop the examples men-
tioned in Remarks 1.10 and 1.11 that can be constructed explicitly for periodic boundary
conditions. The first one shows that, in general, exact controllability does not hold with
L2-controls obeying (1.2) and periodic boundary conditions. We do not have a counterexam-
pie for Dirichlet boundary conditions, but the situation is probably the same in this respect.
The second example shows that if we impose further restrictions on the control, the approx-
imate controllability may be lost. However, this result may depend on the type of boundary
conditions and cannot be considered a serious indication for Dirichlet boundary conditions.

Throughout this section we assume that the Dirichlet boundary conditions are replaced
by the periodic ones.

9.1. An example of nonexaet controllability. The exact controllability with controls

f in (L2( x (0, T)))n obeying (1.2) is equivalent to the following estimate for the adjoint
system (1.3) (see [4]):

(L:(f))" + Ilqgt(0)llH-’(a)) < C [Iqg +’.. 9-ICPn- 12]dxdt.

Let us prove that, in general, (9.1) does not hold even if co
Let us assume that S2 is the three-dimensional cube (0, n:) 3. Let us consider

divergence-free solutions of the form

0(x, t) csin(k x) cos(/-l k t)

with c 6 " and k 6 Zn such that c. k 0. It is easy to check that p satisfies (1.3). Actually,
since c. k 0, we have divq9 0. Therefore, (1.3) reduces to the diagonal system of wave
equations

P IzAcp O

Let us now analyze inequality (9.1) in the case where co 72. It is a simple computation
to check that the energy of the initial data (i.e., the left-hand side of (9.1)) equals c 2 /2. The
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integral on the right-hand side, which measures the energy of the first two components of the
solution, equals

Ic’12(T+ sin(v/-fflklT))2 ,/- Ik

where c’ (Cl, c2). For any T > 0 the quantity

Ic,2 ( sin(v/-lklT))-I ( c32 )( sin(/-lklT))-’Ic’l 2
Z +

Ikl
1 + T /

Ikl

(which is the quotient between the left- and right-hand sides of (9.1)) may be arbitrarily large.
Indeed, since c. k 0, we have c3 -c’. k’/k3 with k’ (kl, k2). Thus,

c3
z Ic’" k’l 21+=1+

Ic’l 2 Ic’l 2 k3"
We see that given k3 E Z and c E 12, we may choose k’ 6 Z2 so that this quantity becomes
arbitrarily large. On the other hand,

sin(/- kl T)) T as Ikl ec.T+
v/-ff Ikl

Thus (9.1) does not hold.
Let us recall that if all the components ofthe control are nonzero, exact controllability with

(L2( x (0, T))) controls holds for a certain class of co’s. For instance, if co is a neighborhood
of the boundary of f2, exact controllability holds with control time T(f2) diam(f2 \ co)/qrfi
(see [4]).

9.2. An example of nonapproximate controllability under further constraints on the
control. In view ofTheorem 1.9 it is natural to study if approximate controllability holds when
two components of the control are constrained to be identically zero. Thus let us suppose that
the control function f is of the form

(9.2) f (fl fn-2, 0, 0).

This problem can be formulated in an equivalent way in terms of a uniqueness property for
the adjoint system (1.3). This time, the uniqueness property to be understood is the following:
If go is a solution of (1.3) in the class C([0, T]; (L2(f2))n) (q C1 ([0, T]; (H-l(f2))n) such that

(9.3) (-/91 gon-2 0 in co x (0, T)

and T is large enough, can we deduce that, necessarily, go 0 in x (0, T)? It is easy to
check that in dimension n 3 when f2 (0, zr) this uniqueness result does not hold even
when co

Indeed, we can construct solutions of the form

go(x, t) --csin(k. x)cos(/-lklt)

with c 6 IR3, k 6 Z3, k 7 0 such that c. k 0, Cl 0, C’ # 0 SO that gol -- 0 everywhere
but go is nontrivial. Thus we cannot expect approximate controllability results in three space
dimensions with controls of the form f (fl, 0, 0).
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NEW NECESSARY CONDITIONS FOR THE GENERALIZED
PROBLEM OF BOLZA*

P. D. LOEWEN AND R. T. ROCKAFELLAR*

Abstract. Problems of optimal control are considered in the neoclassical Bolza format, which centers on states
and velocities and relies on nonsmooth analysis. Subgradient versions of the Euler-Lagrange equation and the
Hamiltonian equation are shown to be necessary for the optimality of a trajectory, moreover in a newly sharpened
form that makes these conditions equivalent to each other. At the same time, the assumptions on the Lagrangian
integrand are weakened substantially over what has been required previously in obtaining such conditions.

Key words, optimal control, calculus of variations, nonsmooth analysis, problem of Bolza, Euler-Lagrange
condition, Hamiltonian condition, transversality condition
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1. Introduction. Among the classical problems in the calculus of variations, that of
Bolza marked a high point of complication, involving all the kinds of side conditions then
viewed as important. With deceptive simplicity, the generalized problem of Bolza can be
stated in one line:

(P) minimize A[x] "= l(x(a), x(b)) + L(t, x(t), 2(t)) dr,

where the minimization takes place over all absolutely continuous functions ("arcs") x: [a, b] --N’. Its generality rests on allowing and L to be extended real valued, hence not necessarily
differentiable or even continuous.

The tactic of admitting such a broad range ofchoices for and L, first adopted in Rockafel-
lar [21 ], enables (7)) to encompass a vast array of dynamic optimization problems, including
those governed by controlled differential equations, differential inclusions, and incorporating
endpoint constraints of every conceivable form. For example, (7)) subsumes the problem

(7)1)
minimize Al[x] := l(x(a),x(b)) + Ll(t,x(t),2(t))dt

subject to (x(a),x(b)) S and .(t) F(t,x(t))a.e. [a, b]

for a set S C ]Rn In and a multifunction F [a, b] IRn = IRn. Indeed, it suffices to
take 11 + qs and L L1 + gph F, where qs and kI/gph F are the indicators of S and
the graph of F (having the value 0 on these sets but oo outside). In the classical problem of
Bolza, S and the graph of F were specified by side conditions of the kind li(x(a), x(b)) 0
and Lj(t, x(t), Yc(t)) 0, with and j in given finite index sets, all functions being assumed
smooth (cf. Bliss [2, p. 189]); eventually the equations were supplemented by inequalities, and
"isoperimetric" constraints were listed too (cf. Hestenes [8, p. 348]). Isoperimetric constraints
fit into (791) by the trick of adding more state variables and modifying S and F accordingly.
(In these classical formulations the interval [a, b] was permitted to vary, and this could be
built into (791) and (79 as well, but we focus on the fixed-interval case here, reserving the
variable-interval extension for elsewhere.)
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On the other hand, problems in optimal control of the wide form below can also be fitted
into the pattern of (79):

minimize [x, u] := d(x(a), x(b)) + f(t, x(t), u(t)) dt

CPc) subject to 2(t) e f(t, x(t), u(t)), u(t) U(t, x(t)) a.e. [a, b],

and (x(a), x(b)) S.

To arrange this, simply take 4 + Us as before and

L(t, x, v) inf, {f(t, x, u) u g(t, x), v F(t, x, u)},

interpreting the right side as when there is no u in U(t, x) for which F(t, x, u) contains
v. Note that the dynamics here involve a controlled differential inclusion and that the set
of admissible controls displays explicit state dependencemtwo features beyond the scope of
the classical theory. It is more difficult to force (Pc) into the framework of (7)1), which
underscores the importance of (P) as the model of choice when a full spectrum of control
applications is envisioned. For more on this approach to optimal control, see [24] and [29].

Our aim is to establish necessary conditions for optimality in (7) that retain both the form
and the power of their classical precursors, the equations of Euler-Lagrange and Hamilton,
despite the nonsmooth, extended-real-valued setting. This program for the generalized prob-
lem of Bolza is not new: it began with Rockafellar’s work in the case where both functions
and L(t,., .) are convex [21-23, 25], and it was greatly advanced beyond such full convex-

ity by Clarke [3-6] and others. Most recently there have been contributions by Loewen and
Rockafellar [13, 14], Mordukhovich [19], and Ioffe and Rockafellar [10].

The current work has two especially distinguishing features. First, it provides a sharpened
version of the Hamiltonian optimality condition that is equivalent to the sharpened form of
the Euler-Lagrange condition we introduced in [14]. Second, it assumes significantly less
than before about the Lagrangian L; it does not demand that L have the form L1 / lI/gph F in
which Lipschitz properties are expected of L1 and F, as, for instance, in 13]. It does ask for
the convexity of L in the velocity argument, in contrast to the recent papers 19] and 10], but
those works are more restrictive in other respects and anyway concern the Euler-Lagrange
condition only.

The convexity of L in the velocity argument is essential for the equivalence between the
Euler-Lagrange condition and the Hamiltonian condition, whatever their versions. Indeed,
aside from the classical case of a smooth function L, or the fully convex case where L is
convex in the state and velocity arguments together and some other special cases covered by
[30], results asserting the simultaneous necessity of both conditions were elusive. The best
that could be claimed, in [14], was the existence of at least one adjoint arc for which both
conditions in a certain form were satisfied. (Other adjoint arcs might fulfill just one ofthe two.)

The sharpened Euler-Lagrange condition that we use in relating an extremal arc 2 to an
adjoint arc p asserts that

(1.1) /5(t) co{v (v, p(t)) OL(t,2"(t),(t))} a.e.t [a,b].

Here 0 refers to the possibly nonconvex limiting subgradient set (see Loewen 12] for notation
and terminology), known also under various other names: limiting proximal subgradient set
in Clarke [6], approximate subdifferential in Ioffe [9], subdifferential in Mordukhovich [19],
subgradient set in the general sense in Rockafellar [31 ]. (The subgradients are those of L(t,., .)
with fixed.) Under the hypotheses of this paper (see 2), the inclusion (1.1) implies that for
almost all the vector (t) maximizes the function v (p(t), v) L(t, 2"(t), v).
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The sharpened Hamiltonian condition that we establish for the first time as necessary for
optimality, by virtue of its equivalence to (1.1), is

(1.2) /5(t) 6 co{w (-w,(t))6OH(t,2.(t),p(t))} a.e.t 6[a,b].

The Hamiltonian H is, as usual, the Legendre-Fenchel transform of the Lagrangian L in its
velocity variable:

H(t,x, p)"= sup {(p, v) L(t,x, v) v

Clearly, (1.2) is a strict improvement on the form (-/(t), (t)) 6 co OH(t, 2(t), p(t)), taken
as standard until now, since it convexities only in the first argument. It implies, in particular,
that for almost all t, the vector p(t) maximizes the function q - (q, (t)) H(t,-(t), q).

The weakened assumptions on L that suffice for these developments are set out in hy-
potheses (H4) and (H5) of 2. The first of these is a very mild "epi-continuity" assumption.
Geometrically it amounts to insisting that, for each fixed t, the set epi L(t, x, .) should vary
continuously with x. The second is a growth condition on subgradients, reducing when
L(t, x, v) is smooth to a local inequality of the form [VxL[ _< to(1 + [VvL[). It implies,
through a result of Mordukhovich 18], the Aubin ("pseudo-Lipschitz") continuity of the mul-
tifunction x : epi L(t, x, .) near the optimal arc. Our need for Aubin continuity on a tube of
uniform size around the minimizing trajectory makes it necessary to formulate a quantitative
generalization of Mordukhovich’s result in 4.

We give special attention in 7 to the Lipschitz-plus-indicator case where L L 14- kIgph F,
showing for that version of the problem that the present results yield a full suite of (sharpened)
Lagrangian and Hamiltonian necessary conditions for optimality in both normal and abnormal
forms beyond what we had previously obtained in [13] and [14]. This recalls the work of
Smirnov [32], who proposed the version of (1.1) for L kIdgph F as a necessary condition
in 1991 but whose requirements that F be bounded and autonomous are significantly relaxed
here. (Smirnov’s result and proof are linked to prior work of Mordukhovich [15-17], who
has recently given conditions 19] under which the necessity of (1.1) can be established in the
absence of convexity hypotheses.) The main thrust of our effort, however, goes the other way:
we demonstrate how to transform (79 in its full generality into an instance of the differential
inclusion problem in [14], and with some new machinery we then apply the results in that
paper in combination with the Lagrangian-Hamiltonian equivalence theorem in [31 ].

State constraints requiring x(t) to belong to a set X (t) C n can in principle be incorpo-
rated into problem (79) by adding an indicator term in the specification of L, but for technical
reasons it is better, at least in the theory as it now stands, to keep them explicit. The treatment
of such constraints is taken up in 6.

2. The main result. Our main result is Theorem 2.1, a set of necessary conditions for
an arc 2- to provide a local minimum in problem (79). So let 2. be given, and fix some e > 0
in order to define a suitable neighbourhood of 2.:

S2 {(t,x) 6 [a, b], Ix- 2.(t)l < e},

’t {X [X- 2-(t)[ < e}, a _< < b.

We impose five conditions on 2. and the functions and L relative to the set f2; they are
described below as (H1)-(H5). For simplicity in dealing with subgradients of L(t, x, v) and
H(t, x, p) we use the notation OL and OH instead of the more cumbersome (but precise)
O(x,vL and O(x,p)H. In general, as already mentioned, we write Of(z) for the set of limiting
subgradients associated with a lower semicontinuous function f at the point z; the singular
counterpart to this set is Of(z). See Loewen [12] for details.
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THEOREM 2.1. Assume (H1)-(H5). Suppose thatfor every arc x with graph in 2, one has
A[x] > A[]. Then either the normal conditions or the degenerate conditions given below
are valid.

Normal conditions: For some arc p on [a, b],
(a) /b(t) E co{v (v, p(t)) OL(t,(t),-(t))}a.e. [a,b],
(b) (p(a),-p(b)) Ol(2(a), Y(b)).
Degenerate conditions: For some nonzero arc p on [a, b],
(a) /5(t) 6 co {v (v, p(t)) OL(t, 2(t), (t))}a.e. [a, b],
(b) (p(a),-p(b)) Ol(-Y(a),2(b)).

(In particular, ifthe only arc p on [a, b] satisfying conditions (a)-(b) is the zero arc, then
the normal conditions are satisfied.) In the normal conditions, assertion (a) is equivalent to

(a’) /(t) 6 co{w (-w,(t)) OH(t,-Y(t), p(t))}a.e, [a,b].
Also, conditions (a) and (a’) imply thatfor almost all in [a, b],

(c) p(t) OvL(t, -Y(t), (t)) argmaxqn {(q, (t)) H(t, (t), q)}, and
-(t) OpH(t,-(t), p(t)) argmaxvn {(p(t), v) L(t,(t), v)}.

Hypotheses. The terms in the Bolza functional A are required to have the following
properties, expressed in terms of the constant e > 0 in the definition of f2 and two positive-
valued integrable functions 6 and tc on [a, b].

(H1) The endpoint cost function (Xa, Xb): n X n --+ U C is lower semicontinuous
on "2 X "2b.

(H2) The integrand L(t, x, v)" f2 n
__

U {cxz} is measurable with respect to the
o--field /3 generated by PrOducts of Lebesgue subsets of [a, b] with Borel subsets of
]n ]n.

(H3) For each fixed pair (t, x) in S2, the function v + L(t, x, v) is convex.
(H4) For almost every in [a, b], the function (x, v) + L(t, x, v) is lower semicontin-

uous on f2t ]n and has the following epi-continuity property: for any point (’, ’) where
I’- X(t)l < e and L(t,",) is finite, and for any sequence x -- in t, there exists a
sequence v -+ " along which L(t, xk, V) -+ L(t, ", ").

(H5) The ratio x(t)/3(t) is essentially bounded. For almost all in [a, b], one has

Iwl to(t) (1 4- Ipl) for all (w, p) OL(t, x, v),

whenever Ix 2(t)l < e, [(v, L(t, x, v)) ((t), L(t, 2(t), (t)))l < ;(t).
As the absence of measures in the statement of Theorem 2.1 signals, state constraints

cannot be implicit in the instance of (79 under consideration at this stage. To see how such
restrictions are ruled out, note that (H4) makes the set

G {x "t Z(t, x, l)) < (30 for some v with Iv (t)l < 6(t)}
be open for almost all t. Indeed, (H4) says that no point" in G can be a boundary point. Of
course, 2-(t) lies in Gt. Thus our paradigm allows L to impose certain velocity constraints
through the use of infinite penalties but does not allow unilateral state constraints to be covered
in the same way. State constraints in the explicit form x(t) X(t) Yt can nonetheless be
handled by our methods, as will be explained in 6.

Hypothesis (H5) can be viewed as a combined growth condition and Lipschitz condition.
As a growth condition, it resembles the "condition of Morrey type" underlying Clarke and
Vinter’s Proposition 3.2 in [7], a result which establishes the validity of the Euler-Lagrange
equation in the calculus of variations without the a priori assumption that the minimizing arc
is Lipschitzian. Indeed, in the special case where L(t,., .) is continuously differentiable on
S2t, (H5) reduces to

IVxL(t, x, v)l _< x(t)(1 4- IVoL(t,x, v)l) V(x, v) e
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As a Lipschitz condition, (H5) is a subgradient characterization of the Aubin continuity of
the epigraphical multifunction associated with L, as we shall see in 4. A Hamiltonian
formulation of this assumption is derived in 5, where its relationship to Clarke’s "strong
Lipschitz condition" [4] is easiest to discern.

Note that the seemingly weaker form of (H5) obtained by substituting the proximal sub-

gradient set 0L for 0L is actually equivalent to the form stated here, because 0L is defined by
taking limits of proximal subgradients.

The method of proof. There is a well-known equivalence between Bolza problems and
Mayer problems, mediated by the technique of state augmentation. Indeed, consider the
domain ]K in one more state dimension, the extra state variable being denoted by y,
and define the epigraphical multifunction E f2 :: n+l by

E(t, x, y) epi L(t, x, .).

(The set E(t, x, y) does not actually depend on y.) If the arc Y figuring in our hypotheses
solves (79), then the arc (Y, y), with

y(t) L(r, Y(r), (r)) dr,

solves the following differential inclusion problem:

minimize k(x(a), y(a), x(b), y(b)) l(x(a), x(b)) + y(b) + qt0l(y(a))
(7’)

subject to (k(t), (t)) 6 E(t, x(t), y(t)) a.e. 6 [a, b].

The right side in the dynamic constraint here is unbounded. Necessary conditions for opti-
mality in problems of this sort were the subject of a previous paper 14]. Our procedure in the
current paper is basically to check the hypotheses in 14] and then to translate the conclusions
of that work into the context of (79). Checking the hypotheses takes a certain amount of work,
since the transition from the subgradient hypothesis (H5) to the Lipschitz conditions required
by 14] is not completely straightforward (see 4). Likewise, an additional state-augmentation
argument is necessary to reduce the case of a general lower semicontinuous endpoint cost to
the Lipschitz-plus-indicator form treated in [14] (see the proof of Theorem 3.1). Finally, it is
insufficient simply to transcribe the conclusions of 14]: the sharpened Hamiltonian inclusion
featured here relies on a careful analysis of the relationship between the Hamiltonian and
Eulerian forms of the necessary conditions, as carried out by Rockafellar [31 ].

3. Proof of the main result. To prove Theorem 2.1, we shall apply an intermediate
result for unbounded differential inclusions which is readily derived from 14, Thm. 4.3]. The
reformulated problem (79’) under consideration fits the general pattern:

minimize k(z(a), z(b))
subject to (t) 6 E(t, z(t)) a.e. 6 [a, b].

The hypotheses of [14] for this kind of problem refer to a distinguished arc 2 and, for some
fixed r/> 0, its "graphical neighbourhood"

U {(t, z) 6 [a, b], Iz 2(t)l < r/},

Ut {z Iz-(t)l <r/}, a<t <b.

They read as follows:
(hl) The endpoint cost function k: Ua Ub t3 {ZX} is lower semicontinuous.
(h2) The sets E (t, z) are nonempty, closed, and convex for each (t, z) in U and empty

for each (t, z) outside U.
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(h3) The multifunction E is measurable with respect to the r-field/2 x/3 generated by
products of Lebesgue subsets of [a, b] with Borel subsets of

(h4) There are integrable functions and K on [a, b], with K/3 essentially bounded,
such that almost every in [a, b] obeys

E(t, y) fq (-(t) + (t)) c_ E(t, z) + g(t)ly zlI Yy, z e Ut.
Here and elsewhere in this paper, I denotes the closed unit ball in the Euclidean space of

appropriate dimension.
THEOREM 3.1 (see [14]). If hypotheses (hl)-(h4) hold and-i solves problem (79), then

there exists an arc q on [a, b] such that
(a) c)(t) co {w (w, q(t)) NgphE(t,.) (-(t),-(t)) a.e. [a, b]; and
(b) one ofthefollowing transversality conditions holds:

(i) (q(a),-q(b)) e Ok(2(a),-(b)), or

(ii) (q(a), -q(b)) Ok(g(a), g(b)), with q not identically zero.
Proof A simple trick reduces the general lower semicontinuous endpoint cost function k

to one in the Lipschitz-plus-indicator form analyzed in 14]. Indeed, it suffices to define the
constant arc - k(-(a),-(b)) and then to observe that the pair (, ?) solves the problem

minimize r (b)
subject to (z(a), z(b), r(a)) epik, r(b)

((t), ?(t)) e E(t, z(t)) x {0} a.e. [a, b].

The stated result follows from conditions (b) and (d) of [14, Thm. 4.3] by elementary subgra-
dient calculus.

Note that although the statement of 14, Thm. 4.3] involves stronger Lipschitz conditions
on the multifunction E specifically tailored to the modulus of integrability of the function z,
they are present only to facilitate a statement free of explicit references to the quantity (t).
In fact, the conditions of 14, Prop. 2.2] are sufficient for the conclusions of 14, Thm. 4.3],
and it is these we have applied hereNtaking R and m K.

Leaving aside the verification of hypotheses (hl)-(h4) for now, let us derive the conclu-
sions ofTheorem 2.1 from those ofTheorem 3.1. To apply the latter result, we take m n + 1,
with z (x, y) as a pattern and (Y, y) as the optimal arc. Of course, E (t, z) E (t, x, y)
and k(xa, Ya, Xb, Yb) (Xa, xb) + yb + qo (Ya). Observe that

ak(g(a),-i(b)) {(oe, ’, fl, 1) (o, fl) al(-Y(a), Y(b)), R},

Ok(-i(a),-(b)) {(or, , fl, O) (or, fl) Ol(N(a), N(b)), }
In terms of these data, Theorem 3.1 provides an adjoint arc (p, q)" [a, b] -- R x IR satisfying
two conditions. First, the transversality condition 3.1(b) implies that either q(b) -1 and
(p(a),-p(b)) Ol(-Y(a),-Y(b))or q(b)- 0 and (p(a),-p(b)) OCl(Y(a),-Y(b))with
(p, q) not identically zero. Second, the Euler-Lagrange condition 3.1(a) asserts that for
almost all in [a, b],

(3.1) (/5(t), 4(t)) e co {(v, w) (v, w, p(t), q(t)) NgphE(t,.) (-(t), y(t),-(t), -(t)) }.
Now for fixed t, one has

gph E(t, .) {(x, y, v, r) (x, v, r) e epi L(t,., .), y e R}.

In terms of (t) L(t, g(t), -(t)), this implies

NgphE(t,.) (-Y(t), y(t), (t),-(t))
{(1), 0, , --/9) (t), Jr, --/9) G UepiL(,,.,.) (-(t), (t), (t)) }.
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Using this relation in (3.1), we get

(3.2) (/(t), c)(t)) 6 co{v (v, p(t),q(t)) NepiL(t,.,0 (2(t),-(t),-(t)) {0}.

In particular, the second component of this inclusion implies that c) (t) 0 almost everywhere.
Thus q is a constant function whose value is either 0 or -1. In the case where q -1, one
has the normal conditions of Theorem 2.1"

(a) /)(t) co{v (v, p(t)) OL(t,(t),(t))} a.e.t [a, b], and
(b) (p(a),-p(b)) Ol(-Y(a),Y(b)).

In the case where q 0, the degenerate conditions of Theorem 2.1 follow instead:
(a) /(t) 6 co{v (v, p(t)) OL(t,Y(t),(t))} a.e.t 6 [a, b], and
(b) (p(a), -p(b)) Ol(2(a), 2(b)), and p is not the zero arc.
In [31, Thm. 1.1], Rockafellar proves that the inclusions (a) and (a’) in Theorem 2.1 are

equivalent for each fixed with the properties described in (H4), provided that every such
also satisfies the condition

(3.3) (w, 0) /(t, (t), (t)) w 0.

Note that (3.3) holds for almost all t, by (H5). Indeed, any point (w, 0) in the cone

OL(t, Y(t), Y(t) must have the form (w, 0) limo r(w, p) for se.quences r --+ 0+

and (w, p) OL(t, x, v) along which (x, v)-(-Y(t),-(t)). Since OL c_ OL always,
(H5) implies that for all v sufficiently large,

[rw[ <_ tc ([rp[ + r).

In the limit as v ----> cx, it follows that [w[ _< 0, so (3.3) holds. Under the same hypotheses,
Rockafellar [31] shows that the equivalent conditions (a) and (a’) both imply the argmax
conditions in (c).

To complete the proof of Theorem 2.1, we must demonstrate that Theorem 3.1 is truly
applicableby checking hypotheses (hl)-(h4). Conditions (hl)-(h3) hold for any r (0, e]
as obvious consequences of the corresponding hypotheses (H1)-(H3) on and L. The real
issue is hypothesis (h4), which calls for the Aubin continuity of the multifunction E (see
Aubin [1]) with respect to a certain restricted tube around . This condition follows from
hypothesis (H5) and Theorem 4.3 in the next section.

To see this, fix a time in [a, b] at which the conditions in (H4)-(H5) hold. Since will
be fixed throughout this argument, and since E does not actually depend on y, we suppress
both the t- and y-dependence of E and L, writing simply E (x) epi L(x, .) for [x 2[ < e.
(We also write instead of (t) and use the shorthand E L(2-, ).) As noted above,
gph E epi L; thus (H4) implies that gph E is closed and that condition (i) of Theorem 4.3
holds. Condition (ii), on the other hand, requires that

[w[ < Rl(p,-)0[ for all (w, p,-)) NepiL (X, v,/"),

whenever Ix Y[ < e and [(v, r) (, )1 < 6.

Now the "proximal subgradient formula" [26, 11 asserts that every nonzero vector (w, p, -))
in NepiL (X, V, 1") can be realized as the limit of a sequence of proximal normals

(w, p, -)) in NepiL (Xv, Vv, ?’v) for which ) > 0 and the corresponding base points obey
(Xv, l)v, ?’v)

epiL
(X, V, ?’). For every term in such a sequence, one has (w/), p/))

0L (xv, v), so (H5) gives
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Multiplying through by ) > 0 and letting v --+ cxz, we obtain

Iwl < tc (IPl + I)1) < 2xl(p,-.)1.

This argument applies to every triple (w, p, -)) in Nepi L (X, V, r), SO condition (ii) of The-
orem 4.3 holds with R 2x. The conclusion of Theorem 4.3 establishes (h4), with K (t)
V/1 + 4to(t)2, any constant 0 < _< eo(t) "= min {e, 6(t)/(9K(t))}, and 3(t) equal to one
sixth of the value of the 3(t) provided in (H5). (The function e0 is bounded away from zero
because to/3 E Lc by (H5).) This completes the proof of Theorem 2.1.

4. On uniform Aubin continuity. This section and the next furnish technical support
for the proof and interpretation of Theorem 2.1 above. Both are intended, though, to stand
alone as having independent interest: they involve functions and constants whose names are
deliberately suggestive but are logically distinct from those identified in 1-3 and 6-7.

DEFINITION 4.1. Let I-’: ] : ]m be a multifunction and (Y, ) be a point in gph I-’. To
say that I" is Aubin continuous at (,-) with parameters e > O, 3 > O, and K > 0 means
that one has

(4.1) F(x) A ( + 31) c_ I’(y) + Kly xl] Vx, y + e.

The modulus of Aubin continuity for a given multifunction 1-" at a point (Y, ) in gph F’
is the number tcc (Y, ), defined as the infimum of all K > 0 satisfying (4.1) for some e > 0
and 3 > 0. Mordukhovich [18, Thm. 5.7] has shown that if gph F is closed, then

Xr(2, ) sup {11 (, ) Ngphr (Y, ), I1 < 1}.
For the purposes of this paper, Aubin continuity with some fixed 3 > 0 is required at every
point in some e-neighbourhood of a given arc, and knowing only that tcc is finite at every point
along the arc is not sufficient. We need quantitative estimates of the constants e, 3, and K in
terms of a neighbourhood of (Y, ) in which the (generalized) slope of vectors normal to the
graph of 1-" is bounded.

Our approach to this problem is patterned on that introduced in Rockafellar [28, Rem. 3.14]:
we prove that 1-" has the desired Aubin continuity properties by showing that the function dr
defined in the following lemma satisfies a corresponding Lipschitz continuity condition. This
in turn is accomplished by using Rockafellar’s 1985 results [27] for estimating the subgradi-
ents of marginal functions. (Although the facts we appropriate from these earlier papers were
phrased in terms of Clarke subgradients, they apply equally well to the limiting subgradients
we are working with here.)

LEMMA 4.2. Given a multifunction F’ with closedgraph G, consider de(x, v) := dr(x) (v).
Ifdr is Lipschitz ofrank K on the set (Y + I) x (- + 3)for some constants e > O, 3 > O,
then condition (4.1) holds, with the same constants.

Proof This is elementary--see Rockafellar [28,Thm. 2.3, (b)=(a)].
THEOREM 4.3. Let F’: :: ]I be a multifunction; write G gph 1-’, and assume that G

is a closed set. Let (Y, -) in G be a pointfor which some constants e > O, 3 > O, and R > 0
satisfy two conditions:

(i) For any point (x, ,) in G with Ix Yl < e and IV l < 3, andfor any sequence
xk --+ x, there is a sequence yk F’ (x) such that y --+ 9/.

(ii) Iotl < Rllfor all (or, ) Ngphr (x, y) whenever Ix
Then I" is Aubin continuous at (Y, ) with parameters K /1 + R2, 30 3/6, and o
min {e, 3/(9K)}, i.e.,

(4.2) r(y) A (2 + 3o1) _c r(x) + Kly xl] Yx, y + eoI.
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Proof According to Lemma 4.2, we only have to show that dr is Lipschitz continuous
of rank K on the set (2- + e0) x (g + 60I). To accomplish this, it suffices to show that
Odr(x, v) c_ KN for all (x, v) in this set. We therefore set out to estimate Odr, relying on
Rockafellar [27].

A convenient characterization of dr, valid for all x and v without restriction, is

dr(x, v) min{Iv gl (x, F) G}
(4.3) =min[f(x,v,y)" (x, v, y) E S}
where f(x, v, y) Ix y land S {(x, v, y) (x, y) E G, v 6 ]m}. In the latter form,
dr is revealed as the marginal function associated with an optimization problem depending on
parameters (x, v). Such functions have been studied extensively, in particular by Rockafel-
lar [27], whose results we shall employ here. Let us denote by E (x, v) the set of minimizing
Vectors g in (4.3) above. Theorem 8.3 of [27] implies that any point (x, v) has a neighbourhood
in which dr is Lipschitzian and satisfies the following estimate for limiting subgradients:

Odr(x, v) {(,r/) (,7,0)0f(x,v,y)+Ns(x,v,y) 3y E(x, v)}

(The hypotheses of Rockafellar’s result are easy to verify, because the function f here is
Lipschitzian, so 0 f -= {0}, and because f grows rapidly enough to make the inf-compactness
condition obvious.) We note that whenever y 6 E(x, v),

Of(x, v, V) c_ {(0, u,-u) lul _< 1},

y) [(or, 0, fl)" (o, fl) e N6 (x, y)}.Ns (x,v,

(A sharper version of the first inclusion is possible, but this one is adequate for our purposes.)
It follows that any point (, 7) in Odr(x, v) obeys

(, r/, O) (0, u, -u) + (oe, O, fl) for some F E(x, v), (or, fl) N (x, F), u I.

Thus

Odr(x, v) c_ {(or,/3) 6 Na (x, V) / E (x, v), I1 _< 1}.

For those points (x, v) where all the pairs (x, 9/) with 9/ 6 ;(x, v) lie in the set specified by
hypothesis (ii), that condition implies that every pair (or,/3) on the right side has lot[ _< R and
[fl[ _< 1, SO [(0/, fl)[2 _< (R2 + 1) g2. Thus

(4.4) {x} x E(x, v) __C_ (2-+ eI) x (V + 6) ==, Odr(x, v) K3.

This reveals the key to the result: the location of the set Z (x, v).
CLAIM. Fix (, ) in G with [- 2-[ < e, [- [ < 3. Thenfor some lZ > O, one has

E(x, v) c_ - + 6 whenever Ix -’[ </z, [v [ < (6 [- [)/3.
To prove this, suppose not: then there are sequences x " and v for which

(4.5) Iv ?l <
3

and yet E(x, v) contains some point outside +. Call this point zr. Then Izr gl > 3
and consequently

dr(x (v) I(zr g) (v
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But the semicontinuity property (i) provides a sequence , 6 F (Xk) such that y -- . For
this sequence,

(4.7) dr(xk) (Vk) < [Vk ?’k] < ]v, -’1-+-1"- Yk[.

Concatenating inequalities (4.6) and (4.7) and applying condition (4.5) yield

21 -?1 _> - I- 1- I- kl
> 31Vk --"1- I"- ?’kl,

whence Irk ’1 < Yk l. In particular, Vk -- . Taking the limit in the previous inequality
then gives 0 >_ 3 I- 1. This is a contradiction, since the right side here is positive by
construction. The claim holds.

We apply the claim first to the point (’, ’) (2., ). In view of (4.4), this shows that
Odr, is bounded by K throughout the interior of some set (+/zIt) x (+ (3/3)) but provides
no information about the size of/z > 0. To balance the need for quantitative information in
both directions, consider

sup {/z 6 (0, e) Odr(x, v) c_. KI Yx -Y + lz, v + 30I[},

where 30 is defined in the theorem statement. Note that for every (x, v) where Ix Yl <
and Iv gl < 30, one has Odr (x, v) K. Thus dr is Lipschitz continuous of rank K on
the set just described. In particular, F is Aubin continuous there, and consequently every y
with lY 2.1 < obeys

(4.8) - 6 1-’(2.) A (F + 30) F(y) + Kly 2.1g, i.e.,.

F(y) A (F + K ly 1) .
The closed-graph property of P makes it elementary to extend (4.8) to all y in the closed set

+.
Let us prove that > e0. Suppose this statement is false, i.e., < e0: then every

sufficiently large integer k admits a corresponding point (x, v) with [x 2.1 < + / k < e,
v gl < 30, but Odr (x, v) KI. By passing to a subsequence if necessary we can assume
that (x, v) converges to some point (’, ’) satisfying I"- 2.1 < < e0 and I"- -I < 30
3/6. From the strong form of (4.8) described in the previous paragraph there exists some point

" in F (’) such that I- gl < KI"- 2-1. Our claim applies to the point (’, )" it says that
the estimate 0dr K holds throughout some set of the form

I? gl)(" + ") + 3

where/x > 0 and (by choice of e0)

3

But the point (’, ’) satisfies

3 3 27

I’- ?1 _< I’- 1 + IF- 1 _< g + KI"- 1

< + K-6 18
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Now 8a > , so these two estimates show that (’, ’) lies in the interior of a set in which Odr
is bounded by K. This contradicts the stated properties of the sequence (x, v) and completes
our justification that > e0.

These arguments show that dr is Lipschitz with rank K on a set containing (2- + e0)
( + 80). The desired result now follows from Lemma 4.2.

5. Aubin continuity in Lagrangian and Hamiltonian terms. Like 4, this section is
logically independent of the others in the paper, although the similarity of the notation is
deliberate.

Given 2- in n and e > 0, write f2 2- + e and consider a Lagrangian L: f2 n --+
tO {cxz}. Assume that for every x 6 f2, the function v - L(x, v) is closed, proper, and

convex. Use L to define the multifunction E(x) epi L(x, .). Note that for every x
this multifunction has nonempty closed convex values. In this ection we characterize the
Aubin continuity of E near (2, ) in terms of conditions on L and its associated Hamiltonian
H(x, p) sup{(p, v) L(x, v) v }.

THEOREM 5.1. Fix any point (, L) in E(2-), along with scalars e > O, K > O. Write
,’ [-1, 1]for the unit ball in in . Then for any x, y 2- + e], conditions
(a)-(c) below are equivalent:

(a) E(x) A ((-6, L) + 8’)

_
E(y) + Kly xl’.

(b) For any u 6 -6 + 8 obeying L(x, u) <_ L + 8, there exists v 6 n satisfying
(i) Iv ul < Kly x[, and
(ii) L(y, v) <_ max {Z- 8, L(x, u)} + Kly xl.

(c) For any p 6 n,

(5.1) inf {OH(x,p’/O)+Slp’-pl +810-11+(p-p’, V)+(0-1)}
0>0

< H(x, p) + K (1 + IPl)lY xl.

Proof (a::>b) Suppose that (a) holds. If u 6 IK" satisfies L(x, u) < L + 8, then the point
(u, max{Z 8, L(x, u)}) lies in the left side shown in condition (a); thus

(u, max{Z 8, L(x, u)}) E(y) + Kly xl’.
In particular, there has to be a point (h, r) with max {Ihl, Irl} < Kly xl such that

(u, max{Z 8, L(x, u)}) + (h, r) E(y).

The special shape ofthe epigraph set E(y) allows us to rePlace r with the larger value K lY x
on the left side: in this case, defining v u + h gives Iv ul < K[y xl and

(v, max{Z 8, L(x, u)} + Kly xl) 6 E(y),

i.e., L(y, v) < max{L 8, L(x, u)} + Kly xl.
(b=a) Suppose that (b) holds. Let (u, r) be a vector on the left side in (a). Then

L(x, u) < r and L 8 < r < L + 8, so (b) provides a vector v such that
(i’) Iv ul _< Kly xl,
(ii’) L(y, v) <_ max {Z 8, L(x, u)} + Kly xl <_ r + Kly xl.

Thus r >_ L(y, v) Kly- xl" the special shape of the epigraph set E(y) ensures that
(u, r) c= E(y) + Kly xl, as required.

(c<=a) The right side in (a) is a nonempty, closed convex set, since it arises as the sum of
a closed convex set and a compact convex set. A separation theorem customized for epigraphs
implies that an equivalent formulation of (a) is

(5.2) ois(p,-1) < oRs(p,-1) Yp .
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We calculate

(5.3)
trRS(P,--1) CrE(y)(p,--1) if- Kly xlcrw(p,-1)

H(t, y, p) + KII(p,-1)II.lY xl,

where II(o, r)ll. Ivl + Irl is the norm on Rn IR dual to the one defining I’ there.
Basic convex analysis (Rockafellar [20, Chap. 16]) affirms that for any nonempty convex

sets C and D, with D compact, one has

O’CD cl(rc [] O’D) o"C [] O’D.

(The second equation here holds because the convex function crc [] ro is finite, and hence
continuous, on the whole space.) It follows that

rs (p,

(rx)[] cr,+,)(p,-1)
inf {rF(x)(p’, q’) + 3 (P,- 1) (p’, q’)[1 + (p p’ g)+ (-1 q’)}.

(p,,q,) *

Now ofF(x)(pf, ql) oe whenever q’ > 0, so the latter infimum can be restricted to those
points where q < 0. Furthermore, at any point (p’, q’) where q’ 0, the special features
of epigraph sets imply that the quantity ere(x)(p’, 0) + 3 (p, 1) (p’, 0)II, can be realized

as a limit of some sequence re(x)(P, q;) / (p,- 1) (p&, q;)II, with q’ < 0. Thus the
infimum can be restricted to points where q’ < 0. So we write 0 _ql > 0 and use the
observation that

cr(x)(p’, -0) Ore(x)(p’/O, -1) OH(x, if
to obtain

(5.4)
crLS (P --1) inf {OH(x, if + (]](p’- p, 0 1)11 + (p p’ )+ (0 1)}.

p EIxn *
0>0

Equations (5.3) and (5.4) reveal that condition (5.2) is equivalent to (c), whereas (5.2) is

equivalent to (a) by construction.

Clarke’s strong Lipschitz condition. In treating the generalized problem of Bolza in [4,
Chap. 4], Clarke imposes a Hamiltonian requirement called the "strong Lipschitz condition,"
which asks that for all x and y in some large enough ball,

(5.5) H(y, p) < H(x, p) + K (1 + Ipl)ly xl Yp e Rn.

Our next corollary shows that Aubin continuity of the sort utilized here is a less demand-
ing hypothesis.

COROLLARY 5.2. IfH satisfies the strong Lipschitz condition (5.5), then H satisfies each
of the equivalent conditions (a)-(c) in Theorem 5.1 for every > O.

Proof Choose p’ p, 0 in (5.1) to see that the right side of (5.1) is majorized by
the right side of (5.5). Thus (5.5) implies condition (c) of Theorem 5.1.

To see that (5.1) can be strictly weaker than (5.5), consider the example of L(x, v)
p2l[v2+x2v2] It is easy to compute thatH(x p) /(l+x2) For anye > 0, then,

2

there is a constant r > 0 such that IHx(x, P)I >_ rlPl for some x in [-e, e]. In particular,
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the strong Lipschitz condition (5.5) fails. However, for any fixed x, y in [-e, e], the choices
0 and p’ pv/1 + y2//1 -+- x2 in (5.1) give

LS(5.1) < H(x, p) + v/1 +y2
P/1 +x2

-p <_ n(x, p) + (6V/1 + x2)lPlly xl.

Thus inequality (5.1) holds for any 6 > 0, with K 3/1 + 62.
In his later treatment of the generalized problem of Bolza in [5], Clarke replaces his

"strong Lipschitz condition" with a "weak Lipschitz condition." Although the latter condition
is difficult to compare to our Aubin continuity assumption, it does hold for the simple example
introduced above.

6. Problems with explicit state constraints. In deriving Theorem 3.1 from Loewen
and Rockafellar 14], we have transcribed only the conclusions that pertain in the absence of
explicit state constraints. Such constraints are handled in 14], however, and a proof perfectly
analogous to the one given in 3 allows us to incorporate them into the main result of this
paper as well. In this section we summarize the new ideas required in this broader context and
develop the associated enlargement ofTheorem 2.1. Fuller explanations ofthe new ingredients
and ideas appear in 13, 14].

Consider the following extension ofproblem (79 in which state constraints now explicitly
enter:

minimize A[x] l(x(a), x(b)) + L(t, x(t), Jc(t)) dt

subject to x(t) X(t) Yt [a, b].

We retain hypotheses (H1)-(H5) of 2 and impose the following conditions on the state
constraint multifunction X:

(H6) Each set X(t) is closed, and the multifunction : X(t) is lower semicontinuous,
which means that for every point (to, x0) 6 20 (gph X) and for every sequence
t --+ to in [a, b], there exists a sequence x -- x0 with x 6 X(t) for all k.

For each (t, x) in O (gph X) let

(6.1)
-x(t, x) cl co{v e R "v lim v for some sequences

k-

13k e X(tk)(Xk), (tk, Xk) gphX>(t,x)}.
This closed convex cone specifies the directions in which the adjoint function p is allowed
to jump when the state constraint is active. Recall that a vector-valued measure dp is called
Nx(t, Y(t))-valued when dp can be written as v(t) dl(t) for some nonnegative measure/z on
[a, b] with dp <</ and some measurable selection v(t) Nx(t, 2(t))/-a.e.

With these additional ingredients, our main result takes the form stated below. This
version differs from the original one, Theorem 2.1, primarily in that its adjoint function p is
only ofbounded variation, not absolutely continuous as it must be when X Itn. In particular,
the endpoints p(a) and p(b) may differ from the one-sided limits p(a+) and p(b-) in cases
where the measure dp has an atom at one or both ends of the interval [a, b].

THEOREM 6.1. Assume (H1)-(H6). Suppose that the arc Y solves problem (79.) and that
the constraint qualification below is satisfied:

(CQ) the cone Nx(t, 2(t)) is pointedfor all in [a, b].
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Then either the normal conditions or the degenerate conditions below are satisfied by some

function p BV([a, b]; n) for which the singular part of the measure dp is Nx(t, 2(t))-
valued, and hence in particular is supported on the set

{t -x(t,-Y(t)) {0} {t 6 [a,b] (t,2(t)) bdygphX}.

Normal conditions:
(a) /5(t) 6 co w (w, p(t)) OL(t, Y(t), (t)) + -x(t, 2(t)) a.e. [a, b],
(b) (p(a),-p(b)) Ol(-Y(a),2(b)).
Singular conditions: Thefunction p is nonzero, and
(a) /b(t) 6 co {w (w, p(t)) OL(t, 2(t), (t))} + -x(t, -Y(t)) a.e. [a, b],
(b) (p(a),-p(b)) Ol(-Y(a),2(b)).

(In particular, if the only suchfunction p satisfying conditions (a)-(b) is identically zero,
then the normal conditions are satisfied.) In the normal conditions, assertion (a) is equivalent
to

(a’) /b(t) co{w (-w,(t)) OH(t,(t), p(t))} +-x(t,(t)) a.e.t [a,b].
Also, conditions (a) and (a’) imply thatfor almost all in [a, b],

(c) p(t) OvL(t, 2-(t), (t)) argmaxqen {(q, (t)) H(t, 2(t), q)}, and

(t) OpH(t,Y(t), p(t)) argmaxvn {(p(t), v) L(t,2(t), v)}.

7. Application: The Lipsehitz-plus-indieator ease. Many practical problems permit
a clear distinction to be drawn between the constraints and the costs. They can thus be
expressed in the form of (791) in 1. To this model we can now add the possibility of explicit
state constraints. We focus then On the problem

b

minimize AI[X] ll(x(a),x(b)) + Ll(t,x(t),Jc(t))dt

subject to (x(a), x(b)) S and k(t) 6 F(t, x(t))a.e, 6 [a, b]

along with x(t) X(t) Yt [a, b],

in which the endpoint cost function 11 and, for each t, the running cost function L (t,., .) are
assumed to be locally Lipschitz continuous. To display this problem as an instance of the
general problem’s state-constrained version (79* treated in 6, it suffices, as we have noted
above, to take 11 + qs and L L1 + kI/gph F, where qs and kIJgph F are the indicators of S
and the graph of the multifunction F.

Suitable hypotheses on ll and S, as well as L1 and F, are as follows. Again, they refer
to the constant e > 0 appearing in the definition of S2 and to two positive-valued integrable
functions and x.

(H1+) The endpoint cost function 11" I n
_

]K is locally Lipschitzian on f2a g2b;
the target set S ]n ]n is closed.

(H2+) The integrand LI" f2 IK --+ and the multifunction F: :: are /3-
measurable.

(H3+) For each fixed pair (t, x) in , the function v - La(t, x, v) is convex on n,
while the set F (t, x) is convex.

(H4+) For almost every in [a,b], the function (x, v) w- Ll(t,x, v) is finite-valued
and lower semicontinuous on f2t ]Kn, while the multifunction x:F(t, x) has closed graph.
Furthermore, one has the following epi-continuity property" for any point (’, ’) in gph F
where I’- Y(t)l < e and for any sequence xk " in f2t, there exists a sequence vk -+ "satisfying both v F(t,x) and Ll(t,x, vg) --+ Ll(t,,).

(H5+) The ratio x(t)/6(t) is essentially bounded. For almost all in [a, b], the function
(x, v) - L(t,x, v) is Lipschitz of rank to(t) on the set (2(t) + e) ((t) + 6(t)), while
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the multifunction F satisfies

Iwl to(t) (1 -+- Ipl) for all (w, p) NgphF(t,. (X, 1))

whenever Ix- 2(t)] < e, Iv- (t)] < 3(t).
This case is especially interesting because the Lipschitz continuity of 11 and L1 ensures

that the singular subgradients of and L coincide with the usual subgradients of the reduced
functions l0 qs and Lo(t, x, v) qgphF(t, x, v). This makes it possible to expand the
degenerate conditions of Theorem 6.1, which now take the form

(a) /b(t) co{v (v, p(t)) OLo(t,Y(t),-(t))} +-x(t,(t)) a.e.,
(b) (p(a), -p(b)) Olo(2(a), 2(b)) Ns (-Y(a), Y(b)).

Rockafellar’s equivalence results in [3 certainly apply to L0 as well as to L, and consequently
condition (a) has the equivalent Hamiltonian form

/b(t) co{w (-w,(t)) OHo(t,Y(t), p(t))} a.e.t [a,b],

where, ofcourse, Ho(t, x, p) := sup {(p, v) v F(t, x)} istheHamiltonian corresponding
to L0. Either of the equivalent forms of (a) implies a corresponding argmax condition
analogous to (c) in Theorem 6.1.

To summarize these developments, define the Lagrangian and Hamiltonian of index ),
for any ) >_ 0, by

L(t,x, v) := Ll(t,x, v) + klIgphF(t,x, V),

Hz(t,x, p) := sup{(p, v) )L(t,x, v) v F(t,x)}.

Then the following result holds.
THEOREM 7.1. Assume (HI+)-(H5+) and (H6). Suppose that the arc Y solves problem

(79) and that the constraint qualification (CQ) of Theorem 6.1 is satisfied. Then there exist
p B V([a, b]; n) and a constant ) {0, 1}, not both zero, such that for almost all in
[a,b],

(a) /5(t) 6 co{w (-w,-(t)) 60Hz(t,Z(t),p(t))] +-x(t,Y(t)),
(b) /)(t) co{w (w, p(t)) OLz(t,Y(t),-(t))] +-x(t,Y(t)),
(c) p(t) OLx(t,Y(t),(t))- argmaxqe, {(q, (t))- Hx(t,2(t),q)],

-(t) OpHx(t,Y(t), p(t)) argmaxvF(t,2(t) {(p(t), v) )L(t,Y(t), v)}.
Furthermore,

(d) (p(a), -p(b)) 0 (,k/1 + tPs) (2-(a), 2-(b))

_
Oll (Y(a), -(b)) + Ns (Y(a), Z(b)),

(e) the singular part of the measure dp is Nx(t, 2(t))-valued and thus is supported on
the set {t -x(t, Z(t)) {0} {t (t, -(t)) 6 bdy gphX}.

Note that when L 0, problem (7{) reproduces the unbounded differential inclusion
control problem of Loewen and Rockafellar [14]. The conclusions of Theorem 7.1 then
correspond exactly to those of 14, Thm. 4.3] but with three major improvements: they allow
for a nonzero integrand L 1, offer the alternative formulation ofthe Aubin continuity hypothesis
in (H5+), and present a sharper Hamiltonian inclusion in (a).
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BOUNDARY EXACT CONTROLLABILITY OF INTERFACE PROBLEMS
WITH SINGULARITIES I: ADDITION OF THE COEFFICIENTS OF

SINGULARITIES*

SERGE NICAISEt

Abstract. We prove the exact controllability by boundary action of hyperbolic interface problems with singu-
larities. The idea is to replace the classical space of controls with the space of their regular parts, which is augmented
with the coefficents of singularities. This leads to a classical boundary control but with an internal control, which is
a distribution with a support equal to the singular vertices.

Key words, interface problems, singularities, control
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1. Introduction. The description of various models of multiple-link flexible structures
consisting of finitely many interconnected flexible elements, such as strings, beams, plates,
shells, or combinations of them, recently has been the subject of great interest 10, 3, 12, 13].
The problem of controllability, or even stabilizability, of such structures has been considered
very little. Let us quote the works of Lagnese, Leugering, and Schmidt [25, 11, 12] for one-
dimensional (l-d) networks; the books of Lagnese, Leugering, and Schmidt [12, Chap. VII]
and J.-L. Lions [15, Chap. VI] about transmission problems excluding singularities; and
finally, the papers of Puel and Zuazua [24] and the author [20, 21] for multidimensional
structures. In all these works, either no singularity occurs or, if there are some singularities,
they are cancelled by an appropriate choice of the multiplier. In the present papers, we show
with simple examples of multilink structures--namely, the wave equation in two-dimensional
(2-d) networks (see below for a precise definition; also [4, 22])mhow to manage the presence of
singularities and the controllability problem using the Hilbert uniqueness method ofJ.-L. Lions
15]. Indeed, this method usually needs the regularity H3/2+e for some e > 0 (in our case, it
means H3/2+ (Pi) for all faces Pi), which is, in general, not satisfied for 2-d networks. For
the classical wave equation in the plane (or in the space), i.e., without transmission, different
strategies were proposed to overcome this difficulty: Grisvard [7] imposed strong geometrical
assumptions in order to adapt the multipliers method; to avoid these geometrical conditions,
Niane and Seck [18, 19] and Heibig and Moussaoui [8] proposed using classical boundary
controls whose support stays far from the singular points and adding internal controls located
in a small neighbourhood of the singular vertices. Here, for interface problems, we proposed
the following slightly different method: we replace the boundary control with its regular part
and add to the space of controls the coefficients of the singularities. This leads to a classical
boundary control but with an internal control, which is a distribution with a support equal to
the singular vertices.

The second part will propose two other methods consisting of acting by a classical bound-
ary control whose support does not contain a neighbourhood of the singular points and adding
internal controls located near these singular points (more in the spirit of 18, 8, 19], where
such a method was introduced).

The structure of this paper is as follows: In 2, we recall some notations and definitions
concerning 2-d networks. We also give the decomposition into a regular part and a singular
one for elements from the domain of the Laplace operator. Section 3 is devoted to the solution
of the wave equation and the regularity of its coefficients of the singularities. This is made

*Received by the editors February 27, 1995; accepted for publication April 12, 1995.
lnstitut des Sciences et Techniques de Valenciennes, Universit6 de Valenciennes et du Hainaut Cambrrsis,

B.P. 311, F-59304 Valenciennes cedex, France.
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by using a localization procedure and Bessel functions as Moussaoui and Sadallah 16] and
Moussaoui and Tran 17] made in the non-transmission case. In 4, we establish an identity
with multiplier, different from the usual one since a remainder depending on the coefficients
of singularities appears. This identity yields an estimate of the energy. The weak solution of
the wave equation is considered in 5, as is its interpretation in terms of partial differential
equations. Section 6 is devoted to the setting of the Hilbert uniqueness method. Finally, we
give in 7 an example of a 2-d network for which we do not have exact controllability by
exterior boundary control. As for 1-d networks 12, II.5.2], this network contains circuits.

2. Preliminaries. Let us fix f2, a 2-d polygonal topological network (for short, a 2-d
network; see [4, 22] for more details) which is a subset of Rn (n fixed > 2) formed by a finite
union of disjoint nonempty subsets Pi, such that

(i) each Pi is a simply connected open subset of a plane l"I of Rn, Pi being a polygonal
domain of I-li;

(ii) UizPi is connected;
(iii) for all i, j Z, j, Pi N Pj either is empty or is a common vertex or is a whole

common side.
For all 2, we can fix once and for all a system of Cartesian coordinates in the plane

Hi. We assume that the boundary of Pi is the union of a finite number of linear segments
I"ij, j 1 Ni }, numbered according to the trigonometric orientation. Sij denotes the
common vertex between Fij and Iij+l, and O)ij is the interior angle at Sij between I"ij and
I"ij+l. NOW, Vij denotes the unitary outer normal vector on I"ij and rij is the unitary tangent
vector to I"ij SO that (Pij, ij) is a direct orthonormal basis.

The vertices of f2 will denote the vertices of all Pi ’s, and in the same way, the edges will be
the sides of all Pi ’s. The faces will be the Pi’s. We shall denote by .A (resp., S) the set of edges
(resp., vertices) of f2. For a fixed S S, 2(S) will denote the set of adjacent faces to S, i.e.,
2"(S) = {i " S Pi}. Similarly, t(S) will be the set of adjacent edges to S, i.e., 4(S)
{A 4 S A}. Finally, for A A, 2"a will be the set of adjacent faces to A, i.e., 23
{i 2" 3j 1,..., Ni such that Fij A}; moreover, for any Za, (Vi, ri) will denote
(vij, rij) for the unique j Ni such that I-’ij A, when no confusion is possible.

Later, ?’ij will denote on Pi the trace operator on the edge I"ij. For a function u defined
on f2, u will be the restriction of u on the face Pi"

ui Pi C’x i- u(x).

For the sake of simplicity, we shall write

fudx-gfp,Ui(x)dx..
We now recall the definition of Sobolev spaces on
DEFINITION 2.1. Let s be a nonnegative real number. Then

(2.1) 7-/(2) H Hs(Pi)’

where Hs(Pi) is the usual Sobolev space on Pi [6] with norm denoted by I]" I]s,P. 7-ls(2) is a
Hilbert spacefor the product norm:

(2.2) Ilull,,a [luill2,,pi

In thefollowing discussion, for the sake ofsimplicity, we shall write Hfor L2() "= 7-/(f2).
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Let us fix a partition of the set of edges .A into two subsets ./V" and 79. (79 will be the
part of the "boundary" where we shall consider Dirichlet boundary conditions, while A/" will
be the part where we shall consider Neumann or transmission conditions.) For convenience,
we suppose that 79 is not empty. We also fix a sequence of positive real numbers {oti }iz and
denote by ot the function defined on f2 by O (X) O/i for all x Pi.

We consider the following boundary value problem: given f 6 L2(f2), let u be a solution
of

--/Ui fi in Pi i Z,(2.3)
(2.4)
(2.5) ’ijui ?’klU when I"ij

Oui
(2.6) Oli ?’ij 0 on A when A 6 A/’.

Z:qj :Fij=A
0 Pij

/ijUi 0 on I"ij V I"ij 79,

When f2 is a polygon of the plane, the union of several polygons Pi, problem (2.3)-
(2.6) is called a transmission problem, which was studied by Kellogg [9], Lemrabet [14], and
Dobrowolski [5]. The extension to 2-d networks was considered in [4, 22].

The problem (2.3)-(2.6) admits the next variational formulation, (2.7): introduce the
Hilbert space

V {u 6 1(f2) fulfilling (2.4) and (2.5)}

and the continuous bilinear form on V:

a(u,v)=izotifpiVUi.Vvidx. Vu, v g.

Therefore, we shall say that u is a weak solution of problem (2.3)-(2.6) if u 6 V satisfies

(2.7) a(u, v) fa fv dx Yv 6 V.

Since 79 is nonempty, the form a is V-coercive. Consequently, the existence and uniqueness
of the solution of (2.7) follow from the Lax-Milgram lemma. Moreover, since V is dense
and compactly imbedded into L2(f2) and the form a is symmetric, it also induces a positive
self-adjoint operator A from L2(g2) into L2(f2), with a compact inverse, defined by

D(A) {u V qf H a(u, v) f. fv dx, v V},
(2.8) au f Yu D(A).

According to [9, 14, 22], u D(A) does not have, in general, the optimal regularity
7-/2(2) and admits a decomposition into a regular part and a singular part. To describe this
decomposition, we recall the following notation (see [22, 1.6]): For a fixed vertex S 6 S of

and any 6 2-(S), let us denote by coi (S) the interior opening of Pi at S. We now introduce
polar coordinates (ri, Oi) on l"I centred at S such that the half-lines Oi 0 and Oi coi (S)
contain the two edges of Pi of extremity S. The 1-d network (S) associated with S is then
defined by

(S) U {(cos0i, sin0i) Hi 0 < Oi < coi(S)}.
6Z(S)
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Roughly speaking, we can identify the nodes of7(S) with the edges of f2 adjacent to S. We are
now able to introduce the Laplace-Beltrami operator As on7(S)" D(A s) (ui)iz(s u
H2(]0, coi (S)[) satisfying (2.9), (2.10) and (2.11) below}, and for any u (ui)iz(s D(As),
we set Asu (-uit)iz(s)

(2.9) ui(A) 0 YA 4(S) f3 79,

(2.10) ui(A) uj(A) YA 4(S), i, j ZA,
Oui

(2.11) ci-ff77,. (a) 0 Ya 6 ,A(S) N’.
iZa

t v

According to the results of 1.6 of [22], A s is a nonnegative self-adjoint operator on
L2(7".(S)) (equipped with the inner product

(u, v)(s), "= Ol fo
wi(S)

6Z(S)

ui(Oi)vi(Oi) dOi)

with a discrete set of eigenvalues {,n}nN* repeated according to their multiplicity (for conve-
nience, S,n is always supposed to be nonnegative) and of associated eigenvectors {q)S’n}nN,
satisfying the orthogonality conditions

(2.12) (q)S,n, q)S,m)7(S),o (nm ’On, m N*.

Theorem 2.27 of [22] yields the following theorem.
THEOREM 2.2. Let u D(A). Then it admits the decomposition

sS,n(2.13) u uR + Z Z cs,n
S6S O<Zs, < /2

whereul 7-[3/2+e(f2),fore > Osmallenough, istheregularpartofu; sS’n -" OsrJkSnq3 (0)
are the so-called singularfunctions ofthe operator A; Os is a cutofffunction such that rls 1
(resp., O) near S (resp., near the other vertices); andfinally Cs,n C is the coefficient of the
singularity Ss’n, which admits the expression

(2.14) CS,n fa Au. KS’n dx

for somefunction Ks’n L2(f2), which behaves like r -’s,n near S.
In the following discussion, for the sake of brevity, we shall write ,S,n for

ZS, O<).S,n<_l/2"
3. The wave equation. Since H, V, and the form a fulfill the hypotheses of Remark 4.4

of [20], Theorems 4.1-4.3 of [20] may be applied to A. In particular, we have the following
theorem.

THEOREM 3.1. Let 990 D(AS), g)l D(As-I and f L(O, T; D(AS-/2)), with
s > 1/2. Then the problem

(3.1)

q)"(t) + A99(t) f(t),
o(0) oo,

q9 (0)

[0, T],
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has a unique solution go C([0, T], D(AS)) N C([0, T], D(AS-1/2)) fulfilling

(3.2) IIgoIIC([O,T],D(As)) + 1I(tgIICI([O,T],D(As-1/2))
<_ C{llOOIIoca) / IIollloca’-’/=) /

for some constant C > 0 independent of go.
In the particular case s 1, the solution go satisfies go 6 C([0, T], D(A)); consequently, by

Theorem 2.2, go(t) admits the decomposition (2.13) for all t, with coefficients Cs,n (t) depending
on t. Our next aim is to give regularity results for these coefficients Cs,n (t). Following 1 6, 17],
we first work in a neighbourhood of a vertex and use an explicit basis of the eigenfunctions of
the Laplace operator. More precisely, for a fixed vertex S 6 S, let us introduce the 2-d network

where "Si {(ricosOi,ri sin0i) 6 H :0 < ri < 1, 0 < Oi < o)i(S)}. Remark that g2s
coincides with f2 in a neighbourhood of S. Similarly, we shall denote by FSij the segment
{(ricosrli,risinTi q 1-I 0 < ri < 1}, with r]i 0 or o)i(S), which coincides with
Fij near S. As before, the Laplace operator As on f2s corresponds to the following data:
Vs = {u 6 7-(l(fs) fulfilling (2.4), (2.5) on Fsij and ui(1, Oi) 0, for a.e. Oi 6]0, wi(S)[,
and all 6 27(S)} and

as(u, v) Ol I VUiVOi dx
EZ S) d g2si

Vu, ve Vs.

Using the method of separation of variables, one can prove the following lemma.
LEMMA 3.2. For all n, k N*, Xn,k := (jXs.,;k)2 is an eigenvalue ofa- As (obviously us

is thefunction defined on f2s by oti(x) ol for all x f2si) ofassociated eigenvector

(3.3) Wn’k Oln,kJXs,n (jXs,.;kr)go s’n (0),

where Jr (s) is the Besselfunction ofindex 9/and j. is its kth positive zero. The real number
Otn,k is a normalizationfactor chosen so that

(3.4) n,k(x)12 dx 1.E OtilWi
EZ(S) si

Moreover [-Wn’k
n,kN* is an orthonormal basis ofL2(S) equippedwith the innerproduct

(’, ") s, defined by

(U, V) S, E Oli f Ui(X)I)i(X) dx.
6z(s) si

Since Jr(s) s nears 0, we may see that Wn’k . -/2("S) iffXS,n > 1. Consequently,
only the eigenvectors wn’k with 0 < XS,n < 1 will arise in the computation of the coefficient
cs,n in the decomposition (2.13). As in [16, 17], we need the following technical step.

LEMMA 3.3. IfO < XS,n < 1, there exist C, C2 > 0 (depending on n but not on k) such
that

(3.5)

(3.6)

C1k2 < ,n,k < C2k2,
C/ < Iotn,kl < C2/ Vk e N*.
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Proof. Equation (3.5) is a direct consequence of MacMahon formula [1, p. 371], which
says that

(3.7) j;k k + - rc + Q)

for a fixed y. The estimates (3.6) follow from simple properties of Bessel functions and
remarking that (3.4) is equivalent to

ICn,kl 2 IJxs,, (jXs,,;kr)l 2 rdr 1.

We are now able to clarify the regularity of the eigenvectors Wn’k.
PROPOSITION 3.4. For all n N*, we have

(3.8) sS,nWn’k yOnR’k -[- an,k

where w’ 7-[3/2+e(f2s) for some e > 0; an, 0 ifkS, > 1/2 0r if ,ks,n O. Otherwise
there exist C1, C2 > 0 (depending on n but not on k) such that

(3.9)
S,n S,n

NCl(Xn,k) -T-+1/4 la,l _< C2(Xn,k) -T’+1/4 Yk

Proof As Wn’k VS is solution of Aston’k OlSn,k wn’k L2(fas), Theorem 2.2 implies

(3.10) llAn,k n,k sS,ml/oR At- an,k,m
O<S,m<I/2

where w’ 6 7-/3/2+ (fas) for e > 0 small enough. Moreover, with the help of Theorem 2.27
of [22], we can show that (see also Theorem 2.2)

an,k,m --)Vn,k Oti w]’k g7’m dx,
6z(s) si

where KS’m 1._.L_(r-Zs,m rZS,m)(pS,m Using the expression of Wn’k and the orthogonality)S,m
properties (2.12) of the pS’m’s, we arrive at

Oln,k
(3.11) an,k,m --nm ]

Jo
Jzs,. (Jzs,.;kr)(r-zs’m rZS’m)rdr"

This leads to (3.8). The asymptotic behaviour of a,, comes from (3.11), the properties of the
Bessel functions, and Lemma 3.3. [3

Let us return to the wave equation (3.1).
THEOREM 3.5. Let goo D(A), pl V, and f L2(0, T; V). IfT > 2, then the solution

p C([0, T], D(A)) q C([0, T], V) of(3.1) admits the decomposition

(3.12) q9 R 1_ CS,n
S,n

where PR C([0, T], 7-/3/2+(f2)) fq Hi(0, T; V) for some e > 0 and CS,n Hs(O, T), for
any s < )s,, with norms depending continuously on IIo011z(a) / I1o IIv / Ilfll,=(0,";v).
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Proof. Multiplying q) by the cutoff function s, we are reduced to the case f2 f2s.
Writing 0 in the basis {wn’k}n,keN. and using (3.8), we arrive at (3.12) with

(3.13) CS’n(t)
keN*

an,k { COS(tx/n,k)((/90, wn’k)s,u

sin(tVn,)+ (o, w’)s,

sin((t s)n,)+
I

(f (s) w’) },s, ds
I

where 0R is the remainder. To prove the inclusion cs, H (0, T), we use Ingham’s inequal-
ities [2] in each of the three series in the right-hand side of (3.13). Indeed applying Theorem
2.1 of [2] to

.s/2
An,kan,k COS(txn,k)(q)0, wn’k)s,,

keN*

we get the existence of a constant C > 0 such that

T

[w(t)l 2 dt < CIlo0112D(A)

if T > 2 because (3.7) yields assumption (2.1) of [2] with ?, r. Other terms are treated
similarly. [3

In the above theorem, the assumption f 6 L2(0, T; V) is not satisfactory for our next
applications. We prefer f 6 L(0, T; V), which is unfortunately unavailable; therefore, we
replace it with f 6 L 1(0, T; D(A)).

THEOREM 3.6. Let p C([0, T], D(A3/2)) f) C([0, T], D(A)) be the solution of(3.1)
with q)o 91 = 0 and f LI(O, T; D(A)). Then it admits the decomposition (3.12), where
oR C ([0, T], 3/2+e (f2)) for some e > 0 and Cs, C ([0, T]), with norms depending
continuously on f I[L(O,T;D(A)).

Proof Since D(A3/2) D(A), q)(t) clearly has the expansion (3.12). The conclu-
sion follows from the expression (2.14) of cs,,(t), the regularity q) 6 C([0, T], D(A)), and
Lebesgue’s bounded convergence theorem. [3

4. Estimate of the energy. As usual [15, 7], the estimate of the energy is based on an
identity with multiplier, which, in our case, takes a slightly different form since we multiply
the equation 99" + Ao 0 by rn Vgg instead of rn V0. (Due to the singular behaviour of
qg, the factor rn Vq) is too singular.) This will be made in several technical steps.

It is quite natural that the boundary control is applied only on the exterior boundary of the
domain. This means that we have to distinguish between "interior" and "exterior" Neumann
edges" more precisely, we set

Jint A 6 N" #-A _> 2},

dext {A (-] #’A 1 }.

Dirichlet edges, on the contrary, may always be seen as exterior edges. For A 6 .]fext k3 ), we
then denote by A the unique element of ZA.

For fixed points xoi I7i, Z, we define the function rn on f2 by mi (x) x Xoi.
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From now on, we suppose that the following geometrical conditions are satisfied (see the
end of this section for some examples):

(H1) iGZA mi vi 0 on A YA 6 int.
(H2) mi ri mj ri on A ’v’i, j 6 2a, A 6 A/int.
(H3) isZA imi vi 0 on A VA 6 nt.
(H4) For all A 6 nt and any w R#zA such that iZA i Wi 0, We have

aimi vi(wi)2 0 on A.
iZA

LEMMA 4.1. Let 3/2+() D(A) for some e > O. Then the following inequali
holds:

f. (OiA)
2

(4.1) Am. Vdx - iamia .Via OVia
da

iAmiA "ViA (OiA
2

+ da.
Aext

Proof. The regularity of allows us to apply Green’s foula on each Pi, which leads to
(see Lemma 3.3 of [7])

fei { 1 12imi Vi dx
=

+ mi. Vi da
i

0 vij

Multiplying this identity by i and summing on 6 Z, we get

imi vii IVi 12 d(4.2) Am. Vpdx
ij

i mi + mi ij da
ij

Using the condition (H2) and the fact that satisfies (2.4), (2.5), and (2.6), we show that

Ni Oi Oi
j=l

Consequently, the right-hand side of (4.2) is reduced to

The terms coesponding to A Ut are those of the right-hand side of (4.1) due to (2.4)
and (2.6). For A nt, since satisfies (2.6), assumptions (H3) and (H4) yield

{ (i)2 (Oi 2]imi’vi-- + daZO.
i6Za

This proves (4.1). [3
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The inequality (4.1) can be applied to the solution of the wave equation in the follow-
ing way.

PROPOSITION4.2. Let o C([0, T], D(A))f)CI ([o, T], V)f)C2([0, T], H)beasolution
of(3.1) with f =0. Then setting Q s2 x (O, T), EA A (O, T) for alI A .A, we have

fo. 1avf (OqgRia)
2

(4.3) (DtOR)2 dxdt <_ - Oliamia l)ia
])ia

dcrdt
A

l .(OqgRiA)
2

2
y OliAmiA 1)iA ’7iA dcrdt

AE./X/’ext a

"1- miA ])iA ).OtqgRiA. 2 dcrdt + R,
AE.//’ext A

where qgR is the regularpart of9 appearing in its decomposition (3.12) and R is a remainder
given by

(4.4) R -fo Otqpm. V(tgR dx 1

+ Zf[Dtcs,n{2Ss’n + m vsS’n}DtPl Cs,nASS’nm V91]dxdt.
S,n aQ

Proof. For such a solution o, an integration by parts with respect to the variable in (0, T)
and the expansion (3.12) of 9 lead to

(4.5) fQD2tgm’Vodxdt=fDtom’Vodx I
Dtq)m. VDttl3R dxdt Dtq)m VtDR dx 10

fQ dxdt fo sS’nDtq)Rm. VDtqgR Dtcs,n m Dtq)R dxdt.
S,n

The second term of this right-hand side is transformed, using Green’s formula in Pi for all
6 2" (allowed thanks to Theorem 3.5). This leads to

fQ Dt99Rm" VDtgoR dxdt fQ(Dtqglc)2dxdt
2r- - (OtqgR Z mi "l)i do’dt.

A iZA

Since q9 satisfies (2.4) and taking into account assumption (H1), we arrive at

(4.6) fQ DtOlcm VDtoR dxdt fQ(Dto)2dxdt
"q’- ad’extly fSa (DtqgR)2mia viaddt"

The third term of the fight-hand side of (4.5) is treated similarly; i.e., we first apply Green’s
formula on each Pi, use the fact that Ss,n and 9R satisfy (2.5), and take into account hypothesis
(HI). This yields

(4.7) f Dtcs,nSS’nm VDt99R dxdt -RS,n
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where we set

R I Ss’n VSs’n
S,n Dtcs,n{2 q- m }DtPR dxdt.

Je
The two identities (4.6) and (4.7) into (4.5) give

(4.8)

Using the expansion (3.12) of p, we may write

Apm VpR dxdt fQ ApRm VtDR dxdt + R2
S,n

S,n

where R2 SS’n
S,n fQ Cs,nA m VpR dxdt. The application of Lemma 4.1 to PR yields

(4.9)

The sum of (4.8) and (4.9) is the inequality (4.3).
Let us now set

79+ {A 79" miA PiA > 0 on A},

.N’e+xt (resp., .A/’t) {A 6 .Afxt miA PiA > 0 (resp., < 0) on A}.

For any {P0, P1} 6 D(A) V, let p C([0, T], D(A)) f) cl([0, T], V) be the solution
of (3.1) with f 0, which admits the decomposition (3.12), and define

fE ( OgRiA )
2

(4.10) II1{o0, qgl}1112 Z O’P’iA- dtrdt
mE’)+ A

+ f]A(O’’R!A)2dO’at
aJV’x

Oia

"[- fz (Dtqgia)2 dadt + [IS,nII21,(O,T).
a.]f+xt a S,n

We are now ready to establish the main result of this section.
PROPOSITION4.3. Letp C([0, T], D(A))fqCI([o, T], V)f3C2([0, T], H)beasolution

of(3.1) with f O. Then there exists a minimal time To > 0 such thatfor all T > To, there
exists a constant C > 0 (depending on T but not on Po, tpl) such that

(4.11) (T- To)Eo < fill{go0, P}lll2,
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where Eo denotes the energy ofp at time O, namely,

E0 {llq9111 + a(tpo, po)}.

Proof According to Theorem 4.3, Remark 4.4, and identity (4.24) of [20], we may write

(4.12) IDtcpl2dxdt rEo + - Dtoq9 dx I
Using the expansion (3.12) of p, (4.12) becomes

ro_- odx I
+ Cl fQ lDtORledxdt + Cl fQ lDtcs,nSS’nl2dxdt,

S,n

where C > 0 depends only on the number of eigenvalues )S,n in ]0, 1/2]. In view of the
inequality (4.3), it remains to be shown that

(4.13) R
2

Dtqgq9 dx IS< C{lll{o0, o}1112 / go}.

The estimate of the term fn Dtqgq9 dx I with respect to Eo is classical (see [15, 7]) and is
thus omitted. Let us proceed to the estimation of R. Applying Cauchy-Schwarz’s inequality,
the first term is estimated as follows:

Dtpm. VqgR dx I < C IDttp(t)12dx IVqgR(t)12dx
t=O,T

< -0 ID,()la + I<,.()I lyre’ la
Accordingly> the continuous imbedding H (0, T) (7 ([0, 7"]) (Sobolev imbedding theorem)
and the usual estimate

(4.14) ab< =(ae+b2) Ya, bR
Z

lead to

Dtcpm. VqgR dx [ C{Eo+Ilcs,II,<o,}s,
<_ C{Eo + II1{Oo, qgl}lll2},

Let us estimate R The treatment of Re is similar and then omitted. Cauchy-S,n" S,n
Schwarz’s inequality and the expansion (3.12) of o yield
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due to the conservation of energy. Applying the estimate (4.14) with a Ilcs,nlll,(O,T)T 1/2

and b "-’0 one gets

S,n[ C (1 + T) IlCr,mll21,(0,o + E0
T,m

This completes the proof, fq

Let us now fix T > To such that the inequality (4.1 1) holds. Then the application

D(A) x V --+ R+" {go0, go1}-- 111{090, opt}Ill

is a norm stronger than the norm induced by V x H, due to Proposition 4.3. As in 15, 7, 20],
we define F as the closure of D(A) x V for this new norm (obviously, F depends on the
points xoi and T), and we have the algebraic and topological inclusions

(4.15) D(A) x V ---> F ---> V H.

For the inhomogeneous wave equation (3.1) (i.e., f not necessarily equal to 0), we can
now state the following proposition.

PROPOSITION 4.4. Let {go0, go1} F and f LI(0, T; D(A)). Then the unique solution
go of (3.1) admits the decomposition (3.12) andfulfills

(4.16)
OgoRiA L2(]A) ’v’A 6 79+,
OPiA

(4.17)

(4.18)

(4.19)

OgoRiA
G L2(]A) VA G "]ft’OT, a

Otgoia t2(’]a) Ym JV’e+xt
Cs,n 6 Hl(O, T) $6,9, 0<)S,n < 1/2.

Moreover, there exists a constant C > 0 (independent of {go0, go1 and f) such that

(OgoRiA 2 OgoRiA 2

(4.20) A+ f’A\ ’’i’ ) d.dt/ AMe_xtf,A (O’Ci’) do’dr

f )2 2

A’+xt A S,n

C{lll{go0, Ol}lll + IlfllL,(O,r;O(A))}.

Proof. We argue as in Theorem 5.6 of [7]" Using the uniqueness of the solution of (3.1)
and the linearity of the wave equation, we may write go go() + go(2), where 09 (1) (resp., go(2))
corresponds to the Cauchy data {go0, gol (resp., the right-hand side f). The conclusion for
go(l) follows from the definition of the space F. On the other hand, Theorem 3.6 and the usual
trace theorems yield the desired properties of go(2). [-]

We finish this section by giving two examples of 2-d networks for which the conditions
(H1)-(H4) are satisfied.

Example 1. First we recall the example considered in [23]. Let 2 P1 (-J P2 be a
bounded polygonal domain of R2, divided into two connected parts, P1 and P2, separated
by a piecewise polygonal line I (one can readily check that f2 is then a 2-d network). If
ml (x) m2(x) x x0 for some x0 R2, one can check that the conditions (H1)-(H4) are
reduced to

ml vl (or1 0/2) >_. 0 on I.
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This condition means that m 1)1 has to keep the same sign as (0/1 0/2) along I. Examples
of domains P1, P2 for which this condition is fulfilled are then easily built.

Example 2. Let f2 U5i=1Pi be included in R3, where the Pi’s are defined by

Pi {(x,y,O):O<y<l, i-2<x<i-1}, i=1,2,3,

Pi {(i-4, y,z):O<y<l, 0<z< 1}, =4,5.

Take X0 (x0, y0, 0) E R3 and mi(x) projni (x X0) projrli means the orthogonal
projection on the plane Hi). If0/3 __< 0/2 < 0/1, then one can check that (H1)-(H4) are satisfied
if x0 <_ 0.

5. Weak solutions of the wave equation. We transpose Proposition 4.4 to get the
next theorem.

THEOREM 5.1. For all uo H, Ul V’, Wa L2(EA), A 79+ t3 ./fe+xt (.3 .Afet, and
all Ws,n H(O, T), S S,O < )S,n <_ 1/2, there exist unique u L(O, T; D(A)’),
{1, o} 6 F’, which are solutions of

(5.1) (u(t), f(t))D(A),-D(A)dt + ({l, 0}, {90,--91})F’-F

09RiA(Ul, 9(O))v’-v (U0, 9t(O))H’-H llOA- dcrdt
AE)+ a OPia

fE O@RiA dcrdt Y’- fz- llOa 110a Otgim dtrdt
AE.Af A a.]f+xt a

{ws,cs, +w’ }drS,nCS,n

for all f LI(0, T; D(A)), {90,-91} F, where 9 9R + ,S,n CS,nsS’n is the unique
solution of

9 E C([0, T], V) N C([0, T], H),
9"(t) + A9(t) f (t), [0, T],

9(T) 90, 9’(T) 91.

The interpretation of (5.1) in terms of partial differential equations is delicate and will be
given for more regular data. First we need a density result.

LEMMA 5.2. Let us denote

K {w C([0, T]) w’"(0) w’(0) w’(T) 0 and w"(0) w(0)}.

Then K is dense in H (0, T).
Proof Let u 6 K+/-. Then it fulfills

u" u 0 in 79’ (0, T).

Consequently, u C([0, T]) and is then a linear combination of e and e-t. Since the
mapping

K R2: w (w(0), w(T))

is onto, we conclude that u 0. [3
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The next trace lifting result is easily proved by using the simple geometry of 2 and is left
to the reader.

LEMMA 5.3. Let WA - 79(EA), A 79+ U e+xt U Je-xt" Then there exists v
79(0, T, HidZ C(Pi)) fulfilling (2.5) and (2.6)for all A Jint, and

Oti-AlWa on A YA 79+,
(5.3) ViA

O on A A 79 \ 79+.

Oli--a 10tlloa on a YA ./re+xt
(5.4) OUia 011)a "/fet,

OPiA OliAl o-iA on A VA 6

Oon a Ya G Jext \ (jrex+t I--JJfet).

THEOREM 5.4. Let u 6 L(O, T; D(A)’), {, o} 6 F’ be the unique solutions of(5.1)
with data uo G V, Ul G H, Wa G 79(A), a 6 79+ U je+xt Jxt, and Ws,n 6 K, S 6 S, 0 <
)S,n < 1/2. Then u 6 C([0, T], H) satisfies (5.3) and (5.5)-(5.7):

(5.5)

(5.6)
(5.7)

I!
U Oli/kU 0 in 79’(Pi x (0, T))

U (0) U0, Ut(O) U 1,

u(T) Po, u’(T) lr

i

Proof. We proceed as in Theorem 5.3 of [20] with the necessary adaptations. Let us fix
CV 79(0, T, 1--Iiz (Pi)) obtained in Lemma 5.3 and set

fl(5.8) I) S,n 113S,n UOS,n

fA OsS’n fA Ss’nZ WA do’- Z Wa O’gia do’.
A79+ Via A .]kl’x

Since the Wa’S are regular and Ws,n C([0, T]), S,n also belongs to C([0, T]). Let
KS’n L2() be the dual singular function defined in [22] and recalled in Theorem 2.2, and
define

" Z"" Kis’n i Z.f V Ol AV .qt_ 110 S,n
S,n

Since f 6 L2(0, T; H), Lemma 1.3.4 of [15] guarantees the existence of a unique solution
C([0, T], V) f) C ([0, T], H) H2(0, T; W) of

(ap"(t), w) + a((t), w)

(5.9) -f f(t)wdx, a.e. 6 [0, T], Yw 6 V,
7(0) uo, ’(0) u.

Let us now show that

Ks,n(5.10) u lit .qt_ 13 2t- 13s,n
S,n

is the unique solution of (5.1) when aP0 u(T), 1 u’(T). Note that the inclusion ws,n K
leads to the initial conditions

u(O) 7(o) uo, u’(O) 7’(o) u,

which is (5.6).
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From the density of 79(0, T; D(A3/2)) into LI(0, T; D(A)), it suffices to check (5.1) for
go E C([0, T], D(A2)) 71 C1([0, T], D(A3/2)) 71 C2([0, T], D(A)). Since E H2(0, T; V’),
the integrations by parts over (0, T) are allowed. Taking into account the initial conditions
satisfied by go and u, we get

(5.11) (u(t), go"(t) + Ago(t))dt (u(T), go1) + (u’(T), goo)

(Ul, go(O)) (Uo, got(O))

+ {(u"(t), go(t)) + (u(t), Ago(t))D(A),-D(A)}dt.

Let us now transform the term (u(t), Ago(t))D(A)’-D(A)" from the expansion (5.10) of u, we
may write

(5.12) (u, Ago)D(A),_D(A) a(7t, go) + .lo vAgo dx
KS’n+ VS,n Ago dx.

S,n

Since v vanishes in a neighbourhood of the vertices, Green’s formula and Lemma 5.3 yield

fnvagodx:fAvgodx+ LDtwagoiada
a.A[’+xt

-Jl" A OWA Ogoia
---’giA goiAdO" L mA

OPiAA.A/’x A 79+

Integrating this identity with respect to and applying some integrations by parts on EA, we
arrive at

(5.13) fQVAgodxdt=fQAVgodxdt- fr waDtgoiadCrdl
a./’+xt A

fr WaOgoiadtrdt- y fz waOgoiadcrdt.
AE./xt

O’g
A O P Aa AED+ A

Moreover, Theorem 2.2 implies that

(5.14) f AgoKS’ndx

when go admits the decomposition (3.12).
Taking into account (5.12)-(5.14), the identity (5.11) becomes

(5.15) (u(t), go" + Ago)dt (u(T), go1) + (u’(T), goo)

(Ul, go(O)) (blO, got(O)) Z l taDtgoiadtydt
a+xt a SA

Z llAddt- Z ll)A

A.M’x A
O 7ia A79+ A

O l)ia_, Os,,(t)Cs,n(t) dr.
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This proves that u is the solution of (5.1) with u(T) aPo, u’(T) 1/t if we show that

This last identity is proved using the expansion (3.12) of go, an integration by parts in time
(taking into account the boundary conditions WS,n(O Ws,n(T 0, due to the inclusion
ws, K) and the expression (5.8) of tb S,n.

Let us finally note that the boundary conditions (5.3) come from (5.10); the boundary
conditions (5.3) which are fulfilled by v and the fact that and Ks,n both satisfy (2.4).

Roughly speaking, introduced in the above proof satisfies (2.6); therefore, one can say
that u satisfies (2.6) for all A 6 Nint and (5.4) in a weak sense.

Up to now, the functions ws, appear neither in the partial differential equation (5.5) nor
in the boundary conditions (5.3) and (5.4) fulfilled by u. This is because we were working in
the setting of 79’ (Pi x (0, T)).

DEFINITION 5.5. Let D := {go 1 79(Rn)} andfor all S S, 0 < ;S,n < 1/2,
introduce the distribution T S,n in D’ by

(5.16) T s’n 99) otK S’ /go dx Z Ot K s’ da

oKS’niA+ iA OViAAD

Note that Ts’ is well defined due to the decomposition (2.73) in [22] of Ks’

LEMMA 5.6. For all S S, 0 < S,n < 1/2, we have

(5.17) (T s’n, go) cs,n

for any go D(A), where cs, is the coefficient of the singularity Ss’ of go appearing in its
decomposition (2.13).

The support of Ts’ is equal to S in the sense thatfor any go D such that 99 =- 0 in a
neighbourhood of S, we have

(5.18) (T s’, go) O.

Proof. Since go 6 D(A) satisfies (2.4), (2.5), (2.6), and goiA (S) 0, for all S 6 such
that A 6 79, we get

(T S,n go) fs2 tKs’n/kgo dx cs,

due to Theorem 2.2.
On the other hand, for any go 6 D such that go 0 on B(S, 6) C) f2 for some 8 > 0,

applying Green’s formula on Pi \ B(S, 8/2) for all 6 Z, one gets (5.18). S
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According to Lemma 5.6, the identity (5.15) implies that

(5.19)

This means that u satisfies

u" + Au S,n TS’n in C([0, T], D)’
S,n

if we admit that t/satisfies (5.3) and (5.4).
Let us remark that (5.20) covers (5.5) since

(T s’n, o) 0 o H 79(Pi x (0, T)).
iZ

All these considerations lead us to call the solution u of (5.1) the weak solution of (5.20),
(5.6), (5.3), and (5.4). In order to give a meaning to the final conditions (5.7), we need the
next regularity result.

THEOREM 5.7. Under the assumption of Theorem 5.1, let u, {1, 0} be the solutions
of(5.1). Then u C([0, T], D(Af) fq C1([0, T], D(A3/2)’) and u satisfies the final condi-
tions (5.7).

Proof. We argue as at the end of paragraph 5 of [20]: first we reduce the wave equation
to the first-order equation

r+B =g,
(5.)

(0) 0,

where B is an operator from 7-/= V x H into itself defined by D(B) D(A) x V and for all
(o, ) D(B), B (-, Ao). Using Lemma 5.4 of [20] and Theorems 3.5 and 3.6,

we can show that if (o, ) C([0, T], 7-/) is the unique solution of (5.21) with 0 F
and g a LI(0, T; D(A3/) x D(A)), then o admits the decomposition (3.12) and satisfies

C{lll0111 + IIgIIL(O,T;D(A3/2)D(A))}.

dcrdt

By transposition and density, we arrive at the conclusion.
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6. The Hilbert uniqueness method. The application of the Hilbert uniqueness method
of J.-L. Lions 15] is now standard: first, by Proposition 4.4, for {qgo, (/91 E F, there exists
a unique solution o E C([0, T], V) C1([0, T], H) of (3.1) with f 0 satisfying (4.20).
Second, consider 7t L(O, T, D(A)’), {Xl, -Xo} F’, the unique solutions of

(6.1) ((t), g(t))dt ({Xl,-go}, {0o, 01})

f ORiaOORiaddt--f O@RimOORimdffdt
A+ A UiA A a

OtiA O, OiA dffdt (Cs,nds,n + C’s,nds,n) dt
at a S,n

for all g 6 LI(0, T; D(A)), {r/o, r/} 6 F, where r/ r/R + S,n ds,n SS’n is the unique
solution of

(6.2)
7 C([0, T], V) fq CI([0, T], H),
rl"(t) + Ao(t) g(t), [0, T],
0(0) 0o, 0’(0) 01.

Its existence comes from Theorem 5.1, inverting the order of time; moreover, Theorem 5.7
gives a meaning to the initial conditions

,t/,,(o) xo, ’(0) x.

Accordingly, the next operator,

A F --+ F’: {0o, p} -- {X1,-Xo},

is well defined and is an isomorphism, because the identity (6.1) with r/= q9 yields

(.A{gOo, go}, {goo, go}) II1{o, qg.}lll 2 V{goo, qg.} , F.

This leads to the main result of this paper.
THEOREM 6.1. For all uo H, u V’, there exist WA

A/’e-xt, and Ws,n Hi(0, T), S 6 ,3, 0 < XS,n < 1/2 such that the weak solution u
C([0, T], D(A)’) f3 C([0, T], D(A3/2)’) of the wave equation (6.3) (in the sense of (5.1))
satisfies u(T) u’(T) O:

(6.3)

u"(t) + Au(t) -S,n S,n(t) TS’n, 6 [0, T],

u (0) uo, u’(0) u ,
OIAlWA on A YA 79+,

UiA
0 on A VA 79 \ 79+,

Oli--a DtWA on A YA e .Af’e+xt,
OUa OWa on A YA e-xtOPia Olia 10,iA

Oo,, a VA

Recall that in the case ofsmoother controls WA and ws,n, vs,n is given by (5.8) (see Theo-
rem 5.4).
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Proof Since {b/l, --b/0} E V’ x H C F’, there exists a unique solution {o0, (/91} E F of

A{oo, Ol} {u,-uo}.

We take the solution o of (3.1) with f 0, which admits the decomposition (3.12) and
0----A for allthen the solution of (6.1). The conclusion follows with u , WA 0%

OO’A for all A .h/’e and Ws,n CS,n forA e 79+, WA OtqgiA for all A 6 J+xt, WA Ovi"-
all S S, 0 < .s,n < 1/2, because of the reversibility of the wave equation and Proposi-
tion 4.4.

Remark. In the above theorem, the boundary controls are classical. The influence of
the singularities is translated through the terms .s,n(t)T S’n, and each of them can be seen
as a distributional internal control with a support concentrated at the singular vertex S (due
to Lemma 5.6). The introduction of these terms is the price to pay to avoid the regularity
hypothesis D(A) 7-/3/2+(f2) for some e > 0 leading to strong geometrical conditions
on the domains f2 [12, Chaps. 4 and 7]. On the other hand, the conditions (H1)-(H4) that
we imposed are not related to the singularities but linked to the multiplier method, since they
were introduced to avoid internal control. Consequently, they also appear for transmission
problems without singularities [15, Chap. VII.

7. Lack of controllability for 2-d networks with circuits. In this section, we shall give
an example of a 2-d network for which we do not have exact controllability by boundary
control on the exterior edges with the help of the Hilbert uniqueness method. Inspired by
the results of Lagnese, Leugering, and Schmidt for 1-d networks [12, II.5.2], we choose a
network with circuits. More precisely, let us define f2 C R by

ff2"--UPi,
i=-5

where

Po (0, 1) (0, 1) x {0}, P5 (-1, 0) x (0, 1) >< {1},

P {0} (0, 1) (0, 1), P3 {-1} (0, 1) (0, 1),

P2 (-1, 0) {1} (0, 1), P4 "-(-1, 0) {0} (0, 1),

P- {(x, x2,--X3) (Xl, .1;2, X3) E Pk}.

The exterior edges of f2 are the exterior edges of Po, i.e.,

rOl (0, 1) x {0} x {o},

r02 {1} x (0, 1) x {0},

r03 (0, 1) x {1} x {0}.

We take D {F0i }i=,2,3, which means that we consider Dirichlet boundary conditions on the
exterior boundary of . Finally, for simplicity, we fix ci 1 for all e 77 := {-5 5}.

As in 121, the lack of controllability comes from the existence of a special eigenvector
w - 0 of the Laplace operator A on f2 of eigenvalue k > 0 then fulfilling

(7.1) Awi )wi in Pi i Z

and the boundary and interface conditions (2.4)-(2.6) and also the supplementary conditions

Ow0
--0onl"0i i 2,3.(7.2)

Ov
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Indeed, let us consider the 2-d network (2 U5i=1Pi (with the same Pi as in the definition

of fl). Consider the Laplace operator on (2 with Dirichlet boundary conditions on its
exterior boundary (corresponding to the edges of the Pi’s included in the plane x3 0). Take
o (Wi)i= 5, an eigenvector 0 of A of eigenvalue ) > 0. (In other words, t satisfies
(7.1) for 5 and Dirichlet boundary conditions.) From Theorem 2.27 of [22], one
can show that t 6 3/2+ ((2) for some e > 0. We now define w on the whole of f2 by
antisymmetry"

LU0 0, l13_k(Xl, X2, --X3) --//)k(Xl, X2, X3) V(Xl, x2, x3) 6 Pg, k 1 5.

From the inclusion t 6 D(), we readily check that w D(A) and satisfies (7.1). The
property (7.2) is immediate since w0 0 in P0. Finally, w is inherited from t of the
regularity 7-t3/2+ (S2) for some e > 0.

We now say that we have exact controllability at time T > 0 by Dirichlet control on 79
with the help of the Hilbert uniqueness method if there exists a Hilbert space F such that
(4.15), Proposition 4.4 and Theorem 5.1 hold (with 79+ 79, Aext 0) and if moreover the
continuous mapping

CT H (Z2(]a)) H HI(0’ T) Ft (Wa)z79 X (LOS,n)S, {1//’1, lp’0}
A79 S,n

where u, {Tq, P0} are the unique solutions of (5.1) with u0 u 0, is surjective.
From (5.1), we directly see that

* ( Oq3Ria ) X (CS,n)S,nCT ({qg0’ (/91})
I 01)i A79

when o PR + s,n Cs,n Ss’n is the unique solution of (5.2) with f 0.
If C is surjective, then ker Cr {0}, which, in our case, is impossible because the pair

{w, 0} 6 D(A) V F belongs to ker Cr. Indeed the unique solution r/of

r/"(t) + Arl(t) O, [0, T],

r/(T) w, 0’(T) 0

is given by r/(t) w cos(/(T t)). Consequently, the property (7.2) satisfied by w and its
regularity leads to

Oia 0 on A ’v’A 79,
OPia

Cs, =O $6S, O < )s,n < 1/2.
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APPROXIMATE FEEDBACK LINEARIZATION: A HOMOTOPY OPERATOR
APPROACH*

ANDRZEJ BANASZUK AND JOHN HAUSER*

Abstract. In this paper, we present an approach for finding feedback linearizable systems that approximate
a given single-input nonlinear system on a given compact region of the state space. First, we show that if the
system is close to being involutive, then it is also close to being linearizable. Rather than working directly with the
characteristic distribution of the system, we work with characteristic one-forms, i.e., with the one-forms annihilating
the characteristic distribution. We show that homotopy operators can be used to decompose a given characteristic
one-form into an exact and an antiexact part. The exact part is used to define a change of coordinates to a normal
form that looks like a linearizable part plus nonlinear perturbation terms. The nonlinear terms in this normal form
depend continuously on the antiexact part, and they vanish whenever the antiexact part does. Thus, the antiexact
part of a given characteristic one-form is a measure of nonlinearizability of the system. If the nonlinear terms are
small, by neglecting them we obtain a linearizable system approximating the original system. One can design control
for the original system by designing it for the approximating linearizable system and applying it to the original one.

We apply this approach for design of locally stabilizing feedback laws for nonlinear systems that are close to being
linearizable.

Key words, nonlinear systems, feedback linearization, differential-geometric methods, differential forms

AMS subject classifications. 93C10, 93B29, 93B 18, 53C65

1. Introduction. Consider a single-input system

(1) . f(x) + g(x)u,

where f and g are smooth vector fields defined on a compact contractible region .A//of R
containing the origin. (Typically, 3d is a closed ball in Rn.) We assume that f (0) 0, i.e.,
that the origin is an equilibrium for 2 f (x). The classical problem of feedback linearization
can be stated as follows: find in a neighborhood of the origin a smooth change of coordinates
z (x) (a local diffeomorphism) and a smooth feedback law u k(x) + l(X)Unew such that
the closed-loop system in the new coordinates with new control is linear,

(2) Az + Bunew,

and controllable. We usually require that (0) 0.
We assume that the system (1) has the linear controllability property

(3) dim span {g, adfg ad-lg} n Vx

(where adifg are iterated Lie brackets of f and g). We define the characteristic distribution
for(l):

(4) D span {g, adfg ad-2g}.

(It is an n 1-dimensional smooth distribution by assumption of linear controllability (3).)
We shall call any nowhere vanishing one-form co annihilating D a characteristic one-formfor
(1). All the characteristic one-forms for (1) can be represented as multiples of some fixed
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characteristic one-form co0 by a smooth nowhere vanishing function (zero-form) ft. Suppose
that there is a nonvanishing fi so that flo)0 is exact, i.e., flco0 doe for some smooth function
(d denotes the exterior derivative.) Then w0 is called integrable and fi is called an integrating

factorfor coo. The following result is standard [14, 15].
THEOREM 1.1. Suppose that the system (1) has the linear controllability property (3) on

Ad. Let D be the characteristic distribution and coo be a characteristic one-formfor (1). The
following statements are equivalent:

1. Equation (1) isfeedback linearizable in a neighborhood ofthe origin in
2. D is involutive in a neighborhood of the origin in
3. coo is integrable in a neighborhood ofthe origin in
As is well known, a generic nonlinear system is not feedback linearizable for n > 2.

However, in some cases, it may make sense to consider approximate feedback linearization.
Namely, if one can find a feedback linearizable system close to (1), there is hope that a
control designed for the feedback linearizable system and applied to (1) will give satisfactory
performance if the feedback linearizable system is close enough to (1). The first attempt in
this direction goes back to [16], where it was proposed to apply to (1) a change of variables
and feedback that yield a system of the form

(5) Az + Bunew -t- O(Z, Unew),

where the term O(z, Unew) contains higher-order terms. The aim was to make O(z, Unew) of
as high order as possible. Then we can say that the system (1) is approximately feedback
linearized in a small neighborhood of the origin. Reference [13] introduced a new algorithm
to achieve the same goal with fewer steps.

Another idea has been investigated in [11]. Roughly speaking, the idea was to neglect
nonlinearities in (1) responsible for the failure of the involutivity condition in Theorem 1.1.
This approach happened to be successful in the ball-and-beam system, when neglect of cen-
trifugal force acting on ball yielded a feedback linearizable system. Application of a control
scheme designed for the system with centrifugal force neglected to the original system gave
much better results than applying a control scheme based on classical Jacobian linearization.
This approach has been further investigated in [10, 18, 19] for the purpose of approximate
feedback linearization about the manifold of constant operating points. However, a general
approach to deciding which nonlinearities should be neglected to get the best approximation
has not been set forth.

In [17] a design of a control law for the systems with cubic nonlinearities is proposed
which uses a change of variables that directly minimizes the terms P and Q in L2.

All of the above-mentioned work (except [17]) dealt with applying a change of coor-
dinates and a preliminary feedback so that the resulting system looks like linearizable part
plus nonlinear terms of highest possible order around an equilibrium point or an equilibrium
manifold. However, in many applications one requires a large region of operation for the non-
linearizable system. In such a case, demanding the nonlinear terms to be neglected to be of
highest possible order may, in fact, be quite undesirable. One might prefer that the nonlinear
terms to be neglected be small in a uniform sense over the region of operation. In the present
paper we propose an approach to approximate feedback linearization that uses a change of
coordinates and a preliminary feedback to put a system (1) in a perturbed Brunovskyform,

(6) Az + Bunew q- P(z) + Q(z)Unew,

where P(z) and Q(z) vanish at z 0 and are "small" on A4. We obtain upper bounds on
uniform norms of P and Q (depending on some measures of noninvolutivity of D) on any
compact, contractible 3/l.
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Our approach is an indirect one. We begin with approximating characteristic one-forms
by exact forms using homotopy operators. Namely, on any contractible region Ad one can
define a linear operator H that satisfies

(7) co d(Hw) + Hdco

for any form co.
Note that the homotopy identity (7) allows to decompose any given one-form into the

exact part d(Hco) and an "error" part e :-- Hdco, which we will call the antiexact part of co.
For given coo annihilating D and a scaling factor/3 we define oes :-- H[3co0 and S := Hdcoo.
Note that the one-form eS measures how exact cos :--/3o)o is. If it is zero, then cos is exact and
the system (1) is linearizable, and the zero-form os and its first n Lie derivatives along
f are the new coordinates. In the case that coo is not exactly integrable, i.e., when no exact

integrating factor/3 exists, we choose/3 so that d/3co0 is smallest in some sense (because this
also makes eS small). We will call this/3 an approximate integrating factorfor coo. We will
use the zero-form oes and its first n Lie derivatives along f as the new coordinates as in
the linearizable case. In those new coordinates the system (1) is in the form

(8) - Az + Bru + Bp + Eu,

where r and p are smooth functions, r 7 0 around the origin, and the term E (the obstruction
to linearizablity) depends linearly on eS and some of its derivatives. (In particular, E vanishes
whenever eS does.) We choose u r-1 (Unew P), where Unew is a new control variable.
After this change of coordinates and control variable the system is of the form (6) with
Q r-1 E, P -r-pE. We obtain estimates on the uniform norm of Q and P (via
estimates on r, p, and E) in terms of the error one-form eS, for any fixed/3, on any compact,
contractible region 3/l. Most important is that Q and P depend in a continuous way on e
and some of its derivatives, and they vanish whenever does.

From another point of view our approach can be viewed as a robustness analysis of exact
feedback linearization. It is of obvious interest to analyze what happens to an exactly lineariz-
able system subject to a small perturbation that destroys the property of being linearizable.
One can expect that if linearization was used as an intermediate tool to achieve stabilization,
tracking, disturbance rejection, and so on, a small perturbation, yielding a system "close" to

being linearizable, still allows one to apply the control designed for the original linearizable
system, guaranteeing satisfactory performance. In the present paper we propose some tools
to measure a distance of a nonlinearizable perturbed system from a linearizable one, thus
allowing us to measure how small the small perturbation is. In particular, we provide analysis
of robustness of stabilizing feedback design based on feedback linearization.

We anticipate many applications of transforming (1) into (6). The idea behind making Q
and P small is to neglect them in design. Intuitively speaking, we can neglect them if they are
"small enough." What "small enough" means will depend on the particular application.

We should warn that one cannot expect that an exact or approximate feedback linearization
will always help improve performance. The point is that the idea of linearization is to get rid
of nonlinearities because we don’t know how to deal with them. It may happen, though,
that removing of some nonlinear terms may negatively affect the performance of the system.
For instance, consider the problem of stabilization of the feedback linearizable system 2
-x + u. One can remove the nonlinear term -x using feedback, but this doesn’t help
stabilization at all. The term -x actually helps to stabilize the system, especially for large
initial conditions. Still, there are enough examples of systems in which nonlinear terms cause
problems to justify the present study.
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The paper is organized as follows. In 2 we introduce notation and some auxiliary results.
We also explain construction of characteristic one-forms. In 3 we discuss the problem of
optimal scaling ofthe characteristic one-forms. We review the construction ofexact integrating
factors and introduce and study best approximate LP integrating factors. In 4 we show how
homotopy operators can be use to decompose characteristic one-forms into exact and antiexact
parts. In 5 we prove that a change of coordinates based on the exact part of any characteristic
one-form obtained with a homotopy operator having its center at the origin defines a local
diffeomorphism that takes the system (1) to a normal form that looks like,a linearizable part
perturbed by some nonlinear terms. The nonlinear perturbation terms depend linearly on the
antiexact part of the characteristic one-form. In 6 we obtain some upper bounds on nonlinear
perturbation terms using the antiexact part of a characteristic one-form and thus establish
a continuity relationships between some measures of noninvolutivity and nonlinearizability.
In 7 we apply the results of the paper to study locally linearizing feedback laws for the
system (1).

2. Notation and auxiliary results. In the present paperwe apply the theory ofdifferential
alternating forms. We refer to standard texts such as [1, 7, 8, 9, 12] for all the notions not
defined here.

We denote by TA/I the tangent bundle to A//and by k(.A//) the set of all alternating
k-forms on .A//, i.e., the space of all k-linear antisymmetric functionals on T.A//. f2 CA/t) will
denote the direct sum of all f2k (A/l). Let " 6 f2 (A/t) and v 6 T.A//. Then d" will denote the
exterior derivative of ’, and Log will denote the Lie derivative of " along v.

By iv () we will mean the interior product (contraction) of a vector field v with a k-form, which is a k form defined by

iv()(Vl, V2 Vk-1) :--- (V, Vl, V2 Vk-1).

Note that if is a one-form, then iv() (v). Below we summarize some properties of
interior and exterior (wedge) products and exterior and Lie derivatives.

PROPOSITION 2.1. Let f2 (Jl), 2 ’2 (.A/I), and v TAll be arbitrary. Then
1. iv(l A 2) (ivl) A 2 -I- (--1)kl A (iv2).
2. iviv2 O.
3. d(l A 2) (dl) A 2 + (-1)1 A (d2).
4. d(Lv2) Lv(d2).
While we did not need any additional structure except the differential one to study the

problem of finding exact integrating factors, in the case of approximate integrating factors we
need some means of measuring the distance between k-forms (for instance, o9o from an exact
form dot, or d/co0 from 0), both at a point and globally (on A/l). For this, we use a Riemannian
metric, i.e., a positive definite (pointwise) inner product (,) on the tangent space to A//. This
inner product induces an inner product on p-forms (see 1, 6.2]), which we will denote by the
same symbol. Namely, let {e }, 1 n, be an orthonormal basis for f2 (.M). Then the
inner product on p-forms is uniquely defined by requiring {ei A A eip li < < ip} to be
an orthonormal basis for P(AA). The corresponding pointwise norm will be denoted by I.
We obtain a global inner product ((,)) of p-forms on A/[ by integrating the pointwise one over
.A//. A standard metric associated with coordinate system x, x2 x is the one in which

and thus the one-forms dx, dx2, dxn are orthonormal.the vector fields 0,, 0--S 0---
The standard (in coordinates xi) volume element on Ad is

/z :-- dxl A dx2 A A dxn.

For any one-form r/we will denote by # the dual vector field to r/, i.e., the unique smooth
vector field satisfying (, r/) io#() (r/#) for any one-form . For instance, if we use the
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standard metric, we have (]in=l rlidxi)# Y.in=l r]i "x" We have the following elementary
result.

PROPOSITION 2.2. Let , 2 f2 (Jl) and () Then

(1 A 2, ) (2, i[} (, ).
Let 6 P() and m-p(). In the following discussion we will deal with the

operator W P() m() defined by Wff := g m .
To obtain a one-form annihilating an n 1-dimensional distribution D in, we contract

any volume element of by any basis of D. For instance, we may choose

(9) ooo igiadfg iadT-2glZ,
where/z is the standard volume element in coordinates Xi.

3. Approximate integrating factors. Before we discuss the approximate integrating
factors for nonintegrable characteristic one-form coo, let us remind the reader how, given an
integrable characteristic one-form coo, one constructs an exact integrating factor for 09o. The
construction will suggest what can be done in the case ofnonintegrable characteristic one-form
coo. Let us begin with following standard result (see, e.g., [1, 6.4; 8, 4.2]).

PROPOSITION 3.1. Let 09o be a nonvanishing one-form on Jk4. The following statements
are equivalent:

1. coo is integrable.
2. There is a one-form ?’ such that

(10) dcoo ’ /x o90.

3. There is a zero-form 0 such that

(1 1) dwo dO m wo.

4. coo satisfies

(12) dwo /x wo O.

Note that statement 4 provides a test for integrability of coo and thus for linearizability of
the system (1). Let us present one possible way of proving 4 => 2.

Let X be any smooth vector field on .A4 satisfying ix(coo) co0(X) 1. Then (see
Proposition 2.1, statement 1)

0 ix(dcoo A coo) ix(dcoo) A coo + dcoo A ix(coo) ix(dwo) A coo + dcoo.

Choosing , := -ix (dco0), we see that 4 => 2. Even though it is not immediately seen, one
can choose X so that ix(coo) and -ix(dcoo) dO for some zero-form 0, thus proving (3).
The condition (3) is most important in construction of the integrating factor for coo. Namely,
once we know the zero-form 0, choosing/ := e-, we obtain d/co0 0 and/ > 0 as
required. Note that an integrating factor/ obtained in that way is not unique. Namely, if
/3co0 dc for some zero-form c, one can replace/3 with h(c)/3, where h(ot) is smooth and
positive. It is now easily checked that dh(ot)coo 0 so that h(ot)/3 is an integrating factor
for coo whenever/3 is.

Given a nonintegrable characteristic one-form coo, we try to find a bestpossible integrating
factor for it. Let us recall that the goal is to make dcoo "as small as possible." Below we
define some precise meaning for making dcoo "small" by an appropriate choice of/3. We
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want to avoid the trivial solution fl 0. To the contrary, we want to formulate the problem
of construction of best approximate integrating factor so that the solution yields fl > 0 for all
x E 3/l. In coordinates, minimization of dflo)o can be understood as making the differences
of the mixed partial derivatives 0o)0; 0o)0j as small as possible.

We will first establish a pointwise measure of exactness for flo)0 and then construct a
global one from the pointwise one. Let

(do)o)(x)
(13) c (o)o) (x)

(o0)(x)

where is the pointwise norm of a form given by the Riemannian metric. Note that such
a measure of exactness of w0 is invariant under scaling of the one-form w0 by a constant,
nonzero function. Now we define global measures of exactness of w0. A uniform measure
can be obtained by taking the supremum of c(wo)(x) over 3/[,

(14) X(w0) := sup{x(o)o)(x), x E Ad}.

Note that the supremum exists since AA is compact (by assumption).
An average measure of integrability is obtained by integrating x(o)o)(x) over Ad. Let

p > 0. Then

(f )lip(15) Xp(o)o) (K(O)o)(x))P[

where # is the volume element associated with the Riemannian metric. Now, for < p < cx2,

we can define the best approximate Lp integrating factor fl for o)0 as the zero-form that
minimizes Xp (/3 o)0).

The best situation that one might hope for when facing the problem of construction of the
best approximate integrating factor is that there is a single function/3 that is, in fact, the best
Lp approximate integrating factor for every 1 < p < oc. This will be the case if we can find
a function fi that minimizes x(flo)0)(x) at every point x 6 Ad. In certain special cases there
is, in fact, an easy solution to this problem.

Let o)0 be a given one-form on .M, and consider the decomposition

(16) do)0 g A coo + r.

This equation should be interpreted as an "approximation" to (10) with the two-form playing
the role ofan error term. There are infinitely many ways ofdecomposing do)0 as above, because
for any y, one can simply choose r "= do)0 y/x o)0. We know from Proposition 3.1 that
we can choose r 0 in the case of integrable o)0. if o)0 fails to be integrable, we will try to
choose y and in (16) so that the two-form is smallest possible in a least-squares sense,
i.e., with respect to the (global) L2 norm of forms on 2L4,

()1/2(17) I1 "= I 12/z for 2 (3A).

Note that this smallest possible r measures how far w0 is from being closed (and thus exact).
It happens that the problem of finding ?, and r satisfying (16) with Ilr minimal can be

solved pointwise.
As in the case ofintegrable w0, we will use an interior product of a vector field X satisfying

ix(wo) o)0(X) with do)0/x o)0 to obtain a decomposition of type (16). We have (see
Proposition 2.1, statement 1)

ix(do)o A wo) ix(do)o) A o)o + do)o A ix(o)o) ix(do)o) A o)o + do)o
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SO that

dcoo (-ix(dcoo)) A coo 4- ix(dcoo A coo).

This relation has the required form (16) with 9/ := -ix(dcoo), r := ix(dcoo A coo).
We will denote by Z’min the two-form r satisfying (16) for some 9/ with a minimum

pointwise norm Iv (x)l at every x 6 Ad. (It is clear that this will also be the two-form with
minimal global norm I1" among all two-forms r satisfying (16).) Below we give an explicit
formula for Z’min.

PROPOSITION 3.2. Put Xo :’-10901-2@ Then ixo (coo) and

(18) "Cmin ixo (dcoo A coo).

Among all 9/satisfying (16)for r Z’min, the one with a minimal norm is

(19) 9/min "= -ixo(dcoo).

9/min is pointwise orthogonal to coo. All other one-forms 9/satisfying (16) can be represented
as ?’7 9/min + t/coo for some zero-form 7.

Proof First, note that r Z’min if and only if ( A COo, r) 0 pointwise on A// for
any one-form . (This follows from the fact that by a standard least-squares argument Z’min
must be orthogonal to the space R(Wo)o) { A COol 6 21(A//)}.) Note also that ixo(coo)
Icool-2coo(cog) icool-2(coo, coo) 1. Thus, it is immediately seen that (16) is satisfied for
r and 9/given by (18) and (19). To see that r defined by (18) is actually I’rnin we will show
that ( A coo, r) 0 pointwise on .A4 for any one-form . Using Propositions 2.2 and 2.1,
statement 2, we have

coo, r) -(coo A , ixo(dcoo A coO)) -Ico0l-2(, ioio)(dcoo A coo)) O.

We have shown that z "Cmin.
To prove that 9/rain is pointwise orthogonal to coo, note that (coo, 9/min) iw9/min

coo 2
o) o) dcoo O. [3

Note that Z’min 0 is zero on A//if and only if coo is integrable on A//, and Z’min 0 and
9/min 0 on 3A if and only if coo is exact on Ad. Let/3 6 S2 (3//). We have

(20) dcoo (d + flg/min) A coO 4- fl ’rnin.

Now we can obtain the following pointwise lower bound for tc (flco0).
PROPOSITION 3.3. For any x JM and S2 CA/t) we have

Irmin(X)
(21) x(flcoo)(X) >_

Ico0(x)l

Proof. Since the two-forms (d In fl 4- 9/min) /k coO and Z’min are pointwise orthogonal for
every fl (see the proof of Proposition 3.2), we have

(/oo) (x) Idfl A coo + fldcool dfi A 090 + fl (9/min A co0) 4-/ I’rnin

I(dfl + flg/min) A coO 4- flZ’minl I(d In fl + 9/min) A coO 4- rminl
I/%ol Iool

--((l(dln(fl)4-9/min)Acol)2-
,cool

4- ("gmin’)2)1/2’coOl
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The best that we can hope for is that the lower bound for x(/o90)(x) obtained above is
sharp; i.e., there is a zero-form fl such that x(flo90)(x) Irmin(x)l for every x A4 This will@0(x)l

be the case if (d ln(]) + ’min) /k O90 0 for some choice of/. A necessary and sufficient
condition for this is ?’0 := }/min q" 70)0 dO for some zero-forms 0 and 0. Then we choose

1 := e- and obtain (d In/ + F0)/x o90 0. Note that the zero-form/ is everywhere strictly
positive, as required.

Example 3.1. Consider

(22)
:1 X2 q- h (x3) q’- h2(Xl, x2),
.2 x3 -}- h3(x3) q-- h4(Xl, x2),
J7 U,

Ohi fwhere hi(.) are any smooth functions with hi(O) x (0) O. We have g 0x--S’
adfg := [f, g] (-hi(x3))(x3)+h4(Xl x2)) x2(xz+hl (x3)+h2(Xl, x2))-g-Xl +(X3+h3

(1 +h(x3))gx2, o90 (1 +h3 (x3))dxl -h (x3)dxz, dogo h]t (x3)dxzAdx3-h(x3)dxl Adx3,
and dogo A o90 (h(x3)dx2 A dx3 h(x3)dxl A dx3) A ((1 + h3(x3))dx1’ hl (x3)dx2)
((1 +h(xa))h(x3)- htl (x3)h’(xa))dXl Adx2Adx3. We see that the system is exactly feedback
linearizable in a neighborhood of the origin if and only if (1 +h(xa))h] (x3)- hl (xa)h (x3)
O, which is the case if h(.) O.

It happens that for this system we can actually construct the best approximate Lp inte-
grating factor/ in above-mentioned sense, i.e., the one that works for every 1 _< p _<
Suppose that we use the standard metric in coordinates xl, x2, x3. We have

htl (x3)h](x3) + (1 + h3(x3))h3(x3)
dx3,’min h (x3)2 + (1 + h3 (x3))2

(h’(x3)+h(x3)h’(xa)-h’l (.x3)h.i (x3))
"gmin h,(x3)2+(l+h(x3))2 ((1 -}- h3(x3))dx2 A dx3 "}- hl (x3)dXl /x dx3).

Note that /min depends only on x3, and thus it is exact. One can check that /min dO
for 0 ln(h’ (x3)e + (1 + h3(x3))2) 1/2. The best approximate integrating factor in above-
mentioned sense is/0 e- (h’l (x3)e + (1 + h3(x3))2) -1/2 Io01-1. (Note that this
choice makes the pointwise length of/0o90 equal to 1 everywhere.) [3

In [2] we show that the lower bound for x(/og0)(x) is always sharp if the metric is the
standard metric in some special coordinates. There are, however, examples of systems for
which the lower bound for x (o90) (x) is not sharp. In this case a more sophisticated analysis is
required (cf. [6, 4]), which leads to some variational problems whose solutions for/ are given
as solutions of elliptic eigenvalue problems. A simple alternative would be an approximation
of 9/0 by an exact form dHF0 using a homotopy operator H (see the next section).

Note that even though the minimal Xp (1o90) seems to be a natural measure of integrability
of o90 and thus also a measure of noninvolutivity of the characteristic distribution D, it may
not be a sufficient measure for the problem of approximate linearization. There are some
indications that one should actually minimize d(/o90) together with its first n 1 Lie derivatives
along f. This problem is addressed in [6, 5].

4. l-lomotopy operator. On any contractible region 3//one can define a linear operator
H f2k (.M) - f2k- (d/) that partially inverts the exterior derivative, i.e.,

(23) o9 (dH + Hd)w o9 f2(.A/l)
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or, in other words,

(24) w d(Hw) + Hdw.

Any operator with such property will be called a homotopy operator. Following [9], we present
a construction of such an operator. Consider the cylinder I x A//where I := [0, ], and define
a family of maps jz A4 w-, I .A4 by j (x) (,, x) for ) 6 I. Note that k-forms on the
cylinder can be represented in coordinates ), xl, x,, as sums of monomials of two types:
a(,k, x)dxi A dxi2 A dxik and a(), x)d) / dXil dxik__. We now define a linear
operator K f2k (I x .A//) 2k-1 (A//) such that its action on these two types of monomials
is given by

(25) K(a(.,x)dxi, A dxi2 A A dxik) O,

(fo(26) K(a(,k, x)d,k A dxi A A dxi_l) a(., x)d. dxi, A A dxi_,.

The operator K satisfies ([9, 3.6])

(27) K(dw) + d(Kw) jco Jo’*C,

where j (I x A4) - S2 (A//) is the pullback induced by jz. Note that the above result
doesn’t require .A//to be contractible. Now, by definition, A// is contractible iff there is a
smooth mapping 4 I x A/[ + A4 such that 4(1, x) x, 4(0, x) x, where x is a
distingushed point in .A//. Such a mapping b is called a homotopy or contraction (of.A//to x).
The point x is called the homotopy center. Since we have (qo jl)(x) x and (qo jo)(x) x
Yx 6 .AA, the pullback 4* k (A/l) 2k (I x j/) induced by the mapping 4 satisfies

(28) j (tp*og) w, Jo* (tp*co) 0.

Therefore, (27), (28), and the fact that the exterior derivative commutes with a pullback together
imply

(29) K*(dw) + d(K*w) co.

Thus, the operator H :--- K o b* satisfies (24) so that it is a homotopy operator.
Note that different choices of homotopy centers x and homotopies 4 yield different

homotopy operators. The one we will use is probably the simplest one: it will act on one-
forms by integrating them along straight lines (in coordinates xi) from a distingushed point
x in (usually the origin). Such a homotopy operator will be called radial (see, e.g., [8,
5.3] and [9, 3.7]). If A4 is star shaped in coordinates xi with respect to x (i.e., .A//can be
contracted to x by straight lines lying entirely in A/[), a simple choice for a homotopy 4 is
4(., x) x + )(x x). Let co Zi,...i, (’oil’"ik(x)dXil / dxi A’" A dxi,. Now, one can
explicitly calculate the pullback

)*0) O0il ik(xO + (X x))d(x + (Xil X))

/d(x "at- (Xi2 X)) / /k d(X + )V(Xil X))
(30)

Z OOi’ ik(xO "Jr" Z(X xO))((Xi, x)d, q- ,dxi)

/((xi2 xg)d;k + ,kdxi2) A A ((xik x)d, + )vdxik)
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and we can express the action of the radial homotopy operator as

!

i i, \ ij

fl )k-lcoi i:(xO + X(x-x))dX))dxfiA...A dx-" A dx
(3)
where the symbol over dxij indicates that it is omitted.

Once again consider the system of Example 3.1. Choose coo (1 + h3(x3))dxl
h’l (x3)dx2 and/3 1. Then, for xo 0, we see that

x2hl (X3) Xlh3(x3)
ot (x(1 + h’ (;x3)) X2 (,x3))d). Xlhi

x3 x3

and the error one-form e is given by

-(h3(x3) x3h3(x3))/xdx + (h(x3) x3h’ (x3))/xdx2
-+- (X2hl(X3) xlh3(x3) x2x3hfl (x3) -q- XlX3h3(x3))/xdx3

(Alternatively, once o is known, one can use the formula e flco0 dc instead of E Hdflcoo
to obtain the error one-form e.)

Let l" denote the pointwise norm of a form induced by the standard metric in xi co-
ordinates. We have shown in the previous section that the best approximate integrating
factor for the above system in the sense of minimizing I(dto0)(x)l pointwise everywhere isI(o0)(x)l

0 Icool- (h’l (x3)2 / (1 + h3(x3))2) -1/2. Contrary to the case/ it is now impossible
to evaluate H/30coo and Hdt30coo explicitly. The integration must be performed case by case for
specific functions h 1(’) and h3 (.). We don’t expect to be always able to perform the integration
symbolically, because the result might not be an elementary function.

The homotopy operator that we will use in subsequent discussion uses the origin in
coordinates xi as the homotopy center. One can obtain other homotopy operators choosing
different homotopy centers xo. Moreover, one doesn’t have to integrate over straight lines
from the center. Note that the notion of a straight line is associated with specific choice of
coordinates. Hence, if we change coordinates, we immediately obtain a homotopy operator,
namely, the radial homotopy operator in the new coordinates. Moreover, an arithmetic mean
of homotopy operators is again a homotopy operator. For exactly linearizable systems, once
we have found an exact integrating factor for a characteristic one-form co, any homotopy
operator will give the same exact part and zero antiexact part. However, for nonlinearizable
systems the choice of a homotopy operator will make a difference. Apparently, the choice of
a particular homotopy operator will influence the exact and antiexact parts of a characteristic
one-form co. It is not clear to us yet what should be the best choice for approximate feedback
linearization. This issue is currently under investigation. One may expect that the optimal
homotopy operator might be rather complicated. Hence, even though there is no reason to
believe that the radial homotopy operator in the original coordinates will be the best one (i.e.,
yielding the smallest antiexact part of co), there is a good chance that it will be the simplest
one to apply. Moreover, any homotopy operator with the center at the origin that satisfies
4(), 0) _=_ 0 (in particular the radial one) will always yield e(0) 0. Since e is a smooth
one-form vanishing at the origin, it will be small in a neighborhood of the origin.

The following result shows some that there are some limitations to what can be achieved
in approximating nonexact characteristic forms by exact ones.



APPROXIMATE FEEDBACK LINEARIZATION 1543

THEOREM 4.1. Let H be any homotopy operator on .All and o9 be any characteristic

one-formfor the system (1). Let ot/4 := Ho9 and I-I :-- Hdog. Thenfor any closed curve c in
we have

for O,
Proof. Note that Lo9 Lif(dott4 + /4) dLoti-i / L/4. Now, the proof follows from

the fact that the integral of an exact form over any closed curve is zero. [3

The above result is a law ofpreservation ofhassle. No matterhow one chooses a homotopy
operator H, the average value of ("a component along c" of) /-/ := Hdo9 on any closed curve
c is constant. Different homotopy operators may only distribute along c in a different way.
A similar result holds true for any Lie derivative (of any order) of along any vector field.

This result can be used to obtain lower bounds for the uniform norm of the error one-form
/4 and its Lie derivatives along f on A4, independent of the choice of homotopy.

Let us conclude the section by an example of a homotopy operator that is optimal in
some precise sense. Let co be a one-form. The so-called Hodge decomposition of 09 is a
decomposition of the form co dot + , where dot is the best L2 approximation of 09 among
exact one-forms (cf. [1, 7.5; 3, 4, 5, 6]). Let 3 denote the formal adjoint operator to the
exterior derivative d and A := 3d + d3 denote the Laplace-De Rham operator ([1, 7.5]).
One can show that Aot 3o9 and A 3do9. These equations (together with some boundary
conditions) allow us to find ot and appearing in the Hodge decomposition of co. Thus,
formally ot A-ro9 and e A-ldog. Therefore, the operator HA A-I (formally)
satisfies co d(Hzxog) + Hzxdo9 so that it is a homotopy operator. Note that one has to
solve a boundary value problem to obtain the zero-form ot such that dot best approximates
co in L2. This should be contrasted with the radial homotopy operator, which requires only
simple integration with respect to a parameter. For instance, if the system (1) has polynomial
nonlinearities in the original coordinates, the characteristic one-form coo given by (9) will
also have polynomial coefficients and thus the integration in (31) can be easily performed,
yielding polynomial expressions for ot ande. The situation is usually much more difficult after
applying an optimal approximate integrating factor fl0. The optimal characteristic one-form
fl0o9 will rarely be polynomial, and the result of integration in (31) might not be expressed in
terms of elementary functions. This is one reason why we might not always be able to apply
the optimal approximate integrating factor in practice, even if we find one.

5. Change of coordinates. In this section we prove that a change of coordinates based
on the exact part of any characteristic one-form co obtained with a homotopy operator H
having its center at the origin defines a local diffeomorphism that takes the system (1) to a
normal form that looks like a linearizable part perturbed by some nonlinear terms that depend
linearly on the error one-form := Hdog. This approach can be applied to both linearizable
and nonlinearizable systems.

For exactly linearizable systems (1), we proceed as follows. First, we construct a char-
acteristic one-form coo. Then we choose an exact integrating factor/3 and obtain a new
characteristic form o9 := flog0 such that do9 0. We apply a homotopy operator H to get the
zero form ot := Hog. Then .we use change of variables

(32)

Zn L-lot.
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The system (8) in new coordinates is

(33)

n- Zn
n p + ru,

where
n- L}ot,r LgLf lot, p

and the feedback u r-1 (Unew P) makes it linear.
For a nonlinearizable system we proceed as follows. First, we construct a characteristic

one-form o90. Then we choose an integrating factor/3, either optimal or not, and obtain a new
characteristic one-form o9 := flog0. We apply a homotopy operator H to get the zero form
ot := Ho9 and the corresponding error one-form e := Hdog. Then we use change of variables
(32) (as for exactly linearizable systems) to get a normal form

1 Z2 + elu,

2 Z3 + e2u,

(34)

Zn d- en-ltl,

p+ru+enU,

where

el Lgot,
e2 LgLfot,

(35)
en LgL-ot (-1)n-log(ad-l g),

r (-1)n-log(adT-lg),
p Lot.

In the subsequent discussion we will need the following result.
LEMMA 5.1. Let o9 be any characteristic one-form for the system (1). Let and j be

nonnegative integers. Then
1. (Log)(adg) Ofor + j < n 1.

2. (Log)(ad--ig) (-1)iog(ad-g)fori --O, 1 n 1.

Proof. 1. One can prove by induction the formula

(36) (Lrl)(Y) E(--i) Li-lx (l(adlxr))
/=0

In particular,

(37)

Lifog) (ad}g
l=i

(i) iX-l (adlf(adjg)))(--1) L (o9
/=0

l=i

(i) _l (adlf+jg))"Z(--1) L (o9
l=0

Note that og(adlf+j g) 0 for 0 if + j < n 1.
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./+n--12. Apply the formula (37) for j n i, and note that all the terms cotaaf
-Jg)

vanish except when = i.
To establish continuity relationships between noninvolutivity and nonlinearizability we

express the nonlinear perturbation terms ei in terms of the error one-form
PROPOSITION 5.2. Let co be a characteristicformfor (1), H be a homotopy operator on

AA, ot := Hco, and := Hdco. Let ei, 1 n, and p be given by (35). Then

el -e(g),

ez -(Lfe)(g),

(38)

en-1 (L-2)(g),

en -(L-)(g).
Proof It is a straightforward calculation using Lemma 5.1.
Note that the above choice for en and r is not the only one possible. Actually, any choice

n-lo/that guarantees r + e LgLf with e(0) 0 could be considered, for instance, en = 0
n-1and r LgLf or. Our choice is dictated by the fact that it guarantees r 0 on the whole

.A/[ and en -(Lnf-)(g).
One can also express the function p Lc using the error one-form as p

(L-co)(f) (L-)(f).
A natural question to ask is whether the zero-form ot together with its n 1 Lie derivatives

along f is a well-defined change of coordinates. The main result of this section says that in a
neighborhood of the origin, (32) indeed defines a local diffeomorphism. Before we prove it,
we need some preliminary results.

LEMMA 5.3. Let rl be any smooth one-form and X and Y be any smooth vectorfields on
.A4. Then

1. (Lxo)(r) Lx(II(Y)) -//([X, Y]).
2. If rl(O) 0 and X(O) O, then (Lr/)(Y)(0) Ofor 0, 1, 2
Proof. 1. See 12, 7.3].
2. For 0 the formula is true as (Lx r/) (Y) (0) r/(Y)(0) 0. Assume that the

formula is true for 0 m. Using statement 1 one easily shows that (L+1 r/)(Y)(0)
d((L"o)(Y))(X)(O) (L, r/) ([X, Y])(0). The first part of this expression is zero because
X (0) 0, and the second by assumption. By induction, the formula holds for all nonnegative
i.

PROPOSITION 5.4. Assume that dim span {g, adfg ad-lg} n /x in a neighbor-
hood of0 in Jl (linear controllability). Let co be any characteristic one-formfor the system
(1). Then the one-forms co, Lfco L-lco are linearly independent in a neighborhood of
the origin.

Proof It is sufficient to show that (L-lco m L-2co A... m 6o)(0) 0. Since this form
n-2 ad-is smooth, it is enough to check that (L-lco/k Lf co A...

0. For this, note that (L-co m L-2co m... A co)(g, adfg ad-) detS, where

an n x n matrix whose (i, j) entry is (L-lco)(adj-lg). Now, by Lemma 5.1,S is S is

an upper triangular matrix whose th diagonal element is (-1)n-ico(ad-I g). Therefore,
detS (-1)n(co(ad-lg))n 5 O. [-]

Now we are ready to prove the main result of this section.
THEOREM 5.5. Assume that dim span {g, adfg ad-lg} n Yx in a neighborhood

of0 in A4 (linear controllability). Let H be any homotopy operator on Jl with the center at
the origin such that ck (), O) 0 and co be any characteristic one-formfor the system (1). Set
ct := Hco. Then (32) defines a local diffeomorphism in a neighborhood ofthe origin.
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n-lotProof. We will show that the differentials ofthe zero-forms ot, Lfot Lf are linearly
independent at the origin (and thus, in a neighborhood of the origin). Let e := Hdco. Since
co dot / e and the Lie and exterior derivatives commute, we have dL)ot L’fdot Lf
e) L)co L)e. Hence, dL)ot(O) L)co(0) L)e(0). Note that e(0) := (Hdm)(O) 0,
since H is a homotopy operator with the center at 0 such that (, 0) 0. Now, it follows

n--1from Lemma 5.3, statement 2, that e, Lf6 Lf 6 all vanish at the origin and hence

dLa(0) L(0). Now the result follows from Proposition 5.4.
We usually cannot guarantee a priori that the change of coordinates (32) will be valid in

the whole . Some conditions for a map to be a global diffeomowhism are quoted in 14]
and [20]. Below, we show an example of a system that admits a global transformation in R3

to the normal form (6).
Example 5.1. Consider the system

X2 + h (X3),
(39) k2 x3,

where h (.) is any smooth function with htl (0) 0. We have

coO dxl hl (x3)dx2,
X2hl(X3)

ot Hflcoo x1 ,
x3

(hi(x3)-xahl(X3)) (x3dx2-x2dx3),

Lf6 Le O.

The system can be transformed by a global diffeomorphism

(40)

to the form

X2hl(X3)

(41)

Z2 Lfot x2,

Z3 L}ot x3

x3

,g,1 Z2 + z2(hl (z3) z3h’ (Z3))

The inverse transformation given by

(42)

z2hl(z3)
X Z -4y

X2 Z2,

X3 Z3. [’]

Z3

In the case when the change of coordinates is not valid on the whole region Ad, we have
to restrict to a region on which the change of coordinates is valid. In the following discussion
we assume that this has been done, and the restricted region is also called
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6. Estimates of the nonlinear part. In this section we estimate the nonlinear perturba-
tion terms el en using the error one-form e. First, let us rewrite the equations (34) (in the
usual matrix-vector notation) as

(43) Az + Bru + Bp + Eu,

where A and B are in the Brunovsky form, that is,

-0 0 0-

". 0

0
0 0

B=

0

and E (el, e2 en) r. (es, r, and p are defined by (35).) We see that r 7 0 on AA
(under the assumption that linear controllability holds on .M) and E depends linearly on e and
vanishes whenever e does. We will choose u r-l(unew p), where Unew is a new control
variable. After this change of coordinates and control variable the system is of the form (6)
with Q r-1 E, P "= -r-1 pE. In this section we obtain estimates on the uniform norm of
Q and P (via estimates on r, p, and E) in terms of the error one form e for any fixed/3 on
any compact, contractible region

Let h be a smooth vector field on .h//and be a nonnegative integer. Let " be a k-form on
AA. We define the CO norm lift of ( as I1 :-- sup I(x)l for x 6 Ad (uniform norm on
and the C norm II" II/h as IICIl :-- sup(IC(x)l2 + ]thf(X)l2 -t-’" + Itlhf(X)12) 1/2 for x
(uniform norm on Ad, together with the first Lie derivatives along h). It is immediately seen

n-1from Proposition 5.2 that whenever the one-forms e, Lfe Lf e are small on AA, so is
the term E on .A//.

THEOREM 6.1. Let co be any characteristic one-form for the system (1) and e be the
error one-form corresponding to a given homotopy operator Then the mapping e - E is a
continuous mappingfrom the space ofsmooth oneforms equipped with the C-1 norm on

into the space of smooth vector fields on .Ad equipped with the CO norm (uniform norm on
.AA ). In particular,

IIEII IIll-llgll.
Proof. The proof is immediate in view of Proposition 5.2. [3

n-1 e their evaluationsNote that in the above result we could substitute for e, Lye Lf
at (contractions by) the vector field g. Let h and v be smooth vector fields on .AA and be
a nonnegative integer. Let us define the C, seminorm I111,, of a one-form " on Ad as

IICIl,,o :-- sup(l’(v)(x)l 2 + ILhf(O)(x)l 2 +"" + ILlhf(V)(x)12) 1/2 over x 6 AA. Note that

Clh,v is not quite a norm, since it may happen that I1, 0 even though " 7 0 (for example,
Ilco011,g for coo being a characteristic one-form for (1)). However, it happens that for the one-

forms on A4, the C7, seminorm becomes a norm if the vector fields f and g satisfy the linear
controllability condition of Theorem 1.1. This follows from the following result.

PROPOSITION 6.2. Let ( be a one-form on JM and the vector fields f and g satisfy the
linear controllability condition of Theorem 1.1. Then ( 0 ifand only if " II, 0.

Proof. (=) The proof is obvious.
(=) Note that Lif(g) Lf(Lif-(g)) L)-l(adfg). We have L}(g) 0 for
0, n 1. In particular, ’(g) 0. Thus, using Lemma 5.3, statement 1, we get
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0 (Lf()(g) Lf(((g)) ((adfg) -((adfg). Continuing in the same fashion, we
obtain ((ad}g) 0 for 0, 1 n 1. By the linear controllability assumption, the
vector fields adg for 0, n are linearly independent. The one-form ( annihilates
n linearly independent fields on an n-dimensional manifold. Thus

The above result, when applied to the error one-form e, yields an obvious fact that the
e 0 is equivalent with (32) being the linearizing change of coordinates for (1). The fact that
we wanted to emphasize here is that, because of (38), the nonlinear perturbation terms ei can be
used to define a norm for the error one-form e, thus making the relationship between a measure
of noninvolutivity of the characteristic distribution D and a direct measure of nonlinearity of
the system (1) in new coordinates explicit. Namely, we have the following proposition.

PROPOSITION 6.3. IIEII I111,.
We conclude this section with establishing some upper bounds on the uniform norms

IIPII and IIQII of the nonlinear terms Q := r-lE, P := -r-lpE in the system (6) after
change of coordinates and preliminary feedback.

PROPOSITION 6.4. Let oo be any characteristic form for the system (1), ot := Hw, e :=
Hdoo. Let p := inf Iw(ad-lg)(x)l over x .M and O := sup IL(x)l over x A4. Then

1.

(44) P

(45) IIQII _<
p

Proof. The proof is immediate, in view of Proposition 6.3 and (35).

7. Application to stabilization. In this section we will use the results of the previous
section to study various locally stabilizing feedback laws for the system (1). The laws that we
have in mind will be linear in new coordinates (32), with the gains chosen so that the linear
part of the system (6) is asymptotically stable. We will then study robustness of such control
laws when applied to the system (6). We will accomplish that studying Lyapunov functions
that are quadratic in new coordinates. We shall examine how the nonlinear part of (6) affects
the time derivative of the Lyapunov function. The continuity result of Theorem 6.1 will allow
us to formulate some robustness criteria for stabilization.

The idea behind transforming a linearizable system (1) to an equivalent form (2) is to
design control schemes for (2), which is much easier to analyze and control, and apply them
to (1). For example, if happens to be a global diffeomorphism from Rn into Rn, one can
globally asymptotically stabilize the system (1). For this, one can choose new control variable
Unew KZ (linear feedback in new variables) so that the closed-loop system

(46) (A + BK)z

is globally asymptotically stable. (Controllability of (2) is equivalent to possibility of arbitrary
assignment of the eigenvalues of (A + BK) by an appropriate choice of the feedback gain K.)
Then u k(x) + l(x)Unew k(x) + l(x)K(x) makes the closed-loop system

(47) Jc f (x) + g(x)(k(x) + l(x)Kdp(x))

globally asymptotically stable, since -1 is a diffeomorphism preserving the equilibrium point
at the origin.
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For nonlinearizable systems the best we can hope for using our approach is to transform
(1) to (6) with P and Q small. Then we will try to use the new form (6) to design a locally
stabilizing feedbackmin this case we expect to improve the basin of attraction of the origin of
the closed-loop system. We will choose Unew KZ (a feedback law linear in new variables) so
that the mapping A + BK is stable (has all eigenvalues with negative real parts) and analyze its
robustness as a stabilizing law for (6); bounds on uniform norms for Q and P should help us
to do so. Let us stress that we will actually use new coordinates z and new control Unew only as
intermediate tools, and the control law u r-1 (Unew P) r-1 (Kz p) will be expressed
in the old coordinates x as u k(x) (where k(x) := r((x))-l(K(x) p((x)))) and
applied to (1). Since -1 is a diffeomorphism preserving the equilibrium point at the origin,
it maps the basin of attraction of the equilibrium for

(48) (A + BK)z + P(z) + Q(z)Kz

to the basin of attraction of the equilibrium for

(49) .ic f (x) + g(x)k(x).

Observe that, to express the feedback laws computed in new coordinates z in the original
coordinates x, we don’t even need to find the form (6) explicitly. It would be actually very
difficult, if not impossible, to do so in general, since we would have to know the inverse
transformation x - (z) in order to obtain the form (6).

Of course, we might not always be able to find the best integrating factor/30 for w0
annihilating D := span {g, adfg ad7-2g} to begin with. Still, for any scaling factor
fl we can choose the corresponding zero-form ot and its Lie derivatives along f as new
coordinates. We can also find the corresponding error one-form and verify the bounds
on the corresponding terms Q and P in (6) and decide if they are sufficiently small for our
purpose.

THEOREM 7.1. Assume that z (x) is a (global) diffeomorphism ofJl onto its image
given by (32). Let Unew KZ be any linearfeedback in new variables so that the linear part

(50) (A + BK)z

of the system (6) obtainedfrom (1) after change of coordinates and preliminary feedback is
asymptotically stable. Let N be a positive definite n n matrix and M be the unique positive
semidefinite solution ofthe Lyapunov equation

(51) (A + BK)TM + M(A + BK) + N O.

Let

(52) E(z) :-- P(z) + Q(z)Kz

and r {0} [,.J {Z E (I)(.j) (Z, Mz) < r and (z, Nz) 2(z, ME(z)) > 0}. Define
rmax sup{r > 0 ’r (I)(./)}. Then (I)--l("rmax) is an invariant set contained in the
basin ofattraction ofthe origin ofthe system

(53) Jc f (x) + g(x)k(x),

where kl (x) r((x))-1 (K(x) p((x))) (p and q are defined by (35)).
Proof The linearizable part ofthe system in new coordinates z can be made asymptotically

stable by feedback Unew Kz linear in new coordinates. One can define a quadratic Lyapunov
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function V(z) := (z, Mz) with a negative time derivative f’(z) -(z, Nz) solving the
Lyapunov equation (51). The sets f2r are invariant sets for the closed-loop linear part (50).
Now, the time derivative of Lyapunov function for the true system in new coordinates is
f’(z) -((z, Nz) 2(z, ME(z))). If this is negative, the sets (I)--I (’rmax) are invariant sets
for the closed-loop system (53).

The above result simply states a sufficient condition for a region of .M to be an invariant
set contained in the basin of attraction of the origin of the system 2 f(x) + g(x)kl(x)
and is well known. What is nice about the above result is that we can actually estimate the
set (I)-1 (’rmax) in our approach. Namely, since we have estimates on the uniform norms
IIP(z)ll and Q(z)ll of the nonlinear terms in the system (6), we obtain an upper bound
on the uniform norm E(z) P(z) + Q(z)Kz. Thus, we can check if the time derivative
-((z, Nz) + 2(z, ME(z))) of the Lyapunov function is negative on the region of interest.
Moreover, since we expect P (z) and Q(z) to be small, so will E (z). Since the first term in
-((z, Nz) + 2(z, ME(z))) is negative and the second term is small, the whole expression is
negative in some neighborhood of the origin.

Let us define yet another measure of nonlinearity in new coordinates that is particularly
suited for studying stabilization:

(54) Oafl(z) :=
2(z, ME(z))

(z, Nz)
for z =/= O, ]afl(O) :--- O.

Now we can replace the condition

(55) 2(z, ME(z)) < (z, Nz) for z 0

with

(56) ]afl(Z) < 1.

Note that the quantity Flafl actually depends on the choice of characteristic one-form, the
particular homotopy operator, the stabilizing feedback gain matrix K, and the matrix N.
Observe that ]rlafl(Z)] < means that the linear term dominates the nonlinear one in the time
derivative f’(z) -((z, Nz) + 2(z, ME(z))) of the Lyapunov function V(z) := (z, Mz) at
the particular point z, guaranteeing its negative sign. On the other hand 0 < rIafl(Z means
that the nonlinearities contribute to making V (z) more positive and thus have a destibilizing
effect, while afl(Z) < 0 means that the nonlinearities try to make (z) more negative and
hence help to stabilize the system. Therefore, the following terminology is justified: we will
say that the nonlinearities are weak (respectively, strong) at z if IOafl(z)l < 1 (respectively,
[r/aft(z)l > 1) andfriendly (respectively, unfriendly) if rlafl(Z < 0 (respectively, 0 < rlafl(Z)).

Let us express this condition in terms of system (6) and (8). We have E(z) P(z) +
O(z)Kz (Kz-p(z))(r-l(z)E(z)). Whus2(z, ME(z)) 2(z, M(Kz-p(z))(r-I(z)E(z))),
and (56) is equivalent to

2(z, M(Kz p(z))(r-(z)E(z)))
(57)

(z, Nz)
< for z 0.

Using bounds on P(z) and Q(z)II obtained in the previous section, one can formulate the
following inequality, which implies the previous ones:

inf a (N)
(58) 2

(O / IKllzl)llll,
< Izl for z 0,

p sup a(M)

where a (.) denotes a spectrum of a matrix.
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It is possible to combine the problems ofdesigning a stabilizing feedback for the linear part
of of the system (6) obtained from (1) after change of coordinates and preliminary feedback
and construction of a Lyapunov function in a linear quadratic optimal control design: find
b/new minimizing

Nz(t)) 4- (b/new(t), Rb/new(t)))dt

for strictly positive definite R and a positive definite N. (To make life easier, we will assume
that N is also strictly positive definite.) It is well known that the optimal control b/new has the
form of linear feedback b/new KZ for K -R-1BTM, where M is the unique positive
definite solution of the Riccati equation

(59) ATM + MA MBR-1BTM + N O.

Then V(z) "= (z(t), Mz(t)) is the Lyapunov function for the closed-loop system (50)
and ’’(z) -(z(t), (N / MBR-1BTM)z(t)).

Example 7.1. Consider the system

(60)

J X2 + ax + bx,
.2 X3 + CXX2,
JC3 u.

Note this is a particular case of the system considered in Example 3.1. We have coo
dxl 3axdx2 and dco0 6ax3dx2 /x dx3. For scaling factor /3 1 we get ot :=
Hco Xl ax2x, :--- Hdco (2ax3)(x2dx3 x3dx2). New coordinates z (x)
are given by Zl := O/ Xl ax2x23 Z2 :-- Lfot x2 + bx acxx2x, z3 :- L}c
x3 + 3bZx15 + 3bx12x2 + cx12x2 2abcx14x2x32 acZx14x2x32 2acxlxzZx324- 3abx12x33
acxl2x33 2aZcxlxzx35. Note that (x) is only a local diffeomorphism around the ori-
gin, and it is impossible to find an inverse transformation. Thus, in the following discus-
sion we express the nonlinear terms E(z), r(z), and p(z) in old coordinates: E((x))
[--2axzx3,--2acxlZxzx3,--2acxlxzx3 (2bx + CXl 4- 2x2- 4ax33)] T,

r(cb(x)) :--

p((x)) :=
14- 9abxl2x32 3acxl2x32 18a2cxlx2x34,
15b3Xl74- 21b2x14x2 4- 5bcxl4x2 4- c2x14x2 4- 6bxlx22
4- 2CXlX22 4- 3bx12x3 4- CXl2X3 -8ab2CXl6X2X32 6abc2Xl6XZX32

ac3xl6x2x32 lOabcx13x22x32 8ac2x13x22x32 2acx23x32
+ 21abZx14x33- 4abcx4x33 ac2xl4x33 4- 12abxlxzx33

4acxlx2x33 lOa2bcx3x2x35 6a2c2x3x2x35 4a2cx22x35
4- 6azbxlx36 -4aZcxlx36 2a3cxzx38.

(All computations were done using Mathematica.) To design a locally stabilizing feedback, we
have solved the linear quadratic regulator problem for the linear part ofthe system as mentioned
above for N being the 3 3 identity matrix and R 1. The optimal feedback gain matrix
was K [-1,-2.41421,-2.41421], and eigenvalues of A 4- BK were -1,-0.707107 4-
i0.707107, -0.707107 i0.707107. The feedback law applied to the original system (1) was
b/afl :-- r((x))-l(K(x) p((x))). We choose the values of parameters a 0.01, b
1, c 5, and A/[ := {Ixil < 0.36, 1, 2, 3}. We checked that the condition (57) was
satisfied on A/t, with sup ]afl (di) (X)) ’ 0.45. Thus, by Theorem 7.1, the corresponding set

--l(f2rmax) (defined in the formulation of Theorem 7.1) is in the basin of attraction of the
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FIG. 1. xl(t)for xl(0) 0, x:(0) 0.3, x3(0) 0.3.
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FIG. 2. x2(t)for Xl(0) 0, x:z(0) 0.3, x3(0) 0.3.

origin. As we have checked, the whole Ad was in the basin of attraction of the origin. The
basin of attraction was actually much larger than .A4, even though the condition (57) was not
satisfied. (Note that Theorem 7.1 gives only an underestimate of the actual stability region.)
For comparison, we considered the control based on Jacobian linearization Uja :--- Kx for
the same gain matrix K. Note that the x and z coordinates agree up to first order and that
both control schemes Uafl and Ujac yield the same linear part of the closed-loop system with
eigenvalues 1, -0.707107 + 0.707107, -0.707107 0.707107. We checked that for Ujac
condition (57) failed to hold on A/t, with sup r/jac(X) 5.6 (11 times more than for blafl)
where /jac(X) :-" 2(x,M(Kx)(ejc(x)))(x,Nx) Ejac [ax + bx3, cxx2, 0]. Not whole .A//was in the
region of stability for Ujac, and the region of stability for Ujac was strictly contained in the the
region of stability for Uafl. We present (in Figures 1-3) typical plots of the state variables
as functions of time. (The continuous lines represent the time responses for Uafl, the dashed
lines for Ujac.) Comparing those responses of our system for both control schemes, we see that

Uaf offered faster convergence to the origin and less oscillatory responses than Ujac. We also
plot (in Figures 4 and 5) the terms l"]afl(f(x)) and r/jac(X) along trajectories, because they in
some sense measure nonlinearity of the corresponding closed-loop systems. Observe that the
strong and unfriendly nonlinearities prevail in the closed-loop system with Ujac control when
compared to weak nonlinearities in the closed-loop system with Uaf control.
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FIG. 3. x3(t)for xl(0) 0, x2(0) 0.3, x3(0) 0.3.
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FIG. 4. Ojacfor Xl(0) 0, x2(0) 0.3, x3(0) 0.3.

0

O.C

-0.

0

6 8

FIG. 5. rlaflfor Xl(0) 0, x2(0) 0.3, x3(0) 0.3.



1554 ANDRZEJ BANASZUK AND JOHN HAUSER

Note that from 3 we actually know that the optimal integrating factor for coo dxl
axdx2 is fl Io01 -a (1 / a2x)-1/2. Observe that, with a 0.01 and Ix3] < 0.36, we
have fl up to six decimal places. We have found the coresponding change of coordinates
and performed simulations, but the results were indistinguishable from the case fl 1.

8. Conclusion. In this paper, we presented an approach for finding feedback linearizable
systems that approximate a given single-input nonlinear system on a given compact region of
the state space. We have shown that if the system is close to being involutive, then it is also
close to being linearizable. We have applied this approach for design of locally stabilizing
feedback laws for nonlinear systems that are close to being linearizable. The main idea was to
study the characteristic one-forms rather than deal with the characteristic distribution directly.
In this approach two issues have occurred: first, how to scale characteristic forms; second,
how to approximate them by exact forms. We have presented some ideas on that subject and
indicated some open problems.

Acknowledgment. We acknowledge the use of the "Differential Forms" Mathematica
package created by Frank Zizza of Willamette University.
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PERTURBED OPTIMIZATION IN BANACH SPACES III:
SEMI-INFINITE OPTIMIZATION*

J. FRDiRIC BONNANS AND ROBERTO COMINETTI

Abstract. This paper is devoted to the study of perturbed semi-infinite optimization problems, i.e., minimization
over ]R with an infinite number of inequality constraints. We obtain the second-order expansion of the optimal value
function and the first-order expansion of approximate optimal solutions in two cases: (i) when the number of binding
constraints is finite and (ii) when the inequality constraints are parametrized by a real scalar.

These results are partly obtained by specializing the sensitivity theory for perturbed optimization developed in
part (cf. [SIAM J. Control Optim., 34 (1996), pp. 1151-1171]) and deriving specific sharp lower estimates for the
optimal value function which take into account the curvature of the positive cone in the space C() of continuous
real-valued functions.

Key words, sensitivity analysis, marginal function, approximate solutions, directional constraint qualification,
semi-infinite programming, epilimits
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1. Introduction. This paper is the last of a trilogy devoted to the analysis of parametric
optimization problems of the form

min{f(x, u) G(x, u) E K},
x

with X and Y Banach spaces,, K a closed convex subset of Y, and f(x, u) and G(x, u)
mappings of class C2 from X x IR into R and Y, respectively. This third part is devoted to the
study of the parametric semi-infinite optimization problem

(Pu) min{f(x, u) G(x, u)o > O, Vco f2},
x

where f2 is a compact metric space; G(x, u) := {G(x, u)o}oea belongs to C(f2), the space
of continuous functions on endowed with the max norm; and the mapping (x, u) --+
(f(x, u), G(x, u)) is of class C2 from ]n X ]+ into C(f2). Since

C+(g2)’={yeC(f2) y>O}

is a closed convex cone in the Banach space C(f2), it follows that (Pu) is a particular case of
the above abstract optimization problem.

Semi-infinite optimization problems occur in robust control theory, the design of filters,
the design of devices having to respect some specifications in a certain range of pressure
and temperature, and optimal control problems when the control has a finite-dimensional
parametrization; see [16]. However, the wealth of applications is not the only motivation
for studying semi-infinite optimization. In the past few years, a rather complete perturbation
theory has been developed for optimization problems with a finite number of constraints, the
so-called perturbed nonlinear programming problem; see [2], [6], [8], [19]. The theory of
perturbed semi-infinite optimization problems, although it seems much easier than the general
perturbation problem in Banach space, includes an essential difficulty related to the curvature
of C+ (f2). As a consequence, the standard second-order upper and lower estimates for the cost
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do not, in general, coincide. Our main contribution here is to exhibit a sharp lower estimate
that, in some cases, is equal to the parabolic upper estimate.

There is already a large body of literature on semi-infinite optimization; see the early
references [3] and [11 ]. The recent review [9] describes in particular the so-called reduction
theory that reduces (Pu) to an optimization problem with a finite number of constraints (see
also [13]). This reduction is possible when the contact set includes a finite number of points
and each of them can be expressed locally as a function of the data, typically a local solution
of an optimization problem with finitely many constraints. Then the perturbation theory
for nonlinear programming can be applied for deriving optimality conditions as well as for
conducting a perturbation analysis; see the early reference 18].

In this paper we do not use any reduction device. In this way we may handle some cases
where there is a continuum of binding constraints, especially when f2 is a one-dimensional
interval. We are also able to treat the case of a finite number of binding constraints in cases
where the reduction theory does not apply.

The paper is organized as follows. In 2 we discuss the directional qualification condition
introduced in part I. We characterize it and show how to deduce a first-order upper estimate.
Section 3 is devoted to the parabolic (second-order) upper estimates. There we combine the
technique of parabolic estimates with the directional qualification condition and a character-
ization of second-order tangent sets to C+(2), recently obtained in [7]. This upper estimate
combined with the strong quadratic growth condition implies the upper Lipschitz property
for the set of solutions. In 4 we discuss some sharp lower estimates. We use there specific
properties of semi-infinite optimization, among them the fact that an extremal multiplier has
a finite support. Then in 5 we recapitulate and state our main result.

2. Directional qualification. We start with some notations. The feasible set, value func-
tion, and set of solutions of (Pu) are denoted

F(u) := {x In a(x, u) >_ 0},
v(u) := inf{f(x, u) x F(u)},
S(u) := {x e F(u) f(x,u)=v(u)}.

Similarly, given any optimization problem (P), we define F(P), v(P), and S(P) as the feasible
set, value function, and set of solutions of (P).

We recall that the dual space of C(K2) is the set M(f2) of bounded measures; see, e.g.,
[22]. If (X, y) 6 m(f2) x C(f2), then (., y) fa y(oo)d.(oo). The support of . 6 M(f2),
denoted supp()), is defined as the complement of the greatest open subset of S2 over which

IZl is null. The negative cone of M(f2) is denoted M_(f2).
The Lagrangian function associated with (Pu) is

.(x, ), u) f (x, u) + .] G(x, u)od1.(o)).

With x F(u) we associate the set of Lagrange multipliers

Au(X) "= {,k 6 m_(f2) supp(.) C Z(G(x, u)) and ’x(X, ), u) 0},

where, for y 6 C(S2), the set Z(y) is the contact set defined as

Z(y) := {w 6 y(w) 0}.

Letus fix a particular solution x0 6 S(0) and denote A0 := A0(x0)andZ0 := Z(G(xo, 0)).
The problem with linearized data (L) and its dual (D) are

(L) min{f’(x0, 0)(d, 1) G’(xo, O)(d, 1) > 0 on Z0},
d

(D) max E,’
u (xo, ), 0).

kAo
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We consider the directional qualification hypothesis

(DCQ) 3 d E ]1n G’(x0, 0)(d, 1) > 0 on Z0,

which is to be compared to the standard qualification hypothesis (see [12])

(CQ) 3 d E I Gtx(xo, O)d > O on Zo.

The following is essentially known.
LEMMA 2.1. Condition (CQ) is equivalent to each ofthefollowing two conditions:
(i) There exists d ]1n such that

G(xo, O) + Gtx (xo, O)d > 0 on

(ii) The set Ao is nonempty and bounded.
Proof. The equivalence between (CQ) and (i) is proven in [20]. That (CQ) implies (ii)

follows from [23]. Let us prove that (ii) implies (CQ). If (CQ) does not hold, then the linear
semi-infinite optimization problem

min{z G’(xo, 0)o(d, 0) + z >_ 0, o Z0}
d,z

has value 0. It follows that (d, z) (0, 0) is a solution of this problem at which the qualifica-
tion condition is satisfied by the direction (0, 1). By (i) = (ii), there exists at least one multiplier. Expressing the optimality conditions, we find that . M_(S2) \ {0}, supp(.)^C Zo, and. o G(x0, 0) 0. It follows that whenever ) A0 and E I+, then . + t. A0, in
contradiction to (ii).

A similar result holds for condition (DCQ).
LEMMA 2.2. Condition (DCQ) is equivalent to

(i) there exist e > 0 and d I such that

G(xo, O) + eG’(xo, 0)(a, 1) > 0 on

If in addition A0 0, then (DCQ) is equivalent to

(ii) the set S(D) is nonempty and bounded.
Proof. Noting that (DCQ) is nothing but the standard qualification condition for the set

of constraints {G(x, u) >_ 0; u >_ 0}, and applying Lemma 2.1, we obtain the equivalence of
(DCQ) and (i).

Now assume that A0 0. That (DCQ) implies (ii) follows from [4, Prop. 3.1]. Con-
versely, if (DCQ) does not hold, we have

a "= min{z G’(xo, O)o(d, 1) + z >_ O, o Zo} >_ O.
d,z

Considering the perturbation function

z
tp((d, z), h)

if h(o) + G’(xo, O)o(d, 1) + z >_ O, o Zo
otherwise,

we obtain the dual problem

min {- f G’u(x’ O)d" ) E M-(f2)’ supp(’) z’ fd) -l’ Gx(x’ O) O]
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Applying [4, Thm. A2] we get the existence of an optimal solution . for this problem, and
we have

n
Gtu (xo, O)d. O.

It follows that for each ) 6 S(D) and every > 0 we have ) + t. 6 S(D), contradicting the
boundedness of S(D) stated in (ii).

From the above lemma and [5, Prop. 5.2], it follows that (DCQ) is a particular case of the
abstract directional constraint qualification of part I.

PROPOSITION 2.3. If(DCQ) holds, then

v(u)- v(O)
lim sup _< v(D) v(L).

u$O

Proof. This follows from Propositions 2.1 and 3.1 in [4] and Lemma 2.2 above.
Remark. The above statements hold when f and G are merely of class C.
3. Second-order upper estimates. Define a path as a mapping u --+ x, from R+ to X,

with x, ---> x0 when u $ 0. The path is said to be feasible if G(x, u) K for u small enough.
In the study of second-order upper estimates, we analyze feasible paths of the form

2

x, := xo + ud + -z + o(u2).

Feasibility of Xu implies some relations between the expansion of G(x, u) and the ge-
ometry of C+ (f2). Given a convex subset K of a Banach space Y, we define the first-order
tangent set at y 6 K as

Tic(y) "= {h Y" there exists o(t) such that y + th + o(t) K}.

Similarly, the second-order tangent set at y 6 K in the direction h 6 T (y) is

T2K(y,h):= zY" there existso(t2) suchthaty+th+-z+o(t2) K

For the sake of simplicity we write T := Tc+(a and T2 := T+(a and denote the terms of the
second-order expansion of f (Xu, u) and G (Xu, u) as

(z, d):= y’x(XO, O)z + f"(xo, O)(d, 1)(d, 1),

qa(z, d) := G’x(XO, O)z + G"(xo, O)(d, 1)(d, 1).

Expanding G(x., u) we obtain that if x. is a feasible path, then

(1) G’(xo, O)(d, 1) 6 T(G(xo, 0)),

(2) qlG(Z, d) TZ(G(xo, 0), G’(xo, O)(d, 1)),

and, when d 6 S(L), we get

u2

(3) v(u) <_ v(O) + uv(L) + -qf(z, d) + o(uZ).

In [4], it was shown that an upper estimate of the second-order variation of the cost is
obtained by minimizing qf (z, d) over those z satisfying (2). The purpose of this section is
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tO make explicit this bound in the case of semi-infinite programming. In the statement of our
result, we use some expressions for the tangent sets of K C+ (f2). The first-order tangent
cone is well known (see, e.g., [20]):

T(y)--{hC(f2)’h>O on Z(y)}.

In particular, the tangent cone at G(x0, 0) is

T(G(xo, O)) {h 6 C(f2) h > O on Z0}.

A formula for the second-order tangent set has been recently obtained in [7]. This formula
uses the concept of lower epilimit that we now recall, referring to 1 for a detailed exposition.
Let (At)t>o be a family of subsets of a Banach space Y. The upper limit of (At)t>o at 0
in the sense of Painlev6-Kuratowski is defined as

limsup At "= {y Y liminf d(y, At) O}t,o t,o

The lower epilimit of a family (ft)t>o of extended real-valued functions on the topological
space K is defined as the function whose epigraph is lim supt$0 epi ft, where

epi j :-- {(x, r) 6 K x N" ft(x) < r}

is the epigraph of ft. An alternative characterization is given by

e-liminf ft (x) = sup liminf inf ft (Y) liminf ft (y),
t,[.O VEJV’(x) t,l.O yEV (t,y)-+(O+,x)

where N’(x) is the set of neighborhoods of x.
PROPOSITION 3.1 (cf. [7]). Let y C+() and h T(y). Then

T2(y, h) {h C() h q- z-(y, h) >_ 0},

where z-(f, v) is the lower semicontinuous extended real-valuedfunction defined by

z’(f, v):= e-litnf If +tv]22-
Equivalently, z- (f, v) is given by theformula

0 if o9 int Z(f) and v(og) O,

(4) z-(f, v)(og) -0(o9) if o9 bd Z(f) and v(og) O,

+cx otherwise,

where

[-v(y)]+
(5) 0(o9) := limsup

y-,o) 2f(y)
f(y)>O

In view of this result, defining

E (d, u)o, :=
G(xo, 0)o + uG’(xo, O)a,(d, 1)

u2/2

z-(og) := e-liminf E(d, u)o,
uS0
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we get the characterization

Ta(G(xo, 0); G’(xo, O)(d, 1)) {h C(g2) h q- rd > 0}.

Writing T2 (d) for the above set for brevity, we see that T2 (d) - q if and only if Zd > --Cx.

In such a case the support function of Ta (d) can be characterized as

cr(,k, T2(d)):=sup{fah(o)dZ(o).h T2(d)} -f. a(w)az(w)
for all ) 6 S(D). (Since . <_ 0 and re is lower semicontinuous and nonpositive on supp()),
the integral on the right-hand side above is well defined.) To make this equality always valid
we define fa re (o9)d)(w) "= +o whenever re takes the value -o.

The function -re may be interpreted as an upper curvaturefunction.
Given d 6 S(L), the relations (1)-(3) suggest consideration of the subproblem

(Le) min{/(z, d) q6(z, d) / rd > 0},

with which we associate a dual formulation

(De) max "(xo, ), O)(d, 1)(d, 1) + f re(w)d.(w).
.S(D)

We also introduce the problem

(Q) min{v(Le) d 6 S(L)}.

Whenever v’(0) exists, we define the upper and lower second-order Dini derivatives

tt(6) v+(0) "= limsup 2Iv(u) v(0) uv’(O)]/u2,
uS0

(7) v’_’ (0) "= lim inf 2Iv(u) v(0) uv’ (0)]/ua.
uS0

PROPOSITION 3.2. If (DCQ) holds, then v(Le) v(De)for all d S(L), and we have
v(Q) < +o iff there exists d S(L)such that re(w) > -tiffor all o9 f2. Moreover, if
S(L) is nonempty and v(Q) > -o, we then have

u2

(8) v(u) <_ v(O) + uv(L) + -v(Q) + o(/,t2).

In particular, ifthere exists v’ (0) v(L), we get

(9) v+(0) < inf max -."(xo, ), O)(d, 1)(d, 1) + re(og)d.(og)
deS(L) .S(D)

Proof. This is a consequence of Propositions 2.1, 2.2, and 4.2 in [4]. U
By the above Proposition, v(Q) < +cx iff rd > --cx for some d S(L). We show that

a sufficient condition for this is a quadratic growth condition, recently introduced in [20].
LEMMA 3.3. Suppose that G’(xo, O) is Lipschitz with respect to o9 andassume that G(xo, O)

satisfies the quadratic growth condition

(QGC) c > 0 such that G(xo, 0)o > c dist(og, Z0)2.

Then rd > --0for all d S(L).
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Proof Using (4) it suffices to show that for all co 6 bd Z0 with G’(xo, O)(d, 1)o 0 we
have O(w) < +e. To this end let L be a Lipschitz constant for co G’(xo, O)(d, 1),o. For
each co Z0 let coo be a projection of o9 onto Z0. Then coo lies on the boundary of Z0 so that
G(xo, 0)oo 0, and since G’(xo, O)(d, 1) 6 T(G(xo, 0)) we deduce G’(xo, O)(d, 1)o0 > 0.
We obtain

-G’(xo, O)(d, 1)o < -G’(xo, O)(d, 1)o0 + L d(co, wo) < L dist(co, Zo).

From this and (QGC) we deduce

[-G’(xo, 0)(d, 1),o]2+ < L2 dist(co, Zo)2 < L2G(xo, 0),
c

which implies 0 (co) <_ L2/ (2c) < +cxz.
Remark. Assuming (DCQ), we know by Lemma 2.2 that S(D) is bounded. Let d 6 S(L).

If(QGC) holds, as a consequence ofthe bound established for 0 (co), the amountf rd (co)d) (co)
is bounded uniformly for . 6 S(D), so v(Dd) is finite.

4. Stability of solutions. We state next a sufficient condition for ensuring a Lipschitz
behavior of the (sub)optimal paths Xu of the perturbed problems. The result, which is a rather
straightforward application of the preceding discussion and [4, Prop. 6.3], is based on the
strong second-order sufficient condition

(SOC) max (xo, ., O)dd > 0 for all d in C\{0},
Z6S(D)

where C denotes the critical cone

C :-- {d 6 In fx(x0, 0)d < 0 and Gtx (xo, O)d > 0 on Z0}.

PROPOSITION 4.1. Suppose that
(i) (DCQ) holds and Ao 7 9t.
(ii) There exists d S(L) such that ra(co) > -cx co 6 ft.
(iii) (SOC) holds.
Then every O(u2)-optimal path Xu satisfies Xu xo + O(u).
Remark. Combining Lemma 3.3 and Proposition 4.1, we obtain a sufficient condition for

Lipschitz behavior of solutions, similar to the result of [20].
Remark. Following 10], we may introduce the strong quadratic growth condition

(SQG) ot > 0, c > 0, F(x, u) > v(O) + uv(L) + ot dist(x, So)2 cu2,

where

f(x,u) ifG(x,u)>_O,
F(x, u) "--- +cx if not.

Then we can show that (SOC) =, (SQG), and Proposition 4.1 is still valid if we replace
assumption (iii) by (SQG).

5. Lower estimates. We recall for reference the following standard lower estimate,
which is in fact a particular case of the general lower estimate of part I.

LEMMA 5.1. Let us assume (DCQ) and suppose that there exists a path ofo(u2)-optimal
solutions Xu satisfying Xu xo -t- O(u). Then Ao 0, v’(0) exists with v’(0) v(L) v(D),
S(L) 7 0, and we have

v" (0) > inf max Z;"(x0 . 0)(d, 1)(d, 1)
d6S(L) L6S(D)
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Proof The existence of v’(0), as well as the equality v’(0) v(L) v(D), follows from
[4, Prop. 3.2]. The finiteness of v’(0) v(D) implies that A0 # 0, and [4, Prop. 3.3] gives
S(L) : 0. The lower estimate on v’_’ (0) is then obtained by applying [4, Prop. 4.3(b)]. ]

Comparing the previous lower estimate to the upper estimate (9) in 3, we observe a gap
due to the curvature of C+() at G(xo, 0). More precisely, if

rd 0 on supp(.) ) S(D),

then the two estimates coincide, but as one can see from (4) and (5), this may occur only in
some very special situations.

We are then led to search for sharper lower estimates. We will obtain a lower estimate on
v’_ (0) involving the upper epilimit of E (d, u).

We recall the concept of upper epilimit, for which we refer again to [1]. Let (At)t>0 be
a family of subsets of a Banach space Y. The lower limit of (At)t>o at 0 in the sense of
Painlev6-Kuratowski is defined as

limtnf At "= lY Y limsupd(y’At) =O}
The upper epilimit of a family (ft)t>o of extended real-valued functions on the topological
space K is defined as the function whose epigraph is lim inft,0 epi ft. A useful formula is

(10) e-limsup ft(x) sup limsup inf ft(y).
t,[,O V 6.N’(x) t,[,O y6 V

When the upper and lower epilimits coincide at a given point, we shall say that the family of
functions epiconverges at that point, and we shall denote

e-lim ft (x) e-lim inf ft (x) e-lim sup ft (x).
t$0 t$0 t$0

We shall say that the family of functions epiconverges on a subset K0 C K if it epiconverges
at each point of K0.

The next proposition makes use ofthe set ofextreme points of S(D), which will be denoted
S*(D). The result will be derived under a technical assumption (H,), which will be further
clarified afterwards. B(d, r) denotes the ball of center cb and radius r.

PROPOSITION 5.2. Assume (DCQ) and suppose that there exists an o(uZ)-optimal path
such that Xu xo + O(u). Let G(xo, 0), G’(xo, 0), and G"(xo, O) be Lipschitz with respect to
oo and assume also thatfor every d S(L), each ;k S* (D), and every 39 supp()0, one has

(H) 3 V 6 .A/’(d), 3 r > 0 s.t. inf E(d, u)o inf E(d, u)o + o(1),
ooV ogB(,ru)

with o(1) converging to 0 uniformly as u $ O. Then

(11) v"_(O) >_ deS(L)inf )6S(D)maxl"(x’’O)(d’l)(d’l)/f’d(c)d;()]’
where

.d(W) := e-limsup E(d, u)o.
u,0

For f d(cO)d,(O) we adopt the same convention as in 3" its value is the usual integral
when ’a > -cx, and +cx when ’d takes the value -cxz. With this convention
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s2d(oJ)d)(o9)

--o’(,, {h 6 C(f2); h + fd 0}),

which is an upper semicontinuous function of ) 6 S(D).
The function --f’d may be interpreted as a lower-curvature function.
We discuss some consequences of this proposition, postponing the proof until the end of

the section.
Comparing the bounds obtained for v(0) and v’_ (0) in Propositions 3.2 and 5.2, we see

that the only difference is between the terms e-liminfu+0 E(d, u) and e-lim supt+0 E(d, u).
The statement below follows.

COROLLARY 5.3. Irt addition to the assumptions of Proposition 5.2, let us suppose that
(d, u) epiconverges on supp())for each ) S* (D) and d S(L). Then there exists

1)it(0) d6S(L)inf 6S(D)maxl"(x’;’o)+fe-limV(d’u)d;(c)l’u+O
It remains to find sufficient conditions to ensure the technical assumption (H6) in Propo-

sition 5.2. Lemma 5.5 below gives a result in this direction. We first need a technical lemma
which describes the structure of extreme points of S(D).

LEMMA 5.4. Suppose (DCQ) and A0 0. Then S(D) is the closed convex hull of S* (D),
and any ,k S* (D) is of theform

p

(12)
i=1

with p < n, ,koi < O, and 3oi being the Dirac mass at coi. (Recall that n is the dimension of
the space to which x belongs.)

Proof By Lemma 2.2, the set S(D) is nonempty and bounded. Being closed, it is weak*
compact. The Krein-Milman theorem implies that S(D) is the closed convex hull of its
extreme points (see, e.g., [22]). Now, S(D) is a face of A0 so that the points in S*(D) are also
extreme points of A0, and the latter are known to be the sum of at most n Dirac masses (see
[20]).

LEMMA 5.5. Suppose that G(xo, 0), G’(xo, 0), and G"(xo, O) are Lipschitz with respect
to co and (QGC) holds. Under each of the following conditions, property

supp()), V ) S*(D), d S(L)"
(i) Zo is a finite set.

(ii) f2 is an interval, and Zo is the union offinitely many intervals.

Proof. By the previous lemma, ) 6 S*(D) has a finite support included in Zo. Then,
using d 6 S(L), we obtain

G(xo, 0)6 G’(x0, 0)(d, 1)6 0 ’v’ d supp(;).

From this we deduce that for all V 6 A/’(d) we have for all r > 0, u > 0 small enough

(13) inf E(d, u)o _< inf E(d, u)o < E(d, u)6 0.
coEV o9EB(6,ru)

Let V be a closed neighborhood of
V \ Z0: this is possible by (i) or (ii). Let us consider a Lipschitz constant L for

g(co) G’(x,O)(d, 1)o,

and let cou minimize E (d, U)o over co V. If cou 6 Z0, then we get E (d, U)ou > O, which
combined with (13) gives (H6) with o(1) 0 and r > 0 arbitrary. Let us then assume that
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o)u ’ Z0. Then we may use (QGC) and (13) to obtain

/,/2 U2
c dist(COu, Z0)2 + ug(oOu) < G(xo, 0)o), + ug(cOu) - (d, u)ou < - Z(d, u)a, ug(d)).

Since g(co) is Lipschitzian, we get

c d(oou, ())2 _< u(g(?o) g(COu)) < uL d(wu, o),

and then d(o)., &) < uL/c. This proves that minimizing E(d, u)o over o) V is equivalent
to minimizing it over B(o, uL/c), proving (Ha,) with r L/c and o(1) 0.

We now return to the proof of Proposition 5.2, starting with the following lemma, which
does not use the specific properties of semi-infinite optimization.

LEMMA 5.6. Assume (DCQ) and suppose that there exists an o(u2)-optimal path such
that x xo + O(u). Then there exists Uk $ 0 and d S(L) such thatfor any )v S(D)

(14) v’_ (0) =/2"(x0, , 0)(d, 1)(d, 1) lim [ o(zk, d)odZ(co),
k-- xz

where

(15) zk "=
x"k x0 ukd

u,/2

Proof. Let us take a sequence uk $ 0 such that

(16) 2(v(u) v(0) uv(L))/u -+ v"_ (0).

Denoting x x,k and passing to a subsequence we may also assume that

(17) (x xo)/uk -+ d

for some d 6 Nn, which, by [4, Prop. 3.3], satisfies d 6 S(L).
Since x, xo + O(u), a second-order expansion of G gives

G(x, u) G(xo, O) + uG’(xo, 0)(d, 1) + @qa(z1, d) + o(u).

Since d 6 S(L) and )v 6 S(D) we have

(), G(xo, 0)) (., G’(xo, O)(d, 1)) 0,

from which we get

(; G(x u))= u_ () qo(z d)} q-O(U2)k

Taking into account that ;(xo, )v, O) v(O), (xo, , O) O, and ’u (xo, , O) v’ (0),
we deduce

v(u) f(x, u) + o(u) (x, , u) (, G(x, u)) + o(u)

v(O) + uv’(O) + [E"(x0, X, 0)(d, 1)(d, 1) (L, o(z, d))] + o(u),

from which the conclusion follows. S
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In order to get the best lower estimate, and recalling that the multiplier is nonpositive, we
must minorize 6(z, d) efficiently. Note that by expanding G(x, u), we get the following
relation, which we shall use later:

(18) (z d)+ E(d u) > o(1)

where the inequality is to be understood in C (f2), i.e., o(1) --+ 0 uniformly when u $ 0.
We now proceed with the proof of Proposition 5.2.
Proof Let u, d, z be chosen as in Lemma 5.6. Consider the problem

max {C"(xo,),O)(d, 1)(d, 1) + fnd(co)d.(co) }.6S(D)

As the cost function is affine and upper semicontinuous and S(D) is weak* compact, the
maximum is attained at an extreme point )* 6 S*(D). By Lemma 5.4, ;k* Y=I )oi3oi

Let us take d wi. From (18) we have

6(z d) + .V.(d U)o > (z d) (z d)o + o(1)

with o(1) uniform with respect to co. Minimize the right-hand side first and then the left-hand
side for co B(dg, ru) to obtain

6(z, d) + inf E(d, u)o _> 6(z, d)6 sup q6(z, d)o + o(1).
co6B(?o, ruk o6B(dg,ru

Now if we fix r > 0, because G’(xo, 0) and G"(xo, 0) are Lipschitzian, using the fact that
uz 0, we get

(z, d)# sup
ogB(dg,ruk)

tP(z, d)o > O(u)llzll + o(1) o(1),

which combined with the previous estimate gives

(z, d) + inf E(d, U)o >_ o(1).
o9_B(o,ru

Invoking assumption (Hd,), we may select V 6 A/’(cb), r > 0 such that

liminf(z, d) + lim sup inf E(d, u)o _> 0,
k--++cx3 u $O

and therefore, by (10)

liminf a(z, d) + d(()) 0.

Combining this estimate with (14) and noting that ),oi < 0, we obtain (11) as required.

6. Conclusion. Let us assume that the original problem (P0) has a unique solution

(H1) ,S(0) {x0}

and that we have the uniform boundedness of solutions:

(H2) r > 0, uo > 0 such that for all u <_ uo, S(u) 0 and S(u) C B(O, r).

THEOREM 6.1 (main result). Let us assume (HI), (H2), (DCQ), (QGC), (SOC), and
S(L) 0. Suppose also that G(xo, 0), G’ (xo, 0), and G"(xo, O) are Lipschitz with respect to
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co. Suppose finally thatfor each d S(L) there exists e-limu+0 E(d, u) and also that one of
thefollowing conditions holds:

(i) Zo is finite.
(ii) f2 is an interval, and Zo is the union offinitely many intervals.
Then we have
(a) The value function has first- and second-order (right) derivatives given by v’(O)

v(L), v"(O) v(Q). Moreover, if v(Q) > -cx, we have the expansion

bt 2

V(U) v(O) + uv(L) + -v(Q) + o(u2).

(b) The set of all limit points of (xu xo) /u, where x ranges over all paths of O(U2)
optimal solutions, is included in S(Q). In particular, if S(Q) is a singleton, i.e.,
S(Q) {d}, and x is as above, then x xo + ud + o(u).

(c) Let d S(Q). If there exists z S(L/) (this is always the case when (i) holds), then
there exists an o(uZ)-optimal path Xu xo + ud + o(u).

(d) Let ) be a multiplier associated with a solution xu of (P). Then all weak* limit
points of) belong to S(D).

Proof From (H1) and (H2) there exists x S(u) which satisfies xu --+ x0 when u $ 0.
Then, from Proposition 4.1 we get Xu xo + 0 (u), and part (a) follows by combining Lemmas
5.1 and 5.5 with Corollary 5.3.

If x is a path of o(uZ)-optimal solutions, expanding f(xu, u) as in the proof of Lemma
5.6, we obtain the first statement in (b). The second statement is an immediate consequence
of the first.

We now prove (c). Let d S(Q) and z S(Ld). Then there exists a feasible path
x xo + ud + -z + o(u2). Expanding f(x, u) and G(x, u), we obtain v(Q) qf(z, d)
as well as (2). The conclusion follows.

Assertion (d) is a consequence of [4, Prop. 3.3]. [3

Concluding remarks. Our final result is an extension to semi-infinite optimization of
the results of the sequence of papers [8], [19], [2], and [6] in the following sense: if f2 is a
finite set, then we exactly recover the above-mentioned results up to the presence of equality
constraints. However, there is no difficulty in adding a finite number of equality constraints to
our formulation. We avoided it for the sake of clarity of exposition and in order to concentrate
on the real difficulty, which is to handle an infinite number of constraints.

Some of our hypotheses, however, may seem unduly strong. First of all, we assume
that S(L) is nonempty. While this hypothesis is automatically satisfied when the contact set
is finite (due to the standard theory of linear programming), we are not aware of general
criteria allowing to check nonemptyness of S(L) for semi-infinite programming. Performing
an analysis of the variation of the solutions when S(L) is empty is an open problem. Some of
the results of part II might be useful for dealing with this case.

The other hypothesis that seems excessively strong is the alternative (i) or (ii). We need
it in order to satisfy the geometrical hypothesis (H). Still, the most important contribution of
this paper is to present a new way of obtaining sharp lower estimates of the cost, and we hope
that the technique presented here can be improved in order to deal with more general contact
sets.
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Abstract. In Gfiteaux or bornologically differentiable spaces there are two natural generalizations of the concept
of a Fr6chet subderivative. In this paper we study the viscosity subderivative (which is the more robust of the two) and
establish refined fuzzy sum rules for it in a smooth Banach space. These rules are applied to obtain comparison results
for viscosity solutions of Hamilton-Jacobi equations in smooth spaces. A unified treatment of metric regularity in
smooth spaces completes the paper. This illustrates the flexibility of viscosity subderivatives as a tool for analysis.

Key words, viscosity subderivative, fuzzy sum rule, viscosity solutions, Hamilton-Jacobi equations, smooth
spaces, metric regularity

AMS subject classifications. 49J52, 49L25, 49J40, 49J50, 58C20

1. Introduction. It is well known that the proximal limit formula for generalized deriva-
tives plays a crucial role in Hilbert space nonsmooth and variational analysis. The reason is
twofold: many properties of a nonsmooth function are determined by the (densely existing)
proximal subderivatives, and proximal subderivatives are easier to handle than various other
generalized derivatives. However, the proximal derivative concept depends crucially on the
analysis of nearest points and, therefore, relies heavily on the inner product structure of the
underlying space. Recent research [8, 10, 19] shows that, in fact, what is essential in this
context is a "smooth" support function (rather than a nearest point) that corresponds to the
"viscosity" (as opposed to the limit) subderivative concept. This makes it possible to do non-
smooth and variational analysis in smooth Banach spaces by using bornological subderivatives
(compatible to the smoothness of the underlying space). Such a new technology is crucially
important in studying problems on non-Fr6chet-smooth spaces (see, for example, 10]).

One of the most important properties of the proximal subderivatives (and that of other
generalized derivatives) is the sum rule. There is extensive research on this topic. We refer
to Aubin and Frankowska [1], Clarke [11, 12], Deville and Haddad [20], Fabian [21], Ioffe
[25, 26, 27, 28, 30], Jourani and Thibault [31], Kruger and Mordukhovich [32], Loewen
[34], Mordukhovich [37], Mordukhovich and Shao [38], Rockafellar [41], Thibault [42],
Ward and Borwein [43], and Warga [44, 45] and the references therein for sum rules for
various generalized derivatives. The main purpose of this paper is to establish refined versions
of the "fuzzy" sum rule given in [8] for viscosity bornological subderivatives and discuss
its applications to viscosity solutions of Hamilton-Jacobi (HJ) equations and to the metric
regularity problem. Roughly speaking, the major difference between our sum rules and that of
[8] is the following observation: we can have certain control on the "size" of the bornological
subderivatives in the sum. This observation is new even for sum rules in finite-dimensional
spaces and is important for applications (e.g., in viscosity solution theory). A crucial tool in
proving our "fuzzy" sum rules is the smooth variational principle proven in [9] that requires
the underlying space to have a smooth equivalent norm. In most of the following results
this condition can be weakened by using the smooth variational principle proven by Deville,
Godefroy, and Zizler 18]: it suffices that the space has a smooth bump function.
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Viscosity solutions were introduced by Crandall and Lions [15] to handle partial differ-
ential equations (in particular, HJ equations) that do not have any classical solution. Naturally
the uniqueness of viscosity solution is one of the most important issues in the viscosity so-
lution theory. The basic uniqueness result for finite-dimension problems was established in
the pioneering paper of Crandall and Lions 15] and then developed in 13]. It is extended
to Banach spaces with the Radon-Nikodm property in [16, part I]. In [19] and [20] unique-
ness results are derived for HJ equations in smooth spaces with elegant short proofs using the
smooth variational principle and fuzzy sum rules for viscosity subderivatives. However, the
results in [19] and [20] require restrictive uniform continuity conditions to be imposed on the
Hamiltonian. For HJ equations corresponding to optimal control problems involving general
control equations, these uniform continuity conditions are not satisfied. By using our refined
fuzzy sum rule we can prove a uniqueness theorem for an HJ equation under less restrictive
conditions. It is applicable to infinite-horizon optimal control problems with a control equa-
tion that satisfies the usual Lipschitz condition in the state variable. We then apply this result
to show that the value function of a class of infinite-horizon optimal control problems in a
/3-smooth space is the unique/3-viscosity solution of the corresponding HJ equation. These
results in particular applies to such a problem in L which has a weak Hadamard smooth
equivalent norm [6].

We also apply these fuzzy sum rules to give a unified treatment of metric regularity in
smooth spaces. We prove a dual sufficient condition for metric regularity that is parallel to the
dual conditions given in Ioffe [27] and Ginsburg and Ioffe [23] and deduce a primal condition
that improves a similar condition in Borwein and Strojwas [5]. Then we show that various
primal conditions discussed in 1, 2, 3, 5] can be deduced from our primary conditions. This
illustrate the flexibility of viscosity subderivatives as a tool for analysis.

We introduce terminology and prove our refined fuzzy sum rules (Theorems 2.9-2.12) in

2. In 3 we discuss viscosity solutions to the HJ equations in smooth spaces, and in 4 we
discuss metric regularity.

Finally let us remark that in bornologically differentiable spaces there are two natural
generalizations of a Fr6chet subderivative. It seems to us that in such spaces the viscosity
subderivative (Definition 2.1) is usually the right generalization to use, rather than the limit
definition.

2. Viscosity subderivatives and fuzzy sum formulae. Let X be a real Banach space
with closed unit ball B and dual X*. For a set S in X, we denote its diameter by diam(S) "=

sup{I Ix Y ll x, y 6 S}. A bornology 13 of X is a family of closed bounded and centrally
symmetric subsets of X whose union is X, which is closed under multiplication by scalars and
is directed upward (that is, the union of any two members of/3 is contained in some member
of/3). We will denote by X the dual space of X endowed with the topology of uniform
convergence on/3-sets. The most important bornologies are those formed by all (symmetric)
bounded sets (the Fr6chet bornology, denoted by F), weak compact sets (the weak Hadamard
bornology, denoted by WH), compact sets (the Hadamard bornology, denoted by H), and
finite sets (the Gteaux bornology, denoted by G).

We will define a convex bornology as one that also contains all convex closures of the sets
in the corresponding bornology. (In particular, any finite-dimensional subspace is included
in the subspace spanned by some element of the convex bornology.) Note that the convex
Gteaux bornology lies strictly between the Gteaux and Hadamard bornology, while for the
Fr6chet, weak Hadamard, and Hadamard bornologies the convex and nonconvex definitions
are the same.

By afunction we always mean an extended-real-valued function, usually lower (upper)
semicontinuous and proper (that is to say, not everywhere equal to +cx (-cxz) and nowhere
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equal to -cxz (+)). Given a function f on X, we say that f is fi-differentiable at x and has
a fl-derivative Vf(x) if f (x) is finite and

-1 (f(x + tu) f(x) t(V f(x), u)) -+ 0

as --+ 0 uniformly in u 6 V for every V 6/3. We say that a function f is fl-smooth at x if
V f X --+ X is continuous in a neighbourhood of x. It is not hard to check that a convex
function f is fl-smooth at x if and only if f is fl-differentiable on a convex neighbourhood of
x. Now we can define fl-viscosity subderivatives and superderivatives.

DEFINITION 2.1. Let f be a lower semicontinuous function and f(x) < +zxz. We say f
is fl-viscosity subdifferentiable and x* is a fl-viscosity subderivative of f at x if there exists
a locally Lipschitzfunction g such that g is -smooth at x, V g(x) x*, and f g attains a
local minimum at x. We denote the set ofall -viscosity subderivatives of f at x by Df(x).

Let f be a upper semicontinuous function and f(x) > -cxz. We say f is fl-viscosity
superdifferentiable and x* is a fl-viscosity superderivative of f at x if there exists a locally
Lipschitz function g such that g is -smooth at x, V g(x) x*, and f g attains a local
maximum at x. We denote the set ofall -viscosity superderivatives of f at x by D f(x).

Remark 2.2. The concepts of viscosity subderivatives and superderivatives are introduced
in [19] in slightly different forms where the fi-smooth function g is required only to be upper
semicontinuous and lower semicontinuous, respectively. We require g to be locally Lipschitz
because it seems more convenient for applications.

Remark 2.3. By adding a constant we may always assume that the fl-smooth function g
in the above definition satisfies g (x) f (x).

Remark 2.4. The limit definition of the fl-subdifferential 0f(x) of f at x is as follows:
x* 0f(x) if, for any e > 0 and any V fl, there exists a r/> 0 such that

t-l(f(x+th)-f(x))-(x*,h) >-e ’v’t (0,7), h V.

One can check that Df(x) C 0f (x). It is proven in 18] that DFf (x) OFf (x), provided
that there exists a Lipschitz Fr6chet-smooth bump function on X. However, the two concepts
are different in general as shown by the following example.

Example 2.5. Let f R -- R (n >_ 2) be continuous, and suppose that f is Gteaux
but not Fr6chet (weak Hadamard) differentiable at 0 (e.g., f R2 --+ R defined by f(x, y)
xy3/(x2 + y4) when (x, y) - (0, 0) and f(0, 0) 0 at point (0, 0)). Let g(h) := -If(h)
f(0) Vf(0)h I. Then g is locally uniformly continuous and

(1) OGg(O) {0};
(2) D6g (0) 0.
Proof In fact, we can directly check that Vg(0) 0; hence Og(O) {0}. Since we

always have Dg(O) C Og(O), either (2) is true or else Dg(O) {0}. In the latter case, there
exists a locally Lipschitz and Gteaux-differentiable (and therefore Fr6chet-differentiable)
function k such that k(0) g(0) 0, Vk(0) Vg(0) 0, and k _< g in a neighbourhood
of 0. Thus,

If(O 4- h) f(O) Vf(O)hl k(h) k(O) Ik(h) k(O)l

Ilhll Ilhll Ilhll
which implies that f is Frchet differentiable at 0, a contradiction.

DEFINITION 2.6 (see [8]). Let fl, fu be lower semicontinuousfunctions and E be a
closed subset of X. We say that (fl fu) is uniformly lower semicontinuous on E if

inf Z f,(x) < liminf f,(xn)" llx- Xmll <_ e,x,Xm E, n, m 1 N
xEE e-+O

n--1 n--1
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NWe say that (fl fN) is locally uniformly lower semicontinuous if for any x Nn__
dom(fn), (fl fN) is uniformly lower semicontinuous on a closed ball centered at x.

The next useful proposition follows directly from the definition.
PROPOSITION 2.7. Let (fl fN) be lower semicontinuous functions on X and E be

a closed subset of X. Then the following conditions are sufficient for (fl,..., fN) to be
uniformly lower semicontinuous on E:

1. all but one ofthefunctions are uniformly continuous on E;
2. one ofthefunctions has compact level sets when restricted to E;
3. X is finite dimensional and E is bounded.
The following lemma, first used in [8] in a different form, is an infinite-dimensional

extension of the smooth penalization result [14, Lem. 3.1 ].
LEMMA 2.8. Let (fl fN) be lower semicontinuous functions and E be a closed

subset of X. Suppose that (fl fN) is uniformly lower semicontinuous on E. Define, for
t>O,

Mt inf
(xl xv)Ev

Assume that (x x satisfies

fn(Xn) + IIx Xmll 2

n=l n,m=l

lim Mt fn (xtn) + IIx Xm 0.
t--+x

n=l n,m=l

Then
(i) limt t[diam({x xv})]2 0;
(ii) limt__, Mt infxee= f(x).
Pro@ Set

dt "= Mt fn(Xtn) + IIx Xm 112
n=l n,m=l

Then limt dt 0. Evidently Mt increases with and Mt infxee nl fn (X). Therefore,
M "= lim Me exists and M infxee f (x). Moreover,

N N

n=l n,m=l

N N N

fn (Xtn) + Z []xtn xm [[2 Z [[Xn xm [[2
n=l n,m=l n,m=l

N
2

"-" M, d - IIx. xm
n,m=l

or

N
22(Mr Mt/2 dt) >_ Z IIx x

n,m=l

>_ t[diam({x Xv})]2.

Thus,

]2lim t[diam({x XN} O.
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It remains to show that M > infxee nN=l fn (X)o TO do so, observe that Ilxn xm 0 when
--+ cx and (fl fu) is uniformly lower semicontinuous on E. Therefore,

M lim f(xtn) + Ilxt xmll 2t--- (x)
n=l n,m=l

N N

_> lim inf f (x) > inf Z f(x).
t--c x E

n=l n=l

The next theorem is a refined fuzzy sum rule for the sum of several functions at its
minimum. It refines [8, Prop. 4] in that it gives a bound for the/3-subderivatives in the fuzzy
sum. This bound is new even for fuzzy sum rules in finite-dimensional spaces and is important
in application to the uniqueness result for HJ equations.

THEOREM 2.9. LetX be aBanach space with an equivalent l-smooth norm and f fN
be lower semicontinuousfunctions on X. Suppose that (f fN) is locally uniformly lower

Nsemicontinuous and Y’n=l fn attains a local minimum at x. Then, for any e > O, there ex-
ist Xn x + eB and X Dfn (Xn n 1 N, such that fn (Xn fn (X < 8,

IIxSlldiam({x, XN}) < e, n 1, 2 N, and

<8.

Proof Let e > 0 be given. Taking a smaller e if necessary, we may assume that
(fl, fN) is uniformly lower semicontinuous onx+eB and that y,Nn= fn attains a minimum
at x over x / eB. Define

N N

wt(Yl YN) Z fn(Yn) -+- IlYn Yml[ 2.
n=l n,m=l

Then, by Lemma 2.8,

()

lim inf{wt(y YN) Y x + eB, n 1 N}

N N

inf fn(y)=fn(X)=Wt(X x).
yx+eB

n=l n--1

Choose ti cx such that

e2

UOti (X X) < inf{wt, (Yl YN) Yn X + eB, n N} + -t
Then by the Borwein-Preiss smooth variational principle [9], for each there exist a/3-smooth
function bi and x, n 1 N, such that wti dl- ti attains a local minimum at (x{ Xv),
Ilv/ll < t/N, IIx,- xll < e/i, and

(2)
82

inf{wt,toti(x xN) < (Yl, YN) Yn x + eB n 1 N} +
Ni

For each n, the function

y --+ 113ti (x Xn_l, y, Xn+ X + )i(X Xn_l, y, Xn+l,... X
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Thusattains a local minimum at y xn

(3)
N

XI)- 2ti Vll 112(x,- Xm) E Ofn(xn).Xni .:’- --VflXn(i(X1
m=l

Summing x* n 1 N, yields
ni

N N N N

Z Xni Z Vflxn )i (Xl X) 2ti ZZ V/ [l" [[2(X Xm).
n=l n=l n=l m=l

NObserving that Yn--1 xnti(Xi’’’’’ x)ll and

v-TB 2V’ll 112(x Xm) + v- I1" (Xm Xn) 0

so that the double sum in the previous inclusion vanishes, we obtain

By (1) and (2)

N N

Z f,(x) lim Z f"(xi)"
n=l

i--> cx:>
n=l

Since fn, n 1 N, are lower semicontinuous

lim fn (x) fn (X), n=l N.

Moreover, Lemma 2.8 and (2) imply

lim ti[diam({x XN})]2 O.(4)
i--+oo

Since X7II. 112(x) is bounded by 211xll, combining (4) and (3) yields

*lim IlXn, lldiam({x x 0 for n N.

Thus, when is sufficiently large,

[]x --xl[ < e, [fn(Xin)- fn(X)[ < e, and [[xilldiam({x XN} < E

/and * x*,n=l N.for n 1, 2 N. It remains to take Xn xn Xn ni
The next three theorems provide general forms of sum rules for/3-viscosity subderiva-

tives.
THEOREM 2.10. Let X be a Banach space with an equivalent fl-smooth norm. Let

f fN be lower semicontinuous functions on X, with x fqnN=ldOm(fn). Then, for
Nany x* D Yn=l fn)(X), e > O, and any weak-star neighbourhood V of 0 in X*,

*there exist Xn x + eB, xn Dfn(Xn),n 1 N, such that [fn(Xn) fn(X)[ < e,
[[xn*lldiam({x XN}) < e, n 1, 2 N, and

N

n=l
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Proof. Let e > 0 and V be a weak-star neighbourhood of 0 in X*. Fix r > 0, L a
finite-dimensional subspace of X containing x, and V a/3-neighbourhood of 0 in X such

Nthat V + L+/- + rBx, C V. Since x* 6 D(Yn= fn)(X), there exists a locally Lipschitz
function g such that g is fl smooth at x with Vg(x) x* and ZnN=I fn g attains a
local minimum at x. Choose 0 < r/ < min(e, r) such that lIT x < r/ < e implies that

NVtg (x) V g(y) 6 Vt, and let 3L be the indicator function of L. Thenn= fn g+3L attains
a local minimum at x. By Proposition 2.7 (fl fN, --g, ) is locally uniformly lower
semicontinuous. Applying Theorem 2.9 yields the existence OfXn, n N+2, such that

--Vg(XN+I),[[x-x[[ <r/<e,n=l,...,N+2, x 6 Df(x,), n l, N, XN+
and xv+ D6I(XN+e) satisfying the conclusion of Theorem 2.9, i.e., [fn(Xn) fn(X)[ <

r/ < e, [[x[[diam({x XN}) <_ [[x*[[diam({x XN+2}) < 7 < e for n N,
1(XN+) I (x)] < r/, i.e., XN+2 L, and

N

Vt *x g(XN+) + XN+2 r Bx,.
n=l

Note that D/SL (XN+2) L+/- and x* Vtg(xN+l) Vs. [-]

Using the method in [8], we can prove the following stronger result.
THEOREM 2.11. Let t be a convex bornology andX be a Banach space with an equivalent

U dom(fn).-smooth norm. Let f fu be lower semicontinuous functions and x f’ln=
NThen, for any x* O(}-n= fn)(X), e > O, and any weak-star neighbourhood V ofO in X*,

there exist Xn x + eB, xn Dt fn(Xn),n N, such that Ifn(Xn) fn(X)l < e,
IlXn*lldiam({xl XN}) < e, n 1, 2,..., N, and

N

x* xn+V.
n=l

Proof. Let e > 0 and V be a weak-star neighbourhood of 0 in X*. Fix r > 0 and
L a finite-dimensional subspace of X containing x such that L+/- + 2rBx, C V. Let x* 6

NO(n= fn)(X). Then, for any K 6/3,

(5) liminf inf -1 (fn(X + h) fn(X)) (x*, h) >_ O.
t--o+ htK

n=l

Choose a K /3 containing the intersection of L with a ball around zero. Then (5) in particular
implies that

liminf inf - (fn(x + h) fn(x)) (x*, h) > O.
t.-O+ htBC’IL

n=l

Since L is a finite-dimensional space, this is equivalent to

N

liminf inf Ily Nil - (f(y) fn(x)) (x*, y x) >_ 0.
Ily-x II--0 y-xeL n=l

Thus, there exists r/< r such that the function

N

Y fn(Y) Ix*, y) + rlly xll + 6L(Y)
rt--1

attains a minimum over y 6 x + r/B at y x.
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By Proposition 2.7, the mapping y -- (fl(Y) fN(Y),--(x*, y), rllY xll, 8L(Y))
is locally uniformly lower semicontinuous. Applying Theorem 2.9 yields that there exist
Xn, n 1 N + 3, with IlXn -xll < r < , n 1 N + 3; x Df(Xn), n

N; * *XN+ --X*, XN+2 rDIIxN+2 xll, and *Xu+3 D6L (XN+3) such that
Ifn(Xn) fn(X)l < r/ < e, Ilxn*lldiam({xl Xu}) < Ilx*lldiam({xl xN+3}) < 0 < e
for n 1 N, 13L (Xu+3) 8z (x)[ < 0, i.e., XN+3 L and

N
* --X* * *Xn 2t- XN+2 -- XN+ rBx,.

n=l

Observing that DL(XN+3) L-L and rDllXN+2 xll c rBx,, we obtain

N N

x* 6 x; +L+/- +2rBx, C ZX*n + V.
n=l n=l

THEOREM 2.12. Let X be a Banach space with an equivalent fl-smooth norm. Let
fl, fN be lower semicontinuousfunctions, with all but one of fn, n 1 N, locally

NN dom(fn). Then,foranyx* D/(n= fn)(X), e > O, anduniformly continuous andx fqn=
any 13-neighbourhood V of0 in X*, there exist Xn x + eB, xn Dfn (Xn), n 1 N,
such that Ifn(xn)- fn(X)l < e, IlXn*lldiam({x Xu}) < e,n 1, 2 N, and

N

n=l

Proof. Let e > 0 and V be a neighbourhood of0 in X. Let r > 0, U be a neighbourhood

of 0 6 X} suchthat U +rBx, C V. Letx* 6 D(nl fn)(x). Thenthere exists a/3 smooth
Nfunction g such that Vg(x) x* and Y-n= f g attains a local minimum at x. Choose

0 < 0 < e such that Ily xll < < e implies that Vg(x) Vg(y) 6 U. By Proposition
2.7 (f,..., fN,--g) is locally uniformly lower semicontinuous. Applying Theorem 2.9
yields that there exist x,, n 1 N + 1, with IlXn x < 0 < e, n 1 N + 1,
Xn Dfn(Xn), n N, and XN+ --Vg(xN+I) such that Ifn(X,) fn(X)l < rl <
e, IIx,*lldiam({x XN} < e, n N, and

N

VZXn g(XN+I)
n=l

<r.

Thus,

N

x* Zx + V g(x) Vg(xN+I) q- rBx,
n=l

N N

C Zx: + U +rBx, C Zx: + V.
n=l n=l

Remark 2.13. As in [9] we call a lower semicontinuous function f X --+ [-cx,
s-HOlder subdifferentiable at x (s 6 (0, ]) with subderivative x* 6 X* if f is finite at x and
there exists a positive constant Cx such that

f (y) f (x) (x*, y x) > -Cxlly xll TM
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for all y in a neighbourhood of x. We denote the set of s-H61der subderivatives of f at x by
0/s)f(x). When s 1, such subderivatives are called Lipschitz smooth, and in Hilbert space
they coincide with Rockafellar’s proximal subderivatives, written 0rf(x) in [40]. Then all
the above statements and proofs will still hold true in a Banach space with a power modulus
of smoothness p [33] if we replace/3 with H(p 1).

Remark 2.14. By the same argument as in 18, VIII, Lem. 1.3] we can prove the following
result.

LEMMA 2.15. Let X be a Banach space that admits a bumpfunction which is Lipschitzian
and -smooth. Then there exist afunction d X R+ and a scalar K > such that

i) d is bounded, Lipschitzian on X, and -smooth on X\{0}.
ii) Ilxll <_ d(x) < gllxll if llxll <_ 1 and d(x) 2 if llxll >_ 1.
Then, observing that we can replace the = term in Lemma 2.8 and Theorem 2.9 and

their proofs with d(.)2 and using the Deville-Godefroy-Zizler smooth variational principle
(cf. 18, 39]) in place of the Borwein-Preiss smooth variational principle, the condition that
X has a/3-smooth norm can be replaced by the weaker condition that X has a/3-smooth
Lipschitzian bump function.

Remark 2.16. Ioffe [25, 26] named Banach spaces that have the fuzzy sum rules for
lower semicontinuous functions for the e-Fr6chet-subderivative and the e-Dini-subderivative
trustworthy (T) and weak trustworthy (WT) spaces, respectively. He proved that if a Banach
space has a Fr6chet- or Gfiteaux-smooth norm, then it has property (T) or (WT). It is also
known that (T) or (WT) is equivalent to the dense e-Fr6chet-subdifferentiability (S) or dense
e-Dini-subdifferentiability (WS) of lower semicontinuous functions [21]. In this spirit we
will call a Banach space J-trustworthy (Te) if it has the property stated in the conclusion of
Theorem 2.10 (without requiring the bound on the/3-subderivatives in the sum) and say that a
Banach space is a (strong) dense/3-subdifferentiability space if, for any lower semicontinuous
function f, theset((x, f(x)) graph(f))x dom(f) forwhich Def(x 7 0 is dense in the
(graph) domain of f. We will use notations S and Se for strong/3-subdifferentiability and 3-
subdifferentiabilit spaces, respectively. We will denote the properties "has a r-smooth norm"
and "has a/3-smooth Lipschitz bump function" by He and H-, respectively. Then Theorem
2.10 and Remark 2.14 tell us that He === H- == Te. It is obvious that S :==, Se. Let f
be a lower semicontinuous function in a Te space. Then, for any x dom(f), applying the
Te property to f + 8Ix} yields S. Therefore, we have

He==:> H;==# Te==:> S==:> Se.

In [21] it is shown that T ==> S and WT ==> WS. Using similar arguments we can show
that Te S. However, it is not clear if se ==> conditions He and H- are

easier to check than S and S and can yield a bound on the fl-subderivatives in the fuzzy
sum, we will not pursue this topic further here.

Adapting the arguments in [7, 8] and using Theorem 2.9 we can obtain correspond-
ing viscosity versions of the sequential limit formulae for the g-subdifferential of a func-
tion and the g-normal cone of a closed set. In the following theorems, ag, a, Ng, and Nc
signify the g-subdifferential, Clarke generalized gradient, g-normal cone, and Clarke nor-
mal cone, respectively, and we refer the reader to [8] and the references therein for their
definitions.

THEOREM 2.17. Let X be a Banach space with an equivalent -smooth norm. Let f be
a lower semicontinuous properfunction on X. Thenfor any x X

Ogf(X) cl* U{w* limn._+x x* Dkf(Xn), Xn -’+’f X}
k=l
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and

Ocf(X) cl*co U{w* -limnXn* X E Df(Xn), Xn "-"f X} "91- Ocf(x).
k=l

where Df(x) is the subset ofDf(x) for which the supportfunction in the definition has a

Lipschitz constant no greater than k.
THEOREM 2.18. Let X be a Banach space with an equivalent -smooth norm. Let S be a

closed subset of X. Thenfor any x S

N(S, x) cl* {w* limnX* xn kDd(S, x), x, -- s x}
k=l

and

Nc(S,x) cl*co {w* llmnXn xn kD#d(S, xn), Xn "’S X}.
k=l

In the following discussion we will use the formulae given in the above theorems as
equivalent definitions for the g-normal cone in a/-smooth space. These formulae also have
corresponding s-H61der versions. For details see 10].

3. Viscosity solutions to HJ equations. Consider the partial differential equation

(6) F(x, u, Du) O.

This equation encompasses the usual HJ equation associated with the optimal value function of
certain optimal control problems. In general, (6) does not have a classical solution. Viscosity
solutions were introduced by Crandall and Lions [15] to replace classical solutions. The
original definition of viscosity solutions (cf. 15, 16]) is based on the Fr6chet-subderivative.
In [19],/3-viscosity solutions are defined for problems on non-Fr6chet-smooth spaces. We
recall this definition below.

DEFINITION 3.1 (see [19]). Let X be a Banach space with an equivalent -smooth norm.
A function u X --+ R is a/3-viscosity subsolution of (6) if u is upper semicontinuous and,

for every x X and every x* Dtu(x),

F(x, u(x), x*) < O.

Afunction u X R is a/3-viscosity supersolution of (6) if u is lower semicontinuous and,

for every x X and every x* Du(x),

F(x, u(x), x*) > O.

A continuousfunction u is called a/3-viscosity solution ifu is both a -viscosity subsolution
and a 6-viscosity supersolution.

Now we prove the main result of this section.
THEOREM 3.2. Let X be a Banach space with an equivalent -smooth norm. Suppose

that y > O, F(x, u, x*) ,u + H(x,x*), and H X x X* -+ R satisfy the following
assumption:

(A) for any Xl, x2 X and x";, x X*,
[H(Xl, x) H(xz, x2)[ _< W(Xl xz, x x2) + M max([[x’[[, Ilx[[)l[Xl x2l[,

where M > 0 is a constant and co X x X* --+ R is a continuous function with
o(0, 0) 0.
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Let u and v be two uniformly continuous functions such that v is bounded below and u is
bounded above. Ifu is a -viscosity subsolution of(6) and v is a -viscosity supersolution of
(6), then u < v.

Proof. Let e > 0 be an arbitrary positive number. By assumption (A) there exist 6 (0, e)
and a neighbourhood V of 0 in X such that Ilx x21l < 2r/and x x 6 V implies
that

IH(Xl, x’)- H(x2,x)l < e + M max(llxll, IIxll)llxl -x211.

The function v u is uniformly continuous and bounded below. By the smooth variational
principle there exist x 6 X and x* D(v u)(x) such that x* + V C V and (v u)(x) <
infx(v u) + e. By Theorem 2.12 with fl v and f2 -u, there exist xl, x2 6 X,
x DV(Xl), and x 6 Du(x:)satisfying

(i) IIx xll < and IIx2 xll < r/;

(ii) IV(Xl) o(x)l < e and lu(x2) u(x)l < e;
(iii) IIxllllxa x211 < and IIxllllx x211 < ;
(iv) x’-x-x*6 V.

Since the function u is a viscosity subsolution of (6) we have

*F(Xl, u(xl), x U(Xl) "-[- H(Xl, x) < 0.

Similarly

*F(X2, I)(x2), x2) ’l)(X2) + H(x2, x) >_ O.

Therefore, observing that Ilxl xzll < 2r/and x’ x 6 V,

inf(v u) > (v u)(x) e > l)(x2) U(Xl) 3
x

_> ’-I[H(Xl xt) H(x2 *X2) 3e

> ---1[/3 + M max(llx’ll, IIxll)llx -x211] 3e

> _[?,-1 (1 + M) + 3]e.

As e is arbitrary, infx(v u) >_ 0. [3

COROLLARY 3.3. Under the assumptions of Theorem 3.2 any uniformly continuous
bounded fl-viscosity solution to (6) is unique.

Remark 3.4. Condition (A) is significantly weaker than the uniform continuity conditions
imposed in 19, 20]. This allows us to apply Corollary 3.3 to the HJ equation corresponding
to a general optimal control problem P(x) in the sequel. In [16, part I], a uniqueness result
is established for HJ equations in Banach spaces with the Radon-Nikodm property under
somewhat weaker (but rather technical) conditions. How much we can weaken our require-
ments for the Hamiltonian in a fl-smooth space is an interesting problem that we will not
pursue further in this paper.

Remark 3.5. Definition 3.1 is slightly different from the original definition in [19] in that
we require X to be fi-smooth, We make this modification to avoid the following pathological
examples.

Example 3.6. Let X be a fl-differentiable Banach space with a nowhere fl-differentiable
norm II. Consider the case of (6) where F is the constant function 1. Then obviously
this equation does not have any fl’-viscosity solution, but u(x) ([Ixl[ + 2)/(llxl[ / 1) is a
uniformly continuous bounded fl-viscosity solution in the sense of 19, Def. 111.2]. To see this,
observe that u is trivially a supersolution. Since u(x) is convex and nowhere fl-differentiable
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(otherwise Ilxll (2 u(x))/(u(x) 1) would be/3-differentiable), Du(x) 0 for all
x 6 X. Thus, u is also a fl-viscosity subsolution and, therefore, a fl-viscosity solution in the
sense of [19, Def. 111.2].

Example 3.7. In Banach space X consider

(7) V(x) + IIDV(x)ll O.

Assume that the norm II" ofX is nowhere/3-differentiable and X has an equivalent/3’-smooth
norm. Then, in the sense of [19, Def. III.2],

1. V 0 is the unique uniformly continuous bounded fl’-viscosity solution of (7);
2. V(x) (llxll / 2)/(llxll / 1) is a uniformly continuous bounded/3-viscosity solution

of (7).
Proof Step 1. If V is a uniformly continuous bounded fl’-viscosity solution of (7), then

u is nonnegative. In fact, if--A infx V < 0, then since X has an equivalent/3’-smooth
norm, by the Borwein-Preiss smooth variational principle, there exists an x 6 X and a p 6 X*
such that

A
V(x) <infV+--

x 2

and

This implies

A
p D,V(x), Ilpll < -.

V(x) + Ilpll < 0

so that V is not a/3’-viscosity supersolution of (7), which is absurd.
Step 2. If V is a nonnegative/3’-viscosity solution of (7), then V is a nonnegative/3’-

viscosity subsolution of(7). Thus, DY V(x) {0} wheneverit is nonempty. By [10, Thm. 6.3]
u is a constant. It is then obvious that V must be the zero function. This completes the proof
of 1.

Step 3. We prove 2. It is trivial to observe that V (x) (llx +2)! (llx / 1) is a/3-viscosity
supersolution of (7). Since V (x) is convex and nowhere/3-differentiable, D V(x) 0 for
all x 6 X. Thus, V is also a/3-viscosity subsolution and, therefore, a fl-viscosity solution of
(7) according to [19, Def. 111.2]. [3

Note that (7) is the HJ equation corresponding to the optimal control problem

minimize J(x, u) e-S f(x(s), u(s))ds

subject to k (s) u (s),

x(O) --x, u(s) Bx,

with f 0. Since the optimal value function for this problem is identically 0, it is reasonable
to expect 0 to be the unique viscosity solution of (7). Thus, it is reasonable to require X to be
/3-smooth in the definition of/3-viscosity solutions.

As concrete examples of the spaces in Examples 3.6 and 3.7,
a. the sup norm of C[0, 1] is Gteaux smooth but nowhere weak Hadamard differen-

tiable [6].
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b. L [0, orl (N) has an equivalent weakHadamard smooth norm [6] but is not Asplund
and, therefore, has a nowhere Fr6chet-differentiable norm. Moreover, L 110, 1] fails to have
the Radon-Nikod3)m property.

Remark 3.8. Let X be a Banach space with a el-smooth equivalent norm. Then this norm is
also/3’-smooth for any ’ C/3. Thus, in Theorem 3.2 and Corollary 3.3 we can always reduce
the requirement on the smoothness of the space by using a smaller bornology. However, the
price to pay is that we have to impose stronger continuity conditions on F.

Let X be a Banach space with a/-smooth norm and U be a metric space. We now
consider the following optimal control problem in X:

P(x) minimize J(x, u) := e-Sf(x(s), u(s))ds

subject to k(s) g(x(s), u(s)),

x(0) x, u

where g X x U R is continuous and Lipschitz in x uniformly in U and there exists K /3
such that g(x, U) C K for all x X, f X U R is continuous, bounded, continuous
in x uniformly in U, and

b/:= {u u is measurable and u(t) U for [0, cx) a. e.}.

Under our assumptions, for given x 6 X and u 6 b/, k(s) g(x(s), u(s)), x(0) x has a
unique solution defined on [0, cx), denoted by x(s, x, u).

Since f is bounded, the problem is well defined. We denote the value function of P(x)
by V (x). Then we have the following.

THEOREM 3.9 (dynamic programming principle). For any > O,

If0 }V(x) inf e-S f(x(s,x,u),u(s))ds +e-’tV(x(t,x,u))
u l,t

This theorem is standard; for a proof see, for example, [22].
Define H X x X* --+ R by

H(x, p) sup{-(p, g(x, u)) f (x, u)}.
uU

We prove the following theorem.
THEOREM 3.10. V is the unique 13-viscosity solution ofthe HJ equation

(8) yV(x) + H(x, DV(x)) O.

Proof Since f is bounded, so is V. Using Gronwall’s inequality, since f is continuous
in x uniformly in U, we can show that V is uniformly continuous. One can directly check that
H(x, p) satisfies assumption (A). Therefore, uniqueness is a direct consequence of Corollary
3.3. We need only to show that V is a fl-viscosity solution of (8).

a. Subsolution. Let y be an element of X such that p 6 D V(y). Then there exists a

fl-smooth locally Lipschitz function w such that Vtw(y) p, y is a (local) maximum of
V w, and 0 (V w)(y). Note that w depends only on y and p and is fixed in the
subsequent discussion. By the dynamic programming principle, for any u 6 L/and > 0,

(9) w(y) V(y) < e-Sf(x(s, y, u), u(s))ds + e-tV(x(t, y, u)).
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Since w is/3-smooth and locally Lipschitz at x, there exists r/> 0 such that w is Lipschitz and
V w exist in y + r/B. Therefore, w is at least Hadamard differentiable and V w VtIw in
y + oB. Observing that {x(s, y, u) s [0, 1]} is compact, when > 0 is sufficiently small,
we have

d
[e_tw(x(t, Y, u))] -e-tFw(x(t, y u)) + e-t(Vw(x(t, y, u)) g(x(t, y, u) u(t))).

dt

Thus, we can write (9) as

-1 e-S[?’w(x(s, y, u)) (Vw(x(s, y, u)), g(x(s, y, u), u(s)))

f(x(s, y, u), u(s))]ds < O.

Fixing an arbitrary v 6 U and setting u(s) v for all s 6 [0, t] yield

-1 e-VS[?,w(x(s, y, u)) (Vw(x(s, y, u)), g(x(s, y, u), v)) f(x(s, y, u), v)]ds < O.

Taking limits when --+ 0, observing that the integrand is continuous in s and x (0, y, u) y,
we obtain

yV(y) (p, g(y, v)) f(y, v) ?’w(y)- (Vw(y), g(y, v)) f(y, v) < O.

Therefore,

,V(y) + H(y, p) < O,

that is to say, V is a fl-viscosity subsolution of (8).
b. Supersolution. Now let y be an element of X such that p D V(y). Then there

exists a fl-smooth function w such that Vw(y) p, y is a (local) minimum of V w, and
0 (V w)(y). By the dynamic programming principle, for each integer i, there exists
u Lt such that

1
w(y) + - V(y) 4- i

fo
1/i ((1 i))(10) > e-s f(x(s, y, bli), Ui(s))ds + e-e/iv x -, y, U

Arguments similar to those in the previous paragraph yield

1 fo I/i

+ e-S[?’w(x(s, y, bti))

(Vw(x(s, y, bli)), g(X(S, y, bli), bl (S))) f(x(s, y,/gi), lg (s))lds > O.

We rewrite this inequality as

/i
’w(y) + [-(Vw(y), g(y, u (s))) f(y, u (s))]ds > h(i),

where

1
h(i) 4- hi (i) 4- h2(i) 4- h3(i)

and the hj’s are defined as follows:

/i
h(i) "= yw(y) e-Syw(x(s, y, ui))ds,
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ha(i) "= l’jo
1/i

and

h3(i) :’- fo
I/i

It is obvious that

[e-s (Vw(x(s, y, ui)), g(x(s, y, lgi), u (s))) (Vw(y), g(y, u (s)))]ds,

[e-Sf(x(s, y, bli), bti (s)) f (y, ui (s))lds.

-(Vtw(y), g(y, bl (S))) f (y, H (S)) < H(y, p)

and, therefore,

(11) ?’V(y) + H(y, p) > h(i).

Since

sup [ llx (s y ui y s [O, ] } -- 0

when --+ cx, limi._,h(i) limi__,h3(i) 0. Observing that g is Lipschitz in
x uniformly in U and g(y, ui(s)) is in the /3-set K, the /-smoothness of to at y yields
limi he(i) 0. Therefore, limi__, h(i) 0. Sending to infinity in (11), we obtain
that V is a/3-viscosity supersolution of (8) and, hence, a/-viscosity solution of (8). U

4. Metric regularity. Metric regularity is closely related to the open mapping property
and plays an important role in studying exact penalization and necessary conditions for con-
strained minimization problems. In this section we apply the fuzzy sum rules derived in 2 to
derive a necessary condition for metric regularity to fail; contraposition produces a sufficient
condition for a function to be metrically regular at a given point. We deduce a dual condition
parallel to the dual conditions given in Ioffe [27] and Ginsburg and Ioffe [23] and a/-smooth
space version of the primal condition discussed in Borwein and Strojwas [5]. Many authors
have discussed primal sufficient conditions. The condition that we give below (Theorem 4.9)
appears to be the weakest (in/-smooth spaces) up to now. Various primal conditions discussed
in 1, 2, 3, 5] are deduced as corollaries. To avoid complications in the notations we consider
metric regularity for a single-valued function with respect to a closed set. This is in fact an
entirely general formulation (see [1] and [29]). There are many discussions about regularity
of multifunctions (see, for example, [31, 35] and the references therein). We will indicate at
the end of this section how to handle multifunctions with our results. We recall the following
definition of metric regularity.

DEFINITION 4.1. Let X and Y be Banach spaces. One says that h X --+ Y is regular with
respect to S at xo ifthere exist positive constants e and K such that, for all x S f’) (xo + eB)
and h(xo) + eB,

d(x, S f3 h-()) < Kllh(x) 11.

DEFINITION 4.2. Let X and Y be Banach spaces with -smooth norms, S be a closed
subset ofX, and h X Y be differentiable at xo. We say that xo is an extremal with respect
to (h, S) if for any 7 > O, there exist a unit vector y*, y (xo + riB) (q S, and a constant L
such that

0 (Vh(xo))*y* + LDd(y, S) + rlBx,.
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The next theorem shows that a function is not metrically regular at a point corresponding
to the fuzzy extremal condition described above at the given point. The essential part of the
proof is an application of the Ekeland variational principle that was first introduced in [24]
for handling metric regularity problems and now becomes quite standard. Before stating the
theorem, let us recall that a mapping f X Y is called strictly differentiable at x, provided
that f is (Fr6chet) differentiable at x, for each v,

f (x’ + tv) f(x’)
(Vf(x), v) =0,

and the convergence is uniform for v Bx. Note that f is strictly differentiable at x implies
that f is locally Lipschitz at x.

THEOREM 4.3. Let X and Y be Banach spaces with -smooth norms, S be a closed subset
ofX, and xo S. Assume that h X Y is strictly differentiable at xo. Then h is not regular
with respect to S at xo implies that xo is an extremal with respect to (h, S).

Proof. Let 7 be an arbitrary positive constant in (0, 1). Since h is strictly differentiable
at x0, for any d Bx, there exists 71 < 7/4 such that IIx x011 < 71 and 6 (0, 71) implies
that

(12)
h(x + td) h(x) 7-vh(xo)d - Brand

72h (x) h (x0) <
128

Suppose h is not regular with respect to S at x0. Then there exist an s 6 S N (x0 + B) and
r/2a h(xo) + TB such that

(13) d(s, S tq h-l()) > -IIh(s) ll.

By inequality (13) d(s, S h-l()) > 0 and, therefore, IIh(s) 11 > 0. Apply Ekeland’s
principle with

f(x) ]lh(x) 11, 72
"= IIh(s) 11 <

64’

Then there exist v 6 S such that
1. Ils oil _< .
2. v minimizes

on S.

’:=
8’

2:=s.

x Ilh(x)-ll + llx- oll

Since h is strictly differentiable atx0, it is locally Lipschitz atx0. Let L’ be a local Lipschitz
constant for h at x0. Then L "= L’+ 1 is a local Lipschitz constant forx Ih (x)ll / llx 11.
Thus, using the penalization result of Clarke 11 we have
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2t. v locally minimizes

x IIh(x) 11 + llx 11 + L. d(x, S).

By Theorem 2.9 there exist y, z, and w such that

(14)

0 Dllh(.) II(Y) + Dllw vii + LDd(z, S) + -nx,
C Ollh(.) II(Y) / LOd(z, s) / - Bx,,

where IlY vii < - and IIz vii < and, therefore, IlY xoll < and IIz xoll < 1.
Without loss of generality we may assume that y were chosen close enough to s such that
IIh(y)-ll > 0. Then, foranyd B, whent is smallenough, y’(d) "= vll.ll(h(y-t-td)-)
exists. Since IlY/(d)II 1, by (12), for any d Bx, when is sufficiently small,

__02_> (y[ (d), h(y+td)-h(Y)t -vh(xo)d)
(y (d),

(h(y + td) )t (h(y) ) ) (y(d) vh(xo)d)

IIh(y + td) 11- IIh(y) 11(15) > -(y[(d) vh(xo)d).

By inclusion (14) there exists z* LDd(z, S) such that z* -u* -t- v*, where u* 6

Dllh(.) II(Y) and v* Bx,. Observe that, for a fixed d, there exists a td such that when
(0, td),

IIh(y 4- td) 11- IIh(y) 11
> (u*, d)--7 > (z*, d)

2

Combining this with (15) we obtain that when s (0, ta)

rl > -(y(d), vh(xo)d) (z*, d).

Denote y* vll.ll(h(y) ). Then y[(d) vll.ll(h(y + td) ) ---w, y* as 0+

and ly*ll 1. (In fact, y’(d) converges to y* in Y.) Taking limits in the above inequality
as 0+ yields

tl > -(y*, vh(xo)d) (z*, d).

Since this is true for all d B, we obtain

(Vh(xo))*y* + z* tlBx,

or

0 (Vh(xo))*y* + LDd(y, S) + rlBx,,

as was to be shown, rq

We now turn to some sufficient conditions for h to be regular with respect to S at x0. We
consider a dual condition first. To do so we need the following definitions.



VISCOSITY SOLUTIONS AND SUBDERIVATIVES 1585

DEFINITION 4.4. Let X be a Banach space with a -smooth norm and S be a closed subset
of X. We define the fl-normal cone (denoted by N(x, S)) and the fl-tangent cone (denoted
by T (x, S) of S at x S by

N(x, S) U L D#d (x, S)
L>0

and

7" (x, s) := (N (x, S))o.
Here we adopt the convention that (0)o X.

Remark 4.5. Recall that the contingent cone Tb (x, S) and the Clarke tangent cone Tc (x, S)
of S at x 6 S are defined by

To (x, S) := { u limt_+0+inf
and

d(x + tu, =0]

T(x, S) := [u" limsup
d(y + tu, S) =01

I t--O+ y--->x I
respectively. It is easy to see that Tc (x, S) C Tb (x, S) C T (x, S) for any bornology ft. Note
also that N,(x, S) need not be closed. Also, it is known [8] that Tc(x, S) (Ng(x, S)).

The next definition is a fl-normal version of the finite-codimension condition defined in
[23]. In a fl-smooth space this condition is less restrictive than the definition in [23].

DEFINITION 4.6. Let X be a Banach space with an equivalent -smooth norm and Y be a
Banach space. We say that f X -- Y has the fl-finite codimension property with respect to
S at xo if there is a weak-star closed subspace V* C Y* offinite codimension and constants
e, c > 0 such that if

(1) x S and IIx x0ll < e,
(2) x* N(x, S),
(3) Ily*ll 1, d(y*, V*) < e,

then

II(Vf(xo))*y* + x*ll > c.

The next theorem can be deduced from [23, Thm. 2.7]. We give a self-contained proof
by using Theorem 4.3.

THEOREM 4.7. Let X and Y be Banach spaces with -smooth norms and S be a closed
subset of X. Assume that h is strictly differentiable at xo and has the -finite-codimension
property with respect to S at xo. Then

(16) clVh(xo)Tc(xo, S) Y

implies that h is regular with respect to S.
Proof In light of Theorem 4.3 we need only to show that x0 is not an extremal with

respect to (h, S). Assume on the contrary that x0 is an extremal with respect to (h, S). Then,
B) N S such thatfor each n, there exist a unit vector y, and Yn (Xo "+" "ff

(17) 0 (Vh(xo))*y + LDd(yn, S) + -Bx*.
n
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We may assume that y* --+ o, y*. Then by the definition of the g-normal cone

-(Vh(xo))*y* Ng(xo, S).

In other words, y* is normal to Vh(xo)Tc(xo, S) (because Tc(xO, S) Ng(xo, S)), which,
together with (16), yields y* 0. Since h has the fl-finite-codimension property with respect
to S at x0, there exists a weak-star closed subspace V* of Y* such that h, S, and V* satisfy the
conditions in Definition 4.4. Write Y* V* + W*, where W* is a finite-dimensional space

* * with * V* * W*. W*with V* C) W* {0} and y* vn + w vn and wn Since is finite
* * tO*dimensionaland IlWnll _< IlYn*ll 1, without loss of generality we may assume that w --+

Since y* 0, we have w* 0. Thus, d(V*, y,) O. Observe that (17) implies that, for,each n, there exists an en -ff Bx, such that

u :=-(Vh * *(x0)) Yn + en LDd(yn S) C N(yn S)

When n is sufficiently large, the fl-finite-codimension property of h with respect to S at x0
implies that

0 < c < II(Vh(xo))*y*n / lg
n n

which is a contradiction.
Remark 4.8. Since N(x, S) C Ng(x, S), a function f which satisfies the codimen-

sion condition in [23] also satisfies the fl-finite-codimension property. Thus, the fl-finite-
codimension property is less restrictive than the codimension condition in [23]. However,
we should note that the result in [23] was proven without the smoothness assumption on the
underlying space.

Now we turn to a fl-smooth space version of the primal condition discussed in [5].
THEOREM 4.9. Let X and Y be Banach spaces with -smooth norms and S be a closed

subset ofX. Assume that h X Y is strictly differentiable at xo. Suppose that
(i) cl Vh(xo)Tc(xo, S) Y,
(ii) there exists a nonempty compact set K C Y andpositive numbers , y, and rl such

that < t’ and, for all IIx x0 _<

?’B, C cl {Vh(xo)(T(x, S) Bx) + otBr} + K.

Then h is regular with respect to S at xo.
Proof. We need only to show that the condition of this theorem implies that of Theorem

4.7. Suppose that conditions (i) and (ii) are satisfied. By [4, Lem. 2.1] we may assume that
K is finite dimensional. Let V := span(K) and

V* :-- {y* Y*’y*_kV}.

Then V* is of finite codimension. Let

e min r,
2sup{llkll k K}

and c "= g e sup{llkll k K} oe. Consider x, x*, and y* satisfying (1), (2), and (3) in
Definition 4.12. Let be an arbitrary element of g Br. Then by condition (ii), for any oe’ >
there exist u T (x, S) A Bx, b B,, and k K such that

Vh(xo)u + ab + k.
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Then

(y*,-) ((Vh(xo))*y*,-u) + tx’(y*,-b) + (y*,-k)

((Vh(xo))*y* + x*,-u) + (x*, u) q-ot’(y*,-b) + (y*,-k)

II(Vh(xo))*y* + x*ll + ’ + e sup{llkll k K}.

Taking the supremum on the left-hand side and letting or’ --+ c lead to

’ <_ II(Vh(xo))*y* / x*ll / + sup{llkll k K}

or

c II(Vh(xo))*y* + x*ll. U]

Remark 4.10. Since Tc(x, S) C Tb(X, S) C T/ (x, S), the condition of this theorem is
weaker than that of [5, Thm. 4.1] in fl-smooth spaces. We should note that the results of [5,
Thm. 4.1 are proven without the fl-smoothness assumption. The same remark also applies to
the corollaries below.

As shown in Borwein and Strojwas [5], in a fl-smooth space, conditions (i) and (ii) in
Theorem 4.9 are weaker than the sufficient conditions for regularity given in Borwein [3] for the
cases where (i) Y is a finite-dimensional space, (ii) S is convex, and (iii) S is epi-Lipschitz-like
(see [5] for the definition). Therefore we have the following corollary.

COROLLARY 4.11 (see [3, 5]). Let X and Y be Banach spaces with fl-smooth norms and
S be a closed subset of X. Assume that h X --+ Y is strictly differentiable at xo S. Then
h is regular with respect to S at xo, provided that one ofthefollowing conditions is satisfied:

a. S is convex and 0 coreVh (x0) (S x0).
b. S is epi-Lipschitz-like and Vh(xo)T(xo, S) Y.
c. Y is finite dimensional and Vh(xo)Tc(xo, S) Y.
Next we show that the sufficient condition for regularity in terms of uniform sleekness

of the set S given by Aubin and Frankowska is also a direct consequence of Theorem 4.9.
First we recall the definitions of sleekness and uniform sleekness.

DEFINITION 4.12. We say S is fl-sleek at x if
lim inf T (y, S) D Tb (x, S).

y---x

We say S is uniformly fl-sleek at x if for u Tb(X, S) f3 B,

lim d(u, Tt (y, S)) 0
y--+x

uniformly.
Remark 4.13. (a) By Remark 4.5 fl-sleekness is weaker than sleekness defined in [1].
(b) Borwein and Ioffe [8] have shown that

Tc (x, S) D lim inf Tt (y, S).
y--+x

It is well known that Tc (x, S) c Tb (x, S). Thus, if S is fl-sleek at x, then Tc (x, S) Tb (x, S)
(i.e., S is b-tangentially regular at x).

COROLLARY 4.14. Let X and Y be Banach spaces with fl-smooth norms and S be a closed
subset ofX. Assume that S is uniformly fl-sleek at xo and h X --+ Y is strictly differentiable
at xo S. Then

(18) Vh (xo) Tc (xo, S) Y

implies that h is regular with respect to S at xo.
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Proof. We need only to show that h and S satisfy condition (ii) in Theorem 4.9. By the
Robinson-Ursescu theorem (see [1 ]) there exists a ?, > 0 such that

’By Vh(xo) rc(xo, S) fq - BxTake an e < 1 such that ot := eliVh(xo)l[ < 9/. The uniform sleekness of S at xo implies that
there exists an r/such that Ilx xo < implies that

1
Tc (xo, S) A - Bx C TO (x, S) A Bx + eBx.

Therefore

?,Br Vh(xo) T(xo,

as was to be shown.
Recently Az6 and Chou [2] derived aprimal sufficient condition in terms ofequi-circatangent

cones. It turns out this condition can also be deduced directly from Theorem 4.9.
DEFINITION 4.15 (see [2]). A cone K C X is said to be equi-circatangent to S at x S if

lim e(K fq Bx, -1 (S y)) O,
t--O+, y.-- x

where e(A, S) := inf{) > 0 A C S + )Bx}.
The primal condition discussed in [2] (as specialized for single-valued functions) can be

stated as the following corollary.
COROLLARY 4.16. Let X and Y be Banach spaces with r-smooth norms and S be a

closed convex subset of X. Assume that h X -+ Y is strictly differentiable at xo. Let K be
an equi-circatangent cone of S at xo. Suppose that

Vh(x0)K Y.

Then h is regular with respect to S at xo.
Proof. We show that the conditions of this corollary imply those of Theorem 4.9. Con-

dition (i) is obvious. To show condition (ii), invoke the Robinson-Ursescu theorem: there
exists a positive constant , such that

’ Bx cVh(xo) K fq - BxBy the definition of K there exists 0 > 0 such that, for all (0, r/) and x (xo + oBx) f3 S,

S-x
K fq Bx C + eBx,

where e min( 211Vh(xo)il’ )" Then

K fq - Bx C TO(x, S) f) Bx + eBx.

Therefore

(1)?’By Vh(xo) K -BxC Vh(xo)(To(x, S) (q Bx) + eVh(xo)Bx

C Vh(xo)(To(x, S) fq Bx) + - Sx. [-1
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Finally let us discuss regularity for multifunctions.
DEFINITION 4.17. Let X and Y be Banach spaces and F be a multifunctionfrom X to Y.

We say that F is regular at (xo, Yo) Gr(F) if there exist positive constants e and y such
that, for all x xo + eB, y Yo + eB, and d(yo, F(x)) < e,

d(x, F-l(y)) <_ ?’d(y, F(x)).

The following well-known lemma (see, e.g., 1,29]) will enable us to connect the regularity
of a multifunction to that of a single-valued function and derive sufficient conditions for a
multifunction to be regular through various of the results discussed before. We include a
proof here for completeness.

LEMMA 4.18. Let p X Y Y be defined by p(x, y) y. For a multifunction F
from X to Y to be regular at (xo, Yo) Gr(F), it suffices that p be regular with respect to

Gr(F) at (xo, Yo).
Proof Since p is regular with respect to Gr(F) at (x0, Y0), there exist positive constants

e and ’ such that, for all (x, z) ((xo, Yo) + eB) f3 Gr(F) and y Yo + eB,

d((x, z), Gr(F) f3 p-l(y)) < ?’llz yll.

We may assume that , > 1. Let el e/2. If Ilx xol] < e, [[y yoll < e, and
d(Yo, F(x)) < el, then taking the infimum with respect to z 6 F(x) yields

vd(y, F(x)) , inf{llz YlI" z F(x)}

9/inf{llz- YlI" z F(x), IIz- Y011 < e}

> inf d((x, z), Gr(F) N p-l(y))
zF(x)

inf inf{llx x’ll + IIz y’ll" x’ F-l(y’), y’ y}
zF(x)

inf {d(x, F-l(y)) q-IIz yll}
zF(x)

d(x, F-1 (y)) + d(y, F(x)).

Thus,

d(x, F-l(y)) < (?’- 1)d(y, F(x)).

Using this lemma and the various sufficient conditions that we discussed before will lead
to sufficient conditions for a multifunction to be regular. For example, combining Lemma
4.18 with Theorem 4.9 we get the following theorem.

THEOREM 4.19. LetX and Y be Banach spaces with -smooth norms, F be a multifunction
from X to Y, and p be the projection defined in Lemma 4.18. Suppose that

(i) cl [p(Tc(xo, Y0; Gr(F)))] Y,
(ii) there exists a nonempty compact set K C Y and positive numbers or, y, and such

that < y and

’Br C cl {p(Tc(xo, Y0; Gr(F))) fq Bx + otBr} + K

whenever IIx x011 and IIY Y0ll .
Then F is regular at (x0, Y0).
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OPTIMAL RELAXED CONTROLS FOR INFINITE-DIMENSIONAL
STOCHASTIC SYSTEMS OF ZAKAI TYPE*
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Abstract. In this paper, we present some new results on partially observed control problems for infinite-

dimensional stochastic systems in Hilbert space using a fundamental result of Da Prato and Zabczyk on an infinite-
dimensional Kolmogorov operator. We prove the existence of optimal relaxed controls for an infinite-dimensional
Zakai equation following a semigroup approach and the theory of measurable selections. This result is also extended
to differential inclusion. We also present some necessary conditions of optimality.
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1. Introduction. We consider the following controlled system governed by a pair of
stochastic differential equations as described below:

(1.1)
dx Axdt + F(x)dt + B(x, u(t, y))dt at- /-dW,
dy h(x, y)dt + cro(y)dw, y(0) 0,

x(O) xo,

where the first equation is defined on an infinite-dimensional Hilbert space H and the second
is defined on a finite-dimensional Euclidian space Rd. The process x, which is generally not
observable, is controlled through a controller u which exercises its control actions on the basis
of available information about the process y which is physically measurable. The fundamental
objective is to find from a suitable class ofoperators or maps, to be introduced shortly, a control
law which minimizes the following cost functional:

(1.2) J(u) =- Efl e(t, y(t), x(t), u(t, y))dt.

Generally A is an unbounded operator with domain and range in a separable Hilbert space
H, F is a nonlinear continuous bounded operator in H, and B is also a continuous bounded
map from H x Z to H, where Z is a suitable set to be defined shortly. The map Q is a
symmetric positive operator in H and W is a cylindrical Brownian motion with values in H.
The operator h is a continuous bounded map from H x Ra to R and r0 is a continuous
bounded map from Ra to the space of symmetric d x d matrices. Precise hypotheses will be
introduced shortly.

Partially observed finite-dimensional control problems have been studied extensively by
many authors over the last two decades 12]-[ 17], including the recent (1992) excellent book
by Bensoussan 16] and the references therein. Fully observed infinite-dimensional control
problems have been extensively studied by Barbu and Da Prato and Da Prato and his school
through Hamilton-Jacobi-Bellman (HJB) equations [2, 3, 4]. Recently Zhu and Ahmed
[5] considered HJB equations on Banach spaces related to fully observed stochastic control
problems. However very little is known on infinite-dimensional partially observed control
problems [7, 9]. In [9] the author considers partially observed stochastic differential inclusions
using the theory of monotone operators and uses a stochastic approach. Recently Da Prato
and Zabczyk discovered some very interesting results regarding Kolmogorov operators and

*Received by the editors June 6, 1994; accepted for publication (in revised form) May 10, 1995.
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the associated semigroups for infinite-dimensional stochastic differential equations on Hilbert
spaces. This opens up the prospects of treating nonlinear filtering and control with partial
information using an analytic approach in contrast to a stochastic approach [9]. Using their
results Ahmed and Zabczyk [6] recently obtained some new results on nonlinear filtering of
infinite-dimensional processes with finite-dimensional observation. In this paper we use the
results of Da Prato and Zabczyk and those of Ahmed and Zabczyk as the starting point to
study partially observed stochastic control problems in infinite-dimension, as stated above.

The rest of the paper is organized as follows: In 2 we discuss motivation and present
some physical examples followed by basic notations. In 3, basic assumptions and some
fundamental results due to Da Prato and Zabczyk and to Ahmed and Zabczyk are quoted
for the convenience of readers. In 4, admissible controls are introduced and the partially
observed control problem is transformed into a fully observed one. In 5, existence of optimal
controls is proved. In 6, a similar result is proved for evolution inclusions. In 7, some
necessary conditions of optimality are presented. We conclude the paper with 8 discussing
the applicability and limitations of our results.

2. Motivation. The general problem of controlling the behavior of an unobservable ran-
domprocess based on the observation ofa physically measurable process is known as a partially
observed control problem. This is a general problem and arises in many physical situations.
A classical example is an electrical communication problem where the received signal is cor-
rupted by noise picked up from the source itself or (and) from the communication channel.
The receiver is required to estimate the true message from the corrupted one. Often feedback
communication is used to control the shape of the message signals in order to minimize error
estimates at the receiver. This is a classical problem in finite-dimensional space that led to
the Winer-Hoff equation and later Kalman filtering for linear dynamic systems and Kushner
and Zakai equations for nonlinear systems. We present here two infinite-dimensional exam-
pies: one arising from ecological problems and another from an electromagnetic interference
problem.

Ecological problem. Consider an aquatic system, like the Great Lakes, inhabited by
various species of marine life, which is naturally affected by the presence of organic and
inorganic agents. The concentration of organic and inorganic agents such as pollutants and
nutrients in the water body can be described by a partial differential equation (PDE) as follows:

OC
DAC + (vC)v b(C, u) at- N, > O,

(2.1) Ot
Cloa o, c(o, ) Co(), e

where f2 is assumed to be an open, connected, bounded domain representing the aquatic body.
C represents the concentration level of, say, m different organic and inorganic agents such
as pollutants and nutrients. The function b represents the interactions between s different
control agents u and the rn different pollutants and nutrients C. The control may take the form
of organized application of biological and biochemical agents reacting with the pollutants or
simply physical removal ofvisible objects such as solid waste, algae, and other phytoplanktons.
N is the distributed noise representing the additive effect of land run-offs from surrounding
farmlands, summer cottages, acid rain, accidental oil spills, etc. The third term on the left of
the equation represents transport of C due to water movement, where v is the given velocity
vector as a function of space-time. For simplicity we shall assume that v is the steady-state
velocity, that is, v(t, x) v(x) independent of time. The aquatic system is also inhabited by
much important marine life such as microorganisms and fish. The stock of fish is subject to
regulation by the Department of Fisheries. Assuming d different species of population and
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denoting their biomass per unit volume by the d-vector y, a simplified model is given by

(2.2)
(d/dt)y h(C, y) + No, > O,

y(O) yo,

where h represents the growth vector and No the noise vector. For h we take the standard
logistic growth function given by

0 for Yi < 0;

hi (C, y) =- ri Yi (1 (Yi /Ki )), 0 Yi <- Ki;
(2.3)

Exp(-6iKi)(e-i(yi-li) -1), Yi > Ki,

Ki Ki(C), 1, 2 d.

The coefficient ri is a positive constant representing the intrinsic growth rate of the ith species
and the coefficient Ki, known as the environmental carrying capacity, is also positive and
a nonincreasing (possibly decreasing) function of the concentration level of pollutants and
nondecreasing (possibly increasing) function of the concentration level of nutrients in C.
Above the carrying capacity the population decreases exponentially at the rate i > 0. The
Department of Fisheries and Environment is interested in introducing a control program to
promote marine life and water quality. For this purpose one may consider a simple cost
integrand such as

e(y, C, u) =- (Q()C(t, ), C(t, ))d (Q2()C(t, ), C(t, ))d (Qgy, y)

-+- (Q4u, u),

where Q1, Q2 are symmetric, positive, semidefinite rn x rn matrix-valued functions bounded
on S2, Q3 is a symmetric d x d positive, semidefinite matrix, and Q4 is a positive definite r x r
matrix. The r-dimensional control signifies r-different control actions including application
of antipollutants, biological agents predating unwanted microorganisms, physical removal of
solid waste, algae, etc. The cost functional may be taken as

(2.4) J (u) E fi g’(y’ C, u)dt,

which is to be minimized. The first term promotes selective removal, the second promotes
growth of possibly nutrient contents in C considered healthy for marine life, the third term
promotes selective growth of marine life (like edible fish), and the fourth term represents the
cost of administering controls.

The system (2.1)-(2.2) can be written as the abstract stochastic system (1.1) by choosing
H L2(, Rm), and A as the operator given by

D(A) { H DA (Vq)v H, bloa 0}

H(a, n) H(a, n),

and setting

A DA- (V)v for D(A).

Define B as the Nemytskii operator corresponding to the vector function b by
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and

E(N(t, )N’(s, 0)) 6(t s)q(, ),

where q is a positive symmetric kernel and 6 is the Dirac measure. Let Q denote the integral
operator

(Qz)() f q(, rl)z(rl)drl, zEH.

It is assumed that Q is a positive nuclear operator in H. For No, we take standard white noise
in R so that

E(No(t)No(s)) 6(t s)I.

Hence the system (2.1)-(2.2) can be written as an abstract stochastic differential equation in
H Rd given by

dx Axdt + B(x, u)dt + v/-OdW,

dy h(x, y)dt + dw,
where W is a cylindrical Brownian motion in H and w is a standard Brownian motion in Rd

associated with the white noise No.
Electromagnetic interference. Power line harmonics interfere with nearby telephone

lines. Similarly high-density multilayered printed circuit boards and multicored electrical
cables experience (interline) interference. This kind of interference is known as "crosstalk"
(see Khan and Costache [27, p. 9]). The mathematical model proposed for such systems can
be described by a 2m-dimensional first-order hyperbolic differential equation for currents and
voltages associated with m transmission lines (of length l) subject to crosstalk as described
below:

(2.6)
Oi/Ot -L-1D#v L-IRi,

Ov/Ot -C-Di C-1Gv, > 0, E (O,l)

where D denotes the first partial with respect to the spatial coordinate ; L, C, R, G are con-
stant matrices representing the inductance, capacitance, resistance, and conductance parame-
ters per unit length. For example, L L0 + L, C Co / C, where L0 is the self-inductance
matrix (diagonal) and L is the mutual inductance matrix. The boundary conditions are given
by

(2.7)
v(t, O) + Roi(t, 0) E(t),
COv(t, 1)lOt + g(v(t, 1)) i(t, /),

where g represents the nonlinear (i v)-characteristic of the n-vector terminal load and
R0 is the source-resistance matrix (diagonal) and E the source-voltage vector. Defining
I i, V -= v E, the first boundary condition in equation (2.7) can be reduced to a homo-
geneous boundary condition. Assuming distributed noise in the lines and boundary noise due
to uncertain fluctuation of the demand and equipment noise, the system takes the form

(2.8)
OI/Ot -L-1D V L-RI + N,
OV/Ot -C-IDI C-GV + u(t) + N2,
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with boundary conditions given by
(2.9)
V (t, O) + RoI (t, 0) 0,

OV(t,l)/Ot + Cg(V(t, 1) a-C(ul(t) + Clu2(t)) + C-u2(t) CI(t, 1) + N3,

where

Ul
(2.10)

/’/2

Current probes placed at d-different locations along the transmission line can be used to
measure the level ofinterference. This is described by a set ofd-ordinary differential equations

(2.11) (d/dt)i h(I, V) + , k 1, 2 d,

where h denotes the voltage induced in the induction coil of the current probe at the kth
location and i is the current measured, where g is the self-inductance of the coil and is
the measurement noise.

The objective here is to choose the control signal u (u) so that crosstalk is minimized
while satisfying the desired electrical demand. The integrand of such an objective function
can be taken as

e(y, I, V, 0,, u) (1/2) f{([,I, I) + (V, V)}d$ + (1/2) O(t) Od(t) [[2Rm

+ (1/2) u l[2m,
where L, C are the coupling matrices of inductance and capacitance, O(t) V (t, l), Od is the
desired load voltage, and u is the source signal. The first two terms give a measure of crosstalk
(electromagnetic interference) which is measured in terms of electromagnetic energy and the
remaining terms have the standard meaning. The cost functional is given by

J (u) E .(y, I, V, O, u)dt.

Again we can write the system of equations (2.8)-(2.11) as an abstract stochastic differ-
ential equation of the form (1.1).

For the nonlinear (i v)-characteristic of the terminal load we assume that g is Lipschitz
continuous and there exists a symmetric positive definite matrix K and a number > 0 such
that

(2.12) sup{ll g(O + z) KO Ilem, 0 em} (1-+- z II)

for all z Rm. For a mild nonlinear characteristic of the load, this is a reasonable approxi-
mation. Define H Le(f2, Rm) L2(f2, Rm) Rm with the natural scalar product, and the
operator A by

(2.13) D(A) {(, , O) n 4p, ap n (f2, Rm), (0) + R0P(0) 0, 0 ap(1)}

and

(2.14) -Rp L-1D 1A(cp, , O) -C-Ddp C-1Gp

C- (cp(1) KO)
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Define

( 0 )b(b, 7z, 0, u) U

-Clg(O G-1C(ul + C-1u2)) + CIKO c-lu2

(o)Ul

(2.15) (O,u)

N N2
N3

U2

Let x(t) col(l(t, .), g(t, .), O(t)) denote the state vector at time taking values from H,
and B(x, u) denote the Nemytskii operator associated with b. Assume that the transmission
line noises (N, N) are independent of the electrical load (demand) noise N and that the
covariance operator Q coesponding to N is a positive nuclear operator in H. Let y
col(i, i i) denote the measurement process governed by equation (2.11) and w is the
standard Brownian motion coesponding to the measurement noise N0
h col((1/g)h, k 1, 2 d) and a0 diag((1/g), (1/2) (1/ga)). Using the
above notations we can rewrite the system of equations (2.8)-(2.11) as an abstract stochastic
differential equation in H x Ra:

(2.16)
dx Axdt + B(x, u)dt + /dW,
dy h(x)dt + rodw.

Further discussion of these examples is given in 8.
Basic Notations. For any pair of Banach spaces X, Y, E(X, Y) will denote the space of

bounded linear operators from X to Y and/2(X) E(X, X). For any interval I [0, T],
C (I, X) will denote the Banach space of continuous functions on I with values in X. Let H
denote a separable Hilbert space, and Cb(H)(Bb(H)) the space of bounded continuous (mea-
surable) functions on H. AAb(H) is the space of countably additive, bounded, signed measures
on the measurable space (H,/3(H)) and A//(H) c ./V/b is the space of probability measures.
For/z 6 .A/lb(H) and b 6 Bb(H) we use/z(b) to denote the functional f. ck(x)tz(dx). For
any topological space Z, 2z \ 0 will denote the space of nonempty subsets of Z, and c(Z),
(cc(Z), cbc(;Z), kc(;Z)) denotes the class ofnonempty closed (closed convex, closed bounded
convex, compact convex) subsets of 2.

Let (E, 79) be an arbitrary measurable space and X a Polish space. A multifunction
F E 2x \ 0 is said to be measurable (weakly measurable) if for every closed (open) set
CCXthesetF-(C){cr 6 E :F(r) AC0}679

Let X, Y be any two topological spaces and F X c(Y) is a multifunction. F is said
to be upper (lower) semicontinuous with respect to inclusion if for every x0 6 X and every
open set V C Y satisfying F(xo) C V (V N F(xo) 0), there exists an open set U C X
containing x0 such that F(x) C V (F(x) N V 0) for all x 6 U. If Y is a metric space with.
metric d, then one can introduce a metric d/-/, called the Hausdorff metric, on c(Y) as follows:

di-i(C, D) =_ Max{SupyeDd(C, y), Supzcd(z, D)}
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for C, D c(Y). If (Y, d) is complete, then so is (c(Y), dH). F X + c(Y) is said to be
continuous in the Hausdorff metric if, whenever xn -----+ x in the topology of X,

Lim,_+d4(F(xn), F(x)) O,

and it is said to be mild or quasi-upper semicontinuous if

Limnd*(F(xn), F(x)) Sup{d(z, F(x)), z F(xn)} ---+ O.

For other types of continuity see [20, 21 ].
Let (f2, U, .Tt "l" C .T, > 0, P) denote a complete probability space furnished with an

increasing family of right continuous complete sub a-algebras .T’t C .T’. All random pro-
cesses considered in the paper will be assumed to be strongly .Tt-predictable processes unless
stated otherwise.

3. Basic assumptions. For study of the control problem we shall make critical use of
the Da Prato-Zabczyk semigroup which is an extension of the Markov transition operator
corresponding to the stochastic evolution equation

dx Axdt + F(x)dt + x/-OdW,
x(O) xo.

For this we need the following assumptions:
(HI)
(a) A is the infinitesimal generator of a C0-semigroup, T (t), > 0 in H satisfying

T(t) IIc(g) Me-t, >0, co> 0, M> 1.

(b) Q is a positive, symmetric, bounded operator in H so that the operator Qt given by

Qtx T (s) QT*(s)xds, x6H, t>O

is nuclear for all > 0 and SuPt>_oTr Qt <
(c) W is a cylindrical Wiener process with values in H with CovW(1) I.
(H2) F is a bounded Lipschitz mapping from H to H.
(H3) For all > 0, Range(T(t)) C Range(Q]/2).
(H4) The operator-valued function F(t) (Q;-1/2T(t)), > O, is Laplace transformable.
Let De and D2q denote the first and the second Fr6chet derivatives of the function
H R 1, whenever they exist as elements of H and _.(H), respectively. Define the

operators .A0 and .A by

JtoCk =- (1/2)Tr(QD2dp) + (x, A*Dck), x H,

D(Jto) {c Cg(H) D24) .I(H), SuPxH D24 IIc,(a <

and there exists ap 6 C(H) 4(x) P(A-lx), x 6 H},

134 =- (F(.), O4(.)), 4 W’2(H, #0), and

Jt (to 4-/3), D(jt) D(to),

where Z; (H) is the space of nuclear operators in H andC(H) is the space ofbounded k-times
Frechet differentiable functions on H. We consider the semigroup S(t), > O, corresponding
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to the Kolmogorov operator associated with the nonlinear stochastic evolution equation (1.1).
The following result is fundamental.

THEOREM 3.1. Suppose the assumptions (H1)-(H4) hold. Then (a) the linear version of
(3.1), with F O, has a unique invariant Gaussian measure z on/3(H); (b) the operator
t generates a Co-semigroup of bounded linear operators, S(t), > O, in L2(H, z) and it
is the extension of the original Markov transition operator (corresponding to system (3.1))
from Bb(H) to L2(H, lZ). Further, D([) C wI’Z(H,/z0) andfor > O, S(t) is a family of
compact operators in Lz(H, lZ).

Proof See Da Prato and Zabczyk [1, Thm. 2.10].
Consider the controlled system

dx Axdt + F(x)dt + B(x, u(t, y))dt + .v/-dW,
dy h(x, y)dt + cro(y)dw, y(O) O.

x(0) x0,

To solve the control problem we need the solution of the associated filtering problem. Let
Uty r {y (s), s < denote the smallest or-algebra generated by the observed process y up to
time t, > 0. Let 4 H R be any continuous bounded function. The filtering problem
is to find an tY-measurable process {(t), > 0}, such that

E{(o(t) b(x(t))21.T’ff} min for all 1
_

[0, T].

It is well known that the best filter is given by

rl(t) E{c(x(t))l.Yt
(3.3) fI4 c()QYt (d) =- QYt (c),

where

QtY()r) P{x(t) Fifty}

for 1-’ 6 B(H) with B(H) denoting the a-algebra of Borel subsets of H. This solution
suggests that we must find the conditional probability measure Qty which is an f’tY-adapted
(probability) measure-valued stochastic process. Recently it was proved [6] on the basis of
the Da Prato-Zabczyk semigroup that Qty satisfies the Kushner equation (in the weak sense)
which is a nonlinear stochastic PDE in an infinite-dimensional space.

Let I [0, T], T < cx, and define Ha =- H Ra with the obvious scalar product. Let
Z denote a Polish space (a Hausdorff topological space for which there exists a metric, of
countable type compatible with the topology, with respect to which it is a complete separable
metric space). We introduce the following hypotheses:

(H5) B and Q-1/2B H , ---+ H are bounded Borel-measurable maps, Lipschitz in
the first variable and continuous in the second.

(H6) h Ha ---+ Rd is a bounded Lipschitz map and r0 Ra .(Ra) is a bounded
Lipschitz map having bounded inverse.

Consider the canonical space C(I, Ha) =- C and let/3(C) denote the a-algebra of Borel
subsets of the topological space C. We shall need the following lemma.

LEMMA 3.2. Suppose the hypotheses (H1)-(H6) hold and let u Had. Let v denote the
measure induced by the solution process of(1.1) on the measurable space (C, 13(C)) and v
the measure induced by the same system with B O, h O. Then v is absolutely continuous
with respect to v and dv qrdv, where q denotes the Radon-Nikodm derivative and is
given by
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qt Exp {(Q-1/ZB, dW) (1/2) Q-1/2B 112/4 dt}
(3.4)

+ {(rfflh, dy) (1/2)(r-h, h)dt}

for all I [0, T], where Fo aoa. The process qt, > O, is a continuous square
integrable t-martingale and E (qt) for all > O.

Proof The proof is basically a consequence of the Girsanov theorem extended to Hilbert
spaces (see [3]).

Conditioning with respect to the a-algebra ty, we have

Eo
(3.5) QYt (c) E ((x(t))lf’y)

(x (t )qt lty

E q .Y’ty #tY (1)
The process/zt

y is a measure-valued stochastic process possibly taking values from the
Banach space of countably additive, bounded, signed measures, A4b(H). This is the unnor-
malized measure-valued process. It was shown in [6] that this process satisfies the so-called
Zakai equation which is a linear stochastic PDE in an infinite-dimensional space.

THEOREM 3.3. Under the assumptions (H1)-(H6), for any given f’tY-measurable control
law u taking values from Z, the measure-valued process {lYt, > 0} satisfies the following
stochastic (partial) differential equation in the weak sense:

dlt(dp) #t(.Ad2)dt + tzt(Lu)dt + (lzt(dph), rl(y(t))dy(t))
(3.6)

tzo(4) I-Io(bi for each testfunction D(4),

where Ho A/[ (H) is the probability law induced by the random variable xo and

(3.7) (LucP)(x) =-- (Ddp(x), B(x, u))..

Proof Given a fixed utY-adapted control law, the proof is essentially the same as in [6].
Under suitable assumptions, equation (3.6) is equivalent to a stochastic evolution equation

in the Hilbert space Lz(H, #0). This is given in the following result.
THEOREM 3.4. Suppose the hypotheses (H1)-(H6) hold and the initial measure H0 is ab-

solutely continuous with respect to the invariant measure having a density Po L2(H, tx).
Then the Zakai equation (3.6) is equivalent to the stochastic evolution equation

dp(t) ,4*p(t)dt + L(p(t))dt + G(p(t))dy(t), I,
(3.8)

p(0) p0

in the Hilbert space L2(H, #o), where G(p) pF h.
Proof For proof see [6].
Later in the discussion we shall discuss the questions of existence and uniqueness of

solutions of this equation. The major difficulty here, unlike in [6], where L* does not arise, is
that even though Lu is a nice operator mapping WI,2(H, i) Lz(H, I), L* is not.

4. Conversion to a fully observed control problem. In this section we prove that the
partially observed control problem (1.1)-(1.2) is equivalent to a fully observed control problem
on L2(H,/z) --= involving the Zakai equation. Now we shall formally introduce the class
of admissible controls.

Admissible Controls. Recall that a topological space Z is called a Polish space if it is
metrizable of countable type and if there exists a metric, compatible with the topology of
Z, with respect to which Z is complete. In other words, embedded in a Polish space there
may be more than one complete separable metric space. Let F be a Polish space, for example, a
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closed subspace ofZ, and.A/[ (1") the space ofRadon probability measures. This is also a Polish
space. Let Y =_ C(I, Ra) and B(Y) denote the Borel a-algebra on Y and for each 6 I, Bt(Y)
denote the family of increasing suba-algebras of the a-algebra B(Y). Let 79 _= 79 denote
the a-algebra of predictable (nonanticipating) subsets of the set I Y E. Let 0 be a
probability measure on B(Y) and the restriction of the product measure dt rl(dy) on the
predictable a-field 79. We assume that 79 has been completed with respect to the measure r.
Let/g(E, .A//(1-’)) denote the class of functions (equivalence classes) from to .M (1-’) which
are w*-measurable with respect to the predictable a-field 79. Let cc(.A4(1-’)) denote the class
of nonempty, closed, convex subsets of .M(1-’) and U E ---+ cc(A/[(1-’)) is a 79-measurable
(nonanticipative) multifunction. Note that U(t, y) U(t, z) for all y, z 6 Y satisfying
y (s) z(s) for 0 < s < t. We take for the admissible controls the set

(4.1)L/ad {u 6 L/(E, A4(1-’)); u(t, y) U(t, y), almost everywhere (a.e.) on E}.

In other words, the admissible controls are given by the P-measurable selections of the mul-
tifunction U.

Throughout the rest of the paper we assume that the operator B and the the cost integrand
have the forms

B(x, u) =-- f [(x, y)u(dy) for x H and u Ad([’),
(4.2)

g(t, y, x, u) =- Iv {.(t, y, x, y) u(dy) for I, y Rd, x H, u A4(1-’),

where/ H F ----+ H and " I Rd H F ---+ R U {+cxz} are generally Borel-
measurable maps to be specified later.

Remark. Before we start with the control problem, some discussion on the choice of con-
trol space is warranted. The space A4 (1-’) has three possible choices. If is an arbitrary set
(even without any topology), one may choose .A//(1-’) Mba (1"), the space ofbounded finitely
additive (positive) measures, and in this case both r / (x, r) and r - {(t, y, x, r) must be
bounded H and scalar-valued functions, respectively. In case 1" is a normal topological space,
one takes A/[ (F) _= Mrba (1-’), the space ofregular bounded finitely additive (positive) measures
on the field generated by closed subsets of I’. In this case the maps defined above must be con-
tinuous and bounded. In case F is a compact topological Hausdorff space, AA (1-’) Mrca (1"),
regular countably additive (positive) measures on the a-algebra of Borel subsets of 1-’. In this
case the maps defined above are merely continuous. For an excellent discussion on this topic
see Fattorini 11 ]; Cutland and Lindstrom 14]. Since we consider 1-" to be a Polish space which
is clearly a normal topological space, either of the last two spaces are admissible in our case.

Now we are prepared to recast our original partially observed control problem as a fully
observed control problem. Consider the stochastic differential equation

(4.3) dy ao(y)dw, y(O) O.

Let r/denote the measure induced by y on the path space Y or any other measure which is
absolutely continuous with respect to 0.

THEOREM 4.1. Suppose that the hypotheses (H1)-(H6) hold and that the initial measure
I-Io is absolutely continuous with respect to the invariant measure lz. Then the partially
observed control problem (1.1)-(1.2) is equivalent to the following fully observed control
problem on the Hilbert space 7-[ =- L2(H, /z): find a control u Had such that

(4.4) J(u) =-- f f {e(t, y(t), x, u(t, y))pt(x)}lx(dx)dt rl(dy) == Inf,
dY dI xH

where p is the solution ofthe evolution equation
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(4.5) dp(t) .A*p(t)dt + L*p(t)dt + G(p(t))dy(t), >_ O, p(O) Po

on the Hilbert space Lz(H, tt) corresponding to the control law u.

Proof Let E and E denote the integrations with respect to the measures v and v,
respectively, on the canonical space C =- C (I, Ha). Then in view ofLemma 3.2, we can write

J(u)=Elfg.(t,y(t),x(t),u(t,y))dt}
E l (f (t, y(t), x(t), u(t, y))dt) qr(x, y, u) }

(4.6) E fiEre(t, y(t),x(t), u(t, y))q(x, y, u)lt}}dt

fie(t, y(t),x(t), u(t, y))E{qr(x, y, u)l’t}}dt

E f/{e(t, y(t), x(t), u(t, y))qt(x, y, u)}dt.

The first and the second equalities follow from Lemma 3.2 and the definition of the measures
v and v, respectively. The third and the fourth follow from the properties of conditional
expectations and the f’t-measurability of (t, y(t), x(t), u(t, y)). The fifth follows from the
fact that qt, > 0 is an Ut-martingale (see Lemma 3.2). Now conditioning with respect to the
o--algebra 9rty and recalling.that

E{(x(t))qtlUy ltYt (ck)
Qty @5) E (qS(x(t)) If’ty) _-

E{q, IGy /xY (1)
we can express J (U) as

J(u) E [_ E{e(t, y(t), x(t), u(t, y))qt(x, y, u)[UY }dt
dl

(4.7)
E Ji {/ztY(t(t, y(t), x, u(t, y))}dt,

where/x is any solution of the Zakai equation (3.6) of Theorem 3.3 corresponding to the
control law u. Since by our assumption, ri0 is absolutely continuous with respect to the
invariant measure #0, it follows from Theorem 3.3 that dlzY pYdtz, where p is the solution
of equation (3.8) corresponding to the control u. Hence it follows from (4.7) that the cost-
functional J can be written as

(4.8) J(u) E f {(t, y(t), x, u(t, Y))PYt (X)}l(dx)dt.
dl xH

Under the measure v the process x is independent of the process y and y is governed by
the stochastic differential equation dy cro(y)dw. Using the measure /as discussed earlier
and Fubini’s theorem, equation (4.8) can be rewritten as

J(u)---- fY(flxH {g’(t’ y’x’u(t’ y))PYt (x)}#(dx)dt) rl(dy)

(4.9)

The converse is easy and can be proved by reversing the above arguments. This completes the
proof.
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In the following section we shall prove that this control problem has a solution. Through-
out the rest ofthe paper we assume that the measure
induced by the process y as in the previous theorem or any other measure absolutely continuous
with respect to

5. Existence ofoptimal controls. In this section we shall prove the existence of optimal
relaxed feedback controls under the assumption that the operator A is merely the infinitesimal
generator of a C0-semigroup of negative type in H as given in (H1)(a). For this we must
establish the existence of a solution of equation (4.5) under some general conditions. For
convenience of notation we shall denote the Hilbert and Sobolev spaces introduced by Da
Prato-Zabczyk as follows:

Let 7-/ L2(H, lz), V =_ WI’2(H,/z), and let V* denote the topological dual of V.
Since the embedding V -+ 7-/is continuous and dense, identifying with its own dual we
obtain the Gelfand triple

where the embeddings are actually compact. Let (.,.)v.. v denote the duality pairing of ele-
ments of V* with those of V, and (., ")4 the scalar product in 7-/. Clearly, for , " 6 7-/,

Note that for 6 7-( and v V, (, V)v,,v (, v). Let L(I, 7-[) =_ L(7-[) and
L(I, V*) =- L(V*) denote the Banach spaces of .T’tY-predictable 7-/and V*-valued pro-
cesses with respective norm topologies given by. IIL;( E ,k(t)I1 dt for ,k 6 t(7-/),
(5.1)

II/ IIg(v,-- E fl(t)I1,, dt for /3 6 L(V*).

Let M2 (7-/) denote the class of Y5vi -predictable 7-C-valued processes furnished with norm topol-
ogy given by

,k 11t2---- Sup{(E ,k(t)11_)1/2, 6 I}.

It is easy to verify that M2 is a Banach space.
Let us first consider the system

(5.2) dp(t) A*p(t)dt + t(t)dt + G(p(t))dy(t), > O, p(O) Po,

where/3 6 L(V*). We need the following lemma.
LEMMA 5.1. Suppose the assumptions (H1)-(H6) hold and, in addition, with reference to

assumption (H4), there exists a constant c > 0 and ot 6 (0, 1/2) so that

(5.3) l-’(t) lie(m_< c/t for > O.

Consider the system (5.2) with initial state Po . Then for every fl L(V*), equation
(5.2) has a unique mild solution p M2(7-[). Further, the solution map fl p denoted by
p (fl), with values

p(t) =-- t(fl), I

is weakly continuousfrom L(V*) to M2(), and p C(I, 7-[) P almost surely (a.s.).



1604 N.U. AHMED

Proof Using the dual semigroup S*(t), > 0 of the Da Prato-Zabczyk semigroup
S(t), > 0 corresponding to the infinitesimal generator jt as defined here, we can write the
evolution equation as an integral equation:

f0(5.4) (t) S* (t)0 + S* (t r)fl(r)dr + S* (t r)G(p(r))dy(r).

We prove that this equation has a unique solution having the properties as stated in the theorem.
Define

f0(5.5) z(t) =- S*(t)po + S*(t r)fl(r)dr, > 0.

It is clear that the first term belongs to M(). For the second term, it follows from
Theorem 2.10 of Da Prato-Zabczyk [1] that for > 0, the semigroup S(t) V is a
bounded linear map. Hence for > 0, the adjoint semigroup S*(t) is also a bounded linear
map from V* to. Further, by virtue of the assumption on the operator l"(t), > 0 (see (5.3)),
it follows from some computation, using the perturbation series S(t) -,>_o S (t) as in [1,
Prop. 2.8, Thm. 2.10], that

S*(t)II 2 dt < <C2(v,,)

where c2 is a constant depending on c, e, and T. This justifies the following estimate:

(5.6) Sup{e z(t)II, 6 I} < 2M2
P0 II q-2C2 II/ 2

L(V*),

where M _= Sup{ll S(t) I1(), I}. Hence z M2(). Using this fact and the uniform
bound ofF- h over H x R, one can establish that the right-hand expression of equation (5.4)
defines an operator whose ruth iterate, for m sufficiently large, is a contraction in M2()
and hence it has a unique fixed point, thereby proving that equation (5.4) has a unique solution.
Thus the solution map (I) is well defined on L(V*). For continuity, it is easy to verify that for
any pair of data ?’,/3 Lz(V*), the solutions (I)(y), (I)(/3) satisfy the following inequality"

(5.7) Sup{E(ll (I)t(’)- (I)t(/)I1),
where K > 0 is a suitable constant depending only on M, T, Sup F-lh Thus (I) is a
continuous map from L(V*) to M2(7-/). Since (I) is an affine map, this implies that it is also
weakly continuous. In particular, (I) is also weakly continuous from L(V*) to L(7-/). For
almost sure continuity of the trajectories, we use the C0-property of the semigroup S* and the
Lebesgue-dominated convergence theorem and the fact that f S*(t s)(s)ds 7-[, P a.s.
for each/3 6 L(V*), 6 I. This completes the proof of the Lemma.

Remark. If the assumption on ot in Lemma 5.1 is relaxed by ot 6 (0, 1) then z, given by

z(t) =- S*(t s)fl(s)ds, e I, e L(V*),

only belongs to L(7-/) and in this case we can only prove that equation (5.2) has a unique
solution in L(7-/) and the solution map/3 ---+ (I)(/3) is weakly continuous from Lz(V*) to

L(7-(). Assumption (5.3) is not required for weak solutions [28].
In the next theorem we present an existence result for the system (4.5) and prove that the

family of solutions

of the system (4.5) corresponding to the set of admissible controls b/ad is a bounded subset
of M2 (7-/).
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THEOREM 5.2. Under the assumptions ofLemma 5.1, for each initial state Po and
admissible control u Ltad, the system (4.5) has a unique mild solution p M2 (7-[). Further,
the solutionfamily E corresponding to the set ofadmissible controls lgad is a bounded subset
of M2(7-[).

Proof Under the hypothesis (H5), for each v 6 M(F), the operator L given by

(Lvdp)(x) (Drip(x), B(x, v))i =-- ((Ddp)(x), B(x, ?’))t-I v(dy), x H

is a bounded linear operator from V to 7-/. Indeed there exists a constant b independent of v
such that

to4 I1_< b D4 I1_< b 4 IIv for all 4 6 V and v 6 M(F).

Hence the dual operator L is also a bounded linear operator from 7-/to V*. Indeed, for all
v 6 M(F), we have

I(t), C)v.,v[ I(), to4)l _< b . I111 4 IIv for all 4) V and ) .
Hence, for each u blad, it follows from measurability of u and continuity of B that

for each ) L(7-(),/3 =_ Lu*) is weakly measurable, and hence by virtue of separability of
the Gelfand triple, it is strongly measurable. Thus it follows from the above inequality that

fl =- L*u) L(V*) and L*,k [[(v._< b ) 11(. Thus the existence and uniqueness of
a solution pu M corresponding to any given admissible control u follows from application
of Lemma 5.1. Indeed using the map as introduced in Lemma 5.1, one can easily verify
that the question of existence and uniqueness of solution of equation (4.5) is equivalent to
the question of existence of a unique fixed point of the composition operator q OL*l,. By
repeated iteration one can verify that the nth iterate of q, for n large enough, is a contraction
in the Banach space M2 and hence the existence and uniqueness follows. For boundedness of
the solution family ,E, one can verify using equation (5.4) and replacing/3 by L* (p) that

(5.8) E(II pu(t) I1) -< 9 M2
Po I1 -+-(b2c2 + c3) E(II p"(s) II)ds e I,

where

b Sup{ll B(x, w) II, x H, v 6 3.4(r)},

f S*(t)II(v,,)dt,c2

C - Sup{let0-1 (z)h(x, z)ld, x H, z Rd}.
The inequality (5.8) holds uniformly with respect to u blad. Hence by Gronwall’s lemma, it
follows from (5.8) that there exists a constant c4 > 0 such that

Sup{E PU(t) I1, I, u 6/dad} < C4

In other words E is a bounded subset of M2. This completes the proof. See also [28] for weak
solutions.

Now we are prepared to consider the question of existence of optimal controls. Define
fort I, y Y,) 7-/, v .h//(F),

(5.9)
(t, y, ;, v) =- ft (t, y, x, v))(x)lz(dx)

=_ f. f {(t, y,x, g)v(dv))(x)tz(dx).
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Thus the control problem (4.4)-(4.5), as stated in Theorem 4.1, is equivalent to the following:
find a control u e blaa such that

(5.10) J(u) =- fz {/(t, y, p,, u(t, y))}(dt, dy) === Inf,

where/9 is the solution of the evolution equation

(5.11) dp(t) *p(t)dt + L*up(t)dt + G(p(t))dy(t), > O,/9(0) =/90.

For an arbitrary v e .A/[ (F’), recall the definition of the operator Lo and its dual L*"

L4 (D4(.), B(., v)) =_ (D4(.), B(., r)) v(dr) for 4 e V,

L3. _= for 3. such that (, 4)v*,v (3., L4) for all 4 g.

Define the set-valued map Q E x 2xv* 0 as follows:
(5.)

Q(t, y, k) {(r,/3) R V* r > (t, y, k, v) and /3 L3. for some v U(t, y)}.

For any 3.0 7-t, let N, (3.0) denote the -neighborhood of 3.0 in H. The multifunction Q
is said to satisfy the weak Cesari property on E 7-/if, for each 3.0 7-[,

N CeCo Q(t, y, N(3.)) c Q(t, y, 3.0), for (t, y) E.
>0

If a multifunction satisfies the Cesari property then it must necessarily be closed convex-
valued. On the otherhand a closed, convex-valued, Hausdorffcontinuous multifunction always
satisfies the Cesari property. In fact, the Cesari property holds for upper semicontinuous (even
less, quasi-upper semicontinuous), closed, convex-valued multifunctions [20, 21 ]. Our first
existence result is given in the following theorem. For its proof we adopt a similar procedure
as in [8, 9].

THEOREM 5.3. Consider the optimal control problem (5.10)-(5.11) and suppose the
following assumptions hold in addition to the basic hypotheses (HI)-(H6):

(al) U (E, 79) cc(.A/l(I)) is weakly measurable.
(a2) The integrand (t, y, 3., v) is P-measurable in thefirst two variables, and continuous

in the last two arguments, andfurther there exists a real number > 0 andan h L (E, ; R)
such that

(t, y, 3., v) + z I1>_ h(t, y), -a.e. for all ) 7-[ and v U(t, y).

(a3) The set-valued map Q satisfies the weak Cesariproperty on E 7-[. Then there exists
an optimal controlfor the problem.

Proof First note that for p 6 L() and u lga, the functional

P) fz .(t, y, p, u)(dt, dy)(u,

is a well-defined, extended, real-valued function on/Aa x L(). Let denote the solution
map as defined in Lemma 5.1 and

’D {(u, p) e blad x p (Lp)}
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denote the set of admissible control-state pairs. Clearly the cost functional J is the restriction
of ] to 79. Thus it suffices to prove the existence of a pair (u, p0) 6 79 such that

](uo, po) < ](u, p) for all (u, p) 6 79.

Since the solution set U, is a bounded subset of L(7-/), it follows from assumptions (al) and
(a2) that

Inf{aT(u, p), (u, p) 6 79} mo > -cx.

Clearly ifm0 -t-cxz there is nothing to prove. So we assume that m0 < +cx. Let (Un Dn) 79
be a minimizing sequence for the functional ] restricted to 79. That is,

limn J(un, lon) mo.

Define L* 1) IOnu, so that (I)(/n). Since the operator Lu* is a bounded operator from
L(7-/) to L(V*) uniformly with respect to u 6 b/ad, as observed in the proof of Theorem
5.2, {fin} is contained in a bounded subset of L(V*). Note that Lz(V*) is a reflexive Banach
space, in fact, a Hilbert space. Thus there exists a subsequence of the sequence {fl }, relabeled
as {/n}, and an element/30 6 Lz(V*) such that

(5.14)

Clearly by virtue of weak continuity of the solution map (see Lemma 5.1), we also have

(5.15) to (I)(/n) (I)(/0) /90 in L(7-/).

Thus by Mazur’s theorem there exists a finite convex combination of {/n} that converges
strongly to/30 in L(V*). In particular, for each integer k, there exists an integer n, a set of
integers {i 1, 2 m(k)} and a set of nonnegative numbers {ak,i, 1, 2, 3 rn(k)}
satisfying

m(k)

1 for all k
i=1

such that

(5.16) k _L+/30 in L(V*),

where

m(k)

ink+i (t, y) (t, y) e Ep(t, y) Olk,
i=1

Corresponding to the above sequence, define the sequence {C C(t, y), (t, y) 6 E} as
follows:

(5.17)

Define

Cnk+i(t, y) =- i(t, y, ([3n+i)(t, y), unt+i(t, y)),
v,m(k)Ck(t, y) =-- z-,i=l Olk,i Cn+i(t, y).

(5.18) Co(t, y) liminf Ck(t, y), (t, y) .
k--o
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Using assumption (a2) and the boundedness of the set E, it is easy to verify that liminf Ck(t, y)
is well-defined -a.e. on E. Therefore by Fatou’s lemma we have

(5.19) l Co(t, y)(dt, dy) < liminff Ck(t, y)(dt, dy).
k---->c

Clearly by virtue of (5.13)

](blnk+i tOnk_t_i) k-->cxz

and hence it follows from (5.17) that

(5.20) lim f C(t, y)(dt, dy) too.

Thus from (5.19) and (5.20) we obtain

(5.21) fr Co(t, y)(dt, dy) m0.

On the other hand it follows from our assumption (a2) and the boundedness of the set
E that there exists an/t 6 L1 (E, ; R) dependent on h such that Co(t, y) (t, y), -a.e.
Using this fact along with (5.21) we have Co 6 L(E, ; R). Now we show that

(Co(t, y), (t,.y)) Q(t, y, (flo)) Q(t, y, p(t, y)), -a.e.
Define

N {(t, y) 6 " ICo(t, Y)I < and lim (t, y)- ri(t, y)IIv*: 0},
M {(t,y) 6 E’u(t,y)U(t,y)} and NoIM.

Since Co 6 L (E, ; R) and 0 we have (E N1) 0. Set N2 (E N0) and

N3 N1 N2. By the definition of admissible controls, (N0) 0. Thus (E N3) 0.
In other words (N3) (E). Define E0 N3 {(t, y) 6 E {0, T}}. Therefore, for
(t, y) 6 E0, there exists a subsequence, possibly dependent on (t, y), of the sequence {C },
again denoted by {C }, such that

(5.22) C(t, y) Co(t, y) for (t, y) 6 E0.

Choosing the coesponding subsequence for the sequence {}, we have

(5.23) (t, y) (t, y) in V* for (t, y) 6 E0.

Thus for every (t, y) 6 Eo and > 0, there exists an integer (t, y) such that, for k > ,
(nk+i)(t, y) N((o)(t, Y)),

where N, () denotes the -neighborhood of any point . Clearly

(t, y, (n+i)) C (t, y, N(())) (t, y, N(p)) for k > and (t, y) E0.

It follows from the definition of Q that

(Cnk+i(t y), nk+i (t, y)) (t, y, (flnk+l)(t, y)).
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Thus for k > k, using (5.16)-(5.17), we obtain

(C(t, y), (t, y)) E Co Q(t, y, N(Op()(t, y)) for (t, y)

Using these facts, it follows from (5.22) and (5.23) that for (t, y) E0,

(Co(t, y), ri(t, y)) CCo Q (t, y, N(dP(fl)(t, y)))

for every e > 0, and hence

(Co(t, y), ri(t, y)) CCo Q(t, y, N((fl)(t, y)).
>0

Therefore, by the weak Cesari property (a3),

(Co(t, y), ri(t, y)) Q(t, y, op(fl)(t, y)) Q(t, y, p(t, y)) for all (t, y) E E0,

and hence -a.e. on E. This implies that for every (t, y) 6 T0 there exists fi(t, y) 6 U (t, y)
such that

Co(t, y) > .(t, y, p(t, y), (t, y)) for (t, y) 6 E0,

ri(t, y) (L*a p)(t, y) for (t, y) E0.

Since (E0) (E), we have

Co(t, y) >_ (t, y, p(t, y), F(t, y)), O-a.e. on E,

(t, y) (L*a p)(t, y) r-a.e, on E.

In view of (5.21), the question that remains to be settled is whether or not a P-measurable
substitute for can be found. We prove this using the theory of measurable selections. Define
for (t, y) E T0, the set-valued map

A(t, y) {v U(t, y) Co(t, y) > .(t, y, p(t, y), v) and /(t, y) (L(p))(t, y)}.
Clearly this set is nonempty. We prove that it has a P-measurable selection. A most general
result in this direction states that a weakly measurable set-valued function (for definition see
2) with closed values, from an arbitrary measurable space to a Polish space, has measurable
selection [10, Thm. 4.1, pp. 867]. Since Ad(F) is a Polish space, it suffices to verify that A
is closed valued and weakly measurable. To prove closedness, let Vn A(t, y) and suppose

W*
Vn vo in .M(F). Since U(t, y) cc(A4(17)) we have vo U(t, y). Further, it follows
from continuity of v (t, y, ., v) that

(t, y, p0(t, y), 1)n) (t, y, p0(t, y), 1)0) -a.e.
Similarly for any p E V, we have

(fl(t, Y), )v*,v (L.p(t, Y), )v*,v

(p(t, y), Lvn()7-( (p(t, y), LvoCP)7-t

(LoP, CP)v.,v -a.e.
Since p V is arbitrary, this implies that A has closed values. In fact A E ---+cc(Ad(F)).
Now we prove measurability. For simplicity of notation, we denote cr (t, y) E. Define
the multifunctions

A0(r) {v A4(v) (r, p0(cr), v) C0(r) _< 0},

A (or) {v .A/[(I") (Lv*p)(o") -/(o’) 0}, cr E.
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Then

(5.24) A(a) (Ao(a) U(a)) ’(Al(a) C U(a)).
We show that each component is P-measurable. Let Mo C A/[ (F) be any closed subset.

Since .AA(F) is a Polish space, there exists a countable dense subset Moo of Mo so that we
have

-(Mo) {a r o(a) Mo 0}
(5.25) { x (, p0(), v) c0() _< 0}.

Moo

Since pO and Co are 7-measurable it follows from our assumption (a2) that each of the com-
ponents in (5.25) is P-measurable and hence A-(M0) 6 P. Similarly, using the separability
of V we can also write

A-(M0) --= {a X A(a) gl M0 0}
(5.26) U N {or 6 Z "((L:p)(a), ) (ri(a), )},

veMoo CeVo

where V0 is a countable dense subset of V. This shows that both A0 and A1 are P-measurable.
Since for set-valued maps measurability implies weak measurability and by our assumption
U is weakly measurable, we conclude that A, given by (5.24), is weakly measurable. Thus
there exists a P-measurable.selection u* of A which is a substitute for . This completes the
proof.

Remark. Assumption (5.3) ofLemma 5.1 can be replaced by hypothesis 5 ofDa Prato and
Zabczyk 1 ], in which case the operator -jr is coercive with respect to the triple V, , V* }.
in this case weak solutions can be exploited instead of mild solutions.

6. Optimal control of Zakai inclusion. So far we have considered the map B(x, u) to
be single valued. If it is a multivalued map, equation (1.1) turns into a stochastic differential
inclusion:

dx Axdt + F(x)dt + B(x, u(t, y))dt + vdW, x(0) xo,
(6.1)

dy h(x, y)dt + ro(y)dw, y(O) O.

We consider F to be single valued and B a multivalued map. This class of systems may
arise from evolution inequalities or from parametric uncertainty of system coefficients [9, 18].
Here we shall use the notion of a solution for differential inclusions as given in Ahmed [8, 9].
Corresponding to an admissible control u, a process x is a mild solution of (6.1) if there exists
a predictable process z L(H) such that x is a mild solution of (1.1) with z substituted for
B and that z(t) 6 B(x(t), u(t, y)) for almost all 6 I -P a.s.

We present here an existence result similar to Theorem 5.2. First we translate the above
problem into a differential inclusion of Zakai type.

For each v 6 M(F), define

/3(v) all/,-measurable Borel selections b b(x) B(x, v), z a.e. on H}.

We assume that for each v M(F), the set B(v) is nonempty. A sufficient condition for this
is that there exists ( L I(H,/z) such that

B(x, v) I1 Sup{ll IIH, B(x, v)} < ’(x), x e H.
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Then define the multivalued operator Lt(o) as follows" for each b 6 V,

L(v)b {g 6 " g (Db(.), b(.))H Lbb for some b 6/3(v)}.

The corresponding adjoint family L(v) is given by

L() _= { V*. (, )v,,v
((, LbC)7-t, for some b 6/(v) for all b 6 V}, ( 6 .

The equation (5.11) now turns into an inclusion. For any admissible control law u we have
the differential inclusion in :
(6.2) d) *;kdt + L*(u(t,y)).dt + G(.)dy, )(0) Po, I,

which is associated with the differential inclusion (6.1) in H. An element p M2() C

L() is a mild solution of the evolution inclusion (6.2) if there exists a fl L(V*) such that

dp= t*pdt + fldt + G(p)dy, p(O) Po
(6.3)

and fl(t) (L*z(u)P)(t) r-a.e.
Let fl p denote the solution map giving p (fl) as the solution of the first equa-

tion of (6.3) corresponding to any fl L(V*). For each u btad, define the multivalued map

(fl) {?, L(V*) y(t) (L*(,(t,y))(fl))(t), -a.e.}.

The question of existence of a solution of the evolution inclusion (6.2) is equivalent to the
question of existence of a fixed point ofthe multivalued map. We present here the following
existence result for optimal control of (6.2) and (5.10).

THEOREM 6.1. Consider the system (6.2) along with the costfunctional (5.10). In addition
to the assumptions (H1)-(H6), suppose thefollowing assumptions hold:

(bl) U (E, 79) w- cc(A/[(F)) is measurable.
(b2) B H A//(F) + cbc(H) and there exists a constant bo < oo such that

B Sup{ll b(x) IIH, X H, b 6/3(v), v 6 .M(1-’)} < bo.
(b3) The cost integrand e satisfies (a2) of Theorem 5.3.
(b4) The set-valued map Q given by

(6.4)
Q(t, y, ,k) --= {(r, fl) R V* r > (t, y, ., v) and fl L*B(v)) for some v U(t, y)}

satisfies the weak Cesari property. Then there exists an optimal controlfor the problem.
Proof The major part of the proof is identical to that of Theorem 5.3. It is required

only to show that the evolution inclusion (6.2) has solutions. This follows if, for every
admissible control u, the fixed point set Fix(u) of the multivalued map u is nonempty.
Under the assumptions on B and U, it can be shown thatu L(V*) -> cbc(L(V*)). Further

fl u (fl) is upper semicontinuous with respect to inclusion. By virtue of boundedness of
the set-valued map B, (see assumption (b2)), there exists a constant 0 < r < oo independent
of u such that Cu Dr C L(V*) + Dr, where Dr is a closed ball of radius r in L(V*)
with its center at the origin. Hence u(fl) f3 Dr 0 for all fl Dr and u /gad. Since

L(V*) is a reflexive Banach space endowed with the weak topology, it is a locally convex,
topological vector space. Hence it follows from a generalized version of the Kakutani-Fan
fixed-point theorem [19, Thm. 9.B, p. 452] that the fixed-point set, Fix(u) is nonempty for
every u lgad. Hence, for each u Ltad, the evolution inclusion (6.2) has solutions. Let

E {p 6 L() p (fl), for fl Fix(u), u l[ad}
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denote the solution set. Then the set of admissible control-state pairs is given by

(6.5) 79 {(b/, /9) ’[ad X a’/9 (I3(/), / lu(/)}.
From here on, the rest of the proof is identical to that of Theorem 5.3. This completes the
proof.

Remark. In case the evolution inclusion arises from parametric uncertainty, it is natural to
consider the min-max problem (see 18]) rather than the minimum problem considered here
in Theorem 6.1. One defines the solution set corresponding to a fixed admissible control law
u as follows:

A’(u) _= {p L(7-/) p (/3) for some/5 Fix(’,)}.

The cost functional is then given by

Jo(u) Sup{J(u, p), p ,(u)}.

The problem is to find a control law that minimizes this functional. In other words optimal
control is the one that minimizes the maximum risk.

Remark. If h of equation (6.1) is multivalued, the operator G of the inclusion (6.2)
is also multivalued. This situation may arise if the measurement dynamics also has para-
metric uncertainties. Since this appears in the diffusion term the problem becomes much
more difficult.

7. Necessary eondions ofoptimality. In this section we present a result on the necessary
conditions of optimality. This is essentially a stochastic minimum principle. We shall only
state the result without proof. In principle the proof is based on arguments similar to those of
[22]-[25].

Set r (t, y) 6 and define the Hamiltonian

(7.1)H(cr, p, b, v) (p, Lvb)7-t + (o’, p, v) fr{(p, (B(., ), DO)) + (cr, p, )}v(d),

where {(a, p, ) =_ f14 {(a, x, )p(x)lx(dx). Introduce the function

g(cr, x) =-- e(r, x, )u(cr)(d),

where u is the optimal control law, and define the abstract vector-valued function

g(a) g(r, .),

taking values from L1 ((, r), 7-/). The Hamiltonian

H" x 7-/x V x M(F) ----+ R U {+o}.

THEOREM 7.1. Let {u, pO} blaa x L(7"(). In order that {u, pO} be an optimal pair, it
is necessary that there exists an element o L(V) so that

(7.2) f H(r, po, 49o, u)(dcr) > f H(r, po, 4)o, uO)(dcr) for all u blab,

where the pair {po, qbo} are the mild solutions of thefollowing equations:

dp ,4*pdt + L*uopdt + G(p)dy, > O, p(O) Po,
(7.3)

d$ -(,4 + Luo$)dt + gdt G($)dy, $(T) O.
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Remark. The last equation in (7.3) is a backward stochastic evolution equation which
naturally arises whenever one attempts to develop a stochastic minimum principle as the
necessary condition of optimality. The question of existence of solutions of such equations
has been considered in several papers. For details see [22]-[25].

Pointwise necessary conditions of optimality can be derived from (7.2) provided certain
conditions are met. Let/(Rd) denote the a-algebra ofBorel subsets of Ra, and set (R)(t)(G) =-
P{y(t) 6 G} for any G l(Ra), where y is the unique solution of the stochastic differential
equation dy ro(y)dw, y(0) 0. Define the Young measure on/(I Ra) as follows:
for any K 1(I Ra),

(dtd) fK (R)(t)(d)dt.

Let be a compact Polish space and U I x R cc(M(1)) be a measurable multifunction.
For the admissible controls we take

Ltad =- {u I x Ra M(F) so that u is w*-measurable and u(t, y) U(t, y) -a.s.}.

Define the Hamiltonian as follows:

H(t, y, p, $, v) =_ (p, Lv$) + (t, y, p, v), v U(t, y).

Note that H maps I x R’ x 7-t x V x M(F) to R O {+c}. Then, for the given admissible
controls, one can use (7.2) to derive the pointwise necessary condition of optimality given by

(7.5) H(t, y, p(t), u, $(t)) > H(t, y, p(t), u(t, y), $(t)) for all u U(t, y), -a.e.
8. Comments on applications.

Ecological problem. Considering the ecological problem, it is not difficult to verify that
if fl =-- sup{ll v() II, s2} < , and D diag(dl, d2 dm) with dl > 0, k
1, 2 m, then the operator A, as defined in this example, is the infinitesimal generator
of an analytic semigroup T(t), > 0 in H. If fl is sufficiently small then the semigroup
is exponentially stable and condition (H1)(a) is satisfied. For this problem, considering the
source of noise, the covariance Q is practically nuclear and hence by virtue of exponential
stability of the semigroup T, Qt satisfies (H1)(b). (H1)(c) is an assumption of the model.
Hence the existence of a unique invariant measure tt follows. For this example, F 0 and
(H2) is trivially satisfied. Assumptions (H3) and (H4) are rather technical and are required
for the proof of the main result of Da Prato and Zabczyk 1, Thm. 3.1 on which our result is
based. Since the environmental agencies monitoring the system will never permit growth of
C beyond a certain predetermined level, for all practical purposes we can assume B to satisfy
assumption (H5). For example, we can replace B by Br (x, u) :- B(Pr (X), U), where Pr is the
retraction of the ball S {x H "ll x II_< r defined as

x forx Sr,
er(x)

(r/II x II)x otherwise.

One can choose the ceiling r as large as required. With this modification we can admit any
function B(x, u) which is locally Lipschitz in x H and continuous and bounded in u on
closed bounded sets F C L(f2, R_), where R_ denotes the positive orthant of R and s is
the number of distinct control agents as described in 2. Clearly the function h as defined by
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equation (2.3) is bounded and Lipschitz. Since L (, Rs) is separable, any closed bounded set
F C Loo(2, R_) with the relative w* topology is a Polish space. Thus with relaxed controls,
all the conditions (al)-(a3) of Theorem 5.3 hold. Conditions (al) and (a2) are trivial. For
(a3), note that continuity of the maps B and the cost integrand with respect to the state and
control, all convexified by relaxed controls, imply that the Cesari map Q (see equation (5.12))
is continuous in the Hausdorff metric and closed convex-valued and hence satisfies the weak
Cesari property.

Electrical problem. Now we consider the electrical "crosstalk" problem. The standard
norm for H L2(f2, Rm) L2(Q, Rm) R is induced by the scalar product

(y, z) --= (yl, Zl)L2(,nm) + (Y2, S2)L2(l,Rm) "Jl" (Y3, Z3)e

For the electrical problem, however, it is convenient to use the energy norm induced by the
scalar product

(y, Z)e - (Lyl, Zl)L2(ff2,Rm) + (Cy2, Z2)Le(ff2,Rm) 21- (ClY3, S3)R

Since the matrices L, C, C1 are symmetric and positive definite, the two norms are equivalent.
We assume that H is furnished with the energy-related scalar product (y, z) (y, Z)e and omit
the subscript e. It is easy to verify that the operator A (see 2, electrical problem) is closed
and densely defined with domain and range in H and that it is strictly m-dissipative. Hence
by the Lumer--Phillips theorem (see [26]), A is the infinitesimal generator of a C0-semigroup,
T (t), > 0, of contractions in H. Further, by use of the energy norm, it is not difficult to
verify that

(Ay, y) -(Ryl, Yl)Lz(f2,R (Gy2, Y2)L2(2,Rm) (R0Yl (0), y (O))nm (Ky3, Y3)R

Since {R, G, R0, K} are all symmetric and positive definite and the two norms are equivalent,
there exists an ot > 0 such that

(Ay, y) < -or Y
2 for all y D(A).

Hence A generates a C0-semigroup T(t), > 0 of contractions satisfying T(t) I1_< e-at,
for all > 0. For this problem, the controls are finite dimensional and we may assume that u
takes values from a closed bounded set 1-’ C R2m, not necessarily convex. Since is Lipschitz
and bounded, the operator B(x, u) is Lipschitz and bounded on H F. The function h in
equation (2.16) may not be uniformly bounded on H. In fact the voltages induced in the
induction coils of the probe may increase with the increase of currents and voltages on the
transmission lines and the frequency. But in all practical instrumentation, the measurement
devices saturate if overdriven and hence whenever line currents and voltages exceed a certain
limit, the induced voltages hk will saturate. Hence for all practical purposes, h can be replaced
by hr(x) =- h(Prx) for a suitable 0 < r < cxz, where, again, Pr denotes the retraction map
with respect to the ball Sr =- {x H x I1_< r }. With these modifications all the assumptions
of Theorem 5.3 hold with relaxed controls replacing the ordinary controls.

Remark. Even though from practical considerations, the theoretical results developed
here are applicable to many applied problems, from a theoretical standpoint the theory is
certainly not completely satisfactory. The main limitation arises from the assumption of
boundedness of the operator-valued functions B and h. But this limitation of the theory has
not been overcome even for finite-dimensional problems. As an example, for unbounded h, no
satisfactory existence theorem for the solution of the Zakai equation is known. Thus it remains
an open problem to develop theoretical results that allow unbounded operators B and h.



PARTIALLY OBSERVED CONTROLS FOR STOCHASTIC SYSTEMS 1615

REFERENCES

[1] G. DA PRATO AND J. ZABCZYK, Regular densities of invariant measures in Hilbert spaces, J. Func. Anal.,
130 (1995), pp. 427-449.

[2] V. BARBU AND G. DA PRATO, Hamilton Jacobi Equations in Hilbert spaces, Pitman Res. Notes Math. Ser. 86,
Harlow, UK, 1983.

[3] G. DA PRATO AND J. ZABCZYK, Stochastic equations in infinite dimension, Encyclopedia Math. Appl., 44,
Cambridge University Press, Cambridge, UK, 1992.

[4] G. DA PRATO, Parabolic Equations in InfinitelyMany Variables, Scuola Normale Superiore, Pisa, 1992, preprint
140.

[5] Q. Zru AND N. U. AIaMED, Some results on parabolic equations in Banach space, Nonlinear Anal., 24 (1995),
pp. 1305-1319.

[6] N.U. AHMED AND J. ZABCZYK, Nonlinear Filteringfor Semilinear Stochastic Differential Equations on Hilbert
Spaces, Institute of Mathematics, Polish Academy of Sciences, Warszawa, Poland, 1994, preprint 522.

[7] N.U. AHMED, Relaxed Controlsfor Stochastic Boundary Value Problems in Infinite Dimension, Lecture Notes
in Control and Inform. Sci. 149, Springer-Verlag, New York, 1990, pp. 1-10.

[8] Existence of optimal relaxed controlsfor a class of systems governed by differential inclusions on a
Banach space. 50 (1986), pp. 213-237.

[9] , Optimal relaxed controls for nonlinear infinite dimensional stochastic differential inclusions, in In-
ternational Symposium on Optimal Control of Infinite Dimensional Systems, Lecture Notes in Pure and
Appl. Math. 180, Marcel Dekker, New York and Basel, 1994, pp. 1-19.

[10] D.H. WAGNER, Survey ofmeasurable selection theorems, SIAM J. Control Optim., 15 (1977), pp. 859-903.
11 H. O. FATTOmNI, Relaxed controls, differential inclusions, existence theorems, and the maximum principle in

nonlinear infinite dimensional control theory, in Evolution Equations, Control Theory, and Biomathe-
matics (Han sur Lesse, 1991), Lecture Notes in Pure and Appl. Math. 155, Marcel Dekker, New York,
1994, pp. 185-204.

12] W.H. FLEMING AND M. NIso, On stochastic relaxed controlfor partially observed diffusions, Nagoya Math.
J., 93 (1984), pp. 71-108.

13] W.H. FIMInG AnD E. PAIDOUX, Optimal controlfor partially observed diffusions, SIAM J. Control Optim.,
20 (1982), pp. 261-285.

14] N.J. CUTLAnD AnD T. LINDSTROM, Random relaxed controls and partially observed stochastic systems, Acta
Appl. Math., 32 (1993), pp. 157-182.

[15] O. HJAB, Partially observed control ofMarkov processes IV, J. Funct. Anal., 109 (1992), pp. 215-256.
16] A. BNSOUSSAn, Stochastic Control ofPartially Observable Systems, Cambridge University Press, Cambridge,

UK, 1992.
[17] V. S. BOI:AR, Existence of optimal controls for partially observed diffusions, Stochastics, 11 (1983),

pp. 103-141.
[18] N. U. AHMED AND X. XIANG, Admissible relaxation in optimal control problems for infinite dimensional

uncertain systems, J. Appl. Math. Stochastic Anal., 5 (1993), pp. 227-236.
19] E. ZZDLZR, Nonlinear Functional Analysis and its Applications, Vol 1: Fixed Point Theorems, English ed.,

Springer-Verlag, New York, Berlin, Heidelberg, 1991.
[20] M. KISEt.FWCZ, Differential Inclusions and Optimal Control, PWN-Polish Scientific Publishers, Warsaw,

Kluwer Academic Publishers, Dordrecht, Boston, London, 1991.
[21] N.U. AI-IMO AnI K. L. To, Optimal Control ofDistributed Parameter Systems, North-Holland, New York,

Oxford, 1981.
[22] N.U. AHMED, Stochastic control on Hilbert spacefor linear evolution equations with random operator-valued

coefficients, SIAM J. Control Optim., 19 (1981), pp. 401-430.
[23] X. LI, Optimal Control for Infinite Dimensional Systems, Lecture Notes in Control and Inform. Sci. 159,

Springer-Verlag, New York, 1991, pp. 96-105.
[24] S.G. PnG, A general stochastic maximum principle, SIAM J. Control Optim., 28 (1990), pp. 966-979.
[25] X. Y. ZHOU, Maximum principle, dynamic programming and their connections in deterministic controls,

J. Optim. Theory Appl., 65 (1990), pp. 363-373.
[26] N. U. AIMED, Semigroup Theory with Applications to Systems and Control, Pitman Res. Notes Math. Ser.

246, Longman, Harlow, UK, 1991.
[27] R. L. KHAN AND G. I. COSTACHE, Finite element method applied to modeling crosstalk problems on printed

circuit boards, IEEE Trans. on Electromagnetic Compatibility, 31 (1989), pp. 5-15.
[28] N. U. AHMD AnD J. ZABCZYK, Partially Observed Optimal Controls for Nonlinear Infinite Dimensional

Stochastic Systems, 1996, manuscript.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 34, No. 5, pp. 1616-1649, September 1996

() 1996 Society for Industrial and Applied Mathematics
008

STABILIZATION BY CONSTRAINED CONTROLS*
GEORGI V. SMIRNOVt

Abstract. A stabilization problem for a general nonlinear control system is considered. In particular the control
corresponding to the equilibrium position may belong to the boundary of the control set. A linear control system is
considered as a first approximation for the original problem. The right-hand side of the linear system generates a
set-valued map of a special type known as a convex process. This set-valued map has a number of properties similar
to those of a linear operator. They allow one to establish necessary and sufficient conditions for solvability of the
regulator design problem for the first approximation and to construct a Lyapunov function. Based on these results
the nonlinear stabilization problem is investigated. Different statements of the regulator design problem are studied.
Stabilization problems for some mechanical systems are considered to illustrate the regulator design techniques.
The properties of transient characteristics (the "peak" effect) are discussed for a linear stabilization problem under
controllability conditions.

Key words, stabilization, Lyapunov function, constrained control, discontinuous right-hand side
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Introduction. Consider a control system

(1) k f(x, u), u U,

where U is the control set. Assume that there exists u0 6 U such that f(0, u0) 0. In this case
we say that x 0 is an equilibrium position of system (1) and u0 is a control corresponding
to the equilibrium position. Our aim is to find a function u u (x) defined in a neighborhood
of the origin and satisfying the following conditions:

1. u(0) u0, and
2. all trajectories of the differential equation

(2) 2 f(x, u(x))

starting at a neighborhood of the origin tend to the equilibrium position x 0.
The function u (x) is referred to as a regulator or a stabilizer, and the problem of its construction
is called a regulator design or stabilization problem.

The regulator design problem has been largely studied in the case of control systems
where controls range over a vector space. Such problems serve as mathematical models for
a large number of applications, and rather developed and satisfactory theory is now available
for them (see Bacciotti [3], for example). This theory is also applicable in the presence of
the control constraint u U if the control u0 corresponding to the equilibrium position is an
interior point of the set U. Indeed, since the stabilization problem is of local nature we can
expect that the stabilizer u(x) varies in a neighborhood of u0, and the constraint u U is of no
importance. However, in many technological applications processes possessing some extreme
properties are of great interest. The main characteristic feature of the regulator design problem
for such processes is that the control corresponding to the equilibrium position belongs to the
boundary of the set U. In this case the control constraint is inevitably involved, and the
problem is considerably more difficult. This paper is devoted to problems of this type.

There are many motivations that lead researchers to consider such problems. First of all,
the Pontryagin maximum principle tells us that stabilization of optimal processes is a problem
ofthis type. Usually optimal processes are not stabilizable and it is very important to determine

*Received by the editors January 26, 1994; accepted for publication (in revised form) May 12, 1995.
Departamento de Matematica, Universidade de Evora, Apartado 94, P-7001 Evora codex, Portugal

(smirnov@uevora.pt).
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the set of deviations starting at which the system can be stabilized to the optimal process. The
stabilization problem studied here can be considered as the first step in this direction.

A similar problem arises if we deal with a mechanical system subjected to a unilateral
force. Consider, for instance, an oscillator and suppose that we have to stabilize it applying a
force only in one direction. The corresponding mathematical model is

The control u0 0 corresponding to the equilibrium position x 0 belongs to the boundary
of the control set.

Now consider a guided missile which moves in a plane. We can vary the thrust of its jet
propulsion in value and direction. If we neglect the angular motion and size of the missile and
suppose that the velocity of the missile is always directed along the longitudinal axis, then the
motion of the missile’s mass center is described by the following equations:

U13. =--Crk +

ul + U23y - +

(u ua)U= (u u)1 v/(u)a+(u) <b -7 <tanr’ u1>0

where o" > 0 stands for a coefficient of air resistance, b is the maximal thrust, and is the
maximal angle between the longitudinal axis of the missile and that of the jet propulsion.
Our aim is to stabilize the motion of the object along the x-axis with the constant maximal
speed 2 b/. Thus we again obtain a stabilization problem where control (u01 u0) (b, 0)
corresponding to the equilibrium position belongs to the boundary of the control set.

In mathematical biology and economics we also face stabilization problems with con-
strained controls (see Gouz [10] and Berman, Neumann, and Stem [5]).

Classic regulator design theory cannot be applied to the above problems because of con-
trol constraints. The optimal control theory involves control constraints, but the problem of
construction of the feedback control u (x) that guarantees optimality of trajectories in a certain
sense is too complex to be solved analytically, applying the Pontryagin maximum principle or
studying the Bellman equation. Computational methods of optimal control theory are more
suitable to finding optimal trajectories than to solving synthesis problems. Thus it is not worth
considering the regulator design problem in the frame of optimal control theory. Therefore a
reasonable statement of the regulator design problem and a rational combination of analytical
and computational methods are required in order to solve the problem.

In classic stabilization theory we meet the statement of the problem where neither opti-
mality nor finiteness of the stabilization time are required. The only requirement the regulator
has to satisfy is that the equilibrium position is asymptotically stable. It seems natural to
develop mathematical theory for this "weak" statement of the regulator design problem, if we
aim to consider control systems of general type (1).

The origin of this setting of the problem and the method of its solution is the classical
Lyapunov [14] stability theory. For practical problems it is important to consider not only
the fact of asymptotic stability of an equilibrium position but also an estimate of a region
of attraction, that is, the set of initial points starting at which trajectories tend to zero. It is
possible with the help of the Lyapunov functions method. Unfortunately, there are no methods



1618 GEORGI V. SMIRNOV

to construct a Lyapunov function for a control system of general type. Therefore we have to
"simplify" the system under consideration, that is, to find a less complex control system which
is close to the original one in a neighborhood of the origin. To this end we consider the "first
approximation" of system (1), that is, the linear control system

(3) Jc=Cx+w, wK,

where C Vx f(0, u0) is an n x n matrix and K is a convex cone spanned by the set f(0, U).
Control systems of this type were first studied by Korobov and his students 12, 13] and then
in more general form by Aubin, Frankowska, and Olech [2]. For control system (3) we derive
necessary and sufficient conditions guaranteeing the existence of a Lyapunov function and
prove that the latter is equivalent to the solvability of the regulator design problem for system
(3). The proof is based on an investigation of the set-valued map x --+ Cx + K. A map of this
type, referred to as a convex process (see Rockafellar 16]), is a multivalued analogy of a linear
operator. A number of properties similar to the Jordan theorem are established for it. The
analysis of the structure of the convex process x Cx + K is the basis for the construction of
a Lyapunov function V (x). To solve the regulator design problem we can choose the control
u(x) at the point x from the following condition:

(4) V(x + rf(x, u (x))) min V (x + rf(x, u)),
uEU

where r > 0.
A multivalued version ofthe Jordan theorem for convex processes ofgeneral type appeared

in Smirnov [18], where it was applied to solve the regulator design problem for differential
inclusions. Here we specify the results from 18] for the case of control systems. This allows
us to simplify the proofs and to establish many new properties of the developed regulator
design techniques. Computational aspects of this approach are discussed in Bushenkov and
Smirnov [7, 8], where many examples are considered.

The regulator design method derived from our analysis contains many parameters which
we can dispose of as needed. Optimization methods or heuristics allow one to obtain a
regulator with required transient characteristics. For example, in the case of the single-input
linear control system

(5) .ic Ax + bu, u 6 R,

under controllability condition, we obtain a regulator which is a linear feedback control u (x)
(d, x) such that the spectrum of the linear system

(6) Jc (A + bd)x

is concentrated at any given point ) R. A linear stabilizer of this type satisfies the following
extremal property. It ensures a minimal overshoot among linear feedback control laws with
the spectra of (6) {)1, .n} satisfying the conditions: Re)i < . and I)i )l < , where
> 0 is sufficiently small.
The paper is organized as follows. In 1 we discuss different statements of the stabilization

problem. Section 2 is devoted to the regulator design problem for the first approximation. The
nonlinear stabilization problem is considered in 3. Examples are given in 4. In 5 we
consider the stabilization problem for the first approximation under controllability conditions.
The connection between stabilizability and weak asymptotic stability is discussed in 6.

Throughout this paper we denote by R the set of real numbers and by Rn the usual n-
dimensional space of vectors x (x x), where x R, 1, n. The inner product
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of two vectors x and y in Rn is expressed by (x, y) x yl 4-... 4- x"y". The norm of a vector
x 6 Rn is defined by Ix (x, x) 1/2, If C is an m n real matrix, then the transposed matrix
is denoted by C. The unit linear operator from Rn to Rn will be denoted by E. We denote
by nn the unit ball in Rn" Bn {x 6 Rn Ix _< 1 }. The open unit ball in R is denoted by

Bn {X gn lxl < 1}. Let A C R. The distance function d(., A)" gn R is denoted
by d(x, A) inf{Ix al a 6 A}. Let ;k 6 R. Then put .A {.a a 6 A}. For two sets
A and B in Rn, their sum is denoted by A 4- B {a 4- b a 6 A, b 6 B }. The closure
and interior of A are denoted by clA and intA, respectively. The boundary of A is denoted by
bdA clA \ intA. The convex hull of A is denoted by coA. The support function of a set A
is denoted by

S(x*, A) =sup{(x*, a) a A}.

Let K C Rn be a convex cone. The conjugate cone of K is defined by

K*= {x*l(x,x*) > 0, Yx K}.

Let f Rn .--+ R be a function. The directional derivative of f at x with respect to a
vector v is denoted by

Of(x)(v) lim f(x + ,kv) f (x)

if it exists.
Let f R --+ R be a continuous function. The Lyapunov exponent (see Lyapunov [14])

of f is defined by

X [f(’)] lim sup - In If(t)l.

The Lyapunov exponent has the following properties:
1. x[(f + 0)(.)] > min{x[f(.)], X[P(’)]},
2. x[(fqg)(.)] >_ x[f(’)] 4- X[o(.)],
3. x[(fo)(.)] x[f(’)], where 0 < a _< o(t) <_ b < o.

If f R -- Rn is a vector function, then the Lyapunov exponent is defined as the minimal
value of the Lyapunov exponents of the components

x[f(’)] min{x[f(’)] x[f(’)]}

1. Statement of the problem. Consider a control system

(7) k=f(x,u), u U C Rk.

Assume that f Rn U R" is a continuous function differentiable with respect to x and that
for any arbitrary compact set X Rn there exists a constant > 0 such that IXTxf(x, u)l <
for all (x, u) 6 X U. Let f(x, U) C Rn be a convex set for all x Rn, and let u0 6 U be a
point such that f (0, u0) 0. Our aim is to find a map u Rn ---+ U defined in a neighborhood
of the origin and satisfying the following conditions:

1. u(0) u0,

2. the equilibrium point x 0 of the differential equation

(8) . f(x, u(x))

is asymptotically stable.
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The regulator design problem described above is very general and intuitive and is not yet
suitable for a mathematical consideration. We should specify the exact meaning of"asymptotic
stability" and what we mean by "solution" of (8). As we will see, different specifications of
these notions can lead to substantially different developments.

The first issue we must consider is how smooth the stabilizer u u(x) should be. In
classic regulator design theory (see Sontag [19], for example) the control system

(9) k=g(x,u), u6Rk,

is studied. Suppose that the function g is smooth. Consider the following linear control system
associated with (9):

(10) k Cx + Bw, w R’,

where C Vxg(0, u0) and B V,g(0, u0). System (10) is stabilizable if and only if there
exists a matrix D such that the equilibrium position x 0 of the linear system

J (C + BD)x

is asymptotically stable. If (10) is stabilizable, then any linear feedback law w(x) Dx
which stabilizes (10) provides a local stabilizer for system (9): u(x) uo + Dx. Thus, we
can expect that under suitable assumptions a smooth and even an analytical regulator exists
for control system (9).

The situation completely changes as soon as control constraints are involved. Let us
consider the following example.

Example: Absence of smooth stabilizability. Suppose that the stabilization problem for
the control system

3 X2 -- bt(11) 32 X + /,/Z,

where u (u 1, bt2) G U {(/gl, u2) ul < 0, u2 > 0} has a smooth solution, that is, there
exists a smooth regulator u u(x) (u (x , x2), uZ(x 1, x2)) such that u(0) 0, and the
equilibrium position x 0, x2 0 of the system

3 x2 -. ul(x x2)(12) 32 x _. b/2 (X 1, X2)

is asymptotically stable. Show that Vxu(0) 0. Assume that there exists x0 6 R2 such that
Vxu(O)xo to O. Then Vxu(O)(-xo) -to. Assume for the sake of being definite that
tol 0, and consider the function o(r) u (rx0). Observe that tp’(0) tol 0. By the
inverse function theorem there exists o-1 defined in a neighborhood of zero. This implies that
u(rx0) changes sign, if r changes sign. Since the set U does not contain vectors (u 1, u2)
with u > 0, we come to a contradiction. Hence Vxu(0) 0. Thus we conclude that the
linearization of system (12) at zero is

The matrix of this system has the eigenvalue 1, that is, system (12) is not stable. Consequently,
there is no smooth stabilizer for system (11). As we shall see from Theorem 7 there exists a
Lipschitz continuous stabilizer for this system.
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Different statements of the problem. The example shows that we can expect the exis-
tence ofat most a Lipschitz continuous stabilizer, ifcontrol constraints are involved. Therefore,
the first reasonable statement of the regulator design problem is to find a Lipschitzian control
u (x) that guarantees asymptotic stability ofzero solution to differential equation (8). Lipschitz
continuity of u(x) implies that equation (8) has a unique, classical solution for each initial
condition.

Another, weaker statement of the stabilization problem can be obtained if the Lipschitz
condition is replaced by the continuity of u(x). The latter implies that equation (8) has a
classical solution (not unique, in general) for each initial point. In this case we mean by
asymptotic stability the following: the equilibrium point x 0 of differential equation (8) is
said to be asymptotically stable if for any e > 0 there exists 3 > 0 such that for all xo Bn
each solution to differential equation (8) with x(0) x0 exists for 6 [0, o) and satisfies the
conditions Ix(t)l < for all [0, oe) and limx(t) 0 as

The above problems can be solved only under rather restrictive assumptions on the map
u f(x, u). Therefore, a quite natural goal is to find a control u(x) such that the function
x --+ f(x, u(x)) is continuous and the equilibrium position x 0 of differential equation (8)
is asymptotically stable.

Practical experience shows that discontinuous control laws are of great importance. For
example, optimal synthesis is usually discontinuous, relay stabilization systems are widely
used in engineering, etc. For this reason we are interested in considering regulators such that
the function x f(x, u (x)) is not continuous in general. To this end we invoke Filippov’s
notion of solution to a differential equation with discontinuous right-hand side (see Aubin and
Cellina 1 and Filippov [9]).

The problem we shall mainly consider is to find a control u (x) such that the equilibrium
position x 0 of a differential equation with discontinuous right-hand side (8) is asymptoti-
cally stable.

Recall the definition of the Filippov solution and the notion of asymptotic stability for
discontinuous differential equations. Let p Rn Rn be a bounded function satisfying
o(0) 0, and let Rn R be the set-valued map defined by

(I)(x) N cl CO q)(x nt- tBn).

An absolutely continuous function x(.) is called a Filippov solution to the differential equation

(13) k q)(x)

if and only if it satisfies the differential inclusion

(x)

almost everywhere.
The equilibrium point x 0 of the differential equation (13) is said to be asymptotically

stable if, for any e > 0, there exists 3 > 0 such that for all xo Bn, each Filippov solution to
the differential equation (13) with x(0) x0 exists for [0, o) and satisfies the conditions
Ix(t)[ < e for all [0, cx) and limx(t) 0 as o.

From now on, by the stabilization or regulator design problem we mean this formulation,
if there is no other specification.

In technological applications a piecewise constant control law is usually used instead of
the stabilizer u(x) we dealt with before. The control is chosen in discrete moments of time
0, tr, 2or where r > 0, and we have

ua(t) u(x(ka)), [kcr, (k h- 1)o’).
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This leads us to another problem where the goal is to find a control u(x) such that all the
trajectories of the nonautonomous differential equation

Jc f (x, uz(t))

tend to zero. This statement of the problem is also very important, since it substantiates
practical realizations of stabilizers, and we discuss it in detail in 3.

Informal outline of the approach. First, we investigate the stabilization problem for the
first approximation of system (7), that is, for the linear control system

(14) 2 Cx + w, w K,

where C Vxf(0, u0) is an n x n matrix and K is the closed convex cone spanned by
the set f(0, U). Consider the set-valued map x Cx + K associated with control system
(14). The properties of this map are similar to those of a linear operator. In particular, a
multivalued version of the Jordan theorem can be established. More precisely, there exists a
minimal invariant subspace I, that is, a minimal subspace such that for any x 6 I we have
Cx -t- K C I. The map x Cx + K considered as a map from the factor space Rn/I into
Rn/I is a linear operator denoted by . The meaning of I in terms of control is that only
movements in linear manifolds parallel to I are affected by a control, while movements in the
factor space R’/I are completely determined by properties of d. Asymptotic stability of is
necessary for the first approximation to be stabilizable. If this operator is not asymptotically
stable, the control system (14) cannot be stabilized by any control w(x).

Consider the structure of I. For the sake of simplicity suppose that I Rn. Let )0 be
the maximal real eigenvalue of Cr that corresponds to an eigenvector contained in the polar
cone K*. Assume that ) > )0. Then for any x there exist vectors y0 yg such that

Yo 6 -K,

Yl Cyl -Jr K,

Yl + )Y2 Cy2 -1-- K,

(15)

y-i -t-.y: Cy + K,
x y: + yo.

We can interpret inclusions (15) as follows. Vectors Yl and yj, j > 1, can be considered as an
eigenvector and joined (principal) vectors of the set-valued map x Cx + K, respectively.
Inclusions (15) imply that the subspace I is a "cyclic" subspace of the set-valued map x
Cx + K corresponding to one "Jordan block."

Now we are in a position to explain how to choose the control w (x) to stabilize the control
system (14). We establish that the stabilizability of (14) is equivalent to the condition )0 < 0.
If the first approximation is stabilizable, we fix ) ()0, 0). For any x Rn we find a finite
set of vectors Y0 y satisfying (15).

Suppose, first, that y --0. Then x Y0 -K. Consequently, for any e > 0 we can
choose r > 0 such that rCx :Bn. Put wo(x) --x.1 Then we have wo(x) K and

x + r(Cx + wo(x)) eBn.

It means that there exists a velocity of system (14) almost exactly directed from x to the origin.
Now assume that y0 0, that is, x y. Suppose that k 1, which implies that x is an

eigenvector of the set-valued map x Cx + K. Since ) < 0, we conclude that there exists
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FIG. 1. Choosing stabilizing controls.

a vector vl, a velocity of (14), directed from x to the origin. Indeed, let wl (x) ;kx Cx.
Then we obtain wl (x) 6 K and

x + ,-=(Cx + w(x)) O.
I,1

Consider the case k > 1. Since ; < 0, we have

-l yk_ y + -(-l CYk + K)

or, in other words,

1
i)--Ty_ y + -l (CY + w(x)},

where w(x) K. This implies that there exists a vector v, a velocity of (14), directed
from the point yk to the ray spanned by yk_. The same is true for the vectors y_ Y2.
Thus, starting at x y and choosing a suitable control we can reach the ray spanned by the
eigenvector y and then move along it (see Figure 1). In the general case when x Yk + YO
with nonzero y and Y0, we take w(x) as a convex combination of Wk(X) and wo(x). Since K
is a convex cone, we have w(x) K. It is clear intuitively that trajectories of the system

2 Cx + w(x)

tend to zero. The above informal considerations show the main ideas of the regulator design
method we use in this paper.
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We use similar reasoning to prove the existence of a Lyapunov function V (x) in Rn and
a number 0 > 0 satisfying the following condition: for all x Rn there exists a vector
v Cx + K such that DV(x)(v) + OV(x) < O. If Ixl is sufficiently small, then there exists
a vector v f(x, U) such that DV(x)(v) + OV(x) < O. The map u(x) is defined to make
V (x) a Lyapunov function for differential equation (8). This implies the asymptotic stability
of the equilibrium point x 0. The proof of the existence of the function V(x) is constructive
and can serve as the basis for a numerical regulator design algorithm.

2. The first approximation. In this section we investigate the first approximation of
system (7), that is, the linear control system

(16) k=Cx+w, wK,

where C Vx f(0, u0) is an n x n matrix and K is the closed convex cone spanned by the set

f (0, U). For control system (16) we derive necessary and sufficient conditions guaranteeing
the existence of a number 0 > 0 and a convex positive, positively homogeneous function V (x)
in Rn satisfying the following condition: for any x 6 R" there exists a vector v Cx + K
such that DV(x)(v) + 0V (x) < O.

We now consider the linear differential equation

(17) Jc -Crx.

Let A+ be the subspace such that a solution to (17) with the initial condition x (0) x 6 A+
has a nonnegative Lyapunov exponent.

The following result contains necessary and sufficient conditions of solvability for the
regulator design problem for linear system (16).

THEOREM 1. Thefollowing conditions are equivalent:
1. The regulator design problemfor control system (16) is solvable.
2. For any xo Rn there exists a trajectory x(.) of system (16) such that x(t) --+ 0 as

t----o
3. The matrix Cr has neither eigenvectors which correspond to nonnegative real eigen-

values and are contained in the cone K* nor proper invariant subspaces contained in the
subspace A+ f) K* f3 -K*.

4. There exist numbers r > O, 6 (0, 1) and a convex positively homogeneousfunction
V(x) such that V(O) --O, V(x) > O, ifx O, andforany x Rn a vectorw K satisfying

V(x + r(Cx + w)) <_ V(x)

can befound.
First we prove auxiliary results.
LEMMA 1. Assume thatfor any xo Rn there exists a trajectory x(.) ofsystem (16) with

x(O) 0 such that x(t) --+ 0 when --+ cxz. Then there exist numbers a > 0 and , > 0 such
thatfor any point xo Rn a trajectory ofsystem (16) with x (O) xo satisfying the condition

(18) Ix(t)l <_ alxole-t, > O,

can befound.
Proof Let us consider a simplex E co{z0 z,, containing a unit ball centered at

zero. There are trajectories x(.) satisfying the conditions

x(0)=zk, limxk(t)=0, k=O,n.
t---- cx
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There exists a number r > 0 such that [Xk(r)[ 1/e for all k 0, n. Let y 6 bd Bn. Then
there exist numbers)k > 0, k 0, n such that n nk=0 )k and y )--k=0 )z. Obviously,
the function x(., y) -=0 )x(.) is a trajectory of system (16) and satisfies the inequality
Ix(r, y)[ < 1/e. Hence, for any y 6 R the function Xy(.) lYlx(’, Y/lYl) is a trajectory of
system (16) and satisfies the inequality ]Xy(r)l < lYl/e. Set

,-- l/v, a emax{Ixk(t)l e [0, r], k--0, n}.

For every xo Rn we define a trajectory x(.) of system (16) satisfying the initial condition
x(0) x0 as follows:

X(t) Xx(mr)(t mr), [mr, (m + 1)r], m 0, 1

It is easy to check that the trajectory x(.) satisfies condition (18). U
Letus study some properties ofthe set-valuedmap x Cx/K. Denote by J the maximal

invariant subspace of C7" contained in K* fq -K* and by I the orthogonal complement to J.
The subspace I turns out to be invariant by the set-valued map x Cx + K in the

following sense.
LEMMA 2. For all x I we have

Cx+KCI.

Proof. Let x 6 I, x* 6 J, w 6 K. Since Crx* J, x* J C K*N-K*, we have

(x*, Cx + w) (Crx*, x) + (x*, w) O.

Remark. A description of the minimal invariant subspace for convex processes of general
form appeared in Aubin, Frankowska, and Olech [2].

It follows from Lemma 2 that K C I and the subspace I is invariant by the linear operator
C. We denote by C the restriction of C to the subspace I, i.e., C C It. Let Cj be the
transposed operator of the restriction of C7" to the subspace J, i.e., Cj (C 7" I) 7". The cone
K considered as a subset of I is denoted by Kt. The unit linear operator from I to I is denoted
by Et. Since Rn I J, every x R can be represented as x (xt, x), where xt I
andx J.

LEMMA 3. The linear operator Cf has no nontrivial invariant subspaces contained in
the cone K.

Proof. Suppose there is a nontrivial subspace L C K N -K’ invariant by the linear
operator Cf. Let us prove that Cr (L, J) C (L, J). Since (L, J) C (K’ fq -K’, J)
K* N -K*, this will contradict the definition of J as the maximal invariant by C7" subspace

* L+/-"contained in the subspace K* f -K* Let x L, xt Then

(cr (x;, o), (x, o)) ((x";, o), C(x, o)) ((x, o), (Cx, o))

CIxI,xI)=O.

Since C7" (0, J) C (0, J), we obtain C7’ (L, J) C (L, J). This achieves the proof.
Denote by .0 the maximal real eigenvalue of Cr which corresponds to an eigenvector

contained in the cone K*. If there is no such eigenvector, we put .0
LEMMA 4. Suppose that lz is a real eigenvalue ofCf which corresponds to an eigenvector

y contained in K. Then lz <_ )o.
Proof. If/z is an eigenvalue of C7" corresponding to an eigenvector from J, then we have

nothing to prove. If this is not the case, then (C7" lzE)J J.
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Observe that for all y E I

(Cr (y, O) tz(y, 0), (YI, 0)) ((y, 0), C(yI, 0))

((y, 0), (Clyl, 0)) lz(y, Yl) (Cy, Yl) lz(y, y) O.

Thus,/z(y, O) Cr (y, 0)+(0, zj) for some zj J. In otherwords, Cr (y, O)-/z(y, O)
J.

There exists a vector p} such that (0, z) (Cr lzE)(O, p}). This implies that

lz(y, p}) CT (y,

Consequently,/z < .o.
LEMMA 5. Let y Cx, where y (Yl, Ys), x (0, xs). Then Ys Csxs.

*Proof Let xs, xs 6 J. Then

(c(o, x), (o, x)) ((o, x), cr (o,

((O, xJ), (0, CT Is x)) --(Cjxj,

((o, Csxj), (o, x)).
Since xs, xs J are arbitrary, the proof ensues.

For all real ;k we define convex cones

k

--CO U(CI ,kEi) -i KI, k O,
i=0

contained in the subspace I. We observe that Lk()) C Lm()O if k < m.
We shall use the following generalization of the well-known Perron positive matrix the-

orem (see Berman and Plemmons [41, for example).
THEOREM 2. Let K C Rn be a nonzero convex closed cone which does not contain a line

and let C R -- R be a linear operator. If Cx K for all x K then there exists an
eigenvector ofC contained in the cone K and corresponding to a nonnegative eigenvalue.

THEOREM 3. If) > )0, then there exists a number k such that the equality

L()) I

holds.
Proof Since a polyhedron can be chosen as a neighborhood of the origin in the subspace

I, it is sufficient to prove that

Lc(,k) I.

The latter is equivalent with the equality

Lo ()) {0}.

Suppose this equality is not true. Since . > L0, we have

(19) (CI )Et)I KI I.

Indeed, if (CI )E)I KI # I, then there exists a nonzero vector x* I such that
((CI )EI)X, x*) <_ (z, x*) for all x I, z KI. Taking x 0, we obtain x* 6 K’.
Let z 0. Then we have (x, (C XEI)X*) 0 whenever x E I. Hence x* K is an
eigenvector of C/ corresponding to the eigenvalue ,k. By Lemma 4, . _< ,k0, a contradiction.
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Since

(x(t), x*(t)) < Ix(t)l Ix*(t)l 0 as ,
we obtain 0 > (x0, x* (0)). Since x0 is an arbitrary vector we conclude that x* (0) 0. This
contradicts the nontriviality of x* (.). Thus, the third condition is a consequence of the second
one.

Now, suppose that the third condition holds. We shall derive Condition 4 from it. The
third condition means that )0 < 0. Fix ) E ()0, 0). Let 5] C I be a polyhedron containing

STABILIZATION BY CONSTRAINED CONTROLS

From (19) we obtain

(CI )EI)I Lk(,) I.

By Corollary 16.3.2 in [16, p. 143] and Corollary 16.4.2 in [16, p. 146], we have

t+l() C ((Cl XEI)-lclL(.) K)* (C XEI)L())

Obviously,

(20) (C-)EI)-ILL()) C L*()).

The cone L* ()) does not contain a line. Indeed, if L is the maximal subspace contained
in L(.), then (cTI )EI)-IL C L. This implies that L is invariant by the linear operator
Cf. Since L(.) C K7, invoking Lemma 3, we derive a contradiction.

From inclusion (20) and Theorem 2 it follows that there exists a nonzero vector x7
L(.) and a number/z >_ 0 such that

-1(C; )EI) x

Since ,k > )o, we conclude that/z # 0. Consequently,

C x & 2I- x

By Lemma 4, ) + 1//z < L0, a contradiction.

Proofof Theorem 1. Condition 2 is a trivial consequence of the first condition. Assume
that Condition 2 is fulfilled. Suppose that the third condition does not hold. This implies that
the differential equation

c*(t) -Crx*(t)

has a nontrivial solution satisfying the inclusion x*(t) K*, for all > 0, and such that
X[x*(.)] > 0. Let x0 6 Rn. By Lemma 1 there exists a trajectory x(.) of (16) with x(0) x0
such that ) Ix(.)] > 0. Let w(.) be a control corresponding to the trajectory x(.). We observe
that

(x(t),x*(t)) (xo, x*(0)) + -s(X(S),X*(s))ds
(xo, x*(O)) + ((Cx(s) + w(s),x*(s)) + (x(s),-Crx*(s)))ds

(x0, x*(0))+ (w(s),x*(s))ds >_ (x0, x*(0)).
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the ball BI Bn f"l I. Denote by x/z, 0, m, the vertices of the polyhedron. By Theorem 3,

xi
z Lki () for some ki Moreover,x doesnotbelongtoLk()0,ifk < ki. Fromthedefinition

kiof the cones Lk (i) we derive the existence of a finite set of nonzero vectors {Yi,j }j=0 in I
that satisfy the following inclusions:

Yi,o -KI,

,LYi,1 ClYi,1 -- KI,

Yi,1 + Yi,2 ClYi,2 q" K1,

(21)

Yi,ki-1 q’- XYi,k ClYi,k "1- KI,

X? Yi,ki -1- Yi,o.

Fix a number ot > 1. Let MI be the convex hull of the points

zi,o Yi,o, 0, m;

Zi,j (/IZl)’-Jyi,j, j 1-i, O, m.

Let us consider the linear operator Cj J J. The third condition implies that Cj
is an asymptotically stable linear operator. There exists a positive definite quadratic form
W J --+ R which is a Lyapunov function for the differential equation

Jf J CJXJ

(see Lyapunov [14]). Denote by Mj the ellipsoid {x 6 J W(x) <_ 1}. Let w > 0. Consider
the convex compact set

Jo MI COMj C I x J Rn.
We shall prove that the Minkowski function V (x) of the set Ado is the function to be found
whenever co > 0 is sufficiently small.

-4[Clzi,olzi,o KI andSince BI C E, we conclude that-BI C Mt. Obviously, wi,o

Zi,o 21-
(4[Cizi,o[)

(Clzi,o -- toi,o) Bi C int MI

when O, m. For each i3, m, the vector wi,1 ,kzi, Ctzi,1 belongs to the cone KI
and satisfies the inclusion

Zi,1 -Jr- [[-1 (CIZi, -[- toe, l) 0 int MI.
For all points zi,j, j > 1, O, m, we consider the vectors wi,j (1/ot)[.[zi,j_l d- .zi,j
ClZi,j. Obviously, we have wi,j KI and

1
Zi,j -" 11-1 (ClZi,j _it_ wi,j = -Zi,j-1 int MI.

From the above reasoning we conclude that there exist numbers r > 0 and 31 (0, 1)
such that for each Xl bdMt there exists a vector to KI satisfying the inclusion

Xl "+" 51(ClXl -Jr- to) 3IMI.

Moreover, there exist numbers rj > 0 and 6s 6 (0, 1) such that for all xs bdMs the
inclusion

Xj -- 7jCjxj jMj
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is fulfilled. Set r min{ri, z’j }, 3 max{3l, 3j and choose co from the interval (0, (1
3)/(4rlC[b)), where b max{lxjI xj 6 bdMs}.

Letx (Xl, xj) bd.A//o. Then thereexistsanumbero 6 [0, 1] suchthatxl 6 bd(r/Mi).
Observe that there exists a vector w 6 K satisfying the inclusion

(22) (XI, O) -Jl" "g(C(xI, O) + W) (3riM1, O) C (3MI, 0).

On the other hand, by Lemma 5 we have

(23) (0, xj) d- z’C(0, xj) (0, xs) q- "c(yi, Csxj) "c(yi, O) q- (0, 3coMj).

Since

1-3
lYzl <_ IC(0, xj)l < IClob <,

4r

we conclude that ryi (1 3)MI. Summation of (22) and (23) yields

(1+3 ) 1+3A4x + r(Cx + w) e
2

Mi,3coMj C "2
Thus, we obtain Condition 4 of the theorem.

Finally, let Condition 4 be fulfilled. We shall derive Condition 1. Consider the set-valued
maps

G(x) {v e Rn x+rv3V(x)A/[} and H(x) G(x) fq (Cx + K),

where .A// {x R V(x) < }. Condition 4 implies H(x) 0 for all x Rn. Let
to R K be an arbitrary function satisfying the inclusion Cx + w(x) G(x). Obviously,
ICx + w(x)l < LV(x), where L r-1 max{V(x) 3z- x/V(x)[ z J4, x bdA//}.
Consider the set-valued map

W(x) N cl co w(x -+- r/Bn).
r/>0

Let w 6 W(x). Then we have

DV(x)(Cx + to) <
[V(x + r(Cx + w)) V(x)]

<_ -V(x).

Hence any Filippov solution x(.) to the differential equation

(24) 5: Cx + w(x)

satisfies

V(x(t)) < V(x(O))e-t, > O,

where 0 (1 3)/r. Consequently, the zero equilibrium position of differential equation
(24) is asymptotically stable. This ends the proof. [q

COROLLARY 1. Assume that the matrix CT has no proper invariant subspaces contained
in the subspace K* N -K* and one ofthefollowing conditions holds:

1. The matrix Cr has no eigenvectors corresponding to nonnegative real eigenvalues and
contained in the cone K*.

2. There exist , < 0 and k such that Lk()O Rn.
Then the regulator design problemfor control system (16) is solvable.
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Proof. Since the matrix CT has no proper invariant subspaces contained in the subspace
K* C? -K*, we see that I Rn. The reasoning used to prove the implication 3 =, 4 achieves
the proof.

Remark 1. The proof of the implication 3 = 4 can be modified as follows. Consider
negative numbers )1 )m such that )i > )0, 1, m. Assume that vectors Yi,o Yi,lci
satisfy (21) with ) )i. Then we can continue the proof without any changes. Different
collections )1 /m yield different Lyapunov functions and hence different stabilizers. The
choice of these parameters provides additional possibilities for generating regulators with
desired transient characteristics.

Remark 2. If ) > )0 we derive from Theorem 3 that the system of inclusions (21) is
compatible for a finite ki. To estimate the number of operations needed to construct a regulator
we have to estimate k max{k/ 1, m}. From now on the number k k(L) is called the
)-dimension ofthe subspace I with respect to the set-valued map x -- Cx+K. In 5 we derive
an estimate for k(X) in a general case. Here we only note that if the cone K is a subspace, then

n-1i-0 (CI )EI) -i KI spans the whole subspace I, thanks to the Cayley-Hamilton theorem.
This implies that k()) _< n 1.

3. Stabilization ofnonlinear systems. We now proceed to consider the regulator design
problem for a nonlinear control system

(25) 2 f(x, u), u U.

The main stabilization problem. The following theorem contains sufficient conditions
for stabilizability of system (25) at first approximation.

THEOREM 4. Assume that the regulator design problem for the first approximation is
solvable. Then there exist a neighborhood f2 ofthe origin and a map u 2 --+ U that satisfies
thefollowing conditions:

1. u(O) uo.
2. The equilibrium point x 0 ofthe differential equation

(26) 2 f(x, u(x))

is asymptotically stable; moreover, there exist constants a > 0 and 0 > 0 such that

(27) Ix(t)l alx(O)le-t, > O,

(28) 12(t)[ _< alx(O)le-t, >_ 0

for any solution x(.) to (26) with sufficiently small Ix(0)l.
Proof By Theorem 1 there exist numbers r > 0, (0, 1), and a convex positively

homogeneous function V (x) such that V (0) 0, V (x) > 0, if x 0, and for any x 6 bdjM

(AA {x V(x) < 1}) there exists a vector v Cx + K satisfying x + :v 6.h/[.
Let x0 and v0 be vectors from the sets bd.M and Cxo + K, respectively, which satisfy

x0 + rv0 6 3A4. If 61 > 0 is sufficiently small, then the inclusions x xo + lBn, v
VO q- Bn imply that x + r v 6 g (1 + )A/[.

We need the following technical lemma.
LEMMA 6. For any vo Cxo + K the equality

lim p-d(pvo, f(px, U)) 0
p$O, xxo

is fulfilled.
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Proof. Let r/ > 0. There exist u 6 U and/3 > 0 such that Iv0 Cxo f(O, u)l <
r/. If pfl < 1, then taking into account convexity of the set f(pxo, U) and the inequality
[Vx f (x, u)[ <_ l, x Bn, we have

d(pvo, f(px, U)) <_ d(p(Cxo 4- flf (O, u)), f (pxo, U))

4-prl 4- pllx xol < IpVxf (O, uo)xo 4- pflf (O, u)

f(Pxo, uo) pfl(f (pxo, u) f(pxo, uo))l + P + Pllx xol
<_ IpVxf(O, uo)xo f(pxo, uo)l + pfl(lf(0, u) f(pxo, u)l

+lf(pxo, uo)[) + PO + pllx xol.

Since 0 is an arbitrary positive number, dividing by p and taking the limit as p $ 0 and x xo,
we obtain the result. [q

End of the proof of Theorem 4. By the above lemma there exists 62 > 0 such that the
inequality

p-ld(pvo, f(px, U)) <_ 61

holds for allx xo +6eBn, p (0,62). Set 6o min{61,6e}. Letx bdAd N
(Xo 4- 60Bn), p (0, 60). Then there exists a vector v(p,x) f(px, U) satisfying
Iv0 p-1 v (p, x)l _< 61. We observe that

1+8
x 4- rp-lv(p, x) . .Ad.

2

Now, we cover every point x0 6 bd.M by such an 60-neighborhood and choose a finite
subcovering. Let - be the minimal radius of a subcovering element. If V (x) < g, then by the
above considerations we conclude that there is a vector v 6 f (x, U) satisfying

1+8
x + rv - V(x)JVt.

2

Let us consider the set-valued maps

G(x) v e Rn x+rv6
2

V(x)JM H(x) G(x) N f (x U)

defined on the set f2 {x V(x) < g}. We take any single-valued map q)(x) 6 H(x).
Since g)(0) 0, there exists a map u 2 -+ U satisfying the conditions u(0) uo and
q)(x) f (x, u(x)).

Consider the set-valued map

(- cl co o(x + ]Bn).(I) (x)
r/>0

Let v 6 (x). Then we have

[V(x + rv)- V(x)]
DV (x)(v) < < -0V(x),

where 0 (1- 3)/(2r). Hence any Filippov solution x (.) to differential equation (26) satisfies

(29) V(x(t)) < V(x(O))e-t, > O,
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whenever x(0) 6 f2. By construction

(30)

Jc(t) G(x) =r-l ( l-k-6
2

V (x(t)).M x(t)

c r-le-’V(x(O)) ( 1+62 3/l-3d.

From (29) and (30) we see that there exists a constant a > 0 such that (27) and (28)
are satisfied for any solution x(.) to (26) with sufficiently small Ix(0)l, The theorem is
proved. q

Remark. For example, qg(x) 6 f (x, U) can be chosen from the condition

min V(x + rf(x, u)) V(x + rqg(x))
uEU

if U is a compact. For many control systems this minimization problem can be easily solved
using numerical methods (see [7, 8]).

An estimate for the region of attraction. Theorem 4 contains sufficient conditions for
solvability of the regulator design problem. However it does not allow one to estimate the
region ofattraction, that is, the domain where the regulator is defined. Below we obtain such
an estimate under additional assumptions on the control system. Assume that

1. the function f (., u) is twice differentiable and [Vx f (x, u)[ < and [Vxx fi (X, U)[ < M
for all(x,u) 6Rn xU, i=l,n;

2. the set U is compact and

0 < cr -min{Ivl v f(O, U), W(v) 1},

where W is the Minkowski function of the set f(0, U).
Note that the latter assumption is fulfilled if f (0, U) is a polyhedron, for example.

Under the assumptions of Theorem 4 there exist numbers r > 0, 6 6 (0, 1), and a convex
positively homogeneous function V (x) such that V (0) 0, V (x) > 0, if x 0, and for any
x bdA//(V[ {x V(x) < 1}) there is a vector v Cx + K satisfying x + rv 6All.

Observe that there exist numbers a > 0 and b > 0 such that

aBn C All c bBn.

For the Minkowski function V (x) we have

Ixl Ixl< V(x)<_.
b a

Set

a(1 -6)or
b2(/-ffMrcr q- (4/+ a/(rb))(6 + IE + rCI))

THEOREM 5. Assume that the conditions of Theorem 4 and Assumptions 1 and 2 are

satisfied. Thenfor all x pad there exists u(x) U such that

1+3
x + rf(x, u(x)) V(x)dl.

2

Proof Let p 6 (0, 3] and x 6 bdpA//. There exist xo 6 bdAd and vo Cxo + K
satisfying x pxo and xo + rvo 33t, respectively. We claim that there exist/ >_ 0 and
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u e U such that v0 Cxo + flf(O, u) and W(f(O, u)) 1. Indeed, the vector vo Cxo can
be represented as lim fli f (O, ui), where fli > O, ui U, and W(f(O, ui)) 1. We observe
that If (0, ui)l > a > O. Consequently, the sequence fli is bounded from above and, without
loss of generality, converges to ft. Since the set U is compact, taking the limit, we obtain the
required statement.

Now we prove the inequality

(31) d(vo, p- f(pxo, U)) <_ a.
2r

Since the set f(px0, U) is convex, we have

d(Cxo + fly(o, u), ,0
-l f(pxO, U))

(32) < ICxo 4- flf(O, u) p-l(otf(pxo, u) 4- (1 -ot)f(pxo, uo))l,

where ot [0, 1].
The inclusion x0 4- r(Cx0 4- flf(O, u)) 3/l implies that [Xo 4- r(Cxo 4- flf(O, u))[ < 8b.

Hence

rill f(0, u)l _< Ix0 4- r(Cxo 4- flf (O, u))l 4- Ix0 4- rCxol <_ 8b 4- IE 4- rClb.

Thus,

(33) fl <_ ( + IE + rCl)(ra)-b.

Observe that tip < 1.
Set ot tip. The right side of (32) is less than or equal to

[Cxo p-1 f(pxo, u0)l + ill f(0, u) f(pxo, u)l + fllf (pxo, u0)[

p --[x0[ 4- 2fllxoll < p b2M 4- 2flbl

Combining this inequality with (33) we derive (31).
Thus, there exists v f(pxo, U) such that xo + (r/p)v 1/2(1 + 8)2M or, in other words,

1+8
x +rf(x,u(x)) 2 V(x).M.

The theorem is proved.

Continuous stabilizers. Theorem 4 shows that there exists a stabilizer u(x) such that
the origin is the asymptotically stable equilibrium point of differential equation (26) with a
discontinuous right-hand side. A natural question arises: is there a stabilizer which makes the
right-hand side of (26) a continuous function? A positive answer is given by the following
theorem.

THEOREM 6. Assume that in addition to the conditions of Theorem 4 the set f(x, U) is
closedfor any x. Then there exists a regulator u(x) such that the map x f(x, u(x)) is
continuous.

Proof As in the proofofTheorem 4 we observe that there exist numbers r > 0, 6 (0, 1),
and a convex positively homogeneous function V (x) such that V (0) 0, V (x) > 0, ifx 7 0,
and for any x from the neighborhood of the origin f2 the set-valued map

’2 V(x)JM x f(x, U),
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where A4 {x V (x) < 1 }, is nonempty. Let us consider the set-valued map

(x)=r-l(3+6’4 )V(x)./M x A f(x, U).

Obviously, the map (x) is upper semicontinuous and has convex compact values. Let v(x)
be the projection of the origin onto (x). By Theorem 1.2.3 in [1, p. 49] (x) is lower
semicontinuous. From Theorem 1.7.1 in [1, p. 70] we see that v(x) is a continuous function.
Hence there exists u (x) U satisfying v (x) f (x, u (x)). Asymptotic stability of the zero
equilibrium position of the differential equation

2 v(x) f(x, u(x))

can be proved similarly to the last part of Theorem 4. [q

Remark. From the computational point of view the construction of such a regulator u (x)
is much more complex than the procedure described in the remark after Theorem 4.

Under more restrictive assumptions on the map u -- f(x, u) it is possible to establish
continuity of the stabilizer u(x). For example, applying the inverse function theorem we
immediately obtain the following result.

COROLLARY 2. Assume, in addition to the conditions of Theorem 6, that the map u

f(x, u) is differentiable. Ifthere exists an inverse linear operator (V,f(0, u0)) -1, then there
exists a continuous stabilizer u(x).

Lipschitzian stabilizers. Now let us establish sufficient conditions for the existence of
a Lipschitzian stabilizer.

We need the following auxiliary result.
Let X C R be a compact set and let U C R and M C R be convex sets. Let

f Rn -- R be a continuous function and let A Rk --+ Rm be a linear operator.
LEMMA 7. Assume thatfor any x X there exists u U satisfying

f (x) + Au M.

Thenfor any > 0 there exists a Lipschitzian map u X --+ U such that

f (x) + Au(x) M + e. Bm
whenever x X.

Proof. Let e > 0. Consider a point x0 6 X. There exists u0 6 U satisfying

f(xo) + Au0 M.

Since f is continuous, there exists 30 > 0such that If(x)-f(xo)l < e whenever Ix-x0[ < 30.
We cover every point x0 6 X by such a 0-neighborhood and choose a finite subcovering

{S2i xi + 3i B}//=I Let {ui}i=l be the corresponding vectors from U.
xThere exists a Lipschitz partition of unity {Pi( )}i=1 subordinated to this subcovering

(see [1, Thm. 0.1.2]), that is, a family of functions {pi(x)}[=l defined on X and satisfying the
following conditions:

1. pi (’) is Lipschitz for all 1, I;
2. Pi (x) > 0 for x 6 ’2 N X and Pi (x) 0 for x X \ f2i;
3. for each x 6 X, Y[=I pi(x) 1.
Set

pi(x)ui.
i=1
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Let x 6 X. Then Pi (x) > 0 if and only if Ix xil < 6i. Hence

f(x) + Au(x) pi(x)(f(x) q" Aui) e pi(x)(f (xi) "+- Aui "+- :Bm)
i=1 i---1

C pi(x)(M + eBm) M + eBm.
i=1

The lemma is proved.
Assume that the right-hand side of (25) is affine, that is,

(34)
N

f(x, u) fo(x) + gq L(X)
q=l

with u (u uN) U, where U C RN is convex. Denote by F(x) the matrix whose
columns are the vectors f (x) fN (x).

THEOREM 7. Assume that the regulator design problem for the first approximation of
system (25) with affine right-hand side (34) is solvable. Then there exists a Lipschitzian
regulator u (x).

Proof Consider the control system

Jc Cx + F(O)(u -uo), u U.

By Theorem 1 there exist a convex positively homogeneous function V(x), numbers r >
0, 66(0,1),andamapfi’A4--+ U (A4={x V(x)< 1})suchthatV(0)=0, V(x) >
0, if x - 0 and

x + z(Cx + F(0)(fi(x) uo)) 63//

whenever x 6 bdAd. By Lemma 7 there exists a Lipschitzian map fi bd.h4 ---> U such that

1+6
x + z(Cx + F(0)(fi(x)- u0))

2

for all x 6 bd.A//. Let V(x) < 1. Then

x + v Cx + V(x)F(O) V(x) -u e
2

V(x)A4.

Set

t x )u(x)--(1- g(x))uo + g(x)t V(xi

If V (x) is sufficiently small, then we have

fo(x) + F(x)uo Cx V(x).M
8

and

V(x)(F(xl F(O)) fi V(x) u e 8
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Therefore

x + r(f0(x) + F(x)u(x))

/ (0 u0))+ -8 3+
V(x) c V(x)A/t.

4 4

Consequently V (x) is a Lyapunov function for the differential equation

2 fo(x)+ F(x)u(x).

The theorem is proved.
Note that the right-hand side of the first approximation is always affine. Therefore we

obtain the following corollary.
COROLLARY 3. Assume that the regulator design problemfor thefirst approximation (16)

is solvable. Then there exists a Lipschitzian stabilizer w(x) for system (16).
Now apply Theorem 7 to the general case. Suppose that the right-hand side of (25) is

differentiable in u, and that U is a convex set. Consider the system

(35) 2 f(x, uo) + Vuf(X, Uo)(u uo), u U.

COROLLARY 4. Assume that the regulator design problem for the first approximation
of system (35) is solvable. Then there exists a Lipschitzian stabilizer u(x) that solves the
regulator design problemfor system (25).

Proof By Theorems and 7 there exist a convex positively homogeneous function V (x),
numbers r > 0, 8 6 (0, 1), and a Lipschitzian map u :.M -- U (AA {x V(x) < 1})
such that V (0) 0, V(x) > 0, if x 0 and

x + r(f(x, u0) + Vuf(X, uo)(u(x) uo)) 8V(x).M

for all x sufficiently close to zero. If V (x) is sufficiently small, then we have

x + rf(x, u(x)) x + r(f(x, uo) + f(x, u(x)) f(x, uo))

x + r(f(x, u0) + Vuf(X, uo)(u(x) uo)) +
1-8 1+8
2V(x)34c 2

V(x).

Consequently, V (x) is a Lyapunov function for the differential equation

2 f(x, u(x)). [3

Piecewise constant controls. In practical problems a piecewise constant control law is
usually used instead of the stabilizer u(x) considered before. The control is chosen in discrete
moments of time 0, a, 2r where r > 0, and we have

u(t) =-- u(x(kcr)), [kr, (k + 1)o’),

where u (x) is the regulator constructed in Theorem 4. The following theorem substantiates
this control law.
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THEOREM 8. If t7 > 0 is sufficiently small, then any trajectory x(.) of the differential
equation

(36) k f(x, u(t))

tends to zero whenever Ix (0)1 is sufficiently small.
Proof. Let x(.) be a solution to (36) and 6 [kr, (k + 1)or). Since V(x) < Ixl/a, the

function V (x) is Lipschitzian with the constant 1/a. Indeed,

V(X1) V(x2-Jr’x1 --x2) V(x2)-3I- V(Xl -x2) V(x2) + [Xl X2l

If x(t) is sufficiently close to zero, then we have

d
--V(x(t)) < -[V(x(t) + rf(x(t), u(t))) V(x(t))]
dt r

2+r/
< -[V(x(kr) + rf(x(kcr), u(x(kcr)))) V(x(kcr))] +

r ar
Ix(t) x(k)l

1-3 2+zl
< -V(x(kcr)) + Ix(t) x(ktr)l

2r ar

(see the proof of Theorem 4). Since

Ix(t) x(kcr)l _< Ix(s) x(kcr)lds + crlf(x(kr), u(x(kcr))l,

we derive from the Gronwall inequality

Ix(t) x(ko)l crlf(x(k), u(x(kcr))lel.

Moreover, if N is a sufficiently large number, then If(x, u(x))l < NV(x) for all x f2. Thus
we obtain

6 2 + zl NelOmd V(x(t)) < -V(x(kcr))+r V(x(kcr)).
dt 2r ar

Let cr min{1, (1 3)ae-I/(4(2 + r/)N)}. Then we have

d 1-3

d- V(x(t)) < V(x (kr)), if 6 [kcr, (k + 1)r).

This implies that V(x(t)) < V(x(kr)), if 6 (kcr, (k + 1)r). Consequently we obtain

d 1-3
V(x(t)) < V(x(t)).

dt 4r

Thus, any trajectory x(.) of differential equation (36) tends to zero whenever Ix(0)l is suffi-
ciently small.

4. Examples. In this section we study the regulator design problem fortwo simple control
systems considered in the introduction.
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Stabilization ofan oscillator subjected to a unilateral force. The motion ofan oscillator
subjected to a unilateral force is described by the following equations:

3 X2,
(37) )2

0<u<l.

The control u0 0 corresponds to the equilibrium position. Thus the first approximation of
system (37) is given by

)1 X2,

tO>0o

In this case

and

K {(w,//32) tO --0, //3
2 >__ 0}.

The transposed matrix CT has neither nontrivial subspaces nor eigenvectors contained in the
conjugate cone K* [(w*, wz*) w2. > 0}. Therefore, by Theorem 3 for all negative . the
cone Lk(k) coincides with the hole space for some k k(.). By Corollary and Theorem 4
the stabilization problem for system (37) is solvable.

Let us show that k() -- cx as -- cx. Indeed, by definition

k

Lk() --co U(C ,LE) -i K.
i=0

If )v < 0, then we have

(C_)vE)_i:(( 0 1
-i

01))_
C/ l.li_j 0-1

j

’2 _. 0 / IZl Z2 + j=o
0

"--(j2’l..{_,l,) [(p=O(-1)PCP’I’[i-2p) ( )
(38) + ((-1)PCp+ll,i-2p-1) ( 0 --1 )]1 0

Denote e (1, 0), e2 (0, 1), li() -(C E)-ie2. Observe that the cone L() is
spanned by the convex hull of the points {10() l()}. From (38) we obtain

(e,li(z)) x+1 (-1)’C{’+lZli-"-

Obviously, for any k there exists a A < 0 such that (e, li()) 0, , whenever < A.
Hence L(X) R2. Thus k() as X -.
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Stabilization ofa missile uniform motion. Now consider the model of a missile (see the
introduction). The motion of the missile’s mass center is described by the following equations:

where a > 0 stands for a coefficient of air resistance, b is the maximal thrust, and r/is the
maximal angle between the longitudinal axis of the missile and that of the jet propulsion.
Our aim is to stabilize the uniform motion of the object under consideration along the z 1-axis
with the constant maximal speed kl b/a. The control (u, u) (b, 0) corresponds to the
uniform motion we are to stabilize.

Let us introduce new variables x kl b/o, x2 z2, x k2. System (39) now can
be written in the form

( )
b U2X3b/l(x + 7)-21 _..--O xl-t- -- v/(x1 @ )2 + (X3)2

(40) 22 X3,

3 _O.X
3

__
(b/1,bt2) U,

bulx q- /,/2(.171 -- 7)
(X + )2 + (X3)2

and we obtain the regulator design problem in the usual form: to find a control u (x) stabilizing
system (40) to the zero equilibrium position.

Consider the first approximation of system (40)

(41)
21 ) (-or22 0
23 0

0 1 x2 -l-- w2

0 0 x3 w

where (w, W2, W3) E K {(w, W2, W3) wl < 0, W2 0}. Obviously, the transposed
matrix

Cr= 0 0 0
0 1 0

has the eigenvector (-1,0,0) corresponding to the eigenvalue -a, the eigenvector (0,0,1)
corresponding to the eigenvalue 0, and the invariant subspace spanned by the vectors (0,0,1)
and (0,1,0) corresponding to one Jordan block of the matrix Cr with the eigenvalue 0. Since

K* {(w 1., W2., W3.) w 1. _< 0, w3. --0},

we observe that the invariant space spanned by the vectors (0, 0,1) and (0,1,0) is not contained
in the cone K*. The vector (- 1,0,0) belongs to the cone K*, but it corresponds to the negative
eigenvalue -a. By Corollary and Theorem 4 the regulator design problem for system (40)
is solvable.
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In the previous example the X-dimension depends on . In the example under considera-
tion, for all ) 6 (-a, 0) we have

LI() {(yl,y2, y3) iXy2__y3, (cr+X)y <0}-K-- R3.

The results of computer simulation for these two examples can be found in [7, 8].

5. Regulator design under controllability conditions. In this section we consider the
regulator design problem for the linear control system

(42) k=Cx+u, u6K,

where K is a closed convex cone. We suppose that system (42) is controllable.
Recall the following result (Korobov [12] and Aubin, Frankowska, and Olech [2]).
THEOREM 9. Thefollowing conditions are equivalent:
1. Linear control system (42) is controllable.
2. The matrix CT has neither eigenvectors in K* norproper invariant subspaces contained

in K*.
Remark. Another necessary and sufficient condition of controllability appeared in Bram-

mer [6]. The case of a single-input system was considered by Saperstone and Yorke 17].
Theorem 9 combined with Corollary implies that the regulator design problem for

system (42) is solvable. Moreover, by Theorem 3 for any X < 0 there exists a positive integer
k k0Q such that

k

Lk(X) --co U(C XE)-i K Rn.
i=0

As was pointed out in Remark 2 at the end of 2, the L-dimension characterizes the
efficiency of the regulator design method. Our goal is to estimate the X-dimension of Rn with
respect to the set-valued map x --+ Cx + K.

An estimate for the )-dimension. To clarify the idea of the estimate note that for . < 0
the cone

L(X) E(C XE)-i K E(E q-- IXI-C)-i otW
i=0 i=0

where W K fq Bn, can be considered as a cone spanned by the reachable set of the discrete
control system

)-1(43) X + E + -l C X -(-l u u W, O, k- 1.

The discrete system (43) approximates the control system

(44) Jc -Cx u, u 6 W, 6 [O, T].

The system

(45) .=Cx+u, ueW,

is locally controllable (see [2, Lem. 5.7]). For systems (43) and (44) we denote the sets
reachable from the origin by ,4k (0) and Ar (0), respectively. Since system (45) is controllable,
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there exist T > 0 and r/ > 0 such that r/Bn C .AT (0). If k and I)1 are sufficiently large, then
0 int/tk(0). The latter amounts to saying Lk(;) Rn. Thus, we can estimate the number
k k(.) via the time T.

Consider a linear control system

(46) 2=Cx+u, uU,

where C is an n n matrix and U is a convex compact set satisfying U C Bn. Consider the
discrete control system

(47) Xi+ (E rc)-lxi -- ztli, bt U, O, k- 1.

The following lemma shows that any trajectory x(.) of system (46) can be approximated by a
trajectory of discrete system (47).

LEMMA 8. Let a number r > 0 andapositive integer k be such thatTz < k < (T/z) 1
and T/k < ICI -. Then for any trajectory x(.) of system (46) with x(O) 0 there exists a
trajectory ofdiscrete system (47) xo x, x0 0 such that

T
IXk x(T)I < (2 + ICI)2e21clT.

Proof. Let x(.) be a trajectory of (46) with x(0) 0. Applying the mean value theorem,
from (46) we have

x(ir + r) -x(ir) C x(t)dt + rU

C (x(ir + z) + 2(s)ds)dt + rU

(48) rCx(ir + r) + rU + C 2(s)dsdt
,Jir +r

for all O, k 1. Obviously,

(49) 121 _< ICI e(t-s)lCIds -1- 1 etlCI.

From (48) and (49) we have

x(ir + r)

(E rC)-lx(ir) + r(E rC)-IU + (E rC)-lCl eslCldsdtBn
air

C (g zc)-lx(i’c) + zU d- lr(z’lCI d- z=lCl= /,, ")Bn

where , -ICl(1 + exp(TICI))/(1 lCI).
Define the trajectory xo xg of discrete system (47) approximating the trajectory x(.)

by induction. Setx0 0. Ifxi is already determined, we choose xi+
from the condition

IXi+l --x(iz + r)l d(x(iz + z), (E z’c)-lxi --1-- 12U).

Observe that

Ixi+ -x(iz + r)l < I(E rc)-lllxi -x(ir)l +
< (1 rlCl)-lxi -x(ir)l-t-
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By induction we have

Ix- x(Z)l _< ((1- rlCI)-(- +... + (1- rlCI) -1 / 1)z’2}/
v2, (1 rlCI)- 1 T e2lClr< --(2 / ICl)e

(1-vlCI)-1-1 k
The lemma is proved. [3

THEOREM 10. Assume that there exist T > 0 and > 0 such that oBn C 4(0). If
), < -max{ICl, r/-(2 + IC[)2 exp(21flT)} and k > TI.I, then

Lk())-- en.

Proof For any point b riBn one can find a trajectory x(.) of control system (44) with
x(0) 0 and satisfying x(T) b. Lemma 8 implies that the reachable set 4(0) of discrete
system (43) satisfies oBn C 4(0) + Bn, where/3 < r/. Let x* 6 bdB. Then we have

S(x*, (rl t)B) 13 S(x*, tBn) 16 < S(x*, cOrk(O) --1- Bn)

S(x*, ,A(0)) + S(x*, B) S(x*, A(0)).

Hence, (0 )Bn C ,Ak(0). Consequently, L()Q cone.A(0) Rn.
Remark. We have reproved Theorem 3 for ;k0 -oc.

Single-input control systems. Now we proceed to study the regulator design problem
for a single-input linear control system

(50) 2=Cx+bu, uR,

where b Rn is a vector. We suppose that system (50) is controllable. By Kalman’s criterion
the controllability is equivalent with the linear independence of the vectors b, Cb C-1b.
Let E be a polyhedron satisfying 0 6 intE. Following the proof of Theorem 1, for any ) < 0
we generate a polyhedron A4. Let V (x) be the Minkowski function of A//. For system (50)
we can analytically solve the minimization problem

(51) min V(x + r(Cx + bu))
uR

considered in 3 (see the remark after Theorem 4) to determine the stabilizer u(x). The result
is contained in the following theorem.

THEOREM 11. Let ) < 0 and r 1/l,]. Assume that the matrix C )E is nonsingular.
Then the regulator obtained as the solution to minimization problem (51) is a linearfeedback
u (x) (c, x) such that the linear system

(52) Jc (C + bc)x

has the spectrum ) ,2 n .
Proof. Since system (50) is controllable, the vectors bi (C ,E)-ib, O, n 1,

form a basis in Rn. Indeed, by Theorem 3 there exists a positive integer k such that

k

co U(C )E)-(Rb) Rn
i=0

From the Cayley-Hamilton theorem k n 1. Thus, for any x 6 R there exist/3i,
0, n such that

n-1

(53) x Zibi.
i=0
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z + ’(Cz + Rb)

FIG. 2. The stabilizerfor a single-input system.

Thus any vertex of the polyhedron E can be represented in the form (53). This implies that the
polyhedron Jl is the convex hull of a polyhedron contained in the subspace L spanned by the
vectors bl bn-1 and of two points contained in the one-dimensional subspace spanned
by b0 b. Consequently, the Minkowski function V in (51) has the minimum at the point
u(x) such that the vector x + r(Cx + bu(x)) belongs to the subspace L (see Figure 2). To
determine u (x) observe that for all 0, n 1 we have

n-1

(54) Cbi Yibk.
k=0

From (53) and (54) we have

x + r(Cx + bu)

Hence

(55)

n-ltin-1 ( n-lii 0 )i=1 i=0 k=l i=0

n-1

/t(X) /i? /O/T"
i=O

Thus u(x) is a linear function of x, i.e., u(x) (c, x) for some c 6 Rn. Differentiating (53)
and using (54) and (55), we obtain

n-1 n-1 n-1

(56) i bi i

_
yikbl flObo/r"

i=0 i=0 k=l
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Since the vectors bi, 0, k, are linear independent, from (56) we have

(57 /0 _0/r
n-1

(58) /i flj?,j, 1, n 1.
j=0

Subtracting Xbi from both sides of (54), we obtain

n-1

bi-1 }likbk bi
k=O

Consequently, i X, Jfi
i-1 1, 1, n- 1, and .k, 0, k 1, n- 1,

1, n 1, k i, k 7 1. Since r 1/11, (57) and (58) can be written in the form

flo 0 0 0 flo

Oo Oo
dt

". n-n-1 -100...
The spectrum of the system is, obviously, X X2 An X. 1-]

There exists a linear feedback u(x) (c, x) such that the closed-loop system

(59) c (C + bcT)x

has an arbitrary given spectrum (see 19, Thm. 4.1.7], for example). Consequently the solutions
of (59) can damp to the zero equilibrium position with an arbitrary given speed determined by
the real parts of the spectrum. It turns out that the trajectories of closed-loop systems with fast
damping significantly deviate from the equilibrium position during a short initial time interval.
In other words, trajectories have "peaks" before fast damping. This effect has been largely
studied (see Polotski [15], Izmailov [11], and Sussmann and Kokotovic [20], for example).
Let us show that the regulator obtained as the solution to (51) ensures a minimal overshoot
among linear feedback control laws with the spectra {)Vl An satisfying the conditions
ReX/ < X < 0, IXi X < , where e > 0 is sufficiently small.

Recall the following result from Izmailov 11 ].
Denote by x(t, xo) the solution to (59) satisfying x(0, x0) x0.
THEOREM 12. There exists }/ /(C, b) > 0 such that if the spectrum {X1 An} of

system (59) satisfies ReX/ < X < O, 1, n, then we have

IX1 ...Xnlsup sup Ix(t, xo)l > ?’
O<t<l/. xoebdBn max IXil

As follows from Theorem 12, the "peak" effect always takes place in linear systems. An
important practical problem is to choose a linear feedback with the minimal overshoot and
the damping speed greater than or equal to a given value. This problem is very complex and
its complete solution is unknown, but some results in this direction have been obtained by
Polotski 15]. The following two theorems can be proved with the help of techniques similar
to the ones developed in 15].

Consider linear control system (50). Let the linear feedback u (c, x) be such that linear
system (59) has the spectrum {X1 X,, }, where X1 Xn are different complex numbers.
Denote the matrix A C +bcr by A(X An) to emphasize its dependence on X Xn.
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To characterize the "peak" effect introduce the function

p(X1 Xn) maxmax eazl ’n)tx
t>_0 Ixl_<l

defined for complex numbers satisfying ReX/ < 0, 1, n. The norm in the definition of p
is not necessarily Euclidean.

THEOREM 13. IfX1 Xn X < O, then we have

p(X X) _< (const),kn-1.

Theorem 12 shows that

p(X1 Xn) > (const)Xn-1

whenever the spectrum {X1 Xn satisfies ReX/ < X < 0. Thus, from Theorem 13 we see
that the spectrum X1 Xn X guarantees the minimal overshoot at least up to a factor.
It is natural to expect that for any spectrum {X1 Xn satisfying ReX/ < X < 0 we have

p(X X) p(X Xn)

whenever I)1 is sufficiently large. Unfortunately, we have no proof of this hypothesis, but its
local variant can be proved.

Note that the function p(.) is directionally differentiable.
THEOREM 14. For any complex vector (XI Xn) satisfying ReX/ < 0 and any real

number X < 0 there exists a number v < 0 such that

ReX1 +-.. + ReXn
Op(X Z)(Zl Zn) v

n

whenever IZl is sufficiently large.
From this theorem we derive a local variant of the optimality hypothesis.
COROLLARY 5. Let ) Xn be a spectrum. IfReXi < 0 and X < O, then

Dp(Z X)(X1 Zn) > 0

whenever I.1 is sufficiently large.
We know from Theorem 11 that in the case under consideration the regulator design

algorithm (51) generates a linear feedback corresponding to the spectrum {X X} and,
hence, generates a linear feedback with the minimal overregulation, at least in a local sense.

6. Weak asymptotic stability and stabilizability. In this section we investigate the
connection between weak asymptotic stability and stabilizability and describe the class of
control systems stabilizable at first approximation.

Recall the notion of weak asymptotic stability (see [9] for details). The equilibrium
position x 0 of a control system

(60) 2 f (x, u), u U

is called weakly asymptotically stable if, given > 0, there exists 6 > 0 such that for any
xo BBn at least one trajectory x(.) of (60) with x(0) x0 satisfies the conditions [x(t)l <
for all > 0 and lim x (t) 0 as c.

Obviously, if the stabilization problem for system (60) is solvable, then the origin is its
weakly asymptotically stable equilibrium position. As we know from Theorem 1, for the first
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approximation these conditions are equivalent. In general stabilizability cannot be derived
from weak asymptotic stability.

Example. Consider the following control system with the control set consisting of one
point:

(61) (kl, 32)= { (_._Xlffl(x2)l/3),,X2),
(xl, X2) E"21,(xl, X2) E ’22,

where f21 {(x 1, X2) IX >__ 0, IX21 < (xl)2}, ’-22 R2 \ "21 Let (Xo, x0) 6 "22. Then the
trajectory

(xl(t), xZ(t)) e-t (x, x)
of system (61) obviously tends to zero when x.

Let (x, x0) 6 1 and x > 0 (the case x < 0 is similar to that one). Then the trajectory

2 xg(et_l) + (x)2/3
3/:

(xl (t), x2(t)) (xdet, - -2 (xl (t) + (X)2/3 X))3/2 We see that there exists t* such that x2(t*)satisfies xZ(t) (g
(x(t*))2 if (x0, x) is sufficiently close to the origin. Hence (x (t*), x2(t*)) 6 S22. Thus,
the equilibrium position (x 1, x9) (0, 0) of system (61) is weakly asymptotically stable.
Nevertheless, it is not asymptotically stable. Indeed, let x > 0. Then the trajectory (etx, O)
of system (61) does not tend to the origin. Thus the stabilization problem is not solvable.

In order to derive stabilizability from a stability concept we introduce the following
definition. We say that the equilibrium position x 0 of control system (60) is weakly
exponentially stable if there exist positive constants a, 0, and such that for each xo Bn at
least one trajectory x(.) of system (60) with x(0) x0 satisfies

Ix(t)l < alxole-, O,

I(t)l < alxole-t, >_ O.

From Theorem 4 we see that if a system is stabilizable at first approximation, then its zero
equilibrium position is weakly exponentially stable. Below we prove an inverse statement.

THEOREM 15. Let the right-hand side of system (60) be twice differentiable in x, and
let the derivatives Vx f(x, u) and Vxxf(x, u) be continuous in (x, u). Assume that U is a
compact set and that there exists a unique uo U satisfying f (0, uo) O. Ifthe equilibrium
position x 0 ofsystem (60) is weakly exponentially stable, then the stabilization problem
for thefirst approximation is solvable.

Proof. Let Y 6 Rn. Since the equilibrium position x 0 is weakly exponentially stable,
there exist trajectories x (.) of system (60) with x (0) Y/k satisfying

a -or(62) Ix(t)l <_ lle >_ 0,

a
(63) I(t)l < -IYle-t, >_ O,

where a > 0 and 0 > 0 and k is large enough. Introduce a new time r (t / 1) -1.
Obviously z varies in [0, 1) when varies in [0, cx). Let

y(r)=x(t(r)), r6[0,1), k=l,2



STABILIZATION BY CONSTRAINED CONTROLS 1647

Then we have

d
(64) d----yk(r) (1 z’)-2f(yk(z’), u(t(r))),

where u(.), k 1, 2 are the controls corresponding to x(.). From (62) and (63) we
obtain

a
(65) ly(r)l

_
lle---’-, v [0, 1),

a ")-2e-O((1-r)--l) r 6 [0 1)(66) ](r)l < 121(1-
Consequently yk(r) --+ 0 and (r) --+ 0 as r 1. Put by definition y(1) 0, k
1, 2 From (65) and (66) we see that the sequence {ky(.)} is bounded in sup-norm
and is equicontinuous. By the Ascoli-Arzelh theorem it contains a uniformly convergent
subsequence. Without loss of generality kyk (.) uniformly converge to a continuous function
y(.).

From (64) and (66) we see that there exists M > 0 such that

kigk(Z) k(1 z)-2f(y(z), U) q MBn

(67) C k(1 "c)-2(f(k-ly(r), U) +/lyk(r) k-y(r)lBn) N MBn.

Let r 6 (0, 1) be such that all functions y(.) and y(.), k 1, 2 are differentiable at r.
From (67) we see that there exist v(r), k 1, 2 such that

vk(r) 6 k(1 r)-2f(k-y(r), U), k 1, 2

and

kk(r) vl(’c) + (1 r:)-21lkyk(’c) y(r)lBn, k 1, 2

Let w(r) U, k 1, 2 be such that

vk(r) k(1 r)-2f(k-y(r), w(r)), k 1, 2

Since U is compact, without loss of generality wk(r) --+ w(r) U. Observe that v(r) are
bounded. Hence we have

f(O, woe(r)) lim f(k-y(r), wk(r)) lim k-lv(r)(1 "t’) 2 0.
k--+ cxz

Since u0 6 U is a unique solution to the equation f(0, u0) 0, we obtain w(r) uo.
From (67) and the equality

Vk(r) k(1 r)-2[f(k-y(r), uo) + (f(0, Wk(r)) f(0, u0))

+ (f(k-ly(r), wk(r)) f(0, wk(v))) (f(k-ly(v), uo) f(O, u0))]

k(1 z’)-2[k-lCy(r) nt- (f(O, w:(r)) f(O, uo))

+ k-l(Vxf(O, wk(r)) Vxf(O, uo))y(r) + r(k, r)],
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where limk__> supr kr(k, z) 0, we have

kk(Z) E (1 r)-2(Cy(r) + K) N MBn + ek(’C)Bn,

where ek(Z) --+ 0 as k ---> z. Applying Lemma 2.7.3 in [9, p. 82], we obtain

(r) E (1 z)-2(Cy(r) + K), z [0, 1).

From (65) we have

r 6 [0, 1).

Thus, the function x(t) y(r(t)) satisfies

Jc(t) Cx(t) + K

and

Ix(t)l _< alcle-t, >_ O.

Applying Theorem 1, we obtain the result.
Remark. The uniqueness of u0 6 U satisfying f (0, u0) 0 is essential. Indeed, the zero

equilibrium position ofthe control system k ux, lul _< 1, u0 0, is weakly asymptotically
stable. The control u --- -1 is a constant stabilizer. Nevertheless the first approximation is
5: 0.

COROLLARY 6. Under the conditions ofTheorem 15 the stabilization problemfor system
(60) is solvable.
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MINIMAX RENDEZVOUS ON THE LINE*

WEI SHI LIM AND STEVE ALPERN

Abstract. Suppose that n players are placed randomly on the real line at consecutive integers, and faced in random
directions. Each player has maximum speed one, cannot see the others, and doesn’t know his relative position. What
is the minimum time Mn required to ensure that all the players can meet together at a single point, regardless of their
initial placement? We prove that M2 3, M3 4, and Mn is asymptotic to n/2. We also consider a variant of the
problem which requires players who meet to stick together, and find in this case that three players require 5 time units
to ensure a meeting. This paper is thus a minimax version of the rendezvous search problem, which has hitherto been
studied only in terms of minimizing the expected meeting time.

Key words, rendezvous, search game

AMS subject classifications. 90B40, 90D26

1. Introduction. In this paper we ask how much time is needed to ensure that n players,
placed randomly onto consecutive integers on the line, can all meet together at a single point.
We assume that they cannot see each other and can move at unit speed. We also assume that
they have no common notion of a positive direction on the line, or equivalently are each placed
pointing in a random direction. We seek the minimum time Mn by which some n-tuple of
strategies guarantees a group meeting regardless of the initial placement of the players. For
example, it is clear that M2 < 3 because if one player remains still while the other goes, say,
one unit to the right followed by two to the left, then the meeting time is 1 or 3.

The problem consideredhere is a search game, and fits into the framework of [5] and [9],
except that our problem is far from being zero sum. More specifically, our problem can be seen
as a minimax version ofthe rendezvous searchproblem which has previously been analyzed
only in terms of expected-time minimization. However there are many applications in search
theory where expected-time minimization is not the most appropriate solution concept, and
minimax is one of several others that have been studied in various contexts. It seems that
minimax is appropriate even in the original rendezvous problem of Schelling 10], where two
parachutists have to meet after a simultaneous landing in a large field. If the overall plan
involves their moving out together from this field at time tl, then they must be dropped into
the field no later than tl minus the minimax rendezvous time. For a simulation approach to

Schelling’s problem, see 12].
As the search region is the line, our work may be compared to several recent investigations

ofrendezvous search on the line in an expected-time context. The line as the search region was
first studied in the original paper on rendezvous search 1 and improved on in [3], but only in
a "symmetric" version in which the two players were required to use the same mixed strategy.
Clearly the symmetric version of the rendezvous problem is not appropriate to the minimax
context because it allows the possibility that both players might use the same pure strategy.
(They would never meet in the case where they are initially pointed in the same direction.)
The asymmetric version of rendezvous search on the line was first studied in [2], where it was
shown that two players initally placed one unit apart could meet in least expected time 13/8.
From our current perspective it is worth noting that the optimal strategies in that context had a
maximum meeting time of 3. (It is interesting to note that two-person rendezvous on the line is
in some sense dual to high-low search [4], since in the former the searcher knows the distance
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but not the direction of the other player, while in the latter the direction but not the distance is
learned after each guess.) More recently the problem of three-player rendezvous on the line
was studied in [6]. No exact value was obtained for the least expected time required for all
three to meet, but it was shown that two (out of three) could meet in least expected time 47/48.

The present paper finds the first exact value for a full three-player rendezvous problem,
i.e., the time needed for all three to meet at a single point. We do this in a minimax context
and find that 4 is the least time required to ensure that three players placed at unit distances
apart can meet, that is M3 4. In order for all three to meet this quickly, the two players
who first meet must in some cases split up to find the remaining player, before regrouping
in a threesome. The problem facing the two who meet first is thus similar to that studied
in a different context [11], [7], [8]. We also consider an important variant of the problem,
namely "sticky" rendezvous, where players who meet are required to remain together. We
find that when players’ strategies are thus restricted, they need 5 time units to ensure full
three-player rendezvous. Our final result concerns the behavior of Mn for large values of n,
the time required for large numbers of players to meet. We find that Mn is asymptotic to n/2.
This asymptotic value is the same as for the least expected time in the symmetric problem, as
proved in [6], although of course the problem and solution concept are entirely different.

The paper is organized as follows. In 2 we give a precise formulation of the minimax
rendezvous problem, in its unrestricted and "sticky" forms. In 3 we analyze the two-player
problem in an extended form that will arise for three players after two of them meet. In partic-
ular we establish that M2 3. In 4 we solve the sticky version of the three-person problem,
proving that sticky players require 5 time units to guarantee a three-way meeting. In 5 we use
similar arguments to show that without this restriction three players can meet in 4 time units,
M3 4. The final section, 6, establishes the asymptotic result that limn. Mn/n 1/2.

2. The minimax rendezvous time. In this section we give the definitions of the n-player
rendezvous problems I and the associated minimax rendezvous time Mn. We also define their
"sticky" counterparts, in which players who meet must thenceforth remain together.

The problem (or game) 1-’n begins with a random placement of the n players onto the
first n integers (or, equivalently, any n consecutive integers). The initial position of player

is denoted by ci, where {c, c2 cn} {1, 2 n}. Since the players do not have a
common notion of a positive direction on the real line, we assume they are initially faced in
independent random directions. We use c,+i to denote the direction that player is initially
pointing, from an observer’s fixed global view, where c,,+i {+ 1, -1 }. Let C Cn denote
the set of all n !2 initial configurations of the form c {cl, C2 2n }. Note that the first
n coordinates denote position, while the next n denote direction.

A strategy for player in the game Fn is a rule that gives his motion (relative to his
starting point and starting direction) as a function of the information he receives from players
he may meet. A strategy profile is simply an n-tuple of strategies, one for each player. A
strategy profile together with an initial configuration determines completely the motions of all
the players. If is a strategy profile and c is an initial configuation, we define Tc () to be
the first time (if any) that all n players following the profile S meet together at a single point,
when the initial configuration is c.

In particular, a strategy for player must say how that player should move before he
meets anyone. This part of the strategy is called the Stage 1 strategy. A Stage 1 strategy si is
a (speed-one) path belonging to the set

e {p" 9+ 9, p (0) 0, Ip (t) p (t2)l < It t21}.
The Stage 1 path of a player following strategy Si when the initial configuration is c is given
by ci + Cn+iSi (t). In a recent paper [6] it is shown that when initial distances between adjacent
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players are integers, any strategy profile can be modified to one in a subset of P called P*
where players have piecewise linear paths, with slopes 4-1, and which turn only at times k/2,
where k is an integer. This modification does not postpone any meeting between players and
hence does not postpone the final meeting of all the players. For this reason we will further
assume that throughout the game all players are restricted to paths in P*. Observe that this
assumption implies that Tc (,) is always half of an integer. A useful notational device for
describing Stage strategies in P* is simply to list the slopes in successive half-units of time.
Thus s [+ 1, 1, + 1, describes a path that oscillates between its starting point and
a point a half-unit above the start. More generally, if s [xl, x2 then we have (with
denoting integer part)

[2t]

(2t [2t])s (t) - Xm -1
t- X[2t]+I 2

rn=l

One final remark regarding player strategies in Fn is that we may assume without loss of
generality that they all begin with + 1, that is, they go in the forward direction for the first half-
unit of time. This assumption is valid because it does not restrict the actual player motion,
since the player may be initially pointed either way.

The maximum rendezvous time for a strategy profile , denoted simply T (), is defined
as

T () max Tc().
cEC

Then we may define the minimax rendezvous time Mn as

Mn min T (),

where the minimum is taken over all strategy profiles . We note that the index n does not
appear on the right side of the above equation, but of course the player-number parameter n is
implicit in all the definitions in this section. The existence of the minimum follows from our
assumption that all player paths must belong to P*.

In 4 we will consider a further restriction on player paths, namely, that when players
meet they stick together. All the above definitions remain valid, with this assumption. The
sticky version of the n-player game is denoted ’n and the sticky minimax time is denoted An.

3. Two-playerminimax rendevous. In this section we consider the minimax rendezvous
problem on the line for the case of two players. In passing, we will prove that the minimax
rendezvous time for the standard two-player problem 1-’2 is 3, but we will mainly be concerned
with a more general two-person problem denoted I" (or,/3). We are forced to consider this
more general problem because this is what the three-player "sticky" problem (discussed in the
next section) collapses to after two players meet.

The problem 1-’ (or,/3) is an asymmetric information rendezvous game defined as follows.
Player I is placed at some point ofthe line (which we take as the origin 0) and pointed facing up
(the line is taken to be vertical). Player II is then faced in a random direction either a distance
c above player I or a distance/3 below player I (i.e., at ot or at -/3). Thus player II knows
only that his partner is a distance ot or/3 away, while player I knows that his partner is either
ot above (forward) or/3 below. If ot =/3 1 then the information is symmetric and indeed
F (1, 1) is the same as the problem we called 1-’2. If player I chooses a strategy s f 6 P
and player II chooses a strategy s2 g 6 P (we cannot restrict strategies to P* unless ot and
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/3 are integers) then the maximum rendezvous time T, (f, g) is the first time when the path
f (t) has intersected the four paths given below:

L (t) a g (t),

L2 (t) ot -+- g (t),
L3(t)=-fl-g(t),

L4 (t) -/3 + g (t).

That is, T’’# (f, g) is the maximum of tj tj (f, g) min {t f (t) Lj (t)} Yj
4. The minimax rendezvous time for 1-’ (or,/3) is the minimum of Ta’# ’v’(f, g) P x P.

Note that any strategy pair (f, g) determines an ordering of the meeting times tj, i.e.,
there is a permutation cr cr (f, g) of 1, 2, 3, 4} such that

to(l) < ta(2) < tr(3) < tcr(4) T’t (f, g).

In such a case we will say that (f, g) has permutation type or. If c and/3 are integers and
(f, g) 6 P* P* then the permutation type is unique and tj+l >_ tj + .5.

There is a complementary notion (introduced in [2]) by which each permutation cr deter-
mines a canonical strategy pair (Fa, G), such that in the interval tj-l < < tj, j

4 (with tr (0) defined as 0), the path F and the path Lj (which depends on G
are moving towards each other at maximum speed. It is shown in [2, Thm. 3 and its proof]
that the canonical strategy pair (F, Ga) minimizes all the meeting times tj, within the class

ofstrategy pairs ofpermutation .type or. It follows that the minimax rendezvous time, as well
as the least expected rendezvous time, will be attained for some canonical strategy. However,
there may also be noncanonical strategy pairs which achieve the minimax rendezvous time.

To see how this definition defines a unique strategy pair (F, G), we illustrate the con-
struction for the identity permutation 6, using the simpler notation f F and G. The
path f is pictured in Figure 1 for the parameters ct 1 and/3 2, where it is called fl (the
meeting times there are .5, l, 2.5, and 4). The strategies begin with the player I path f and
the player II possible path L1 (t) ot (t) moving towards each other at maximum speed.
Since L1 is above f at time zero, this means that f’ 1 and L -1, or ’ +l, from
time zero until the first meeting time tl or/2. At this time L2 is above f and so f’ +
and L -1, or ’ -1, from time t or/2 until f meets L2 at time t2 0t. Note that

f (or) ot and (or) 0. At time t2 or, L3 (or) -fl (or) -/3 is below f (or) ot

and so for the next time interval,

t2 < < t3 t2 -1- (or (-/))/2 (3or +/3)/2,

f’ -1, and L + 1, or ’ -1. At time t3, f is at (u -/3)/2, while Z4 is lower, at
(or + 3/3)/2. Hence f goes down and L4 goes up (or goes up) throughout the interval

t3 < < t4 t3 -+-
2 2

The datajust derived are presented in the first data row of Table which gives the four meeting
times t(j) for the canonical strategies (F,, G,) corresponding to various permutations. While
this table contains just six of the 4! 24 possible permutations, it will in fact be sufficient to
calculate the minimax rendezvous time. The data in this table will be useful in the following
theorem.

THEOREM 1. The minimax rendezvous timefor the problem I" (, fl) a < r, is

min T’t (f, g) 2or +/3.
f,gPP
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time

FIG. 1. Optimal strategiesfor the problem F (1, 2).

TABLE
Meeting timesfor canonical strategies F, G).

t t(]) t(2) &r(3) t(4) T’# (F, G)

(1, 2, 3, 4) c/2 c (3or +/3)/2 2o +/3
(1, 2, 4, 3) oe/2 o (3oe +/3)/2 2or +/3
(1, 3, 2, 4) ct/2 (2a +/3)/2 (3or -Jr/3)/2 2a +/3
(1, 3, 4, 2) ct/2 (2or +/3)/2 ct + 13 (3or + 3/3)/2
(1, 4, 2, 3) a/2 (a +/3)/2 c +/3 (3or + 3/3)/2
(1, 4, 3, 2) a/2 (or +/3)/2 ot + 1 (3a + 31)/2

Furthermore, if T’ (f, g) 2or + fl and ot < 13, then the permutation type of (f, g) is
(1, 2, 3, 4), (1, 2, 4, 3), or (1, 3, 2, 4).

Proof. According to the result of [2] quoted above, the minimax rendezvous time is the
minimum of T’, (F,,, Go) as tr varies over the permutations of 1, 2, 3, 4}. We claim that
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it is sufficient to consider only the six permutations listed in Table 1 (those where the player
II path c g (t) is intersected first), where the minimum (given that ot </3) is 2or +/3. The
cases which intersect the player II path oe + g (t) first will give the same results, that is, the
same meeting times t,(j), the same F, and a sign reversal for G. The cases which intersect
either of the paths -/3 + g (t) first will give a similar table with ot and/3 interchanged. So the
only new maximum rendezvous time appearing in such a table would be 2/ + or, which is not
less than 2c +/3. When ot </3, only the first three data rows of the table give the minimum
2or +/. [3

As a special case of the above result when oe =/3 1, we have the following solution to
the standard two-person minimax rendezvous problem.

COROLLARY 1. M2 3.
The three-person "sticky" rendezvous problem f’3 to be analyzed in the next section may

reduce to the problem 1-" (1, 2) in certain cases. For this reason we explicitly give the four
optimal player I strategies in P* for F (1, 2) in the following result.

COROLLARY 2. The minimax rendezvous valuefor the problem 1-" (1, 2) is 4. Furthermore

ifT’2 (f g) 4,for (f g) P* x P* then f is one ofthefour strategies in P* which satisfy

f(1/2)=1/2, f(2.5)---.5, and f(4)---2, i.e.,

f [+1,+1,-1,-1,-1,-1,-1,-1],

f2 [+1,-1, +1,-1,-1,-1,-1,-1],

f3 [+1,-1,-1, +1,-1,-1,-1,-1],

f4 [+1,--1,--1,--1, +1,

Each of these has maximum rendezvous time of 4 when paired with the player II strategy
g [+1,-1,-1,-1,-1, +1, +1, +1]. (See Figure 1.)

Proof. The reader should first verify the obvious fact that the f are indeed the only four
strategies in P* which satisfy the three conditions (including of course f (0) 0, which is
part of the definition of P*). According to Theorem we can only find optimal strategies for
the permutation types (1, 2, 3, 4), (1, 2, 4, 3), and (1, 3, 2, 4).

Case 1, cr is (1, 2, 3, 4) or (1, 2, 4, 3). Suppose T’2 (f, g) 4 for (f, g) P* x P*,
and

t < t2 < t3, t4.

We may assume that tl .5 and f (.5) g (.5) .5 because in the alternative case that

f (.5) -.5 the resulting problem at time .5 is either F (1, 2) (if I is told that II moved down)
or 1-’ (2, 1) (if I is told that II moved up), and therefore (by Theorem 1) requires an additional 4
units of time to ensure meeting. Since g (.5) .5 it follows that g (t) > .5 (t .5) 1 t,
for > .5. Hence after f has intercepted + g (t) at time t2, we must have that

(1) f(t)>2-tfort>t2.

Since f intersects 1 + g at time t2 and -2 + g at time t4 < 4, and speeds are bounded by 1,
we must have

(2) t4 t2 _> I(1 + g (t2)) (-2) + g (t)l/2 1.5 or t2 _< t4 1.5 2.5.

Suppose that strict inequality holds in (1), that f (s) 2 s + p for some p > 0 and some
time s < 4. Then a player I starting at position 2+ p at time zero, following path 2- /p until
time s, and then following path f, could ensure meeting paths -2 + g by time 4. But this
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would mean that the minimax rendezvous time for the problem F (0, 4 4- p) F (4 4- p, 0)
is not more than 4, whereas Theorem 1 says it is equal to 4 4- p. Hence our assumption that

f (t) could be larger than 2 was false, and (1) must hold with equality, that is,

(3) f (t) 2 for > 2.5.

We showed earlier that f P* must go through (.5,.5) and (3) shows further that it must
go through (2.5, -.5) and (4,-2). It follows that it must be one of the four strategies fk.
(Actually it cannot be f4 in this case, but we do not need to prove this fact.)

Case 2, cr is (1, 3, 2, 4). Suppose T 1’2 (f, g) 4 for (f, g) 6 P* x P*, and

tl <t3 <t2 <t4 =4.

Since speeds are bounded by 1, it follows that

(4)
4 t2 t4 t2 _> IL4 (t2) L2 (t2)l/2 1(-2 + g (t2) (1 + g (t2)))l 1.5, or

t2 _< 2.5, and hence t3 < t2 .5 < 2.

By the same reasoning as (4), we have

(5) t3- tl > 1.5, so t3 > tl 4- 1.5 > 2.

The only solution to (4) and (5) is ll .5, t3 2, t2 2.5, t4 4, which are the times for
the canonical strategy pair with this permutation. Hence f must be Fo f4.

The optimal strategies for the problem F (1, 2) are drawn in Figure 1. They are also drawn
in a stacked form in Figure 3, which will be discussed later.

We conclude this section with an analysis of some two-person rendezvous problems where
one of the players (taken to be I) knows the direction of the other. Since this person will clearly
move at speed one in this direction, these are really one-person problems. The only strategic
variable is the path ofplayer II. These results are called lemmas because they will be used in 5
in the following way: When two players meet and do not know the direction of the other, they
will each be assigned a direction and will assume the remaining player lies in that direction.
A lower bound on the maximum time taken to find the remaining player, assuming he is in
this direction, is the minimax value of the game in which the direction is known. It is these
minimax values that we now calculate. These are all very simple results.

LEMMA 1. Suppose that player I is placedfacing up at 0 and player II is either placed
facing down at 1 orfacing up at 2. Then the minimax rendezvous time is 3/2. Furthermore
this maximum meeting time occurs ifand only if I moves up at speed one and II uses a strategy
h P satisfying h (3/2) -1/2. There are three strategies h P*, defined up to time

3/2, satisfying this condition. In the notation giving the slopes ofthe paths in successive time
intervals oflength 1/2 these paths (as shown in Figure 2) are asfollows:

h [+1,-1,-1],

h2 [-1,-1, +1],

h3 [-1,4-1,-1].

Proof. If player II uses strategy h, the maximum meeting time T (h) is the time required
for the path (of player I) to meet both possible paths of II, that is, 1 h (t) and 2 4- h (t).
This is the same as the time required for h 6 P to meet both 1 and 2. Clearly if
h (3/2) -1/2, then it meets both these paths at time 3/2. If it meets either of these paths
before this time, the earliest it can meet the other is 3/2, since these two paths are approaching
each other at combined speed 2. Furthermore if h (3/2) > -1/2, then it cannot yet have
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FIG. 2. Optimal paths derived in Lemma 1.

intersected 2; if h (3/2) < 1/2, then it cannot yet have intersected 1 t. Thus only paths
with h (3/2) -1/2 can achieve a maximum meeting time of 3/2. The three paths stated in
the lemma are the only ones in P* satisfying this condition. These paths are drawn in bold in
Figure 2.

The following two lemmas are even easier, as they give minimax times when player I
knows not only the direction but also the initial distance to player II. They may appear too
obvious to bother stating, but we do so because they will be used repeatedly in 5, without
specific mention. (The first is actually a corollary of Theorem 1, with a 0.)

LEMMA 2. Ifplayer I is placed (at time O)facing up atposition 0 andplayer II is placed in
a random direction atposition > O, at any time prior to time 13, then the minimax rendezvous
time is . Call this problem F’ ().

LEMMA 3. Ifplayer I is placed (at time O) facing up at position 0 andplayer II is placed
in a known direction (say up) at position > O, at time 3, - < < 13, then the minimax
rendezvous time is ( + 3) /2. Call this problem F" (, 3).

4. Sticky three-person rendezvous. We are now in a position to attack the problem I’3.
Recall that in this problem three players are randomly placed onto the integers 1, 2, and 3,
and faced in random directions. Once two players meet, they must stick together while trying
to locate the third. The players’ strategy paths are assumed to belong to P*. The main result
of this section is the determination of the minimax rendezvous time M3 for this problem.

THEOREM 2. The minimax rendezvous time 13 for the sticky three-person problem
is 5.

Proof. We first show that/3 < 5 by exhibiting a simple strategy triple which guarantees
three-player rendezvous by time 5. The simplest version is that two of the players remain still
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(until they are met by the moving player) while the third moves forward, taking along any
player he meets, until he reaches an integer location with no player on it. He then reverses
direction, similarly taking along any player he meets, until he has accumulated both of the
other players. The case with maximum rendezvous time is when the moving player starts in
the middle, and in this case the rendezvous time is 5. Since the strategy of staying still in
Stage does not belong to P*, it has to be modified. The modification is simply to oscillate
between the starting point and a point 1/2 unit forward. The analysis for the modified strategy
is essentially the same and it also has a maximum rendezvous time of 5.

To demonstrate that M3 > 5, we assume that there is a strategy triple S* with T (S*)
4.5, and then show that this assumption leads to a contradiction. Since for strategies involving
paths in P* intersections can occur only at integer multiples of 1/2, this will establish that
M3>_5.

Let S (sl, s2, s3) be the Stage 1 strategies for S*. We may assume that each is simply
the identity function for < 1/2. Observe that for any of the three players j 1, 2, 3, there
is an initial configuration c c (j) for which the two players other than j meet at time .5.
(For example c (2) (1, 3, 2, + 1, + 1, -1).) Let gj denote the strategy (path) followed by
the two who meet in case c (j) from time 1/2 onwards. We normalize this so that the position
of these two players at time + 1/2 is gj (t) plus their position when they meet at time .5.
Thus gj belongs to P* (takes value 0 at 0 ). Similarly let gj denote the remainder of player
j’s path from time 1/2 onwards, gj (t) sj (t + 1/2) sj (1/2). Thus j also belongs to P*
(takes value 0 at 0). Note that the situations of player j and of the remaining two players are
the same as that of players I and II in the game 1-’ (1, 2) the paired players are either unit
above player j (that is in the direction he was initially pointed) or 2 units below him. Hence
it follows that

Tc(j) (S*) 1/2 + T 1’2 (Yj, gj)

where T 1’2 is the minimax rendezvous time defined in the previous section for the game
F (1, 2). Our assumption that r (S*) 4.5 implies that To(j) (S*) < 4.5 and by the above
that T 1,2 (j, gj) < 4. It follows from Corollary 2 that T 1,2 (j, gj) 4 and that j belongs to
the set of optimal strategies for player I in F (1, 2), that is, to the set fl, f2, f3, f4

Since the above argument holds for each player j 1, 2, 3, we have shown that the Stage
paths of S* must be optimal for the problem F (1, 2) from time 1/2 onwards, that is,

sj E {fl,f2, f3, f4}, forj 1,2,3.

It now follows that there is a case g for which none of the three players meet (not even two of
them) by time 4.5, that is Te (S*) > 4.5, which contradicts our assumption. To see that such
a case (initial configuration) g exists, first look at Figure 3. This shows a drawing of the four
paths fl, f2, f3, f4 with each preceeded by a slope 1 diagonal for time 1/2. The lower-indexed
functions are started at higher positions on the line, and there are no intersections by time 4.5.
The general algorithm for choosing g as a function of (sl, s2, s3) is very simple: point all the

fk s higher. If two players are usingplayers up, and place the players using lower-indexed
the same fk, then of course it doesn’t matter which of these is placed higher. For example, if
(1, ;2, if3) (fl,f4,f3), then g (3, 1, 2, +1, +1, +1).

5. Three-player rendezvous (unrestricted). In this section we show that three players
placed on adjacent integers can ensure a three-way meeting by time 4, that is M3 4. This
is a savings of 1 time unit over the 5 needed in the sticky case considered in the previous
section. The novel feature considered here is that players who meet can separate to find the
third (although the game does not end until all three are together).
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FIG. 3. A nonintersecting stacking of the strategies f, starting at time .5.

LEMMA 4. M3 _< 4.

Proof. We exhibit a strategy profile with a maximum rendezvous time of 4. The Stage 1
strategies are the same as for the optimal sticky rendezvous: Player I follows the path (given
in slope form for a half-unit time interval) [+ 1, / 1, 1, 1, 1, up to time 3. The other
two players follow a path which oscillates between their start and a point half a unit away,
such as [+ 1, 1, + 1, 1, + 1, 1, + 1, ]. If player I has not met another player by time 1,
then he can conclude the other players were both behind him, so when he reverses direction
at time 1 he continues forever in this direction, bringing with him the first player he meets (at
time 3), and meeting the second at time 4. If he first meets another player at time 1, the two
who meet know that the remaining player is either 1 above or 2 below, and will be there at
every integer time. So one of them (say player I) goes 1 above and then reverses, while the
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other goes 2 below and then reverses. If either finds the remaining player he asks that player
to stick with him. Thus the two who originally met will meet again in 3 more time units, at
player I’s starting point. Furthermore one of the two is sure to have brought the remaining
player along with him. Finally, if player I first meets a player at time 1/2, he can ignore this
and bring that player back to that player’s start. This puts the two who met in the situation
analyzed above. Thus in any case the rendezvous time is not more than 4. [3

LEMMA 5. M3 >_ 3.5. Furthermore any strategy profile for the game 1-’3 which has a
maximum rendezvous time of 3.5 must have all its Stage 1 paths, up to time 2, belonging
to the set {lf/2,f/3} defined as follows. The path [t is the path h ofLemma 1, preceded
by a forward speed-one motion for <_ 1/2. That is, [t (t) t, <_ 1/2, and irk (t)
1/2 + hk (t 1/2), >_ 1/2. In the notation giving the slope in each half-unit oftime, these
paths are

hi [+1, +1,-1,

f/2 [+1,-1,-1, +1],

/3 [+1,-1, +1,

Proof. As in the proof of Theorem 2, we begin by assuming an initial configuration such
that the two players other than player j meet each other at time 1/2. One of these players
(call each of these player I) must go up to find the remaining player j (call him player II).
Renormalize the line so that the origin (0) is where the two players have met. Assuming II
is above this, he is either at facing down (if he started facing down) or at 2 facing up (if he
started facing up). Hence by Lemma the earliest that the player I who goes up can guarantee
finding II, assuming he is up, is (additional) time 1.5. It follows that the earliest the two agents
of Player I (the one going up and the one going down) can meet together, bringing along player
II, is T 1/2 + 2 (1.5) 3.5. Furthermore, it follows from the second part of Lemma 1 that
in order for this time to be achieved, player II must be following one of the paths hk from time
1/2. Since we are assuming that strategies for 1-’3 begin by going up for time 1/2, it follows
that the player we are calling II and j must use a strategy hk up to time 2. But since this
argument applied to any player j 1, 2, 3, we are done. f]

LEMMA 6. Any strategy for the game F3, whose Stage 1 paths (up to time 2) belong to
the set {/1,/t2,/3 }, has maximum rendezvous time at least M 4.

Proof. Since order does not matter, there are ten strategy triples in {/tl, 2, f’/3} 3- We divide
these into four types. For each type we stop the action at some time To and assume a certain
set of initial configurations. We then give a lower bound on the maximum remaining time,
which when added to To is at least 4.

Type 1" All three use the same strategy. This type covers the three strategy profiles
(/tk, k,/tk), k 1, 2, 3. For strategy profiles of this type the first integer q such that some
players have a different Stage strategy for the time interval [q/2, (q + 1)/2] satisfies q > 4.

Assume that all three players start facing up. Then at time To q/2 they are back at their
original positions, and the top and bottom players are at distance 2. By the definition of q,
there are two players who move in opposite directions in the interval [q/2, (q / 1)/2]. So for
some initial configuration the player starting at 3 will move up throughout this interval and the
player starting at 1 will move down. Hence at time (q / 1)/2 the players at the ends will be
at distance 3. Therefore the earliest these two player can meet is at time (q + 1)/2 + 3/2 >
(4 + 1)/2 + 3/2 4.

Type 2: The strategy (/tl,/t2,/t2) is used. Consider two initial configurations c’
{3, 2, 1, + 1, + 1, + and c" {3, 2, 1, + 1, 1, 1 }. In each of these configurations player
1, who we now call player I, starts at 3 and is back at 3 at time To 2. Player 3, who we now
call player II, starts at and is back at at time 2. In both cases no players have met, so they
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FIG. 4. Strategies with sj {/tl,/t2,/t3} have T > 4.

cannot determine by time 2 which of these (c’ or c") is the actual initial configuration. In case
c’, player II is pointing up at time To, while in case c" he is pointing down. Hence by Lemma
2 with/3 2, players cannot meet before time To 4-/3 2 4- 2 4. This case is illustrated
in Figures 4(i) and 4(ii).

For the remaining Types 3 and 4, the analysis will be as follows. For each of the two
types we give a set of initial configurations. Then for each strategy profile of that type, we
give a time To at which two players meet (who we then call player I) but cannot distinguish
between the configurations in the given set. The problem of finding player II above them is
called F,,p and the minimax time to find him (or turn back) is denoted by Tup, which can be
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calculated using Lemma 2 or 3, depending on the nature of [‘up. If the remaining player (II) is
below then the associated problem and minimax time are denoted by [‘aown and Taown. Thus
the maximum meeting time T satisfies

(6) T > To + Tup + rdown.

Examples of Types 3 and 4 are illustrated in Figures 4(iv) and 4(iii), respectively. The paths of
the two players who meet at time To are drawn in bold up to time To; the three possible paths
of the remaining player (each corresponding to some initial configuation in the given set) are
drawn in a dashed line up to time 2 To + ; the parameters/3 and 6 of the games F and F’I

of Lemmas 2 and 3 are drawn from player I’s position at time To in thin lines.
Type 3" The strategies (/*2,/t2,/z3) or (2, 3,/t3) are used. Consider the set of configu-

rations

C3 {(1, 3, 2, +1, +1, +1), (3, 1, 2, +1,-1,-1), (3, 2, 1, +1, +1, +1)}.

For these two strategy profiles and any of these configurations, a player using h2 will meet a
player using h3 at time To 1.5, and they will then be unable to distinguish between these
three initial configurations. Call this pair player I. For either profile we can take [’up to be
1-’" (1.5, .5) and so rup 1 by Lemma 3. Similarly for either profile [‘own [‘’ (1.5) so

Town 1.5. Thus by (6) we have T > 1.5 + + 1.5 4. To aid the reader we give the
full analysis for the profile (/t2,/z2,/t3), which is illustrated in Figure 4(iv). At time To we
normalize the time back to zero and let the meeting point be the new origin. With respect to this
framework, the position ofplayer II if above is 1.5 units above player I (i.e., the two players who
met) at time .5 (at actual time 2) and facing up. Hence as claimed above, [’up 1-’" (1.5, .5).
If player II is below player I, then he is 1.5 units below in additional time .5, and can be facing
either way, depending on the configuration. Hence, as claimed, [’own [‘’ (1.5).

Type 4: One ofthe strategies (1,/tl, 2), (1, 1,/t3), (/tl, t3,/t3), (tl,/t2,/t3) is used.
For these strategy profiles, consider the following set of configurations:

C4 {(1, 3, 2, +1, +1, +1), (2, 1, 3, +1, +1, +1), (2, 1, 3, +1,-1, +1)}.

In each of these profiles, two players meet at time To 1, [‘up [‘" (1, 1) so T,p
by Lemma 3, and [‘down I"’ (2), SO Tdown 2 by Lemma 2. Hence in all these cases,
T>1+1+2=4. [3

THEOREM 3. M3 4. That is, the minimax rendezvous time for three players placed in
random directions on consecutive integers is 4.

Proof. Lemma 4 says that M3 < 4, so we need only show that M3 > 4. Since we are
assuming that all paths belong to P*, it is sufficient to show that M3 > 3.5. Lemma 5 says
that any strategy with maximum rendezvous time < 3.5 must have all of its Stage paths
belonging to the set {/t l, 2,/t3 }. However, Lemma 6 says that any strategy triple with this
property must have maximum rendezvous time of at least 4. V]

6. Asymptotic value of Mn. In this section we estimate the value of the minimax ren-
dezvous time M for the n-player game 1-’, when n is large. Clearly a lower bound for Mn is
(n 1)/2, since the distance between the players initially placed at and n is n 1. The main
work of this section is the presentation and analysis of a class of strategy profiles S (n, m) for
the games [‘n which have maximum rendezvous times asymptotic to n/2. This analysis thus
gives the main result of this section (Theorem 4), that M is asymptotic to n/2.

We now define the strategy profile S (n, m) for the games [‘. Up to time To 3m 4- 1
the players adopt adjacency search paths called gk. (The paths El, g2, g are drawn in Figure
5, for players initially pointed to the fight.) These paths remain at a player’s starting point
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FIG. 5. T(S(8, 3)) 17.5.

except during the time interval [3 (k 1), 3k + 1 of length 4, when they search first forward
1 unit, then backwards 2 units, and then forward again to return to the starting point. This
path will meet any adjacent player who is stationary at their starting point during this period
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(in particular at times 3 (k 1) + and 3(k 1) + 3). More formally these adjacency search
paths are defined as

ifj 3(k- 1) + 1,

gk(j)= -1 ifj=3(k-1)+3,
0 otherwise.

Observe that if k < k’ and two adjacent players are using adjacency search paths gk and g,,
then they will meet at time 3(k 1) + 1 or 3(k 1) + 3, and in any case by time 3(k 1) + 3.

In the strategy profile S (n, rn) the players use the first rn adjacency search paths g gn,
in as equal numbers as possible. We will take as an example S (8, 3), which is illustrated in
Figure 5. Let n am + b, 0 < b < m, and let exactly a + players use each strategy g, k
1 b, and let exactly a players use each adjacency search path g, k b + 1 m, for
times 0 < < To 3m + 1, disregarding (for the time being) any players they may meet.
Note that a Int(n/m). (In the example, a 2 and three players use g, three use g2, and
two use g3.) Observe that at time To 3m + (10, in the example) all the players are back
at their starting points and that any pair of adjacent players who are using distinct strategies
g will have already met each other, regardless of the directions in which they are initially
pointed. Once the players have been placed on the integers 1, n, name them according to
the integer where they start. We use a horizontal description of the line on which the players
are placed. Let L denote the leftmost player for which the adjacent player on the right is using
a different initial strategy gk. Let R denote the rightmost player such that the player on his
left is using a different strategy. (In the example L 3 and R 6.) Since there are at most a
players to the left of L (who are using the same strategy g as player L) and similarly at most
a players to the right of player R, we have

(7) L < a + 1 and R > n -a.

Note that equality holds in the above if and only if the first a + players are all using the same
strategy and the last a + 1 players are all using the same strategy, and these end groups are
initially pointed in a common direction. This configuration (shown in Figure 5) produces the
maximum meeting time T.

We now describe the strategies the players adopt from time To 3m + 1. At this time
the players have met either no adjacent players, two adjacent players, or exactly one adjacent
player. (In the example of Figure 5, players 1, 2, 7, and 8 are of the first type, nobody is of
the second type, and players 3, 4, 5, and 6 are of the third type.) Players of the first two types
should remain still at their starting points until they meet a player who says, "follow me."
Players of the third type, who have met an adjacent player in only one direction, should go in
the opposite direction (at speed one) until they either (A) meet another moving player or (B)
reach an unoccupied integer location (relative to their starting point). In case (A) they stop
and remain still until someone says, "follow me." In case (B) they can conclude they are at
position 0 or n + 1 and hence they reverse direction and go at speed one, telling anyone they
meet to follow them, until the game ends. (In the example of Figure 5, players L 3 and R

6 reach situation (B) at time 13, while players 4 and 5 reach situation (A) at time 10.5.) In
general, it follows from the inequalities (7) that players L and R reach positions 0 and n + 1,
respectively (situation (B)), by time (3m + 1) + (a + 1). They then meet each other, together
with everyone else, by maximum T, where

(8) T Tn < (3m+l)+(a+l)+(n+l)/2.

(In the example of Figure 5, this gives a worst case of 17.5.)
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Suppose we define m Int(log n) so that a Int(n/Int (log n)). It follows that

Tn 3 Int (log n) + 2 + Int (n/Int (log n)) + 1/2 1
< + ---+
n n n 2

Consequently the minimax rendezvous time Mn satisfies

(n 1)/2 Mn
lim < lira

2 n---x n n n
< lim

Tn 1 Mn 1
or lim ---.

n--+cx n 2’ n--+cx n 2

Thus we have proved our final result.
THEOREM 4. The minimax rendezvous time Mn requiredfor n playersplaced on adjacent

integers to meet together at a single point, is asymptotic to n/2.
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POLYNOMIAL FILTERING FOR LINEAR DISCRETE TIME
NON-GAUSSIAN SYSTEMS*
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Abstract. In this work we propose a new filtering approach for linear discrete time non-Gaussian systems that
generalizes a previous result concerning quadratic filtering [A. De Santis, A. Germani, and M. Raimondi, IEEE
Trans. Automat. Control, 40 (1995) pp. 1274-1278]. A recursive vth-order polynomial estimate of finite memory
A is achieved by defining a suitable extended state which allows one to solve the filtering problem via the classical
Kalman linear scheme. The resulting estimate will be the mean square optimal one among those estimators that take
into account v-polynomials of the last A observations. Numerical simulations show the effectiveness of the proposed
method.

Key words, nonlinear filtering, polynomial estimates, recursive estimates, non-Gaussian systems

AMS subject classifications. 93E10, 93E11

1. Introduction. In this paper the state estimation problem for linear non-Gaussian sys-
tems is considered. In many important technical areas the widely used Gaussian assumption
cannot be accepted as a realistic statistical description of the random quantities involved. As
shown in various papers (see for instance 1, 2]), increasing attention has been paid in control
engineering to non-Gaussian systems, and the importance of parameters and state estimation
problems is plainly evidenced. In these cases the conditional expectation, which gives the
optimal minimum variance estimate, cannot be generally computed, so that it is necessary
to look for suboptimal estimates that are easier to achieve, such as the optimal linear one.
In recent years, the signal filtering and detection problems in the presence of non-Gaussian
noise have been widely investigated with different signal models and statistical settings. Non-
Gaussian problems often arise in digital communications when the noise interference includes
noise components that are essentially non-Gaussian (this is a common situation below 100
MHz) [6]. Neglecting these components is a major source of error in communication system
design. In [3, 4] the existence of stable filters for a class of nonlinear stochastic systems is
studied, where the nonlinearity is defined not by its deterministic structure but by its statistical
properties. In [5] the Bayesian approach to nonlinear parameter estimation is considered and
the cost of computing the posterior density description is investigated when the Bayes formula
is recursively applied. In telecommunication systems the detection problem in the presence
of non-Gaussian noises is extensively addressed in [6]-[12], while in [13] a general abstract
setting is considered for high-order statistical processing (Volterra filters). A first attempt in
the definition of a polynomial filter, which in some sense generalizes the Kalman approach, is
described in 14], where, in particular, an instantaneous polynomial function of the innovation
process constitutes the forcing term for the linear dynamic of the filter. The computation of
the polynomial coefficients, which generalizes the Kalman gain to the non-Gaussian case,
remains the main problem. In 15] the linear recursive estimation is dealt with for stochastic
signals having multiplicative noise and in 16] for linear discrete time systems with stochastic
parameters. In 17] an asymptotic minimum variance algorithm is described for parameter es-
timation in non-Gaussian moving average (MA) and autoregressive moving average (ARMA)
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processes, using sample high-order statistics. The same problem is studied in [18] by using
a fixed set of output cumulants. In 19], on the basis of the knowledge of the output process
together with its Kronecker square products, a linear filter with respect to such information
process is defined.

In this paper we consider the more general polynomial case, where past values of the
output process are also considered.

The paper is organized as follows: in 2 we recall some definitions and properties on the
estimation theory in a geometric framework. Moreover, some results on the Kronecker algebra
are given. In 3 the non-Gaussian filtering problem is formulated with reference to a linear
discrete time system. The augmented state and the corresponding dynamical model generating
process are defined. In 4 some theoretical results useful for the practical implementation of
the proposed algorithm are reported. Finally in 5 some numerical examples of application
are presented, showing high performance of the proposed filter with respect to the Kalman
one. The paper ends with a concluding remark in 6.

2. Preliminaries.

2.1. Estimates as projections. In this section, we will consider the mean square optimal
(and suboptimal) estimate ofa partially observed random variable as a projection onto a suitable
L2-subspace.

Let (2, f’, P) be a probability space. For any given sub a-algebra of.T" let us denote by
L2(, n) the Hilbert space of the n-dimensional, -measurable, random variables with finite
second moment as

L2(,n) {X" --+ IRn, -measurable, f [IX(co)[12dp(co) < +}
where is the euclidean norm in JRn. Moreover, when is the r-algebra generated by a
random variable Y f2 --+ IRm, that is, r (Y), we will use the notation L2(y, n) to indicate
L2(r (Y), n). Finally if M is a closed subspace of L2(f", n), we will use the symbol I-I (X/M)
to indicate the orthogonal projection of X 6 L2 (f’, n) onto M.

As is well known, the optimal minimum variance estimate of a random variable X 6

L2(f", n) with respect to a random variable Y, that is, FI (X/L2(y, n)), is given by the con-
ditional expectation (C.E.) E(X/Y). If X and Y are jointly Gaussian, then the C.E. is the
following affine transformation of Y:

(2.1.1)

where I? Y E (Y).
Moreover, defining

E(X/Y) E(X) + E(X7)E(f’fT)-’ f,

(2.1.1) can be also interpreted as the projection on the subspace

f.,(Y’, n) {Z" f2 --+ n /:q A ]tnx(m+l) such that Z AY’} C LZ(Y’, n) LZ(Y, n).

Unfortunately in the non-Gaussian case, no simple characterization of the C.E. can be
achieved. Consequently it is worthwhile to consider suboptimal estimates which have a simpler
mathematical structure that allows the treatment ofreal data. The simplest suboptimal estimate
is the optimal affine one, that is, FI (X/(Y’, n)), which is given again by the right-han side
(R.H.S.) of (2.1.1). In the following discussion such an estimate will be denoted with X and



1668 FRANCESCO CARRAVETTA, ALFREDO GERMANI, AND MASSIMO RAIMONDI

shortly called an optimal linear one. Intermediate estimates between the optimal linear and
the C.E. can be considered by projecting onto subspaces greater than/2(Y’, n), like subspaces
of polynomial transformations of Y. In order to proceed this way, we need to state some results
on the Kronecker products [20] that constitute a powerful tool in treating vector polynomials.

2.2. The Kronecker algebra.
DEFINITION 2.2.1. Let M and N be matrices ofdimensions r x s and p x q respectively.

Then the Kroneckerproduct M (R) N is defined as the (r p) x (s q) matrix

[mllN mlsN 1M(R)N=

mrlN mrsN
where the mij are the entries ofM. Ofcourse this kind ofproduct is not commutative.

DEFINITION 2.2.2. Let M be the r x s matrix

(2.2.1) M--[ml m2 ms],

where m denotes the ith column ofM. Then the stack ofM is the r s vector

Imllm2
(2.2.2) st(M)

ms
Observe that a vector as in (2.2.2) can be reduced to a matrix M as in (2.2.1) by considering

the inverse operation of the stack denoted by st -1. We refer to [20, Chap. 12] for the main
properties of the Kronecker product and stack operation. It is easy to verify that for u Nr,
v Ns, the th entry of u (R) v is given by

(2.2.3) (U(R)V)i UlVm, Ii-1 ] +l, m--li--lls+l,
[ .]s

where [.] and 1. Is denote integer part and s-modulo, respectively. Moreover, the Kronecker
power of M is defined as

Mtl R,
MIll M (R) MIt-l], > 1.

Even if the Kronecker product is not commutative in general, the following result holds [24].
THEOREM 2.2.3. For any given pair ofmatrices A ]r xs, B ]1n xrn, we have

(2.2.4) B (R) A Cr (A (R) B)Cs rnr,n

where C,n, Cs,m are suitable 0- matrices.
It is possible to show that C.,. is the (u v) (u v) matrix such that its (h, l) entry is

given by

1 if/= (Ih- l lo)u+ + 1(2.2.5) {Cu,v}h, v
0 otherwise.

Observe that Cl,1 1, hence in the vector case when a 6 ]t{ and b 6 n, (2.2.4) becomes

(2.2.6) b (R) a Cr (a (R) b).Fn
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Moreover, in the vector case the commutation matrices also satisfy the following recursive
formula.

LEMMA 2.2.4. For any a, b ]n andfor any 1, 2 let GI CTn,n SO that

(2.2.7) bill(R) a Gl(a (R) bill).

Then the sequence Gl satisfies thefollowing equations:

(2.2.8) G1 Cn,n

(2.2.9) Gl (/1 @ Gl-1)" (G1 @ II-1), > 1,

where Ir is the identity matrix in ]nr.
Proof Equation (2.2.6) assures the existence of the Gl’S and implies (2.2.8). Moreover,

using the associative property of the Kronecker product and recalling the identity

(A. C) (R) (B. D) (A (R) B). (C (R) D)

with A 11, we have

bIll (R) a b (R) b[/-11 (R) a

b (R) (GI-1 (a (R) bit-l]))
(I1 (R) GI-1) (b (R) a (R) b[I-1])
(I1 (R) GI-I). ((G1 (a (R) b)) (R) b[1-11)
(I1 (R) GI-1) (G1 (R) Ii-1) (a (R) b[/]).

Then equation (2.2.9) follows immediately by using (2.2.7). q

We can also find a binomial formula for the Kronecker power which generalizes the
classical Newton one.

THEOREM 2.2.5. For any integer h > 0 the matrix coefficients of the binomial power
formula

(2.2.10)
h

(a + b) thl ZM(a tk] (R) bth-’])
k=0

constitute a set ofmatrices M M such that

(2.2.11) M M Ih,

(2.2.12) Mjh (mJ-1 (R) I1) nt- (M;_2 (R) 11)" (Ij-1 (R) Gh-j), < j < h 1,

where GI and I are as in Lemma 2.2.4.
Proof. Equation (2.2.11) is obviously true for any h.
We will prove (2.2.12) by induction for h > 2. For h 2 it results in

(2.2.13)
(a + b) [2] a [2] + a (R) b + b (R) a + b[2]

a [2] + (12 + G1)(a (R) b) + b[2],

where (2.2.7) has been used. Moreover, using (2.2.12) we obtain

= 04 (R) I + (R) IIo (R) I +I
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so that the matrix coefficient of a (R) b in (2.2.10) (which is equal to I2 + G1 by (2.2.13)) agrees
with the matrix M computed by using (2.2.12). Now suppose that (2.2.12) is true for h > 2.
Then we will prove that it is true for h 4- 1. We have

(a 4- b) [h+l] (a 4- b) [hI (R) (a 4- b)

E M2 (a[k] (R) b[h-k]) (R) (a 4- b)
k=0

E (Mh (R) I1). (a [kl (R) b[h-kl (R) a) + (M (R) I1). (a [k] (R) b[h+l-k])
k=0

(R) (R) (R)
k=0

4-(M2 (R) I1)" (a [k] (R) bib+l-k]))
h

E(M (R) I1)" (I: (R) ah-k)" (a [k+l] (R) b[h-k])
k=0

h

4- Z(Mh (R) 11)" (a [] (R) b[h+l-k]).
k=0

Hence, taking into account (2.2.10) we have

M;+1 (M; (R) 11) + (Mjh_l (R) I1)" (Ij-1 (R) ah+l-j), l<_j<h. [3

2.3. Polynomial estimates. Let X 6 L2(f", n), Y 6 L2(5L’, m) be random variables and,
moreover, suppose that for some integer i, f IlYll2idp < 4-ee. Then we can define the
ith-order polynomial estimate of X as gl (X/(32i, n)), where 3i L2(U, 1 + rn +... + mi)
is given by

y[i]

Note that/2([ r ], n) =/(Yl,/1) C C (3)i_1, n) (3)i, n) so that a polynomial estimate
improves (in terms of error variance) the performance of the linear one. Observe, moreover,
that the previous estimate has the form

(2.3.1) E cYq ct ]lxrt xml

/=0

which justifies the term polynomial used in this paper. If fa Y :zidP < +cx) i 6 N, let
be defined as the L2-closure of i=0"--’,U+’ta). n) Then the C.E. can be decomposed as

(2.3.2) E(X/Y) FI(X/7-[) + Fl(X/7-t+/-),

where the first term of the R.H.S. of (2.3.2) is the L2-1imit of a sequence of polynomials of
Y. In particular such a sequence can be obtained by projecting X on the subspaces (32i, n),
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SO that the difficulty in computing the C.E. is moved to the second part of the R.H.S. of
(2.3.2). In any case we can compute the coefficients in (2.3.1) of any finite-rank polynomial
approximation of the term FI (X/7-[) by using the linear estimate formula given by the R.H.S.
of (2.1.1).

3. Problem formulation.

3.1. The system to be filtered. Let us consider the filtering problem for the following
class of linear discrete time systems:

(3.1.1) x(k + 1) Ax(k) + FN(k), x(O) Y,

(3.1.2) y(k) Cx(k) + GN(k),

where x(k) ]Rn, y(k) ]m, N(k) R", A 1tnxn, C l[’mxn, F ]nxu, G ]mxu. The
random variable 2 (the initial condition) and the random sequence {N(k)} satisfy the following
conditions for k > O:

i) E{2} 0, E{N(k)} 0;
ii) there exists an integer v > 1 such that for any given multiindex iL 6 1 U },

jl jL {1 n}, 1 < L < 2v we have

(3.1.3) F(il iL) - E{INil (k)Ni2(k) Ni,. (k)l} < c,

(3.1.4) X(jl jL) A=E {[2jlYj. 2jl} < CX;

iii) the sequence {N(k)} forms with 2 a family of independent random variables.

3.2. Reeursive estimates. It is well known that the optimal mean square state estimate
for the state x(k) of the linear system (3,1.1), (3.1.2) with respect to the observations up to the
time k is given by the conditional expectation

(3.2.1) .(k) E(x(k)/.T),
where ’[ is the a-algebra generated by {y(r), r _< k}. Hence there exists a Borel function
F such that

.(k) F(y(r.), r <_ k).

As we have already seen in 2, the computation of F could be very difficult and, in general,
does not produce a recursive algorithm, so it does not turn out to be very useful from an
application point of view. If we are interested only in an optimal linear estimate, then we can
also express the above estimate in the general recursive form,

(3.2.2) (k) F(k, fc(k- 1), y(k)).

In fact the well-known Kalman filter, which gives the optimal linear estimate of the state, is
expressed as in (3.2.2) with a linear transformation F. More generally we can consider the
set of the recursive Borel transformations of finite memory A, that is,

(3.2.3) (k) p(k, (k- 1), y(k), y(k- 1) y(k- A)).

In order to realize (3.2.3) we will adopt the larger class of recursive functions

(3.2.4)
(k) T(k),

(k) o(k, (k- 1), y(k), y(k- 1) y(k- A)),
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where (k) 6 Lz(.T", n’), n > n, and T is the (linear) operator that extracts the first n
components of (k). In particular the method that will be proposed will allow us to obtain an
estimate in the form

(3.2.5)
() 7(),
(k) L(k)(k- 1) + 79(y(k), y(k- 1) y(k- A)),

where L(k) n’xn’ and 79 is a polynomial transformation. One way to justify (3.2.5) is that
a similar form is optimal in some interesting cases [25].

3.3. The extended system. In order to obtain a recursive estimate like in (3.2.5), as a
first step we introduce the following extended vectors:

y((k_) 1) y((k_) 1)
(3.3.1) xe(k) q, ye(k) P,

y(k- A) y(k- A)

with q n + mA and p (A + 1)m. The model equations (3.1.1), (3.1.2) become

(3.3,2) xe(k "1- 1) Aexe(k) d- FeN(k), xe(O) e,
(3.3.3) ye(k) Cexe(k) "]" GeN(k),

where

(3.3.4) Ae 0 I "’. Fe 0 e

0 I 0

(3.3.5)

C 0 0 G
o0 I "’.

Ce .... Ge

"00 I

Moreover, let us define the generalized vth-degree polynomial observation as the vector
tz,/z p + p2 +... + pV:

(3.3.6) y(k)

ye(k)
ye[2] (k)

yV](k)

Finally let us introduce the extended state A’ 6 x, X q + q2 -t- -t- qV.

(3.3.7) 2’(k)

xe(k)
x(k)

Xte(k)
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In the following discussion we will denote with M/j (l) the binomial matrices (2.2.11),
(2.2.12) highlighting the dependence by the dimension of the vectors, and the symbol Ii,j
will denote the identity in IRiJ In order to obtain a recursive filter we need to write an evolution
equation for the extended state 2’(k) and another one that links it to 32(k). For this purpose
we can prove the following important result.

LEMMA 3.3.1. Let, on the same probability space, {z(k), k > 0} and {N(k), k >

0} be random sequences in ]Rot and IR, respectively, such that Yk N(k) is independent by
{z(k), z(j), N(j), j < k}. Moreover, let us assume

(3.3.8) w(k) Fz(k) + PN(k),

where w(k) g{ and f’, q are subsequently dimensioned deterministic matrices. Consider
the Kroneckerpowers of w(k) and z(k) up to the vth order aggregated in the vectors

w() z()
wtZ(k) ztZl(k)

W(k) Z()

wtvl(k) ztV(k)
and

where

F 0

(Q 02,1

Ov Ov 2

PE(N(k))
p[2] E(N[2] (k)

ptE(Nt (k)

(3.3.9) Oi, M:_l(’)(k[l[i-l] ( ’[/]) (E(N[i-l](k)) ( lot,l).
Then there exists the representation

w(k) OZ(k) + 7" + A/’(k),(3.3.10)

where

(3.3.11) A/’(k)

and

h()
h2(k)

h,ik)

i-1

hi(k) Z M[-l(’)(ql[i-l] ( rt/) ((N[i-l](k) E(N[i-l](k))) ( Iot,l) z
/=0

I/](k).

Sr, = E(hs(k)hr(k)T)
r-1 s-1

(3.3 12)
M-l(")(ffll[r-l] @ 1-’I/l) st-1 ((I,s-m @ Cr-l,otm lot,l)

/=0 m=0

.((E(N[s+r-m-ll(k)) E(N[s-ml(k)) (R) E(Ntr-ll(k)))
(Cl,otm @ Iot,l) E(Z[I+ml(k)))(Is-m] @ r[rn]) T (M]_m(/))T

provided that there existfinite all the moments involved.

Moreover, {A/’(k)} is a zero-mean white sequence such that Yk N’(k) is uncorrelated with
{Z(j), j < k}, with covariance S(k) such that its (r, s)-block is given by
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Proof. Taking the ith Kronecker power of both members in (3.3.8), we have

(3.3.13) w[i](k) (l-’z(k)+ qN(k)) [i],

which can be exploited by using Theorem 2.2.5 so that

(3.3.14)

w[i](k) (FZ()) [i] - M() ((qN(k))[] (R) (Fz(k)) [i-j])
j=l

I"ti]ztil(k) + Mj (y)(qtJ] (R) F[i-j])(N[Jl(k) (R) z[i-J](k))
j=l

i-1

r[i]z[i](k ..1- M-l(Y)([i-l] I"[l])(g[i-l](k) ( Ia,l)z[l](k),
/=0

from which (3.3.10) follows.
Now, let us consider the above-defined "augmented noise" N’(k). From the independence

of z(k) and N(k) (and hence, the independence of N[i-l](k) E(Nti-l](k)) and z[l](k) V1
0 1) the zero mean property for N’(k) follows, as can be readily verified. To prove the
whiteness property, suppose k > j. First of all, observe that because N(k), by the hypotheses,
is independent of {z(k), z(j), N(j), j < k}, it follows that

N[r-1](k)_ E(N[r-l](k))
is independent of

Z[1](k)z[m]T(j)((N[s-m](j) E(N[s-m](j))) (R) Iot,m)T;
then for the (r, s)-block of the covariance matrix we have

(E(./V’(k)./V’(j)T))r,s E(hr(k)hs(j) T)
r-1 s-1

M;-l(’)(gil[r-l] @ [I])
/=0 m=0

E(((N[r-l](k) E(N[r-1](k))) loe,l)z[l](k)Z[m](j) T

.((N[s-m](j) E(N[s-m](j))) (R) lot,m)T)(* [s-m] ( g’[m])T(M_m(y))T
=0,

because N[r-l](k) E(N[r-l](k)) is a zero-mean random variable. Moreover, for j < k,

(E(jV’(k)Z(j)r))r,s E(hr(k)z[S](j)r)
r-1

M;-I(V)(ql[r-l] @ F [/1)
/=0

E(((N[r-1](k) E(N[r-l](k))) @ Io,l)z[l](k)z[S](j) T)
=0,

which follows, as before, by the independence of the random variables involved.
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In order to simplify the notation, let us introduce the following symbols for the calculation
of the (r, s)-block of the covariance matrix:

Mu,v MuU_v(y)(tP [u-E] (R)

(3.3.15) Nu,v N[U-O](k)- E(g[u-V](k)),
z ztU(k),

where (u, v) e {(r, I), (s, m)}. Then we have

r-1 s-1
T )T MT(3.3.16) E(hr(k)hs(k)T) y Mr,lE ((Nr, Iot,l)ZlZm(Ns,m ( Iot,m s,m"

/=0 m=0

Let us now consider the argument of the expected value in (3.3.16):

I, T T -1 (st ((grl(3.3.17) (Nrl ( ot,l)ZlZm(Ns,m ( Iot,m) St

Moreover,

(3.3.18)
Tst((Nr, Iot,l)ZlZm(Ns,m lot,m) T)

((Ns,m Iot,m) (R) (Nr, Iot,l)) St(zlZTm)
(Ns,m (R) (Cr_l,otm (Nr, Iot,m)fl,otm) ( Iot,l) (Zm ( Zl)

(((Ifl,s_m ( Cr-l,otm (Ns,m ( ((Nr, ( Iot,m)fl,otm))) ( Iot,l) ZIWm

Ifl ( Cr_l ot Ns m ( Nr, ( Iot (1 () Cl,otm)) () Iot Z +m
T(((Ifl,s-m (R) Cflr-l,otm ) (((gs,m (R) gr,l) 1) (R) (Iot,m. Cl,otm))) () Iot,l) Zl+m

(Ifl,s_m ( Cr-l,otm ( lot,l)" (gs,m ( gr, ( Cl,otm ( Iot,l) ) Zl-t-m;

by substituting the previous expression in (3.3.17) and then in (3.3.16), taking into account
(3.3.15) we obtain formula (3.3.12).

Now, we are able to find the "augmented" linear stochastic system that generates the
observation powers, as stated in the following theorem.

THEOREM 3.3.2. The processes {32(k)} and {X’(k)} defined in (3.3.6), (3.3.7) satisfy the
following equations:

,9( k + 1) .4,9((k) + bl + .T k X(0) ,’
(3.3.19)

iV(k) CX(k) + Y + 6(k),

where

Ae 0 0
H2,1 A21 0

Hv H, 2 Ale1

0
F[e2]E(N[2](k))

bl--- ?(-

Fte"e(Ut"(k))

0 0 1( L2,1 C2] 0
V

L,I Lu 2 C

0
G[e2] E (N[2] (k)

G’]E(N[V](k))
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Hi, M[_l(q)(FJi-l] Al]) (E(N[i-l](k)) (R) Iq,l),

Li,l M[_l(P)(ai-l] Cl]) (E(N[i-l](k)) Iq,l),

fl(k)
f(k)

(3.3.20) Or(k) 6(k)

g(k)
g2(k)

g,(k)

i-1

fi(k) E M[-l(q)(FJi-l] @ Al])((N[i-1](k) E(N[i-l](k))) @ Iq,l)xl](k)’
/=o

i-1

gi(k) E M[-I(P)(Gi-I] @ cl])((N[i-l](k) E(N[i-1](k))) lq,1)xl](k)’
/=o

and {.T’(k)}, {(k)} are zero-mean white sequences such that

(3.3.21) E(f’(k)r(j)) O, k # j.

Moreover, defining

gl: (k) st-1 ((Iu,s_m ( CT
ur-l,qm ( lq,l)

((E(N[s+r-m-l](k))_ E(N[s-m](k))@ E(N[r-l](k)))
( Cl,qm ( Iq,l) E(x[el-t-m](k))),

we have, for the auto-covariances Q(k), (k) ofthe noises {f’(k)}, {(k)}, respectively, and
for the cross-covariance

fl(k) E((k)(k)T),

thefollowingformulas:

(3.3.22)
r-1 s-1

r,s(k) EE M-l(q)(f[er-l] @ all)e[(k)(f[es-m] @ Aml)r (M-m(q))T
/=0 m=O

(3.3.23)
r-1 s-1

7"r,s(k) EE Mrr-l(P)(ar-l] @ CI])P[(k)(as-m] (R) cm])T (M-m(p))T’
/=0 m=0

(3.3.24)
r-1 s-1

r,s(k) EE M;-l(q)(F[er-l] @ Al])Pi[(k)(Gs-m] @ cm])T(M:-m(p))T’
/=0 m=0

where

r,s(k A_ E(fr(k) fs(k)r) 7"r,s(k) E(gr(k)gs(k)T), r,s(k) = E(fr(k)gs(k)r).

Proof Equations (3.3.19) and formulas (3.3.22), (3.3.23) follow immediately by applying
Lemma 3.3.1 to (3.3.2) and (3.3.3). Taking into account the structure (3.3.20) of the noises
U(k), G(k), it follows that (E(U(k)G(j)r))r, is the mean value of a product of terms in the
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form (3.3.11) (obtained by means of a suitable substitution of , F, F, ct), so that (3.3.21) is
easily shown, and with some manipulations similar to (3.3.18) we obtain (3.3.24). [3

Given a stochastic process {(k), k > 0}, (k) /t, here we say that it is an hth-order
asymptotically stationary process if i, 1 < < h, there exists a constant vector m ]lli
such that

t [i]l,K)) mi.lim
k---t-c

For the sequence {)V(k)} and {(k)} in (3.3.20), we can show their second-order asymptotic
stationarity, provided that the originary system (3.1.1), (3.1.2) is asymptotically stable, i.e.,
all the eigenvalues of the matrix A are in the open unit circle of the complex plane. For now,
let us prove the following lemma.

LEMMA 3.3.3. Let us assume the matrix A in (3.1.1) to be asymptotically stable. Then
the sequence {xe(k)} is a 2vth-order asymptotically stationary sequence.

Proof. Let

mi(k) E(xi](k)), 1, 2 2v.

Taking the ith block in the first equation (3.3.19) we have

i-1

Xi] (k + 1) [i] ’[i]Ae "e (k) + Hi,lX[el](k) -k- Hi,o -+- fi (k),
l=1

with the ni,l’S as in Theorem 3.3.3. Now taking the expected values of the previous equation
we obtain

i-1

mi(k + 1) A[ei]mi(k) + Z ni,eml(k) + Hi,o,
/=1

and by defining the vectors m(k) and H:v as

m(k)

m(k)
m2(k)

mzv(k)

0
H,o

H2v,o

we can write the recursive equation

(3.3.25) m(k + 1) .A2vm(k) + g/2v,

where .Aa is defined as

0 0 1fltv H,l Ate:1 0

H2u,1 H2v, 2 Ale2

Equation (3.3.25) is a recursive asymptotically stable equation. Actually, the asymptotic
stability of A and the block-triangular structure of Ae imply the asymptotic stability of Ae
itself and, hence, of all its Kronecker powers [20]. This in turn implies the asymptotic stability
of .A2v. The lemma is proven by observing that L/:v is a constant input. [3
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THEOREM 3.3.4. The stochastic white sequences {.T’(k)} and {(k)} in (3.3.20) are
second-order asymptotically stationary processes, provided that the matrix A in (3.3.1) is
asymptotically stable.

Proof The thesis immediately follows by using Lemma 3.3.3 and recalling that {.T’(k)}
and {(k)} are zero mean sequences and observing that their covariances, which are given by
(3.3.22), (3.3.23), attain to a finite limit if the first 2v moments of xe(k) are convergent. [3

Note also that, under the hypotheses of Theorem 3.3.4, the cross-covariance matrix be-
tween the augmented noises, given by (3.3.24), is convergent for k --+ +cxz.

Equation (3.3.19) is a linear model with both deterministic and stochastic forcing terms.
Note that each noise is white, but they are correlated with each other at the same instant of
time. Moreover, for any k, 9r(k) and (k) are uncorrelated with the initial augmented state
,’, as easily follows by direct calculation. Then for this model it is possible to determine the
optimal linear estimate of the extended state A" (k) with respect to the extended observations
32(0), 32(1) 32(k), by using the Kalman filter in the form which takes into account the
cross-correlation between noises [23]. We can obtain the optimal linear estimate oftheoriginal
state x(k) with respect to the same set of augmented observations by extracting in A’(k) the
first n components (as can be readily verified by observing the structure of the vectors Xe and
A’). Clearly this operation produces an estimate in the generalized recursive form (3.2.5). In
the following we will denote this estimate with 2(’zx (k). Observe that 2 (’zx (k) agrees with
the optimal mean square estimate in the (finite-dimensional) Hilbert space 7-/v, zx generated by
objects as

(-I Y(il), O < s < v, O < <k-A, < il < + A,
/=1

which is a subspace of/2(Yk,, n), where

k

(o)
()

v()

Roughly speaking we can say that the so-defined estimate approximates the projection of x(k)
onto (Yk,, n), which is the most general mean square optimal polynomial estimate of fixed
degree v.

Note that the relations

’/,, C 7-/+1,/,

hold Yv, A and, hence, since (’)(k) H(x(k)/,), we have that the eor variance

E(]I("’ (g) x() )
decreases when v or 3 increases. Moreover, because

(’)(k) n(x(k)/H,) n(n(x()/L(Y,n))/,) n(g(x()/Y)/,),

we have also that the expression

E(ll,)(k)_ E(x(k)/ Y) z)
decreases when v or A increases. To conclude, we say that the polynomial filter produces an
estimate of the state x(k) which is as "nearer" to the optimal one as the parameters v or A are
chosen large.
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4. Implementation of the filter. For computation purposes we need to establish the
following result.

THEOREM 4.1. Let z E ]Kn. Then, ’k, the th entry ofz[k] is

(4.1) (z[k])i Zll Zl2 Zlk

where

(4.2) lj +1, j=l,2 k-l,
n

(4.3) lk li- l l + 1.

Proof. For k 1 the theorem is true. Proceeding by induction, from (2.2.3) we obtain

(z[g+l])i (z (R) z[k])i Zll (Z[I)ml

with

ll- [] + 1[]ln + 1,

ml =li-llnk+l

as in (4.2) for k + 1. Moreover, by (4.1), (4.2), and (4.3),

(zfl)m zz’ zk

with

j I[ ml-1n--FzT-_j ][n--- 1,

/’ Iml- lln + 1.

Finally by denoting lj j_l we have Yj 2 k

nk_(j_l)
q-

whereas

lk+l Iii- lln + lln + li- lln + 1,

which proves the theorem. ]

Note in (3.3.22), (3.3.23), (3.3.24) that we can evaluate the covariance matrices of the
noises ’(k), (k) and their cross-covariance from the moments E(xh(k)) and E(Nth’l(k)),
where h 1, 2 2(v 1) and h’ 1, 2 2v. From Theorem 4.1 it follows for the ith
entry of E(Nthq(k)) that

(E(N[h’](k)))i E((N(k))l (N(k))l (N(k))8,,) F(ll, 12 lh,)

In order to evaluate E(x[eh](k)), noting that from (3.3.25) it results in

m(k) t2(v l)m(O) + (cdt ) /2(v--1)2(v-l)
\ i=0
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we need only evaluate m(0). Taking the hth block mh(O) of m(0), for 1 < h < 2(v 1),
we have by definition that mh(O) E(xh](o)). Next, for the ith entry of mh(O), defining the
h-tuple lh, which corresponds to by Theorem 4.1, we have that

(4.4) (mh(O))i E(xh](o))i Xe(ll, lh),

where

X(ll lh) if < li <_ n
(4.5) Xe(ll lh)

0 otherwise.

i h,

Equations (3.3.19) are a state-space model driven by the white noise 9V(k) and with white
observation noise (k). Then we can obtain the optimal mean square linear estimate of the
state X’(k) defined in (3.3.7), by using the following Kalman filter equations, which take into
account the correlation between noises [21], [22], [23]:

(4.6) ,(k) 2(k/k- 1)+/C(k) (Y(k) -C2(k/k- 1) V),
(4.7) Z(k) J(k) (CT)(k/k 1)CT + Ti(k)) -1

(4.8) ;(k + 1/k) (A- (,Al(k) + 2(k))C) ;(k/k 1)

+(Ax;() + z(k))(y() v) + u,

79(k + l/k) AT)(k)Ar + Q(k) Z(k)jr(k) AtC(k)jr(k)
(4.9)

_(k)lr(k)Ar,
(4.10) 79(k) "P(k/k- 1) 1C(k)CT)(k/k- 1),

(4.11) /C(k) 7)(k/k- 1)Cr (CT)(k/k- 1)Cr + Ti(k))-where/C(k) is the filter gain, 79 (k), 7")(k/k- 1) are the filtering and prediction error covariances,
respectively, and the other symbols are defined as in Theorem 3.3.2. If the matrix CT)(k/k
1)Cr + 7Z(k) is singular we can use the Moore-Penrose pseudoinverse. The initial condition
for (4.6) is

,’(0/- 1)= E(2),
and for (4.7) it is

79(0/- 1) E((2- E(2))(,’- E(,))T),
which can be easily calculated by using (4.4), (4.5). By noting that the optimal linear estimate
of each entry of the augmented state process X’(k) with respect to the augmented observations
3(k) agrees with its optimal polynomial estimate with respect to the original observations y (k),
in the sense of taking into account all of the powers, up to the vth order, of y (j), j 0 k,
and all of the cross-products as y[lll(i A) y[61(i A 1) y[la+](i) for A < < k;
0 < ls < v; -1 Is < v, the method proposed yields the optimal polynomial (as specified
before) estimate of the system (3.1.1), (3.1.2), and this estimate can be obtained by extracting
the first n entries of the estimated extended state XaJd(k) given by the Kalman filter. Note
that in this manner we have obtained a recursive form as (3.2.5).

As we have already observed, if the dynamical matrix of system (3.1.1), (3.1.2) is asymp-
totically stable, the covariance matrices Q(k), Tg(k), and if(k) tend to finite limits as time
goes to infinity. In this case we certainly can utilize the well-known steady-state form of the
Kalman filter, and then much of the heavier calculations (such as the gain computation) can
be performed before data processing.
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4.1. Reduced-order filter. A considerable reduction of the filterstate-space dimension
can be obtained by eliminating the redundancy contained in the vector X(k). In fact, the block
entries of ,’(k) are the (polynomial) estimates of monomials in the form: (Xe)ll (Xe)lh,

<_ 11 lh < q, < h < v. These terms do not change their values with a permutation
of the indices lh, so that the same value can be repeated many times. We can avoid
this by using a suitable definition of Kronecker power, instead of the classical one, which
eliminates all redundancies, as suggested in [20]. This helps in reducing both memory space
and computation time.

Let X [xl Xn] T. We will call the reduced Kroneckerpower ofhth order the following
vector:

X1 XI’X1

X1 XI’Xn

Xll Xlh- Xlh

Xn Xn "Xn

where 1 < ll _< _< lh <_ n. Note that the entries of X[hl, are those of X[hI, where all
the monomials xi Xih which differ from each other for a permutation of the indices

il ih are considered once. Let y(n) denote the hth reduced Kronecker power of X, where
we highlight the dimension n of the vector X, and d(Y) is the length of a vector Y. Then it is
easy to find the following formulas, both giving the dimension of the vector

n
,4 y(k),’h) ),[h-1

k=l

h h-il h-(i +"’q"in-2)

ry(n

=0 i2=0 i,_ =0

Let T(hn) ]nhxd(Xl2l) and (hn) IRa(Xl"hl )xnh, with the matrices such that

= ,-,(n) x[h]x[h] T(hn)X[h] X[h] h

Note that the following identities hold:

(4.1.1) T(hn)7(hn)X[h] x[h]; n)T(hn)X[h X[h].

;(n) let us consider the ith and ith entries in theIn order to obtain an expression for Thn) and J h
vectors X[hI, X[h], respectively:

{x[hl}i Xl Xlh,

{X[hl}i’ Xl, Xlh’,

where 1 < 11’ _< < lh’ < n. We shall indicate with (, r/the functions such that

((i) (I1 lh),

tl(i’) (11’, lh’).
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Of course the inverse functions (-1, r/-1 are well defined. Moreover, let o(ll lh) be the
ordering function acting on a h-tuple (ll lh). Then the following expressions hold:

1,{T(hn)}i’J
0,

if j r/-(o(’(i)));
otherwise;

if j ’- (r/(i));
otherwise.

Note that the function " is easily obtained by applying Theorem 4.1. Moreover, it is easy to
show that

h-1

-1(1 lh) E(lj 1)rth-j + lh.
j=l

Now, if we define for a fixed v

then we have

X
X[1]

Xr= Xnr

’n T n ,’Vr

xX[1]

X[V]

,9(r ’(n),nr
where

T(n)

(n)
T1(tO 0 ’1 0
0 T2(n) (n)__ 0 2(n)

Tv(n) u (n)

We are now able to write down the reduced-order filter equations.
Let R’r (k), 3)r (k) be defined as

xe(k ye(k)
Xe[2](k) Ye[2](k)

3(r k Yr k

Xetv](k) yetv](k)

where xe(k), ye(k) are still given by (3.3.1). Then we have for any k

(4.1.2)

,(k) T(q),9(r(k),

Y(k)-- T(P)3)r(k),

where 3)(k), &’(k) are given by (3.3.6), (3.3.7) and q and p are the same as in (3.3.1). Moreover,
we have that the same relations link the vectors ,(k), (k/k- 1) in (4.4), (4.5) to their reduced
counterparts ,r (k), r (k/ k 1)"

(4.1.3) 2(k)--- T(q)2r(k), 2r(k (q)2(k),
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(4.1.4) ,(k/k- 1) T(q)2r(k/k- 1), 2r(k/k- 1)= ’(q),(k/k- 1).

By using (4.1.2), (4.1.3), (4.1.4) in (4.6), (4.8) and taking into account (4.1.1), we obtain

,’r(k) ,’r(k/k- 1) ,Zl(k)Xa,’r(k/k 1) "1- l(k)r(k)

2r(k "-[- 1/k) ,A2(k)r(k/k- 1) + ]2(k)Yr(k) )22(k) -t-

where

4 (k) "(q)](k)CT (q), 11 (k) (q)](k)T(p), "11 (k) (q)E(k),

M2(k) (q)(- (ME(k) + (k))C)T(q), 2(k) (q)(AE(k) + (k))T(p),

2(k) (q)(AE(k) + Z(k)), (q),

which is the reduced-order filter.

5. Numerical results. Numerical simulations on anIBMRisk6000 endowed with "Math-
ematica" have been performed for two examples in order to test the method. In both of them,
we consider the problems of signal and state filtering for the following linear discrete time
system, where the state and the output noises are non-Gaussian:

x(k + 1) Ax(k) + f(k), x(O) O,
(5.1) s(k) Cx(k),

y(k) s(k) + g(k).

In the first example it is assumed

A= 0. 0.1

fz(k)

{f(k)} and {g(k)} are independent, zero-mean random sequences in (fl, U, P) defined as

fl(k)(og) --0.4XF, (o9) + 0.1XF2(CO), f2(k)(w) --0.02XF3(W) + 0.18XF4(W),

g(k)(w) -0.28Xa, (co) + 0.62Xa2 (o9) + 1.62Xa3 (o9),

where )(.Q, Q .T" denotes the characteristic function of Q and the disjoint events (F1, F2),
(F3, F4) and (G1, G2, G3) have probability

P(F) 0.2, P(F2) 0.8,

P(F3) =0.9, P(F4) =0.1,

P(GI) 0.8, P(G2) 0.1, P(G3) 0.1.

The optimal linear, quadratic, and cubic algorithms, without memory (ZX 0), and the
quadratic with A 1 have been implemented. In order to simplify the computations, we have
used the steady-state Kalman filter, starting from initial conditions x(0) 2(0) 0. The
results are displayed in Figs. 5.1-5.5 for 30 iterations with reference to the signal s(k). It
can be seen that the quadratic filter follows the true state evolution better than the linear filter,
although the quadratic one with A does not give in this case a meaningful improvement.
A further remarkable improvement is indeed obtained with the cubic filter. All the mentioned
results agree with the steady-state error estimate covariance values obtained by solving the
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1. o5

:,’""’?’-:---:---:,. ..... .....:..-:.. .,.:.,..

-0.5

FIG. 5.1. s=signal (dashed line), y=observation (solid line).

0.2

0.1

-0.1

-0.2

-0.3

-0.4

time

FIG. 5.2. s=signal (dashed line), L =optimal linear estimate with A 0 (solid line).

Riccati equation for the linear, quadratic, and cubic cases with A 0, and for the quadratic
one with A 1. In particular the above error covariance matrices, namely SL, S0, Sc, and

Sazx (which are 2 2, 6 6, 20 x 20, and 12 x 12, respectively), have the form

0.03864 0.00049 ]SL 0.00049 0.00420

0.02773 -0.00014 ""1SQ --0.00014 0.00401
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0.3

0.4

FIG. 5.3. s=signal (dashed line), Q=optimal quadratic estimate with A 0 (solid line).

0.2

0.1

-0.2

.0.3

.0.4

FIG. 5.4. s=signal (dashed line), QA=optimal quadratic estimate with A (solid line).

Sc -0.00085 0.003711 SQA -0.00014 0.00401

where we have remarked only the 2 2 matrix blocks in the top left side for the matrices SQ, Sc,
and S0/ because they contain in the main diagonal the steady-state estimate error covariance
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O.

0.1

-0.1

0.2

0.3

-0.4

FIG. 5.5. s=signal (dashed line), gc=optimal cubic estimate with A 0 (solid line).

TABLE 5.1.

Linear Quadratic Quadratic Cubic
A=0 A=0 A=I A=0

t N=30 0.02188 0.01377 0.01373 0.00145(x-2)1

0. N 30 0.00181 0.00156 0.00156 0.00145(x-2)2’

0.2 N 30 0.01084 0.00662 0.00660 0.00060(s-)’

0.2 N 5000 0.03809 0.02800 0.02800 0.00913(X--)l

0.2 N 5000 0.00429 0.00409 0.00409 0.00378(x--J)2

0-2 N 5000 0.01947 0.01422 0.01422 0.00447(s-)’

time

of each component of the state. It results in Sc (1, 1) < SO (1, 1) S0 (1, 1) < SL (1, 1)
and Sc(2, 2) < SO(2, 2) $Q6(2,2) < SL(2, 2). By executing the product CSCr for
all the filters implemented, where S is the block of interest in SL, S0, Sazx, Sc, we have the
corresponding values vL, Va, Vazx, and vc for the steady-state signal error variances

v 0.01952,

VQ 0.01389,

VQzx 0.01389,

Vc 0.00438.

As expected, these values are close to the sampled ones obtained via numerical simulation.
In Table 5.1 the sampled variances of the state and signal, obtained with a number of N 30
and N 5000 trials, are reported.

In the second example we will see a case where the quadratic filter with A 1 improves
not only the simpler quadratic (A 0) one but also the cubic (A 0) one, showing the
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TA3LE 5.2.

Linear Quadratic Quadratic Cubic
A=0 A=0 A=I A=0

a[x), N 5000 4.41906 1.88443 i.5012 1.84o51

0
"2 N 5000 2.8282 1.20604 0.96077 117793(s-)’

nonexistence of any relation between v and A. Let us consider a scalar system with

A 0.6, C 0.8,

and the following noises:

f(k)(co) --XF, (o)) + 3XF (co) + 9XF3 (co),

g(k)(co) -9X, (co) 3Xaa (w) + )(.3 (co),

P(F2) 2/18,

P(G2)=2/18,

P(F3) 1/18,

P(G3) 15/18,

where the two systems of disjoint events (F1, F2, F3) and (G1, G2, G3) are independent.
For this system the linear, quadratic, and cubic filters with A 0 and, moreover, the

quadratic filter with A have been implemented. Similar to the first example, we report
the steady-state error covariance matrices SL, SQ, Sc, and SQzx (which are 1, 2 2, 3 3,
and 6 6, respectively) remarking the entry (1,1):

SL 4.39815 SQ
*

The corresponding signal error variances are

VL 2.81482,

I)Q 1.13498,
1)Qz 0.98057,
vc 1.12423.

Moreover, in Table 5.2 the error variance results for a numerical simulation with N 5000
trials are reported.

Simulations of higher-order polynomial filters should require a more sophisticated nu-
merical implementation, which is not the aim of this paper.

5.1. An example of polynomial estimate converging to the C.E. It would be of real
practical interest (and also add further theoretic insight) to have some idea about the per-
formance of the polynomial approximation, i.e., about the distance between the ideal and
approximate estimate (given a particular model). For this purpose, let us consider the follow-
ing model:

x(k) f (k),
(5.1.1)

y(k) x(k) + g(k),
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where {f(k)}, {g(k)} are scalar white sequences defined on some probability space (, .T’, P),
independent of each other, defined as

f (k)(co) -2XF (co) + XF2 (co),

g(k)(co) -XG, (co) + XG2(co) + 2XG3(co),

where (Fl, F2, F3) and (G1, G2, G3) are disjoint events having the following probabilities:

P(F1)-- 1/4, P(F2) 1/2, P(F3) 1/4,

P(G1) 4/7, P(G2) 2/7, P(G3) 1/7.

Because (5.1.1) is an instantaneous system it results in

.(k) E(x(k)/y(O), y(1) y(k)) E(x(k)/y(k)).

Moreover, x(k) and y(k) assume for any k only a finite number of values. Hence we have

(5.1.2) ).:(k)(co) =/ xjP(x(k)/y Yi) X{y-’yi}(co)"

Moreoever, being

y(k)(co) --3XFna, (co) X.(Flf-.IG2)U(F3f3G1) (CO .31- XF3f.iG (co)

+ 2X(F3ClG3)U(F2nG2)(co) "Jr- 3XFznG (co),

by direct calculation and taking into account (5.1.2), we obtain

.’(k)(co) --2XF,nG, (co) (2/3) X(F,nG2)U(F3nG,) (co) + (2/3) X(F, nG3)U(F2nG1)(w)

-It- (4/5)X(F3fqG3)U(F2nG2)(co)"At- XF2fqG3(co),

and using this we can calculate the error variance

Vo E((x(k) .(k))2) 0.504762.

By denoting with/3i, 1 5, the a priori error variances in the polynomial estimates of
degree i, respectively, obtained by applying the polynomial filter to (5.1.1) it results in

vl 0.731707,
/32 0.615380,
v3 0.614835,
/34 0.567688,
v5 0.504762.

Observe that Vo vs. This is not surprising because, from the fact that the observation takes
values on a finite set of six numbers, it follows that an at most 5th-degree polynomial is the
exact interpolator of 2(k) versus y(k).

In this example we can see how the polynomial estimates converge (as the polynomial
degree increases) to the C.E., even in a finite number of steps.
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6. Concluding remark. The method proposed allows us to obtain recursively a vth-
order polynomial state estimate of the stochastic linear non-Gaussian system (3.1.1), (3.1.2).
For this purpose, we have defined a new linear system in which the state and the observation
are obtained in two steps: first of all by augmenting the original ones with the past values of
the observations taken over a time window of fixed length A, then by aggregating the previous
augmented vectors with their powers up to the vth order. The optimal linear estimate of the
extended state with respect to the extended observations agrees with the optimal polynomial
estimate (of finite memory A) with respect to the original observations, so that it can be
obtained via the well-known Kalman filter.

It should be noted that denoting by 0-2(v, A) the signal error covariance (highlighting
the dependence from the polynomial order v and the memory A), from the above-developed
theory it follows that for any

0-z(v -t- 1, A) < 0-2(v, A),

0-2(1), A + l) < 0-2(1), A).

Moreover, O’2(1) q-" 1, A) and 0-2(1), A nt- 1) are not in any reciprocal relation, and this agrees
with the results shown in the numerical simulations where the quadratic filter with A

gives, with respect to the cubic one with A 0, a worse and a better result in the first
and second case, respectively. Finally, numerical simulations show the heavy inadequacy of
optimal linear filtering in a non-Gaussian environment together with the high performance of
polynomial filters. Of course this nice behavior is at the expense of growing computational
complexity. Nevertheless, it should be stressed that this larger amount of calculations can
be performed before the real time data processing, because they are mostly concerned with
the computation of the covariance error matrix. Moreover, a further reduction of the filter
dimensions can be obtained by using the reduced-order Kronecker powers.

Acknowledgment. The authors thank Prof. S. I. Marcus, the Associate Editor, and the
anonymous referees for their critical reading and useful comments.
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AN ENTROPY FORMULA FOR TIME-VARYING DISCRETE-TIME
CONTROL SYSTEMS*

PABLO A. IGLESIAS

Abstract. The results of this paper generalize the formula for the entropy of a transfer function to time-varying
systems. This is done through the use of some results on spectral factorizations due to Arveson and properties of
the -transform which generalizes the usual Z-transform for time-varying systems. Using the formula defined, it
is shown that for linear fractional transformations like those that arise in time-varying control, there exists a
unique, bounded contraction which maximizes the entropy. This generalizes known results in the time-invariant case.
Possible extensions are discussed, along with state-space formulae.

Key words, time-varying systems, optimal control, spectral factorizations
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1. Introduction. Since the pioneering work ofZames [27], there has been much interest
in finding stabilizing controllers which ensure that the norm of a closed-loop transfer
function is below a given number 9/ > 0. In particular, consider the system depicted in
Figure 1.1, and suppose that the open-loop system is given by

G22 u

where the signals w, z, y, and u are the external disturbance, output error, measured output,
and control input, respectively. The goal of 7-/ control theory is to find a control law u Ky
such that the closed-loop system, denoted

.T’e(G, K) Gll + G12K(I G22K)-lG21,

has norm less than ?,, assuming that such a controller exists.
While early developments relied on transfer function and operator methods, a recent

emphasis, based on the work of Glover and co-workers [5, 10], has been to approach the
7-(o control problem using state-space methods. Glover et al. have shown that the existence
of stabilizing controllers achieving the required norm bound is equivalent to the existence
of positive semidefinite, stabilizing solutions to two indefinite algebraic Riccati equations.
Because of this connection with algebraic Riccati equations, these results are reminiscent of
earlier work on linear quadratic Gaussian (LQG) control.

A complete characterization of all controllers achieving the closed-loop 7-/ norm bound
is given in [10]. Assuming that a controller exists such that [].T’e(G, K)[] < F, it can be
shown that the set of all such controllers can also be parameterized by a linear fractional
transformation of a specific controller Ka and a stable contraction Q:

K .T’e(Ka, Q), IIQII < 1.

Given this parameterization, it is easy to see that all possible closed-loop transfer functions
satisfying life(G, K)II < F are given by

.T’e(G, .T’e(Ka, Q))= .Y’e(J, Q):: H(Q)

*Received by the editors March 9, 1994; accepted for publication (in revised form) June 2, 1995. This research
was supported in part by National Science Foundation contract ECS-9309387.

Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218
(pi@jhu.edu).
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FG. 1.1. Closed-loop system.

for some J. To choose among this "ball" of solutions, it has been proposed that the controller
selected be chosen so as to maximize the following "entropy" integral (see [2, 6, 11, 9]):

)/2 f_rr i,01 z
(1.1) la(H(a), Y,)0) :=

,r
lnldet(I ?’-2H~(ei)H(ei))l ei Z012d"

The benefits of using controllers which maximize this entropy integral are outlined in the
monograph [21], which treats the continuous-time case, and [16, 15] for the discrete-time
case. As shown in [21], these controllers can be thought of as lying between 7-(c optimal
controllers and LQG optimal controllers. Specifically, Id exhibits some normlike properties;
it is monotonically decreasing with respect to 9/, and it bounds the LQG cost of the closed-loop
system. It has the added property that controllers which maximize the entropy are also optimal
with respect to the risk-sensitive control problem of stochastic control theory [25].

Owing to the similarities between 7-/ control and classical LQG control, which were
highlighted in [5], many straightforward extensions have now appeared. In this paper we
are particularly interested in controllers for time-varying systems as have been considered
in [20, 19, 22]. While the controllers achieving a norm bound can also be written as a linear
fractional transformation of an operator Ka and a stable contractive operator Q, it is not clear
how to choose among the possible controllers, since the entropy integral (1.1) is given in terms
of the transfer functions and is therefore not amenable to time-varying systems. In this paper
we give a generalization of the entropy integral for discrete-time, time-varying systems. This
generalization will be based on the V-transform, introduced by Alpay, Dewilde, and Dym
1 in the context of interpolation problems for nonstationary processes. As in the stationary

case, the entropy defined here for control systems will be related to the entropy used in 12]
in the context of interpolants for band extension problems.

In the study of linear time-invariant controllers, the entropy evaluated at ,k0 0 is of
particular importance. In this case, it can be shown that the integral (1.1) is an upper bound
for the2 norm of the transfer function. For our time-varying systems, our entropy definition
will deal only with the analogous evaluation at the origin. We will outline the difficulties that
arise in generalizing this definition.

The rest of the paper will be organized as follows. We begin by introducing the /V-
transform in 2 and giving some of its properties. In 3, the definition of the entropy for
time-varying systems is given. In 4 we show that for systems that can be expressed as linear
fractional transformations of linear, causal, contractive operators, the entropy defined has a
maximum. Some possible extensions of the theory are discussed in 5, and, finally, in 6 we
give some conclusions.

2. Preliminaries. In this section we introduce the notation and present some preliminary
results concerning operators and the W-transform that will be needed in the rest of the paper.
Most of these results are taken from ]. Note that the presentation in assumes that causal
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operators are represented as upper triangular matrices In our presentation, we will use the
more common representation of causal operators as lower triangular operators.

2.1. Notation. Let x {x(k):k Z} denote a sequence of vectors x(k) C n. The
set of all such sequences is denoted Sn. The subset of S of square-summable sequences is. The space is a Hilbert space with inner product

(x, y) := x* (k)y(k)

and induced norm Ilxll :-- /(x, x>.
Let G represent a linear operator from n to . Then G has a natural representation as

a doubly infinite matrix {G(i, j)}, i, j 6 Z, G(i, j) Cpm. We will denote the operation

G(-1,-1) G(-1,0) G(-1,1)... u(-1)

G(0, 1) (0, 0)[ G (0, 1) ,lu (0)
G(1,-1) G(1, O) G(1, 1) u(1)

The box around the elements in the vectors (resp., matrix) denotes the element with index 0
(resp., O, 0).

Let 9pm denote the space of bounded linear operators from the space to . The
subspace of 2pm consisting of causal (resp., diagonal) operators is denoted pm (resp.,
pxm).

We will usually drop the superscript on these spaces; the Hilbert spaces on which the
operators act should be clear from the context. We write 3-1 to mean the space of operators
whose inverses are in 3. Similar expressions are used for

For operators in 3, the following two facts will be useful. Proofs may be found in 1 ].
LEMMA 2.1. For an operator X Y., the elements X(i, j) satisfy

IIX(i, j)ll _< IlXll (i, j).

LEMMA 2.2. IfD is a diagonal operator, then

IIDII sup

In subsequent discussion, the forward shift operator will play a prominent role. This is
the operator Z mrn

y(-1) y(O)

y( y(

This operator has a matrix representation

Im, j-i=l,
Z Z(i, j)

0 otherwise.

y Gu as follows:

y(-1)

y(
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One other useful operator is the projection operator Pk E rnxm, which has a matrix
representation Pk P (i, i) }, where

In ifi < k,
P (i, i)

0 otherwise.

2.2. Tile ’-transform. In order to consider interpolation problems for non-Toeplitz
operators, Alpay, Dewilde, andDym introduced a generalization ofthe usual Fourier transform
on sequences, known as the 1/-transform. In this section we provide an introduction to this
transform as well as some of its properties. Details may be found in ].

Given an operator G F.,pxm, G {G(i, j)}, we define the set of diagonal operators G[k]
corresponding to the kth subdiagonal shifted up to the diagonal:

diag{ G(-1,-1 k),[ G(0,-k) G(1, k) }.G
From Lemmas 2.1 and 2.2,

IIGtklll sup IIG(i, k)ll _< IIGII

An operator G has a unique representation as a series in terms of the G[kl as follows:

G Z G[k](Z*)k’
k=0

where the sum converges weakly [28].
Let X 2E. We denote by cr (X) the spectrum of X and by p (X) the spectral radius of X.

It is well known that

Finally, for W 6 , we define

p (X) "= max{ILl ) 6 cr (X)

lim xn 1/n"
n-+x

e(w) = p(wz*).

We are now ready to introduce the W-transform.
DEFINITION 2.3. Let G t3 and W , with (W) < 1. We define

(2.1) (w) := atz*) zw.
k=0

This series will converge in norm, provided that (W) < 1. The transform (2.1) acts
like the )-transform of a sequence in Cn. Note that in this case, the transform is taken of
a sequence {G[k1} of operators in . In terms of the doubly infinite matrix representation
G {G(i, j)} and W diag{W(i)},

(Z*)(ZW)= diag{W(i)W(i + 1)... W(i + k- 1)}, k > 1,

and hence the W-transform can be written as

(2.2) J(W)=diag ZG(i’i-k)W(i-k+l)W(i-k+2)’"W(i-1)W(i)
k=0

1The L-transform is just the Z-transform with z-1 replaced by L.
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In order to illustrate some of the properties of the W-transform, we provide some
examples.

Example 2.4 (time-invariant systems). Suppose that G 6 represents a time-invariant
operator. Then G has a characterization as a block Toeplitz matrix G {G(i, k)} with
G(i, k) gk. And thus G[k] diag{..., gk,, gg }, k 6 Z+. We wish to evaluate
this at W M, where . 6 C, I1 < 1, and I is the identity operator in 3. Then

J(W) G[](Z*)(.Z) )G[k] diag{G(;k)},
k=0 k=0

where G(.) is the usual .-transform of the sequence {gk}.
Example 2.5 (frozen-time systems). Consider a general causal time-varying operator G,

but evaluate this as in the previous example at W )I. This gives

G(W) diag{ G_ (.), G (.) },

where

Gi (,L) G(i, k)),.,
k=0

is the)-transform ofthe frozen-time system at time i. These frozen-time systems have received
considerable interest recently in the study of slowly time-varying systems..[23, 24, 28].

in what follows we will be interested primarily in the evaluation of G(W) at W 0. In
this case it is easy to see that G(W) G[0], that is, the diagonal element of the operator G.

2.3. )/V-transform of a state-space system. Consider the system

x(k + 1) A(k)x(k) + B(k)u(k), k Z+,
(2.3) Ec :=

y(k) C(k)x(k) + D(k)u(k).

Define the following operator in :

a diag(. 0, 0, [A (0) A(1) A(2) ),

with similar representations for B, C, and D. Let x, y, and z represent the elements of
Sn, Sp, and .m corresponding to the x(k), y(k), and u(k). We can express the state-space
equations (2.3) as

(2.4)
Zx Ax + Bu,
y Cx+Du.

The operator mapping u to y is the , operator:

G := C(Z A)-IB +D

(2.5) C((Z*A))
_.[,4CI ,B

The series in (2.5) converges, provided that (Z*A) < 1. It can be shown that this condition
is equivalent to uniform exponential stability of the autonomous system in (2.3) 18, 13].
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For this linear time-varying system, we wish to calculate the W-transform of G for
W diag{W(i)}. First of all,

CZ*(AZ*)k-IBZ for k > 0,

G[] "= D, k 0,
0, k<0.

Thus

D + CZ*
k=l

diag D(i)+EC(i)A(i,i-k+l)B(i-k)w(i-k,i)
k=0

Here, represents the transition matrix of the sequences A and W, that is,

I for/= j,

Pa(i, j) a(i 1)a(i 2)... a(j) for > j,

a(i + 1)A(i + 2)... A(j) for/ < j.

2.4. Properties of the W-transform. In this section we outline some properties of the
W-transform.

LEMMA 2.6. Let G Y. and D, W with (W) < 1; then

DG(W) DG(W).

Proof Using the identity

(DG)[k] DG[k],

the proof is straightforward, rq

For the next property we need a special operator. Let D 6 . We define

D() := (Z*)D(Z) .
This operator has the effect of moving the elements of the diagonal D "down" k steps.

LEMMA 2.7. Let G Y, D D N D-, and W D with (W) < 1", then

’(W) (D()WD- )D.

Proof First, note that

(2.6) G[k](Z*):D [GD][k](Z*):.
It follows that

(D()WD--1)D (G[](Z*)=0 (Z [Z*DZWD-])k) D
EGI(Z*)’D(ZW)
k=O

E[GD][:I(z*)k (ZW)k

k=O

as required.
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The following corollary is straightforward.
COROLLARY 2.8. Let G andD 3; then

GD(O) G(O)D.

The following result and, more important, its corollary will be crucial to the results that
follow.

LEMMA 2.9. Let G, H Y., and W with g(W) < 1; then

GH(W) GB(W)(W).

Proof. See [1, Lem. 3.7]. [3

Finally, the following corollary combines the results of Lemma 2.9 and Corollary 2.8.
COROLLARY 2.10. Let G, H Y.; then

GH(O) G(0)H(0).

2.5. Spectral factorizations. For our definition of entropy, we require spectral factor-
izations of operators. The following lemma, due to Arveson, guarantees the existence of a
spectral factor for positive self-adjoint operators.

LEMMA 2.11 (see [3]). Suppose that G Y. N .--1 is a positive, self-adjoint operator.
There exist operators A, B f) -1 such that

G A*A B*B.

Moreover, A DB where D . f3 -1 andD*D I.

2.5.1. State-space formulae. We are interested in computing spectral factorizations for
operators of the form I G’G, where IIGII < and G is given by (2.4). The following result
provides a state-space equation for a particular spectral factorization.

THEOREM 2.12 (see [17]). Suppose that G is given by (2.4) with p(Z*A) < 1. The
following statements are equivalent:

1. I-G*G>O.
2. There exists a uniformly bounded solution X X* > 0 to the operator algebraic

Riccati equation

X A*ZXZ*A + C*C + (A*ZXZ*B + C’D)V-1 (B*ZXZ*A + D’C)
with V "= I-D*D-B*ZXZ*B > 0 andA+BV-1 (B*ZXZ*A +D’C) uniformly exponentially
stable.

3. The operator I G*G has a spectralfactorization, i.e.,

I G*G M*M

with

M
V-1/2 (B*ZXZ*A + D’C) Vi/2

For conciseness we have chosen to write the Riccati equation as an operator algebraic
Riccati equation in this theorem. An equivalent representation of this equation is in terms of
a recursive Riccati difference equation:

X, AX+A + CffC
+ (A[X,+B + CfD)V;i(BXk+A, + OfC,),

where V, "= I D[ D, B[X.+I B,. Note that this recursion has no terminal condition.
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3. Time-varying entropy.

3.1. Entropy operator. In this section we present our definition of the entropy for a
linear time-varying operator G.

Suppose that G 6 has operator norm IIGII < ?’. It follows that the self-adjoint operator
I t,-2G*G is positive. By Lemma 2.11, it has a spectral factor M. Using this spectral factor
we begin by defining an entropy operator.

DEFINITION3.1. Suppose thatG andllGll < ?’. LetM 2,A2-1 be aspectralfactor
ofthe positive operator I ?’-2G*G and W be a diagonal operator with g.(W) < 1. We
define

(3.1) E(G, V, W)"-M*(W)M(W).

Since spectral factors are not unique, in order for the expression in (3.1) to make sense,
we must show that it does not depend on the particular spectral factor chosen. Suppose that

I- ’-2G*G M*M N’N,

where, from Lemma 2.11, we know that M DN for some D 6 such that D*D I. Let

El(G, y, W)’-M*(W)M(W), E2(G, ?,, W) :: N*(W)N(W).

Now, from Lemma 2.6

M(W) DN(W)

ON(W).

Thus,

E (G, , W) M*(W)M(W)

N*(W)D*DN(W)

N*(W)N(W)
Ee(G, ?,, W).

The entropy operator (3.1) has many of the properties that the integral (1.1) exhibits for
time-invariant systems. In the next lemma we outline some of these properties. Since we
are primarily interested in the W 0 case, we abbreviate the notation for this special case:
E(G, 9/) := E(G, V, 0).

LEMMA 3.2. With the notation ofDefinition 3.1 we have
(i) E(G, V) >- O.
(ii) E(G, 9/) < I with equality iffG =- O.
(iii) IfU , V 2, with U*U I and V*V L then

E(UGV, V) V*(O)E(G, v)V(0).

Proof..Property (i) is straightforward. For property (ii), note from Lemmas 2.1 and 2.2
that since M(0) M[0],

][r(O)[[ sup llM(i,i)ll <_ IIMI[ _< 1

with equality only when G 0. Thus

I M*(0)M(0) > 0

and hence E(G, 9/) < I.
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To show (iii), first note that

IIUGVII IIUII I111 IlVll--I111 < ,
Thus

-2(UGV)*(UV) V* (I- }’-2G’G) V
(MV)*(MV).

Since M and V 6 ,g, the product MV . Thus MV is a spectral factor for

I y -2 (UGV)* (UGV).

Using Corollary 2.10, we have

MV(O) M(0)V(0),

which proves property (iii). fi
We now show that this definition of the entropy is a natural generalization of the entropy

integral (1.1) by showing that, for time-invariant systems, the two entropies are strongly related.
PROPOSITION 3.3. Suppose that G 2, and that G represents a time-invariant system

(that is, G commutes with the shift Z). Then E(G, }’, ,kl) is a diagonal operator with constant
matrix elements along the diagonal i.e.,

(3.2) E(G, }’, )4) diag{ E0, -, E0,...}.

Moreover, if G(.) is the transfer function associated with this operator, the entropies
E(G, y, )ol) and Id (G, y, )vo) are related by

(3.3) Ia(G, }’, )0) }’2 In det E01.

Proof. We first evaluate Id(G, }’, .o). Suppose that

I }’-2G~(,k)G()Q

is a spectral factorization. It follows that

}’2 f_rr 1 --[)V0[ 2
Id(G, }’, )o) In [det (M(ei))lleiO ,go] 2

2y2 In [det (M(o))[

},2 In Idet (Mr ()o)M(.o)) [,

do)

where we have used the Poisson integral formula in the second line and the fact that det(X)
det(Xr) det(Xr X) in the third. Now, letM be the Toeplitz operator with symbol M()Q. It
follows that this operator is a spectral factor of I }’-2G*G and

E(G, }’, ,I) M*()ol)M(ol).

Hence, from Example 2.4 we know that

M()ol) diag{M()0)}.

Thus (3.2) and (3.3) hold with Eo "= MT ()o)M(,ko). [3
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w

FIG. 4.1. Closed-loop system.

3.2. State-space formulae. For systems defined by the state-space representation (2.3),
it is possible to give a state-space formula for the entropy. For notational simplicity, we assume
that ?’ 1.

It follows from Theorem 2.12 that a spectral factor forM for I G*G is given by

M -g-1/2 (B*ZXZ*A + D’C) V1/2

The diagonal component of this spectral factor is V1/2, and thus

E(G, 1) V I D*D B*ZXZ*B.

In the study of 7-/ control theory, we find that controllers, and thus closed-loop systems,
can often be written as linear fractional transformations of an inner transfer function P and a
stable contraction Q. In the next section we show that, as in the case of time-invariant systems,
the entropy operator can be used to choose from among a set of controllers.

4. Maximizing the entropy operator. For linear time-invariant systems, the set ofclosed-
loop systems can be characterized in the form of a linear fractional transformations of an inner
transfer function P and a stable contraction Q 10, 5, 14]. For time-varying systems, a similar
characterization of stabilizing controllers exists [22].

In the time-invariant case, the integral (1.1) can be used to select from among the possible
closed-loop systems. Partition the transfer function P as ( P P12) with respect to the stable

PE1 P22
contraction Q. It is known that controller which maximizes the entropy integral (1.1) for
zo is given by the choice Qmax [P22(zo)] [11, 16]. In the time-invariant case this block
of the transfer function P is strictly proper, and thus when zo 0, the entropy maximizing
contraction is Q 0. This is known as the central controller of control, which happens
to coincide with with the optimal risk-sensitive controller of stochastic control 10].

In this section we will show that the entropy operator E(G, y) plays the corresponding
role in time-varying optimization problems. Before doing so, we must show that a linear
fractional transformation of the corresponding operators is well posed. In order to do this, we
require a time-varying version of Redheffer’s lemma.

LEMMA 4.1 Suppose that, in Figure 4.1 P (P P2) with PI, P12, P22 , P21\P21 P22
C)-, is an isometry thatadmits a doubly coprimefactorization. Furthermore, assume thatQ
is a causal (not necessarily bounded) operator also admitting a doubly coprimefactorization.
Thefollowing two statements are equivalent.

(i) The system is internally stable and well posed with IlOre (e, Q)II < 1.
(ii) Q 6 and IIQII < 1.

Proof. See A.1. q

Suppose that all closed-loop systems H are characterized as a lower linear fractional
transformation

H y.Ue(P, Q),
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where P is as in Lemma 4.1 and Q is a causal contraction. By Lemma 4.1, H 6 and
contractive. Thus, the entropy operator E(H, ,) is well defined for all allowable Q. In the
following proposition, we show that as Q varies over the set of all causal contractive operators,
E(H, y) has a maximum.

PROPOSITION 4.2. Suppose thatH ?,.Te (P, Q) denotes the set ofall closed-loop systems,
whereP is as in Lemma 4.1 with IIP22 (0)II < andQ is a causal bounded contractive operator
Then

(a) E(H, 9/) is maximized by the unique choice

Q Qmax :-" P2(0);

(b) the maximum value ofthe entropy is given by

E(a’e(e, Qmax), ’) e"l (0)(I ’*P22 (0)P22 (0)) e21 (0).

Proof. Since Q is a contractive operator, the bounded, Hermitian operator I Q*Q has a
spectral factorization. Denote the spectral factor by L. Now,

I- y-2H*H I- ,(P, Q)*.’e(P, Q)

PI (I Q,p:2)-I (I Q’Q) (I Pe2Q)-1P21
]* [L (I P22Q)- P21][L (I P22Q) P21

=: N*N.

By assumption, P21 A -1. Moreover, L 6 A 3-, since L is a spectral factor. Finally,
it is shown in the proof of Lemma 4.1 that (I P22Q) 6 )3 -. Thus N 6 3-, and it
is clearly a spectral factor of the operator I y-2H*H.

Using Corollary 2.10, we can evaluate

[L (I P22Q)-1P21] ^(0) L(0) (I P22Q)-1 ^(0)21 (0).

Writing (I P22Q)- as a series and again using Corollary 2.10 we see that

(I P22Q)-1 ^(0) (P22Q)k ^(0)
k=0

(4.1) (22(0)(0))k

k=O

(I fi22(O)(O)) -1.

The sum in (4.1) converges, since IIP"2(0)(0)II _< IIP22QII < 1. It follows that2

(4.2) E(H, ) e’l (0)(1 22(0)(0))-*E(Q, 1)(I P’22(0)(0))-121 (0).

Note that since IIP22 (0)II < 1, the operators

I P22 (0)P2 (0), I P22 (0)P22 (0)

admit unique positive-definite Hermitian square roots; see [7, p. 88].

2We use the notation A-* (A*)-1.
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We proceed now as in [2] and define the following Julia 22
acting on the Hilbert space ]2 ) ]2:

X X21 X22

-P22(0)

operator (see [26, p. 148])

(I- "(0)22(0))1/2
P22 (0) ]"

It is straightforward to check thatX is an isometry and thus, by Lemma 4.1, the linear fractional
transformation

T := y’f’e(X, Q)

is well defined. Moreover, note that T 0 Q P2(0).
Since X2 E , then ’21 (0) X21. Proceeding as above, we can evaluate

(4.3) E(T, y) Xl (I 22(0)(0))-*E(Q, 1)(I 22(0)(0))-’X2.
Comparing (4.2) and (4.3), we see that

E(Q, 1) (I 22(0)Q(0)) P21 (o)r(a, );11(0)( 22(0)(0))
(I * -*P22(0)Q(0)) X21 r(r, )XI ( 22(0)(0))

Thus

(4.4) r(a, ) I(O)XE(T, )X111 (0).

Since X2 and P21 (0) are both independent of Q, the maximum in (4.4) is obtained whenever
E(T, V) is maximized. By property (ii) ofLemma 3.2, we know that this achieved uniquely for
T 0 Q P22 (0), from which the result of part (a) follows. Part (b) follows immediately
upon substitution.

5. Extensions. In this section we outline some possible extensions ofthe entropy operator
defined here and some difficulties that arise with each.

5.1. Finite-time-horizon systems. The entropy defined in this paper, despite having
these many desirable properties, differs significantly from the usual entropy in that the expres-
sion in (3.1) defines entropy to be an operator and not a real number as in (1.1). For operators
associated with finite-time-horizon systems, we may define an entropy number analogous to
that of (3.1); this is now done.

Let M {M(i, j)} represent a bounded, causal operator. Define the operator

MN := PNM(I P0).

With respect to the direct sum decomposition g2 P0g2 (PN P0)2 (I PN)g2, this
operator has a natural paition as

MN 0 HN 0
0 0 0

where

HN_ { {M(i,j)}, O<i,j <_N-1,
0 elsewhere.
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Note that ifM C=oM[k](Z*)k, then

MN y(PNMtd(Z*)k(I Po)Z’)(Z*)k

k=0

N-1

(5.1) (PNM[](I Pk))(Z*)
k=0

N-1
N=. ’-’Mt](Z*)k,

k=0

where, in (5.1), we have used the identity (Z*)PoZ P. We can evaluate

N (Jr Po)MN(O) =M[o PNM[o]

0 H[o
0 0 0

DEFINITION 5.1. Suppose that G 3 and IIGII < ’, and let M be a spectral factor of
the positive operator I y-2G*G. Consider thefinite rank operatorMN defined as above as
well as its nonzero componentHN. We define

,2 ,,N ,,N
N(G, )"-- In Idet ((nto])n0,)l.

In the next result we show that, for time-invariant systems, the entropy gN coincides with
the integral (1.1).

PROPOSITION 5.2. Fortime-invariant operators, G {G(i, i-k)} , with G(i, i-k)
gk and y such that IIGII < , thefollowing holds:

SN(G, 9/) Id(G, y, 0),

where G()O is the .-transform of the sequence {g }.
Proof The proof of this is very similar to that of Proposition 3.3. Following the notation

in that proof, we note that, if

G(,k) g,X’
k=O

then

and M(X) m.,
k=0

Id(G, y, 0) 2?’2 In Idet (mo)l

and, recalling from Example 2.2 that for Toeplitz operators, MIni mkl,

MN(O) PNM[o](I Po) moPN(l Po)

and

"NHi0 mOIN,

where IN is a block N N identity matrix. Thus

),2 [det (o]) 2Y2N(G, y) 2-- In In [det (m0)l
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5.2. General W. While the entropy definition in (1.1) allows one to work with an entropy
with respect to any z0 6 {z Izl < 1 }, the point of greatest interest is that with z0 0. It is
to this particular entropy that our operator entropy maximization corresponds. Nevertheless,
it would be desirable to generalize Proposition 4.2 to more general "points" corresponding to
operators W 0. Consider the general form of the entropy of Definition 3.1:

E(G, W, y) M(W)*M(W).

This formula satisfies properties (i) and (ii) of Lemma 3.2; however, it does not satisfy prop-
erty (iii). More importantly, it does not seem to satisfy the same maximization property of
Proposition 4.2 and for this reason is of limited use. The proof of Proposition 4.2 breaks down
since it relies heavily on Corollary 2.10, which does not hold for general W.

5.3. Continuous-time systems. In the case of continuous-time, linear time-invariant
systems, there exists an entropy integral analogous to that of (1.1); see [21 ]. For time-varying
systems, however, it is well known that the input-output operators which are analogous to G
exist in continuous resolution spaces. In general, positive, invertible Hermitian operators in
these spaces do not have spectral factorizations; see [4, Thm. 14.2]. Since the definition of
the entropy for discrete-time systems given here depends crucially on the existence of these
factorizations, it is not clear how to generalize this to continuous-time systems.

6. Conclusions. State-space methods have by now become prevalent in the theory of
control. Apart from being advantageous in terms ofthe numerical computations required, they
have also allowed straightforward extensions of the theory to other settings, including time-
varying systems. Until now, however, it has not been possible to extend the definition of the
entropy of a system to this setting, since it relied heavily on the transfer function of the system.
This paper has given this extension in terms of non-Toeplitz operators. The entropy defined
here, while being an operator rather than a real number, has many of the same properties
as that used in the time-invariant case. Moreover, for time-varying systems with state-space
realizations, state-space formulae for this entropy have been provided.

Appendix A. In this appendix we prove our time-varying version of Redheffer’s lemma.

A.I. Proof of Lemma 4.1. (i)=(ii) For our proof, we modify the proof for the time-
invariant case found in [5, Lem. 15].

Since P is an isometry, IIPeeII _< 1. This, together with the fact that Q is a contraction,
implies that IIP22Qll < 1. Thus, the series-(P22Q)/

k-0

converges in and is equal to (I-P22Q)-1 This implies that Q stabilizes P22. By the coprime
assumption on P and a time-varying version of Lemma 4.2.1 in [8], it follows that Q internally
stabilizes P. Now to show that f’e (P, Q) is a contraction, we use the fact that P is an isometry
and a little algebra to show that

f’e(e, Q)*.Te(e, Q) I e (I Q*P2)- (I Q*Q)(I P22Q)-P2
<_I,

where we have used the fact that Q is a contraction.
(ii)<=:(i) To show the converse, we first prove that Q is a bounded operator. Recall that Q

has a right coprime factorization Q ND-1, where N, D . Note that Q A3 :== D
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see [7, p. 182]. From the internal stability assumption, we know that

Q(I- P22Q) -1
6 N(D- P22N)-1 .

Now, since N andD are ri_ght_coprime, it follows that N andD P22N are also right coprime.
To see this, suppose that X, Y 6 such that .N + ID I. Then,

XN + Y(D P22N) I

withX ’+ YP22 , and Y I 6 ,, which proves coprimeness. It follows, again from [7,
p. 182], that

N(D- P22N) -1 G =: (O- P22N) -1 G )3

=: D-(I P22Q) -1

where the last line comes from that fact that (I Pe2Q)- 6 A ,-1. Thus, Q 6 .
We now show that Q is a contraction. Assume otherwise; thus there exists a signaly 6 2

such that u Qy 6 2 and Ilull > IlYlI. Let w Pll(I- Pz2{)Y. This is in 2, since

P21 G f) -1. Moreover, from the isometry condition we know that

Ilzll a + Ilyll a Ilwll 2 -+-Ilull a

IIw 112 _]_ liT 2.

Thus Ilzll 2 Ilwll 2, which contradicts the assumption that .T’e(P, Q) is a contraction.
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ON MARKOVIAN FRAGMENTS OF COCOLOG FOR LOGIC CONTROL
SYSTEMS*

YUANJUN WEIr AND PETER E. CAINES

Abstract. The COCOLOG (Conditional Observer and Controller Logic) system is a partially ordered family
of first-order logical theories expressed in the typed first-order languages {/k" k _> 0} describing the controlled
evolution of the state of a given partially observed finite machine .AA. The initial theory of the system, denoted Tho,
gives the theory of .AA with no data being given on the initial state. Later theories, {Th(o); k > 1}, depend upon
the (partially ordered lists of) observed input-output trajectories {o;k > }, where new data are accepted in the
form of the new axioms AXM’s (/k), k _> 1. A feedback control input U(k) is determined by the solution of a
collection of control problems posed in the form of a set of conditional control rules CCR(17.), such a set being
paired with the theory Th(o) for each k > 1. In this paper, we introduce a restricted version of COCOLOG, called a
system of Markovian fragments of COCOLOG, in which a smaller amount of information is communicated from one
theory to the next. Such fragment theories are associated with a restricted set of candidate control problems, denoted

CCR(12), k > 1. It is shown that a Markovian fragment theory MTh(o) contains a large subset of Th(o), which
includes, in particular, the state estimation theorems of the corresponding full COCOLOG system and, for the set
of control rules CCR(E.’), has what is termed the same control reasoning power. Next, it is shown that proofs of
theorems in the fragment systems are necessarily shorter than their proofs in the full COCOLOG systems. Finally
some computer-generated examples are given, illustrating this increased theorem-proving efficiency.

Key words, discrete-event systems, finite machines, logic control

AMS subject classifications. 93, 68, 03

1. Introduction. The COCOLOG system, introduced by E E. Caines and S. Wang
[CW95], [CW91], [W91 ], is a partially ordered family of first-order logical theories which
describe the controlled evolution of the state of a given partially observed finite machine A//.
Unlike most knowledge-based control systems, reasoning in COCOLOG is based upon the
representation of the two fundamental properties of a partially observed dynamical system
with inputs, namely, controllability (or reachability) and observability. The predicate sym-
bols Rbl and CSEk are introduced for this purpose. The initial theory of the system, Tho,
gives the general theory of A//without any data being given on the initial state. Later theories,
Th(o); k > }, depend upon the (partially ordered lists of) observed input-output trajectories
{o; k > 1 }, through their axiom sets {E;k > 1 }, since new data are accepted sequentially
into the subsequent theories in the form of the new axioms AXMbS(_.k). The inputs U(k)
are determined by the solution to control problems associated with each theory in the form
of the conditional control rules CCR(/2). An important class of control problems involves
the aforementioned reachability predicate Rbl (x, y, l), which is defined axiomatically in each
theory and corresponds to the reachability of the state y from the state x in steps. The solution
to one problem of this type would be, say, the first control in a sequence of controls giving a
minimal length path to the state y from the current state x.

This paper is concerned with the definition of tractable fragments of the full COCOLOG
system which carry enough information to enable significant classes of control problems to be
posed (through the conditional control rules) and resolved in a limited subset of the language

at each instant k. Due to the overall dynamical framework of a COCOLOG system, we
are able to formulate what we call the Markovian fragments of a general COCOLOG system
in such a way that they possess the required tractability properties. These are introduced in

*Received by the editors August 26, 1993" accepted for publication (in revised form) June 6, 1995. This research
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this paper via the definition of a restricted set of languages {’; k > 0} and the associated
set of axioms {ME(o); k > 0} for the set of theories {MTh(o); k > 1}. In contrast to
the evolution of a full COCOLOG system, the evolution of a system of Markovian fragments
consists of a combination of axiom set expansion (adding some previously derived theorems
and new axioms into the axiom set) and axiom set contraction (deleting some old axioms) at
each time instant. A part of {MEk(O); k > 0} expresses only the basic dynamical properties
of the machine under control plus the most recent observations, while another part expresses
the state estimate generated in the most recent COCOLOG theory. In addition, an updated
version of a set ofcontrol problems is carried in a corresponding set ofconditional control rules;
these are phrased only in terms of the predicates and axioms available in the restricted theories
MTh(o), k > 1. In particular, this avoids the unbounded increment in axiomatic theorem
proving (ATP) complexity due to the increase in the number of formulas in the successive
axiom sets.

The implementation of control reasoning in COCOLOG requires efficient ATP method-
ologies. The development of function evaluation (FE) resolution [WC92] and the Blitzensturm
methodology [CMW93] have been steps in this direction. Both have recently been shown to
be efficiently implementable. It may be seen from the analysis in this paper that the sizes
of proof trees in Markovian fragment theories are necessarily smaller than or equal to the
corresponding proof trees in full COCOLOG theories. At the end of this paper, we present
some computer-generated examples to illustrate this comparison. These and other experi-
ments implementing ATP in the full and the Markovian fragment COCOLOG systems result
in a corresponding speed-up of the computing time required for certain COCOLOG control
problems.

The paper is organized as follows. After a brief review of COCOLOG systems, 3
presents the definition of the fragment languages, k > 0. The axiomatizations of fragment
theories and their semantics are given in 4 and 5, respectively. Section 6 contains the
first main result of the paper, stating that, for a large class of control problems, no loss
in control reasoning power is incurred by restriction to the fragment theories. Section 7
presents the second main result, which deals with proof complexity. Appendix 1 consists
of a complete description of an axiom set of the basic theory, E0. Finally, two pairs of
computer-based experiments are presented in Appendix 2 to illustrate the difference between
proofs of the same theorems in full COCOLOG and in its Markovian fragment counterpart,
respectively.

Earlier versions of the theory developed in this paper were presented in [WeC92] and
[CWe94].

2. COCOLOG. The reader is referred to [CW91, CW95, W91, WC92] for a full expo-
sition of all terms and expressions which are not completely explained in the summary of the
formulation of a COCOLOG system given below.

2.1. Syntax of COCOLOG.
DEFINITION 2.1. A (partially observed)finite (input-state-output) machine is a quintuple

./[(U, X, Y,, r/),

where U is a nite) s.et of inputs, X is a (finite) set of states, Y is a (finite) set of outputs,
X U -- X is a transition function, and rl X --+ Y is an output function.
In this paper, we set IUI R, IXl N, and IYI M.
We always use boldface letters to distinguish semantic objects from the symbols in the

first-order language that describe them. For the purpose of describing such machines in a
first-order language, we define the symbol set S(/20) that contains the constant symbol set:
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Const(E0) U to X t.) Y tO IK(N)

{u u}{x oooXN} to {yl,..., yM} t.J {0, 1,..., K(N) + 1};

the variable symbol set:

Var(;o) {u, u’ to {x, x’,...} to {y, y’ to {i, j, };

thefunction symbol set, Func(;0), that contains the symbols {(, ), t/(), "-K(N), --K(N)}; the
atomic predicate symbol set, Pre(;0), that contains {Eq, Rbl}; and the logical symbol set,
{, --+, 2_}, where _k is a logical constant together with the derived symbols 3, --,, T. The set
of typed terms Term(E0) includes the first two sets of symbols, together with certain finite
strings of symbols, whose farthest left symbol is an n ary functional symbol followed by n
terms (see [CW95]).

Any well-formedformula of/2o is given by the standard first-order grammar. The set of
such formulas will be denoted WFF(.o).

2.2. Axiomatic theory of Tho. The basic axiom set, which generates the basic theory
Tho, has a set of logical axioms, a set of equality axioms for an equality predicate, a set of
arithmetic axioms, and a set of special axioms which specify the facts concerning the subject
that the logic describes (in at least one of its interpretations).

Finite machine axioms. The special axiom set of Tho corresponds exactly to the state
transitions and output map relations of the given machine .A/["

State transition axioms:

AXMdyn(o)A{Eq((xi, ul), xJ); Xi, Xj
6. X, u 6. U},

where an entry appears in the braces if and only if, for .Ad, (I)(xi, U!) Xj.
Output axioms:

AXMUt(E,o)A___{Eq(o(xi), yJ); X . X, yJ e Y},

where an entry appears in the braces if and only if, for A/l, r/(xi) yJ.
Example 2.1 (a seven-state machine). Some members of the axiom set AXMdyn for the

machine in Figure are

Eq((x u x2)
Eq((x2, u 1) x3)

Eq((xl, u2),x3)
Eq(dP(x2, u2), x4)

Eq((xl,u3),x4)
Eq((x2, u3), x5)

and some members of the axiom set AXMut are

Eq(rl(xl), yl) Eq(rl(x2), y2) Eq(o(x3), y3)

Reachability axioms. Denoted by AXMRbl (/0), these are recursively defined for the
reachability predicate Rbl by the following:

O. YxYx’, Eq(x, x’) +---+ Rbl(x, x’, 0),
1. /xdx’, (3u, Eq((x, u), x’)) Rbl(x, x’, 1),
2. Vx’Cx’1, Eq(l, K(N) + 1)

v[{3x’3u, Rbl(x’, x’, l) A Eq((x, u), x’)} Rbl(x, x’, "qI-K(N) 1)]. Vl
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yl y2 y3 yl y2 y3 y2

ul

FIG. 1. A seven-state machine.

The reachability axioms specify the/-step reachability relation Rbl (x, x’, l) among any
pair of states x, x’. We note that in these formulas the variables x, x’, x" range over X, the
variable u ranges over U, and/ranges over the integers 0, 1 K(N) / 1. Axiom 2 excludes
consideration of the infinity case in order to characterize reachability on the finite numbers in
the arithmetic.

Size axioms (see Appendix 1). Denoted by AXMsize (/0), these specify the restriction
that any model of this axiom set must have a domain that contains exactly N state objects, R
input objects, M output objects, and K(N) + 2 integers. This restriction is natural since the
controlled machine A//is fixed.

Finite arithmetic axioms (see Appendix 1). Denoted by AXMarith(o), these define
the arithmetical operations +/C(N) and --tO(N) on the initial segment of the natural numbers
{0 K(N) + 1}.

Equality axioms (see Appendix 1). Denoted by AXMEq (/0), these consist of the basic
axioms for equality and the substitution axioms for every functional symbol and predicate
symbol in the language.

Logical axioms (see Appendix 1). Denoted by AXMlgic (/0), this is the standard set
of axiom schemata for first-order logic.

Axiom set Z0. We write E0 for the union of the above axiom sets of 0, i.e.,

OZ AXMarith (/0), AXMdyn (-,o), AXMUt (/0), AXMnbl (1:o),

AXMEq (12o), AXMlgic (o)}.

Rules of inference (see Appendix 1). The rules of inference in Th0 are Modus Ponens
(MP) and generalization.

2.3. Axiomatic Theory of Th(Okl). At each instant k > 1, the controlled machine
generates a pair of observed data (up, yq) for some up U, yq Y. The axiom set is updated
to express the acquisition of this new information, and new control rules are added to decide
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the subsequent control action U (k). In order to formalize this change the language is extended
by introducing new constant symbols.

We will use the notation Okl, k > 1, to denote the observed sequence received on the time
interval [1, k], i.e.,

(0, yJ’ ), (Ui2 yj2) (u/k, yjk

The typed language kAL(o) is an extension of the language/2o which is obtained by
adding new constant symbols and predicates symbols in the following way"

k k

S(E,k)AS(L(o)) S(o) U[U(j 1), Y(j)} U[CSEj}.
j=l j--1

Here U (j 1) and Y(j) are new constant symbols, representing the observed control input
at the time instant j 1 and output at the time instant j generated by the controlled machine
.M. CSEj is a new one-place predicate symbol which is called the current state estimation
predicate at time j, j > 1.

The syntax of k is standard, and we remark only that the variables and constants are
sorted and the well-formed formulas parse according to the first-order grammar of each .

Observation axioms (AXMbs (Ek)). The observation ofthe control action Up 5 U, taken
at the instant k 1, and the output yq Y, generated at the instant k, are expressed in the
form Eq(U(k 1), up) and Eq(Y(k), yq). These are added to the previous axiom set E-l
as axioms to express the fact that these observations have taken place. Let

AXMbs ()A{Eq(Y(k), yq), Eq(U(k 1), uP)}, k >_ 1,

where this set of formulas is subject to the convention that the second axiom above holds only
in case k > 1.

State estimation axioms (Axgest(k)). These express in axiomatic form the recursive
formulas for the current state estimate sets.

In case k 1"

(1) Eq(o(xi), Y(k)) +---+ CSEI(Xi), < < N.

In case k > 1"

(2) :::Ix, CSEk-I(X) A Eq(aP(x, U(k 1)),xi) A Eq(Y(k), o(xi))
C SEk(Xi), 1 <_ < N.

This axiom set will also be added to the previous axiom set. Finally we add the following.

Substitution axioms (AXMSUZ’S(4,) (for CSEk, k >_ 1)).

(3) VXlVX2(Eq(Xl, X2) --+ (C SE,(x) --+ C SEk(X2))).

Henceforth we set

(4)
k

Z,kAZ,k(o) EO U{AXMbS(f-,j), AXMSUbs(j), AXMeSt(j)}.
j=l
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Rules of inference (see Appendix 1). The rules of inference in Th(o) are MP and
generalization.

We formally define the proof mechanics of Ek as follows.
DEFINITION 2.2. For any k >_ O, a proofsequence 79 for aformula F with respect to the

axiom set Ek is afinite indexed list offormulas in which F is the last on the list, and any other
formula in the list is either an instance of a logical axiom schemata, a member of, or a

formula deducedfrom previousformulas in the list through MP or generalization. We call 79
a E-proof. Ifsuch a proofsequence exists, we say that F is deducible from or provable from

and denote this by - F. F is called a theorem of. Finally we use 1791, the length of
79, to denote the number offormulas in 79.

Th(o), called the theory generated from E, is the set ofall theorems that can be deduced
from that is to say, it is the set

{F F e WFF(), E F}.

Conditional control rules (CCR(Ik)). The following is the general form of a set of
conditional control rules at time instant k. Let Cj (), < j < R, be a set of conditional
control formulas associated with uj, < j < R, expressed in WFF(E), and let

p-1

DP(k) A Ci(k) A Cp

i=1

(5)

Then the associated CCR() Set is the set of extralogical statements

if D1(), then Eq(U(k), ul);
if D2(/k), then Eq(U(k), u2);

if then

if DR(/k)), then Eq(U(k), uR);
R

if A(Cj(k)), then Eq(U(k), u*).
j=l

We use the notation CCF() (standing for the set of conditional controlformulas in the
language/) to denote the conditions in the if parts of a given set of rules CCR(), i.e.,

CCF(f)A Dl(k), D2(k) DR(Ik), AcJ(ff-.k)
j=l

The set of rules CCR(E), k > 1, is central to the construction of a COCOLOG controller.
The operation of the members of such a set is as follows.

Extralogical feedback control specification. If the condition C (/k) is provable from
the theory Th(ok), then the first rule gives the value u to the control constant U(k) (i.e., the
control action u will take place in the controlled system); if not, but if C2(/) is provable,
then the second rule gives the value u2 to the control constant U (k), and so on. If none of the
conditions C (), C() CR(Z) is provable, then the last rule sets the control action
equal to the arbitrary constant control u*. This procedure uniquely determines the value of
U().

When k k + 1, we make the extralogical step of passing to the theory Th(o+) by
carrying along all the previous axioms and adding the axioms AXMbs(k+) specifying the
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observation of the input, e.g., Eq(U(k), 14 i) in case bl was selected, and the observation of
the output, e.g., Eq(Y(k + 1), yq) in case yq was generated. This is formally enforced by the
above definition of the axiom set generating Th(o+). Hence, in the new theory Th(o+),
the observed control action U(k) is specified so as to be the constant value u determined by
Th(o) through CCR(k).

DEFINITION 2.3. A COCOLOG controllerfor J, together with the observation sequence

o at time instant k > O, is a pair (Ek, CCR()), where E and CCR() are defined
above. [3

2.4. Semantics ofCOCOLOG. For the semantics ofany theory Th (Ol) in a COCOLOG
system, we adopt, in Definitions 2.4 and 2.5 below, a conventional set theoretic model inter-
pretation (see, e.g., [RG87]). Since E contains all symbols of/k, we will not distinguish the
prestructure of the axiom set and that of the language when the context is clear.

DEFINITION 2.4. For all k >_ O, a prestructure oflk is apair (I, D), denoted by Z, where
D is a nonempty set called the domain, which is the union ofU, X, Y, and IK(N), and where
I is the interpretation mapping which is defined asfollows:

(1) I (c) c Dfor all c E,k such that I U -- U, I X --+ X, I Y --+ Y, I
IK(N) - IK(N).

(2) IK(CP) (I)" X U -- X.
(3) IK(r/) r/" X --+ Y.
(4) Ik(+K(N)) +K(N) IK(N) IK(N) IK(N).
(5) Ik(--K(N)) --K(N) IK(N) IK(N) -+ IK(N).
(6) Fort f(?) Term(L;k) I(f({)) l(f)(I({)).
(7) I(Eq) {(d, d) d D}.
(8) Ik(Rbl) C X X IK(N).
(9) Ik(CSEj) C X, 1 <_ j <_ k.
(10) Ik(U(j-1))U, l_<j_<k.
(ll) Ik(Y(j))Y, <_ j <_ k.
(12) For P Pre(/2), ’ e Term(L;k), l(P({)) I(P)(I({)). [3

DEFINITION 2.5. For all k >_ O, a structure for and an input-output string o, k > 1,
is a pair (Zk, Vg), denoted by, where Z is a prestructure ofE and V, is a corresponding
evaluation mapping WFF() -- {0, with corresponding type. Under this structure, each

formula in WFF() will be assigned recursively a truth value V(F) {0, asfollows:
(1) W&(_k) 0.
(2) For a ground atomicformula P([), Vk(P([)) 1 iff I(P([)) e Ik(P).
(3) For F F1 v F2, V(F) iffeither V(F) or Vk(F2) 1.
(4) For F --,Fi, V(F) iff Vk(F) O.
(5) For F F1 --+ F2 V F 1 ffe her Vg(F1) 0 or Vk F2 1.
(6) For F YxF, Vg(F) 1 iff Vk(F(x/c)) l for all c e Const(L;).
(7) For F xF, V(F) iffV(F(x/c)) forsome c e Const(L;).
In cases (6) and (7), the term c is called a witness ofx.
When Vk F) 1, we say that 7-t satisfies F, or 7-t is a model of F, and denote this by

Z F. IfZg F holds for every F , then we say that this structure is a model of
and write Zg. If every model of is also a model of F, then we call F a logical

consequence of Zk and write Z F. [3

It should be noted that the sets U, X, and in Definition 2.4 are not in general identical
to the sets appearing in the definition of the machine .hA which defines the language 0.

Henceforth, for all k > 0, we assume that any language and axiom system Z, k >_ 0}
are defined so that some machine AA, together with a given input-output sequence o, k > 0,
is a model in the sense of Definitions 2.4 and 2.5 for Zk. This is expressed by saying that
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{Ek; k > 0} is an axiom system for .A4 and the observed sequence Ol. Note that for k >_ 0 a
model 7-/k is defined without any reference to an initial state for a given machine A//and that
such an entity is not defined in the languages {, k > 0}.

Some important properties of COCOLOG families of theories are given in the following
theorems.

THEOREM 2.1 (see [CW95, W91]). For all k > O, the axiom set E for together with
the observed input-output sequence o1 is consistent.

THEOREM 2.2 (unique model property [CW95, W91]). For all k > O, the logical theory
Th(ogl), generated by the axiom system E for J[ together with the observed input-output
sequence o1, has a unique model up to isomorphism.

THEOREM 2.3 (decidable theoremhood [CW95, W91 ]). For all k > O, the logical theory
Th(o), generatedby the axiom set Efor.A/[ together with the observed input-output sequence
o1, is decidable.

THEOREM 2.4 (the nesting theorem [CW95, W91]). For all k > 0 and o] C o1+, the
logical theory Th(o), generated by the axiom set Ekfor Jk4 together with the given sequence
o, is a subtheory ofTh +lo ), generated by the axiom set E+l for A/l and the sequence o1+,
i.e., Th(ol) C Th(o+l).

Concerning the size of the axiom set at time k > 0, we have the following lemma.
LEMMA 2.1. The size of the axiom sets for J4 together with the generated sequence

o1, k > O, satisfies

I1 1201 + k(N + 3).

Proof
j=k

TO U(AXMeSt (Lj) t3 AXMbs (Lj) t3 AXMsubs (Lj))
j=l

IZ01 +
j=k

U AXMTM (Lj)
j=l

+ AXMs(Lj)
j=k

UAXMSUS(Lj))
j=l

=k =k j--k

IZ0l / IAXMeSt(Lj)I + IAXMS(Lj)I + IAXMSUS(Lj))I
j=l j=l j=l

--IE0[ +k. N +k.2+k.

I01 + k(N + 3). [3

Since the results in this paper do not depend explicitly on the sequence of values of
any given observed sequence o1, we will, from now on, omit the indication of the particular
observation sequence, and in particular, we shall write Th instead of Th(ol).

Example 2.2. Suppose that the machine in Example 2.1 generates the observation se-
quence

(, yl) (U1, ye) (U, yl).

Then corresponding observation axiom sets are

AXMbS() {Eq(Y(1), yl)}, AXMbS(2) {Eq(U(1), u), Eq(Y(2), y2)},
AXMbs (/23) {Eq(U(2), u2), Eq(Y(3), yl)}.
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A proof sequence in Th3 which gives a deduction of CSE3(x4) is as follows:
(1) Eq((x ul), x2) AXMdyn,
(2) Eq((x2, u2), x4) AXMclyn,
(3) Eq(o(x), y) AXMut,
(4) Eq(rl(x2), y2) axmout,
(5) Eq(rl(x4), yl) axmout,
(6) Eq(Y(1), yl) axmt’s(.,),
(7) Eq(rl(x), Y(1)) CSE(x) axmest(,),
(8) CSE (x) (6), (7), MP,
(9) Eq(U(1), u) AXMbs(,2),
(10) Eq(Y(2), y2) AXMObS(E2)
(11) ::Ix, CSE(x) / Eq((x, U(1)), x2)/ Eq(o(x2), Y(2)) --+ CSE2(x2)

AXMeSt(,2)
(12) CSEI(X 1) / Eq((x, U(1)), x2) / Eq(rl(x2), Y(2)) (1), (4), (9), (8), (10),

/ -rule,
(13) 3x, CSE(x)/ Eq((x, U(1)), x:z)/ Eq(o(x2), Y(2)) (12), 3-rule,
(14) CSE2(x2) (11), (13), MP,
(15) Eq(U(2), u2) AXMt’s(,3),
(16) Eq(Y(3), y) AXMt’s(,3),
(17) x, CSE2(x) / Eq(C,(x, U(2)), x4)/ Eq(rl(x4), Y(3)) CSE3(x4)

AXMeSt(3)
(18)CgEz(x2)/Eq((x2, U(2)),x4)/Eq(rl(x4), Y(3)) (2), (5), (14), (15), (16),

/ --rule,
(19) x, CSE2(x)/ Eq((x, U(2)), x4)/ Eq(o(x4), Y(3)) (18), 3-rule,
(20) CSE3(x4) (17), (19), MP. F1

One may notice that in order to prove (20), AXMTM (3) and (14) are used. Further,
the proof of (14) invokes AXM’s(2) and (8), etc. Actually this chain goes back to the
first observation pair. It is obvious that the lengths of the proof sequences of theorems in
COCOLOG increase with the lengths of the observation sequences. This is an obstacle to
the efficiency of a COCOLOG controller. In the rest of this paper, we present a restricted
fragment of the COCOLOG system in which the reasoning complexity is independent of the
lengths of the observation sequences.

3. Language fragment ’. The full COCOLOG language defined in the previous sec-
tion has the power to express the whole observation history of the system, and this gives rise
to a monotonic evolution of the theories The,; k > 0}(see the nesting theorem above) which,
in particular, permits reference to the past. For example, one may write a formula to express
the following control law: If the first control has not been invoked since the beginning of the
process, then invoke it now. This control rule can be written as

j=k

(6) if A-"Eq(U(J 1), u), then Eq(U(k), u),
j=2

and it can be seen to involve the whole collection of languages from j 2 up to j k
whose union is precisely . On the other hand, such expressive power is unnecessary for the
purposes of control with respect to control criteria depending on present and future states and
outputs, since the controlled dynamical system is, by definition, current state dependent.

There are two motivating ideas for the introduction of the Markovian fragment languages

’ and theories Th"; first, it is well known that the control of partially observed state-space
systems, with respect to current and future input-, state-, and output-dependent criteria, need
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only be a function of current state estimates; second, the first fact is reflected in the complexity
properties of ATP procedures implementing COCOLOG control rules.

Specifically, we notice that the evolution of COCOLOG theories takes place only by
acquiring new observation information; there is no other "learning" taking place, and hence
all facts which do not simply describe input and output observations must be deduced within
each theory Thk, k > 1. This will, in many cases, handicap the efficiency of the reasoning
process as the length of the observation sequence increases. For instance, in Example 2.4, (14)
is necessary to verify the desired theorem (20); but in order to verify (14), (8) is necessary. In
a typical ATP implementation, this chaining effect goes back to the state estimation at the time
instant k 1. However, if we take (in an extralogical way) the formula in (14) as an axiom
when we make the extralogical transition from E2 to 3, the above proof sequence will be
shortened considerably. As a result, we introduce the fragment theories MThk; k > 1 }. These
are propagated from instant to instant and have an exact analogy to the current state estimates
which are propagated in classical control theory problems; their use enormously increases the
efficiency of the theorem-proving procedures. The first step in defining the fragment theories
is to restrict the set of symbols to that sufficient to express the current observation and the
immediately previous one at each time instant.

DEFINITION 3.1. The symbol set of the Markovian fragment/n of, k > 1, is defined
via

S(’)S(o) U{CSEk, CSE_I) U{U(k 1), r(k)),

where the constants and variables are sorted accordingly with respect to k. [3

It is obvious that L has a fixed number of symbols, which are fewer in number than
those in k. Specifically, compared with

(1) Const() Const(/:0) [..J{U(k 1), Y(k)} C Const(/2k).
(2) Pre(/2n) {Rbl, Eq, CSEk_I, CSE} C Pre(/2).
(3)/2 has the same set of functional symbols as/2, i.e., Func() Func(/2k).

By the above definition, a term in/2’ can be formed only through Func(/2), Var(), and
Const(n). Hence a term like p(x U(k- 3)) is not a term of. This restriction also holds
for the formulas ofn defined below.

DEFINITION 3.2. For all k > O, the set of well-formed formulas WFF(’) of _.’ is

defined using the same connectives andformation rules as .. but is subject to the restriction
that the only permitted atomicformulas are instances of Rbl, CSE, CSE_I, and Eq with
respect to terms of.

Due to the construction of

WFF(’) C WFF(,), k>l.

As a consequence, cannot express the state estimate formulas concerning the state at time
k 2 or earlier, and so, for example, (6) is no longer a conditional control rule with respect to

WFF("). Intuitively, the language fragment/2n can only express information that relates
to the most recent change and the current configuration of the controlled machine. Hence
CCR(") can be written only with respect to this fraction of the total information concerning
.AA at the instant k.

4. Construction of MYt,. With the language fragment in hand, we shall give, in this
section, the axiom sets for the Markovian fragment system {MTh; k > 0}. We shall continue
to make the restriction that the admissible control objectives within a fragment {MThk; k > 0},
expressed via the control rules {CCR(/); k > }, shall refer only to the current and future
state (estimate) behavior of the controlled system. Correspondingly, we limit the information
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tO be transferred into MThk at any instant k to that necessary to deduce the current state
estimate at k or, more precisely, to deduce the set of states satisfying the predicate CSEk in
MThk.

We shall be concerned with the temporal structure ofthe fragment sequences MThk_1,

MThk, MThk+l each of them nested respectively within Thk_l, Thk, Thk+l
We observe in passing that this is the logical analogue of the generation of the state estimate
in a linear stochastic control problem. Furthermore, since a critical subset of the theorems
of MTh_ forms a part of the axiom set for MTh, a certain form of learning may be said
to take place, since these theorems do not have to be deduced again from more elementary
information given in axiomatic form.

The definitions below specify an axiom set ME, expressed within the language/’, to
be a certain combination of (i) axioms for the machine dynamics, reachability, and machine
size; (ii) a set of axioms carrying the most recent state estimate theorems; (iii) the most recent
observation axioms expressed via the equality predicate; and, in addition to the above, (iv) the
most recent estimation axioms.

DEFINITION 4.1. For a given machine iV[ and the input-output sequence Ok, the axiom
set ME, k > O, of a Markovian fragment of a COCOLOG system is recursively defined as

follows:
(7)

(8)
ME0

ME E E0 U AXMSpecial(ln).
Suppose that Mk-i is defined. Then

(9) MEk ME0 U AXMSpecial(r) K(MEk_), k > 1,

where AXMspecial (n)(C WFF(")) denotes the following union:

(10) AXMeSt(") t2 AXMbS() AXMSUbs(CSE_I) t2 AXMSUbs(CSEk),
where AXMbs(") {Eq(U(k 1), uP), Eq(Y(k), yq)} if and only if (up, yq) is the
observation pair at time k and where K(ME_1) is defined as

(11) K(ME0) 0,

K(ME_I) {?CSEI_I(Xi) MI-I ?CSE-I(xi), ? i {--,, },X X}, k>l,

where the notation ? indicates the negative assertion ofCSE_I and thepositive assertion
is indicated by the lack ofa symbol before CSE_. 71

The definition of CSE+I in a Markovian fragment theory is displayed in Figure 2. Those
axiom sets that lie on the left of the dotted box will not appear in MEk+I.

It is to be noted that

AXMeSt(k) AXMeSt(.,r), AXMSUbs(CSEk_), AXMSUbs(CSE) C WFF(’)

by virtue of the definition of the Markovian fragment languages/n, k > 0. From the defini-
tions of 2.3, we observe that AXMbs() C WFF(’), so the axiom set MEk in Definition
4.1 is well defined within

Example 4.1. For the.same observation sequence as in Example 2.2 we have

K(ME1) {CSE(xl), CSEI(X4), "CSEI(X2), "-’CSEI(X3),
-’,C SE1 (xS), -’,C SE1 (X6), "CSE1 (X7) },

K(M]2) {CSE2(x2), CSE2(x5), "CSE2(xl), CSE2(x4),
"CSE2(x3) -’,C SEz (x6), ---,C SE2 (x7) }.
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Retain

Delete

AXMObS(Lk. AxMOb((Lk ,,,,,
aXMeSt(Lk-1 aXMeSt(Lk),’" AxMest(Lk+l )-- "-

Delete CSE (x4)/’ K(MZk) ,,’
-q CSEk(x2

Observation time dimension

FIG. 2. Description ofdefinition ofCSEk+I.

Informally speaking, ME drops all the estimation axioms and observation axioms that
were added to each Ej for 1 < j < k 1. The loss of estimation axioms at time instant k
is compensated for by adding in K(ME_I), which carries the state estimate theorems from
MTh_I to MTh in the form of axioms. Compared to E, ME contains fewer axioms. But
it is not the case that ME C E since K(ME_) E. The axiom evolution for Markovian
fragment theories at time instant k can be highlighted by the following equation:

ll/lspecial (i,mME ME_ \ (K(ME_2) U AX,,, ,,,_1)) U (K(ME_I) U AXMSpecial(,k ))

E0 U K(ME_) U AXMSpecial(,rff).

It should be pointed out that Definition 4.1 itself states that ME and E use the same state
estimation axioms but does not state that they receive the same observation axioms; that this is
the case requires a proof that the two theories yield the same inputs to the controlled machine
AA. This is established below in our main result, Theorem 6.1.

The conditional control rules associated with the fragment theories are defined in a way
similar to those associated with the full theories.

DEFINITION 4.2 (CCR(,’ff)). Let {cJ(n), < j < R} be a set offormulas in

WFF(,’), and let

Dp(/n)lk(_,C1(n) A... A -,Cp-l(,rff)) m Cp(rff) for 1 < p < R.

Then CCR(,) is defined asfollows:

if D (n), then Eq(U(k), ul);
if D2 (/2n), then Eq(U(k), u2);

if then

if DR(), then Eq(U(k), ue);
R

if A -’Ci ()’ then Eq(U(k), u*).
i=1

The extralogicalfeedback control specification andfragment controller for the fragment
are exactly similar to that for a full COCOLOG system as given in 2.
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In exact analogy with Definition 2.2, we define a proof sequence with respect to ME to
be a proof sequence which invokes only the members of ME. It follows that all formulas of
an ME;h-proof sequence fall in WFF(f).

We define MTh to be the theory generated by ME, i.e.,

MTh{F ME F, F WFF(E’)}.

The following assertion concerning the size of the axiom set MEk is immediate.
LEMMA 4.1. With the definition ofa Markovianfragment given above, we have

IMEI IE0[ / 2N + 4, k > 1.

Proof It is sufficient to observe that K(ME_I) contributes N axioms and the bounds
are independent of the time index. F]

5. Semantics of Markovian fragment theories. The fragment language/2 is a sub-
language of k; hence any prestructure of/2’ is a substructure of a prestructure of k. We
observe that the construction of MEk is ordained in such a way that a model of MEk preserves
the essential properties of E; by this we mean that the properties of an interpretation of
must be preserved in an interpretation of MEk. These requirements leads to the following
definition of a structure for MEk.

DEFINITION 5.1. For each k >_ O, the structure (Z, V)for MEk is defined in exactly the
same way as thatfor E (see Definitions 2.4 and 2.5) exceptfor thefollowing modifications:

(6’)for f ({) Term(L;n) I(f({)) I(f)(l([)),
(9’) I(CSEj) C X, j k- 1, k,
(10’) I(U(k- 1)) e U,
(11’) I(Y(k)) e Y,

and vn" WFF(I,) ---+ {0, 1}.
In this definition, the model ofMEk does not depend upon the whole observation sequence

but upon the current observation pair and the previous state estimate set characterised by the
set of xi, <_ <_ N, such that CSEk(xi) holds. We now examine the evolution of full and
fragment theories and define the relationship between 7km_ and 7-{n.

We give below a well-known lemma for later use.
LEMMA 5.1 (coincidence lemma [EFT84]). Let t (Z’, V’) and 7-U (Z",

be structures for the languages and ’, respectively, both with the same domain D. Let

(a) For any Term(E), if’ and "H" agree on the symbols of S(,) occurring in t, then
’(t) 1"(t).

(b) For F WFF(), if’ and 7-(" agree on the symbols of S() occurring in F, and
V’(x) V"(x) for x free in F, then 7-{’ F iff" F.

LEMMA 5.2. Let 7-[m_1 (Z’_ 1, andV/_I 7-[ (Z’ V/ be models of m
_

and
ME, respectively. Then

(a)

(12) Im_ IzzLlnz:,
(b) V_ and V agree on thefollowing set:

(13) E0 U K(ME_).

Proof (a) follows from the definition of’ and Lemma 5.1. For the proof of (b), it is
enough to observe that

K(ME_) C MTh_I, K(ME_I) C ME. E]
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DEFINITION 5.2. Two prestructures Z and U ofa language L are said to be isomorphic
if there exists a bijection h between the domains ofl and Z’ such that

(1) For every c Const(L), h(I (c)) I’(c).
(2) For every f Func(L)and t t Term(L), h(I(f())) I’(f)(l’()).
(3) For every P Pre(L)and tl t Term(L), I(P()) iff I’(P)I’(-{).
LEMMA 5.3 (isomorphism lemma lEFT84]). IfZ and U are isomorphic, then for any

F WFF(L), we have

7-[ F C= ’ F.

The following theorem is the result of application of Theorem 2.1.
THEOREM 5.1 (see [CW95, W91]). For Jl together with the observation sequence o,

k > O, MEk is consistent. [3

The proof is via a duplication of that of Theorem 4.2 in [CW95]. Further, we can prove
the following theorem.

THEOREM 5.2 (unique model property). For k > O, each logical theory MTh’, generated
by the axiom system MEk for J together with the observation sequence o, has a unique
model up to isomorphism.

Proof. The proof is by induction on k. Let

AXMbS(E’) {Eq(U(k 1), uP), Eq(Y(k), yq)},

where uP and yq shall generically denote the observations at the instant k. We begin with the
base case k 0: in this case, ME0 E0 and the unique model property is given by [CW95,
Thm. 4.5].

The inductive step: suppose that theorem holds for ME_l, k > 1.
/.tm vimBy Lemma 5.2, any two models 7-/ (2’, Vkm) and 7-/m , of ME must

m tmcoincide respectively on a pair of models 7-/k_1 and _l of MEk-1 as in Lemma 5.2(b).
Further, by the induction hypothesis, there exists an isomorphism h D ---+ D’ such that

h

k-l"

Since both ’ and 7-(’ satisfy AXM (n), the following two sets of equations hold:

and

I(U(k 1)) U(k-1)=uP--- l(up)
Lemma5.2__ i_lrn (up) =h h_lti,m -1 (uP))

l(Y(k)) Y(k)..yq l(yq) Lemm.__a 5.2 Im_l(yq) h__ h_l(lm_l(yq)).

We define a bijective mapping h from 7-n to 7-m by extending h as follows:

he(I(U(k- 1))) h(1(uP)), he(l(Y(k))) h(l(yq)).

It is now straightforward to prove that h is a homomorphism from 7-/’ to 7-/m. Since,
first (suppressing subscripts and superscripts on I’ for simplicity),

he(I((xi, U(k 1))) he(I(cb(x i, uP))), (Xi, U(k 1)) dl)(xi, uP),
h(l ((I)(xi, uP))), helz:o hlz:0,
l’()(h(l (xi)), h(l (uP))), h is a homomorphism,

I’(dP)(he(I(xi)), he(l(U(k- 1)))),
definition of he, he(l(U(k 1))) he(I(uP)).
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Similarly, second, we have he (I (rl(xi))) I’(rl)(I’(xi)). Hence the dynamic axioms have
isomorphic interpretations and, hence, so do the reachability axioms. Further, let Ek (xi) be
the abbreviation of the left side of the member of AXMTM(n) associated with CSEk(Xi).
Then

Vn(CSEk(xi))-- V(Ek(Xi)), Ek(Xi) CSEk(Xi),
V/,m- (E(X )), Lemma 5.2,

V’m (El(xi)) inductive hypothesis,k-1
tmV k Ek (X Lemma 5.2,
ImV k (CSEk(Xi)), Ek(xi) C SEk(Xi)

By the inductive construction of well-formed formulas and by the recursive definitions of v’mk
and Vkm, it follows that v’m(F)k Vn(F) for all F WFF(). Hence

h’

From the above, we have the following theorem.
THEOREM 5.3 (decidable theoremhood [CW95, W91]). For all k >_ O, the logical theory

MTh generated by Mk for .A/t together with the observed input-output pair (up, yq) is
decidable.

We observe that we do not have the nesting property for the Markovian fragment systems
since there exist some members of MEk_l that are not theorems of ME. For example,
K(ME/_2) MThk.

6. Control reasoning power of MZt,. In this section, we shall prove that, as long as
conditional control formulas are written in ’, there is no difference between the trajectories
of identical machines which use a full COCOLOG controller and those that use a Markovian
fragment controller to decide which control input shall be applied at each instant of time. In
the notation that we have established, we shall prove that if up to any instant k the trajectories
of two copies of 2/have been identical, then for a formula F e WFF(,"), the following
holds"

MEk 1-- F == E F.

Let the formula Dp (/2n) be the conditional formula associated with control action up at time
instant k. Assume that one control system carries the axiom set Ek, and the other, MEg. Then
the implication of the equivalence above is that the same control decision will be produced by
two controllers at the instant k, that is to say,

MNl DP(r) ,: - Dp(r).

Ifwe assume that at the instant k both systems are in the same internal state, then the application
of the same input takes both systems into the same subsequent state and both emit the same
output. Hence the same. observation axioms will be entered into the new axiom sets of each
control system, and the scenario repeats itself.

To formalize the analysis of this situation we adopt the following hypothesis.
Basic Hypothesis (BH). (1) For all k > 1, let E(o) and ME(o’S) denote, respectively, the

full (COCOLOG) and Markovian fragment axioms systems for two machines, each identical
respectively. The two copies ofto the given machine Ad, generating the sequences Ol and o

,M are assumed to be in the same state at time k 0.
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(2) Furthermore, at each time instant k > 1, and for all p, < p < R, the conditional
control formula DP(Ik), associated with up in the set of formulas CCR(,k) attached to

Ek(o), is identical to Dp (n), the conditional control formula associated with up in the set

of formulas CCR("), attached to ME(o’), i.e.,

OP(,k)

Henceforce, when the context makes the meaning clear, we will write E (respectively,
MG) for G(o) (respectively, M(o’)).

In order to establish our main result, we need the concept of a reduct, which is defined
below.

DEFINITION 6.1. Let
and ’ (U, V’) be structuresfor . and .’, respectively. is called a reduct of T-{’ ifand
only if D D’ and V and V’ agree on . In this case, 7’ is called an extension of 7-{, and
we write 7-[

For a reduct as defined above, the following lemma is well known.
LEMMA 6.1. For F WFF() C WFF(’),

It is obvious from Lemma 6.1 that 7-(-1 lC_l.
We now state the main theorem.
THEOREM 6.1. Let BH hold for (E(o), CCR(,k)) and (ME(o’S), CCR(")) with

m"k O. Thenfor F WFF(k ), we have
(I) Ek F MEk F,
(II) E F MEk F,

Part (I) states that a formula in WFF() is a logical consequence of the COCOLOG
axiom set if and only if it is a consequence of coesponding fragment axiom set. Part (II)
indicates that any formula in WFF() is provable with respect to the full COCOLOG axiom
set if and only if it is provable with respect to the coesponding Markovian fragment axiom set;
in other words, MTh WFF() The. Part (III) states that the control input and output
sequences generated respectively by the COCOLOG controller and the Markovian fragment
controller are identical at each time instant; hence the two closed-loop systems have the same
behavior. A schematic representation in terms of both logic controllers is given in Figure 3.

Proof. The proof of the theorem is by induction on k.
Base step" We observe that Theorem 6.1 holds for k 0, 1, since ME0 E0 and

ME E, and hence the selected input up is the same for both systems. Next, by BH, both
copies of the controlled machine are in the same initial state and hence generate the identical
observed output yq Y at the instant k 1.

mInductive hypothesis: For all F WFF(_), k 1,
IHI_I k- FME- F,
IH2_ E-IFME- F,

Inductive step: Let BH, IHI_, IH2_l, and IH3_ hold. Then for F e WFF(), the
following hold:

(14) N F ==: ME F,

(15)

(16) o ’k
--0
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u M Y

U(k)=U’(k)

FIG. 3.

Y(k+l)=Y’(k+l)

The proof of the inductive step is based upon Lemma 6.2, which states that if km_ is a
reduct of 7-/k-1, then is a reduct of 7-/k.

To establish the inductive step, we observe that statement (14) is an immediate conse-
quence of Lemma 6.2. To prove (15), consider any F WFF(,’). Then

(completeness of first-order theoryEk)

(unique model property of Ek)

(Lemma 6.2)
(unique model property of MEk)

(completeness of first-order theory MEk).

Finally, (16) follows from (15), the identical definitions of the set of control rules CCR(n_
in each feedback control specification, and the fact that the internal state of each machine is
identical at the instant k 1. Hence we have established Theorem 6.1 since (14), (15), and
(16) of the inductive step have been shown to be the case. [3

We now present the lemma.
LEMMA 6.2. For k > O, let’ be the model defined in Definition 5.1. Then BH, IHlk_l,

imply that is a reduct of’]-(k, i.e.,IH2k_, IH3:_, and 7-[km_ 7-[k- l:_,

Proof. We show that the model of the fragment axiom set MEk is a reduct of the model
of the full-version counterpart E. First, we note that AXMTM (E,") AXMTM (,k). Next,
by IH2k_, for any F WFF("_ N "),

MEk-1 - F Ek- - F.

Now, by the first part of BH, the (exclusive and exhaustive) conditional control rules attached
to Ek-1 and MEk_ are identical and are both denoted by CCR("_). It follows from IH2k_
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that the unique conditional control formula Dp (/2km_ 1), P e R }, which is provable from
Mk-1, is also the unique such formula provable from Ek-1. Hence the same control actions
are applied to each system at the instant k 1, and by IH3k_, the same holds for the instants
j, 1 <_ j _< k 2. Further, by BH, the machines controlled by Mk-1 and k_ are identical,
and the initial states are same. So the internal state and output sequences must be the same up
to the subsequent time instant k. Consequently the same observation axiom sets AXMTM (..n)
and AXMTM (k) are supplied to MEk and Ek, i.e., AXMbs(Ik) AXMbs (/n), and we
have

and

7-(k Eq(U(k- 1), up) == ’ Eq(U(k- 1), up)

7-[ Eq(Y(k), yq) == 7-[r Eq(Y(k), yq).

Further,

CSE_ (xi)
==_ CSE_I (Xi)
:=mk-1 CSE_I (xi)

7-[.n C SEk-1 (X i)

("/k-1 is a reduct of 7g and Lemma 5.1)

(inductive hypothesis)

(Theorem 5.2).

Since, in addition, AXMTM (.) AXMTM (/n), the result follows from

7-[r CSEk (xi) -k CSEk(xi), 1 _< _< N.

As an immediate application of Theorem 6.1, we have the following corollaries.
COROLLARY 6.1. Let BH holdfor (E, CCR(.)) and (ME, CCR(12’)), k >_ 1. Then

Ek CSEk(Xi) == ME b- CSEk(Xi).

Proof. Take F CSEk(Xi), and apply Theorem 6.1. 1
COROLLARY 6.2. Let BH holdfor (I?,k, CCR(.t)) and (ME, CCR(")), k > O. Then

for all k >_ O,

Eq(U(k), up) Mk+l Eq(U(k), up) Ek+.

Proof. Let F be Dp (/2n), and apply Theorem 6.1. [3

From Corollary 6.2, we conclude that AXMTM (k+l) AXMTM (/km+l), which means
that MTh and Th will be incremented by the same observation axioms.

7. Analysis of MThk proof sequences. In this section, we show that shorter proof se-
quences can be obtained in MEk than in N, k _> 1, for theorems that involve the state estimate
predicate. These kinds of formulas are typically used to form conditional control rules. It
should be noted that the analysis in this section is proof theoretic and hence does not involve
semantic considerations.

Example 7.1. Suppose that Machine generates the observation sequence

(0, y) (u,y2) (u2,yl).

Then M3 - CSEa(x4) and one of the proof sequences demonstrating CSE3(x4) is the
following:
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(1) Eq((x ul), x2)
(2) Eq((x2, u2), X4)
(3) Eq(rl(xl), y)
(4) Eq(o(x2), y2)
(5) Eq(rl(x4), y)
(6) CSE2(x2)
(7) Eq (U (2), u2)
(8) Eq(Y(3), y)

AXMdyn,
AXMdyn,

AXMut,
AXM"t,
AXMut,

K(M2),
AXMbs(’),
AXMbs(’),

(9) x, CSE2(x) A Eq((x, U(2)), x4) A Eq(rl(x4), Y(3)) --+ CSE3(x4)
axMest (,),

(10) CSE2(x2) A Eq(CP(x2, V(2)), X4) A Eq(rl(x4), Y(3)) (2), (5), (6), (7), (8),
A-rule,

(11) Bx, CSE2(x) A Eq((x, U(2)), x4) A Eq(rl(x4), Y(3)) (11), B-rule,
(12) CSE3(x4) (9), (11), MP.
Note that the recursive chain of the E3 proof in Example 2.2 is broken at (6), where

CSE2(x2) is treated as an axiom and hence needs no verification via proof. By the definition
of a proof sequence with respect to Ek, formulas in K(MEk_I) (see 2) cannot appear in
a Ek-proof list 79 without being the result of deductions using previous lines in 79. This is
because the formulas in K(MEk_) are not logical axioms, nor are they members of

The theorem below formally states how an MEg-proof can be extended to a Eg-proof by
extending all K(ME_l)-lines in a ME-proof sequence.

THEOREM 7.1. Suppose that F e MThg, and let 79 be an MEk-proof of F. Then there
exists a Ek-proofP’ of F such that 179’1 >_ 1791.

Proof. Let 79A{L1, L2 Ln} be an MEg-proof sequence for F. Then the correspond-
ing proof sequence 79’ can be constructed as follows. By definition, each of the lines Li is
either a member of MEk or a formula deduced from its predecessors in the sequence. Let
Li be the last line in 79 such that Li MEg. Then there are two cases to consider: first,

Li (/K(MEg_I). In this case,

Li Eo U AXMbs (,r) U AXMest (/n);

hence, by Theorem 6.1,

Li Eo AXMTM (k) AXMeSt

So Li itself is a Eg-line, and in this case, we leave the line unchanged.
Second, L/e K(MEg_),i.e.,Li =?CSEg_I(xJ) forsomexj e X; then, by the definition

of K(MEk-),

MEk-1 Li WFF(,gm_),

L Li.and so there exists an ME/,_l-proof sequence of Li, say, 79{1)__A{Lil Lqi with
qi

Now replace Li in 79 with 79i to get the new proof sequence for F"

{L Li-1, }, Li+I Ln}.

Note that Li appears in the last line of 79i, so if Li is used to deduce any other formula Lj,

j > i, it can still be invoked after 79i has been inserted. This procedure is repeated until all
K(MEk_l )-lines have been replaced by their corresponding MEg_l-proof sequences. Let the
resulting sequence be

p>A{7, 72 7},
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where

Li if Li c’ K(ME_),79i a ME_-proof of Li otherwise.

If 79i is an inserted sequence and there exist K(MN_z)-lines in this MZ_-proof, we apply
the same procedure to each of them to get 79(2), in which there are no K(MN_)- nor
K(MN_z)-lines. Repeating this procedure a finite number times eventually yields 79’, in
which each line is in E, and hence is such that the whole sequence 79’ is in N. Clearly
179’1 >_ 1791, and this establishes the theorem.

If the above proof itself is viewed as an expansion method for an ME-proof, then the
proof in the following lemma can be viewed as a technique for shortening a E-proof.

LEMMA 7.1. Suppose that I2, - CSEI(xi). Then there exists an MEl-proofofCSE:(xi)
which has a fixed length with respect to k.

Proof. First we recall from [CW95] that Eq((x, U(k 1)), y) is the abbreviation
of Eq((x, uP), y) / Eq(U(k- 1), up) for some up U, and Eq(o(xi), Y(k)) is the
abbreviation of Eq(o(xi), yq) A Eq(Y(k), yq) for some yq Y.

Consider any k > 1. Suppose Ek CSEk(xi). Then from the definition ofAXMe‘t

we have - lx, CSE_(x) Eq((x, U(k 1)),xi)/’, Eq(o(xi), Y(k)).

Then, by the logical axioms,

t-- CSE_I(Xj)/ Eq((xj, U(k 1)),xi) m Eq(rl(xi), Y(k))

for some x 6 X. Hence,

and by Corollary 6.1,

E t-- CSEk_(xJ),

M - CSE_ (xJ).
Hence CSE_(xj) K(ME_). Similarly we have

Ec - Eq((xj, uP), xi) and E Eq(?(xi), yq),

which implies

Eq((xJ, uP),xi) AXMdyn(ff_.O) and Eq(rl(xi), yq) AXMUt(..o).

Now we can construct the following proof sequence for CgEk(Xi) and hence establish the
lemma:

(1) Eq(Y(k), yq) aXMbS(.."),
(2) Eq(U(k- 1)), up) AXMbS(.’),
(3) Eq((xj, uP), xi) AXMdyn(o),
(4) Eq(rl(xi), yq)) AXMut (o),
(5) CSE:_ (Xj) K(MEk-1),
(6) Eq((xj, U(k- 1)), xi) (2), (3), AXMeq, MP,
(7) Eq(rl(xi), Y(k)) (1), (4) AXMEq, MP,
(8) CSE_(xj)/x Eq((xJ, U(k 1)),x/) (5), (6),/xl-rule,
(9) CSE_(xj) Eq((xj, U(k 1)),xi)/x Eq(rl(xi), Y(k)) (8), (7),/xl-rule,
(10) lx, CSEc_(x) /x Eq((x, U(k- 1)),xi)/x Eq(rl(xi), Y(k)) (9), logical

axiom (4), definition of 3,
(11) x, CSE_I(x) /x Eq((x, U(k- 1)),xi)/ Eq(rl(xi), Y(k)) CSEt(xi)

AXMeSt (r),
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(12) :Ix, CSE_I(X) / Eq((x, U(k 1)),xi) A Eq(rl(xi), Y(k)) CSEI(xi)
(11), A 1--rule,

(13) CSEk(Xi) (10), (12), MP.
Remark. By use of AXMEq, we can also find a shorter proof for CSEk(t) with e

Term(/2n) if Ek CSE(t).
Remark. Although Lemma 7.1 can be generalized to apply to any F WFF(), it is not

our intention to give a detailed proofin this paper. In general, for a given F e WFF(/2)NTh,
which does not contain predicates CSE or CSE_I, the shortest E-proof sequence of such
formula is also an ME-proof sequence; hence we may not be able to find a shorter proof
with respect to ME. However, if F contains CSE or CSE_, then the shortest ME-proof
of F will be shorter than the shortest E-proof. Moreover, since the length of proof for the
formula CSEI(xi) with respect E depends upon the time index k while that with respect to

ME does not, the effect of invoking axioms in K(ME_I) on the proof of F will become
more marked as k increases. In Appendix 2, we present two pairs of examples generated on
a computer by theorem-proving software to illustrate such a phenomenon.

Example 7.2. For the seven-state machine presented in Example 2.1, suppose that the
target state is x 3. The first line of a CCR(2) associated with u is

if :Ix:I1, CSE2(x) Rbl((x, ul), x3, 1), then Eq(U(2), b/l).

Given the observation sequence (0, yl), (u y2)} of Example 2.2, we shall obtain the control
action u at the instant 2 by proving the antecedent clause of the if-then rule CCR(IT.2). The
first part of the proof of the conditional control condition is the proof of CSE2(x2) in Th2.
For the sake of simplicity, we omit some rudimentary deductions from the two proofs below;
these deductions can be carried out as both E and ME proofs and hence are not relevant in
comparisons of the length of E and ME proofs.

(1) Eq(Y(1), yl) AXMOt,S(l)
(2) Eq(Y(2), y2) AXM’s(.),
(3) Eq(U(1), u l) AXMbS(2),
(4) Eq(rl(xl), Y(1)) <-+ CSEl(X l) AXMeSt(l)
(5) Eq(o(xl), yl) AXMOUt,
(6) Eq(rl(xl), yl) __+ CSEl(X l) (4),/2-rule,
(7) CSEI(x) (5), (6), MP,
(8) :IxCSEl(X) Eq(dP(x, U(1)), x2) Eq(q(x2), Y(2)) -+ CSE2(x2)

AXMeSt(2)
(9) :IxCSEl(X) Eq(cb(x, U(1)), x2) Eq(rl(x2), Y(2)) --+ CSE2(x2)

(8),/2-rule,
(10) CSEI(x 1) Eq(dp(x, U(1)), x) Eq(rl(x2), Y(2)) (6), AXMayn,

AXMut, /l-rule,
(11) :IxCSE(x) Eq((x, U(1)), x2) A Eq((xZ), Y(2)) (10), definition of :I,
(12) CSE2(x) (9), (11), MP. q

The second part is the proof of Rbl((x2, ul), x3, 1):
(13) YxYy, (:IuEq(p(x, u), y) Rbl(x, y, 1)) AXMlbl,
(14) Eq((x u2), x3) AXMdyn

(15) Eq((x u), x3) --+ Rbl(x x3, 1) logic axiom (4), (13), MP,
(16) Rbl(x l, x3, 1) (14), (15), MP,
(17) Eq((x2, ul), x:z) AXMdyn,
(18) Eq(p(x2, ul), x l) --+ (Rbl(x x3, 1) --+ Rbl((x2, ul), x3, 1))

logic axiom (4), AXMEq,
(19) Rbl(x l, x 3, 1) Rbl((x2, ul), x3, 1) (17), (18), MP,
(20) Rbl((x, u), x3, 1) (16), (19), MP.
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Finally,
(21) CSE2(x2) A Rbl((x2, ul), x3, 1) (11), (20), Al-rule,
(22) 3x3l, CSE2(x) /x Rbl((x, ui), x 3, 1) definition of 3, (21).

The extralogical control rules CCR(L2) then give Eq(U(2), u). So Eq(U(2), u) e 3.
The proof of the control condition for Eq(U (2), u ) with respect to M22 can be obtained

by appending lines (13) to (22) above to the initial sequence of lines shown below, which
constitutes a proof of CSE2(x2) in MTh2. The length of the proof is then 18 steps instead of
22 as in the previous proof with respect to Th2.

(1) Eq(Y(2), y2) aXMobs(ff_,2)
(2) Eq(U(1), u 1) aXMbs(ff_,2),
(3) CSEI(x) K(MEI),
(4) xCSE(x) A Eq(cb(x, U(1)), x2)/x Eq(rl(x2), Y(2)) CSE2(x2)

AXMeSt (fl_.2)
(5) :ICSE(xl)/x Eq((x, U(1)), x2)/x Eq(rl(x2), Y(2)) --+ CSE2(x2)

AXMeSt (,2)
(6) CSEI(X1) /x Eq((x1, U(1)), x2)/x Eq(rl(x2), Y(2)) (1), (2), AXMut,

Al--rule,
(7) CSE(x)/x Eq((x, U(1)), x2)/x Eq(rl(x2), Y(2)) --+ CSE2(x2) 3 rule, (6),
(8) C SE2(x2) (6), (7), MP.

8, Appendix 1: A complete description of Z0. We list all the axioms and other com-
ponents of 0 except for the particular finite machine axioms, which would be given sepa-
rately for any specific controlled machine A//, and the reachability axioms that appear in 2.
AXMlg(o):

(1) a -- (B -- a).
(2) (a (B -+ C)) --+ ((a --> B) ----> (a --+ C)).
(3) (-,B --+ --,A)---> ((--,B ---> A)--+ B).
(4) YxA (x) A (t), e Term(0).
(5) ’v’x(A B)-- (A --+ YxB), x not free in A.

AXMEq(o):
(1) xEq(x, x).
(2) YxYyEq(x, y) -- Eq(y, x).
(3) xYyYzEq(x, y) A Eq(y, z) -- Eq(x, z).
(4) ’xYyEq(x, y) --+ Eq(rl(x), r/(y)).
(5) VxYy’u(Eq(x, y) -- Eq((x, u), (y, u))).
(6) YuYvYu(Eq(u, v) -+ Eq(p(x, u), (x, v))).
(7) YxYyYz(Eq(x, y) -+ Eq(+IN(X, z), +KN(Y, Z))).
(8) xYyYz(Eq(x, y) -- Eq(+KN(Z, X), +/N(Z, Y))).
(9) YxYyYz(Eq(x, y) -+ Eq(--IN(X, Z), --K<N(Y, Z))).
(10) Yx’yYz(Eq(x, y) -- Eq(--IN(Z, x), --I<N(Z, Y))).
(ll)xx2xyy2y(Eq(x, y)AEq(x2, y2)AEq(x, y) -+ (Rbl((xl, x2, x) -+

Rbl(y, 22, 23)))).
(12) ’VxVx2’Vy’Vyz(Eq(xl, y)/x Eq(x2, Y2) (Eq(x, x2) --+ Eq(y, Y2))).

AXMsut’s

YxVy(Eq(x, y) --+ (CSE,(x) -- CSE,(y))).
AXMarith(.o): For the arithmetic functions +KeN), --X(N), specified via

b= [ a+b ifa+b<K(N),a 4-K(N) K(N) 4-1 ifa4-b> K(N)
and

b= [ a-b ifa+b> K(N),
a 0 ifa 4-b < K(N),/
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the axioms are
Eq(O .qI-K(N) 0, 0), Eq(O -[-K(N) 1, 1) Eq(O -[-K(N) (N), K(N)),

Eq(1 -["K(N) 1, 2) Eq(1 +K(N K(N), K(N) + 1),

Eq(2 -t"K(N) 2, 4) Eq(2 "Af-’K(N) K(N), K(N) + 1),

and
Eq(K(N) --K(N) K(N), K(N) + 1).

Eq(K(N) --K(N) 0, K(N)) Eq(K(N) --K(N) K(N), 0),

Eq((K(N) 1) --K(N) K(N), O) Eq((K(N) 1) --K(N) 0, K(N) 1),

Eq(O-K(v) O, 0).
AXMsize(,o)"

(1) For the state space:
--,Eq(x x2) A --,Eq(x x3) A.../x --,Eq(x xN)
A--,Eq(x2, x3) A... A --,Eq(x2, xN)

A--,Eq(xN-,xN).
Vx(VI=I Eq(x, xi))

(2) For the input space:
--,Eq(u u2) A --,Eq(u u3) A.../x --,Eq(u uR)
/x --,Eq(u2, u3) A.../x --,Eq(u2, u 1)

A--,Eq(ul-, ul).
Yu(vi= Eq(u, ui))

(3) For the output space:
_.,Eq(yl, y2)/k --,Eq(y y3) A.../x --,Eq(y, yM)
A_.,Eq(y2, y3) A... /x --,Eq(y, yM)

A-,Eq(yyI-I y).
Vy(v/M= Eq(y, yi))

(4) For the integers in o:
--,gq(0, 1)/x--,Eq(0, 2) A... A-,gq(0, K(N) + 1)
A -,Eq(1, 2) A.../x-,Eq(1, K(N) + 1)

A-,Eq(K(N), K(N) + 1).
l(viK=(+l Eq(l, i))

Inference rules.
MP. Let A and B be well-formed formulas. Then

A,A-+ B
B

Generalization. Let A be a well-formed formula. Then

A
VxA
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Invoking the deduction theorem of first-order theory, we add the following rules:

Al-rule.
A,B
AAB

/2-rule.
AAB
A

9. Appendix 2: Two examples of ATP in r’k and MTk. Using the seven-state machine
of Example 2.1 and the observation sequences o and o displayed below, we may present a
comparison of the proofs of two COCOLOG theorems in a full COCOLOG theory and its
fragmentary counterpart. The first pair ofproofs are for the theorem CSE3 (x4) in, respectively,
3 and ME3, given the observation sequence 0. The second pair ofproofs are for the theorem
CSE4(x6) in, respectively, 124 and ME4, given the observation sequence o41 We recall that
C SE3(x4) (respectively, C SE4(x6)) means that x4 (respectively, x6) lies in the state estimate
set at time instant k 3 (respectively, k 4).

The proofmethodology used in the examples below is based upon the resolution principle,
where the axiom set is written in clausal form. The reader may refer to [CL73] for full
description of all terms and concepts from ATP used here. The proofs were generated by use
ofthe general-purpose theorem-proving software GTP that was developed at McGill University
by M. Newborn et al. [N89], in conjunction with the so-called function evaluation facility FE,
which was proposed by S. Wang and P. E. Caines [WC92] and implemented by Q. X. Yu and
S. Wang.

Each proof listing consists of
(1) a modified axiom set, i.e., a modified version of a full COCOLOG axiom set or a

Markovian fragment axiom set. In these proof listings, phi7 stands for the transition function
The FE facility of the GTP program (see [WC92]) replaces the axiomatic definition ofphi7,

and the predicate eta replaces the output function r/. For technical reasons concerning the ATP
proof procedure, we use the predicate eta(., .) for the specification of the output function,
e.g., eta(xl,yl) replaces the formula Eq(ri(xl), yl). Similarly, output2(yl) (respectively,
inputl(ul)) replaces the formula Eq(Y(2), yl) (respectively, Eq(U(1), ul)), and so on. Each
axiom line begins with the capital letter A.

(2) the negated theorem -CSE3(x4) (or --,C SE4(x6)); such a line begins with the capital
letter T.

(3) the refutation path, given by a set of lines, each of which begins with two reference
indices giving the two parent clauses that generate the current clause by resolution. For
example, (12a,22b) means that the current clause is generated by resolving the first literal of
clause 12 and the second literal of clause 22.

(4) at the end of each listing, some performance indices.
The most important observation to be made concerning these examples is that the number

of resolutions attempted during the proof with respect to ME3, based upon the observation
sequence o, is only about 1.5% of that with respect to 123. Further, the addition of only one
more observation pair results in a dramatic increase in the number of resolutions used in the
proof of CSE4(x6) with respect to I24, while the complexity of the proof of this theorem with
respect to M124 is approximately equal to that of CSE3(x4) with respect to

Observation sequence o"
(0, yl), (u1, y2), (U2, yl).

A resolution tree of Theorem CSE3(x4) with
1" A Rbl(x,x,0)
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2: A Rbl(x,z,1) v Eq(phi7(x,y),z)
3: A --,Rbl(x,y,minus7(z,1)) v --,Rbl(y,u,1) v Rbl(x,u,z)
4: A Eq(x,x)
5: A -,Eq(x,y) /Eq(y,x)
6: A --,Eq(x,y) v --,Eq(y,z) /Eq(x,z)
7: A eta(xl,yl) 8: A eta(x4,yl)
9: A eta(x2,y2) 10: A eta(x7,y2)
11: A eta(x5,y2) 12: A eta(x3,y3)
13: A eta(x6,y3) 14: A outl(yl)
15: A out2(y2) 16: A inputl(ul)
17: A out3(yl) 18: A input2(u2)
19: A --,eta(y,x) v --,out (x) /CSE1(y)
20: A --,eta(y,x) /--,outl (x) /--,CSE1 (y)
21: A Eq(phi7(x,y),z) v --,eta(z,u) v --,out2(u) /--qnputl(y) /--,CSEI(x) /CSE2(z)
22: A --,Eq(phi7(x,y),z) /eta(z,u) v --,out3(u) v -,input2(y) v --,CSE2(x) /CSE3(z)
23: T--,CSE3(x4)

Refutation path:
24: (23a,22f) [-] --,Eq(phi7(x,y),x4) /--,eta(x4,z) /--,out3(z) /-,input2(y) /--,CSE2(x4)
25: (24a,4a) [-] --,eta(x4,x) /-,out3(x) /--,input2(u2) /-,CSE2(x2)
26: (25a,Sa) [-] --,out3(yl) /--,input2(u2) /--,CSE2(x2)
27: (26a,17a) [-] --,input2(u2) /--,CSE2(x2)
28: (27a,18a) [-] --,CSE2(x2)
29:(28a,2 if) [-] --,Eq(phi7(x,y),x2) /--,eta(x2,z) /out2(z) /--,input (y) /--,CSE1 (x)
30: (29e,19c)[-]--,Eq(phi7(x,y),x2) /-,eta(x2,z) /--,eta(x,u) /--,outl(u) /--,out2(z)
31: (30a,4a) [-] --,eta(x2,x) /--,eta(xl,y) /--,outl (y) /out2(x) ’ --,inputl (u 1)
32: (31b,7a) [-] -,eta(x2,x) /--,outl(yl) /--,out2(x) /--,inputl(ul)
33: (32a,9a) [-] --,outl(yl) /--,out2(y2) /--,inputl(ul)
34: (33a,14a) [-] -,out2(y2) /--,inputl(ul)
35: (34a,15a) [-] --,inputl(ul)
36: (35a,16a) [-] []

Number of resolutions 1474.
Depth of resolution tree 13.

A resolution tree of Theorem CSE3(x4) with M]3.
1: A Rbl(x,x,0)
2: A Rbl(x,z,1) v -,Eq(phi7(x,y),z)
3: A --,Rbl(x,y,minus7(z,1)) /--,Rbl(y,u,1) /Rbl(x,u,z)
4: A Eq(x,x)
5: A --,Eq(x,y) /Eq(y,x)
6: A --,Eq(x,y) /--,Eq(y,z) v Eq(x,z)
7: A eta(xl,yl) 8: A eta(x4,yl)
9: A eta(x2,y2) 10: A eta(x7,y2)
11: A eta(x5,y2) 12: A eta(x3,y3)
13: A eta(x6,y3) 14: A out3(yl)
15: A input2(u2) 16: A CSE2(x2)
17: A CSE2(x5) 18: A--,CSE2(xl)
19: A--,CSE2(x3) 20: A-,CSE2(x4)
21: A --,CSE2(x6) 22: A --,CSE2(x7)
23: A --,Eq(phi7(x,y),z) /--,eta(z,u) v --,out3(u) v --,input2(y) /--,CSE2(x) v CSE3(z)
24: T--,CSE3(x4)

Refutation path:
25: (24a,23f) [-] --,Eq(phi7(x,y),x4) v --,eta(x4,z) v --,out3(z) /-input2(y) /--,CSE2(x)
26: (25a,4a) [-] --,eta(x4,x) /--,out3(x) /--,input2(u2) /--,CSE2(x2)
27: (26a,8a) [-] --,out3(yl) /--,input2(u2) /--,CSE2(x2)
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28: (27a,14a) [-] --,input2(u2) /--,CSE2(x2)
29: (28a,15a) [-] --,CSE2(x2)
30: (29a,16a) [-] []

Number of resolutions 21.
Depth of resolution tree 6.
Observation sequence oJ:

(0, yl), (u1, y2), (u2, y), (u2, y3).

A resolution tree of Theorem CSE4(x6) with 4o
1: A Rbl(x,x,0)
2: A Rbl(x,z,1) /-,Eq(phi7(x,y),z)
3: A -,Rbl(x,y,minus7(z,1)) /--Rbl(y,u,1) v Rbl(x,u,z)
4: A Eq(x,x)
5: A -,Eq(x,y) /Eq(y,x)
6: A --,Eq(x,y) /-,Eq(y,z) /Eq(x,z)
7: A eta(xl,yl) 8: A eta(x4,yl)
9: A eta(x2,y2) 10: A eta(x7,y2)
11: A eta(x5,y2) 12: A eta(x3,y3)
13: A eta(x6,y3) 14: A outl(yl)
15: A out2(y2) 16: A inputl(ul)
17: A out3(yl) 18: A input2(u2)
19: A out4(y3) 20: A input3(u2)
21: A -,eta(y,x) v -,out (x) /CSE (y)
22: A --eta(y,x) v -,outl(x) v CSEI(y)
23: A --,Eq(phi7(x,y),z) v -,eta(z,u) v --,out2(u) /--,inputl(y) v -,CSEI(x) v CSE2(z)
24: A --,Eq(phi7(x,y),z) v -,eta(z,u) v -out3(u) v -,input2(y) /-,CSE2(x) /CSE3(z)
25: A -,Eq(phi7(x,y),z) v --eta(z,u) v --,out4(u) /-,input3(y) v -,CSE3(x) v CSE4(z)
26: T-,CSE4(x6)

Refutation path:
27: (26a,25f) [-] -,Eq(phi7(x,y),x6) v -,eta(x6,z) /-,out4(z) /-,input3(y) /-CSE3(x)
28: (27a,4a) [-] -,eta(x6,x) v -,out4(x) ’ --,input3(u2) v -,CSE3(x4)
29: (28a,13a) [-] -,out4(y3) /-,input3(u2) v -,CSE3(x4)
30: (29a,19a) [-] -,input3(u2) /-,CSE3(x4)
31: (30a,20a) [-] -,CSE3(x4)
32: (31a,24f) [-] --,Eq(phi7(x,y),x4) v --eta(x4,z) v -,out3(z) /-,input2(y) v -,CSE2(x)
33: (32a,4a) [-] --,eta(x4,x) v -out3(x) /--input2(u2) v -,CSE2(x2)
34: (33a,Sa) [-] --out3(yl) v -,input2(u2) v -,CSE2(x2)
35: (34a,17a) [-] -,input2(u2) /-,CSE2(x2)
36: (35a,18a) [-] -,CSE2(x2)
37: (36a,23f)[-] -,Eq(phi7(x,y),x2) v -,eta(x2,z) v -,out2(z) /--inputl(y) /--,CSEI(x)
38: (37e,21c)[-]-,Eq(phi7(x,y),x2) /eta(x2,z) /-,eta(x,u) v --outl(u) v -,out2(z)
39: (38a,4a)[-]-,eta(x2,x) /-,eta(xl,y) v --outl(y) v -,out2(x) /-,inputl(ul)
40: (39b,7a) [-] --eta(x2,x) /-,outl (y 1) v -,out2(x) /-inputl(ul)
41: (40a,ga) [-] -,outl(yl) v -out2(y2) v -,inputl(ul)
42: (41a,14a) [-] -,out2(y2) /-inputl(ul)
43: (42a,15a) [-] -,inputl(ul)
44: (43a,16a) [-] []

Number of resolutions 114,694.
Depth of resolution tree 18.

A resolution tree of Theorem CSE4(x6) with ME4.
1: A Rbl(x,x,0)
2: A Rbl(x,z,1) v --Eq(phi7(x,y),z)
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3: A --,Rbl(x,y,minus7(z,1)) v -,Rbl(y,u,1) v Rbl(x,u,z)
4: A Eq(x,x)
5: A --,Eq(x,y) v Eq(y,x)
6: A -,Eq(x,y) v -,Eq(y,z) v Eq(x,z)
7: A eta(xl,yl) 8: A eta(x4,yl)
9: A eta(x2,y2)) 10: A eta(xT,y2)
11: A eta(xS,y2) 12: A eta(x3,y3)
13: A eta(x6,y3) 14: A out4(y3)
15: A input3(u2) 16: A CSE3(x4)
17: A CSE3(xl) 18: A CSE3(x2)
19: A CSE3(x3) 20: A CSE3(x5)
21: A CSE3(x6) 22: A CSE3(x7)
23: A Eq(phi7(x,y),z) v --,eta(z,u) v out4(u) v input3(y) v -CSE3(x) v CSE4(z)
24: T-CSE4(x6)

Refutation path:
25: (24a,23f) [-] --,Eq(phi7(x,y),x6) v -,eta(x6,z) v --,out4(z) v --,input3(y) v -,CSE3(x)
26: (25a,4a) [-] -,eta(x6,x) v -,out4(x) v -qnput3(u2) v -CSE3(x4)
27: (26a,13a) [-] -,out4(y3) v -,input3(u2) v -,CSE3(x4)
28: (27b,15a) [-] -,out4(y3) v -CSE3(x4)
29: (28b,16a) [-] -,out4(y3)
30: (29a,14a) [-] []

Number of resolutions 18.
Depth of resolution tree 6.
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MODEL SIMPLIFICATION AND OPTIMAL CONTROL OF STOCHASTIC
SINGULARLY PERTURBED SYSTEMS UNDER EXPONENTIATED

QUADRATIC COST*

ZIGANG PAN AND TAMER BAAR
Abstract. We study the optimal control of a general class of stochastic singularly perturbed linear systems with

perfect and noisy state measurements under positively and negatively exponentiated quadratic cost. The (expected)
cost function to be minimized is actually taken as the long-term time average of the logarithm of the expected value
of an exponentiated quadratic loss. We identify appropriate "slow" and "fast" subproblems, obtain their optimum
solutions (compatible with the corresponding measurement structure), and subsequently study the performances
they achieve on the full-order system as the singular perturbation parameter e becomes sufficiently small, with the
expressions given in all cases being exact to within O(v/). It is shown that the composite controller (obtained by
appropriately combining the optimum slow and fast controllers) achieves a performance level close to the optimal
one whenever the full-order problem has a solution. The slow controller, on the other hand, achieves (asymptotically,
as e --> 0) only a finite performance level (but not necessarily optimal), provided that the fast subsystem is open-loop
stable. If the intensity of the noise in the system dynamics decreases to zero, however, the slow controller also
achieves a performance level close to the optimal one.

The paper also presents a more direct derivation (than heretofore available) ofthe solution to the linear exponential
quadratic Gaussian (LEQG) problem under noisy state measurements, which allows for a general quadratic cost (with
cross terms) in the exponent and correlation between system and measurement noises, and obtains both necessary
and sufficient conditions for existence of an optimal solution. Such a general LEQG problem is encountered in the
slow-fast decomposition of the full-order problem, even if the original problem does not feature correlated noises.
In this general context, the paper also establishes a complete equivalence between the LEQG problem and the Ha-

optimal control problem with measurement feedback, though this equivalence does not extend to the slow and fast
subproblems arrived at after time-scale separation.

Key words, linear exponential quadratic Gaussian optimal control, generalized Riccati differential equation,
generalized algebraic Riccati equation, singular perturbations, Ha-optimal control
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1. Introduction. The problem of optimal control of stochastic linear systems under ex-
ponentiated quadratic loss (the so-called linear exponential quadratic Gaussian (LEQG) prob-
lem) has been studied extensively in the literature, with new interest aroused on the topic due
to the recently established relationship with the H-optimal control of similar systems (but
with deterministic disturbances) under quadratic loss. Perhaps the first formulation of the
LEQG problem was given by Jacobson [8], in both discrete and continuous time, and using
perfect state measurements, motivated by the fact that the exponentiated quadratic cost cap-
tures risk-seeking or risk-averse behavior, not obtainable using the linear quadratic Gaussian
(LQG) formulation (which is risk neutral). Indeed it was discovered in [8] that the LEQG
formulation with a positive exponent is equivalent (as far as the optimal solution goes) to a
deterministic zero-sum linear quadratic (LQ) differential game, which we now know [2] is
equivalent to an H-optimal control problem, thus completing the link. The counterparts of
the results of [8] in the imperfect state measurement case for discrete and continuous time
were later obtained in [21], [251, and [3], with the relationship with the H-optimal control
problem established in a series of subsequent publications, such as [7], [23], [24]; see also the
book by Whittle [22]. Similar relationships (between exponentiated-cost stochastic control
and worst-case designs) exist also for nonlinear problems, as established for some subclass of
such problems in [5]; see also the recent paper 19] for connection with differential games in the
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infinite horizon. Another recent paper [9] completely establishes this equivalence in the
discrete-time, finite-horizon case.

Our objective in this paper is to study, under both perfect and noisy state measurements, the
robustness properties of the optimal solution of the LEQG problem with respect to unmodeled
fast dynamics. This study is conducted in the framework of singularly perturbed models, with
a small positive parameter e quantifying the extent of coupling between the slow and fast
dynamics. We seek e-independent controllers that provide good (in a sense to be made precise
later) approximation to the optimal controller of the full-order problem in a neighborhood of

As mentioned earlier, at the full-order level there is an equivalence between the posi-
tively exponentiated subclass and a class ofLQ H-optimal control problems with singularly
perturbed dynamics, with this latter class of problems extensively studied recently from the
point of view of robustness and model reduction (see 12], 14], 15], 11 ]). This equivalence,
however, does not readily carry over to the "model-reduction" stage, and as will be seen here,
the end results in the two cases are considerably different. One of the reasons for this is that
(as has been studied earlier in [20]) in stochastic problems the parameter e has to enter the
system dynamics and the measurement equation in a certain way for the problem to be well
defined as e 0. The exact problem formulation provided in 2 shows that indeed in the
stochastic case a time-scale separation of the full-order system becomes much more involved.
Nevertheless, we still find occasion to use some of our earlier results from [12] and [14] in
the present development, to simplify some of the proofs. Furthermore, in the derivation of
the optimal solution to the stochastic control problem associated with the slow subsystem, we
are faced with the need to obtain a clean and complete solution to the general LEQG problem
with general cost structure and correlation between system and measurement noises. This
motivates us into the investigation that leads to the results of 4, which generalize the earlier
results of [3].

The paper is organized as follows. In the next section (2) we formulate theLEQGproblem
with perfect and noisy state measurements for singularly perturbed systems. In 3, we study
the singularly perturbed stochastic control problem under perfect state measurements, where
we decompose the problem into slow and fast e-free subproblems, obtain optimal controllers
for these subproblems, and study the optimality of the composite controller as well as that
of the slow controller in terms of the attainable performance for the full-order problem. In
4, we present a clean derivation (under least-stringent conditions) of a complete solution
to the general LEQG problem under noisy state measurements with general cost structure
and correlation between system and measurement noises, in both finite- and infinite-horizon
cases. In 5, we study the singularly perturbed LEQG problem and its decomposition under
noisy state measurements, where we identify the slow and fast subproblems to the full-order
problem, obtain optimal controllers for these subproblems, construct the composite controller
from these controllers, and study the optimality of these suboptimal controllers in terms of the
attainable performance for the full-order problem. Three numerical examples are presented
in 6 to illustrate the theory, and the paper ends with the concluding remarks of 7. Details of
some of the derivations, not included here, can be found in the internal report [13].

2. Problem formulation. The system under consideration, with slow and fast dynamics,
is described in the "singularly perturbed" form by

[ dxl (Ax + A2x2 + But)dt + GI dvot, Xl(0) Xl0,
(1) / edx2 (eaA21Xl + A22x2 -+- B2ut) dt + el/2G2 dwt, x2(0) x20,

dy (Cxl + C12x2)dt + E1 dwt, y(O) O,
1/2 1/2(2) dy2 (6 C21xl + C22x2) dt -+- e E2 dwt, y2(0) 0,
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,)t is the n-dimensional state vector, with X of dimension n and X2 ofwhere x := (x’1, x2
dimension n2 := n n i; y "= (yr1, y)’ is the m-dimensional measurement process, with

Yl of dimension m and Y2 of dimension m2 := m m l; {ut} is the p-dimensional control
input, and wt is an r-dimensional vector-valued standard Wiener process with w0 0 with
probability 1, which is independent ofthe initial condition; is a small positive scalar, denoting
the singular perturbation parameter; the underlying probability space is the triplet (Q, .T’, P);
and the parameter ot is taken to be equal to 1/2, except in the perfect state measurements
case, when it is taken to be equal to 0. The specific way the parameter enters equations (1)
and (2) is crucial for the system and measurement dynamics to be well defined in the limit
as -- 0, as otherwise (that is, for other powers of e) either the noise dominates in the limit
(and hence the optimization problem loses its significance) or the stochastic terms disappear
(again making the problem uninteresting)--as extensively discussed in [20] in the context of
the singularly perturbed LQG problem, whose arguments equally apply here as the nature of
the cost function was irrelevant in that analysis.

Associated with the system (1), we now introduce the infinite-horizon exponentiated
quadratic (risk-sensitive) cost function

(3)
02 {E {exp [Jo(lz) tlimo Otf

In (fotS(x’Qx+ u’u)dt)l}}
Here In denotes the natural logarithm, and the scalar 0 - 0 is the risk-sensitivity parameter,
in terms of which we will parametrize the solution.

We will consider two different information structures for the controller: perfect state
measurements (where the current and past values of the state are available), and the noisy
(imperfect) state measurements, where the measurement equations are as given in (2) above.
Thus, in the former case, the control input u {ut} is generated by a closed-loop control
policy/z, according to

(4) Ut lz(t, xt0,tl), > 0,

where/z 6 A//is an admissible controller, satisfying the standard conditions of Lipschitz
continuity in x and piecewise continuity in t. Furthermore, as indicated earlier, we take in
this case c 0, which makes the system dynamics well defined as --+ 0, as shown in [20].
Our objective is to find an optimal (minimizing) controller with respect to the cost (3), i. e., a
u t* lZ* (t, xo,t) such that

(5) Jo (/z*) min Jo (/z) := J0*.

Here, the initial state x0 is taken as a fixed vector in Rn

In the noisy state measurements case, the initial state is taken to be a Gaussian random
vector with mean 0 and covariance E0, where E0 is assumed to be positive definite, and
it depends on in a way to be specified shortly. In this case, the control input u 7-/u is
generated by a control policy/zi, according to

(6) ut II(t, Y[0,t]), >_ 0,

where ]I [0, tf] X ’[.y --’> "[u is piecewise continuous in and Lipschitz continuous in

Y := (Y Y2 6 7-/y, further satisfying the given causality condition. Let us denote the class

17-[u denotes the Hilbert space of p-dimensional square-integrable functions (the controls). Likewise, "]’y denotes
the Hilbert space of m-dimensional square-integrable functions (the measurements).
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of all admissible controllers in this case by A//i, which is defined in precise mathematical
terms in 4 later. For the limiting system and measurement equations to be well defined (as

0), we take c 1/2 in this case. Denoting the cost function (3) for the noisy state
measurements case by Jlo(lzl), we again seek an optimal controller with respect to Jlo(lzi),
that is, a u lz(t, Y[o,t]), _> O, such that

(7) Jlo(txT) min Jto(lzl) := Jo.

To complete the formulation ofthis risk-sensitive stochastic control problem, we introduce
two basic assumptions, which will be required to hold throughout.

A1. E0 and Q in (3) are partitioned as

’0 r 021 ]022 Q2 Q22

where in each case the 11-block is of dimensions n n 1, and the 22-block ofnz n2.
A2. The matrices A22, Q22, G2G, and N := EE’ are invertible, where E’ [E E].2

EThe system noise and the measurement noise are uncorrelated, i. e., G1 0 and
G2E 0.

3. Model simplification under perfect state measurements. The full-order solution
to the (infinite-horizon) LEQG problem with state feedback can be obtained by taking an
appropriate limit of the finite-horizon solution first obtained in [8]. Toward presenting this
solution, let us first introduce the following useful notation:

Ae := BeA2 A22 B2 Ge :--

Note that in terms of this notation, the n-dimensional system dynamics can be written in the
compact form

dx (Aex + Beut) dt + Ge dwt x(O) xo.

Introduce the quantity

(8) Se(O) "= BeB OGeGe
and consider the generalized algebraic Riccati equation (GARE)

(9)

Further introduce the quantity

(10) 0"() "= sup{0 6 R the GARE (9) admits a positive definite solution Z()}.

Assume that (Ae, Be) is controllable and (Ae, Q) is observable for every > 0. Then it
follows by taking an appropriate limit of the finite-horizon result of [8] (see Theorem 7 of

2The conditions of invertibility of Q22 and GzG can be further relaxed to the conditions of observability of the
pairs (Az2, Qz2) and (A22, G2). Results similar to those (to be) presented in this paper can be derived under these
relaxed conditions, by perturbing the matrices Q22 and GzG by .I, for some scalar . > 0, applying the results of
this paper, and then letting ) ---> 0; the limiting quantities are all well defined, as shown in 18].
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[13]) that for each > 0, 0"() is positive, and for0 < 0*(e) the LEQG problem (with perfect
state measurements) admits an optimal state-feedback solution

() u* t*(x) -’2()x, >_ o

with the optimal (minimum) cost being

(12) J2() Tr(GeG’Z(e)).

Furthermore, the feedback matrix A BBZ(e) is Hurwitz.
Thus completing presentation of the full-order solution (for all e > 0), we now return to

the original goal of this paper, which is the derivation of the optimal solution as -+ 0, via
model simplification. Toward the end of obtaining e-free solutions, we first decompose the
system into slow and fast modes as in 12].

3.1. Time-scale decomposition.

Slow subsystem. The slow subsystem is obtained by letting 0 in the system dynam-
ics, and solving for xa (to be denoted) in terms ofx =: x,, u =: u, and under the working
assumption A2:

(13) Yg. -A(A21xs + B2us).

Using this in the first equation of (1), we obtain the reduced-order (slow) dynamics

(14) dxt (Aoxst + Boust) dt + G dwt,

where ao a azaza2, Bo := B1 aza2 B2. Use of (13) also in the cost function
(3) leads to the reduced (slow) cost (with x x,)

(15) Jo(tt) lim In
| / 2k,JoEexp ([x[,, + xsQ12Y2 q-- x2Q21xs

t--, Otf

Note that this is another LEQG problem, which this time has a cross term in the cost
between the control and the state, but a simple linear state-feedback transformation on the
control brings it into the same form as the full-order LEQG problem, and hence the theory
described at the beginning of this section (for the full-order problem) applies, with some
obvious modifications. Hence, the slow LEQG problem admits an optimal solution if the
GARE

(16) AoZ + 2sO- ",So’s + 0__. 0

admits a minimal positive definite solution Zo, such that the matrix 0 SoZo is Hurwitz,
where the coefficient matrices above are explicit functions of the parameter 0, and are written
as (see [12] for details)

0(0) A A12 22 Q21 12 22Q- (S2 4- a QAz2)(S22 -t- A22Q-1A2)-1

(A21 a:zQ-22 Q21),

Qll Q12 Q-122 Q21 q-- (al Q12 Q-it22A22)(822 %- A22 Q22-Ita22)-I
(a21 A22Q2-21Q21),

Q-1 Q-1 -1A2)-iSo(O) Sll -k- A12 22 A (S + A12 22 A22)(S22 -k- A22Q22
($21 q-- A22Q-1

22 A),
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where Sij denotes the ijth block of S(O), of dimensions nix nj, i, j 1, 2, where the latter
is defined by

S(O) := BB’-OGG’, B "= B2

In view of this, let us define

(17) Os := sup{0 6 R the GARE (16) admits a positive definite solution}.

Then, the transformed LEQG problem admits an optimal solution if 0 < 0s. For 0 < Os, let
Zso be the unique positive definite solution of (16). Then, the optimal controller (after the
inverse transformation) is given by (see [13])

(18) * * (t, Xs) (-- B(822 -+- Q-1 -1
Uso lZso OlZso + A22 22 A22)

(($21 + A22Q-1 Q-122 alz)Zso (A21 A22 22 Q21)))Xs

Fast subsystem. To arrive at the fast subproblem, let xf := X2 22, b/f := b/ b/s, and
t-tz --7-, where we take to be frozen and to vary on the same scale as t. We define the fast

subsystem and the associated cost (as in the standard regulator problem; see [4]) by

d
(19a) --xtdr f A22xtf +. B2utf xtf(O) xf

(19b) J}0(/z)) ln {E {exp [ (f0(Ix),22 +
This is a deterministic, strictly convex, optimal control problem, which admits a unique
optimal controller that does not depend on the parameter 0:

(20)

where Zf is the positive definite solution to the ARE4

(21) A22Zf + ZfA22 + Q22- zf $22Zf O.

Substitute (13) and (18) into (20) to obtain

(22) * ’Zfx2 Q-1lZfo(t, X) -B2 B2Zf 22 (A12Zso nt- Q21 A22($22

+ A 2Q 2 Q-1 Q-1A22) (($21 -+- A22 22 A12)Zo (A2 A22 22 Q21)))Xl.

Also, introduce the following Lyapunov equation, when the matrix A22 is Hurwitz:

(23) A22Zof + ZofA22 + Q22 --0,

whose relevance to our problem will be seen shortly.

3Recall that by our standard assumption A1, Q22 > 0.
4This ARE admits a unique positive definite solution if the pair (A22, B2) is controllable.
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3.2. Composite controller. We now introduce the composite controller

(24) /z* (t, x) =/z*0 (t, x) %-/0 (t x)cO

where/Zs*0 and/z were defined by (18) and (22), respectively, for 0 < Os. After some
manipulations, this composite controller can be written as

(25) #*(t x)---B’[ Zs 0 1111 ]co Zc Zf x
where

and

Zc ZfQ(A112Zso + Q21) (I + Zf Q-1 Q-1 -1
22 A22)($2 + A22 22 A2)

--1(($21 + A22Qz2 AI2)Zso (A21 A22Q-1
2: Q21))

3.3. Performances of the suboptimal controllers. The next important set of issues is
the derivation of the conditions under which the performances attained by the composite and
slow controllers are finite, and study of the limiting behavior of these expected cost values as
e -. 0. A complete answer to these questions is given in the following theorem.

THEOREM 1. For the singularly perturbed system (1) with state-feedback information
and the costfunction (3), let the relevant parts ofassumptions A1-A2 be satisfied, the pairs
(A0, Bo) and (A2, Bz) be controllable, and the pair (A0, Qll QIQ2-1Q21) be observable.
Then,

1. lim__,0+ 0*(e) Os.
2. 0 < 0, 3eo > 0 such that Ye [0, 60), the GARE (9) admits a positive definite

solution, and consequently, the problem has an optimal solution, and the optimal costfor the
problem can be approximated by

(26) J*oo(6) Tr(G1G’IZso %- G2G’2Zf) %- O(v/-).

3. 0 < 0, if the composite controller txo is applied to the system, then 6o > 0 such
),that 6 [0, 60

(27) := O(c*O) Jo*() + 0(47).

4. 0 < Os, if in addition, the matrix A22 is Hurwitz, and the slow controller lz;o is
applied to the system, then o > 0 such that 6 [0, :o),

(28) = o(Z2o) 2 () + Tr(GG’(Zo< z)) + 0(47).

Proof By Theorem in [12], result 1. follows, and there exists an 60 > 0, such that
the full-order GARE (9) admits a positive definite solution, for 6 6 [0, 60), which can be
approximated by

2 [ zo + o(v)
L 6Zc %" 0 (63/2)

6Ztc %" 0(63/2 ]
eZ + O (e3/:) J

By Corollary 2 in [11], we have that the matrix /0 SoZso is Hurwitz for 0 < Osc, which
leads to 2.

For 3. and 4. we substitute the controllers/x* and/x*0 into the full-order system to obtaincO
the resulting control-free LEQG problems. We then use the detailed derivations that led to
Theorem 1 of 12] to establish 3. and 4. [3
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3.4. A large-deviation form. Consider now a large-deviation form of the problem con-
sidered in this section, which is the case when the system noise intensity asymptotically
approaches zero. To formally illustrate this situation, we consider the following setup for the
problem.

State dynamics:

dxl (AllXl q- A12x2) dt -I- Bltt -t-G1 dwt, Xl(0) XlO,
(29)

edx2 (A21Xl d" A22x2 q- B2tt)dt + /G2 dw, x2(0) x20,

Cost function:

(30) Jo(Iz, ) lim In E exp (x’Qx + u’u) dt

where is a small scalar parameter to be varied. We will study the solution as 0. Note
that this problem is equivalent to the one considered earlier in this section, if we introduce the
substitutions

0

Assume that (A,, B) is controllable, and (A,, Q) is observable for every > 0. Under
assumptions A1-A2, we know that the optimal solution exists, for each fixed > 0, if the
GARE (9) admits a positive definite solution, in which case the optimal controller is given by
(11) independent of the parameter . We define the quantity 0"() in the same way as in (10).
Thus, 0 < 0"(), the optimal cost is given by

(32) d*(, ) Tr(G,G’,2(t; )),

where () is the minimal positive definite solution to the GARE (9). Hence, J(, ) 0
as 0.

To obtain -free solutions to the problem, we decompose the system into slow and fast
subsystems. The slow subsystem is obtained by setting e 0 in the state dynamics, as well as
in the cost function. This slow problem admits an optimal solution if the GARE (16) admits
a positive definite solution Zso, such that the matrix Ao SoZso is Hurwitz. We define Os the
same way as in (17). Then, for 0 < 0, the optimal control for the slow subsystem is again
given by (18).

To obtain the fast subsystem, we use the same notation as in 3.1. The fast dynamics are
the same as (19a) and the cost function is the same as (19b) under the substitutions (31). Then,
the optimal control is given by (20), where Zf is the unique positive definite solution to ARE
(21). Substitution of (13) and (18) into (20) yields the fast controller, which is precisely (22).
We also introduce the matrix Zof to be the solution of Lyapunov equation (23).

Then, we form the composite controller as in (24), which leads to (25). Wenow summarize
this result below, as a corollary to Theorem 1.

COROLLARY 1. For the singularlyperturbedsystem (29), with smte-feedback information
and the costfunction (30), let assumptions A1-A2 be satisfie< thepairs (Ao, Bo) and (Ace, Be)
be controllable, and the pair (Ao, Q Q12Q2 Q2) be obseable. Then,

1. lim,0+ 0"() Os.
2. 0 < Os, o > 0 such that [0, 0), the GARE (9) admits a positive definite

solution, and consequently, the problem has an optimal solution, and the optimal costfor the
problem can be approximated by

(33) J(, ) :(Tr(GGqZo + GGZf) + 0()).
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3. VO < Os, if the composite controller lZ*co is applied to the system, then 3 o > 0 such
t),that [0, o

(34) Jg() := Jo(*o, ) J(e, ) + o(,/7).

4. 0 < Os, if in addition, the matrix A22 is Hurwitz, and the slow controller lZ*o is
applied to the system, then ?:o > 0 such that [0, go),

(35) J() :--- Jo(tZs*O, ) j;(-, b) -.[- 0(2).

4. Imperfect state measurements: Full-order solution. In order to obtain the counter-
parts of the results of 3 in the noisy state measurements case, we will first need the solution to
the full-order case, which is derived in this section. The derivation proceeds in two steps: first
the solution to the finite-horizon LEQG problem is obtained, and then an appropriate limit of
that solution is taken.

The model we adopt in this section involves, by necessity, a more general version of the
problem formulated in 2 (for fixed e > 0), where the system and measurement noises are
correlated, and the exponent of the loss function contains an additional cross term between
the state and the control. Such a generalized model will be encountered in the next section,
when we study the slow subproblem. Hence, the solution derived in this section will serve
two purposes" it provides a solution to the full-order problem and also a solution to the slow
subproblem which is the counterpart of the one of 3.1 in the noisy measurement case.

Accordingly, we now consider the following system and measurement dynamics:

{ dx-(Zx+But)dt?Gdwt, x(O)=xo,
(36) dy Cx dt + E dwt y(0) 0,

where the correlation between the system and measurement noises is given by L :--- GE 0,
and x0 N(20, E0), E0 > 0, N := EE’ > O.

4.1. The finite-horizon problem. Along with the system described by (36), consider
the cost function

(37) Jlo(lZI) In E exp x’te Qfxte + (x Qx + 2x Pu + u’Ru) dt

where R > 0, Qf > O, and Q PR- P > 0.5

Introduce the notation

’= Q-pR-p’,
1 "= GG- LN-L’,

:= BR-1B’ OGG,
/ := C’N-C OQ,

and in terms of this the backward generalized (game) Riccati differential equation (GRDE)

(38) Z+ Z + ZA- ZSZ + Q --O, Z(tf) Qu,

and the forward GRDE

(39) E ’ + AE ERE + M, (0) E0.

5The analysis and results of this subsection are valid even if the system and cost matrices are time varying,
satisfying some natural smoothness conditions, such as continuous differentiability in t" see 13].
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Define the quantity

(40) 0 := sup{0 6 R the GRDEs (38) and (39) admit nonnegative definite

solutions 2 and , respectively, on [0, tf ], and the matrix

I 0 I has only positive eigenvalues, for each 6 [0, tf] },

and for 0 < 0’, introduce the filter

(41) dYc= (A + 0 Q)Yc dt + (B 4- 0, P)u dt 4- (C’ 4- L)N-1 (dy CYc dt)

with initial state J(0) 0. Letting "= (I 0;)-1:, it can be shown (see [13]) that is
generated by the following dynamics:

(42) d (/ 2).dt + (I -O2)-I(B +OP)Vtdt + (I 0f;;)-1

(C’ 4- L)N-l(dy (C 4- OL’) dt),

where/ "= u + R- (B’; + P’)..
Let e :-- x and e :-- x . We will now restrict our attention to the class of controllers

such that the following process ( defines a martingale on [0, tf]:

(43) f0 e’-1 C’ N-1" exp (e’f2-G ( 4- L) E)dwt

lf0t E, -1 ]-1 2 }- IG’-e- N (C+L’) el at

Hence, we define the set of admissible controllers AA to be all mappings/zi [0, tf X -[y --. that are piecewise continuous in and Lipschitz continuous in y, and further satisfying the
given causality condition such that ( is a martingale on [0, tf ].

The above condition will be needed in the application of the Girsanov theorem [6] for a
change of probability measures. A sufficient condition for this condition to be satisfied is the
existence of positive constants 3 and tc such that

E{exp{SlG’-e E’N-I(C, + L’)-lel2}} < tc Yt [0, tf].

It should be obvious that any linear control law renders this condition valid, and hence the
class of admissible controllers is bigger than the class of all linear controllers. We refer the
reader to the recent book [6] for a thorough coverage of this topic.

We note at this point that this definition of the admissible controllers involves only one
martingale condition, whereas the one of [3] involved two such (separate) conditions. We
can do away with the second condition because of fact that in the proof to follow, we pursue
a line of reasoning motivated by the "completions of squares" proof for the H-optimal
control problem, which avoids recasting of the problem in a new probability space, where
the processes {wt and {yt are independent Wiener processes. As a result of this alternative
approach, the existence of an optimal controller is not restricted by the additional condition of
existence of a solution to GRDE (3.5) of [3] which clearly is unnecessary. Hence, the ensuing
derivation is much simpler than that of [3], and it is more complete in the sense that it leads to
both necessary and sufficient conditions for the existence of an optimal controller.

Now, we prove the following result.
THEOREM 2. Consider the general finite-horizon LEQG problem described by (36) and

(37). Assume that E0 > O, R > O, Q PR- P’ > O, and N > O. Then, for each 0 < 0,
the optimal controller is given by

* *(t, -R-1(44) uit lZl Yto,t] (B’2 + P’)(I- O2)-Yc - -R (B’2 + P’)c,
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where ]c is generated by the filter (41), or equivalently, is generated by the filter (42). The
optimal cost can be written as

(45) J*0 inf Jzo(Izl) ’oZ(O)(l 00(0))-ly0 ln{det(I O(tf)Qf)}

+ Tr(Q + (C’ + L)N-I(c, + L’)2(I -O2)-l)dt.

Furthermore, the above controller is also conditionally optimal. 6

Proof. The differential equation for e is easily obtained to be

de ( C’N-IC)edt -OQYcdt -OPudt + (G (,C’ + L)N-E)dwt.

Let := (1 0 )-, and define

T(t, e,.):--[e[.;_, q-].[ "--: Tl(t, e)+ T2(t, ).

Note that the matrix satisfies the following GRDE:

(46) + (A + O,Q) + (A + OQ)’6; + Q + O(,C’ + L)N-(C + L’)
((I 02)-P + B)R-I(p’(I 0;)-1 + B’) 0.

This, with some additional lengthy but straightforward algebraic manipulations, leads to the
following expression of the differential for T"

1
dT Tr(E’N-(C + L’)(C’ + L)N-E + (G’ E’N-I(C + L’))--(G

2
(,C’ + L)N-E))dt (x’Qx + 2x’Pu + u’Ru)dt + lfilZRdt + -(e’,-G

1 G,,_ E,N_e’-l(c + L)N-1E)dwt- -[ e- (C] + L’)]-le[2 dt.

Adding the identically zero quantity

(2/0) dT (2/O)(T(tf e(tf), ]c(tf)) + T(0, e(0), Y0))

to the exponent of Jio yields, after some rearrangement,

tf
C/ --l(47) glo Tr(( + L)N- (C + L’) + - (1(/I + ,C’N C,)) dt

+ In E exp le(0)l 2 2

’ -le(tf)l(t-_OQ
Introduce the change of probability [6]

dP
(48)

dP
( (tf )"

fo

The measure P is a valid probability measure for all/L/, E JI, since ( is a martingale on
[0, tf] by our construction of A4I.

6For a precise definition, see [3]. This property is also referred to as strong time consistency 1].
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where D satisfies

b ( +/-)D, D(O) Zo,

and (I) is the solution to the following Lyapunov differential equation:

(i, (i + -)a, + a,( + -)’ + ., a,(o) o.

SINGULARLY PERTURBED LEQG CONTROL PROBLEM

Under the new probability measure/5, the process vt, defined by

t
E’N-1vt := wt (G’-le (C + L’)-le)dt,

is a standard Wiener process starting at 0, and it is independent of x0.
It is straightforward to derive the following expression for the stochastic differential

equation satisfied by y, under the new measure P:

dy (C + OL’) dt + E dvt.

Hence, we conclude the following equivalence of sigma-fields:

Yto r{ys O < s < t} r{Evs O < s < t},

and that Y is independent of x0, for each 6 [0, tf].
Let the expectation with respect to the probability measure/5 be denoted by/. Then,

Jlo=-ln exp lfl2dt exp -le(O)lffl--le(tf)l(t)__OQ
We will first obtain an expression for the quantity

4 "=/ exp. le(0)lff, -le(tf)l 2 IY(tf)__OQf

Toward that end, we first derive a differential equation for e in terms of vt"

de ( -t- ll-)edt + (B (I -O)-(B +OP))Sdt

+ (L (I -0)-. (C’ + L))N-Edvt + (G LN-IE)dvt.

Note that the processes {El)t}o<_t<tf and {(G LN- E)l)t }0_<t<_ts are independent, since (G
LN-E)E’ 0. Then, we can decompose e into e + Y, where

d ( + ](4-)dt + (B (I -O2)-(B +OP))5dt + (L (I -02)-1

(C’ + L))N-E dvt,

dY ( + ]’l2-1)Ydt + (G LX-E)dvt, (0) s(O).

The process belongs to Y, and the process is independent of Y. Therefore, the process
is the conditional expectation of the process e given Y. The conditional distribution of

the vector [(0)’ e(tf)’]’, given the measurement sigma-field Y, is Gaussian with mean and
covariance

(tf D(tf (ti) =: A, respectively,
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Hence, J;, can be evaluated as

J;’
2, (27r)n(det(A))l/2

exp ](0)]_ -]’(tf) nt- .(tf)](tl)_l_OQs

1
dg(O) dg.(tf

)n 1/2 exp
.A._ 2n (27r (det(A)) [(o) ](t)

where

+ (-1 0 Qf)(tf) x-
dg(O) dg(tf) [--,

_E_ID,_- +- OQf

DE D’.

Thus, the cost function can be written as follows:

Tr((C’ + L)N-i(C2 + L’) + -Z-(I + ,C’N-1C))dt

/ ln(det(A)) ln(det(A)) / In E exp ItTl2ndt}}} + lY012

(49) J1o > fo ts 1Tr((]C’ -+- L)N-I(c nt- L’) -+- -1 (, -4- 2C’N-1C)) dt

2
+ ln(Jb) + Iol2,.

The controller (44) achieves the lower bound above, and hence is optimal. It is easy to see
that the controller (44) is also conditionally optimal.

Some straightforward algebraic manipulations lead to the conclusion that the lower bound
in (49) is indeed the same as (45).

This completes the proof. [3

Remark 1. We observe that the optimal controller obtained for the LEQG problem is pre-
cisely the central controller for the H-optimal control problem [2]. The preceding theorem
also subsumes the main result of [3] as a special case, and obtains it under less restrictive
conditions.

Remark 2. Theorem 2 also holds when Z0 >_ 0, if we restrict the set of admissible
controllers to be the set of linear controllers. This generalization can be proved via a standard
perturbation analysis, by first replacing Z0 by E0 + pI, p > 0, and then letting p $ 0.

4.2. The infinite-horizon problem. We now study the infinite-horizon case, where the
cost function is taken to be the time-average of (37):

(50)

(51)

Jl(IxI)= lim
2 { { [-(f0tq--,o f In E exp (x’ Qx + 2x’Pu + u’Ru) dt

Introduce two GAREs,

’2 + 224- 2cs2 + 0 =o
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and

5) ’ + + o.
Define the quantity

(53) 0 := sup{0 R the GAREs (51) and (52) admit minimal positive

definite solutions and , respectively, and the matrix

I 0 EZ has only positive eigenvalues}.

For 0 < 0, we introduce the filter

(54) d (A +oa)dt + (B +oe)udt + (C’ + L)N-(dy Cdt)

with the initial state (0) 2o. Let "= (I 02)-}; then it is not difficult to show, as in
the finite-horizon case, that is generated by the following differential equation:

(55) d ( 2)dt + (I -O2)-l(B +OP)dt + (I -02)-1

(C’ + L)N-(dy (C + OL’)J dt),

where u + R-(B’ + P’).
Suppose E0 > 0, but E0 ; then, the solution of GRDE (39) converges to exponen-

tially as .
We will define the set of admissible controllers, z, to be all mappings I [0, ) x

y u that are admissible for every finite-horizon problem with initial time 0 and final
time tf > 0, for all tf R+. Then, we have the following counteart of Theorem 2.

THEOREM 3. Consider the general LEQG problem described by (36) and (50). Let
Eo > O, R > O, Q- PR-P O, and N > O, and assume that the pairs (A, B)and
(A, G) are controllable, and the pairs (A, C) and (A, Q) are obseable. For each 0 < 0,
if E0 , then the optimal controller is given by

(56) uzt* z*(t, Yto,t]) -R-(B’ + P’)(I 0)-1 -R-I(B’ + P’),

where is generated by the filter (54), or equivalently, is generated by filter (55). The
optimal cost can be written as

(57) JTo inf JIo(l) Tr(a + (C’ + L)N-(C + L’)(I -0)-).

Proo By Theorem 2, we have the following relationships, for any admissible controller:

ln{E{exp[(It’(x’Qx+u’u)dt)]}}
1

e --(2t (0)(I 0E02q (0))-o ln{det(I 0t (tf)Qf)}
ty

+ Tr( e + (C’ + L)N-(C’ + L’)2(I

where 2 and t are the solutions to GRDEs (38) and (39), respectively, on the time interval
[0, tf], in the former case with Qf 0. Hence,

since 2Cz converges to 2 as tf and ) converges to as exponentially.
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To prove the theorem, it is sufficient to show that the controller defined by (56) and (54),
or equivalently, the one given by (56) and (55), achieves a performance level that is equal to

J’o given by (57).
Let

Jlo (/Zl) ’= In { exp 0

jt/o(lZl "= -2 {E {expI- (fotS(x’Qx +u’u)dt
0

Then, clearly J io (lzi) > Jlo (lzi), and

Hence, we have

JIo(lzi) lim --1
tf--+cz tf

Jo(lz) <_ lim __1 jo(/zl)"
ts-oo tf

By the proof of Theorem 2, and in particular by (47), we have the identity

Jo(/zl) IJo[ + Tr((C’ + L)N-(C + L’) +-(+ C’

N-C))dt + In E exp (O)l_l- 2le(tf)l_,_o2

0

where e "= x }, e "= x , := u + R-(B’2 + P’), "= 2(I 02)-, and g is
defined by

g exp (e’-G e’-(C’ + L)N-E)dw
lit G’- E’N-1 }e- (C + L’)-lel2dt

It is clear that, under the controller 7, as defined by (56) and (54) (as well as (55)), the process
( is a martingale on [0, tf ]. Introduce a change of probability

Then, under the new measure,

C’Tr((f3C’ + L)N-(Cf3 4- L’) 4- --(l(l 4- -,

I_, -le(ty)lz_,_ogN-1C)) dt + - In / exp le(0) 2 2
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This leads to the inequality

Jlo(7) < lim -tJlo (l) < Jo
t--,o tf

from which the theorem follows.
Remark 3. The theorem can be generalized to the case when E0 > 0 if we restrict the set

of admissible controllers to linear controllers, in view of Remark 2 and the independence of
the solution from the initial condition.

Before concluding this subsection, we write the full-order solution (optimal controller) to
the original problem formulated in 2 as a special case of the one given in Theorem 3 above.

First we introduce some additional notation:

Cll C12 E :-- 1/2 N := EE,C :"- 51/2C21 C22 5 E

R R12RE(O) := CIEN-ICE -OQ =: R12(0) R21(0)’ := C1N-1C2,
RE21

[ Rll R12 1R22(0) C2N-1C2, Rll(0) :-- CtlN-1C1 -OQll, R(O) :-- R21 R22

Let us assume that the pairs (AE, BE) and (AE, G) are controllable, and the pairs (AE, Q)
and (AE, CE) are observable for every > 0. Then the controller is given by

(58a) u* (t) lzTE(t, Yto, tl)

(58b) d2t (AE SE2(e))Jtdt + (I-O(e)2())-l(e)C’EN-l(dyt-CE5"ctdt),

where (0) (I 0(e)2())-10.7 Here (e) is the minimal positive definite solution to
the GARE (9), and (e) is the minimal positive definite solution to

(59) AE + -,AE R,_, + GEGE O,

with

-1(60) RE := CEN CE O Q

This is a valid solution for all 0 < 0’(e), provided that E0 < E(e), where

(61) 0(e) := sup{0 6 R the GAREs (9) and (59) admit minimal

positive definite solutions, and the matrix

I 0(e)(e) has only positive eigenvalues}.

For all 0 < 0’ () the optimal cost is

(62) J*0 () Tr((e)Q + ()C’EN-CE(e)()(I --0(e)(e))-).

Remark 4. The condition E0 < (e) is essential for the existence of an optimal time-
invariant control policy. Accordingly, we will assume henceforth that E0 is less than or equal
to (in matrix sense) the solution to GARE (59) at 0 0 for sufficiently small e > 0.

7It follows from a result of [2] that tt of (4.2) in [3] is precisely (I 0 )-lt, where t is generated by (58b).
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5. Imperfect state measurements: Model simplification. We now turn to model sim-
plification for the noisy state measurements case, with (36) replaced by (1)-(2), with o 1/2,
and cost taken as given by (3) (instead of (50)). As in the perfect state measurements case
discussed in 3, we first decompose the system into slow and fast subsystems.

5.1. Time-scale decomposition.

Slow subsystem. The slow subsystem is obtained by letting dx2 0 and solving for

X2 dt (to be denoted 22 dt) in terms of x,, u, dwt, and under the working assumption A2:

(63) 92 dt -a(/-AZlXl dt + Bzu dt + /-G2 dwt).

Using this in (1)-(2) and denoting ys := Y, we obtain

(64a) dx, ((all + O(q/--))X, + (B1 alzaf21Bz)u) dt + (G, + 0(/-)) dwt,

Xl (0) Xl O,

(64b) dysl ((C,1 + O(v/))x Clzaf2Bzu)dt + (El + 4-ClzafG2)dwt,
y, (0) O,

(64c) dye2 (4-(C2, C22Af A21)x C22A B2u) dt

+ V/-(E2 C22Af21Gz) dwt, y2(O) O.

For each e > 0, measurements (64b) and (64c) are equivalent to the vector measurement, defined by

(65) := "Jr- A21 B2H-- Ys2 - C22

Now set e 0 in (64a) and (65) to arrive at the slow subproblem in terms of x :=
wt, u, and s, with 22 -Af B2u, reduced (slow) dynamics

(66) dxs (A,xs + Bou)dt + G1 dwt, xs(O) Xl0,

slow measurements

(67) ds Cox dt + E[] dwt, Y,s(O) O,

and reduced (slow) cost function

(68) Jlo(tXs)= lim 2 In E exp
,:--, Or: -

where

(IXs 12Q,, 2x Q,2Af2 B2u

+B’ A;1’ 022A;I2 B2

Bo "= B, A,2A2-21B2, Co := C,- C2AfA:z, Ern
"= E C:zAG2,

.= c’,, ]’, .= o % ]’.
Note that even though we started with independent system and measurement noises, the slow
LEQG involves correlated noises and a coupling term between the state and the control in the
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exponent of the cost. But, thanks to the general solution presented in the previous section for
this class of LEQG problems, we can now solve this slow LEQG problem. By Theorem 3, it
admits an optimal solution if

(i) the following GARE admits a (minimal) positive definite solution, Zso:

(69) X’Zso + ZoY, Zso L z,o + 0_ o,

where

(70)

-1,Q22A 92) Q21,s "= All+ Bo(I + B2A22 B2A]’
-1,Q22A]B2)-1s(O) Bo(I + BzA22 B0

Os "= QI Q,zA] B2(I + BzA]’ QzzA2 B2)-1BzA22,-1,

(ii) the following GARE admits a (minimal) positive definite solution,

iz0 + s0’ ZokZo + o,

where

ft, "= AI G1E[]’N[]-ICo, s ": CNtz-Co -OQI,

rIN-I [] I, [] Ef.Ms G1G1 GE E G1 N "= E

and
(iii) the solutions to (69) and (70) satisfy the spectral radius condition

(71) I 0 Eso Zso has only positive eigenvalues.

Hence, let us introduce the quantity

(72) Ols sup{0 6 R the GAREs (69) and (70) admit minimal positive

definite solutions, and further satisfy (71)}.

For 0 < 0IL, the slow LEQG problem admits an optimal controller, given by

(73a) Uls~* lZls~* (t, :s [0,t]) -(I + nf,.,2,22a-lfQz2A B2) -1 (BZso "2122fa-ll Qzl)}s,

(73b) d:s (Al +OG1Gl’Zso)sdt + BofiTsdt + (I -OEsoZso)-l(EsoCo
+ G1E=’)Ne-I(dVs Co.sdt EOGl’Zsocsdt), }s(O) (I

Fast subsystem. To obtain the fast subsystem, we let xf := x2 22 x2 Jr- A21Bzus,
t’-t

uf := u Us, yf := y Ys, and r --U, where we take to be frozen, and to vary on the
same time scale as t. In terms of the equivalent measurements

(74) :f := - YY 7 Yf

we define the fast subsystem and the associated cost, respectively, by

(75a) dxf (azxf + Bg.uf)dr + Gdw, xtf(O) xf

(75b) d C2xtf dr + Edw, ytf(O) O,

(fo(75c) JtlfO(#f) E (Ixl + lu[2) dr
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This is a risk-neutral LQG problem, which does not depend on the parameter 0. It admits an
optimal controller

Ulf(75 lllf --B2Zfxf

d}f (A22 S22Zf)tf dr + EfC;N-I(dtf C2tf dr),

where Zf and Ef are the unique nonnegative definite solutions to the AREs8

(76) a22Zf + ZfA22 + 022 Zf S22Zf 0

and

(77) A22 Ef -Jr- af At22 -I- G2G2 EfR22 Ef 0,

t. back to the time scale, we obtain the fastrespectively. Transforming the control policy lilly
controller

* * =/*(x(O)) -BZff(78a) bl f [J’lf

Yf2

Yc (o) x/(o).

Also, we introduce two Lyapunov equations, for the case when A22 is Hurwitz:

(79) A22Zof -}- ZofA22 -[- Q22 --0,

(80) A22 aof .- aofA22 + G2G2 O,

which, as we shall see shortly, are relevant to the problem under consideration.

5.2. Performance of suboptimal controllers. We now address the performance evalu-
ation under the slow controller and the composite controller (to be defined), when applied to
the full-order system, and the resulting degree of suboptimality with respect to the optimal
performance of the full-order system. Toward this end, we first simplify the slow controller
(73) using some straightforward algebraic manipulations of the type that can be found in [14]
(derived in the context of the corresponding H-optimal control problem):

(81a)

(8b)

where

t*is ]JIs~* (t, s [0,t]) -(BI’ Zso + B2’ V)s,

ds (fi, sZso)csdt + (I -OEsoZ.o)-I(ZsoC’I -k- Y’C)N-I(d
(C1 C2A21(A21 +OG2GtlZo))sdt), Yes(O) (I OEoZo)-Ilo,

Y := Y1EsO + Y2, V := V1Zso + V2,
-1 -1 -1Y1 "= -(R22 + A22(GzG2) A22) (R21 + Az2(G2G2) A21),

Y2 -(R22 -+- A22(GzG2)- A22)- A22(G2G2)-lG2G1,
V -($22 22 22 (S21 q- A22 22

V2 --(822 22 22 22 22 Q21"

8As is well known, these AREs admit positive definite solutions if (A22, B2) is controllable and (A22, C2) is
observable.
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Using (65) in (8 lb), we obtain the following alternative form for the slow controller:

(82a)

(82b)

Uls* lZis* (t, Y[0,t]) -(B’lZso + BV),
djS (s sZso) dt + (I -OasoZso)-l(soC’l "Jr- Y’C)N-1

dy’ -dy (C2A2 Bz(B’1Zso + B2 V) + C, CzA

)+ OG2G’lZso))s dt xs(O) (I

Before deriving an expression for the composite controller, let us introduce the notation

X :--- Xl EsO -l- X2, U U1Zso qt_ U2,

X1 := (GzG2)-lA21 (G2G2)-lA22(R22 -+- A22(G2G2)-lA22)-1

(R21 -+- A22(G2G2)-1A21),
X2 :-- (GzGz)-IGzG’I (G2G2)-lA22(R22 -4- A22(GzGz)-lAz2) -1

A22 G2G2)- G2G

U1 := Q-1,- Q-1 Q-1 -1 Q-122 A12 22 A22($22 "+" A22 22 A22) ($21 q- A22 22 A12),

U2 ".= Q-1 -1 -1 -1 Q-22 Q21 Q22 A22($22 -.I-- A22Q22 A22) A22 22 Q21.

Then, combining (78a) and (82a), we arrive at the composite controller, expressed as

(83) u* * (t, t]) :-- * (t Y[0,t])+ * (tlc [d’lc Y[o, ]d’Is ]blf Y[o,t]

Zso +
^Cwhere a differential equation representation for x can be obtained by using (65) in (81b)"

^c -1(84) dsc (As SsZso)xsdt + (I -OEsoZso) l(EsoC1 -]" Y C2)N

([ dy’ -dy ]’-(C2A21B2(B’IZso + BV)+C1-C2Af21(A21-- oa2a’1zsO)).cs dt C2A; ^c ) ^cB2B2Zfxf xs(O (I OEsoZso) 12 10.

To obtain the differential equation governing .}, we let

[/-dyfl]dyf2 [ C’-dyl ]-dy2 w/-(C2eAB2(B’Zs+BV)+C1

C2Af (A2 + OG2G’1Zso)) dt

and

22 -AJ B2us -UcCs
and substitute the above into (78b), to arrive at

(85) e’d. (A22- S22Zf),Cfdt + EfCN-I([ /dYl dy ]- /"(C2AfB2
(B’1Zso + BV) + C C2Af (A21 + OG2G’1Zso)).Cs dt C2.cf dt);

^Cxf(O) .20 "3
t" g)sC(0)
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The main results of this section are now given in Theorem 4 below, which provides
expressions for the performances ofthe full-order system under full-order, slow, and composite
controllers and establishes their asymptotic optimality (as 6 --+ 0). We note that the condition
of Remark 4 is guaranteed in this case by the conditions that E011 < Es0 at 0 0, and
E022 <

THEOREM 4. For the singularly perturbed system (1)-(2) with ot 1/2, and under cost

function (3)"
1. For each 6 > O, if (A,, B,) and (A,, G,) are controllable, (A,, C,) and (A,, Q) are

observable, and N is invertible, then 0 < Oi*oo (6), and the optimal costfor the full-order
LEQG problem can be written as

(86) J;o(6) Tr(3 Q + (lZ1-1 + 0(2 022))-((I 02)Q(I
+ 2BB2)),

where the matrbc (-I is the unique positive definite solution to thefollowing Lapunov equation:

(8?) (A S)(-I + (I(A’ S) + (I Of)-C’N-C(I 0)- O.

2. Let assumptions A1 and A2 be satised, the pairs (A,Bo), (AI,

GG2(GGta)-IGGI) and (A2, B) be controllable, and the pairs (A, Co), (A,
12 -21 2) and (A22, C2) be observable. Let 0(6) be as defined by (61). Then,

(i) limo+ 0(6) 0s.
(ii) V0 < 0, there exists 6o > O, such that VO < 6 <_ 6o, the GAREs (9) and (59)

admit minimal positive definite.solutions, which can be approximated b

F Zso "Jl-0(/-’) 6(ZfU-]-V)t-qt- O(63/2) q
(88) 2((?) L 6(ZfU -- V) nt- 0(63/2) 6Zf --t- 0(63/2) /
and

~[EsOnt-O(wf-)(89) E(6) x/-g(EfX + Y) + 0(6) Ef + O(x/-)

Furthermore, I -0(6)() has only positive eigenvalues.
(iii) V0 < O;s, there exists o (0, co], such that 0 < o, the Lyapunov equa-

tion (87) admits a positive definite solution, which can be approximated by

I 0() Hf + 0() 0 I

where HsO is the unique positive definite solution to the Lyapunov equation

(9) ( #zo)no + nso( z,o#,) + (i -OXsoZso)-((XoC’ +
N- (C10 + C2Y) + XG2GX)(I OZsoZso)-1 0

and Hf is the unique positive definite solution to the Lyapunov equation

(92) (A22 B2B;Zf)Hf + Hf(A2 Zf B2B;) + ZfC;N-CzZf O.

(iv) V0 < Ois, VO < 0, the optimal costfor the full-order LEQG problem can be
approximated by

(93) J[o(e) Tr(NoQ + (H +O(Zso-OZoNsoZo))-l((ZoB + V’B2)

(B’Zso + B;V) + (I -OZsoXo)Q(I -OXoZo)

(I OZoZo)Q2U U’Q21(I OZoZo) + U’Q22U)

+ NfQ22 + Hf(Q22 + ZfB2B;Zf)) + 0().
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(V) t0 < Ols, if the composite controller lZco is applied to the system, then 36’0 > 0
such that 6 [0, e),

(94) J+ := J1o(lZcO) Jo() + O(v/-).

(vi) ’0 < Ols, if in addition, the matrix A22 is Hurwitz, and the slow controller lZso is
applied to the system, then o > 0 such that 6 [0, 0),

(95) JlSo :-’- Jio(tZsO)-- J]*o(6)-t-Tr(EofQ22- fQz2
I’Iu(Q22 + ZuB2B;Zf)) + O(C-).

Proof. We first substitute the optimal controller (58a)-(58b) into the full-order system, for
any 0 < 0s (e), to obtain the following control-free LEQG problem in terms of x := Ix’
and w:

dxe
(I 0,2) 1 -1CN C a- S2 (I

xedt + (I_O2)_IC,N_IE dwt

:= Fx dt + Ge dwt,

lim
2 lnlElexp[O fotxe’Hexe

where

He :-"
0

and x (0) is a Gaussian random variable with mean and variance

Exe(O)
(!- 0,)-120 =" 2"0’ Var(xe(O)) 0 0 =" I0"

To compute J[o (6) explicitly, we associate with the above system a fictitious measurement

(96) dy dvt, ye (O) O,

where vt, or ye, is a standard Wiener process independent of the initial condition and wt.
Then, the two GAREs associated with this problem are (from 4.2)

(97) F’ + F + O(Tre(Tret--e--e + He 0

and

(98) F + F’ + OHe + GeGe O.

It is shown in 13] that the minimal solutions to these GAREs are

2- (2 o22)- + A-[ -1(9= -- + o2 - o2 +

-1
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where z is the unique positive definite solution to the Lyapunov equation

Furthermore, the matrices F + OGGe’E and F’ + OHe(9 are Hurwitz.
-1 is the maximal solution to the GARE (97), since F + OGeG’(3 isWe note that

()-1an antistable matrix. Thus, by Theorem 5 of [26], we have > c. It is easily seen that

> (R). Hence, we obtain

Jo Tr(OHe)

in view ofTheorem 3. Using a matrix inversion identity, we obtain (86), which is an alternative
expression to (62). Hence, part (1) is proven.

The GARE (9) also arises in the singularly perturbed H-optimal control problem, whose
approximate solution has been studied extensively in 12]. Here, due to the factor mul-
tiplying A21 and G2, these two matrices do not enter the slow GARE (69), nor do they enter
the zeroth order approximation of the solution. Thus, GARE (9) admits a minimal positive
definite solution, which is approximated by (88), for sufficiently small 6 if 0 < Ols.

To study the behavior of the solution of GARE (59), we first partition as follows (in a
way consistent with the given partitioning on E0):

(99) :=
2 22

where f212 l. Then, by substituting this structure back into GARE (59), we obtain the
following coupled matrix Riccati equations for the matrices , ; 12, and f222:

(100a)

(100b)

-]12R,2111 11R,12]12- 12R,2212 0,

+ + + +
-612R21 12 211R1222 212R22]22 0,

(100c) 6A2112 + A2222 -’1- 612A21 -1- 22A22 + G2G2 ]12RI1 12

--6 22Re21 212 6 f12Re12]22 22 Re22 22 0.

The above set of equations are the same as (2.26)-(2.28) of 14] for 6 --+ 0 (except for certain
obvious modifications), which permits us to apply the results of [14] to the present case.
Hence, for 0 < Ols, (100) admit solutions for sufficiently small 6, which can be approximated
by ;l EsO + O(), f;12 Xt,f nt- Y’ + O(v/-g), and ]22 ]f nt- O(x/). Thus, the
solution to (59) can be approximated by (89), for sufficiently small 6 and for 0 < Ois.

Furthermore, for 0 < Ols and sufficiently small 6, the matrix I 0f;(6)2(6) can be
approximated by

I-OEsoZso+O(/’)
o(J-i) ]I + O(V/-)

Hence, it can have only positive eigenvalues. Thus, part 2 (ii) is proved.
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Fix any 0 > Ols; then, either one of the GAREs (69) and (70) does not admit any positive
definite solution, or the matrix I 0 E.0 Zso has at least one negative eigenvalue. The former
implies, in view of a result of [12], that one of the GAREs (9) or (59) does not admit any
positive definite solution for sufficiently small , which further implies that 0 > 0(). The
latter, on the other hand, leads to the conclusion that the matrix I 0;2 has at least one
negative eigenvalue for sufficiently small , which again implies that 0 > 0’(). Hence,
0 > 0’() for sufficiently small e, 0 > Ols. Thus, part 2 (i) is also proved.

0 and 1-I T(-IT’. Then, premultiplying (91) by T and postmultiplyingLetT

it by T’ yield the following Lyapunov equation for l-I"

(101) T(A, S’)T-1FI + FIT-I’(A’, S)T’ + T(I

.(I-02)-1T’=0.

Note the following approximations for e (0, e0], which are easily obtained in view of the
given approximations for Z and E"

Suppose that H takes the form

r.i11 .v/-l-i 12 ]/-1--i 21 1--i22

where 1-I21 I’Itl2 and substitute it into the Lyapunov equation (101) to arrive at the following
equations for H 11, F112, and H22:

(102a)

(102b)

(102c)

(.is- sZo)Flll + I-Ill(,s Zo)’ + Ls + 0(4’-) O,

Fill O(1) + FI12(A22 B2B;Zf) + O(1) + O(%-) 0,

--1(J22 B2BZf I’122 "- l"122 (J22 B2BZf)t qt_ afC2N C2 Ef -ol- 0 (17) O.

Then, it follows that I-Ill l’IsO, 1-I22 1-If, and some I-I12 (which exists) solve equations
(102a)-(102c) at e 0. By an application of the implicit function theorem 10] as in the proof
ofTheorem of[ 12], the solutions to 102a)-(102c) are approximated by FI 1 Flso +0(/g),
I-I22 1-If + O(f), and FI12 O(1), for sufficiently small . This then completes the proof
of part 2 (iii).

A mere substitution of (88), (89), and (90) into (86) yields the desired result (93) (detailed
algebraic manipulations can be found in 13]), which proves part 2 (iv).
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Now substitute the composite controller/z* into the full-order system to arrive at anic

infinite-horizon, control-free LEQG problem. Let

C ^CUxs,Xf X2 -- ^cl3c, [XZl, X At- /"x X(I t9 Z o a o xff’, 3’].
In terms of the state variable jc, this LEQG problem can be written as (see 13] for details)

dt + dwt,
O() 7F2 + O() G+ O(1)

:= FU t + Gc, aw,

JC0 := lim 2 ln{E{exp[0 fotcc’ Hc ]}}oo O f - + O v/’ Ycc d

where

(103a)
AllFI (I- 19soZso)-l((]soC’l "-[- Y’C)N-lC + XtA21)

-B1BIZso B1BV A12U !
Fcs J

(103b) Fcs As sZso (I -OEsoZso)-l((EsoCt + YtC)N-1C1 + X’A21

X GzG1Zso),

A22(Oc c zC;N-C

(103d)

-B2BZf ]A22- B2BZf ZfCN-C2

[ ]GC (I -OEsoZso)-l(X’G2 + (EsoCl + YtC)N-1E)

(103e) G -1EfC2N E

(1030 HC [ HI O(1)]o(1 n6c

(103g) Hfl [ -Q12U ](ZsoB1 + WB2)(B1Zso + BV) + U’Q22U

Q22 0
(103h) H6C2= 0 ZfB2B;Zf

The initial statec(0) is a Gaussian random vector with mean ’) and covariance E, given
by

310
(I OXsoZso)-lYclo + O(f)

" ’-’- -20 + U(I -OEsoZso)-lyclo
20 -’l- U(I -OEsoZso)-lYclo
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Eo 0 ]o o +o() o(4F)
Y]022 0

o(J) o o

To evaluate the cost J[o, we associate a fictitious measurement (96) with this LEQG
problem (as in the proof of part 1), where vt, or ye, is a standard Wiener process independent
of the initial state and wt.

Then, the two GAREs associated with this problem are

r-,c,,q_c c,c HF’c + ZcF,c + , ,,_,,o, + =0

and

F6c + 6CF + 60HC6c + GCGC’ O.

It is shown in [13] that the minimal solutions to these GAREs exist for 0 < 0is and sufficiently
small 6:, and can be approximated by

(104a) c 11 - O(’V/’) 0(6:)
0(6:) 6:2 + 0(6:3/2)

(104b) .’5c [ zl Z ]-11 zl (Zso OZsoasoZso) -1 "}" AO1

(104c) 2= ZT + AT --AT
--AT AU

(104d) Aso(I OEsoZso)-l(s EsO.s)(l OEsoZso) + (I OZsoEsO)(ts
sEsO)(I --OZsoso)-lAso "{- (ZsoB + VtB2)(B1Zso q" BV) + U’Q22U O,

(104e) Af(A22 YfR22) -4- Af(Ar22 R22Yf) + ZfB2B(Zf 0,

(1040
C

6c + 0(47)
o(dg) ]%2 + o()

(104g) "c [0 OZo E-S-o
OZso 1 ]-1

(104h) ~c Ef + FI 1-If022 Hf Hf

Furthermore, the matrices F + OGCC;c’F_,c__ and F" + OHC(R) are Hurwitz. By Theorem 5 of
[26], the matrix I 0(9c r-,cc, has only positive eigenvalues.

Obviously (R)c > (R). Hence, by Theorem 3, Jo Tr((R)CHC) Some straightforward
algebraic manipulations lead to part 2 (v).

Now substitute the slow controller/Zs into the full-order system to arrive at another
control-free LEQG problem. Let

x} "= x2 + U.s,
,^s, 47  ’x2s’’=[xj x + (I OZsoso)-1 x.
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In terms of the state variable 2s, this LEQG problem can be written as (see again [13] for
details)

d’S [ Fflo (-- +
4 lO X/-) o(1)

7 G + 0(47)
1_._) dt -I- -G2 + O(1) dwt7A22 + 0(47

:= F2 dt + G dwt,

2
J[o := lim

ts--, Otf
0

HS dt]
where

HS=I HI 0(1)]O(1) Q22

and FI, G, and H are as defined in (103a), (103d), and (103g).
The initial state 2 (0) is a Gaussian random vector with mean2 and covariance E, given

by

21o
2So (I OEoZso)-21o q- 0(/-)

2"20 + U(I -OOZsO)-121o

r;.= 0 0 + 0(,/) 0(47)
0 (,/-) 022 --1- 0 (%,,/-)

To evaluate the cost J]o, we associate (as in the composite controller case) a fictitious
measurement (96) with this LEQG problem, where vt, or ye, is a standard Wiener process
independent of the initial state and wt.

Then, the two GAREs associated with this problem are

F[’ + sF; + soas,s,’s + I4 0

and

F + F’ %- SOHSS + GGS O.

It is shown in [13] that, if A2e is Hurwitz, the minimal solutions to these GAREs exist for
0 < 01 and sufficiently small (?, and can be approximated by

11 mr- 0(/)s ,c

o()

6s= [ 6 + o(J)
l o()

o() ](? Zof + 0((?3/2)
o(J) ]o + 0(47)

where gl and are as defined in (104b) and (104g). Furthermore, the matrices F +
OGG’E and F’ + OHS(R) are Hurwitz. By Theorem 5 of [26], the matrix I -OOSE has
only positive eigenvalues.

Hence, by Theorem 3, J]o Tr((R)s HS) Some straightforward algebraic manipulations
lead to (95). This completes the proof of the theorem. q
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5.3. A large-deviation form. As the counterpart of the analysis of 3.4, we again con-
sider a large-deviation form of the problem. The system under consideration is described
by

(105)

dxl (AllXl -I-- A2x2 + But)dt +G dtot; Xl(0) Xl0,

sdx2 (fl/2A21Xl -4c- A22x2 -[- B2ut) dt + 51/2G2 dtot; X2(0) X20,

dy (ClXl + C12x2)dt +E dvt; y(O) O,
dy2 (1/2C21Xl % Czzxz) dt -Jr:l/ZE2dvt; y2(0) --0,

and the cost function is given as

(106) Jlo(lzl, ) lim In E exp
ts Otf

where the initial state x0 is a Gaussian random variable with mean Y0 and variance 2E0, and
is a small scalar parameter to be varied. We will again study the solution as the parameter
--+ 0. This problem is equivalent to the one considered in 4, if we introduce the following

substitutions:

0
(107) 0 +-- 7x; G +-- :G; E +-- E; Eo <--" 2E0.-Define the quantity 0’() exactly as in (61). Then, for any 0 < 0’(), the problem admits an
optimal controller, given by (58a) and (58b).

The optimal solution to the full-order problem again depends on the value of explicitly.
To obtain E-free solutions, we decompose the system into slow and fast subsystems. The slow
subsystem can be obtained in the same way as before. Under the substitution law (107), the
slow LEQG problem is again described by (66), (67), and (68). This leads to a definition of
Ols exactly as in (72). For any 0 < Ols, the optimal controller for the slow subproblem is as
in (73). The fast subsystem is again (75), under the substitution law (107). Thus, the fast
controller is exactly the same as (78a)-(78b). Hence, we can form the slow and composite
controllers/XTs and/Zc as before. The slow controller/ZTs is as in (82a) and (82b), and the
composite controller/Zc is as in (83), (84), and (85), of course now parametrized also by .

Then, all this leads to the following corollary to Theorem 4.
COROLLARY 2. For the -parametrized singularly perturbed system (105) under the cost

function (106):
1. For each > O, ifthe pairs (A, B) and (A, G) are controllable, the pairs (A, C)

and (A, Q) are observable, and the matrix N is invertible, then, 0 < 0(), the optimal
costfor thefull-order LEQG problem can be written as

(108) J;o(6; ) O(2).
2. Let assumption A2 hold, the pairs (A, Bo), (All, G1G’ GGz(G2Gz)-G2

-1G), and (A22, B2) be controllable, and the pairs (All, Co), (AI, Q Q2Q22 Q2) and
(A22, C2) be observable. Then,

(i) lim_o+ 0’() Ols.
(ii) V0 < Ozs, if the composite controller tZco is applied to the system, then 3o > 0

such that V 6 [0, ),
(109) JCo := Jzo(lZTco) J;o(e; ) + O(24r).

(iii) ’v’0 < Ois if, in addition, the matrix A22 is Hurwitz, and the slow controller lZTso is
applied to the system, then o > 0 such that [0, o),

(110) JIo *(]AlsO)--- O(2).
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6. Examples. We present here three sets of numerical results, one for perfect state mea-
surements and two for noisy state measurements. As stressed earlier, the quantities 0s and Ols
play important roles in the computation of approximate values for 0* (e) and 0’ (e).

Example 1. Consider the system and cost function

(llla) dx2dXl 11 -11 Xlx2 dt + udt + dwt,

(lllb) Jo lim In E exp (2x + 2xlx2 + x + u’u)dt
,-+ Ots

By using a particular search algorithm, we can compute the quantity

1.8892.

We next compute the maximum allowable 0-levels for the full-order system (111) for
different fixed values of e.

0*(e) 1.5616 1.9842 1;9274 i.9019 1.8930 1.8903

.1 o., 1 o.o. I.o.ool I..O.OOO!.o.ooool
Note that as e --+ 0, 0* (e) --+ 0.

Now, we choose 0 1.6 < 0 and design the suboptimal controllers for the system based
on this value of 0:

/Zs*(Xl -1.7633xl, /Z*(Xlc X2) -3.3249Xl 0.61803x.

Then, we apply these controllers,/x** and/x, to system (111) and obtain the corresponding
performance levels J and Jc, respectively. These values are tabulated below along with the
optimal cost levels, for different values of e:

’ o., o.o, ..1 o.ool.. o.oool o.ooool

J*() oo 3.0434 2.1560 1.9818 1.9350 1.9209
Jc() ec oe 2.1638 1.9828 1.9351 1.9209
Js() cx cxz cx 2.2150 2.1366 2.1151

We also compute the cost level at e 0,

J* (0) Jc (0) 1.9146, J (0) 2.1056,

and observe that the composite controller asymptotically achieves the optimal performance
level as --+ 0; however, the slow controller achieves only a suboptimal, but finite perfor-
mance level asymptotically--all this being consistent with the result of Theorem 1. Also, the
composite controller appears to be more robust than the slow one with respect to changes in
the value of .

Example 2. Consider the setup

(112a) 6.dx2 -11 Xix2 dt + u dt + dwt,
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dy2 2 x2 0 V dvt,

(112c) Jlo lim 2 ln{E{expI0 f0tsoo Otf
(2x2 + 2xlx2 + x + u’u) dt

The maximum allowable 0-level for the slow subsystem is

Ois 1.4212.

We can also compute the maximum allowable 0-level, 0 (6), for this system for different
values of 6:

1.4133 l.,.4,89. I 1..420.4 1.4209 11.4211
0 001 10.4 10-5 10-6 10-7

Note again that as 6 ---> 0, 0’ (6) --+ 01s.
Now, we choose 0 1 < Ois, and design the slow and composite controllers under the

corresponding cost functions

where

/z* ^c 0.61803./z -, c -x

d2 -5.6833: dt+ 0.44721

[ d2sC ] [ -5"6833

6d2 -3.0902V/

+ [ 0.44721

L 0

dyl + 22Ssdt ]0’84721/v/- dy2 /42Ssdt

2"0944/drg xs dt
-3.4721 :

0.84721/v/- ] [ dyl + 22Csdt 10.61803 dy2 + 42c dt

Then, we apply/z* and/Zc to system (112) and obtain the corresponding performance levelsis

Jls and Jlc. They are tabulated below for different values of 6, along with the corresponding
optimal cost levels.

4 5 6 7[,,,o.ooa ao, I, ao-,,I  o-1
..J/*(6) 3.9236 3.7409 3.6873 3.6707 3.6655
JIc(6) oo oo 3.6921 3.6710 3.6655
Jis(6) zx3 3.9147 3.7691 3.7361 3.7390

We can also compute the optimal cost level at 6 0,

J[(O) Jrc(O) 3.6631, Jis(O) 3.7361.

We see that the composite controller asymptotically achieves the optimal performance level as
6 0. The slow controller, on the other hand, achieves a suboptimal but finite performance
level asymptotically, which is again consistent with the statement of Theorem 4. We also note
that in this case the composite controller is more sensitive than the slow one to changes in the
value of 6. A possible explanation for this behavior is the following: since the quantity Jl (0)
is very close to Jlc(O), this means there is little for the fast controller to do to improve the
performance of the overall system. Furthermore, since the fast controller is an LQG design
for the fast subsystem, the closed-loop fast subsystem under such a controller may not exhibit
better H performance than the open-loop fast subsystem.
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Example 3. Consider the following system and cost function:

(113a) dx2dXl ,-2 -11 x2Xl dt + u dt + 2/- dwt,

(l13b) [ dyl ] [ ][Xl ]dt+[ 0 ]dy: 2r 2 x2 0 dvt,

(113c) Jxo lim
2

In E exp (3x +2xlx +2x + u’u)dt)
t Otf

The maximum allowable P-level for the slow subsystem is

0xs 6.3756.

We can also compute the maximum allowable 0-level, 0 (e), for this system, for different
values of e:

0;() 6.8401 6.8836 16.5390 6.4289 [6.39.. ......1 .0:.0!..I. 0..:.00.1.5 }.. 10--4. l.’. 1025 l. 10-(

Note again that as { ---> 0, 0’ ({) --> 0s.
Now, we choose 0 5 < Os, and design the slow and composite controllers under the

corresponding cost functions

IX -0.87591., lX*ic -0.87591 0.73205,
where

d} =-5.5564: dt+ [0.010525 0.24449//-g ][ dy1+0.875912 dt,]dy2 + 1.7518 dt

d.s -5.5564 0.35796// x dtd -23.191,v/ -4.8552

[0.010525 0.24449/4c][dy+O.87591Csdt]+ 0 1.5616 dy2 + 1.7518J dt

Then, we apply IXs and IX*Ic to system (113) and obtain the corresponding performance levels
JIs and Jlc. They are tabulated below for different values of e, along with the corresponding
optimal cost levels.,,, ,1, 0.o, 0.00, 1

J’(.e) 4.6326 4.0662 3.9404 3.9210 3.9157
Jlc(2) cK 4.1528 3.9408 3.9210 3.9157
Jls(6) o cx 4.6194 4.5808 4.5710

We can also compute the cost level at 0,

J[ (0) Jlc(O) 3.9134, JI (0) 4.5668.

Again the composite controller asymptotically achieves the optimal performance level as e --+
0, and the slow controller achieves a suboptimal but finite performance level asymptotically. In
contradistinction with what was observed in Example 2, however, here the composite controller
is less sensitive to changes in the value of e than the slow one.
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7. Conclusion. In this paper, we have presented a model reduction technique for the
LEQG problem for linear singularly perturbed systems under perfect and imperfect state
measurements. We have developed a time-scale decomposition procedure that breaks the full-
order problem into appropriate slow and fast lower-order subproblems, the optimal solutions
of which yield slow and fast controllers. When combined in an appropriate way, these lead to
a composite controller under which the optimal performance level for the full-order system is
achieved asymptotically as the singular perturbation parameter --+ 0. It has also been shown
that when the fast subsystem is open-loop stable, the slow controller can achieve asymptotically
some finite (but not optimal) performance level whenever the full-order problem admits a
solution. In this case there is a clear positive gap between the asymptotic performance level
a slow controller can achieve and the asymptotic performance level achieved by a full-order
optimal controller, and the paper has provided a clear characterization of this performance
loss. This indicates that there is a definite tradeoffbetween controller simplicity (due to model
reduction) and loss of performance. In a large-deviations context, i.e., when the intensity
of the noise in the system dynamics goes to zero, however, the slow controller can achieve
asymptotically the performance level for the full-order system, provided that the fast subsystem
is open-loop stable. Counterparts of these results in the finite-horizon case exist, and can be
found in the internal report 13].

To obtain the optimal solution to the slow subsystem arrived at as a result of model
reduction, it has turned out that one needs to develop a theory for the general LEQG problem
with general cost structure (with cross terms between the state and control) and correlation
between system and measurement noises. Since the LEQG problem has not been solved in the
literature in such a full generalily, we have also provided in the paper (4) a clean and complete
solution to this problem in both finite and infinite horizons via a different line from that of
[3], which had addressed the finite-horizon case only, and under some restrictive assumptions.
The solution obtained in 4 is precisely the central solution of the corresponding H-optimal
control problem [2], and the line of proof there would be useful even for the standard LEQG
problem (i.e., without the cross term and with uncorrelated system and measurement noises)
since it requires the least restrictive assumptions (leading to both necessary and sufficient
conditions).

One possible nontrivial extension of the results of this paper would be the derivation of
higher-order correction terms. The composite controller constructed in the paper achieves a
performance level that is O (/-) close to the optimal one. This, however, may not be sufficient
in some applications. Hence, high-order correction terms for the composite controller are of
some interest. Another extension would be to the multiple time-scale problems, so as to
obtain the counterparts of 16], which deals with the H-optimal control problem. One other
challenging extension would be to the nonlinear case, under both regular [17] and singular
18] perturbations.
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ANALYSIS AND OPTIMIZATION OF FEEDBACK CONTROL ALGORITHMS
FOR DATA TRANSFERS IN HIGH-SPEED NETWORKS*

RAUF IZMAILOVt

Abstract. Two linear feedback control algorithms for handling and preventing congestion in high-speed networks
are proposed and analyzed. The fluid approximation model is described with a continuous-time system of delay-
differential equations. The algorithms are asymptotically stable, and the transient processes are nonoscillatory. The
control parameters are locally optimal (optimality is based on the asymptotic rate of convergence). The results of
numerical experiments suggest that these parameters are globally optimal as well. The dependence of the quality
of service on the duration of the control intervals is analyzed, and the performance of algorithms in a nonstationary
environment is addressed.
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1. Introduction. Asynchronous transfer mode (ATM) transport technology [7] is gener-
ally considered as a basis for future integrated telecommunications service. Since there would
be an inevitable interaction and interference among users in the communication network, an
increasing amount of research has been devoted to different control issues (see [1], [18], [19],
[22], [23], [26] and their references). One of the basic problems arising here is the presence
of propagation delays which pose a challenge for stability, since speed of data transmission in
modern high-speed networks keeps increasing.

In most of the proposed algorithms and models (see [4], [5], [6], [11], [17], [25], and
[27] and their references) control decisions are based on a single number (the deviation of
the state of the system from the target value) or a single bit (the sign of such deviation).
Analysis and numerical simulations [4], [10], [12], [9], [24] demonstrated that the stability of
such algorithms in the presence of propagation delays has the form of bounded oscillations
(occurring even in the deterministic setting).

The single number limitation on the number of control parameters appears to be the key
obstacle to the elimination of these undesirable oscillations. As proved in 10], a large class
of feedback algorithms based on a single number always has an unstable equilibrium. Thus
it seems natural to address the question of what additional parameters should be considered
and how to translate them into control algorithms. However, this question has begun to be
addressed only recently [3], [8], [15], [16].

We start this paper with a description of a simple fluid flow model describing a single
ATM connection. For this model we consider two feedback control algorithms proposed in the
previous report 15]: the first algorithm uses two control parameters, whereas the second one
uses three control parameters. The control decision is based on the system states separated
with constant control time intervals. The closed-loop system is described by differential-
difference equations (see [2] and [20] and their references). We formulate results about
stability and local optimality of the algorithms (all proofs are in the appendix). In the next
section we analyze the performance of the algorithms: global optimality, asymptotic rates of
convergence, optimal duration of the control intervals, transient regimes, and performance in
nonstationary conditions. In particular, we demonstrate that faster asymptotic convergence
(which could be obtained by decreasing the duration of the control intervals) may lead to
worse transient processes and, in the nonstationary case, to worse frequency response. In the

*Received by the editors November 4, 1994; accepted for publication (in revised form) June 29, 1995.
tNEC USA, Inc., C&C Research Laboratories, 4 Independence Way, Princeton, NJ 08540 (rauf@ccrl.nj.

nec.com).
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z(O x(t) x.

FIG. 1. Single connection.

conclusion we present a brief summary of results, recommendations on a proper choice of
algorithm, and an outline of future directions of research.

2. Basic model. Consider a single connection (Figure 1) between a source controlled by
an access regulator and a distant node served with a constant transmission capacity/z. The
traffic source is monitored and regulated by the access regulator, and the distant bottleneck
node sends back the information on its congestion status, defined as the difference between
the current buffer contents and the target value (a fixed threshold) .

In order to describe large data transfers and isolate the issue of control mechanism from
other considerations, assume (as in 10]) that there is an infinite amount of traffic to be sent
to the remote node. In order to capture the small size of ATM packets as well as high rates
of the network, we approximate the traffic by fluid flows. This assumption is not restrictive,
and the basic results of our analysis could be extended to the discrete version of the model.
The access regulator controls the current input rate Z(t), basing its decisions on the buffer
contents X (t) of the distant node, which is continually monitored by the source. A target value
X of the remote buffer contents is fixed: if X (t) > X, the node is considered congested. The
propagation delays from the source to the bottleneck and back are rl and r2, which add up
to the round-trip delay r rl / r2. The control objective is to adapt Z(t) to/z dynamically
while keeping X (t) at an acceptable level.

In the next section we present two linear feedback algorithms. Each algorithm controls
the source rate Z(t) and varies it in proportion (determined by two or three gain parameters)
to the differences between the buffer contents X (t) and the target value .

3. Control algorithms. The first algorithm takes into account the deviations ofX (t) from
the target value X during two consecutive time slots, separated by the control time interval
r. (In [15] the control interval r was equal to the round-trip delay r.) These deviations are
weighted with linear gain parameters a and b, so in a neighborhood of the threshold X the
system evolution is described by

X’(t)
Z’(t)

Z(t rl) -/,
-a(X(t z2) X) b(X(t r2 r) X).

We take the derivative of the first equation here and substitute Y(t) X (t) X to obtain the
delay-differential equation in the normalized time scale T t/r (where A ar2, B br2,
R r/z’):

Y"(T) + AY(T 1) + BY(T R) O.

Its characteristic equation is

f(z) z2e(l+)z + Aelcz + B 0,

which has an infinite number of roots )i. The location of these roots on the complex plane
determines [2, Thm. 6.7] the asymptotic behavior of Y(T). In particular, the degree of stability
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) sup/{)i guarantees the asymptotic convergence of Y(T) with the exponential rate ):

IY(T)I < Ke-zT for some K [20, Chap. 3, Thm. 2.1]. The location of these roots on the
complex plane determines [2] the behavior of Y (t) around the equilibrium point 0.

THEOREM 1. Denote

/R2 + 2R + 2- R 2
V

I+R
+ R /2 + 2R + R2

A* -2exp(V)
R
1/2 + 2R + R2

B* 2exp(V(1 /R))
R(1 q- R)2

Then V is the degree ofstability off(z), and any small deviation ofA and Bfrom A* and B*
decreases the degree ofstability off(z).

It may seem surprising that B*(R) < 0 since it increases the rate Z(t) when the buffer
contents X (t rz r) exceeds X and vice versa. One may view this effect as a counterbalance
dampening the oscillations generated by the regular feedback with the positive coefficient
A*(R).

The second algorithm takes into account the deviations of X (t) from the target value X
during two consecutive time slots, separated by the time interval r/2. These deviations are
weighted with linear gain parameters a, b, and c, so in a neighborhood of the threshold X the
system evolution is described by

X’(t) =Z(t-r)-#,
Z’(t) -a(X(t r2) X) b(X(t 152 r/2) X) c(X(t r2 r) X).

We take the derivative of the first equation here and substitute Y(t) X(t) X to obtain the
delay-differential equation in the normalized time scale T t/r (where A a’2, B br2,
C c’g 2, R r/r):

Y"(T) + AY(T 1) + BY(T 1 R/2) + CY(T 1 R) O.

its characteristic equation is

f (z) z2eR+lz + Aelz + Be + C O,

which has an infinite number ofroots (eigenvalues). The location ofthese roots on the complex
plane determines [2] the behavior of Y(t) around the equilibrium point 0.

THEOREM 2. Denote

-6- 6R R2 + /12 + 24R + 18R2 + 6R + g4

W=
2+3R+R2

2ew (-2- 3R R2-+ /12 + 24R + 18R2-+ 6R3+ R4)
A* \ /

R2

+ + + + +
B* " /

(2 -+- R)2R2

2ew+"’ (-2- R + /12 + 24R + 18R2+ 6R3+ R4)
C* !

RZ(1 + R)2

Then W is the degree of stability of f (z), and any small deviation of A, B, and C from A*,
B*, and C* decreases the degree ofstability of f (z).
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sup Y(t)l, 250<t<300

B

A

FIG. 2. Numerical optimization.

4. Performance analysis. Since the principal roots V and W for both algorithms are
negative and real, the choice of damping parameters A A*, B B*, and C C* sug-
gested in the theorems of the previous section guarantees the exponential and nonoscillatory
convergence of algorithms.

The structure of the proof also demonstrates the robustness of algorithms to small un-
certainties in the knowledge of the round-trip delay. In other words, if the algorithms are
constructed on the assumption that the round-trip delay is r that whereas the actual round-trip
delay is r* : r, then the first algorithm has the degree of stability V* (the second algorithm the
has degree of stability W*), where V* -+ V as r* -- r (for the second algorithm, W* --+ W
as r* --+ r). The exponential stability of the control algorithms means the discrete versions
of the algorithms are also stable.

The theorems also state the control coefficients are locally optimal. Extensive numerical
calculations have been carried out, and the results obtained so far suggest the gain parameters
described in Theorems and 2 are globally optimal as well. In particular, to analyze the global
optimality of A= A* and B B* in Theorem 1, the number S sup250<r<300 [Y(T)I has
been calculated for each pair A and B in the square lattices A* -6/R < A < A* +6/R, B*
6/R < B < B*+6/Rof3OOx3OOpointswiththeinitialconditionY(T)= T for0 < T < 1.
The data were used to plot d log S as a function of A and B for R 1, 0.1, 0.01. For
all R considered, the function d has the single maximum (a typical picture for R is
shown in Figure 2) corresponding to the single optimal point A A*, B B*. According
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FIG. 3. Transient processes for the first algorithm (upper graph) andfor the second algorithm (lower graph)
under impulse initial disturbance.

to the definition of d, the pair (A*, B*) minimizes the sum S, which translates into the fastest
convergence of Y(T) to zero. Similar results were obtained for other target values S with
different initial conditions and different time boundaries T. All this suggests that the pair
(A*, B*) is indeed the global optimum for all R. Similar numerical calculations suggest that
the triple (A*, B*, C*) is the global optimum for any R.

The formulas of theorems show that the shorter the control time interval R, the better the
asymptotic performance (degree of stability). If R -- 0, the asymptotic rate of convergence V
of the first algorithm tends to 2 -0.5857... and the asymptotic rate of convergence
W of the second algorithm tends to ,v/ 3 -1.26795 Small control time intervals
R require large gain parameters. As the control interval R decreases, the absolute values of
gain parameters increase as R-1 for the first algorithm and as R-2 for the second one. The
different behavior of gain parameters for the control algorithms leads to different transient
performance. To illustrate it, consider the transient reaction of two algorithms on a unit jump
(delta-function) disturbance. As shown in Figure 3, the first algorithm "absorbs" the jump for
all values of control time intervals R uniformly, whereas the second algorithm exhibits sharp
deterioration of the transient behavior (short and large peaks) for small R.

Suppose now the server rate/z is not constant: /x =/x(t). Then [2] the function Y(T)
tends (as T --+ c) to the stabilized solution

(1)
T

y(T) h(T z)tx(z) dz,

where

h(s)
s2 + Ae-s + Be-s(l+R)"
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FIG. 4. Frequency responses.

Similarly, the stabilized reaction for the second algorithm has the form (1) with the function

h(s)
s2 + Ae + Be-"(R) + Ce-.,’(+R)

These integral representations give an opportunity to analyze the stabilized reaction of the
proposed algorithms on variable (deterministic or random) server rate/(t).

Since the server rate #(T) is bounded and the model is linear, it is helpful to analyze the
reaction on the harmonically changing server rate. If/(T) eir, then the reaction Y(T)
tends to h(iw)eiwr. The absolute value Ih(iw)l describes the ratio of the oscillations of the
buffer occupancy versus the server rate oscillations. Figure 4 displays Ih (i w)l for 0 < w < 20
and 0 < R < for both algorithms.

All these observations indicate that the first algorithm has certain advantages over the
second one. Although in the case of the fixed server rate, three control parameters lead to a
better asymptotic convergence (the more control information is available, the better asymp-
totic properties could be achieved), the two-parameter scheme gives more robust transient
performance as well as better performance in a nonstationary environment: since the second
algorithm has large gain coefficients of order R-2, it underperforms the first algorithm with
smaller gain coefficients of order R- when the conditions change (transients and/or chang-
ing server rate). Similar effects (where large gain parameters, while being beneficial for the
asymptotic behavior, lead to unsatisfactory transient regimes) have been observed in other
control systems as well (see, for example, 14], [28], and their references).
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FIG. 5. Dynamic access node.

We conclude our analysis by noting that both control algorithms are applicable to the case
where multiple connections share the bottleneck node (Figure 5) and the propagation delays
are the same for each connection. For example, the first algorithm could be modified to

(2)

X’(t) Z(t r) -/z,

Z’(t) -(a/n)(X(t r2) X) (b/n)(X(t 152 r) X),

Z’n(t) -(a/n)(X(t 152) X) (b/n)(X(t 15: r) X).

Denoting Z (t) i Zi (t), we can describe the behavior of algorithm (2) by the same formulas
as in the single connection case. The stability properties of the new algorithm (2) are identical
to those obtained for single connection case. The common asymptotic rate of convergence for
all connections is determined by the principal root of the characteristic equation associated
with the global system. The same generalization is applicable to the second algorithm.

5. Conclusion. We analyzed two linear feedback control algorithms and their conver-
gence and optimality. The problems of the optimal choice of control intervals were addressed.
We also analyzed the robustness of the algorithms for nonstationary server rate and perfor-
mance of transient regimes. The results obtained suggest that the two-control parameter
scheme is probably better than the three-parameter one: although it has slightly worse asymp-
totic properties, it has much better transient response as well as a better rate of convergence
to changing server rate. It would be important to continue the analysis of these issues. In par-
ticular, the next challenging question to be addressed is to extend these algorithms to control
of traffic mixture with different propagation delays.

6. Appendix.

6.1. ProofofTheorem 1. Since f(V) f’(V) f"(V) -0for A A* and B B*,
then V is a triple root of f (z). To prove that all other roots have lesser real parts than V, the
following three steps are accomplished. First we prove that there are exactly three roots in the
domain Q {z Izl _< 2rr/(1 + R)}. Next we prove that there are no roots of f(z) in the
domain P {z ,iz >-0.6, Izl >_ 27r/(1 + R)}. Since the triple root V belongs to Q, that
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would mean the absence of other roots of f (z) in Q. The final step is to combine two previous
steps and to conclude that there are no zeros (but V) in the domain R {z Izl >_ -0.6}.

The first step uses theory of rotation of planar vector fields [21 ]. Consider the rotation of
the vector field (f(z), f(z)) on the boundaries of rectangular domains

QN {z Izl _< 2rr/(1 + R), Izl _< N}, N -+

As N --+ oo, e(l+l)zza becomes the dominant member in f(z) on the right vertical boundary
of QN and, as such, determines the rotation of (92f(z), f(z)) on the segment (x N, y
[-2zr/(1 + R), 2rr/(1 + R)]). The rotation ofe(l+t)Zza on this segment tends (as N oo) to
the rotation of e(l+l)z, which is 4zr. On the left vertical boundary, -B is the dominant member,
so the rotation tends to zero as N --+ oo. On the upper boundary (where y 27r/(1 + R))
the function g (x) f (x + iy) is equal to

(e(l+R)X(x2- 47rZ ) ,( ,2R’] + B)(1 + R)2 cos\ + R ]

(4rex e(+R)X+Asin( 2rcR ) )+i
I+R I+R eRX

The rotation on the upper boundary of QN tends to 7r as N -+ oo" in order to prove it, it
is sufficient to show that g(x) < 0 for x _< 0 (since g(x) > 0 for x >_ 0 and the quarter
{92g(x), g(x) is not visited by the point g(x), which would imply that the rotation is defined
correctly (g(x) # 0) and is equal to zr).

To prove that Ng(x) < 0 for x < 0, we consider two cases" case or, 1/3 < R < 1; case
/3,0< R < 1/3.

Consider case or. If -2zr/(1 + R) _< x < 0, then all three components of 91g(x)
are negative. Let-oo < x < -27r/(1 + R). Then exp((1 + R)x)(x2- 4n2/(1 + R)2) <
exp((1 + R)x)x2, and the latter function has its maximum at x -2/(1 / R) at the considered
interval. The first member of 9]g(x) is less than e-Z4zrz/(1 + R)2 < 0.042 (since R > 1/3).
The second member of 91g(x) is negative, and the third member is less than -0.28 (since
R < 1). Hence 91g(x) is negative.

Consider case/3 and its three subcases" case (i), -2zr/(1 + R) < x < -zr/(1 + R); case
(ii), -oo < x < -2re/(1 + R); case (iii),-rc/R <_ x < O.

In case (i) the first member in g(x) is negative, whereas the sum of other two members
is less than A exp(-zrR/(1 + R))cos(2rcR/(1 + R)) + B, which is less than -0.98 on

1/3 _< R < 1. In case (ii) the first member in Ytg(x) is less than 0.041, whereas the sum of
other two members is less than A exp(-2rR/(1 + R)) cos(2rR/(1 + R)) + B, which is less
than -0.919 on 1/3 < R < 1. In case (iii) the sum of the second and third members is less
than A cos(2zrR/(1 + R)) + B, which is less than -0.919 on 1/3 < R < 1, whereas the first
member is less than e- (37r2/(1 + R)2) < -0.72.

The same analysis is applicable for the lower boundary (y zr): the rotation there tends
to

Therefore, the rotation of (f(z), f(z)) on the boundaries of QN is 6r for sufficiently
large N. Hence f (z) has three zeros (counted with their multiplicity) inside Q.

The second step is proven as follows. For 1/3 < R < 1 and x > -0.6, y > 2zr/(1 + R)
we have

lel+lZza leRZlleZllz21 >_ 5.416leRZ I, IAeZ <_ 1.213leZ I.
Hence le(+l)zz2 / AeRZ >_ (5.41 1.22)leZl > 4.191eZ > 3 > IB[. Assume further that
0 < R < 1/3. Since IARI < 1/2 and IBRI < 1/2 for0 < R < 1/3, then

0.7 0.7 0.7
leZ 0.7e0.6 < 2 lezlIAez / BI <_ IAelzl / B <_ leIzl--- / -- < lelCZl- / I---
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on the domain {x > -0.6, y > re (The last relations follow from the inequality leRz[ >
e-0"6.) On the other hand, le(R+l)zz21 leRZllz2lleZ > e-’6leRZlre2/R2 >_ [eRZl5.5/R2,
which exceeds the previous expression for R < 1. This means there are no roots in the
domain {x > -0.6, y > re/R}.

Consider now the domainD {N > x > -0.6, 2re/(1 +R) < y > re/R}. It is
sufficient to prove that the rotation of f on the boundaries is the same as the rotation of the
function e(R+l)Zz2 (which has no zeros inside D).

Consider all four boundaries of D separately. On the upper boundary [e(R+l)zz2l >
IAeRz / BI since the right part is more than [elz]o.44re2/R2, whereas the left part is less than
leRZl. On the right boundary le(R+l)Zz2[ >> IAeRz + B[ for sufficiently large N. On the left
boundary le(R+l)Zz2[ >_ ly[ 2, which is larger than

IAeRz + B[ < 1.5 max{B + A cos Ry, A sin Ry}

< 1.5 max{0.3 / 0.2Ry2, 0.5y} _< 0.45 / 0.3y2

forly[ > 2re/(l+R) andR < 1/3. (Since (B + A)R --+ OasR--+ 0, thenh(R,y)
B + AeRx cos(Ry) is less than 0.242 + 0.2y2 (for R < 1/3 and y < re/R).) Finally, on
the lower boundary for x -0.6 the same analysis as for the left boundary shows that
le(R+l)Zz2l > IAeRz / BI; for x N this follows from the analysis of the right boundary.
Since (see the first step of the proof) both (f, f) and (fltg, g), where

g(x)-- (e(l+R)x(x2- 4re2 )) (4rex e(l+R)x)(1 + R)2 +i
I+R

do not belong to the quarter {9Z > 0, Z < 0}, a linear homotopy exists between f and g.
Therefore, the final step is completed, and V is the degree of stability of f (z).

To prove the local optimality of A* and B*, denote A A* / a, B B* / fl, and
consider the Taylor series f (z) Ei fi(z- V)i"

fo=f +oteRv, fl=otRegv, f2=

otR3eRv /2 + 2R + Rel+lv
f3 /

6 3

ot R2eRv

otR4elv (1 + R + (2 + 3R)/2 + 2R + R2)e+l)v
+

24 12

Then the function g(s) + (s)s4 (go + (S))$4 / gl $3 / g2$2 / g3s / g4 has the same roots
as f(z V), where gi f4-i (i 0 4) and 6(s) o(1).

Lete < 0.001. Ifot =/3 0, thenmaxv I(s)l < e/2, min0v Ig(s)/s4[ > 2e, min(g0+
3(s)) > go for sufficiently small e0, where OU is the boundary of U {z Izl _< 0},
Then for sufficiently small el < e (i) max I(s)l e2 < e, (ii) min0 Ig(s)/s41 > e, (iii)
min (g0 + 3(s)) > 0 for any Iotl, I/l < , Parts (i) and (ii) imply that g(s) and g(s) + 3(s)s4

have the same rotation on 3U and the same number of roots inside U for any I1, I1 < .
Part (ii) implies that any polynomial Ga(s) g(s) + 3s4 (where I1 < 2) has three roots in U
and a negative root outside of U for any Io1, I1 < , Part (iii) implies Ga(s) has no roots in
the right half-plane (RHP) iff all its Hurwitz determinants A1 gl, A2 glgz (go / )g3,
A3 glg2g3 (go + 6)g g4g, A4 gaA3 are positive (Routh-Hurwitz criterion, [13,
Chap. XV, Thm. 4]).

If g4 0, then one of the roots of G(s) is zero and one of the Hurwitz determinants

A2 glg2--(go+)g3, A3 z293 ofthe polynomial G(s)/s is negative for Il, Icl, Il e,
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which means that G(s) has a root in the RHP. If g4 7 0, then Ga(s) has a root in the RHP
both for g4 < 0 (since A4 g4A3) and for g4 > 0 (since

ot2R2e2RV
A3 --g4g2 --1-

24

(--24 + otR4eRv 2e(l+R)v (1 + R + (2 + R)V/2 + 2R + R2)) < 0

for 13l, Iotl, Ifll < e < 0.001).
Fix ot and/3. Since the sign of any of the Hurwitz determinants of the functions G(s)

does not depend on 3 for all 131 < e (A does not depend on 3, the sign of

tReRV ( R4eRV_2e(+mV(l+R+(2+R)v/2+2R+R2))A2
24

--24 + ot

does not depend on 3 for 131 < e, A3 < 0 for I1, Il, I/1 < e, and the sign of A4 g4A3
does not depend on 8 since g4 does not depend on 8), then [13, Chap. XV, Thm. 5] G(s) has
the same number of roots in the RHP for any 13l < e. As 3 changes from -e to e, the roots
of G(s) in the RHP form the set R (separated from the imaginary axis), and the rest of the
roots form the set L. The continuous homotopy g(s) + ?/(s)s4 (for ?’ G [0, 1]) preserves the
rotation on OU and continuously moves the roots of g(s) + 6(s)s4 to the roots of g(s). For any
?’ 6 [0, 1] the roots of g(s) in U belong to the set R U L (ifr 6 U is aroot of g(s) + ,(s)s4,
then it is also a root of G,,(r)(S)" since 3(s) is a regular function, I(r)] < e). Since g(s) has
a root r 6 R for g 0, then the homotopic prototype of r for , 1 also belongs to R. This
completes the proof of Theorem 1.

II.2. Proof of Theorem 2. The proof of Theorem 2 closely follows the proof of
Theorem 1.

Since f(W) if(W) f"(W) f’"(W) 0 for A A*, B B* and C C*,
then W is a quadruple root of f (z). To prove that all other roots have lesser real parts than V,
the following three steps are accomplished. First, we prove that there are exactly four roots
in the domain Q {z Iz] < 2re/(1 + R)}. Next, we prove that there are no roots of
f(z) in the domain P {z 91z >_ -1.268, Iz[ >_ 2rr/(1 + R)}. Since the quadruple
root W belongs to Q, that would mean the absence of other zeros in Q. The final step is to
combine two previous steps and to conclude that there are no zeros (but W) in the domain
R {z Itzl >_-1.268}.

The first step uses theory of rotation of planar vector fields [21]. We will analyze the
rotation of the vector field (9tf (z), f(z)) on the boundaries of rectangular domains

QN {z 13z] < 2zr/(1 + R), Izl NI, N cx.

Consider the right vertical boundary of QN. For N -- cx the member e(l+R)zz2 becomes
the dominant member in f(z) and, as such, determines the rotation of (9if(z), f(z)) on the
segment (x N, y 6 [-2yr/(1 + R), 27r/(1 + R)]). The rotation ofe(l+n)Zz2 on this segment
tends (as N -- cx)) to the rotation of e(+n)z, which is 47r. On the left vertical boundary, -B
is the dominant member, so the rotation tends to zero as N -- cx. On the upper boundary
(where y _= 2Jr/(1 + R)) the function f(x + iy) g (x) + g2(x) has the form

gl(X)=C+e(+n)x( -47r2(1+ ) x (Yr?R)i, ( 2yrR)1+ Rt? + x2 + Be-r cos + Aetcx cos

4e(+lOxyrxl+ R X()lyrR+l. ( 2yrR1+ R/
g2(x) + Be-r sin :.;. + Aelx sin
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The rotation tends to 2zr as N -- cx- to prove it, it is sufficient to show that (i) g(x) < 0
for x < -1; (ii) g(x) > 0 for x > 1; (iii) 9g(x) < 0 for -1 < x < 1. That will imply that
g(x) 0 for all x (and the rotation is defined correctly) and the rotation is indeed equal to 2zr
(given the behavior of gl (x) + igz(x) on infinity).

The case (i) is verified by direct analysis.
Consider case (ii). If R < 1/3, then the statement is verified by direct analysis. Otherwise,

since ]A], IBI _< 7 for R > 1/3, we then have that the first member is larger than 17eIcx and
the third member is positive, whereas the second member is less than 15elx.

In case (iii) e(l+R)x(x2 47r2/(1 q-- R)2) _< -1.2 for -1 < x < 1. If R > 1/3, then the
last member in

Rx ( rcR ) AeRX (2rrR)q=C+Be-cos
I+R + cos

l+R/I

is negative, and it is sufficient to prove that Q C + BeRx/2 cos(:rr R/(1 + R)) < 1, which
is verified directly. In the same way we verify that q is negative for R < 1/3.

The same analysis is applicable for the lower boundary (y _= zr): the rotation there tends
to r.

Therefore, the rotation of (9f(z), f(z)) on the boundaries of QN is 8zr for sufficiently
large N. Hence f(z) has four zeros (counted with their multiplicity) inside Q. This completes
the first step.

The second step is proven as follows. For0 < R < the analysis shows that AR2 < 1.61,
BR2 < 1.8, CR2 < 0.82. Hence

1.61 e- 1.8 0.82
IAeRz + Be- + CI < IAeZl + IBe + ICI _< leICzl--- +1 I- + R---T-

on the domain {x >_ -1.268, y > 2r/R}. This expression is less than lelCzl8/R2 (since
leZl > e-l’3). On the other hand, lel+lZz21 > e-l’3(47rZ/RZ)lelz > ]elZl(lO/R), which
exceeds the previous expression for R < 1. This means there are no roots in the domain
{x >_ -1.268, y > 27r/R}.

Now consider the domain D1 {0 < x < N, 2zr/(1 + R) <_ y < 2zc/R}. Itis sufficient
to prove the rotation of f on the boundaries of D is the same as the rotation of e(R+)Zz2 (which
has no zeros inside D1).

Consider all four boundaries of D separately. On the upper boundary le(R+l)zz2l >

IAez + BeRz/2 + C[ as has been proven already, and the same is true for the right boundary
for sufficiently large N. On the left boundary the direct analysis of both Aex cos(Ry) +
Be1x/2 cos(Ry/2) + C and Aex sin(Ry) + Bex/2 sin(Ry/2) + C shows that these functions
are least 1.5 times less than the main member [e(R+l)zz21 ly[ 2. On the lower boundary we
use the already established (in the first step) existence of a homotopy between (9f, f) and
(9]g, g) on this boundary.

Consider now the domain 02 {-- 1.268 _< x < 0, 2zr/(1 + R) < y < 2r/R}. It
is sufficient to prove the rotation of f on the boundaries of D is the same as the rotation of
e(R+l)zz2 (which has no zeros inside D).

Consider all four boundaries of D2 separately. The upper boundary and the right boundary
are analyzed in the same way as for D1. On the left boundary the function IAelcz + BeRz/2 +
C]2 ]e(R+l)zz2]2 is negative for R < 1/2, which is verified directly. Let R > 1/2. Then
for 2rr/(1 + R) _< y < (8/3)zr/(1 + R) the imaginary parts of both Aez + Belz/2 + C and
elC+Zz are negative, which permits a linear homotopy between them. For 4zr/(1 + R)y >
(8/3)zr/(1 + R) we prove directly that [Aez + BeRz/2 + CI2 le(R+l)zz212 is negative, and
for y > 4zr/ (1 + R) we prove it by proving that the upper estimate of this difference, which is
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IAex BeRx/2 + C e(R+l)x (X2 -+- y2), is negative for 0 < R < 1. On the lower boundary
we use the already established (in the first step) existence of a homotopy between (Stf, f)
and (Slg, g) on this boundary. This proves the second statement of the theorem.

To prove the third statement ofthe theorem, denote A A* +a, B B* +b, C C* +c,
where la] < e, lb] < e, Ic] < e,e << 1. Consider the Taylor series of f(z) in the neighborhood
of W"

f(z) fo q- fl (z-- W) -k- f2(z W)2 -- f3(z W) -- f4(z- W)4
nt- f5(z W)5 -1 O(z W)6

Then the function

g(s) gos5 + gls
4 --[- g2$3 -1- g3$2 -!- g4s -t-- g5

has the same roots as f(z W), where

go ot -+- fl A- y nt- el -+- o(e), gl (5/R)ot -4- (lO/R)fl nt- e2, g2 (20/R2)a A- (80/R2)fl,
g3 (60/R3)ot -4- (480/R3)fl,
g4 (120/R4)ot + (1920/R4)fl, g5 (120/R5)ot + (3840/RS)fl + ?/,

and

ot eWR(RS/120)a, fl eWn/2(RS/3840)b, g c,

/ \
eW(I+R) 4 + 6R + 2R2 + (4 + 7R)/12 + 24R + 18R2 + 6R3 + e4)

240

eW(l+g)/12 -+- 24R -t- 18R2 + 6R -4- R4

24

The technique used in the proof of Theorem is applicable here as well, and we have to
prove only that all the Routh-Hurwitz determinants A1 A5 of the polynomial Ga(s)
g(s) + 8s5 cannot be positive for small Joel, Ifl], I?’l < e.

Let g5 0. Then one of the Hurwitz polynomials of Ga(s)/s (if g4 7 0) and G,(s)/s2

(if g4 0) is negative. Let g5 0. Since A5 g5A4, it is sufficient to prove that both g5 > 0
and A4 > 0 cannot hold simultaneously for small or, fl, ,, 8.

Consider the Hessian of A4. It has one negative eigenvalue, tending to --eW(l+R)h
x (28800R1)-, where h is equal to

3070080000-4- 9203328000R + 11381760000R2 + 7430400000R3 + 2772720000R4

+ 590256000R5 + 59112000R6 + 208Rl -4- l104R1 + 2272R12 + 2304R 13 + 1238R 14

+ 350R5 + 49R16

+ (472320000 + 944064000R + 589536000R2 + 117792000R + 32R
+ 104R1 + 100R 12 + 28R 13) x /1 + 24R + 18R2 + 6R + R4.

The other two zero eigenvalues define the two-dimensional invariant subspace M for the kernel
of the Hessian. Since g5 > 0 and

10/12 + 24R + 18R2 + 6R3 -4- R4 (192013 + ’R)
e4 (-4- 6R 2R2 + (3R -4)e12 + 24R -t- 18R2 + 6R + g4)

on M, then 1920/3 + ?,R5 < 0 on M. Since the restriction of A4 on M has the form
Z4 (1920/3 + ?,RS)g, where g is analytical on M, then it is sufficient to prove that g is
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positive on M. The Hessian of g has one positive eigenvalue, equal to eW(l+n)gl/g2, where

gl 4146934579200 + 29659181875200R + 97501976985600R2 + 194586181632000R3

+ 262598757580800R4 + 252803933798400R5 + 178538876928000R6

+ 93651451084800R7 + 36470878617600R8 + 10381801881600R9

+ 2074990272768R + 265720094208R1 + 17063053824R 12

+ 39632640R3 + 60500352R4 + 64471296R5 + 49433920R6

+ 27682752R7 + 11348884R8 + 3362664R9 + 693152R2 + 90860R21 + 5929R22

+ (993735475200 + 5950734336000R + 15851814912000R2 + 24608489472000R
+ 24505461964800R4 + 16245389721600R5 + 7204036608000R6

+ 2086060032000R7 + 366206976000R8 + 30582374400R9

+ 119808R + 883200R + 2803200R2 + 5034240R3 + 5649792R14

+ 4125504R5 + 1976000R6 + 608480R7 + 112480R 18 + 9856R19)
/12 + 24R + 18R2 + 6R + R4,

g2 4320R(2368 + 4896R + 1248R2 3600R 2568R4 + 324R5 + 860R6

+ 342R7 + 54R8 + (960 + 240R 816R2 120R + 328R4 18R5 54R6 27R7)
/12 + 24R + 18R2 + 6R3 + R4,

while the second eigenvalue is zero. Restricting the function g on the one-dimensional sub-
space L, corresponding to the zero eigenvalue, we see that g is equal to F3RSp/p2,
where

p (2 + R)(1 + R + /12 + 24R + 18R + 6R - R4)
(4 + 6R + 2R2 + (4 + 7R)/12 + 24R + 18R2 + 6R3 + R4)2

(936 + 4224R + 7614R2 + 7008R + 3516R4 + 952R5 + 127R6

+ (144 + 406R + 357R2 + 95R3)/12 + 24R + 18R2 + 6R + R4)2,
P2 3072(4 + 6R + 2R2 + (4- 3R)/12 + 24R + 18R2 + 6R3 + R4)

(936 + 3408R + 5274R + 4368R3 + 2046R4

+ 530R5 + 68R6 + (144 + 338R + 255R2 + 61R3)/i2 + 24R + 18R + 6R3 + R4)3.

This expression is positive if 9/ < 0. The latter relation follows from the fact that (1920/3 +
yR5) < 0 on M (and on L as well) and from the representation of (1920/3 + yR) on L in
the form

z 3FR(2 + R) (52 + 70R + 8R2 28R 14R4 3R5

+ (8 + 7R + R2)/12 + 24R + 18R2 + 6R + R4),
4 5

z2 936 + 3408R + 5274R2 + 4368R3 + 2046R + 530R + 68R6

+(144 + 338R + 255R2 + 61R3)/12 + 24R + 18R2 + 6R3 + R4.

This proves the third statement of the theorem.
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HEAVY TRAFFIC ANALYSIS OF A CONTROLLED MULTICLASS QUEUEING
NETWORK VIA WEAK CONVERGENCE METHODS*

HAROLD J. KUSHNERt AND L. FELIPE MARTINS*

Abstract. The workload formulation due to Harrison and coworkers of multiclass queueing networks has been
fundamental to its analysis. Until recently, there was no actual theory which started with the physical queue and
showed that under heavy traffic conditions, the optimal costs could be approximated by those for an optimization
problem using the "limit" workload equations. Recently, this was done via viscosity solution methods by Martins,
Shreve, and Soner for one important class. For this same class of problems (and including the cases not treated there),
we use weak convergence methods to show that the sequence of optimal costs for the original network converges
to the optimal cost for the workload limit problem. The proof is simpler and allows weaker (and non-Markovian)
conditions. It uses current techniques in weak convergence analysis. It seems to be the first analysis of such multiclass
"workload" problems by weak convergence methods. The general structure of the development seems applicable to
the analysis of more complex systems.

Key words, controlled queues, weak convergence, heavy traffic analysis, multiclass queues
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1. Introduction. Multiclass queueing network problems where some processor is re-
quired to serve more than one class of customers have been the subject of much recent in-
terest. The choice of which customer to serve at any time (or whether the processor should
remain idle, even if customers are present in its queue) has not been easy. The basic papers
[2, 3, 10, 11 cast the problem in the "heavy traffic/workload" formulation, and various rules
were derived for the control policies in the limit. These papers developed key ideas and in-
tuition, but did not actually present a proof of the validity of the "approximating" workload
equations for getting the controls. In [8], a proof was provided in a heavy traffic context for
one important case.

The problem in [8], in what has been named the "criss-cross" system, has two processors.
Processor receives customers of two classes (named and 2) from outside the system.
Each class has its own interarrival time distribution and service time requirements. When
service is completed on a class customer, that customer leaves the system. When service is
completed on a class 2 customer, that customer goes on to processor 2 and is renamed a class
3 customer.

In [8], the interarrival and service times were exponentially distributed and mutually
independent so that a Markovian framework could be used. The analysis was of a heavy
traffic type, in that one studied the limit of a sequence of problems (indexed by N), for which
the difference between the mean rate of offered traffic and the service capacity went to zero
as N oo. The paper used viscosity solution methods for the convergence analysis for the
Bellman equation. They established the important fact that the sequence of optimal value
functions for the physical processes (indexed by N) converged to a function which solved
the Bellman equation in the viscosity solution sense, and in certain cases they exhibited the
control form which was optimal for the limit problem and nearly optimal for the physical
process for large N. A key technique was the conversion of the physical problem into the
so-called workload formulation of [2, 3, 10, 11 ]. The limit problem was actually a stochastic
singular control problem.
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Our approach is also of a heavy traffic type, but we use simple adaptations of the weak
convergence methods of the type used in [4, 6, 7, 9] for various control problems with a single
customer class. We work with the basic system of [8], also with the workload formulation,
and show that the limit of the optimal cost functions for the physical system is the optimal
cost for an appropriately defined limit of the workload equations for the physical systems. A
crucial innovation in the analysis here is that we introduce the workload formulation before
we pass to the limit.

The weak convergence methods are capable of treating a more general problem than that
in [8]. Markovian assumptions are not needed, and we treat all of the cases discussed in [8],
even the cases not solved there. We do not obtain the actual controls. However, the methods
of proof can be adapted to work on variations of the problem for the type of queue structure
at hand: for example, with correlated service or interarrival times, batch arrivals or services,
state dependencies in the service and arrival data, and appropriate nonlinear cost functions.
We believe that the proofs used here point the way toward possible proofs for more general
queues with more complex flow and class structure, and some specific remarks to that end are
at the end of the paper. Numerical methods of the Markov chain approximation type exist for
singular control problems more general than the limit workload problem obtained for our cases
[5, 6]. These can be of use on those problems where the actual solution cannot be obtained
analytically, and the proof technique shows how to adapt these for use on the actual physical
problem.

Heretofore, it was not clear how to use weak convergence methods on such multiclass
problems, particularly with the workload formulation. Even when one could write the equa-
tions for the "physical" workload processes, it was not clear how to show that this sequence was
tight, so that limits of weakly convergent subsequences could be chosen and worked with. It
had appeared that for such problems, where one could not easily get convergent subsequences
(in the weak convergence sense), that viscosity solutions were more natural. The relatively
simple technique used here shows a direction for using the powerful weak convergence meth-
ods in many such problems. Basically, we just use ideas that are well understood from other
problems in heavy traffic limits, and the proofs are relatively simple. An advantage of our
approach is that it does not require knowledge of the solution of the limit problem. Obtaining
this solution was the difficult part of the work in [8].

The problem is formulated, assumptions stated, and useful representations of the input
and output processes are given in 2. The dynamical equations for the queues and workloads
are developed in 3. Section 4 discusses the so-called workload cost transformation and states
the workload limit equations. The convergence theorem and proof are in 5.

2. Assumptions and problem formulation. The set of all interarrival and service in-
tervals are mutually independent, and the members of each class of arrival and service times
are identically distributed. This assumption is made to simplify the notation. (As is common
with weak convergence-type analyses, various forms of correlations can be introduced with-
out affecting the end result, except for the variances of the Wiener processes.) We consider a
sequence of problems indexed by N, which is a measure of the traffic intensity, and assume
that the intensity approaches unity as N -- x. The interarrival intervals for classes 1, 2
are denoted by c.N.

,,j, j 1, 2, and have mean values or/N. The service times for classes

1 2 3 are denoted by AN A Let the arrival ratei,j, J l, 2 and have mean values--N
for class 1, 2 be denoted by ,k/N [/N]- and the mean service rates by//N [-/N]

Suppose that there are positive i,/Zi S[1ch that ./N
_
i and/z/N --+/i. The basic heavy

traffic assumption is that for i/#i Pi, 1, 2, Pl -+" P2 1, and there are bi > 0 such that
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(2.2) lim ( )vq 1) -b2.

From (2.1) and (2.2) it follows that the difference between service capacity and mean total
input rate is positive for large N and is of order O (1//-) for each processor. We suppose
that the third absolute moments of the interarrival and service intervals are bounded uniformly
in N, j, i, and that for finite ri,A, ri,D

We refer to the queue of customers of class as queue i. Define Z/u (t) to be the number
of customers in queue at time Nt divided by v/-. Define A/N (t) (D/N (t), resp.) to be the
number of arrivals (and completed services, resp.) at queue by time Nt, divided by /-.
Finally, define

and

SiN’A (t) AiN(t)//

SiN’*) (t) D(t)/v/-.

In this "1/N" time scale, the input-output equation for queue is

(2.3) Z/N (t) Z/N (0) + A/N (t) D/N (t).

By the definition, N Sff’a (t) is the number of arrivals of class by time Nt. It can be
written as max{n j= oe.N. < Nt} For use below, define iN’A (t) byt,J

,j > Nt
j=l

Define ’(t) analogously. Then ,a (t) SN’ (t) is either zero or 1/N, and similarly for
D replacing A.

Controls. Let ci > 0, fi > 0. The cost function of interest in this paper is

U e-t Z ci ZiN (t)dt.
i=1

For the physical system, the only control problem concerns what to do at processor 1. There,
at any time we must choose between serving class or 2 or to not serve either. In the physical

Notice that, contrary to frequent practice in heavy traffic analysis, D/N (t) represents the actual number of class
customers on which service was completed by time t, not the number that would have been served if the processor

kept processing and turning out "fictitious" outputs during its idle times.
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system, it is obvious that processor 2 should always work when there is work for it to do, and
processor 1 should always work when ZN (t) > 0. However, to facilitate the analysis below,
it will be convenient to allow somewhat more general controls by adding the possibility of
shutting processor 2 off when there is work for it to do or of shutting processor 1 off when

Zff (t) > 0. Obviously, use of the extended controls will not reduce the cost.
We now define a model for the allocation of time (or for planned idling) which will

be convenient for the weak convergence analysis. The basic control is the amount of time
allocated for work on each class, and for idling. These will be simply nondecreasing and
nonanticipative processes which do not violate the physical feasibility constraint that we can
use only the time that is available.

We define the controls by starting with a particular prior allocation of service time and
then modifying that to get whatever policy is actually desired. The prior allocation is pi Nt
to the physical queue, 1, 2, and N to queue 3, in the real time interval [0, Nt]. This
allocation is equivalent to an allocation of pit, 1, 2, in the rescaled time used in (2.3).
The control for processor then involves the reallocation of time between queues 1 and 2,
as well as the choice of whether or not to actually use the finally allocated time or to let the
processor idle (even if customers are present). We define the reallocation of service time
between queues 1 and 2 by introducing a function G/u (.) such that /-GN (t) is the service
time in the real time interval [0, Nt] allocated originally to queue but which is reallocated
to queue j, j i, in that interval. All the allocations and reallocations are assumed to be
nonanticipative. Analogously, let /-L/v (t), 1, 2, 3, denote the total service time finally
allocated to queue in the real time interval [0, Nt] but not used because either queue was
empty or because the controlrequired that there be no service. In the latter case, the allocated
time cannot be allocated to another queue but remains unused.

Useful representations of the arrival and departure processes. Define the processes

,/N (n) 1 ’’
j=l

and let /N,A (/,/) (resp.,/iN’D (n)) be the minimal a-algebra which measures the family {//N (j),
j < n} (resp., {//N(j), j < n}). For future use, we note that /N(n) is a/’a(n)-martingale,
and for each t, N?sN’A(t) is a/iN’a (n)-stopping time, with analogous assertions holding for

// (n) and N3N’D (t).
For 1, 2, the definitions of the terms involved allow us to write

N SiN’A (t) o[.N"NsiN’A(t)
(2.4) A/u(t)=

x/ E 1--Wiu’a(t)+- .E
j=l j Or/N

where we define

j 1-Wi.N’A (t)
/ "=
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By the definitions of ?sNi’A(t) and /N (n), we have (note that the upper limit of the sum is

N /N,A (t) here)

(2.4a) wiN’A (t)
NN’A(t)

.=

"J
riN’A(t)

(N ?S’A (t)) ri
N’A (t),

where ri
N’A (t) is either zero or 1/Vc- times the last term in the sum in (2.4a).

By the definition of )/u and the fact that

NsiN’A (t

olN. N
i,j = Nt ,o (t),

j=l

where p/U (t) is Nt minus the time of the last arrival of a class input before time Nt, we can
write

1 NAiN (t) WiN’A (t) -+- -----..Z [gt pi
N (t)].

/ lV

All the terms called pN which are used below are either of similar origin (i.e., residual times)
to the p (t) above or are bounded by a constant times the sum of such expressions.We will
omit the subscripts and use the same symbolfor all ofthem.

We can similarly write, for 1, 2,

NSiN’ (t)
1 NS’(t) AN

i,j(2.5) D(t)=q/_ I=w2’D(t)+-
j=l A

where we define

1
1- i,j

V-g .__

Recall that we defined [,/N]-I xvi We can write (for j - i, 1, 2)

D(t) W’D (t) h" -i
In getting this expression, we use the fact that the term in the square bracket in the above

mNSN’(t) ANequation is )_j= s,j, the total time allocated to processing completed customers of class
by time Nt: the prior allocation plus the net reallocation minus the unused allocation of time

minus the time (pV (t)) spent on the current incompleted customer (if any).
Analogously to the "arrival" case, the definitions of /N,D (t) and/N (n) imply that (note

that the upper limit of the sum is N/N,D (t) here)

(2.5a)
,,,Nrvi ’D(t)

/ j 1-- "J rN’D

/(N’D(t)) r’(t),

where ri
N’D (t) is either zero or 1/v/- times the last term in the sum in (2.5a).
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3. Dynamical equations and workload formulation. We now put the representations
of the last section together. Define ff’ (t) W/N’a (t) WiN’D (t), 1, 2. Then we can
write

(3.1a)
z(t) z(o) + fv’ (t) + V-t’(

+/z[GN(t) G(t) + LN(t)] + pN(t)/V/.

Analogously,

(3.1b)
z(t) Zf(O) + (t) + v/t[) Ip2]

+/zV[GV(t) G(t) + L(t)] + pN(t)/f-.

The term Dv (.) can be treated analogously to what was done for the D(.), except that
there is no reallocation now. Using such a representation, defining f(t) W2N’D (t)

W3N’D (t), and using the fact that A3N (t) D2N (t), we can write

(3.1c)
Z3N(t) Z3N(O) + + /-t[lP2- lZ]

+/zV[GV(t) Gl LN(t)] + tzVLV + pN /l/.

The workload formulation. Define the workloads2 for the Nth queueing system by

ZN (t) Zv (t) Zv (t) + Zv (t)WL(t) + WL(t)
2

It was shown in [3, 2, 10, 11 that the workload concept is fundamental to the formulation of
multiclass queueing problems and to the derivation of heavy traffic approximations to them.
Define

WiN (t) N(t) /,v (t) Wv (t)
(t) -+- (t)

The workload satisfies the equations

(3.2)
WLf (t) WLf (0) + WN (t) + [LN (t) + L(t)]

., p +t p2 + (t)/,/-,
]Z2

WLv (t) WL(0) + W(t) + L(t)

+ /-t Fv 1]+pN1
t/C.

Representing the idle time terms in the above equations in terms of reflection terms
and control functions. The idle time terms L(.) + LV(.) and L(.) in (3.2) and (3.3),
respectively, might increase at times at which the corresponding workloads (1 and 2, resp.)

2There is a problem in the literature with the use of W for different things. W is often used for both a Wiener
and a workload process. Partially compromising with these traditions leads to our use of WL for the workload, and
W for either a Wiener or an "almost" Wiener process.
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are positive. Let y/U (.), 1, 2, denote the part of these terms which increases only when
the corresponding workload (1 or 2, resp.) is zero. Define F/N (.) by

(3.4) Lv (t) + Lv (t) yN (t) + FN (t), Lv (t) yV (t) + Fv (t).

To get some intuitive feeling for the formulation, it is worthwhile to discuss the physical
meaning of the FN-terms. The discussion which follows, however, is not used subsequently.
We do not require any detailed knowledge of the optimal controls to do the proof.

Under an optimal control, LN (.) would not increase at unless ZN (t) 0, since we would
not allocate service time to queue 2 when it is empty and queue is not empty. However, it
is conceivable that under an optimal control, service time will be allocated to queue 1 when it
is empty but queue 2 is not. This would happen, for example, if the cost of waiting at queue
3 is relatively large and Z3N (t) > 0. In this case, we might prefer not to add new customers to
queue 3 until it drops below a certain level. Thus, under an optimal control, the term FN (.)
represents the part of L1N (.) which increases when queue 2 is not empty. Of course, if we are
not using an optimal control, then F1u (.) represents the increase in Lu (.) + L2u (.) at those
times that either Zv (t) or Z2u (t) are positive. Under an optimal control, Fu (.) represents the
part of L3N (.) which increases when Zv (t) # 0 and Zv (t) 0, and we expect that it would
be close to zero for large N. If we shut processor 2 off when Zv (t) > 0, then Fv (.) would
also increase at those times, although this is not an optimal procedure.

The cost function of interest. The GN (.) (G/N (.), 1, 2) and LN (.) determine
the FN (.) (F/N (.), 1, 2) and (GN (.), FN (.)) determines LN (.). It will be convenient
to consider the pair (GN (.), FN (.)) as the control, although the (G, L)-terms will not show
up in the limit workload equations, and only the F-terms remain. For ci > 0,/3 > 0, and
ZN (0) z, define the cost

foVN (z, GN, FN) E e-t C Z(t)dt,
i=1

9N (Z) inf vN (Z, G, F).
F,G

Now, using (2.1), (2.2), and the definitions of the FN(.), yN(.), rewrite the workload
equations as

WLf (t) WLf (O) + wN(t) + YN(t) + FN(t) bt + 13N()/%/ "3t-

WLf (t) WLf (O) + W(t) -k Y[(t) + F[(t) bet -t- pN(t)//- -t- a(t),

where the 3iN -+ 0 and are due to the use of (2.1), (2.2) and are ignored henceforth. Note that
the only explicit influence of GN (.) on the workload process is via the FN (.)-terms.

4. The workload cost transformation and limit problem. The full exploitation of the
workload concept occurs via the following transformation of the cost function which allows
one to view the workload equations as the primary system equations, at least in the heavy traffic
limit [2,3, 8, 10, 11]. Defineg(z)= Y CiZi, Wf(Z)--Zl/f-’l-’Z2/if, to(Z)- (Z2"["Z3)/lf.
For each to (to1, to2) with wi > O, define

(to) min{g(z).wZ((z) wl, w2u(z) w2, zi 0}.

We can thus write

(4.2) g(z) ,N (toN (Z)) + ,N (Z), N(Z) _. 0.
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Let N (tO) denote the minimizing value of z in (4.1). We also define the "limit quantities"
analogously: wl (z) Zl/lX + z2/lz2, w2(z) (z2 + Z3)//Z3, and

(w) min{g(z) wl(z) w, w2(z) w2, zi > 0}.

We note that there are /N ._+ 0 as N --+ such that

IwN(z) w(Z)I _< Izl, IN(w) (W)I _< 2NIwl,
and (w), N(W), if(Z), N(Z) have at most (uniform) linear growth.

From the reformulation in terms of workload, it is suggested that the individual classes
have essentially disappeared, and that there is now one equation in (3.5) for each processor.
Suppose that, given the current values WLN(t) w(zN(t)) W, ZN (t) Z, we are able to
"instantaneously and freely" rearrange the queues in such a way that the workload is conserved
but the minimal cost point N(w) is attained. Then, ignoring the small terms pN(.)/,/- and
the possible policy dependence of the W/N (.), the only control appears to be the FN (.). This
formal point of view will be validated in the limit as N --+ oe. (It will also be shown in the
proof that the W/N (.) are asymptotically independent of the policy, for reasonable policies.)

The limit problem. The correct equations for the limit workload problem will turn out
to be

(4.3)
WL (t) WL (0) + WI (t) + Y1 (t) -t- F (t) bl t,

WLz(t) WL2(0) + W2(t) + Y2(t) -+- F2(t) bzt,

where the Wi (.) are Wiener processes with variances

)1 (O.12, A -F" O"2
2 2 2(4.4a) E[WI(1)]2 /z-- 1,O) "- 222 (O’,a -t-" o’S,D),

2 (0.2 0"
2(4.4b) E[W2(1)]2=

]j,32 2,a -{" 3,D)’

(4.4c) EW(1)W2(1)=
)2

0
2
2,A

2/Z3

In (4.3), the Yj(.) are the minimal nondecreasing processes such that the WLi(.) are
nonnegative and the Fi(.), 1, 2 are arbitrary, nonanticipative, nondecreasing controls
(singular controls). For WL(0) w, the associated cost is

(4.5)

and we define

V (w, F) E e-g(WL(t))dt,

" (w) inf V (w, F).
F

The problem can be broken into the two following fundamental cases, according to the
value of the minimizer in (4.1) [8].

Case 1. CII
N -t" C3/Z2N < C2N2" Then the optimizing value in (4.1) is 2(tO) 0, and

N(w Cl/./lNtO1 ql_ C311,W2"
To approximate this value as closely as possible requires that queue 2 have priority over queue
1 and FN (t) 0. There is no control problem (see [8]).
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Case 2. c/z
N + c3/z2

N > c2/zv. In this case, the minimizer of the linear program (4.1)
depends on the region of the nonnegative quadrant to which (Wl, w2) belongs:

(4.6a) If/zN /zVwl or, equivalently, z3 >3l/)2>

then the optimizing value g(w) is

N’1 (W) O, 2(W) /ZCWl, ’3(W) /ZVW2 //;2 Wl,(4.7a)

and we have

(4.8a)

(4.6b)

then the optimizing values are given by

(4.7b) z3(w) 0, (w)
/z2

and we have

if,N(11)) [C21N N N
2 C3/12 ]tO1 -]- C3//2 //32.

If/zCw2 </zCw or, equivalently, z3 < lzzl/tz,

’2(1/2) /./,3Nw2,

" [C2/.Zv CI/./,/] W2(4.8b) N(w) C1]Z?Wl " -2
Since the/z/N depend on N, it is conceivable that one could switch infinitely often between

Cases 1 and 2 as N . In order to avoid this minor annoyance, we suppose that only one
of the cases holds for all N.

Note that Case 2 is equivalent to (w)3 (w) 0. Under (4.6a), (w) 0 and3 (w) > 0.
To approximate this for the physical system, queue has priority, and we continue to give
queue priority until queue 3 is zero, when (4.6b) takes over. To attain the minimizer in (4.7b)
requires that queue again have priority, but (loosely speaking) we must avoid "starving" queue
3. Thus, when queue 3 is zero, "briefly" serve queue 2. This rough description ignores some
details, such as the possible introduction of idleness in processor 1. Full details are in the
proof in the next section, and we see that the main purpose of the GN (.) is to bring us close
to this strategy for large N.

5. The main theorem: Uniqueness of the solution to (4.3). We use D[0, x), the
space of CADLAG functions, for appropriate integers k, with the Skorohod topology as the
canonical sample space. Given the distribution of (F(.), W(.), WL(0)), with (F(.), WL(0))
nonanticipative with respect to W(-), the distribution of the process (WL(.), F(.), W(.), Y(.))
is determined uniquely.

The following lemmas will be useful in the proof of the main theorem.
LEMMA 5.1. Given any , for each w WL(O) there are a T() > 0 and an -optimal

control F (.) for (4.3), (4.5) such that F (.) is constant after time T ().
Proof. It is easily verified that the policy with the "zero control" F(t) 0 has finite cost.

In general, we have

Fj.(t) + Y(t) WL(t) WL(O) + bt W(t).

For any policy with finite cost this implies that

(5.1) E e-et (Fj(t) + Yj(t)) dt < cxa.
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Now fix T and define the policy Fr (.) by

Fr(t)=f(t)ift <T

and

Fr (t) F(T) if > T.

We can suppose without loss of generality that we have processes WLr (.), WL(.) defined on the
same sample space and driven by the same Wiener process W(.) and with controls Fr (.), F (.),
respectively. Denote the corresponding reflection terms by Yr (.), y (.). We clearly have

(5.2) E e-st (Ff (t) + Yf (t)) dt < c.

Then, for > T,

WLj ltl/Lf Fj Fj T + Yj Y >_ O,

and (5.1) and the Lipschitz continuity of (.) imply that

I(WL(t)) ff(WLr (t))l _< , Z[Fj(t) Fj(T) + Yj(t) Yf(t)],
J

t>T,

where ?’ is the Lipschitz constant. This gives

E e-tl(WL(t)) ff(WL r (t))l dt

E e-Stl,(WL(t)) (WLr (t))[ dt

<_ y E e-st Z[Fj(t) Fj(T) + Yj(t) Y? (t)] dt
J

<_ yE e-st Z(Fj(t) q- Yj(t)) dt,
J

but, by (5.1) and the monotone convergence theorem, the right-hand term above goes to zero
as T --+ cxz. This proves that the cost of the control Fr (.) converges to the cost of the control
F (.) as T goes to infinity. The lemma follows if we take F (.) to be a e/2-optimal policy, and
T T (e) suitably large. V]

LEMMA 5.2. Fix e > 0 and WL(O) w. For each w, there are T(e) > O, an integer K,
A > 0, 0 < A1 < A, p > 0, and an e-optimal control F (.) for (4.3), (4.5) satisfying the
following properties:

(a) F (.) is constant in each ofthe intervals [kA, (k + 1)A) and on [T(e), cx), and only
one ofthe two components can increase at each k A.

(b) F(nA + A) F(nA) F(nA) takes values in the discrete set {jp j
0,1 K}.

(c) For n 0 j 0 K, 1, 2, there arefunctions qnji (’) such that the choice
off (.) according to theprobability law (5.3) gives a (possibly randomized) e-optimal control
whose sample paths satisfy (a) and (b):

(5.3)
qnji(3F(mA)’m < n, W(lA1),lA1 < nA)

P{F[(nA) jp[F(mA),m < n, W(IA1),IA1 < nA},

and qnji (’) is continuous in the W-variablesfor each choice ofthe other variables.
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Comment on the proof. Given the previous lemma and the weak sense uniqueness of the
solution to (4.3), the proof is identical to the proof of the analogous result in [9, Thms. 15,
16], and is omitted. (The solution is also pathwise unique, but that fact is not needed in
the proof.)

THEOREM 5.3. Let ZN (0) ZN Z as N --+ ec. Then, under the conditions of 2, as
N--+ oo,

(5.4) flU (ZN)
__

Q(W(Z)).

Proof. Part 1. In all of the weak convergence analysis, we use the Skorohod topology on
Dk[0, oe) [1] for appropriate integers k.

In this part of the proof we prove, for a class of "good" policies, certain bounds and the
weak convergence of the processes associated with the limit Wiener processes. These will be
used to prove both the lower bound (5.7) and the upper bound (5.12).

Let T < cx and e > 0. Owing to the fact that the interarrival and service inter-
vals have uniformly bounded third absolute moments, the pN (.) processes are tight and
lime ElpN (t)l//- 0 in all cases. Also, {pN (t)/x/, N, t} is uniformly integrable. Let
tiN(.), pN(.) be a sequence of controls for which liminfN_, VN(zN, dN, pN) < 00. Let
us abuse terminology and let N index an "infimizing sequence in the "liminf" above.

Recall from formulas (2.4a) and (2.5a) that

WiN’A (t) iN(N .Nt ’A (t)) ri
N’A (t),

WiN’D (t) DiN(N,D(t)) rN’D (t),

where the arrival/departure r-terms are bounded by

time between last arrival/departure before N and first after Nt).

The r-terms are of the same type as, and will be absorbed into, the p-terms.
By the comments in 2 concerning the martingale properties of the 7]/u (n) and //U (n)

and stopping time properties of the U/u,a (t) and N/U,O (t), the processes 7] (U/u,a (t))
and iU(N.U,’O(t)) are continuous-parameter martingales (with respect to the "natural or-

algebras).
The above comments and representations in terms of the martingales (modulo small

errors) imply that the mean square value of wiN’a(t) is bounded above (modulo O(1/N)) by
a constant times E SiN’A (t).

We have limSUPN[ESiU’a(t)/*iUt] < 1. Also, no matter what policy is being used, we
have Siu’ (t) < Siu’a (t) for all t. This then implies a similar bound for E[WiN’D (t)]2. Thus,
for some constant C1 independent of N,

(5.5a) limsup EwiN’A(t)2 <_ Clt, limsup Ewiu’z)(t)2 < Clt.
N N

A similar argument and Doob’s inequality yields

(5.5b) lim sup E sup WiN’A (s)2 < 4C1 t,
n s<t

lim sup E sup W/u’ (S)2 __< 4C t.
N s<t

We claim that

(5.6) lim sup E p/N (t) < CX, each <
N--+cx
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To prove this, we note first that EYiN (t) <_ constant(t) + E maxs<_t IW/N (s)l which, together
with (5.5), yields SUPN EYiN (t) < x:) for each t. Thus, failure of the assertion (5.6) yields that
EW-LN (s) (and hence EZN (s)) becomes arbitrarity large on some interval after t, as N --This implies that the costs go to infinity as N -- cx, a contradiction.

These arguments also imply that limSuPN E SUPs_< IZN(s)I < X). Equivalently, by the
definition of Z/N (t),

E sup
s<t

number of class arrivals by N not served by N

This can be written as (using S’A (.) S’D (’))

limsupEsupVZ-(siN’A(s)- siN’D(s)) < cxz, i-- 1,2,3.
N-+ cxz

A functional law of large numbers implies that SiN’A (.) converges weakly to the constant

process with values )it. Thus, for 1, 2, siN’D(’) converges weakly to the process with

values )it, and S’D (.) converges weakly to the process with values )2t.
Using the cited convergences of the Siu’a (.), SiN’D (.) and the martingale properties of

the /N (N/N,A (.)) and b/N (N/N,D (.)) and standard arguments such as those associated with
equation (2.6) of [9] or with the B’-terms in (3.10) of [7, Lem. 5.2], it follows that the

WiN’A (.), WiN’D (.) are tight, with all weak limits being Wiener processes. Using the definitions
of the W/N (.), it now follows that these latter sequences are tight and all limits are Wiener
processes. The calculation of the variance parameters (4.4) follow from the corresponding
values for the prelimit processes.

Part 2. We next prove the lower bound

(5.7) liminf 9N (ZN) 9(W(Z)).
N

We will use a weak convergence argument. This will be a little indirect, since in general it
is not possible to prove tightness of/?N (.). In [5, Chap. 11.1.2] and [6, 4] a very useful time
rescaling idea was introduced which greatly simplified the treatment of weak convergence
issues for "singular" or "reflected" cases. That method will be used here.

Define TN(t) + P(t)+ ff(t), and its inverse N(t) inf{s TN(s) > t}. Define

the "hat" processes by the time transformation: N(l) Zu (,U (t)), 1u (l) ,U(U (t)),
etc. Note that the transformation "stretches out" time and that//U (.) are Lipschitz continuous
with constant < 1. (In the references, the yU-processes were included in the TN (t), but that
is not needed here.) Then

lLN WL (0) -t- N -t- N -t- N b 7N -1- fiN /w/,

where l/N (.) is the reflection process at the boundary segment W O.
The set

{,LN(.), iN(.), /irN(.), ,N(.), I)N(.), wN(.)}

is tight, all weak limits are continuous, and fiN (.)/%/ converges to the zero process. Let
ffL(.),/(.), if(.), 7(.), I7(.), W(.) denote the limit of an arbitrary weakly convergent subse-
quence. We have l(t) W((t)). The limit processes satisfy

(5.8) /Li(t) ]/VZi(O) + i(t) -at- zi(t) -1- i(t) bib(t).
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By standard weak convergence and martingale arguments it can be shown that the other
processes in (5.8) are nonanticipative with respect to the (stretched out) Wiener process ff (.).

Using the fact that w(N (t)) ff’LN (t) and g(z) > ,N (wN (Z)) and changing the time
scale yield

(5.9)

VN (zN, tiN, pN) E e-tg(ZN (t))dt

E e-fN (t)g(2N (t))d],N (t)

fo> E e-fN(t)so N(IN(t))dN (t)

foE e-fu(t)(lN (t)) d"N (t)

fo+ E e-fu(t[N (ffLN (t)) so(IN (t))] d"N (t).

There is eN 0 and a constant K such that the last term is bounded above by

eNE e-N(t)liN(t)ldN(t) <_ KeNVN(zN, N, N),

which goes to zero. Also, by the weak convergence and Fatou’s lemma,

(5.10) liminf E e-fl’u(t))fi,(/LN (t))d"N (t) > E e-i’(t))(I(t))d(t).
N

Now define the inverse T(t) inf{s 7(s) > t}. (See [5, p. 312] or [6, Thm. 5.3] for a
similar transformation and application.) Since 7N (t) < t, i (t) < t. Since lim suPN EP/ (t) <
cx for each t, 7(t) goes to infinity with probability one as cx. Hence, T(t) oe as

cx with probability one. It is also right continuous. Define the rescaled processes by
WL(t) I(T(t)), F(t) 1(T(t)), etc. The rescaled processes satisfy (4.3), the other
rescaled processes are nonanticipative with respect to the Wiener process W(.), and Y (.) is
the reflection process. We now see that the right side of (5.10) equals

E e-t(WL(t))dt V(w(z), F).

By the minimality of l?(w(z)),

V (w(z), F) > f,’(w(z)).

Now (5.9)-(5.11) and the fact that (N (.), pN (.) are arbitrary controls with finite cost yields
(5.7).

Part 3. Now we need to get the reverse inequality to (5.7), namely,

(5.12) limsup IZN (zN) < Ir(w(z)).
N

This will be done via a standard "comparison control" method (see [5, 6]) and using the time
transformation idea of Part 2. Fix e > 0 and let F (.) be an e-optimal policy for (4.3), (4.5)
defined by the qnji (’) conditional probability functions in Lemma 5.2, and with the properties
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given in Lemma 5.2. Recall that the conditional distribution of the jumps of F (.) at time nA
is given by the functions qnij of (5.3). We write

WL(t) w(z) 4- W(t) 4- F (t) 4- Y(t) bt.

We will adapt the F" (.) strategy to the physical process by appropriately adapting the qnji (’)
rules, and then use the optimality of f’U (ZN) to get the desired result.

Denote the desired adaptation of F (.) to the physical system by Fu (.). The subscript
e will be used to denote the various processes (WLN(.), wN(.), etc.) associated with the
adaptation of the F (.) to the physical system. Define a set of random variables /U(nA)
(/N,I (hA), 6/eN,2(n/k)) in such a way that

We would like the conditional distribution of the jumps of Fu (.) at time nA to be exactly
equal to 6/u (nA). However, the FN(.) cannot be realized as a "pure jump" process, as can
the F (.), since the only physical influence that we have over the Fu (.) is via manipulation of
the idle times and sequencing of the customer classes at processor 1. But there will be 6v --+ 0
such that for each n, the 8/N(nA) are realized by FN(.) on [nA, nA + v], with probability
close to one as N --+ oc. By "realizing" lJff’Ne,i(nA) on an interval [hA, t], < nA + A, we

mean that FU.(t) FN.(nA) (pN (nA),l ,l e,i

The FN (.) which will be constructed below will be bounded by the bound on the F (.)
and will not increase after time T (e). Thus, for each T1 <

(5.15a) sup E sup IZN (t)l 2 < oo.
N t<T

It is easy to verify by a direct calcualation that there are real numbers ki such that for all <

(5.15b) sup EIWLN(t)l < kl + kt.
N

Equations (5.15a) and (5.15b) imply that as long as Fu (.) is uniformly bounded, nonantici-
pative, and constant after some T (e) (no matter how the terms are realized), we have that

(5.15c) limlimsup E e-tlWLU (t)ldt O,
T N

and then it follows that

(5.15d) limlimsup E e-tlzN(t)ldt O.
T N

Keep in mind that the control constructed below is used only to prove (5.12), and is not
a practical control.

In the first two cases (0a, 0b) and (la, lb) below, we modify the problem as follows. If
Zu 1/V/- and Zu,3 ,(t) > 0 and we are serving queue 2, then if the current service at queue
3 is completed before the current service at queue 2, extend the service at queue 3 until the
next customer arrives there so that queue 3 is not empty in this event. This does not affect the
truth of (5.15a)-(5.15d). Also, if (5.12) holds with this modification it holds without it, since
the modification does not decrease the costs. The modification serves to assure that F,,N2(.)
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will not increase in this interval due to queue 3 waiting for a customer when a nonempty queue
2 is being served. Recall that (Lemma 5.2) at most one component of/?’ (.) can increase at
a time, hence at most one component of 6/N (n A) can be positive for each n. Let N be a

sequence of positive numbers going to zero and satisfying eN Cx.

First, suppose that at nA, the sample that (5.14) tells us to realize is 3/?N(nA) 0.
Then follow the steps (0a, 0b) below until time (nA + A). Processor 2 continues to work
when there is work to do.

(0a) Serve queue 1 until either {Zl(t) 0 and ZN ZN,2(t) > 0} or ,3(t) <_ (5N and

Z.(t) > 0} and then go to (0b).
(0b) Serve queue 2 until either zN,2(t) 0 or {ZI (t) >_ 5N and ZN,3 (t) > SN}. Then

go to (0a).
By (5.15a) and the above rules, for any ’ > 0

(5.16) lim P{ZN ZN (t) > ’} 0 E (nA nA + A]
N ,1 (t) ,3

By (5.16), the fact that ]N(z)[
_
ko+k[z[ for somereal ki, the fact that N(z) --+ 0 uniformly

on any compact set as ZlZ3 --+ O, and the uniform integrability (5.15d), we have

(5.17)
limN E,N(zN (t)) --O, (nA, n/k -+-

suPt,N E, N (ZN (t)) <

Note that the procedure (0a, 0b) does not increase the FN-term. While the GN (.)-terms do
not appear explicitly above, they represent the part of the given rule which guarantees (5.1 6).

Now suppose that the realization that we aim for at time n/k is 3fN (n/k) > 0. Then,1
follow the steps (1 a, b) below until time (n/k //k) is reached. Processor 2 continues to work
when there is work to do.

(la) Processor 1 serves queue only (or idles when ZN, (t) 0) until either ZN,3 (t) < (:N

or (/U (n/k) is realized. In the second case, go to (0a). In the first case, if Zu (t) > 0 go to,1 ,2

(lb). Otherwise serve queue or idle (if ZN ZN, (t) 0) until ,2(t) > 0, and then go to (lb).
(lb) Processor serves queue 2 or idles (if ZN,2(t) 0) until either ZN,3(t) >_ 5N or

/(n/k) is realized, whichever comes first. In the first case, go to (la), and in the second
go to (0a).

The increase in FN,,1 (.) is due to the idling of processor when either queue or 2 is

nonzero. There are --+ 0 such that the probability that the desired magnitude ,1
is realized on In/k, n/k + ] goes to unity as N --+ c,c. Note that (5.16), (5.17) continue to
hold, and that FN,,2 (’) does not change on the interval.

Next, suppose that our aim is to realize 8fN (n/k) > 0 Then follow (2a) below until,2
time (n A +/k) is reached.

(2a) Shut down processor 2 and serve both queues 1 and 2, with queue given priority.
If iP,2(n/k) is realized then go to (0a).

Note that FN, (.) doesn’t increase during this last procedure, and that (5.16), (5.17) hold.
The increase in FN,,2 (’) is due to the idling of processor 2 and the fact that queue 2 continues
to be served when queue is empty.

We now use the time transformation 7N (t) of Part 2 (to be called 7N (t) here). Abusing
notation, let us henceforth use N to index a weakly convergent subsequence of the

Denote the limit by (147L (.), f(.), (.), 7 (.), I? (.), W (.). As in Part 2 of the proof,

(5.18) WL(t) w(z) + I?V(.) + 1(.) b(t) + ’(.).
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We have

Vu (zN, GNu, FN) E e-tg(Z (t))dt

E e-tv(WL(t))dt + E e-tU(z(t))dt.

By (5.17) the term with U goes to zero as N e. We can write

(5.19) f0 f0E e-tu(WLN(t))dt E e-’(t)U(lLN(t))d#N(t).

that
Now (5.15a), (5.15b), and the fact F(.) stops increasing after T(e) can be used to show

(5.20) limlim sup E e-ir’(t).ffL.t..dtlN()I O.
T N

Now using (5.15a), (5.20), the weak convergence, the linear growth of (.) and N(.) (uni-
formly in N), the convergence N(.) to g(.) (uniformly on compacta), and the fact that for
large t, dTN (t) dr, we see that the right side of (5.19) converges to

(5.21)
0

E e-T’(t)(l(t))d’(t).

Define T(t) inf{s #(s) > t}. Then defining the inverses WL (t) l(T(t)), etc.,
analogous to what was done in Part 2, yields

WL(t) w(z) + W(t) + F(t) bt + Y(t),

where Y (.) is the reflection term and the processes are nonanticipative with respect to the
Wiener process W (.). By the inverse transformation, the right side of (5.21) equals

(5.22) E e-t(WL(t))dt.

By the minimality of (zN (zN), we have

(5.23) lim sup I/rN (ZN) <__ lim VN (zN FN, GN) (5.22).
N N

By the method of construction of the 8pN(.) in terms of the Wff(.) via (5.14) and the rules
(0a, 0b), (la, lb) and (2a), we see that the distribution of (Fs(.), W(.)) is the same as that
of (F (.), W(.)) of (5.13). Using this and the weak sense uniqueness of the solution to (4.3),
(5.22) equals V(w(z), F). Bythe e-optimality of F(.), V(w(z), F) < (Z(w(z)) +e. Since
e is arbitrary, (5.11) follows.

Comments on extensions. The scheme used in the paper follows a simple pattern which
should be applicable to more general problems. First, gN(.) is minimized subject to the
"workload" constraints with minimum denoted by fiN (.). Then the dynamical equation for
the workload process is obtained in terms of a control (the FU-term) and a reflection (the
yN-term). A weak convergence analysis is applied to the workload formulation, under heavy
traffic conditions and cost rate N(.). This yields (5.7). To get (5.12), use the workload
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equations to get uniform integrability, and obtain appropriate estimates for the "errors" N (.)
and N (.) (.). The appropriate form of the -optimal comparison control F (.) will exist
under quite broad conditions, as shown in the references. The main problem is getting the
right rule for the realization of the F (.) on the physical process, something akin to our (0a,
0b), (la, lb), (2a). A more general method for doing this without having to compute the
minimizing z(w) explicitly in each case is needed.
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STABILIZABILITY DOES NOT IMPLY HOMOGENEOUS STABILIZABILITY
FOR CONTROLLABLE HOMOGENEOUS SYSTEMS*

RODOLPHE SEPULCHRE AND DIRK AEYELS;

Abstract. This paper presents an example of a homogeneous planar controllable system which is stabilizable
while not stabilizable by homogeneous feedback. Addition of an integrator to the system provides a three-dimensional

affine system with the same properties.

Key words, continuous feedback stabilization, homogeneous systems, homogeneous feedbacks
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1. Introduction. This paper deals with the local stabilization problem for nonlinear sys-
tems that are small-time locally controllable (STLC, [9]) and homogeneous with respect
to some dilation [8]. By stabilization, we mean that there exists a continuous feedback
u(x, y) C(R2\{0}, R) that renders the null solution of the closed-loop system (locally)
asymptotically stable. This particular class of systems has recently been considered by sev-
eral authors (e.g., [12], [8], [7], [2]). These systems appear naturally as local approximations
of general controllable systems where the higher-order terms have been neglected. The asso-
ciated homogeneous approximation might exhibit important control properties of the original
system.: for instance, local controllability of the homogeneous approximation implies local
controllability of the original system. (See, for instance, [8]. Note that the converse is not true
in general 10].) It seems then an attractive idea--in order to construct a stabilizing feedback
for a nonlinear systemmto consider a homogeneous approximation and to try to design a
homogeneous stabilizing feedback for this approximation. First of all this would be a simpler
problem to solve--in particular for small-dimensional systems--as one may take full profit
of the symmetry properties of the homogeneous vectorfield [12]. But more important, for the
closed-loop homogeneous system there exists a homogeneous Liapunov function [15]. This
in turn implies robustness of the stabilization law with respect to higher-order terms (see also
[8] for an independent proof). In summary, the stabilizing homogeneous control law of the
homogeneous approximation would serve as a stabilizing feedback for the original system.

It is well known that with respect to the linearization of a nonlinear system this procedure
works perfectly well. Also for the special class ofplanar affine controllable systems Kawski
11] has shown that every planar affine controllable system admits a homogeneous approxi-
mation which is stabilizable by homogeneous feedback. It has, however, been shown that the
restriction to homogeneous feedback introduces extra necessary conditions for the stabiliza-
tion problem [12], [7]. This leads us to the fundamental question of whether the approach
sketched above works in general ormif notfor systems that are affine in the control (see
also [7]).

The goal of this paper is to show that for general controllable homogeneous systems, the
existence of a stabilizing feedback does not necessarily imply the existence of a homogeneous
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stabilizing feedback. More precisely we will show that the system

(E) [ 2 x+u,
p 3y+xu2, (x,y) 6]R, u6N,l

is stabilizable while not stabilizable by homogeneous feedback.
The restriction to homogeneous stabilization is also a limitation for affine controllable

systems of dimension larger than two. Indeed we will prove that the addition of an integrator
to (E j) results in a three-dimensional affine controllable system

2 x+z,
(Eft) 52 3y+xz,

u, (x,y,z) R3, u

which also is stabilizable while not stabilizable by homogeneous feedback.
In 2, we review some definitions and provide basic properties for (E) and (E’1). Section

3 is devoted to the explicit construction of a stabilizing feedback for (El). We also analyze
the regularity of the proposed feedback. In 4, we combine the result of 3 and a recent
result of Rosier [14] in order to establish the stabilizability of (E’l). Conclusions are given
in 5.

2. Preliminaries. We first recall the general definition of a homogeneous (control) sys-
tem as given in [6]: the control system

(1) 2 f(x, u)

with f= (Ji)i=l,n ]n X ] -+ 1n a map of class C satisfying

i E {1 n Yx (x Xn
r E IRn, ’ _> 0, Yu

J(rlX .rnxn, :rn+lu) (z r+ri J(X Xn, U)

for some ri > 0 and some r 6 (-minj{rj}, +ec) is said to be homogeneous ofdegree r with
respect to the dilation (r(x, u) (erXl (zrnxn, er"u). The system (1) is stabilizable by
homogeneousfeedback if there exists a continuous feedback law u(x) C (In\{0}, N) such
that

1. u(rlXl .rnxn) .rn+lU(Xl Xn) VX ]n, 2 >_ 0;
2. the point x 0 is a globally asymptotically stable equilibrium of the closed-loop

system 2 f(x, u(x)).
The following proposition collects some basic properties of the system (Z) and of its

dynamic extension (E’).
PROPOSITION 1. (i) (El) (resp., (E’)) is homogeneous of degree 0 with respect to the

dilation 8r (x, y, u) (ex, e3y, eu) (resp., 3r (x, y, z, u) (ex, e3y, ez, eu));
(ii) (El) and (E) are locally controllable (i.e., STLC);
(iii) (El) and (Eft) are not stabilizable by homogeneousfeedback.
Proof. (i) The proof follows from the definition.
(ii)(E’) is locally controllable: using the standard notation

f (x, y, z) "= (x + z, 3y + xz2 O)T g(x y z)’=(0,0,1)T

we compute that the nonvanishing brackets at the origin are g(0) (0, 0, 1) T, [f, g](0)
(-1, 0, 0) T, and [[[f, If, g]], g], g](0) (0, -2, 0) T. They are independent and satisfy the
so-called Hermes condition. Using a result of Coron (see 5 of [5]), this also implies that (E)
is locally controllable.
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(iii) Suppose that u(x, y) is a homogeneous stabilizing feedback for (El). Then there
exists a homogeneous Liapunov function V (x, y) such that 15]

VV(x, y).h(x, y) < 0 (x, y) 5 (0, 0),

where h(x, y) := (x + u(x, y), 3y + xu2(x, y))T and with the additional property (due to
homogeneity of V, say, of degree k) that

VV(x, y).L(x, y) kV(x, y) > 0 (x, y) (0, 0),

where )(x, y) (x, 3y)r is the Euler vector field associated with the dilation 8 (x, y)
(ex, e3y). As a consequence, we have that

VV(x, y).(h(x, y) ;k(x, y)) < 0 (x, y) 7 (0, 0),

which means that u(x, y) also stabilizes the system f(x, u) := (u, xu2)r. But this is a contra-
diction since the latter system does not satisfy Brockett’s necessary condition for continuous
stabilization [3]. A similar argument proves that (Etl) also is not stabilizable by homogeneous
feedback. [3

3. Main result. This section is devoted to an explicit construction of a stabilizing feed-
back for (El) and to an analysis of its properties.

THEOREM 1. There exists a stabilizingfeedback u (x, y) C(, ) such that the origin
of (E) is locally asymptotically stable.

Proof The proof is constructive. For each e > 0 sufficiently small, we construct in
the plane a simple closed curve V, surrounding the origin. The family of curves { V, }0<,<_
implicitly defines the e-level sets of a continuous positive definite function V (x, y). We design
a continuous function u (x, y) such that

(2) D+V(x, y) <0 V(x,y) eU,

where D+ (.) denotes the fight derivative (also called the Dini derivative; see [13]) of V along
the trajectories of the closed-loop system.

Our construction is illustrated in Figure 1. We divide the plane in sectors delimited by
the following curves:

1. 4 [(x, y) Y +x3 0},
2. /3 {(x, y) Y + fix3+v 0},
3. C {(x, y) y + gx3+ 0},
4. 79 {(x, y) Y + 8x3+ 0},
5. g={(x,y) lY-3x3 =0},

where the positive constants 0 < v < and ot > fl > , > 8 > 0 will be suitably chosen in
the following. (The value of ot and the ratios fl/, and ?’/8 will be fixed in the course of the
proof.)

Let e > 0 sufficiently small. In each sector we will define 0 V, as a smooth curve in
x and y and design the control function in such a way that (2) is satisfied in the considered
region. Each sector being symmetric with respect to the origin, the construction is given in a
half-sector and can be extended to the full sector by means of a symmetry argument. (As a
consequence, the stabilizing control function will be odd.) The construction holds for arbitrary
small e, and therefore (2) ensures stability of the origin. In addition, we will show that the
largest invariant set contained in the set {(x, y) D+V(x, y) 0} is the origin. Asymptotic
stability of the origin follows by LaSalle’s theorem.

I. Let S be the connected region of the right-half plane delimited by 79 and g. Let
D 6 79, with XD de, d > 1, and E 6 g, with xe e. Define 0V in S1 by connecting D
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A

FIo. 1. Halfe-level set of V (x, y) for small > O.

and E along the smooth curve

(3) F1 {(x, y) Y + nx3 (n + 3)e 0, x E [e, de]},

with n chosen such that D belongs to 79, i.e.,

3 + d3+V(4) n n(e)
d3 1

On F1, the constraint (2) can be rewritten as follows:

(5) l1=3(n+3)e3+ux(u+3nx) <0, e < x <de.

Since x > 0 on F, the quantity ux(u + 3nx) is minimized with the choice u(x, y) -3nx/2.
For simplicity, we design a control independent of e and we choose u (x, y) -3gx/2 with

3
:=n(0)= d3_l.

Choosing for instance fi 10/3 (which fixes the value of d (19/10)/3), we obtain a
smooth control function u (x, y) in S"

(6) u(x, y) := f (x, e) -5x.

Substituting (6) in (5) we obtain on

(7)
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FIG. 2. Change ofsign in u(x, y).

Since (n h) is positive for each E > 0, the right-hand side of the above inequality is negative
and (2) is satisfied in S,

II. Next let $2 be the connected region of the upper half-plane delimited by g and ,4. Let
A 6 4, with XA --/2. Define 0 V, in $2 by connecting E and A along the smooth curve

(8) F2 {(X, y) Y + 3(X 2e) 0}, X [XA, XE].

Note that this determines the value of ot (or 375). On I’2, the constraint (2) can be rewritten
as follows"

(9) xu

Define for (x, y) 6 1-’2 the control function

(10) u(x,y) -5e, 0<x<xe,
Kx 57, XA X 0,

where K is a positive constant still to be chosen, it is readily checked that this choice satisfies
the constraint (9) on I’2 and is compatible with (6) in E 1-’1 A 1’2. On the other hand, by
choosing K sufficiently large, it is possible to obtain in A

(11) U(XA, YA) -a,

with a > 0 as large as desired. By smoothing the control (10) around x 0 and by repeating
the construction for each > 0, we design a continuous function

u(x, y) "= f2(x, e)

in $2 such that fg. is continuously differentiable as a function of x and , and such that (2) is
fulfilled in this region.

Iii. Consider the lower right half-plane, i.e., the fourth quadrant. By construction, the
control is positive along .A (using (11) and oddness of the control) and negative along 79 (by
(6)). By continuity, the control must change sign in the fourth quadrant. Since 5 3y / xu2,
the change of sign of u(x, y) leads to a region in the fourth quadrant where/9 is nonpositive
(indeed p < 0 in the neighborhood of u 0). This is illustrated in Figure 2.
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We will design the control in such a way that this region is precisely $4, i.e., the connected
region of the fourth quadrant delimited by/3 and C. In particular, the constraint 0
determines the control value on/3 and C according to

(12) u(x, y) v/3/3x2+’ (x, y) e/3, x > 0

and

(13) u(x, y) -V/3yx2+v V(x, y) 6 C, x > O.

IV. Consider $3, the connected region of the fourth quadrant delimited by 4 and/3. Let
4, with Xa, /2, and B /3, with xn e. Define 0 V, in sector(4,/3) by connecting

and B along the smooth curve

(14) r3 {(x, y) Y m(x 5) -+-/53+v 0}, x [XA,, XB],

where rn is chosen in such a way that A’ 1’3, i.e.,

rn =c -8flv.
Note that m is positive for small e. On 1’3, the constraint (2) can be rewritten as follows:

(15) Xbt
2 3m(x )2( + u) 3fl3+v >_ 0, XA’ < X < XB.

The left-hand side of (15) is a quadratic function in u. For x positive, the expression has two
real roots and is positive, provided that

(16) u >
3m(x -6)2 +

2x

with p := ((3m(x 6)2)2 -t- 4x(3me(x 6)2 -[-- 3fie"3+v) being positive in the considered
interval [XA,, XS] [e/2, e]. Note that (16) is satisfied in A’, provided that a is sufficiently
large. On the other hand, (16) or equivalently (15) reduces in B to the constraint >_ 0,
which is satisfied by construction with the choice (12). As a consequence, we can design a
continuous control function along 1-’3, which interpolates between the value ae in A and the
value at B specified by (12) and satisfies (16). Repeating the argument for each e > 0, we
design a continuous function

u(x, y) :-- f3(x, .)

in $3 f) U such that f3 is continuously differentiable as a function of x and e and such that (2)
is satisfied.. Consider $5, the connected region of the fourth quadrant delimited by C and 79. Let
C 6 C, with xc c., c (1, d). Define 0V in $5 by connecting C and D along the horizontal
line

(17) F5 --- {(x, y) Y Yc, x [c, de]}.

This specifies the ratio g/6"
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The constraint (2) is therefore satisfied in $5 if > 0. We thus design a continuous function

(19) u(x, y) := fs(x, e)

in $5, monotonically decreasing along 1"5 from U(Xc, Yc) -v/3’Xc’2+ until u(xo, YD)
-5de, such that (2) is satisfied and such that f5 is continuously differentiable as a function of
x and e.

VI. Finally consider $4, the connected region of the fourth quadrant delimited by B and
C. Let the control function be a continuous function

u(x, y) "= f4(x, :)

in $4 such that f4 is continuously differentiable as a function of x and e and monotonically
decreases as a function of x from u(x, y) v/3/x2+ in B to u(x, y) -v/3?,x2+ in C. It
must be shown that B and C can be connected along a curve segment in such a way that (2)
is satisfied for some/ > ?, > 0 and c (1, d). For this we note that in $4 and for x positive,
we have

u(x, y) > -V/3?,x2+v

and therefore

(20) 5: >_ (1- v/3’xV)x,
(21) > 3y.

Define a constant/x 6 (0, 1). Then (20) can be rewritten as

(22) 5: > (1- v/3yx’)x > Ixx,

provided that

x e [o, (( -z)/v/)/),

which is satisfied for x [XB, XC] when e is small. Consider the following curve in $4"

(23) 1‘4 {(X, y) Ix XB etxt y yBe
3t > O, X < XC}

Since for small e the trajectories of the closed-loop system satisfy (21), (22) in $4, we obtain

(24) I:’4(p) < 0 Yp 1‘-’4.

It is therefore sufficient to impose that C belongs to I"4 in order to obtain a closed curve 0 V,
in such a way that (2) holds in $4. This leads to the following requirement:

(25) (Y-) (x-)
(26) c3+ c
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This fixes the ratio 9//fl and shows that by choosing/x such that

3+v
</z< 1,

we obtain the desired connection between B and C with c as close to as desired. (Note that
this flexibility allows to satisfy c < d.) The connection between B and C closes the boundary
of V,. Moreover we have shown that the constraint (2) can be satisfied with a strict inequality
in any point of 0V except in B and C. Note that by construction x2 > 0 and 0 at any
point (except the origin) of the curves/3 and C (see Figure 2). As a consequence these curves
do not contain any invariant set outside the origin.

To prove asymptotic stability ofthe null solution, it remains to show that the different level
sets 0V do not intersect and continuously cover a neighborhood of the origin. An argument
for this part of the proof is postponed in Lemma 2. [3

The next corollary shows that the above construction can be extended to an arbitrarily
large bounded set containing the origin (semiglobal stabilization).

COROLLARY 1. The stabilization of E1 is semiglobal.
Proof. We denote the open ball centered at the origin and of radius r by B(0, r). Let K

be the compact to be contained in the region of attraction of the origin, and choose ? such that
K C B(0, 7). Note that for each 6, the ball B(0, r(6)) is included in V, with r(6) defined by

363 r63+v }r(6) :=min ’ 2’ 2

As a consequence, it is always possible to choose g large enough such that B(0, ) C Ve. The
construction of Theorem holds only locally around the origin, i.e., for sufficiently small 6.

However, note that the constants d and c define the ratios tilt’ and ?,/3 according to (27) and
(18). The remaining freedom can be used in order that the construction of Theorem 1 holds
for6 <g.

First remark that the parameter m defined in (14) must be a positive value in order that
the construction hold. This leads to the constraint

375
(28) /3 <

which provides a maximum admissible value for the constant/.
Inequality (22) also imposes a maximum value for the constant , with the constraint

(29) v/3, (c?)

Note that inequalities (28) and (29) can be satisfied by choosing sufficiently small. [3

The remainder of the section is devoted to a regularity analysis of the control function
constructed in Theorem 1. Note that for each 6 1 5}, the curve I" is defined in Si by
an implicit equation in (x, y, 6), which we denote by G (x, y, 6) 0. The following lemma
shows that this equation implicitly defines a function 6 (X, y) with some regularity properties.
The proof of this technical lemma is given in the appendix.

LEMMA 1. In each sector Si, {1 5}, there exists a continuousfunction 6i(x, y)
C(Si\{O}, ) such that

(i)

(30) 6i(0, 0) 0 (x, y) 6 Si\{0} Gi(x, y, 6i(X, y)) O,
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(31)

(ii)

(iii)

(32)

V(x, y) Si\{O} r3 U <C, <ClYl-1

V(x, y) Si \{0}" -y (x, y) ::/= O,

with U some neighborhood of (0, 0) and C some positive constant.
The proof of Lemma 1 can be used to complete the proof of Theorem 1, i.e., to show that

the level sets 0 V,, 0 < < g, do not intersect and cover an arbitrary large neighborhood of
the origin. The proof of the following lemma is given in the appendix.

LEMMA 2. Define thefunction

V(x, y) :-- :i(x, y), (x, y) Si.

Then there exists a neighborhood U ofthe origin such that V C(U, N), V (0, O) O, and
V is "radially" increasing in U. Moreover, the constants t, F, and of Theorem can be
chosen such that U contains an arbitrary large compact set.

The existence of a continuous stabilizing feedback which is continuously differentiable
outside the origin is asserted from Theorem by a result of Coron [4]. The next corollary
specifies the regularity that we can obtain with our particular construction. This regularity
will be used in the next section.

COROLLARY 2. The continuous stabilizing feedback of Theorem can be chosen in
C (N2\{0}, ]R). Moreover we havefor some constant C

Ou Ou
(33) V(x, y) e U\{(O, 0)}" ff-X-X < C, -y < C Y 13-+7-1

Proof First consider a point p in the interior of some sector Si. The result is then a
consequence of the chain rule and of the regularity of j and i for each 6 ,5}"

Ou
(x, y) (x, e) + (x, e) (x(34)

Of/ 0j 05

OU(x, y)
Oi

(35)
Oy --(x, )-y (x, y),

with Gi(x, y, i(X, y)) 0. The right-hand members of (34) and (35) are continuous and
bounded in a neighborhood of the origin. As a consequence, u(x, y) is C in the interior of
each sector Si. Define for each the constant

(36) Ci := sup { Of,.

sinu

It follows from (34) and (35) that

(37)

(38)

xx (x, y) < m/ax C + -x x y)

Ou lOGy(X, y) _< maxi C -y X y)

Using Lemma l(ii), we obtain the estimate (33) for any point in the interior of Si U,
i6{1 5}.
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Next consider a point (x, y) Si Sj different from the origin. We will further specify the
choice of the control in the neighborhood of the curves .4, /3, C, and 79 in order to achieve
differentiability outside the origin. (The control is already smooth in the neighborhood of g.)
Since the procedure is relatively straightforward, we give a complete argument only around
4 and omit the details for the other curves.

Define the local coordinate 0 yl/3/x, x > 0. We claim that for a sufficiently small
constant > 0, we can choose the control law around .A\{0} according to the particular form

(39) u(x, y) (gl (0) + C1)x, 0 [0 , 0 -’]-" 1,

with "= -or 1/3, C1 a constant, and gl (0) smooth. For -cxz < 0 < 6, there is no restriction
to impose on f2(x, 6) to be of the form (39), provided that gl (0) is sufficiently large. We can
choose gl smooth, strictly increasing for 0 < , and maximum for . For < 0 < + , the
only constraint imposed by the construction of Theorem 1 is again that g (0) be sufficiently
large in the considered interval. In particular, (11) imposes gl (0) + C > 2a. We can choose
g smooth and strictly decreasing for 0 > .

Note that the definition (39) is not in contradiction with the continuous differentiability
of f2 (x, ) (resp., f3 (x, e)) as a function of e and x in $2 (resp., $3). For f2, this is immediate
since the expression (53) gives

and therefore

It follows that the expression

1
62(x, y) (3-1/30 %- 1)x

z

O0 26

06 3-/x

Of2 O0
(x, y) xg (O)-e

is well defined and smooth. For f3, using the chain rule and (56), we obtain

Of30___ (x y) gfl (0) 2 v+23--(K(x) + K(x) ),

where 0 stands for yl/3/x. The above expression is bounded for 0 in a neighborhood of .
A similar procedure can be used to express the control law in the neighborhood of the

curves 3 and C. Define the local coordinate r/ := y/x3+v, x > 0. Then it is sufficient to
choose (locally) the functions f3, f4, and f5 of the particular form

2+v
(40) u(x, y) (g2(r/))x -- r/ [-fl- ,-, + ],

with g2 smooth. We can be in accordance with the construction of Theorem by choosing g2

smooth, strictly decreasing, and satisfying g2(fl) and g2(v) --.
Finally it is clear that f5 can be chosen in such a way that the control is smooth along 79:

this follows from the fact that the partial derivatives of fl satisfy

06 Ox

and that the function f5 is only constrained to be decreasing in x.
From the particular form of the expressions (39) and (40), it is clear that the estimate (33)

also holds at the intersection of the different sectors. [3
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4. Adding an integrator. In this section, we show that the stabilizability properties of
E1 are basically unchanged under the addition ofan integrator. Proposition 1 states that (E’l) is
controllable and not stabilizable by homogeneous feedback. To prove that (E) is stabilizable
by (nonhomogeneous) continuous feedback, we apply to (E) the following result of Rosier.

PROPOSITION 2 (see [14]). Let F C(]1n+l, n) with F(O, O) O. Assume that there
exists a function u CI(u \ {0}, N) f) C(U, N) (U is some neighborhood ofO in Nn) with
u (0) 0 such that the system

2 F(x, u(x))

is locally asymptotically stable and such that thefollowing holds:

sup Vu (x) F(x, y) -+ 0 as x 0
ye[[O,u(x)]]

([[0, u(x)]] denoting the set [min (0, u(x)), max (0, u(x))]). Then the system

F(x,y),
v

is locally asymptotically stabilizable around (0, 0).
THEOIEM 2. There exists a controlfunction u(x, y, z) CI(u \ {0}, R) A C(U, ) (U

is some neighborhood of 0 in N3) such that the origin of(EPl) is locally asymptotically stable.
Proof. Let u(x, y) be the stabilizing feedback designed in Theorem with the regularity

properties characterized by (33). Throughout the proof, the notation z(x, y) stands for any
(scalar) value in [[0, u(x, y)]]. Using the above criterion, it is sufficient to prove that

Ou Ou
(41) -x X -t- z x y + y(3y + xzZ x y --+ O, x y) I--+ O

Note that by (33), Ou/Ox is bounded in U. Since u(x, y) is continuous at the origin
and u (0, 0) 0, we conclude that

(42) -x--(x + z(x, y))
ox

0, (x,y) I 0.

Now we will prove that

(43) y(3y + xzZ(x, y)) --+ 0, I(x, y)I-- 0.

For a point (x, y) in U A S, (43) is immediate because in this region

On the other hand, we have by (33)

(44) _< C y 13---1

(45)

It is therefore sufficient to prove that in U f3 Si, - 1,

3y + xz2(x, y) I< K3 Y r4z



STABILIZABILITY OF HOMOGENEOUS SYSTEMS 1809

Inequalities (44) and (45) show that near the origin,

-fy (3y + xze(x, y)) < K2K3 [y x--

which establishes (43) provided that 0 < v < 1.
It remains to verify that (45) holds in each sector Si, 1. First consider $2 U $3. We

have in this region that x I_<1 (x, y) I, and we can also assume

u(x,y) <a I(x,y) I.
Therefore we obtain

xz2(x, Y) I1 XU2(x, Y) l< ae 3(x, y) I,

with a defined by (11). Now we easily check that in $2

[Y [=l 3(x 2)3 l> 3 3(x, y)

and that in $3

Y I-I m(x )3 _/3e3+ i> (/3eu + m/8) 3(x, Y) I.
We conclude that in $2 U $3

3y + xz2(x, y) l< 3 Y +ae 3(x, Y) I< K4 Y

for some constant K4. For small Y I, this establishes (45) in the considered region.
Next consider $4. In this region, we have by construction

3y + xu2(x, y) I<_l 3y 1,

and therefore (45) immediately follows. Finally consider $5. We have in this region that
Ix l_< d e(x, y) land also

u(x, y) l< 3n/2 x I.
Therefore we get for some constant K5 that

xz2(x, y) I_<1 XU2(X, y) I< K5 13(x,y)

Now since in $5

Yl=K6I3+vl
holds for some constant K6, we conclude that (45) also holds in this region. This ends the
proof of (43), and (41) follows from (42) and (43).

5. Conclusions. It has been shown that the existence of a continuous stabilizing feedback
for a homogeneous system does not imply the existence of a continuous stabilizing feedback
that preserves the homogeneity of the system in the closed loop. Our example is an analytic
planar controllable system. The stabilizing feedback that we have exhibited is semiglobal
and has continuous partial derivatives outside the origin. The addition of an integrator to the
original system provides an affine three-dimensional homogeneous system that is controllable,
not stabilizable by homogeneous feedback, and stabilizable by continuous feedback. The paper
extends partial results presented in ].

Remark. Independently, Rosier 14] has recently provided an example of planar system
which is stabilizable by continuous feedback while not stabilizable by continuous homoge-
neous feedback. Contrary to our result, this example is not analytic, and addition of an
integrator results in a nonstabilizable system.
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6. Appendix.

6.1. ProofofLemma 1. We prove that Lemma holds in each sector Si, ,5}.
Consider $1. We compute successively

(46)

(47)

(48)

Gl(X, y, ) y + nx3 (n + 3)63,
OG1

--3nx2, 1,
Ox Oy
OG1 __n_n (x3 3) 3(n + 3)2

_Kl52 K2(x)iv+2,

with K1 some positive constant and K2(x) _< d 4 < 0 for _< x < de. Since OG1/O
does not vanish for 0, the implicit function theorem asserts that 1 (x, y) exists and has
continuous partial derivatives in & \{0}. On the other hand we have in $1 \{0}

(49) <

OG1 ( OGI -1

3nx2

Kle2 + K2(x)2+u

3nd

K1 + Kz(x)5 v

which shows that Oe/Ox is bounded in a neighborhood the origin. Analogously, we compute

(50)

(51) <

0G1 -1

1

K162 "t- K2(x)62+v

Kle2

For y $1 and small, we have by construction

yl< 363

and therefore

(52) < C1

for some constant C. Equations (51) and (52) end the proof of Lemma l(ii). Lemma l(iii)
follows from (50).

In $2 we can obtain the following explicit expression for 2(x, y)"

((53) e2(x, y) --1/2 x+ 5

Lemma 1 is therefore readily checked.
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(54)

(55)

(56)

(57)

In $3 the proof follows the same lines as in $1. We compute successively

G3(x, y, 6-) y m(x 6-)3 -t-/36-3+,
OG3

-3m(x 6-)2, .__._OG3 1,
Ox Oy

OG__3 _Orn (x 6-)3 + 3m(x 6-)2 + (3 + I))/6-2+u

Kl(x)6-2 + K2(x)6-+2,

with K1 (x) _> 0 and K2(x) _> 3 for 6-/2 _< x _< 6-. Since 0G3/06- does not vanish for 6- 5 0,
the implicit function theorem asserts that 6-3 (X, y) exists and has continuous partial derivatives
in $3\{0}.

As in $1, wc compute

(58)

(59) <

3m(x _6-)2
3m(x 6-)2 + K2(x)6-v+2

3m/4
3m/4 + K2(x)6-

which shows that 86-/8x is bounded in a neighborhood the origin and

(60)
3m(x 6)2 -I-- K2(x)6-v+2

Using (54) and (60), Lemma 1 (ii) is proven if the inequality

m(x -e)3 / 6-3+u 13(61)
13m(x- 6-)2 + K2(x)6-nu+2

< C3

holds in $3 for some constant C3. The left-hand side can be unbounded only when 6- tends to
zero. For x 6-, the left-hand side is a constant, while for x e, the left-hand side tends to
0(6- v) for 6- sufficiently small. Finally Lemma l(iii) follows from (60).

In $4 we can also obtain an explicit expression for 6-4(x, y):

(62) 6-4(x, y) uX3,

with "= 1/((3 + v)/z 3) > 0. We easily verify that

06-
=/c4 _<K41

HK4 -- y3--7 -1 < K4 y3-’47 -1

for some constants K4, K, and K’.
Finally Lemma is readily checked in $5 with the following explicit expression for

6-5(x, y)"

(63) es(x, y)
c

Lemma 1 is proven in each sector.
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6.2. Proof of Lemma 2. It has already been proven that for a fixed > 0 the level set
8 V, defines a simple closed curve surrounding the origin. Morevover, any compact set K can
be included in 0V by a suitable choice of the constants ,/3, y, and (see the proof of
Corollary 1).

Here we will prove that the function V is "radially" increasing in the following sense: in
each sector Si, we will consider a set of local "polar" coordinates (p, 0) such that, for a fixed
0, i is strictly increasing as a function of p.

The argument is straightforward in the sectors where we have an explicit expression for
V(x, y). In $2, the natural coordinates are 0 x/y 1/3 and p yl/3. Then the expression
(53) gives

V(x, y) (0 + 3-1/3)/9.

Noting that 0 [-a-1/3, 3-1/3] and that ot > 3, we obtain OV/Op > 0 in $2\{0}. In $4 and
$5, natural coordinates are given by 0 -y/x3+v and p x, since the expressions (62) and
(63) respectively give

74 (X, y) p

and

5(x, y) P,
c

from which it directly follows that OV/Op > 0 in $4 U $5\{0}.
Now consider $1. Natural polar coordinates are given by 0 y/x3 and p x. Then we

have

( (p, O, ,) "= G(x,y,,)--O+n-- -(n+3)(’]
X3 p

G
3(n + 3)3p-4 > 0,

Op

OG _3OG
=p <0,

where the inequalities hold for any (x, y) in S {0}. By the implicit function theorem, we
conclude that OV/Op > 0 in S{0}.

Finally consider $3. We can cover the sector with the following definition of "radial"
curves: pick any (x, y) in $3. If (x, y) is such that -u y/x -, we define a
radial curve through (x, y) by 0 {(x, y) S y/x3 yl/x}. If (x, y) is such that
y/x -, then we choose s [0, v] such that y/x+s - and define a radial curve
through (x, y) by 0 {(x, y) 6 S Y/x+s yl/x+S} It is clear that with this definition,
each point of $3{0} belongs to one (and only one) "radial" curve. We will show that V is
strictly increasing as a function of p := x on each "radial" curve.

Pick any "radial" curve in $3. Then we have for some constant s 6 [0, v] and C
y/x+ < 0

G(x, y, )
C + (-m(p ) ++)O(p, ) := x+

OG3(3 + s)C- -! < O,
p p3+s Ox

10G3
p3+S Oe
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where the inequalities hold in $3\{0}. By the implicit function theorem, we conclude that
0 V/Op > 0 in $3, which ends the proof of the lemma. [3
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MODIFIED PROJECTION-TYPE METHODS FOR MONOTONE
VARIATIONAL INEQUALITIES*

MICHAEL V. SOLODOV AND PAUL TSENG

Abstract. We propose new methods for solving the variational inequality problem where the underlying function
F is monotone. These methods may be viewed as projection-type methods in which the projection direction is modified
by a strongly monotone mapping of the form I ot F or, if F is affine with underlying matrix M, of the form I +tM7",
with ot E (0, x). We show that these methods are globally convergent, and if in addition a certain error bound based
on the natural residual holds locally, the convergence is linear. Computational experience with the new methods is
also reported.

Key words, monotone variational inequalities, projection-type methods, error bound, linear convergence

AMS subject classifications. 49M45, 90C25, 90C33

1. Introduction. We consider the monotone variational inequality problem of finding
an x* X satisfying

(1.1) F(x*) (x- x*) >_ 0 Vx X,

where X is a closed convex set in 9t and F is a monotone and continuous function from 9l
to tn. This problem, which we abbreviate as VI(X, F), is well known in optimization (see
1, 6, 15]) and, in the special case where F is affine and X is the nonnegative orthant, reduces

to the classical monotone linear complementarity problem (LCP) (see [7, 36]).
Many methods have been proposed to solve VI(X, F). The simplest of these is the

projection method [46] (also see [1, 2, 3, 8, 27]) which, starting with any x In, iteratively
updates x according to the formula

X
new

:’-- [X OF(x)]+,

where [.]+ denotes the orthogonal projection map onto X and ot is ajudiciously chosen positive
stepsize. However, the projection method requires the restrictive assumption that F or F-1 be
strongly monotone for convergence. The extragradient method [22] (also see [47, 20, 21, 31
for extensions) overcomes this difficulty by the ingenious technique of updating x according
to the double projection formula:

X
new :--" IX --ofF ([x -cF(x)]+)]+

This method, by virtue of its using only function evaluations and projection onto X, is easy
to implement, uses little storage, and can readily exploit any sparsity or separable structure in
F or in X, such as those arising in the applications considered in [3, 9, 38, 45]. Moreover, its
convergence requires only that a solution exists [20], while its only drawback is its, at best,
linear convergence. In contrast, the methods in [4, 8, 12, 27, 32, 33, 34, 38, 40, 50, 54] require
restrictive assumptions on the problem (such as F or F-1 being strongly monotone or F being
affine; for some of the methods, it is further required that F be continuously differentiable with
nonsingular Jacobian or X be bounded and polyhedral), while the matrix-splitting methods in
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[10, 34, 49, 51] are applicable only when F is affine (and these methods also have, at best,
linear convergence). And all these methods require more computation per iteration than the
extragradient method. For the special case where X is the nonnegative orthant (the monotone
nonlinear complementarity problem) or a box, many other solution methods exist, but these
methods tend to be ill suited for large sparse problems and are not practically extendable to
more general X. Thus, it can be said that, unless F has a special structure (F or F- is strongly
monotone or F is affine) and X has a special structure (X is polyhedral or, better still, just a
box), the extragradient method is a very practical method (and sometimes the only practical
method) for solving VI(X, F). And, even when F is affine, there are situations where the
extragradient method may be practical. As a case in point, suppose X is the Cartesian product
of simplices and ellipsoids and F is affine with an underlying matrix M that is asymmetric,
positive semidefinite, sparse, and having no particular structure (so M- may be dense and
impractical to compute). The extragradient method can be practically implemented to solve
this special case of VI(X, F) since it requires only projection onto the simplices and ellipsoids
(for which many efficient methods exist [42, 53]) and multiplication of x by the sparse matrix
M. In contrast, the matrix-splitting methods in 10, 34, 49, 51 require solving a nontrivial
strongly monotone variational inequality problem over X at each iteration. And even on
structured problems such as the discrete-time deterministic optimal control problem [45], the
extragradient method may yet be practical since it is linearly convergent like the methods in
[5, 10, 49, 55], while its iterations are simpler.

In this paper, we propose a new class of methods for solving VI(X, F) that are as versatile
and capable of exploiting problem structure as the extragradient method and, yet, are even
simpler than the latter and have a scaling feature absent in the latter. And our preliminary
computational experience suggests that the new methods are practical alternatives to the ex-

tragradient method. The idea of the new methods is to choose an n n symmetric positive
definite matrix P and, starting with any x 6 8tn, to iteratively update x according to the
formula

(1.2) xnw "--x vP- (T(x)- T ([x -oF(x)]+)),

where V is a positive stepsize and either T I -oF or, if F is affine with underlying matrix
M, T I 4- otMT, with ot 6 (0, cx) chosen so T is strongly monotone. These methods
are like the projection method except the projection direction Ix oF(x)]+ x is modified
by T and P-. Like the extragradient method, these methods use two function evaluations
per iteration and, as we shall show (see Theorems 2.1 and 3.2), their convergence requires
only that a solution exists. Unlike the extragradient method, these methods require only one
projection per iteration, rather than two, and they have an additional parameter, the scaling
matrix P, that can be chosen to help accelerate the convergence (see 2 and 4 for examples
and further discussions). Thus, the new methods require less work per iteration than does the
extragradient method (assuming P is chosen so P- is easily computed and stored), with the
savings being the greatest when the projection is expensive. Our computational experience
(4) suggests that the new methods are practical alternatives to the extragradient method,
especially when F is affine or when projection onto X is expensive.

Although we will also present computational results to illustrate the practical behavior
of the new methods, the focus of our paper is on laying the theoretical foundations for these
methods. In particular, we will present various convergence and rate of convergence results
for the new methods. Central to our rate of convergence analysis is the following growth
condition on the 2-norm of the projection residual function r 8t !)tn, given by

r(x) x Ix F(x)]+,
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near the solution set S of VI(X, F) (i.e., S comprises all x* 6 X satisfying (1.1))" There exist
positive constants and 3 (depending on F, X only) such that

d(x, S) </llr(x)ll Vx with Ilr(x)]l 3,

where I1" denotes the 2-norm and d(., S) denotes the 2-norm distance to S. (It is well known
that an x* 6 n solves VI(X, F) if and only if r(x*) 0.) This growth condition on IIr(-)II
(also called error bound) has been used in the rate of convergence analysis of various methods
[25, 26, 51 and is known to hold whenever X is polyhedral and either F is affine (see [26, 43])
or F has certain strong monotonicity structure (see [51, Thm. 2]). Moreover, under additional
assumptions on F, this condition holds with 3 oo (see [23, 24, 28, 39]). Our rate of
convergence analysis, similar to that in [51 ], entails (roughly) showing that d(x, S)2 decreases
by an amount in the order of Ilr(x)II 2 per iteration, so Ilr(x)II must eventually decrease below
3, at which time (1.3) yields that d(x, S)2 decreases at a linear rate. The analysis is also similar
in spirit to those for feasible descent methods (see [25, 26, 28]) but uses d(., S)2, rather than
the objective function, as the merit function.

Our main results are as follows: In 2, we consider the special case of VI(X, F) where F
is affine. We show that, for suitable choices of the stepsize ?’, the iterates generated by (1.2)
with T _= I +otMv and ot 1 converge to a solution of VI(X, F) and, under the assumption
of (1.3) for some/z and 3, the convergence is linear (see Algorithm 2.1 and Theorem 2.1).
We then extend this method by replacing the projection direction with a more general matrix-
splitting direction (see Algorithm 2.2 and Theorem 2.2). Also, we consider a modification of
this method whereby one of the "[x F(x)]+’’ terms is replaced with x F(x) and an extra
projection step is taken (see Algorithm 2.3 and Theorem 2.3). In 3, we consider the general
case of VI(X, F) and we analogously analyze the convergence of iterates generated by (1.2)
with T I -otF (see Algorithms 3.1, 3.2 and Theorems 3.1, 3.2). In 4, we report our
preliminary computational experience with the new methods on sparse linear programs (LPs),
dense monotone LCPs, and linearly constrained variational inequality problems. In 5, we
give some concluding remarks.

Subsequent to the writing of this paper, we leamed of the recently proposed methods of
He 18, 19] which may be viewed as special cases ofAlgorithm 2.1 in 2, with specific choices
of the scaling matrix P. He’s convergence and rate of convergence results for his methods are
similar to ours for Algorithm 2.1 (Theorem 2.1), although He’s rate of convergence results
further require X to be an orthant. In an earlier work 17], He proposed a related method which
may be viewed as a version of Algorithm 2.3 in 2 with P I and X an orthant, but using a
different choice of the stepsize ’i. During the finalization of this paper, we learned of a very
recently proposed method of Sun [48] which may be viewed as a version of Algorithm 3.2 in

3 with P I, but using a different choice of the stepsize ?’i (see Remark 4.3 therein). The
convergence analysis in [48] applies to the more general problem where F is pseudomonotone
and continuous, though no convergence rate result was given.

A few words about our notation. We denote byn the space ofn-dimensional real column-
vectors and by superscript T the transpose (of vectors and matrices). We denote by the
2-norm (i.e., Ilxll (xTx) for all vectors x) and, for any n n symmetric positive definite

matrix P, by I1" liP the 2-norm in ’ scaled by P (i.e., IlxllP XT Px)1/2 for all x 9) andby
p-/2 the (unique) n n symmetric positive definite matrix whose product with itself is P-.
We denote by I either the identity matrix or the identity map and, by R-linear convergence
and Q-linear convergence, we mean linear convergence in the root sense and in the quotient
sense, respectively, as defined in [37].
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2. Algorithms for F afline. In this section we consider the case of VI(X, F) where F
is monotone and affine, i.e.,

F(x) Mx + q

for some n n positive semidefinite (not necessarily symmetric) matrix M and some q 91n.
We present and analyze three methods for solving this special case of VI(X, F). The first
method is our basic method (1.2) with T =_ I + Mr and, for simplicity, ot 1. The second
method is an extension of the first method in which the projection direction is replaced with
a matrix-splitting direction. The third method is a modification of the first method in which
the projection operation is removed from one part and added to another part of the method.

We describe the first method formally below.

ALGORITHM 2.1. Choose any n x n symmetricpositive definite matrix P andany x )n.

Also choose a 0 6 (0, 2). For O, compute xi+ from x according to

(2.1)

where

(2.2)

xi+l xi )/i p-1 (I + Mr)r(xi),

’i Ollp-1/2(I -!- Mr)r(xi)ll-2llr(xi)ll2.
The parameters P and 0 are key to the performance of Algorithm 2.1. We can choose

P so that P- is easily computed and stored (e.g., P I) or so that IIP-/z(I / Mr)ll is
small (e.g., P (I + Mr)(/+ M)) so ?’i is large. Below we show that this simple method is
convergent and, when the error bound (1.3) holds, is linearly convergent. The proof is based
on showing that (I + Mr)r(x) makes an acute angle with x x* for any solution x*, so the
distance from x to the solution set S, measured in the scaled 2-norm P, decreases when x
is moved opposite the direction p-1 (I + Mr)r(x).

THEOREM 2.1. Assume that F(x) Mx + q for some n x n positive semidefinite matrix
M and some q 9tn, and that the solution set S ofVI(X, F) is nonempty. Then any sequence
{x generated by Algorithm 2.1 converges to an element of S and, if(1.3) holds for some tx
and 3, the convergence is R-linear

Proof. Let x* be any element of S. For each 6 {0, 1 }, we have from (2.1) that

Ilxi/a x*ll2p
Ilx x* ’i e- (I -t- Mr)r(xi) 2

p

(2.3) Ilx x*ll2p 2?’i(x x*)r (I / MT)r(xi) nt- ?,i211P-/2(I / Mr)r(xi)l[ 2.

We bound below the next-to-last term in (2.3). Let z [x Mx q]+ (so r(xi) x zi).
By properties of the projection operator, we have

0 < (y zi) T (Mx nt- q + z xi) Yy X.

Similarly, since x* is a solution of VI(X, F), we have

0<(y-x*)r(Mx*+q) Yy6X.

Taking y x* in the first inequality and taking y z in the second inequality and then
adding the two resulting inequalities yields

0 <__ (X* zi) T (M(x x*) -t- Z xi)
(x* xi)TM(x x*) -t- (x x*) T (I + MT)(x Zi) [IX Z

2

(X X*)T (I + MT)(x Zi) Ilx z 2

(X --X*)T (I + MT)r(xi) --]lr(xi)l] 2,
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where the second inequality follows from the positive semidefinite property of M. Using this
to bound the next-to-last term in (2.3) yields the key relation

Ilxi+l x*ll2p < ]Ix x*ll2p 27’i ]]r(xi)ll 2 -+- vizllP-/z(I + MT)r(xi)]12
(2.4) [Ix x* 112p 0(2 O)lle-1/2(I + MZ)r(xi)ll-2llr(xi)ll4

(2.5) < Ilx x*ll2p 0(2 O)llp-1/2(I -k- MZ)ll-2llr(xi)ll2,

where the equality follows from (2.2). The remaining argument is patterned after the proof of
[44, Thm. and of [51, Thm. 1 ].

Since (2.5) holds for all i, it follows that ]Ix x* lip is nonincreasing with and that
[Ir(xi)ll --+ 0 as --+ cxz. This shows that {Xi} is bounded and, by continuity of r(.), each
cluster point x satisfies r(x) 0 and hence is in S. Then, we can choose x* in (2.5) to be
x and conclude that [Ix x 0 as x, i.e., {x converges to x.

Assume that (1.3) holds for some/z and 3. Let 7r(x) minx.S IIx x*ll, (so 7(x) _<
P lid(x, S)). Since (2.4) holds for all and all x* E S, by choosing (for each i) x* to be the

element of S closest to x in the norm P, we obtain for all

1/r(Xi/1) < Ilxi/a x*ll 2P
<_ Ilx x*ll2p 0(2 O)lle-1/z(I / MZ)r(xi)ll-2llr(xi)l[4

(2.6) l/r(X i) 0(2 O)lle-1/(I 4- MT)r(xi)ll-211r(xi)[I 4

(2.7) <_ 1/f(xi) rlllr(xi)ll 2,

where we let r/= 0(2 O)[IP-/2(I -t- Mr)l1-2. Since Ilr(xi)]l O, we have ]lr(xi)ll <_
for all greater than some -, in which case (1.3) yields d(xi, S) < lzllr(xi)l[. Using this to
bound the right-hand side of the above inequality yields

-2 F]
I[r x7(xi+a) <_ 7(xi) d(x, S)2 _< 7(xi) z211el

for all > {, so {ap(xi)} converges Q-linearly to zero and, by (2.7), {r(xi)} converges R-
linearly to zero. Since by (2.1), (2.2), and (2.6) we have

x/+l xi lip OIIP-/a(I + MT)r(xi)[] -111r(xi)l] 2 <_ 01/2(2 --o)-l/2(J(xi) [t(xi+l)) 1/2

for all i, it follows from {O(xi)} converging Q-linearly to zero that {[Ixi+ x liP} converges
R-linearly to zero and hence {X converges R-linearly. [3

The above proof shows that we can alternatively choose ?, 97 for all in Algorithm 2.1,
where 7 is any scalar satisfying

0 < < 2llp-1/e(I -+- mr)]1-2.

However, this constant stepsize choice is impractical since it is conservative and difficult to
compute.

Algorithm 2.1 can be further extended by replacing the projection term [x (Mx + q)]+
in the definition of r (x) with a more general matrix-splitting term. In particular, consider the
following method.

ALGORITHM 2.2. Choose any n x n symmetricpositive definite matrix P andany x fttn.
Also choose an n x n positive definite matrix B and a 0 (0, 2). For O, 1 compute
xi+ from x according to

(2.8) xi+l xi ’i p-1 (B + MT)(x Zi)
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where Z is the unique solution ofthe nonlinear equations

(2.9) z [z (B(z -xi) + Mx + q)]+

and ?’i is given by

(2.10) i OIIp-1/Z(B + MT)(xi zi)l[-2(xi zi) T B(xi zi)

Notice that if we choose B I, then Algorithm 2.2 reduces to Algorithm 2.1. In general,
we should choose B to be close to M (so that z is close to S for fast convergence) and yet to
have enough structure (e.g., lower/upper triangular or tridiagonal or block diagonal) so that z
is easily computable. We have the following result whose proof is similar to that of Theorem
2.1 and thus is omitted.

THEOREM 2.2. Assume that F(x) Mx + q for some n n positive semidefinite matrix
M and some q {Rn, and that the solution set S ofVI(X, F) is nonempty. Then any sequence
{x generated by Algorithm 2.2 converges to an element of S and, if(1.3) holds for some lZ
and 3, the convergence is R-linear

We note that Algorithm 2.2 is closely related to the following iterative method proposed
in [11]:

(2.11) xi+l argminxex l[i(x) :- (x xi)T(Mx q- q) + -[]x xill 2

where v is a positive scalar. For the specific choice of B M + Mr + vl, we have from
(2.9) that

z [z (B(z xi) + Mx q- q)]+
[Z ((M + M + pI)(z xi) _ql._ Mx + q)]+
[zi- ((M + MT)z MTx -+-q + p(Z --xi))]+
[Z Vl] (Zi)]+,

SO that

z arg min 1/r (x).
xEX

Thus (2.9) generalizes (2.11). We note that in [11] no convergence result is given for (2.11).
Theorem 2.2 shows that if the step (2.8) is added, the resulting method (2.8)-(2.10) converges
to a solution of VI(X, F) and, if (1.3) holds (as in the case where X is also polyhedral), the
convergence is R-linear.

Additional modifications of the preceding methods are possible. For example, we can
pass each iterate through a nearest-point projection (with respect to the norm ,) on to x.
For Algorithm 2.1, this modification would entail replacing (2.1) with

xi+l xi li P-l(I q- MT)r(xi)]-,

where [y] denotes the point in X whose distance to y (measured in the norm I1" P) is minimal.
To see that this does not affect the convergence (and, in fact, accelerates convergence) of the
methods, we use the following fact about nearest-point projection:

(2.12) II[y] x*ll2e < Ily x*ll% -Ily [yl+pll 2p

for all y 6 9n and all x* 6 X (see, e.g., [31, Appendix]).
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We next present a modification, rather than an extension, of Algorithm 2.1, in which
we expand out (I + MT)r(xi) x [x (Mx + q)]+ -+- MTr(xi) and replace the
"[X (Mx q- q)]+" term with x (Mx q- q). In contrast to Algorithm 2.1, an extra
projection onto X is needed.

ALGORITHM 2.3. Choose any n n symmetricpositive definite matrix P and any x X.
Also choose a 0 (0, 2). For O, compute xi+l from x according to

xi+l xi i P-l(Mxi + q + Mrr(xi))]+p,
where ’i is given by

(2.14) Yi OllP-1/2(Mx -t- q + Mrr(xi))ll-2llr(xi)ll 2.

The convergence properties of Algorithm 2.3 are stated in the following theorem, whose
proof is similar to that of Theorem 2.1.

THEOREM 2.3. Assume that F(x) Mx + q for some n n positive semidefinite matrix
M and some q 9tn, and that the solution set S ofVI(X, F) is nonempty. Then any sequence
{x generated by Algorithm 2.3 converges to an element of S.

Proof Let x* be any element of S. For each 6 {0, 1 }, we have from (2.13) and
(2.12) (with y x ?’i p-1 (Mx + q + MTr(xi))) that

IIxi/1 x*ll2 < Ilx x* ,ip-l(Mx + q + Mrr(xi))ll 2
p

]IX X* lifo 2,i(x x*)T (Mx -1- q + MTr(xi))
+ ,iZllP-1/Z(mx + q + mrr(xi))l[.

We bound below the next-to-last term in (2.15). Letz [x Mx -q]+ (so r(xi) x --zi).
By properties of the projection operator, we have

0 <_ (y zi) r (Mx + q + Z Xi) Vy X.

Similarly, since x* is a solution of VI(X, F), we have

O_<(y-x*)r(Mx*+q) YyX.

Taking y x in the first inequality and taking y z in the second inequality and then
adding the two resulting inequalities yield

0 < (X zi) r (Mx at- q at- z xi) -- (Z x*) T (Mx* at- q)

(x x*) T (Mx -t- q + Mr (X zi)) + (X X*)TM(x* Xi) ]Ix Z
2

< (X X*)T (Mx at- q + Mr (X zi)) Ilx Z
2

(Xi- X*) T (mx -k-q + mTr(xi)) --]lr(xi)ll 2,

where the second inequality follows from the positive semidefinite property of M. Using this
to bound the next-to-last term in (2.3) yields

x*ll% Ilx x*ll2p 2?illr(xi)]l 2 -+- )i2llp-1/2(Mx -t- q + Mrr(xi))l] z

Ilx x*ll2p 0(2 O)IIP-1/2(Mx -+- q + MZr(xi))ll-2llr(xi)ll4,

where the equality follows from (2.14). The remainder of the proof is similar to that of
Theorem 2.1, but using the above relation instead of (2.5).
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Notice that Algorithm 2.3 requires two projections per iteration, the same as the extra-
gradient method. However, unlike the extragradient method, Algorithm 2.3 does not appear
to have linear convergence, even if (1.3) holds for some/z and 8.1

3. Algorithms for F nonal’fine. In this section we consider the general case of VI(X, F)
where F is monotone and continuous. Wepresent and analyze two versions ofour basic method
(1.2) with T I -orF and with ot chosen so T is strongly monotone. The first version, which
uses a fixed or, is simpler but requires F furthermore to be Lipschitz continuous. The second
version, which chooses ot dynamically, is more intricate but is more practical and solves the
general problem.

We describe the first method formally below. For this method to be applicable, we require
F furthermore to be Lipschitz continuous.

ALGORITHM 3.1. Choose any n n symmetricpositive definite matrix P andany x E 9n.
Also choose any 0 E (0, 2) and any (0, 1/), where is a constant satisfying

(3.1) (x z)(F(x) F(z)) <_ ;llx zll 2 x, z .
(We can, for example, take ,k to be the Lipschitz constant of F.) For O, compute
xi+ from x according to

(3.2) xi+l xi i p-1 (x zi otF(xi) + otF(zi)),

where z and ?’i are given by, respectively,

(3.3) Z [X otF(xi)]+,
(3.4) /i 0(1 -ot))[lP-1/2(xi Z --otF(xi) q-F(zi))ll-21lx zil[ 2.

Algorithm 3.1 requires less computation per iteration than the extragradient method (in
particular, it avoids performing an extra projection step). Also, unlike the extragradient
method, Algorithm 3.1 allows scaling of direction by P- without having to accordingly
scale the norm with respect to which projection is taken. In the case where F is affine, i.e.,
F(x) Mx + q for some n n positive semidefinite matrix M and some q ,n, the formula
(3.2) reduces to

xi+l xi i p-1 (I otM)(x zi),

which is reminiscent of (2.1). If in addition M is skew symmetric (i.e., Mr -M) so that
(3.1) holds with ) 0, we can choose ot arbitrarily large and can reasonably choose P to be
P (I cM)(I otMr). In fact, for the choice of ot (and using Mr -M), the
formula (3.2) reduces precisely to (2.1).

We show in the following theorem that Algorithm 3.1 has convergence properties similar
to that of Algorithm 2.1. The proof of this theorem is patterned after that of Theorem 2.1.

THEOREM 3.1. Assume that F is monotone and Lipschitz continuous and that the solution
set S ofVI(X, F) is nonempty. Then any sequence {x generated by Algorithm 3.1 converges
to an element of S and, if (1.3) holdsfor some tz and 8, the convergence is R-linear

Proof. Let x* be any element of S. For each 6 {0, }, we have from (3.2) that

Ilxi+ x*ll% I]x x* ’i p- (x z ot F (xi) -+- otf(zi))ll2p
Ilx x* 112 2,i(x x*) T (x z otF(xi) -}- otF(zi))

(3.5) + ’i2l[p-1/2(x Z otF(xi) + otF(zi)) 2.

1Subsequent to the writing of the original paper, we were informed by B. He that, for the method he proposed
in 17] (which may be viewed as Algorithm 2.3 with P I and X an orthant, but using a different choice of Yi), he
could show a linear convergence result analogous to that shown in [18] (see [19, eq. (8)]).
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We bound below the next-to-last term in (3.5). By (3.3) and properties of the projection
operator, we have

0 <_ (y Z
T (Ol F (x nt- Z X Yy X.

Similarly, since x* is a solution of VI(X, F), we have

0 <_ (y- x*)r F(x*) Vy X.

Taking y x* in the first inequality and taking y z in the second inequality and then
adding the two resulting inequalities yield

0 < (X* zi) T (otf(xi) -1- z xi) -Jl- ol(z x*)T F(x*)
or(x* zi) T (F(zi) F(x*)) + (x* xi) T (otF(xi) -otF(zi) -t- Z x i)-- Ol(X zi) T (F(xi) f (zi)) -IIx z

<_ (x* --xi)T(otF(xi) otF(zi) -t- Z xi) + ot(x zi)r (f(xi) F(zi)) -IIx zi 2

<_ (x* -xi)T(otF(xi) otF(zi) -t- Z -xi) (1 ot)llx zill 2,
where the second inequality follows from the monotone property of F and the last inequality
follows from (3.1). Using this to bound the next-to-last term in (3.5) yields

[IXTM X’l[ 2P
< [Ixi- x* 112e 27,i(1 -c)) ]Ix -zi[I 2 + ,i211P-/a(x z -F(x) / oeF(zi))ll 2

[Ix x* 112e 0(2 0)(1 ))2llP-/2(x z otF(xi) nt- oeF(zi))ll-2llxi zill 4,
(3.6)

where the equality follows from (3.4).
The remainder of the proof is similar to that of Theorem 2.1, but using (3.6) instead of

(2.5). For the R-linear convergence result, we also use the observations (see (3.3) and (3.4))
that

[IXi+1 xi p 0(1 otI P-1/2 (xi z ot F (xi) + ot F (zi llx zi 2

>_ 0(1 ot))llP-/2ll-(1 + cL)-llx zill
>_ 0(1 ot))llP-/2ll-(1 + oiL)- min{1, }llr(xi)l[

for all i, where L denotes the Lipschitz constant of F and the last inequality follows from
[13, Lem. 1]. Thus, the rightmost term in (3.6) is bounded above by a positive constant
times -IIr(xi)ll and, whenever this term converges R-linearly to zero as --+ ec, so does
]Ixi/ xi I1%; hence {X converges R-linearly. S

Algorithm 3.1 is a conceptual method since in practice F need not be Lipschitz contin-
uous or the constant ) may be difficult to estimate or a stepsize of less than 1/) may be too
conservative. Below we present a practical version of Algorithm 3.1 that chooses ot dynam-
ically according to a novel Armijo-Goldstein-type rule. This practical version has all the
convergence properties of Algorithm 3.1 and requires F to be only monotone and continuous
for convergence (see Theorem 3.2).

ALGORITHM 3.2. Choose any n x n symmetric positive definite matrix P and any x
,9tn and ot_l (O, cxz). Also choose any O (0,2), p 6 (0,1), and/3 6 (0,1). For

O, 1 compute (xi+, ci)from (xi, i-1) according to: Choose Ol tO be the largest
c {oi-, oti-l, oi-2 satisfying

(3.7) c(x Z (Or)) T (F(xi) F(z (o/))) < (1 P)llx z (c) 2,
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and let

(3.8) xi+l X yi p-l(x zi (0/i) 0/i F(xi) at- 0/i F(zi (0/i))),

where z (0/) and Yi are given by, respectively,

(3.9) Zi(0/) [X 0/F(xi)]+ 0/ (0, cx),

(3.10) Yi O,ol]p-1/Z(x zi(0/i) -0/iF(xi) +0/iF(zi(0/i)))ll-211x zi(0/i)ll 2.

The motivation for taking trial values of 0/ starting at 0/i- comes from our empirical
experience that, for > 0, 0/ 0/i-1 either satisfies or comes close to satisfying (3.7), so
in general only a few trial values of 0/ are needed to find 0/i. The condition (3.7) may be
viewed as a local approximation to the condition 0/ < 1/ used in Algorithm 3.1. (If we let

i.i (X Z (0/))T (F(xi) F(z (0/)))/llx z (c) 2, then (3.7) reduces to 0/< (1 io)/)i.
We had also considered choosing 0/i to be the largest 0/ 6 {r, cr/, cr/2 satisfying (3.7),
where cr 6 (0, oe). It can be checked that the convergence results below still hold for this
alternative stepsize rule, but this rule is not as practical since it typically needs many more
trial values of 0/to find 0/i. Lastly, as with Algorithm 2.1 for the affine case, we can pass
each iterate generated by Algorithm 3.2 through a nearest-point projection (with respect to the
norm ) onto X and the convergence results below would still hold.

Below we present the convergence results for Algorithm 3.2. The proof is patterned after
that for Theorem 3.1 and, for simplicity, we supply only the key steps.

THEOREM 3.2. Assume that F is monotone and continuous and that the solution set S of
VI(X, F) is nonempty. Then any sequence {x generated by Algorithm 3.2 converges to an
element of S and, if(1.3) holdsfor some tz and and F is Lipschitz continuous on S + eB for
some > 0 (where B {x IIx _< }), the convergence is R-linear.

Proof First, we claim that, for each i, (3.7) holds for all 0/sufficiently small, so 0/i is well
defined. To see this, note that z (0/) - [xi]+ as 0/ --+ 0, so if x X, then the right-hand
side of (3.7) would tend to a positive limit while the left-hand side of (3.7) would tend to zero
as 0/ --+ 0, implying the claim. If x X (so x [xi]+), then since F is continuous and
z (0/) -- [xi]+ x as 0/--+ 0, we have

IlF(xi)llllF(x i) F(zi(0/))ll <_ (1 p)llr(xi)ll

for all 0/6 (0, sufficiently small. For any such 0/, we have

0/(X Z (0/))T (F(xi) F(z (0/))) 0/([xi]+ [X 0/F(xi)]+)T (F(xi) F(z (0/)))
<_ 0/21lf(xi)llllf(xi) f(zi (0/))[I

< 0/2 1 -/9) r (x )II 2

< (1 p)II xi Z (0/)112,

where the first inequality uses the Cauchy-Schwartz inequality and the nonexpansive property
of [.]+; the last inequality uses 0/6 (0, 1] and [13, Lem. 1]. Thus, the claim holds.

To show that {x converges to an element of S, let x* be any element of S. For each
6 {0, }, we have by an argument analogous to the proof of Theorem 3.1, but with

(3.1)-(3.4) replaced by (3.7)-(3.10) (and taking 0/= 0/i in (3.7)), that (cf. (3.6))

Ilxi+1 x*ll2p _< Ilx x*ll2p 0(2 O)p2llx Z (0/i)114
(3.11) Ilp-1/2(xi z (0/i) 0/i F(xi) "at- 0/i F(z (0/i))) I1-2.
Thus {x is bounded and {]]x z (0/i)]l} --+ 0. Also, {0/i} is nonincreasing, so it has a limit
0/. We claim that {x has at least one cluster point in S. In the case where 0/ > 0, this
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follows from {[[x z (o/i)II} 0 and the the continuity of F and the projection operator,
which imply that every cluster point x of {x satisfies

x [x O/F(x)]+,
and hence is in S. In the case where O/ 0, we argue by contradiction by supposing that
every cluster point of {x is not in S. Since O/ 0, there must exist a subsequence K of
{0, 1 satisfying O/i < O/i-1 for all E K, and, by passing to a subsequence if necessary,
we can assume that {xi}iK converges to some x S. Since xc S, it follows from the
continuity of F and our earlier argument showing that (3.7) holds for all o/sufficiently small
that, for all E K sufficiently large (so that x is near x and oti-1 is sufficiently small),
o/ o/i-1 satisfies (3.7). This implies we would choose o/i o/i-1 for all K sufficient
large, contradicting our hypothesis on K. Thus, {x has at least one cluster point, say x, that
is in S. Letting x* x in (3.11), we obtain that the sequence [Ix x is nonincreasing.
Since this sequence has a subsequence converging to zero, the entire sequence must converge
to zero.

In the case where (1.3) holds for some/z and 8 and F is Lipschitz continuous (with
constant L) on S / eB for some e > 0, we note that since {x converges to an element of S,
we have X and Z (o/) inside S+ eB for all o/6 (0, o/_ and all exceeding some {. For all such
i, (3.7) holds for all o/6 (0, (1 p)/L), so our choice ofo/i implies o/i > min{o/, /3 (1 p)/L}.
Thus, {o/i} is bounded away from zero. The R-linear convergence of {x then follows from
an argument analogous to the the proof of Theorem 3.1. 3

4. Computational experience. To better understand the behavior of the new methods
in practice, we implemented Algorithm 2.1 in Fortran to solve sparse LPs and dense mono-
tone LCPs and implemented Algorithms 2.1 and 3.2 in Matlab to solve linearly constrained
variational inequality problems (using the quadratic-program solver qp.m from the Matlab
optimization toolbox to perform the projection). For a benchmark, we compared the perfor-
mance of these implementations with analogous implementations of the extragradient method
as described in [31 ]. (We have included LPs and dense monotone LCPs in our tests not because
they are problems which the new methods are designed to solve but because these problems are
well-known special cases of VI(X, F) and tests on them give us a better overall understanding
of the new methods.) Though our results are preliminary, they suggest that the new methods
are practical alternatives to the extragradient method, especially when F is affine or when
projection onto X is expensive. We describe the test details below.

All Fortran codes were compiled by the DEC Fortran-77 compiler Version 4.2 using the
default optimization option and were mn on a Decstation 5000 under the operating system
Ultrix Version 4.2A. All Matlab codes were run on the same Decstation 5000 under Matlab
Version 4.2a.

Our first set of tests was conducted on sparse LP of the form min{ cry [Ay b, y > 0 },
where A is an m x matrix, b 6 9tm, and c E 91t. We reformulated the LP as a VI(X, F) with

}rn [0 --AT ] [ Cb]X=N+ x {0 F(x) Mx + q, M= A 0 q=

Then we applied Algorithm 2.1 and the extragradient method to this VI(X, F). The first
six test problems were randomly generated, with the entries of c uniformly generated from
1,100], with the number of nonzeros per column of A fixed at 5% and the nonzeros uniformly
generated from [-5, 5], and with b A2, where 2 (10/l 10/l). The seventh to ninth
test problems were taken from the Netlib library (see 14]). The performance of Algorithm
2.1 is sensitive to the choice of P and 0, and in our implementation of Algorithm 2.1, we
chose P to be the diagonal part of (I + Mr) (i + M) (which made P- easy to compute and
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TABLE
Resultsfor Algorithm 2.1 and extragradient method on LP.

Problem

Algorithm 2.12
(’= 10-2)

Name I"m l ,l’ iter.4 CPU
RanLP1 100 200 7382.6
RanLP2 100 300 599 4.0
RanLP3 100 400 697 5.1
RanLP 200 400 790 22.6’
RanLP5 200 600 691 14.7
RanLP6 200 800 875 25.3

Adlittle 56 138 56219 123.9
Scorpion 388 466 1609 13.01
Bandm 305 472 1202607 12837

( 10-3

iter’4 CPU5’
2776 12.3 1009
2811 15.1 867
3326 25.0 762
3174 ’8’1.’9 759
2301 85.0 748
3215 97.3 861

73804 163.9 _6

6058 56.8 3372

Extragradient

i,=
’iier.4 ,,cPU5’ iter.4 ’CPU5

5.0 5056- 31.5
6.3 8380 65.2
8.0 3058 31.8

28.4 3005" 107’.6
23.4 2980 82.8
38.0 4496 177.2

36.7 14277 159.3

still yielded fast convergence) and chose 0 .7 (which yielded much faster convergence than
with 0 1). The parameters in the extragradient method were similarly tuned to optimize the
method’s performance. The test results are summarized in Table 1. In general, Algorithm 2.1
required fewer iterations and less time than the extragradient method, with the improvement
most pronounced when < 2m. However, both methods did very poorly on the Netlib
problems, which suggests that these methods are not well suited for solving small to medium-
sized LP. For large-sized LP, these methods may yet be practical since they have low storage
requirements and can exploit sparsity structure in the problem.

Our second set oftests was conducted on dense monotone LCP, corresponding to VI(X, F)
with

X 8n+, F(x) Mx + q

for some n n positive semidefinite matrix M and some q 6 9n. The first three (respectively,
fourth to sixth) test problems were randomly generated with

M coEEr + E- Er,
where co 0 (respectively, co 1) and every entry of the n x n matrix E was uniformly
generated from [-5, 5], and with q -M2+, where each entry ofY has equal probability of
being 0 or being uniformly generated from [5, 10] and each entry of is 0 if the corresponding
entry of 2 is 0 and otherwise has equal probability of being 0 or being uniformly generated
from [5, 10] (so 2 is a solution). The seventh to ninth test problems were deterministically
generated with

M=EET,

where the (i, j)th entry ofthen xn matrix E is5(i-j)/n for all and j, and with q -M2+,
where the first n/2 entries of 2 are 0 and the rest are 7.5 and the first n/4 entries of are 5 and

2Algorithm 2.1 with P being the diagonal part of (I + Mr)(/+ M) and 0 .7.
3The extragradient method as described in [31 ], with/3 .7 and initial c 1.
4For all methods, x 0 and the termination criterion is IIr(x)[I < .
5Time (in seconds) obtained using the intrinsic function SECNDS and with the codes compiled by the DEC

Fortran-77 compiler and run on a Decstation 5000; does not include time to read problem data.
611r(x)l 2. 10-2 after 50955000 iterations.
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TABLE 2
Resultsfor Algorithm 2.1 and extragradient method on LCP.

Name n

RanLCP 100
RanLCP2 200
RanLCP3 300

RanLCP4 100
RanLCP5 200
RanLCP6 300

DetLCP 100
DetLCP2 200
DetLCP3 300

HPEasy 100
HPHard 100
Lemke 100

Algorithm 2.17
(-- 10-2)

ite CPUlo

5721 113.0
59744 5474.5
37769 8415.2

2378 45.7
1133 112.6
748 200.4

32 2.1
37 16.5
4O 50.9

79 2.9
64 2.7

1057 21.3

(-- 10--3)
iter. CPUiO

11600 233.7
144157 15028.2
171963 46096.1

3149 60.4
1412 138.1
944 246.2

Extragradient

(-- 10-2) ( 10-3)
ite

36611
48013
316489

7802
3425
2394

CPUlo

739.5
7456.4
13201.0

148.2
341.6
517.9

ite CPU1o

71491 1462.3
198282 18831.7

10369 195.0
4276 444.3
3033 713.4

36 2.2
42 16.7
45 52.8

109 3.5
85 3.8

1107 22.0

136
156
167

423
855
1508

2.9 157 2.9
18.1 178 19.6
36.4 189 43.6

8.0 531 9.7
16.2 1115 20.9
27.5 2261 44.3

the rest are 0 (so 2 is a solution). The remaining test problems were borrowed from 16, 5].
In particular, the tenth (respectively, eleventh) test problem was randomly generated with

M=AAr+B+D,
where every entry of the n x n matrix A and ofthe n x n skew-symmetric matrix B is uniformly
generated from (-5, 5) and every diagonal entry ofthe n x n diagonal B is uniformly generated
from (0, 0.3) (so M is positive definite), and with every entry of q uniformly generated from
(-500, 500) (respectively, (-500, 0)). The twelfth test problem is one for which Lemke’s
method is known to run in exponential time, with the (i, j)th entry ofM equal to 2 (respectively,
1 and 0) if j > (respectively, j and j < i) for all and j (so M is positive semidefinite),
and with every entry of q equal to 1. In our implementation of Algorithm 2.1, we chose P to
be (I + Mr)(/+ M) and chose 0 (so ’i for all i). The performance of Algorithm 2.1
also benefited substantially from a priori scaling ofM and q and, in our test, we scaled M and
q by multiplying both with 10. (maximum magnitude of entries of M and q)-. (We did not
need to scale M and q for the extragradient method since the scaling is done automatically via
its stepsize parameter or.) The test results are summarized in Table 2. In general, Algorithm
2.1 required fewer iterations and less time than the extragradient method, though both had
difficulty on skew-symmetric problems (the first three test problems). On the other hand, we
caution that the performance of Algorithm 2.1 strongly depends on the scaling of M and q
and finding a suitable choice of scaling can be difficult in general.

Our third set of tests was conducted on VI(X, F), where X is not an orthant or a box.
The first test problem, used first by Mathiesen [35], and later in [41, 54], has

.9(5x2 -4- 3x3)/xl JF(xl, x2, x3) .l (5x2 + 3x3)/x2 5
-3

X (Xl, x2, x3) E ,9+ Xl -at- x2 -- x3 1, Xl x: x3 < 0 }.
7Algorithm 2.1 with P (I + Mr)(/+ M) and 0 1.
8The extragradient method as described in [31], with/3 .7 and initial ot 1.
9For all methods, x 0 and the termination criterion is Ilr(x)[[ < e.
lTime (in seconds) obtained using the intrinsic function SECNDS and with the codes compiled by the DEC

Fortran-77 compiler and run on a Decstation 5000; does not include time to read problem data.
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TABLE 3
Results for Algorithms 2.1 and 3.2 and extragradient method on linearly constrained variational inequality

problems.

Algorithm 2.1 il

Name n iteri(nf/npi’14

Mathiesen 3

KojimaSh 4
Nash5 5
Nashl0 10
HPHard 20
qHPHard 20

38(38/38)

Algorithm 3.212

31.5

CPU15 iter.(nf/np) 14

25(56/31)
18(40/22)
38(85/47)

74(155/81)
93(192/99)

286(579/293)
274(555/281)

CPU15
3.9
2.7
3.9
6.6
10.6

264.3
251.6

Extragradient13

iter.(nf/np) ’14 cPU15

260(524/524) 66.1
13(30/30) 3.2
16(36/36) 2.4
43(89/89) 5.5

84(172/172) 13.4
248(499/499) 395.2
239(481/481) 380.4

We had trouble finding more test problems from the literature, so we created five additional test
problems of our own, in which X {x 6

_
xl +... + xn n} and F and n are specified as

follows: For the first three problems, F is the function from, respectively, the Kojima-Shindo
nonlinear complementarity problem (NCP) (with n 4) and the Nash-Cournot NCP (with
n 5 and n 10) [41, pp. 321-322]; for the fourth problem, F is affine and is generated
as in the problem HPHard of Table 2, but with n 20; for the fifth problem, we took the F
from the fourth problem and added to its ith component the linear/quadratic term max{0, xi }2
for 1 [n/21. In our implementation of Algorithm 3.2, we chose P I, ot_l 1,
0 1.5, p .1, and/3 .3. On the Mathiesen problem, we used the same x as in [54]; on the
other problems, we used x (1 1). (The F from the Mathiesen problem and from the
Nash-Cournot NCP are defined on the positive orthant only.) The test results are summarized
in Table 3. In general, Algorithm 3.2 requires more iterations and function evaluations, but
fewer projections, than the extragradient method. (The performance of Algorithm 3.2 is also
less sensitive to the starting point than the extragradient method. Surprisingly, both methods
solved problems, such as the Kojima-Shindo problem, for which F is not monotone.) Thus,
on problems where projection onto X is expensive, Algorithm 3.2 may be more practical than
the extragradient method, as is reflected in its lower CPU times on all problems except Nash5.
But if F is affine, Algorithm 2.1 may be more practical than either method (compare their
CPU times on HPHard). In general, the performance of Algorithm 3.2 is insensitive to x or p
or ot_, as long these parameters are reasonably chosen. We had also tried alternative choices
for P and more conservative choices for 0 and/ (e.g., 0 and/3 .7), but the results were
typically worse.

5. Concluding remarks. Wehave presented new iterative methods for solving monotone
variational inequality problems and have established their convergence and rate ofconvergence
under mild assumptions on the problem. Preliminary computational experience with the new
methods suggests the new methods are practical alternatives to the extragradient method.

11 Algorithm 2.1 with P (I + MT") (i + M) and 0 1.5.
12Algorithm 3.2 with P I, Ot_l 1, 0 1.5, p .1 and/3 .3.
13The extragradient method as described in [31 ], with/3 .7 and initial c 1.
14For all methods, the termination criterion is I[r(x)ll _< 10-4. (nf denotes the total number of times F is

evaluated, and np denotes the total number of times a projection onto X is performed.) On the Mathiesen problem,
we ran each method twice with x (.1, .8, .1) and x (.4, .3, .3), respectively; on the other problems, we used
x (1 1).

15Time (in seconds) obtained using the intrinsic Matlab function etime and with the codes run on a Decstation
5000; does not include time to read problem data.
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We mention in passing that Algorithms 2.1 and 3.1 may be generated by the following
general approach: We set y in the inequality

0 <_ (y z) r (otF(x) + z x) Yy E X,

where z [x otF(x)]+, to x*; and we set y in the inequality

0 <_ ot(y -x*)F(x*) Yy X,

where x* 6 S, to z. Then we add the two inequalities and, by using the monotone property of
F and, if necessary, the affine property of F, we reduce the resulting inequality to the form

0 < (x x*)rT(x) + (an expression involving or, F, x, and z only)

for some mapping T (depending on F and c) from )n to )n. Provided that the rightmost term
is negative, the method then updates x according to the formula

X
new

X ff T (x).

Algorithm 2.3, as well as the extragradient method, may be similarly generated except we
set y in the first inequality to x instead. Then, we need x to be in X which is why an extra
projection onto X is needed. (We can also set y in the second inequality to x, but this does
not appear to yield anything useful.)
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INFINITE-DIMENSIONAL HAMILTON-JACOBI EQUATIONS AND DIRICHLET
BOUNDARY CONTROL PROBLEMS OF PARABOLIC TYPE*

PIERMARCO CANNARSA AND MARIA ELISABETTA TESSITOREt

Abstract. The paper is concerned with an infinite-dimensional Hamilton-Jacobi equation. This equation is
related to boundary control problems of Dirichlet type for semilinear parabolic systems.

The viscosity solution approach is adapted to the equation under consideration, using the properties of fractional
powers of generators of analytic semigroups. An existence-and-uniqueness result for such problem is obtained.

Key words, boundary control, viscosity solutions, Hamilton-Jacobi equation, parabolic equations, Dirichlet
boundary conditions
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1. Introduction. In this paper we study the existence and uniqueness of viscosity solu-
tions to the infinite-dimensional Hamilton-Jacobi equation

(1.1) )v(x) + (Ax at- Op(x), Dr(x)) + H(Ax, Dr(x)) O, x X,

where X is a real Hilbert space, ) > 0, and H X x X -- IR is continuous. Moreover, A
D(A) C X X is a closed linear operator with a compact and dense inclusion D(A) C X.
Also, we assume A to be positive and self-adjoint. We denote by At the fractional power of
A. Finally D(A) --+ D(A-) is Lipschitz continuous.

There is an increasing interest and a growing literature on Hamilton-Jacobi equations in
infinite dimensions. These equations were first studied by V. Barbu and G. Da Prato (see, e.g.,
[2]), setting the problem in classes of convex functions and using semigroup and perturbation
methods.

The viscosity solution approach was then adapted to infinite-dimensional equations by
M. G. Crandall and P. L. Lions in a sequence of papers [9]. This approach was introduced
in [8] (see also [7]) for finite-dimensional problems. It allows one to obtain uniqueness and
comparison results for weak solutions of nonlinear first-order PDEs. Additional contributions
to the viscosity solution method were obtained by M. Soner 18], H. Ishii 14], and D. Tataru
[19], [20]. The latter two authors treated equations with a maximal monotone operator A,
possibly multivalued. On the other hand, due to the presence of the unbounded term A’ inside
the Hamiltonian H, the results proved in these papers do not apply to (1.1) except for the case
of/ =0.

In this paper we study the above equation for/ (0, 1). We are interested in this problem
because it is related to boundary control of parabolic equations under Dirichlet boundary
conditions. We now briefly describe such a problem, and more details are given in 2.

It is well known that a possible abstract formulation for modelling parabolic systems
controlled at the boundary is given by

x’(t) + Ax(t) -t- F(x(t)) A By(t),
(1.2)

x (0) x0,

where x0 X and , [0, +cx) U is measurable, U being another Hilbert space. Moreover,
B U X is a bounded operator, F X X is Lipschitz, and A is maximal accretive. In
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our setup, Neumann-type boundary conditions correspond to values of/3 in the interval (1/4, 1),
3 1). Therefore, all the results that can bewhereas Dirichlet data restrict the range of/3 to (,

1) to both Dirichlet and Neumann boundary controlobtained for (1.1) with/ E (, apply
problems.

Denoting by x (.; x0, ?’) the mild solution of (1.2), one then seeks to minimize a suitable
cost functional over all controls 9/. In this paper, we consider the functional

(1.3) J(x0; y) e-ZtL(x(t; xo, y), y(t))dt,

where . > 0 and L X U --+ is a given running cost.
Boundary control plays a central role in the theory ofdistributed parameter systems. There

is a vast literature dealing with linear quadratic problems; see, for instance, 1 ], 11 ], 15], [3].
In this theory, the main tool for constructing optimal boundary controls is represented by the
Riccati equation. The technique used to study this equation for Neumann boundary conditions
differs substantially from the one used for Dirichlet conditions. In particular, the way to solve
Riccati equations for Neumann data does not apply to Dirichlet data; see, for instance, [12],
[13], [10], [15]. In fact, the latter problem requires a much more careful choice of weighted
norms and function spaces; see, e.g., [3].

For boundary control problems that are not linear quadratic, the role ofthe Riccati equation
is played by the dynamic programming equation

(1.4) ,ku(x) + (Ax +.F(x), Du(x)) + H(x, A#Du(x)) O, x X,

where H :X x X N is defined as

(1.5) H(x, p) sup [-(By, p) L(x, y)].
y6u

The value function of problem (1.3), defined as

(1.6) {/ou(xo) inf e-ztL(x(t; xo, ?’), ?’(t))dt ’ [0, +cxz) --+ U

is characterized as the unique solution of (1.4).
In [5], the viscosity solution approach has been adapted to (1.4) for/3 6 (, 7). Therefore

the results of [5] yield an existence-and-uniqueness theorem for the dynamic programming
equation of boundary control problems of Neumann type. On the other hand, similarly to the
linear quadratic case, the method of [5] does not apply to (1.4) if/3 > 1/2 and, in particular, to

boundary conditions of Dirichlet type.
In this paper we transform the state equation (1.2) by the change of variable y A-x.

Accordingly, the dynamic programming equation (1.4) is tranformed into (1.1) with H defined
as in (1.5) and

(x) A-F(Ax).

Following the approach of [14], in 3 we give a definition of solution to (1.1) which
requires that the equation be satisfied in a suitable viscosity sense only on D(A). Using this
definition, we obtain a comparison result for H61der continuous viscosity solutions of (1.1);
see Theorem 3.2. In 4 we prove a H61der continuity result for the function v(x) u(Ax).
Moreover, we show that v is the unique viscosity solution of (1.1); see Corollary 4.3. In
particular, our results characterize the value function u in (1.6) as well.



HAMILTON-JACOBI EQUATIONS AND DIRICHLET BOUNDARY CONTROL 1833

We conclude this introduction with some comments on possible extensions and appli-
cations of our approach. The assumption that A A* has been made just to simplify the
exposition. Using similar ideas one can treat systems governed by operators that are not nec-
essarily self-adjoint. On the other hand, to prove that the function v is a viscosity solution
of (1.1), we need to assume that -A generates an analytic semigroup of compact operators.
Therefore, the results of this paper concerning existence typically apply to parabolic boundary
control problems in bounded space domains.

Finally, the techniques of this paper can also be used to study boundary control problems
of Dirichlet type with finite horizon. In this case, the dynamic programming equation is
an evolution equation. For the corresponding Cauchy problem one can prove existence and
uniqueness results. The analogous equation for Neumann boundary control is treated in [6].

2. Preliminaries. Let X and U be two real Hilbert spaces and let U C U be closed and
bounded. We set R supo I’1.

Let x0 6 X and consider the problem of minimizing the functional

(2.1) J(x0; 9/) e-)tL(x(t; xo,

over all measurable functions 9/ [0, o) --+ U (usually called controls). Here x(.; x0, 9/) is
the mild solution of

(2.2)
x’(t) + Ax(t) + F(x(t)) ABg/(t),
x(O xo

that is the solution of the integral equation

(2.3) x(t) e-tAxo e-(t-S)AF(x(s))ds + A e-(t-S)AB9/(s)ds.

In (2.2), At denotes the fractional powers of the operator A; see [17]. The discount factor
is positive, and L satisfies the following assumptions"

(2.4)
(i) L C(X O), IL(x, 9/)I _< CL

(ii) IL(x, 9/) L(y, 9/)1 _< KLlx yl

(x,,) X U,

Vg/ IQ, x, y X,

for some C > 0 and K > 0. Moreover we assume

(2.5)

(i)

(ii)

(iii)

(iv)

(v)

A D(A) C X X is a closed linear operator
such that A A* and (Ax, x) > colx[ 2 for some co > 0 and all x 6 D(A);

the inclusion D(A) C X is dense and compact;

F X --+ X, IF(x) F(y)I < KFIx y[, IF(x)l <_ CF
Yx, yX;

/ 6 (0, 1);

there exists p > 0 such that B 6/2(U, D(AP))

for some constants KF, CF > O.
We note that (i) and (ii) imply that -A is the infinitesimal generator of an analytic

semigroup satisfying [[e-ta[[ < e-t for some co > 0 and all > 0. In assumption (v)
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above, we have denoted by Z:(U, D(AP)) the Banach space of all bounded linear operators
B U --+ D(AP), where D(A) is equipped with the graph norm.

It is well known that, under the above assumptions, problem (2.3) has a unique solution
in Le(0, T; X) for any T > 0. We define the value function of problem (2.1), (2.2) as

(2.6) u(xo) inf e-ZtL(x(t; xo, y), y(t))dt y "[0, +cx) --+ 0 measurable

Control processes as above are very important for applications. In fact, (2.2) describes the
evolution of a system which is governed by a parabolic PDE and controlled by Dirichlet-type
boundary data. We explain this fact below. Let f2 C In be open and bounded with smooth
boundary. Consider the following problem:

(2.7)

Ox
-(t, ) Ax(t, ) + f(x(t, ))

x(O, ) xo()

x(t, ) y(t, )

in (0, cx) x

on

on (0, )

D(A) He(g2) 71 H (),
Ax Ax.

Next, we define the Dirichlet map D U --+ X as

Dy x [ Ax 0

/ x--y

Formally, (2.7) may be written as

(2.8)

where

in

on 0f2.

x’(t) + Ax(t) + F(x(t)) ADy(t),
x(to) xo,

F(x)() f(x()) Yx e X.

The right-hand side of (2.8) is not well defined because the range of D is not contained in
D(A). However, we note that D has some regularizing effect. Indeed, by classical results
(see, e.g., [16]), D L2(02) ---> H1/2 (f2), which may be expressed in abstract form using the
fractional powers of A. In fact,

H20 (2) if 0 _< 0 < ,
D(A)=

{x 6H2(f2) x=0on0f2} ifl <0_< 1.

Hence D" U --+ D(Aa) for all ct 6 [0, 1/4). Consequently, having fixed fl 6 (43-, 1], (2.8) can
be written as

x’(t) + ax(t) + F(x(t)) aDy(t)
(2.9)

X(to) Xo,

where D AI-tD (U, X). MoreoverD satisfies (2.5)(v) for any p </3 4"

where xo 6 L2(Q), y G L2(0, o; L2(0Q)), and f I --+ .
Problem (2.7) may be rewritten in abstract form as follows. Let X Lz(Q) and U

L2(0"2), and define an unbounded operator A in X by
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Using the same technique described above, one can show that Neumann-type boundary
control problems may be formulated in the same abstract form (2.2). In this case fl may be

3 1) we are modelling the Neumann and the1]. Note that if fl a (taken in the interval (,
Dirichlet boundary conditions at the same time.

We now return to the analysis of problem (2.6). We transform (2.2) by the change of
variable

(2.10) y(t) A-x(t).

More precisely, let Y0 6 X, and denote by y(.; Y0, Y) the solution of

] y’(t) + Ay(t) + A-/F(A/y(t)) By(t),
(2.11) / y(0) Y0 X.

Again the above equation has to be understood in mild form

(2.12) y(t) e-yo A- e-(t-SlaF(Ay(s))ds + e-(’-sBy(s)ds.

The solution of (2.12) turns out to be continuous, as we show below.
We recall that, since operator -A is the generator of an analytic semigroup in X, for every

0 [0, 1] there exists a constant Mo > 0 such that

Mlxl Yt>O,x X.(2.13) IAe--taxI <

Moreover let y (0, 1] and ot (0, y). Then, a well-known interpolation inequality (see,
e.g., 17]) states that for every a > 0 there exists Co > 0 such that

(2.14) IAxl alAxl + Clxl Mx D(A),

and there exists Ca > 0 such that

(2.15) IAxl <_ ClAxllxll- Yx D(A).

PROPOSITION 2.1. Assume that(2.5) holds. Let y [0, cx) -+ U be a boundedmeasurable
control, andfix T > O. Thenfor any Yo X there exists a unique solution of(2.12) and

(2.16) y 6 C([0, T]; X) fq LI(0, T; D(A/)).

Moreover, if yo D(A 1/2), then

(2.17) y 6 C([0, T]; D(A1/2)) N L2(0, T; D(A)) fq W1’2(0, T; X).

Finally, if yo D A), then

(2.18) y 6 C([0, r]; D(A)).

Proof The argument is well known. We sketch the proof for the reader’s convenience.
First we show that (2.12) has a unique solution y 6 LI(0, T; D(A)). Fix Y0 6 X, and let
T1 2--F’1 Define the map on L1(0, TI", D(A/)) by

y(t) e-tyo A- e-(t-aF(Ay(s))ds + e-(-SBy(s)ds
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for any 0 < < T1. Let us prove that

L (0, T1; D(A)) L1(0, T1; D(A)).

Indeed, recalling (2.13), we have

Ay(t)ldt <_ Ae-tAyoldt

foT1 fo f0T1 f0+ e-(t-s)aF(Ay(s))ds dt + A e-(t-s)aB?’(s)ds dt

fooTllYldt foTlfo foTlfotIB(S)I< M, + CF (Ia’y(s)l + 1)dsdt + M (t s)
dsdt

MlYolZ]- + CFTIlIYlILI(O,T;D(A,)) + CFT? + MRIIBIITI -,
recalling that I(s)l R. Hence y 6 LI(0, T1; D(A)).

Next we prove that is a contraction. For any y, z 6 L 1(0, T1; D(A)) we have

IA (y(s) z(s))l ds

<_ KF foT fot ]A(y(s) z(s))] dsdt KFTIlly(s) Z(S)IILI(O, TI.D(A,)).

By the contraction map theorem it follows that (2.12) has a unique solution
y 6 LI(0, T1; D(A)). Then by classical results (see, e.g., [17]), y(t)

_
C([0, T1]; X).

Therefore, iterating this procedure, we can cover the interval [0, T] with a finite number of
steps.

As for (2.17), the maximal regularity result y 6 L2(0, T; D(A)) N W1,2(0, T; X) is well
known; see, e.g., [3]. The fact that y 6 C([0, T]; D(A1/2)) is also a well-known consequence
of the maximal regularity result.

Finally, if Yo D(A), then recalling assumption (2.5)(v) and writing Ay as

Ay(t) Ae-tAyo- A1- e-(t-SlAF(Ay(s))ds + A1-p APe-(t-S)AB?’(s)ds

Ayl(t) + Al-y2(t) + AI-Py3(t)

we easily see that, since e-tA is a strongly continuous semigroup, then Ayl is continuous. In
addition Al-y2 is continuous since we know that Y2 C([O, T]; D(A1/2)) and fl < g.
Moreover since

IAl-p(y3(tl) y3(t2))l <
t2

AI-p e-(t2-s)A[e-(tl-t2)A I]A’B?,(s)ds

tl
AI- e-(t,-s)AAtB?,(s)ds

if tl _> t2, exploiting inequality (2.13) and the boundedness of ,, we derive that Al-Py3(t is
continuous.
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By inserting the change of variable (2.10) in the cost functional (2.1), we obtain a new
optimal control problem whose value function v is given by

(2.19) v(yo) inf e-)L(Ay(t; Yo, ?’), y(t))dt.
(t)O

It is easy to realize that value functions v and u are related by the formula

(2.20) u(x) v(A-x) Yx X.

In particular, u is uniquely determined once v has been characterized. Therefore, we will
study problem (2.11)-(2.19) instead of (2.2)-(2.6).

We will show that v is the unique solution of the following Hamilton-Jacobi-Bellman
equation:

(2.21)

where

(2.22)

v(x) -t- H(Ax, Dr(x)) + lAx + A-F(Ax), Dr(x)) O,

H(x, p) sup [-(By, p) L(x, y)].

Clearly, one needs a suitable notion of weak solution of problem (2.21), since v is not every-
where differentiable and the coefficients of the equation are discontinuous. In the subsequent
discussion, we use viscosity solutions to overcome these difficulties.

3. Definition of viscosity solution and comparison result. In this section we study the
Hamilton-Jacobi equation

(3.1) ,ku(x) + H(Ax, Du(x)) + (Ax + A-F(Ax), Du(x)) O.

We assume that (2.5) holds and that H X x X --+ IR is a function, not necessarily given by
(2.22), satisfying

(3.2) IH(ax, P) H(AY, q)l < KH (Ia(x Y)I + IP- ql) for some KH > 0.

Let w, go D(A --+ be given. For any 3 > 0 we define M-(w, go) to be the set of all

points x 6 D(A such that

12 12(3.3) w(x) go(x) - ]a x >_ w(y) go(y) - Ia y

for all y D(A 1/2). Similarly, we denote by M-(w, go) the set of all points x D(A 1/2) such
that

(3.4) w(x) go(x) / - Ia x <_ w(y) go(y) + - Ia yl 2

for all y 6 D(A ).
DEFINITION 3.1. We say that a bounded continuous function w X --+ IR is a viscosity

subsolution of (3.1)if w is sequentially weakly upper semicontinuous, and, for every test

function go 6 C D(A )) and a > O,

(i) M{(w, go) C D(A);

(3.5) (ii))w(x) + H(Ax, Dgo(x) + 3Ax) + (Ax + A-F(Ax), Dgo(x))

+3lAx[2 + 3 (Ax, A-F(Ax)) < 0 Vx e M-(w, go).
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We say that w is a viscosity supersolution of (3.1) if w is sequentially weakly lower semicon-
tinuous, and, for every testfunction p C (D(A )) and > O,

(i) M(w, q)) C D(A);

(3.6) (ii))w(x) + n(Ax, Dq)(x) 6Ax) + (Ax + A-F(A/x), Dcp(x))

-lAxl2 6 (Ax, A-F(Ax)) > 0 Vx M-(w, q)).

We say that w is a viscosity solution of(3.1) if it is both a viscosity subsolution and a super-
solution of (3.1).

Now we give a comparison result between viscosity subsolutions and supersolutions
of (3.1).

THEOREM 3.2. Assume that (2.5) and (3.2) hold true and suppose (1/4, 1). Define
ot (0, 1) as

4/3-3
(3.7) c =

2fl- 1"

Let u and v be, respectively, a viscosity subsolution and supersolution ofthe Hamilton-Jacobi
equation (3.1). Ifu and v are HOlder continuous ofexponent ot > c, then

(3.8) u(x) <_ v(x) Yx X.

Proof For simplicity we take ) 1. For e and t positive, we define a function
D(A1/2) D(A1/2) --+ IR as

(3.9) (x, y) u(x) v(y) -e A1/2(x y), x y - [(Ax, x) + (Ay, y)].

Note that is weakly upper semicontinuous. Let (x,, y,) D(A 1/2) x D(A 1/2) be such that

(x,, y,) max (x, y).
D(A1/2)xD(A1/2)

First of all we prove that

(3.10) Ix, Y,al < Cl-,
where C1 > 0 and ot is the HOlder exponent of u and v. Since

(xe,, x,) + (y,, y,) < 2(xe,, y,),

from the HOlder continuity of u and v we derive

1
(3.11) -Ixe,a ye,al 2 < Clxe,a ye,al

for some positive constant C. Therefore (3.10) holds.
Now let us consider

1 (Y,,) 3
p(x) v(y,) + -e A 1/2,x y,), x + - (ay,, y,),

ap(y) u(xe,) A .xe,a y),
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Note that p, ap 6 CI(D(A1/2)). Also, xe,a M-(u, p) and Ye,a M’(v, ) by construction.
Since u is a viscosity subsolution, using o as a test function, we have

(3.12)

A (xe,a Ye,a)
u (xe,a) + H Axe a,

/3

(Axe,a, A-F(Axe,a)) + (Axe,a -b A-F(Axe,a),

Since v is a viscosity supersolution, using gr as a test function, we have

(3.13)

A1/2(xe,a Ye,a) 6Aye,a) 6lAye al2v(ye,a) + H A ye,a,

-6(Aye,a, A-#F(Aye,a)) + (Aye,a + A-F(Aye,a), A (xe,ae- ye,a) ) >_ Oo

Subtracting (3.13) from (3.12), we obtain

(3.14)

12u(xe,a) v(Ye,a) + 6 [IAx,al2 + IAy,al2] + -IA (x, Ye,a)

A (xe,a Ye,a)
6Aye H xe,a< H tye,a,

E

[(Axe,a, A-#F(A#xe,a)) + (Aye,a, A-[F(Aye,a))]

+ (A- [F(Aye,a) F(Axe,a)],

Recalling assumption (3.2) on H and assumption (2.5) on F, the above inequality yields

(3.15)

u(xe,a) v(ye,a) + 6 [IAxe,a]2 + IAye,al 2] -q- -IA(xe,a ye,a)l2

<_ KH6 [IAx,al / lAys,all -t- KHIA (xe,a Y,a)l

A - (xe,a Ye,a)l-t-CFIIA-II[IAx,aI + lAys,all + KvlA(x,a Y,a)l

Now we estimate the right-hand side of (3.15). Recalling the interpolation inequality
(2.15), we get

(3.16) KHIA (xe,a Ye,a)l < CzIA (xe,a Ye,a)14-3 ]A (xe,a Ye,a)14-4

for some C2 > 0. Moreover recall the well-known inequality

o-p
(3.17) ab <_ ap -b -bq

p o’qq
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1 21, and a > 0. Choosing a )(4fl-3)/2 and p 4fl-3foreverya, b N+,p > 1, 7+
in (3.17) and applying it to (3.16) we derive

(3.18)

CzIA (xe,a ye,a)14/3-3 IA (xe,a Ye,a)14-4/3

’ C3 8-8

< lA(xa ye,a)l 2 + A](xe,a Ye,a)
16 r--

5-4/3where C3 is some positive constant. On the other hand, again applying (3.17) with p 4-4/3

and o- (e) (4-4/3)/(5-4/3), we find

(3.19) 4fl-3 A (Xe,a ye,) < --IA(x,a y,a)l +4e
C464-4/3

for C4 > 0. From estimates (3.18) and (3.19), inequality (3.16) can be rewritten as

(3.20)
6

12 2] 1
K/41A’ (x, Ye,a)l _< g [IAxe,, + Ay,aI / -elA (x,a ye,,)l 2 + C484-4/3

84/3_3

Moreover

(3.21)
6 [2Kz46 [IAx,al -t- lAys,all <_ [IAx + IAy,al2] + C56,

where C5 is a positive constant. On the other hand we get

(3.22) 6ClllA-/311[IAx,al + IAy,I] _< [IAx,al 2 -+-IAy,al + C66

for C6 > 0. Finally from estimate (3.11), it follows that

C71A/3 (x,a Y,a)l
(3.23) KFIA/3 (x,a Y,a)l IA 1/2-/3 (x,a Y,a)l

<_ 1--or

where C7 > 0. Applying the interpolation inequality (2.15) and inequality (3.17) to (3.23) as
we did in (3.16) we find

8-8/3

C81A (xe,a y,a) ----C7lA/3(xe,, Y,a)l
< [A(xe,, ye,,s)l 2 +l-or 4fl-3 2-2a

e --7 16 6 e (2-00(5-4/3)

for some positive constant C8. Again, using (3.17) in the last term of the above inequality we
rewrite (3.23) as

(3.24)
KFIA/3 (xe,, Y,a)l IA 1/2- (x, Y,a)l

6
12 1 12< [a(x,a Y,a) + -ela (x,a y,a) +

16
C984-4/3

2-2a
84/3-3E 2---’"

with C9 positive constant. Substituting estimates (3.20)-(3.22) and (3.24) in inequality (3.15)
we get

6 12 2] 1 12 C9E/
(3.25) u(xe,a)-v(ye,a)+- [IAxea + IAye,al +-elA1/4(xe,a-Ye,a) < C106-64/3_’-----",
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where C10 > 0 and y 4 4/3 1/2-__z is positive as ot > c. Therefore, if x D(A 1/2) we
have

u(x) v(x) dp(x, x) + 3(Ax, x) < ck(x,,, y,) + 3(Ax, x)

C9e?’<_ u(xe,,) v(ye,,) + 3(Ax, x) < C103 + 34/3_3 --[-- 3(Ax, x).

Letting e 0 and then 3 0 we conclude that

u(x) < v(x) Vx D(A1/2).

Since D(A is dense in X, we have u(x) < v(x) for every x X. [3

4. Properties of the value function and existence results. In this section we prove that
the value function v of problem (2.11)-(2.19) is the unique viscosity solution of

(4.1) Zv(x) + H(Ax, Dr(x)) + (Ax + A-/F(A/x), Dr(x)) O,

where

H(x, p) sup [-(By, p) L(x, y)].

We first show a H61der continuity result for v. We will exploit the technique of [5].
PROPOSITION 4.1. Assume (2.5), (2.4). Then the value function v defined in (2.19) is

x Moreoverfor anyHOlder continuous in X with any exponent ot (0, 1] satisfying ot < F"
0 [0, 1 --/3) there exists a constant Cao > 0 such that

(4.2) Iv(x) v(y)l _< C=olA-(x y)l=

for all x, y X.
Proof Letx0, y0 6 X and y(t) 6 U be given. Let us setx(.) x(.;x0, y) and

y(’) y(’; y0, Y). Then

x(t) e-tAx0 A- e-(t-S)AF(Ax(s))ds + e-(t-S)ABy(s)ds

and

y(t) e-tAyo A-/ e-(t-S)AF(Ay(s))ds -+- e-(t-s)ABy(s)ds

for any >_ 0. Now we estimate IA(x(t) y(t))]. From assumption (2.5) and from
inequality (2.13) we have

(4.3)
Mo A_o fot[A(x(t) y(t))l _< t--b- (xo Yo)l / KF [A(x(s) y(s))lds

for any 0 6 [0, 1 -/3). Now set O(t) f IA/(x(s) y(s))lds. Integrating the above
inequality we get

-(+0) IA- (xo Yo)ltl-- + KF rl(s)ds.
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By Gronwall’s lemma we obtain an estimate on O(t). Applying this estimate to the fight-hand
side of (4.3) we derive

(4.4)
C CeKFttl----O) -oIA/(x(t) y(t))l < + IA (x0- Y0)l.

Then, for every ot (0, x), ot < 1, we have

(4.5) iA/(x(t)_ y(t))l <2, ( C Cermet (1--0),) 16ta(+o + A- (xo Yo)

Moreover, by (2.4),

(4.6)
IL(A#x(t), ?’(t)) L(Ay(t), ?’(t))

_< (2CL) 1-a IL(Ax(t), ,(t)) L(Ay(t), ,(t))l < LIA(x(t) y(t))l,
where/, (2CL)1-K. Now choose T such that

2e-Z,TCL
<_ A- (xo Yo)16.

From the definition of value function and from the dynamic programming principle it
follows that there exists a control y (.) such that

v(yo) > fo
r
e-ZtL(A/y(t), y(t))dt + e-rv(y(T)) -IA-(xo- Y0)l.

Here, we may suppose that IA- (xo Y0)l= > 0, since (4.2) is trivial if IA- (xo y0)l= 0.
From the dynamic programming principle and from the above estimate it follows that

v(xo) v(yo) <_ IA- (xo y0)l=

(4.7)
T

+ e-xt ]L(Ax(t), y(t))- L(Ay(t), (t)) dt + e

<_ 21A-(xo- yo)l / e-XtlA(x(t y(t))ldt.

-T [v(x(T)) v(y(T))]

Substituting (4.5) in (4.7), we get

v(xo) v(yo) < 21A-(xo Y0)l

+2alA-(xo--Yo)lafoT( Ce-xt
ta(3+o)

-[’- Ce(KFa-x)tt(1--O)a) dt.

The result follows since ot < FF and 0
We now give an existence result for (4.1).
THEOREM 4.2. Assume that (2.5) and (2.4) hold true. Then the value function v is a

viscosity solution of(2.21) in the sense ofDefinition 3.1.
Proof. Recalling the compactness assumption (2.5)(ii), from (4.2) we conclude that v is

sequentially weakly continuous in X. It remains to prove that v satisfies (3.5) and (3.6). We
show this fact in the next two steps.
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Step I: Proof of (3.5). Let ?, 0 be a constant control, o CI(D(A 1/2)), and x

M+(v, tp). Moreover let y(.) y(.; x, ?’). Then, recalling Proposition 2.1, we obtain

(4.8) v(x) o(x) -(Ax, x) > v(y(t)) p(y(t)) -(Ay(t), y(t))

for every >_ 0. From (4.8) and from the dynamic programming principle it follows that

tp(x) tp(y(t)) (Ax, x) (Ay(t), y(t))

(4.9)
v(y(t)) 1 [’t e-xt- 1

< < Jo e-XSL(Ay(s)’ y)ds + v(y(t)).
-t

Note that, since by Proposition 2.1 y a L(0, T; D(A)), we get

(4.10) o(x) o(y(t)) {Do(y(s)), -Ay(s) A-F(Ay(s)) + Bg)ds

and

and

8__ (Ay(s) A-F(A#y(s))- By)ds
(4.14)

’f0 tf0t ’ f0<- -t IIA-’llCrlAy(s)lds / -[ IAy(s)lllBIIgds _< - IAy(s)12ds / C

for some positive
From (4.12)-(4.14), since v and L are bounded it follows that

lf0t

1
((Ax, x) (Ay(t), y(t))) (Ay(s),-Ay(s) A-#F(Ay(s)) 4- By)ds

2
(4.11)

[IAy(s)l / (Ay(s), A-F(Ay(s)) B?,)] ds.

Therefore, exploiting (4.10) and (4.11), (4.9) can be rewritten as

1 foo (Dcp(y(s)) Ay(s) + A-#F(A#y(s)) By)ds

(4.12) +-[ [IAy(s)l2 + (Ay(s), A-F(Ay(s)) B?,)] ds

it e-xt- 1
< e-xs L(Aoy(s), ?’)ds + v(y(t)).Jo

By Proposition 2.1 y L(0, T; D(A)) and so

(4.13) - (Do(y(s)), Ay(s) 4- A-F(Ay(s)) Bv)ds < - IAy(s)12ds 4- Ca
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for C positive. Hence, there exists a sequence {tn }, tn $ 0 such that

IAy(t)l < C.

Taking a subsequence we have that Ay(tn) z and y(tn) x. Therefore we get y(tn)
A-1Ay(tn) A-lz x, and so x D(A). This proves (3.5)(i).

In order to show that (ii) holds, we recall that if x D(A) and ,(.) ?’, then y 6

C([0, T]; D(A)); see Proposition 2.1. Then, passing to the limit as $ 0 in (4.12), we derive

(Dqg(x), Ax + A-F(Ax)) + [-(Dqg(x) 4- 8Ax, BF) L(Ax, F)]

4-6lAxl 2 + 6(Ax, A-F(Ax))+ v(x) < O.

Taking the supremum over 9/ 6 we obtain (3.5)(ii).

Step II: Proof of (3.6). Let p 6 C (D(A 1/2)) and x 6 M- (v, qg). For every n 6 N there
exists a control 9/n (.) such that

(4.15) f0v(x) 4- - > e-ZSL(Ayn(S), ’n(s))ds + e-v Yn

where y,,(.) Yn(’; x, ’n). Moreover we get

v(x) -qg(x) + - (Ax, x) < v Yn q9 Yn + - Ayn Yn
n

From (4.15) and from the above inequality we obtain

(4.16)

Here and in the rest of the proof we denote by co(t) a function such that oo(t) ,[, 0 as $ 0.
Similarly to Step I we have

(4.17) qg(X)--(Yn (!))n fo " {Dp(yn(S)), Ayn(S) 4- A-#F(A#yn(S)) B’n(s))ds

and

1 -))-(Ax, x- I(Ayn () Yn ( )]
(4.18) {Ayn(S), -Ayn(S) A-F(Ayn(S)) + Byn(s))ds

fo [-IAyn(S)l2 -(Ayn(S), A-#F(Ayn(S))) 4" (Ayn(S), Byn(S))]ds.
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Therefore inequality (4.16) can be rewritten as

(Dqg(yn(S)), Ayn(S) q- A-F(A#yn(S)) BFn(s))ds

(4.19) +n6 f0 [-IAyn(S)l2 -(Ayn(s), A-F(Ayn(S))) q- (Ayn(S), Byn(S))]ds

>_ n L(Ayn(S), ?,’n(s))ds + n(e- 1)v Yn + o

Again, reasoning as in Step I, from the above estimate we derive

n IAyn(s)lZds < C8;

hence, there exists a sequence {sn }, s $ 0, such that

(4.20) Ayn (Sn)l <_. C, y (Sn) X and Ayn (Sn) -.x Z.

As in Step I we conclude that x D(A). Therefore (3.6)(i) holds.
In order to show that (ii) is verified, we have to estimate the terms contained in (4.19).

First we note that, by easy computations exploiting estimate (2.13), as x D(A)

(4.21) lim sup IA(yn(t) x)l 0,
n--+ oo O_<t_<

where ot 6 [0, 1). Since o 6 CI(D(A1/2)) andx 6 D(A), by (4.21) we obtain

/o /o(4.22) n (Do(yn(S)), Byn(s)) ds -n (Dtp(x), Byn(s))ds q- oo
n

Moreover, by (4.21)

/o(4.23) n (Dcp(y(s)), A-F(Ayn(s)))ds (Dcp(x), A-F(Ax)) + w

On the other hand we recall that by assumption (2.5)(v), there exists 0 such that Ap B, is
bounded. Hence, (4.21) yields

yo fon (Ayn(S), B’n(S)} ds n (Al-Px, AB’n(s))ds + 09

(4.24)

n (Ax, BI,(s)) ds + o

In addition, from (4.21) we have

(4.25) (Ayn(s), A-flF(Aflyn(S)))ds -(Ax, A-flF(Aflx)) + w ()
Finally, again from (4.21)

(4.26) n L(A#yn(s), ?’n(s))ds n L(Ax,?’n(s))ds+w().
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Since v is continuous, substituting estimates (4.22)-(4.26) into (4.19), we derive

)v(x) +n [-(Dcp(x) -6Ax, Byn(S)) L(Ax, ’n(s))]ds +(A-F(Ax),Dcp(x))

+n fo [(Dgo(yn(S)), Ayn(S)) ,,Ayn(s)12]ds ,(Ax, A-#F(Ax)) >_

On the other hand, recalling the definition of the Hamiltonian (2.22),

n [- (Dq)(x) 8Ax, Byn(S)) L(Ax, ?’n(S))] ds < H(Ax, Dgo(x) 6Ax).

Therefore, for some sequence {sn }, 0 < s, _< fi, as in (4.20) it follows that

)v(x) + H(Ax, Dg)(x) 8Ax) + (A-/F(A/x), Dcp(x)) 6(Ax, A-F(Ax))

>-(Dgo(yn(Sn)),ayn(Sn)) "k-61Ayn(Sn)12+o)().
By (4.20), taking the lim infno of the right-hand side of the above inequality, we derive that
(3.6)(ii) holds. [3

Combining Theorem 4.2 with Theorem 3.2 we obtain the following existence and unique-
ness result for the Hamilton-Jacobi equation (4.1).

COROLLARY 4.3. Assume that (2.5) and (2.4) hold true and let ,kF min{ 1, }. Fix

(4.27) fl e ’4-2)
Then the value function v defined in (2.19) is the unique viscosity solution of the Hamilton-
Jacobi equation (4.1) satisfying a HOlder condition with exponent o (o, 1), where oe is

defined in (3.7).
Proof. Applying Theorem 4.2, we obtain that v is a viscosity solution of equation (4.1).

From Proposition 4.1 it follows that v is H61der continuous of exponent oe for any 0 < o < ).
From (4.27) it is easily seen that ) > o. The proof of existence is thus complete. As
for uniqueness we note that assumption (2.4) implies that the Hamiltonian (2.22) satisfies
hypothesis (3.2). Therefore uniqueness follows from Theorem 3.2. [3
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VALUE ITERATION IN A CLASS OF COMMUNICATING MARKOV DECISION
CHAINS WITH THE AVERAGE COST CRITERION*

ROLANDO CAVAZOS-CADENAt

Abstract. Markov decision processes with denumerable state space and discrete time parameter are considered.
The performance index of a control policy is the (lim sup expected) average cost criterion, and the the main struc-
tural restrictions on the model are the following: (i) under the action of any stationary policy, the state space is a
communicating class; (ii) the cost function has an almost monotonemor penalized--structure IV. $. Borkar, SIAM J.
Control Optim., 21 (1983), pp. 652-666; 22 (1984), pp. 965-978]; and (iii) some stationary policy induces an ergodic
chain with finite average cost. In this context it is shown that the value iteration scheme can be used to construct
convergent approximations of a solution to the optimality equation, as well as a sequence of stationary policies whose
limit points are optimal.

Key words. Markov decision chains, average cost criterion, almost monotone cost function, value iteration
scheme, pointwise convergence
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1. Introduction. This paper concerns Markov decision processes with denumerable state
space and discrete time parameter. The performance of a control strategy is measured by the
(lim sup expected) average cost criterion, and in addition to standard continuity-compactness
conditions, the class of models under consideration is essentially determined by the following
restrictions: (i) under the action of each stationary policy, the state space is a communicating
class; (ii) some stationary policy induces an ergodic chain with finite average cost; and (iii)
the cost function is "almost monotone" in the following sense: outside a finite set of states,
the cost is sufficiently large. These restrictions are basically those used by Borkar in 1, 2]
to establish the existence of optimal stationary policies and a solution to the average cost

optimality equation (ACOE) (see also [3, 4, 29]). However, in contrast to the context in [1,
2], the cost function is allowed to depend on the actions. Within this framework the main
objective of this paper is to show that the value iteration (VI) scheme can be used to produce

(1) convergent approximations of a solution to the ACOE,
(2) a sequence of stationary policies whose limit points are average optimal.

The main result in this note, stated in Theorem 3.1 below, provides a solution to these problems.
Since the VI method has been studied extensively in the literature, it is convenient to begin by
pointing out the main differences between the results in this note and other theorems already
available. First, the VI scheme has been widely studied under strong stability assumptions
on the transition structure of the modelmsuch as the diverse variants of the simultaneous
Doeblin condition (SDC) [28]rounder which the relative value functions and differential costs
produced by the VI scheme are shown to converge, at a geometric rate, to a solution of the
ACOE whenever the cost function is bounded. However, SDC is quite restrictive and is
seldom satisfied, except for models with finite state space 12, 14, 20, 26, 30], so the results
obtained within such a framework cannot be used in many important applications. On the
other hand, Hordjik, Schweitzer, and Tijms obtained convergence results for the VI method in
[17] under the so-called Lyapunovfunction condition (LFC) 16, 28], a stability assumption
that is substantially weaker than SDC and allows unbounded costs but implies that the Markov
chain induced by each stationary policy is ergodic, a feature that is frequently absent in simple

*Received by the editors January 30, 1991; accepted for publication (in revised form) June 14, 1995. This
research was supported in part by PSF Organization grant 160-350/90-94-2 and MAXTOR Foundation for Applied
Probability and Statistics (MAXFAPS) grant 01-01-56/2-94.

tDepartamento de Estadfstica y Cilculo, Universidad Aut6noma Agraria Antonio Narro, Buenavista, Saltillo,
COAH, 25315, M6xico.
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but interesting applications, as in Example 9.1. The present paper is more on the line of the
work by Sennott [24], where the assumptions on the recurrence structure ofthe model are quite
general. The approach used in [24] is, essentially, based on the results in 17]. In the latter
paper it was postulated that "the first error function" produced by the VI scheme is bounded--
an assumption that is very strong and is closely related to SDC [7]mand such a restriction was
translated to the context in [24] as Assumption 5, which, generally, is very difficult to verify;
the techniques in [24] were extended to more general contexts in 19]. On the other hand, this
note extends ideas recently used in [7, 10], where LFC was assumed but the condition on the
boundedness of the first error function was avoided. Roughly, the usual way to study the VI
scheme consists of analyzing the differences Vn (.) (n + 1)g, where Vn is the nth VI function
and g is the optimal average cost. Here, following [7, 10], the analysis relies on a direct study
of the differential cost function Vn Vn_l, and this allows one to develop an approach to solve
problems (1) and (2) under, essentially, nothing more but the conditions in [1, 2]; however,
it should be mentioned that, unfortunately, the required argumentation becomes substantially
more complicated within this framework.

The remainder ofthe paper is organized as follows: in 2 the decision model is introduced,
whereas the VI scheme is presented in 3, with the main result being stated in the form of
Theorem 3.1. The necessary technical preliminaries to establish this theorem have been divided
into four parts presented in 4-7, whereas the proof of Theorem 3.1 is given in 8, with an
example presented in 9. Finally, the paper concludes with some brief comments in 10.

Notation. 1R denotes the set of real numbers, and N stands for the set of nonnegative
integers. If a, b E IR, set a/x b := min{a, b} and a v b := max{a, b}. On the other hand,
a Cartesian product of topological spaces is always endowed with the corresponding product
topology, and for topological spaces A and K, the set of all transition kernels on A given K is
denoted by(A[K), i.e., yr(.I.) E I?(A [K), if, for each k 6 K, r (.Ik) is a probability measure on
the Borel subsets of A, and for each Borel subset B of A, the mapping k w- zr(B[k), k 6 K, is
measurable. Finally, for an event W, the corresponding indicator function is denoted by I[W].

2. Decision model. Let (S, A, C, p) be a Markov decision process (MDP) where the
state space S is a denumerable set endowed with the discrete topology and the action set A
is a compact metric space. On the other hand, C is the cost function and p is the transition
law. This model represents a dynamical system evolving as follows: at each time 6 N the
state of the system is observed--say, Xt x S--and an action At a A is chosen.
As a consequence, (i) a cost C(x, a) is incurred, and (ii) regardless of the states observed and
actions applied before t, the state of the system at time / 1 will be Xt+l y S with
probability Px y (a); this is the Markov property of the process. Note that it is assumed that all
actions in A are available at each state x; as noted by Borkar in [2], this assumption does not
imply any loss of generality.

Assumption 2.1. (i) (Continuity.) For each x, y 6 S, the mappings a - C(x, a) and
a px y(a) are continuous on A.

(ii) The cost function is nonnegative: C(x, a) > 0, x 6 S, a 6 A.

Policies. Let E N be arbitrary. The space of state-action histories up to time is
denoted by Ht and is given by H0 := Sand Ht := Ht-1 (A S), > 1, whereas
ht :-- (x0, ao xt-1, at-l, xt) stands for a generic element of Hr. Define the information
vector up to time as follows:

(2.1) I0 := X0 and It := (Xo, Ao, Xt-1, At-l, Xt), >_ 1.

A policy is a sequence zr {zrt 6 ]P(AlHt)lt N}; when the system is in progress under zr
and It ht has been observed, :rrt(B[ht) is the probability of choosing action At within (the
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Borel subset) B C A. The space of all policies is denoted by ]?. Now set IF := I-lxesA--i.e., I
consists of all functions f S Amand note that N is a compact metric space in the product
topology [11]. A policy Jr is stationary if there exists f 6 such that Jrt({f(xt)}lht) 1
for all 6 N and ht nt. Next, define NI := l-Iter]F, which is also a compact metric space
and consists of all sequences {ft It N} of members of ’. A policy Jr is Markovian if there
exists {ft} 1VII such that Jrt({ft(xt)}lht) 1 is always valid. The class of stationary (resp.,
Markovian) policies is naturally identified with N (resp., NI) and, with these conventions,
I c l c .

On the other hand, given the initial state X0 x and the policy Jr lP being used, the
distribution of the state-action process {(Xt, At)} is uniquely determined via the Ionescu-
Tulcea theorem; see 14, 15, 20] for details. This distribution is denoted by Px, whereas Ex
stands for the corresponding expectation operator. It is known that under the action of any
policy f 6 N the state process {Xt is a Markov chain with stationary transition mechanism
[14,20,22].

Assumption 2.2 (communication). Under the action of any policy f 6 ’ the state space
is a communicating class. More explicitly, given x, y 6 S and f 6 Y, there exists a positive
integer rn m(x, y, f) such that Pxf [Xm y] > O.

Optimality criterion. The (lim sup expected) average cost at state x 6 S under policy
Jr 6 l? is defined by

(2.2) J(x, Jr) := limsup Ex C(Xn, An)
n--- n -1 t=0

while

(2.3) J(x) := inf J(x, Jr)

is the optimal average cost at state x. A policy Jr is average optimal (AO) if J(x, Jr) J(x)
for all x 6 S.

Since C > 0, the expectation in (2.2) is well defined, but under Assumptions 2.1 and 2.2
alone, J (.) may be identically infinite. Assumption 2.3 below avoids this situation and, in
addition, allows one to establish the existence of a solution to the ACOE yielding AO stationary
policies. This restriction is a version of a condition introduced by Borkar in [1, 2] for cost
functions depending only on the state; see also [3, 4], where the latter restriction is avoided.

Assumption 2.3. (i) (Almost monotone (penalized) costs.) For each b > 0 there exists a

finite set G(b) C S such that

C(x, a) > b forall (x, a) (S \ G(b)) x A.

(ii) (Finite average cost.) There exists a policy f 6 N such that J(x, f) < oe for all
xS.

The following basic result is the most important consequence of Assumptions 2.1-2.3.
Throughout the remainder of the paper, z 6 S is afixed state.

LEMMA 2.1. There exist g N and h S -- , satisfying (i)-(iv) below.
(i) J (x) g for all x S.
(ii) h is bounded below and h(z) O.
(iii) The ACOE holds:

(2.4) g + h(x) inf IC(x’a) + pxy(a)h(Y)] X

Y

S.
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(iv) An optimal stationary policy exists. Indeed, for each x 6 S, the term in brackets in
(2.4) has a minimizer f*(x) A and the corresponding policy f* is optimal.

This lemma was essentially obtained in [1-4]. A short proof is given, since it plays a
basic role in this note.

Proof of Lemma 4.1. From Assumptions 2.1-2.3 it can be shown that conditions 1-3
and 3* in [23] hold tree; see [6] or Remark 6.3ii in [5]. Thus, the conclusion follows from
Sennott’s results in [23]. q

Note that g in Lemma 2.1 is the optimal average cost at each state, so it is uniquely
determined. As will be shown in 4, a function h satisfying (2.4) is also unique if it is bounded
below and is normalized by the condition h(z) O.

As already mentioned, the main objective of the paper is to show that the value iteration
scheme can be used to produce convergent approximations of the pair (g, h(.)) in (2.4). The
result in this direction is stated in the next section as Theorem 3.1 and requires the next
additional condition.

Assumption 2.4. For all x 6 S and a A, Px x(a) > O.
Throughout the remainder of this paper, Assumptions 2.1-2.4 are supposed to hold true,

even without explicit reference. On the other hand, it is interesting to observe that Assumption
2.4 will be used only in one place, namely, in the proof of Theorem 7.1(i) in 7.

Remark 2.1. The restriction imposed in Assumption 2.4 does not imply any loss of
generality. In fact, assume that M (S, A, C, p) satisfies Assumptions 2.1-2.3, and define
a new transition law p* as follows: for all x, y 6 S and a 6 A,

p* (a):=Ot3x / (1-ot)px (a)xy Y Y

where ot 6 (0, 1) is a given number and 6x y 0 (resp., 1) if x y (resp., x y); the
transformation p - p* was introduced by Schweitzer in [27]. Now set M* (S, A, C, p*),
which clearly satisfies Assumptions 2.1 and 2.4" note that *Px x (a) is always _> or. Now let P*x
and J*(x, re) be associated with model M* in the same way as Px and J(x, re) are related
to M In this case it is not difficult to verify that for all x, y 6 S, f 6 ’, and m 6 1,

P*xf[m Y] > (1 t)m Pxf [Xm y] and J* (x, f) J (x, f), and these facts immediately
yield that M* also satisfies Assumptions 2.2 and 2.3. In short, if M satisfies Assumptions
2.1-2.3, then the modified model M* satisfies Assumptions 2.1-2.4. Furthermore, M and
M* are equivalent MDPs in the following sense: let (g*, h*) be the pair given in Lemma 2.1
applied to M*. Then (i) g* g; (ii) h* h/ot; and (iii) a policy f* I’ is obtained as in
Lemma 2.1 (iv) applied to model M if and only if f* satisfies Lemma 2.1 (iv) applied to model
M*; see [20, pp. 371-372].

This section concludes with some remarks about Markov chains that will be used later;
details can be found, for instance, in 18, Chap. 1 ]. First, recall that a function//,f S ]1 is
an invariant distribution of the Markov chain induced by a stationary policy f 6 ’ or, simply,
of the transition matrix Pf [Pf(x, y)] := [Pxy(f(x)] if

(2.5) lzf(y) > O, lzf(x) 1, and lzf(y) Izf(X)Pxy(f(x)), y S.
x x

Also, by Assumption 2.2, if the Markov chain induced by f has an invariant distribution, then
it is unique 18, pp. 39-42] and it follows that

J(x,f)= lim In--+ cx: n -AI- 1Ef C X At)
(2.6) t=0

lzf(y)C(y, f(y)), x S.
Y
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Next, for each x 6 S define the first passage time Tx by

(2.7) Tx := min{n > OlXn x},

where, as usual, the minimum of the empty set is cx. By notational convenience, the time of
the first arrival to the distinguished state z in a positive time is simply written as T, i.e.,

(2.8) Tz =-- T.

Remark 2.2. Let f Y be fixed.
(i) Pf has an invariant distribution if and only if Efy[Ty] < oe for some state y; in this

case Assumption 2.2 yields [18] that

(2.9)
1

lim
1 Pyf[Xt=x]=/xf(x)>O for allx, y S.

n---o n + 1 t=0

(ii) If the Markov chain induced by f has an invariant distribution, then successive visits
to a fixed state y determine a (possibly delayed) renewal process. In this case, if J (x, f) < o,

(2.10)

n--+o n + 1 Ef C(Xt, At)
t=0

lLn=0 C(Xt, At)]

[n=0 C(Xt, A,)]

see (2.7) and (2.8). These equalities follow from the theory of (delayed) renewal reward
processes as presented in [22].

(iii) Suppose that Pf has an invariant distribution and that J (., f) is finite. In this case
(2.6) holds and, by Assumption 2.2, there is a positive probability of reaching a given state
y 6 S between successive visits to state z, and it follows that

where

So :-- {z} and Sk "= {y 6 SlezY[X y, T > k] > 0}.

The following fact, whose proof can be seen in [23, Prop. 4], will be useful:

rC(Xt, At)]< oo, y S;(2.11) EfY
Lt=O

see (2.7) and (2.8). This is true for arbitrary (nonnegative) cost function, and setting C (., .) 1
it follows that

(2.12) Efy[T] < o, y S.
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3. Main result. In this section the main result ofthis note is stated as Theorem 3.1 below.
First, the necessary notions are introduced.

DEFINITION 3.1 (the VI scheme). The sequence {Ve S --+ lk -1, O, 1, 2 of VI
functions is recursively defined asfollows: V-1 0 and, for k > O,

Vk(X) :- inf IC(x’a) W Pxy(a)Vk-l(Y)1Y

X . S.

It is known that, for each k E 1, there exists a policy zrk such that [14, 20, 22, ...] for all
xES,

U(xl c(x,
t=O

(3.)

minE C(Xt, At)
rrI t=O

Also, since the cost function is nonnegative,

(3.2) O< Vn(x) < Vn+k(X), X S, n,k N.

On the other hand, observe that if f 6 is as in Assumption 2.3(ii), then J(x, f) < cx
nimmediately implies that x > Exf[t=0 C(Xt, At)] > Vn(x) for all state x and n 6 1, so

the VI functions are always finite.
DEFINITION 3.2. (i) The relative valuefunctions {Rn S --+ } are defined by

Rn(x) := Vn(x)- Vn(z), x E S, n---1, O, 1

(ii) The nth differential cost at state x e S is given by gn (X) :-- Vn (x) Vn-1 (X), n 6 1.
The main result in this note is the following.
THEOREM 3.1. Suppose that Assumptions 2.1-2.4 hold true, and let g and h(.) be as in

Lemrna 4.1. Then
(i) for all x S, limn_-, gn (X) g;
(ii)for each x S, limn Rn(x) h(x).

Furthermore,
(iii) for each n 1, there exists a policy fn such that, for each x S, fn (x) is a

minimizer of the mapping a + C(x, a) + y Rn(y)Px y(fn(a)), a A. Moreover, every
limit point of {fn is AO.

We have not been able to find a simple and direct proof of this result. Indeed, the method
used below to establish Theorem 3.1 is somewhat technical and consists of four steps, which
are presented in 4-7.

Remark 3.1. Theorem 3.1 is an extension of results in [8, 9, 25]. In these papers it was
shown that, as n -- cx, the sequence {(gn(z), Rn(’)} converges to (g, h(.)) in the Cesro
sense, i.e.,

(3.3) lim
1

gn(Z) g
n n / 1 =0

and

1
lim , Rn (x h (x
n---cx n -- 1 =0

xS.
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These convergences were obtained in [8] under the Lyapunov function condition, in [9] under
conditions slightly stronger than Assumptions 2.1-2.3, and in [25] under conditions involving
the behavior of the optimal discounted value function as the discount factor increases to 1.
The assumptions in [25] are satisfied within the framework described in 2; see, for instance,
[6]. On the other hand, (3.3) was obtained by Gosh and Marcus in [13] as a tool to establish
the existence of strong average optimal stationary policies under Assumptions 2.1-2.3.

4. Preliminaries: First part. The starting point on the way to the proof ofTheorem 3.1
is the following result, which establishes uniqueness of the function h(.) in Lemma 2.1.

THEOREM 4.1. Let hi, hE S --+ 1 satisfy (a)-(c) below.
(a) hi and h2 are bounded below.
(b) hi (Z) h2(z) 0.
(c) h and hE satisfy the ACOE, i.e.,

(4.1) g+hi(x)=min[C(x’a)+ZPxy(a)hi(y)l’xaeA
Y

S, i=1,2.

Then hi (.) h2(’).
The proof of this theorem is based on the following lemma, which is the most important

technical tool in this note.
LEMMA 4.1. Let W S --+ N be a bounded below function satisfying W(z) = O, and

suppose that the stationary policy f IF is such that

g + W(x) > C(x, f(x)) + pxy(f(x))W(y), x(4.2) S.
Y

Then assertions (i)-(vi) below occur.
(i) g J (x, f), x S, i.e., f is AO.
(ii) Every state x is positive recurrent 18] with respect to Pf. Hence Pf has an invariant

distribution lzf see (2.5).
(iii) For all x S,

n + 1 Eft W(Xn+l) 0
t=O

(iv) For all a A and x 6 S,

as n---- 0(3.

(4.3) g + W(x) < C(x, a) + Pxy(a)W(y);
Y

in particular, equality holds in (4.2) and the pair (g, W(.)) satisfies the ACOE:

g + W(x) min [C(x’a) + Z Pxy(a)W(Y)1Y

xS.

(v) Let D S --+ [0, cxz) be such that (a) D(z) 0 and (b) D(x) Efx [D(X1)], x S.
Then

D(x) 0 for all state x.

igf r",T-1(vi) W(x) ,x tz.,t;o (C(Xt, A) g)]for all x S (see (2.7) and (2.8)).
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Proof. To begin, note that, since W(.) is bounded below,

Efx[W(Xn+l)]
(4.4) lim inf > 0.

n--, n + 1

(i) A simple induction argument using (4.2) shows that for all x 6 S and n 6 N,

(4.5) g - W(x) > Ef C(Xt, At) -- l -I- i Ef[W(Xn+l)ln+l -n+l t=0

and taking limit superior in both sides of this inequality, it follows, via (4.4), that for all x 6 S

g>limsup
1 [lnn+ 1Efx C(Xt, At) J(x, f),

t=0

which yields that g J (x, f), x 6 S, since g is the optimal average cost at every state; see
(2.2), (2.3), and Lemma 2.1(i).

(ii) By Assumption 2.2, it is sufficient to prove that some state is positive recurrent 18]
with respect to Pf. This fact will be established by contradiction. Thus, suppose that

(4.6) every state is transient or null recurrent with respect to Pf.
Under this assumption, for eachfinite set G C S [18],

(4.7) lim------1 [ ]] 1 [n--,. n + l Efx I[Xt G =0 and lim Ef I[Xt r S \ G =1.
n n + 1t=0 t=0

Combining these relations with (2.2) it follows immediately that

(4.8) J(x, f) limsup n-t-1Ezx c(xt, At)I[Xt e S \ GI
n---c t=0

To conclude, choose G G(g + 1), the finite set in Assumption 2.3(i) with b g + 1. In
this case C(Xt, At)I[Xt S \ G] > (g q- 1)I[Xt S \ G], and (4.7) and (4.8) together yield
that J (x, f) > g + 1, which contradicts part (i). In short, (4.6) leads to a contradiction, and
this establishes part (ii).

(iii) Since the Markov chain induced by f has an invariant distribution, it follows that

g=J(x,f)= lim [" ]n--- c:x n + 1Efx C X At)
t=0

see (2.6). This immediately yields, in combination with (4.5), that

g > lim sup
1

n--->cx n + 1Ef t=0

C(Xt, At) +
n +1 Efx [W(Xn+l)]

g + lim sup n-+ Efx[W(X"+l)]’
n--+ cx

SO

lim sup 1
n n + Efx[W(Xn+I)] < O,

and the desired conclusion follows from combining this inequality with (4.4).
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(iv) The proof is by contradiction. Let (, &) S x A be arbitrary but fixed, and suppose
that

(4.9) A := g -t- W(2) -C(2, gt) E py(gt)W(y > O.
y

Define a new policy f 6 I and a function S N by

f(x) ifxT2,f(x)
if x 2

and

A ifx :,
(4.10) (x) 0 ifx 2.
Combining these definitions with (4.2) and (4.9) it follows that for all x 6 S,

g + W(x) > C(x, f(x)) + 7r(x) + E P,y(f(x))W(y)
y

>_ C(x, f(x)) .+- E P2y(f(x))W(y)
y

so that, by parts (i) and (ii), f is AO and the Markov chain induced by f has an invariant

distribution/.tz. Next observe that for all x 6 S and n N (see the proof of part (i)),

(4.11) g+ W(x) >n+l -n+lEfx (C(Xt, At) + (Xt)) "}- Ef [W(Xn+I)].
n +"1

By (2.6) with f f, as n cx,

n + 1Efx C(Xt, At) ---> ttf(y)C(y, f(y)) J(x, f)
t=0 y

and similarly (see (2.9) and (4.10))

n-t- 1 t=0 y

Using these convergences and part (iii) with f instead of f, it follows, after letting n increase
to cx in (4.11), that

g > J (x, f) + IJ,f(2)A > J (x, f),

where the strict inequality follows from (2.9) and (4.9). However, this contradicts the equality
g J (x, f), and it follows that A in (4.9) is < 0, establishing (4.3), since the pair (2, fi)
S x A was arbitrary. Clearly, (4.3) implies that equality holds in (4.2), and, finally, (4.2) and
(4.3) together yield that the pair (g, W(.)) satisfies the ACOE.

(v) It is sufficient to prove that D(y) < 0 for y z since, by assumption, D is a
nonnegative function and D(z) 0. Note that D(x) Ex [D(X1)] is equivalent to D(x)
Efx[D(X1)I[T > 1]]; this is due to the condition D(z) 0 and the definition of T (see (2.7)
and (2.8)). Then, from a simple induction argument using the Markov property, it follows that

D(x)-- Efx[D(Xn)I[T > n]], x S, n N.
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Next, set x z to obtain

(4.12) 0- D(z) Efz [D(X)I[T > n]] > D(y)Pzf [Xn y, T > n], n ll,

where y z is an arbitrary state and the nonnegativity of D(.) was used to obtain the
inequality. Since there exists a positive integer n with Pzf[Xn y, T > n] > 0 (see Remark
2.2(iii)), (4.12) yields that 0 > D(y), and as already mentioned, this establishes part (v), since
y S \ {z} was arbitrary.

(vi) Recalling that equality holds in (4.2) and using that W(z) 0, it follows that for
each x S

W(x) C(x, f(x)) g + Pxy(f(x))W(y)
(4.13) y=/=z

Efx[(C(Xo, Ao) g)I[T > 0] + W(X1)I[T > 1]];

note that T Tz is always > 1 by (2.7) and (2.8). This implies, via an induction argument,
that

(4.14)

W(x) E (C(X,, a,) g)[T > t] + W(X+)I[T > n + 1] x e S, n e N.

Next observe that, since PZ has an invariant distribution and J(., f) g(< ec) (by parts (i)
and (ii)),

(a) (2.11), (2.12), and the dominated converge theorem together imply that

lim Efx (CX, At)- g)l[T > tl Efx (C, A)- g)I[T > t]

(b) Ex[W(X,)![r > nl] >_ E[bI[r > nil bP[r > nl bPf[r 1 0 as
n c, where b is a lower bound of W(.), and the last equality is a consequence of (2.12).
Then, letting n increase to oe in (4.14) and using (a) and (b) it follows that

t=0

On the other hand, the Markov property and the definition of M(.) together yield that

M(x C(x, f(x g + Px y(f(x))M(y)

E[(C(Xo, A0) g)[r > 0] + M(X1)I[T > 1]],

which combined with (4.13) implies that

(4.16) W(x) M(x) E[[(W(X) M(X))[rz > 111, x e S.

To conclude set D(x) "= W(x) M(x), x e S, and obsee that D(.) R 0 by (4.15). Now
recall that J(., f) g, so (4.15) and the third equality in (2.10) together yield that M(z) 0.
Since W(z) 0 (by assumption), it follows that D(z) W(z) M(z) 0. Then (4.16) can
be written as

(xl- e[f(xll, x e s,
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and from an application of part (v) it follows that W(x) M(x) D(x) 0 for all x e S,
and the conclusion follows from combining this with the definition of M(-) in (4.15). [3

This lemma will be now used to establish Theorem 4.1.

ProofofTheorem 4.1. Letx 6 Sbe arbitrary. Since hi is bounded below, Assumption 2.1
yields that the mapping a - C(x, a) + -y Pxy(a)hi(y) is lower semicontinuous and then
has a minimizer j5 (x), since A is compact [11 ], so

(4.17) g + hi(x) C(x, fi(x)) 4c- Z Pxy(fi(x))hi(y), 1, 2 x S.
y

Then, for 1, 2, f/is AO and has an invariant distribution/z, by parts (i) and (ii) ofLemma
4.1. Now define t S --, IR by

(4.18) t(x) "--h(x)/ hz(x), x 6 S;

note that (.) is bounded below and that (4.17) implies that for all x 6 S,

g + hi(x) > C(x, a) + Pxy(fi(x))t(y), 1, 2.
y

Then

(4.19) g + t(x) >_ C(x, f(x)) + Z Pxy(f(x))(y),
y

where the policy f 6 is given by

fl(X)
i :--

f2(x)

if h (x) _< h2(x),
if h2(x) < hi (x).

Using Lemma 4.1(iv) with W t and f instead of f, (4.19) implies that

(4.20) g + t(x) < C(x, fi(x)) + Z pxy(fi(x))(y), x S, 1, 2,
y

and it will be proven below that the equality holds, i.e.,

(4.21) g + t(x) C(x, fi(x)) + E Px y(fi(x))t(y).
y

The conclusion follows from this assertion, since by Lemma 4.1 (vi), (4.17) and (4.21) together
yield that

hi(x)-- Ef LT..(C(Xt,= At)-g)= (x), x S, i= 1,2;

recall that hi(z) h2(z) 0 and then t(z) 0 by (4.18). Thus, to complete the proof
it is sufficient to establish (4.21). With this in mind let 2 S and 6 1, 2} be fixed, and
note that y pxy(fi(x))t(y) <_ Y.y pxy(fi(x))hi(y) < oo by (4.17) and (4.18). Now define
p S--+ 1R by

[ g + t(x) C(x, fi(x)) y pxy(fi(x))(y) ifx 2,
(4.22)

/ 0 ifx 2,
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so (4.20) implies that for all state x

g + (x) <_ C(x, fi(x)) + (x) + _pxy(fi(x))(y),
Y

with equality for x . An induction argument yields that

(4.23)
1 f 1g+n+l(X)<E+ l

C(Xt, fi(Xt)) + /(Xt) +
n + lEx[(Xn+)], xeS.

t=0

Next observe that, by (4.17) andLemma4.1(iii) with W(.) hi(.) and f fi, E [hi(X+)l/
(n + 1) -+ 0 as n c. Since < hi this implies (recall that is bounded below) that
lim__, EZx[(X+)]/(n + 1) 0. With this in mind, take limit as n -- cx in both sides of
(4.23) to obtain, via (2.6), (2.9), and (4.22), that

g<limn..+o n -l-l fi[C(Xt’fi(Xt))-+-l[(Xt)t=0 ZlzJ(Y)C(y’fi(Y))+lzf()()’y
Since )--y lLfi (y)C(y, fi(Y)) g (fi is AO) and/zf,() > 0 (by (2.9)), the last displayed
inequality renders that () > 0 and then () 0, since by (4.20) and (4.22), (.) < 0.
Therefore, (4.21) holds for x , and the conclusion follows, since : and
were arbitrary. [3

5. Preliminaries: Second part. This section is the second step in the journey to the
proof of Theorem 3.1. The present objective is to establish Theorem 5.1, which concerns the
asymptotic behavior ofthe differential costs introduced in Definition 3.2. First, it is convenient
to introduce some useful notation.

DEFINITION 5.1. Thefunctions U, L S --+ are defined asfollows: for each x S,

U(x) := lim sup gn (X) and L (x) := lim inf gn (X).
n--- oo rt--+o

Note that (3.2) and Definition 3.2 together imply that U and L are nonnegative functions.
The next theorem is the main result of this section.

THEOREM 5.1. Let g and f* I be as in Lemma 2.1. Then

(5.1)
U(x) L(x)

Ex [Tx]
+ L(x) < g for all x S.

In particular, U and L are finitefunctions.
Proof For each k 6 N let policy zrk be as in (3.1). Now let the state x and the nonnegative

integer n be arbitrary but fixed, and define a new policy zr *n as follows: for 6 N and
ht (xo, ao xt-1, at-l, xt) nt,

(a) suppose that xs x for 1 < s < t. In this case

rcTn({f*(xt)}lht) :-- 1.

(b) if xs # x for 1 <_ s < k and Xk x for some integer k < t, set

rrT" (.J.) := zr_-(.I.) if k < n

and

7rTn({f*(xt)}lht) := if k > n.
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In words, a controller using zr *n operates as follows: actions are chosen according to f*
until state x is reached in a positive time; if it occurs after time n, policy f* continues in use,
whereas if Tx k < n the controller switches to policy zrn-k as if the process had started
again. Then it is clear that for all x S,

(5.2) E C(Xt, At)I[Tx > n] Efx Z C(Xt’ At)I[Tx > n]
=0 =0

and

Now let k < n and recall that Xk x on [Tx k] and that Tx is/k-measurable. Since on
[Tx k] policy zr *n coincides with zrn-k from time k onward, the Markov property yields that

I[Tx k]E;
n-

C(Xt, At)
t=0

I[Tx k]Vn-k(x) (see (3.1)).

f*Therefore, Ex t=Tx C(Xt’ At)l[Tx k]] Px=*"[Tx k]Vn-k(X) P; [Tx k]Vn-k(x)
for all k < n, where the second equality follows from the definition of re*n; this implies that

[Vn-x (x)[Tz <_ n]].

Combining this equality with (3.1), (5.2), and (5.3) it follows that

+ Ex C(Xt, At)I[Tx > n]
t=0

< Ex C(Xt, At) -t-Ex [Vn-Tx(X)I[Tx <_ n]],
L t=O
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where the nonnegativity of the cost function was used to obtain the second inequality. Thus,

(5.4) V(x)-Ef*[V-rx(X)I[Tx <-n]]< Ef*[lC(Xt’At)]t--O

Now observe that

V(x)- Ex [Vn-x(X)I[Tx <_ n]] V(x)Pf [Tx > n]

+ ,(Vn(X) v_(x))P*[rx k].
k=l

On the other hand, (2.9) and the dominated convergence together imply that Ex [Tx I[Tx >
rill --+ 0, whereas limn-,c Vn(x)/n g (see [13]). Therefore, it follows that

(5.6)
0 <_ V.(x)pf*[rx > n]

V.(x)
ncf*[r > n]

Vn(x) Efx, [TxI[Tx > n]] --> g. 0- 0 as n --+ cx.
n

Now let {n(r)} be a sequence increasing to oc such that

(5.7) lim gn(r) (x) U (x),
oo

and note that

(5.8) liminf gn(r)_t(X) >_ L(x), 1, 2, 3
?’---0

where the inequality is due to the definition of L (x) as the limit inferior of the whole sequence
{gn (x)}. Hence, for all s _> 1, (5.7) and (5.8) together yield that

s-1

lirmif[Vn(r)(X) Vn(r)-s(X)] lirrnifZ gn(r)-t(x)
t=0

lira inf gn(r) (X) + gn(r)-t (X)
r--->o

t=l

> U(x) + (s )L(x),

so an application of Fatou’s lemma [21] leads to

(5.9)
n(r) cx

lirminf Z(Vn(r)(X) Vn(r)-k(x))Pf*[Tx k] >_ Z(U(x) -+- (k 1)L(x))P/*[Tx k]
k=l k=l

U(x) + Ex [Tx 1]L(x).

Replacing n with n(r) in (5.4) and taking limit inferior as r -+ cx in both sides of the resulting
inequality it follows, via (5.5), (5.6), and (5.9), that

(5.1o) U(x) + Efx*[Tx-1]L(x) <-Efx* IC(Xt’At)]
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This immediately implies that U(x) is finite, and then so is L(x), since 0 < L(.) < U(.),
by Definition 5.1. Next observe that, by Lemma 2.1(iv), g + h(x) C(x, f*(x)) +
Zy pxy(f*(x))h(y), x E S, so that Pf. has an invariant distribution, by Lemma 4.1(ii).
Since f* is AO, (5.1) follows from (5.10) after simple rearrangements using that g

f.Exf*[V’Ix-lz_,t=o C(Xt, At)]/Ex [Tx]’, see Remark 2.2, especially (2.10). [3

6. Preliminaries: Third part. The objective of this section is to show that the relative
value functions in Definition 3.2 are appropriately bounded and that the function L in Definition
5.1 has a minimizer.

THEOREM 6.1. (i) There exists N > 0 and a function B S --+ [0, oe) such that
-N < gn(x) <_ B(x) for all x S and n N.

(ii) There exists z* S such that L(z*) < L(x), x S.
The proof of this result relies on Lemmas 6.1 and 6.2 below.
LEMMA 6.1. Let G C S be afinite set. There exists afinite constant K(G) > 0 such that

IVn(x)- Vn(Y)l <_ K(G) for all x, y 6 G, n E N.

Proof. Let x 6 S and n 6 N be fixed, and define the policy n"*n as in the proof of
Theorem 5.1. Recalling that zr *n coincides with f* before time Tx, it follows that for all
y 6 S, Ey t=oC(Xt, At)I[Tx > n]] Ey [t=oC(Xt, At)I[Tx > nl] and
,n Tx-1 f* Tx-1Ey [t=0 C(Xt, At)I[Tx n]] Ey [/=0 C(Xt, At)I[Tx n]]. Also, using that

for each k n, * coincides with n- from time k onward in the event [Tx k], it follows
that

Ey C(Xt, At)I[Tx < n] Ey [Vn-Tx(X)l[Tx < n]]
t=Tx

f*Ey [Vn-Tx (x)I[Tx < n]],

since policy zr *n coincides with f* before Tx; see the arguments in the paragraph following
(5.3). Then (3.1) yields

Vn (y) < Ey C(Xt, At)
t=0

*n I 1 zr*n I1Ey C(Xt, At)I[Tx > n] + Ey C(Xt, At)i[Tx < n]
t=0 L t=0

nt- Ey C(Xt, At)I[Tx <_ n]
t--Ix

Ey C(Xt, At)I[rx > n] + Ey C(Xt, A,)I[rx <_ nl
t=0 L t=0

f*
nt- Ey [Vn-Tx (x)I[Tx <_ nl]

<_ Ey C(Xt, At) nt- Ef [Vn_Tx(X)I[Tx <_ n]].
L t=0
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Combining this inequality with (3.2) it follows immediately that

(6.1)

:*[x-,rx-and the conclusion follows setting K(G) "= maxx,yG{Ey z.-,t=0 C(Xt, At)]}. q

This lemma will be used to prove part (i) of Theorem 6.1. First notice that, by Theorem
5.1, U(z) lim supn_o g,,(z) is finite. Since gn(’) >- 0, this yields that {gn(z)} is a bounded
sequence. Throughout the remainder b > 0 is fixed and satisfies

(6.2) b >_ gn(z), n E 1.

In this case

k-1 k-1

(6.3) kb > Z gn_ E(Vn_s- Vn_s_l)-- Vn(Z)- Vn-k(Z),
s=0 s=0

n-k>-l, n, kEI,

and since V-1 --- 0,

1
(6.4) b > Vn (z).

-n+l

On the other hand, G G(b + 1) is thefinite set guaranteed by Assumption 2.3(i), i.e.,

(6.5) C(x,a) _> b+ 1, (x,a) 6 (S\ G) A.

Finally, set

(6.6) TG := min{n > 0l X G} min Tx.
xG

ProofofTheorem 6.1(i). Let 7r 6 1V/[ be as in (3.1), and note that

gn(x)’--EffnIc(Xt’At)

-[- Ex C(Xt, At)I[TG < n]
t=T

Ex C(Xt, At)I[TG > n] + Ex" C(Xt, At)I[TG < n]
t=0 / t=0

+ Exn[Vn_v(Xr)I[T <_ nil,

where Bellman’s optimality principle was used to obtain the last equality. Next observe that
M "= max{IVy(z) Vn(Y)IlY 6 G, n E 11} is finite, by Lemma 6.1, so (6.7) leads to

+ Ern[Vn_T(Z)I[TG < nl]- M,
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and using (6.3) and (6.4),

t=0
n -4-

Vn(Z))I[TG > n]

-4-Ern ITIc(xt’At)I[TG<n]lLt=o

+ E[(V._(z)- V,,(Z))I[TG <_ nil- M

t=0 I.. t=0

E"[bTI[T < n]]- M

=ExnI(C(Xt’At)-b)I[TG>n]]t=O

Now observe that X G for < < Ta, which yields C(X, A) b > 1 (see (6.5) and
(6.6)), so from the last displayed relation

g(x) g.(z) >_ E"[(C(X0, Ao) b + n)I[ra > hi]

(6.8)
-4- Effn[(C(Xo, Ao) b -4- To, 1)I[r6 < n]] M

> -b-[- En[TG/k 11 1] M (since C(., .) > 0)
>-b-M-l,

and then R,(x) V,(x) V,(z) > -N for all state x and n 6 N, where N := M + b + 1.
To conclude set B(y) Efy*[X-’T-1 C(Xt At)] and note that (6.1) with x z yields thatZ-,t=0

Rn(y) < B(y) for all state y; by (2.11) with f* instead of f, B(.) is finite. [3

The arguments used above will be used to prove the following lemma, which plays an
important role in the proof of the second part of Theorem 6.1.

LEMMA 6.2. Let 7r 1VII be as in (3.1), and suppose that for some sequence {n(r)}
increasing to infinity, 7rn(r -- rc NIl as r --+ zx. Then, for all x S,

P T < x) 1.

Proof Recall that G is a finite set. A simple induction argument combining Assumption
2.1 with Proposition 18 in [21, p. 232] shows that for all x 6 S, n 6 N, and y 6 G, the
mapping

(6.9)
zr P [Xs C G, < s < n, Xn y] P [Xn y, T n], rc 6 lV, is continuous,

and since Px[Ta n] y6G eft [xn Y, Ta n],

(6.10) 7r - Pff [T6 n], 7r 6 1VII, is also continuous.

Now let x 6 S be arbitrary but fixed, and let B(x) be the upper bound for Rn (x)} given in
Theorem 6.1(i). Using (6.8) it follows that

M + b + 1 + B(x) > E [TG /k 11], n 6 N.
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Thus, if qn (’) is the distribution of TG/X n with respect to Pff", the above relation and Markov’s
inequality together imply that

V M + +b+ B(x)
qn(k) < K > O,

k>K K

so that {qn (.)} is a tight family of probability distributions on the subsets of 1 \ {0}. Now
suppose that zr n(r) --+ zr as r -- x. In this case,

lim qn(r)(k) lim exn(r)[WG / n(r) k]
r--->OQ

lim Pn(r)[za k] (TG / n(r) TG when n(r) > k)
F--->O

where the third equality follows from (6.10). Since {q(r)} is a tight family, this convergence
implies that 1 - Pff [TG k] Pff [TG < x]. ]

Using this lemma the proof of Theorem 6.1 can be completed as follows.
Proofof Theorem 6.1 (ii). Let n be a positive integer, and select zr as in (3.1). For each

x e Sand0<k<n,

where the last equality follows from Bellman’s optimality principle. Now define a new policy
zrn; as follows:

n;k(a) zro (’lxo) zro (.Ixo), xo e S.
Suppose now that is a positive integer, and pick ht (xo, ao xt-, at-, xt) Hr.

(b) Ifxs CGforalls 6{1,2,...,t},

7r; (.Iht)
7rt_-(.Ix, az,...,

ift <k,

ift > k.

(c) Suppose that x, G for < s < r < and Xr G. In this case,

-(r/xk)zr/"k(’lh) YgtL-(lrAk) (’lXr/l, rAk Xt).

In words, a controller using 7r
; operates as follows: the controller starts choosing actions

according to 7r (see (a)) and keeps on using zr until a state in G is reached or time gets value
k, whatever occurs first. Then, at time TG /x k s, the controller switches to policy zr--s

as if the process had started again. According to this interpretation,

Ex " C(Xt, At) E" C(Xt, At)
k t=0 k t=0

and

Ex";’ I C(Xt, At)] Exn[Wn-l-Ta/k(XT/k)]
L T/I
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Combining (3.1) with these equalities it follows that

n-1

Vn- (x) < Ex
n;’

C(Xt, At) + C(Xt, At)
1.. t=0 TAk

]c(x. A + V._-r(Xr.
/ t=0

which together with (6.11) and Definition 3.2(ii) yields

(6.12)

gn(X) >_ E"[gn-/(X/:)]
> E"[gn-’(XT")I[T6 < k]] (since gt(’) > O)

k

Px [Ta s, Xs Y]g,-s(Y).
s=l y6G

Now pick a subsequence {n(r)} such that limr__, gn(r)(X) L(x). After taking a subse-
quence, if necessary, there is no loss of generality in assuming that 7"(n(r) 7"g E 1 as
r C, since M is compact metric. Replacing n with n(r) in (6.12) and taking limit as
r --+ cx in the resulting inequality, it follows, via (6.9), that

L(x) lim gn(r)(X)
F’-"(X)

k

> lim infZZ e;n(r)[Za S, X Y]gn(r)-s(Y)
r.--oo

s=l yG

k

-> Z liminf ex n(r)[Ta S, X Y]gn(r)-s(Y)
F.---O0

s=l yG

k

ZZ Px [TG s, Xs y] lirminf gn(r)-s(Y)
s=l yG

k

> Z Px [T s, Xs y]L(y)
s--1 yG

Ex[L(Xra)I[T6 < k]],

where (5.8) was used to obtain the third inequality, and letting k increase to cxz, this implies
that

L(x) > Ex[L(XT.a)I[Tc, < cx]].

Finally, let z* E G be such that L(z*) min{L(y)ly G}; such a point exists, since G is
finite. In this case the last displayed relation yields that

L(x) > Ex[L(z*)I[Tc, < cxz]]--- L(z*)P[T6 < cxz]-- L(z*),

where Lemma 6.2 was used to obtain the second equality. This completes the proofofTheorem
6.1, since x S was arbitrary. [3

7. Preliminaries: Fourth part. This is the last step before the proof of Theorem 3.1,
and the main objective is to establish the following result.
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THEOREM 7.1. (i) Let z* be as in Theorem 6.1(ii), and suppose that {n(r)} is a sequence
ofpositive integers converging to oo satisfying

(7.1) lim gn(r)(Z*) L(z*).
F---- OO

Then

(7.2) lim gn(r)-I (Z*) L(Z*).
F----O

(ii) There exists a sequence R S -- N lk N} and a sequence ofstationary policies
{f*} C IF satisfying thefollowing: for some N’ (0, oo) and B’ S -- [0, oo),

(a) R; l-Ixs[-N’, B’(x)]for all k N.
(b) L(z*) + R(x) > C(x, f;(x)) + y Pxy(f;(x))R+l(Y),X S, k N.
Proof. For each positive integer n select fn IF such that

(7.3) Vn(x) C(x, fn(x)) 4- ZPxy(fn(x))Vn-l(y), x S.
y

(i) By (3.1), Vn-l(x) < C(x, fn(X)) 4- -y Pxy(fn(x))Vn-2(Y), so

(7.4)
gn(X) Vn(x)- Vn-(x) >_ ZPxy(fn(x))(Vn_l(y)- Vn-2(Y)) ZPxy(fn(X))gn-l(Y).

Y Y

Now let {n(r)} be as in (7.1), let L’ be an arbitrary limit point of {gn(r)-l (Z*) }, and note that
(7.2) will be proven if it can be shown that

(7.5) L’= L(z*).

With this in mind, note that by taking a subsequence if necessary, it can be assumed that

(7.6) gn(r)-I (Z*) L’ and fn(r) -+ f I as r -+ cx;

recall that l’ is compact metric. Next replace n by n(r) and set x z* in (7.4). Taking limit
inferior as r -- cxz in the resulting inequality it follows, via (7.1), Assumption 2.1, and Fatou’s
lemma, that

(7.7)

L(z*) lim inf gn(r)(Z*) > lim inf Pz* y(fn(r)(Z*))gn(r)-I (Y)
F---O0

y

> Z pz, y(f(z*)) liminf gn(r)-l(Y)
Y

> Z pz*y(f(z*))L(y) (see (5.8))
y

_> (z*),

where the last inequality is due to Theorem 6.1(ii). Therefore, all inequalities in (7.7) are
equalities, and then

Pz*y(f(z*)) lirminf gn(r)-l(Y) pz*y(f(z*))L(y).
y y

Combining this with (5.8) it follows that

liminfgn(r)_l(y) L(y) if Pz*y(f (z*)) > O,
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but, by Assumption 2.4, this implies that liminfr gn(r)-l(Z*) L(z*), which combined
with the first convergence in (7.6) yields (7.5), and as already mentioned, this completes the
proof of part (i).

(ii) Pick a sequence {n(r)} such that gn(r)(Z*) --+ L(Z*) as r -- cx. By repeated applica-
tion of part (i),

(7.8) lim gn(r)-s(Z*) L(z*) for all s 6 N.

Replacing n with n(r) s in (7.3), simple rearrangements using Definition 3.2(ii) yield that

gn(r)-s(Z*) + n(r)-s(X) C(x, fn(r)_s(X)) -[- Z Pxy(fn(r)_s)(X)n(r)_s_l(X),
(7.9) y

x S, n(r)>s,

where, kn(r)-s(X) := Wn(r)-s(X)- Wn(r)-s(Z*)- Rn(r)-s(X)At-[Wn(r)-s(Z)- Wn(r)-s(Z*)]. By
Lemma 6.1, max{lVn(r)-s(Z) V,,(r)-s(z*)llr, s N, n(r) > s} K < zx, and combining
this with Theorem 6.1(i) it follows that

(7.10) n(r)--s D Flxes[-N- K, B(x) + K].

Now set/t 0 and ft f for < O, and note that

Pn(r) (kn(r)-s[S E 1) E D -,
)n(r) (L(r-slS E 1) .

Since E and NI are compact metric, taking a subsequence if necessary, it can be assumed that
in addition to (7.8), as r -- ec, P,,(r) --+ P* (RIs N) 6 E and qS(r -+ 05* := (f*ls
N) 1. These convergences are equivalent to the following: for each s 6 N

(7.11) lim [,,(r-s(x)- R(x) [-N- K, B(x) + g], x S.

(7.12) lim f,(r-s(x) f*(x), x S.

Setting N’ := N + K and B’(x) B(x) + K, (7.11) shows that the sequence {Rs* satisfies
part (a). To conclude, take limit as r ---> cxz in both sides of (7.9). In this situation, using (7.8),
(7.11), (7.12), and Assumption 2.1, it follows that for all s 6 N and x 6 S

L(z*) + R2(x) C(x, fs*(X)) + rlimZ PxY(f*(r)-s(x))kn(r)-s-l(y)
Y

> C(x, f*(x))+ liminf Pxy(f*(r)_s(X))Rn(r)_s_l(y)
Y

C(x fs*(X)) nt- ZPxy(f(x)) *Rs+I(Y),
Y

where Fatou’s lemma was used to obtain the inequality. Then R" and f* satisfy condition
(b), and the proof is complete. F1

8. Proof of the main result. The preliminaries in the previous sections will be now used
to establish Theorem 3.1.

Proof of Theorem 3.1. (i) Let {R S -- N} and {f*} C ] be as in Theorem 7.1. Set
rr* {fs*} N[. An induction argument using part (ii(b)) of Theorem 7.1. yields that for all
x SandnN,

(8.1) L(z*) + R)(x) >
n+l -n+l

Jr*

n + 1 Ex [R+(Xn+I)].
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* -N’On the other hand, note that Rn+ (.) > E (-oo, 0], so

liminf
Ex*[R’+I (Xn+l)]

> 0.
n--+o (n --[-- 1)

Therefore, taking limit superior as n c in both sides of (8.1), it follows that

and then

L(z*) >_ g,

since g is the optimal average cost; see Lemma 2.1 (i). Combining this inequality with Theorem
5.1 and Theorem 6.1 (ii) it follows that

U(x)- L(x)
g < L(z*) < L(x) < + L(x) < g, x E S,

which immediately yields that

U(x) L(x)
(8.2) L(x)=g and f, =0, xeS.

Ex [Tx]

To conclude, recall that policy f* is obtained as in Lemma 2.1 (iv) and that, as already noted in
the proofofTheorem 5.1, the corresponding transition matrix Pf. has an invariant distribution.

f*Thus, Ex [Tx] is finite for all state x (see Remark 2.2(i)), and it follows that (8.2) is equivalent
to

U(x) L(x) g, x S,

i.e., limno gn(X) g for all state x; see Definition 3.2(ii).
(ii) By Theorem 6.1(i),

(8.3) Rn rlxes[-N, B(x)] =: K, n e N,

for some positive constant N and a certain function B S --+ [0, cx). Since K is a compact
metric space, it is sufficient to show that any limit point--say, Q E K--of Rn coincides with
the function h(.) in Lemma 2.1. Thus, pick a sequence {n(r)} increasing to cx such that

(8.4) lim Rn(r)(X) Q(x) e [-N, B(x)], x e S.
r--o

From Definition 3.2 it follows that Rn(x) Rn-1 (x) gn(x) gn(Z) and then Rn(x)
gn-1 (x) "+ 0 as n o, by part (i). Therefore, (8.4) implies that

(8.5) lim Rn(r)-l(X) Q(x) e I-N, B(x)], x S.
r----o

Now pick a policy fn(r) - ] such that

Wn(r)(X) C(x, fn(r)(X)) -[- Pxy(fn(r)(X))Wn(r)-l(Y)
Y
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for all state x, which after simple rearrangements using Definition 3.2 can be written as

(8.6) gn(r)(Z) at- Rn(r)(X) C(x, fn(r)(X)) / ZPxy(fn(r)(x))Rn(r)-l(y), x E S.
y

Recalling that F is a compact metric, after taking a subsequence if necessary, it can be assumed
that in addition to (8.4) and (8.5), fn(r) f F as r cx. In this case, letting r increase
to ee in both sides of (8.6), it follows, via part (i), Assumption 2.1, (8.4), and (8.5), that

g + Q(x) lim {gn(r)(Z) / Rn(r)(X)}

"-lim{C(x’fn(r)(X))/ZPxy(fn(r)(x))Rn(r)-l(Y)}r---> y

(8.7) C(x, f(x)) + rlirn Pxy(fn(r)(x))Rn(r)-l(Y)
Y

> C(x, f(x)) + Z liminf Pxy(fn(r)(x))Rn(r)-l(Y)
Y

C(x, f(x)) / pxy(f(x))O(y),
Y

where Fatou’s lemma was used to obtain the inequality; this is possible, since Rn(’) >_ -N.
Next observe that

(8.8) Q(z)-O and Q(.)>-N6(-cx,0];

see (8.4) and recall that Rn (z) 0 for all n by Definition 3.2. Note now that (8.7) and (8.8)
allow to use Lemma 4.1 (iv) with W replaced by Q to obtain

g + Q(x) min IC(x’a) + ZPxy(a)Q(Y)]Y

x6S;

i.e., Q satisfies the ACOE. To conclude observe that the assumptions in Theorem 4.1 are
satisfied with hi := Q and h2 h; see (8.8) and parts (ii) and (iii) of Lemma 2.1. Therefore,
Theorem 4.1 implies that Q h, and as already noted, this shows that {Rn (’)} converges
pointwise to h(.).

(iii) Since Rn(.) is bounded below, by Theorem 6.1(i), Assumption 2.1 implies that for
each x 6 S the mapping a C(x, a) + y Pxy(a)Rn(y), a A, is lower semicontinuous
and then has a minimizer fn (x). In this case,

C(x’fn(x))+ZPxy(fn(x))Rn(y)=minIC(x’a)+Pxy(a)Rn(y)lyaA
Y

min [C(x’a) / ZPxy(a)gn(Y)]
Y

Vn+l(X)- Vn(Z),

and then (see Definition 3.2)

(8.9) C(x, fn(X)) / - Px y(fn(x))Rn(y) Rn+l (X) / gn+l (Z).
y
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To conclude let f 6 F be a limit point of {fn}, and select a sequence {n(r)} increasing to cxz
such that for all x S, fn(r(X) -- f(x) as r --+ cx. In this case, replacing n by n(r) in (8.9)
and taking limit as r -+ oe in both sides of the resulting equality, it follows, using Assumption
2.1, Fatou’s lemma, and parts (i) and (ii), that for all x S

g / h(x) lim [gn(r)+l (Z) / Rn(r)+! (x)]

--rlimoIC(x’fn(r)(X))/Pxy(fn(r)(x))Rn(r)(Y)ly
C(x, f(x)) + lim Z Pxy(fn(r)(x))Rn(rl(Y)

y

> C(x, f(x))+ liminf Pxy(fn(r)(x))Rn(r)(Y)
y

C(x, f(x)) / Z px y(f(x))h(x),
y

and from the ACOE (see (2.4)), it follows that f(x) is a minimizer of the mapping a w-
C(x, a) + Zy Pxy(a)h(y), a A, so that f 6 IF is AO, by Lemma 2.1(iv). [3

9. An example. This section contains an example illustrating the application ofTheorem
3.1 to a single-server queueing system.

Example 9.1. Let A be a finite set endowed with the discrete topology and suppose
that {Una Dna a A, n N} is a collection of independent N-valued random variables
satisfying (i)-(iii) below.

(i) For each a 6 A, the random variables {Una In N} are identically distributed with
common distribution {qa(’)}: P[Una k] qa(k), n, k 6 N, where

(9.1) qa(O) (0, 1).

(ii) For each a 6 A and n 6 N,

(9.2) P[Dna 1] P[Dna 01 a (0, 1).

These random variables will be interpreted as the arriving and service streams in a single-
server queueing model with state space S N and action space A. For each time n N, let
Xn x S be the number of customers waiting for service at the beginning of the period
[n, n + 1). If action An a is applied, then the number of customers arriving between times
n and n + is Un a, whereas if Xn > 0, the server can provide a complete service in that period
with probability a Dn a (= 0, 1) is interpreted as the number of customers leaving the system
after service completion in [n, n / 1). Formally, this can be summarized in the following
evolution equation:

(9.3)
Xn+Una-Dna

Xn+ Un a

if Xn > 0 and An a,

if Xn 0 and An a.

Note that this equation immediately determines the transition law Pxy(a) P[Xn+I
yIX x, An a].

(iii) For some a* 6 A, E[ 2 (2)U/,a*] =" ^a* < O and E[Una*] =" )a* <
Finally, define the cost function by C(x, a) := x, (x, a) 6 S x A.

PROPOSITION 9.1. Assumptions 2.1-2.4 are satisfied in Example 9.1. Therefore, the
conclusions in Theorem 3.1 occur.
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Proof (1) Since A is finite and C(x, a) x, Assumption 2.1 clearly holds.
(2) Let f be an arbitrary stationary policy, and note that (9.1)-(9.3) together imply that

for all x, y S and n N, P/[Xn+I >_ x nu llXn X] >_ P[Un f(x) >" O, Dn f(x) 0]
(1-qf(x)(O))(1-Sf(x)) > 0, andthatifx > 0, Pxf [Xn+l x-llXn x] qf(x)(O)Sf(x) > O.
Using these inequalities, a simple induction argument yields that

(9.4) Pf[Xn> y+n]>O, yeS, nN,

and

(9.5) Pyf[Xn y-n] >0, y, n 6 S, y > n.

Assumption 2.2 follows immediately from these facts. Indeed, let x, y 6 S. By (9.4), there
exists a positive integer n such that Pf[Xn w] > 0 for some w > x v y, and then (9.5)
yields, for rn to y, that Pfw[Xm y] > 0. Therefore, Pf[Xn+m y] > Pxf[Xn
w]Pfw[Xm y] > 0, showing that Assumption 2.2 holds, since f 6 F was arbitrary.

(3) Note that part (i) of Assumption 2.3 clearly holds, since C(x, a) x for all (x, a) 6

S x A. To verify part (ii) define real constants li, 0, 1, 2, by

and

(2)+ ll)a* nu t2/a,10 :--
qa*(O)

Now set l(x) := lo + llx + 12x9, x S, and define the stationary policy f by f(x) := a*,
x S. In this case, straightforward calculations using (9.3) show that

1 -t- C(x, f(x)) -b-

_
Pxy(f(x))l(y) <_ l(x), x e S,

y0

so (.) is a Lyapunov function of the Markov chain induced by f, and this yields that J (., f)
is finite 16, 28]; alternatively, the finiteness of J (., f) can be obtained from Proposition 4 in
[23]. This completes the verification of Assumption 2.3.

(4) Note that pxx(a) P[Xn+I xlXn x, An a] > P[Una O]P[Dna 0]
qa(0)(1 a) > 0 by (9.1) and (9.2), so Assumption 2.4 occurs. [3

In the above example notice that, if E[Una] > (a for some a 6 A, then it is not difficult
to see that the policy fa I given by fa (’) =- a induces a transient Markov chain.

10. Conclusion. The value iteration procedure has been studied in the class of commu-
nicating MDPs characterized by Assumptions 2.1-2.4, and it was shown in Theorem 3.1 that,
within this framework, the differential costs and relative value functions produced by the VI
scheme converge to the (unique) solution of the ACOE given in Lemma 2.1. The approach
used in this workmfollowing the ideas in [7, 10]mis not based on an analysis ofthe differences
Vn(’) (n + 1)g but relies on a direct study of the differential costs; see Theorems 5.1, 6.1(ii),
and 7.1. This allows one to avoid other (somewhat restrictive) conditions imposed in other
works, such as Assumption 5 in [24] and the boundedness of the first error function 17].

Acknowledgment. The author is grateful to the unknown reviewers for their careful
reading of the original manuscript, constructive criticism and helpful suggestions.
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Abstract. The optimal control problem for Volterra integral equations with respect to quadratic criteria is studied
by a projection causality approach. The work features a synthesis result where the optimal control is implemented via
a linear causal feedback in which the feedback operator is determined by solving an independent Fredholm integral
operator equation.
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1. Introduction. The state-space approach in modern control theory provides a mathe-
matical framework in which many control problems for ordinary differential equations, partial
differential equations, and functional differential equations can be formulated and treated in
a unified manner via abstract operators on Banach spaces and semigroup theory; cf. [2], [9],
[3], [12], [14], [15]. On the other hand, engineering control designs often feature direct input-
output relations in either time or frequency domain. Some difficulties in this approach arise
in handling control problems governed by partial differential equations, due to the fact that
functions of several complex variables are involved. But it also has merit since the transfer
functions are theoretically independent of whether the outputs are related to the inputs via
the solution of an initial value problem. A very general class of input-output relations, which
includes all initial value problems for linear evolutionary equations in Banach spaces as a
proper subset, is described by Volterra integral equations. These are what we study in this
paper.

We shall consider quadratic optimal control problems for general linear Volterra equations
in Hilbert spaces. The open-loop control is easily obtained, but since we do not assume that
there exists a realization in terms of a differential equation on the Hilbert space, we cannot
apply standard theory to obtain a state feedback via the solution of a Riccati equation. Thus
the principal objective of the paper will be to derive a closed-loop synthesis which provides
a feedback optimal control in a causal sense. We establish the results for the single-variable
case, but they are easily generalized to the bivariate and multivariate cases, which have some
direct applications to multidimensional signal processing and data analysis; cf. [8].

To introduce the model equation and optimal control problem, consider the following
input-output relation given by a Volterra integral operator:

(1) y(t) f(t) + g(t, r)u(r)dr, 0 < < T,

where T > 0 is finite and fixed. We let A {(t, r) 6 [0, T]2; 0 < r < < T}, where
[0, T]2 [0, T] x [0, T].

Let Y and U be real Hilbert spaces. We assume that

(A1) f C([0, T]; Y),

(A2) K 6 C(A; (U; Y)),

*Received by the editors September 24, 1994; accepted for publication (in revised form) June 24, 1995.
Department of Mathematics, University of Warwick, Coventry CV4 7AL, UK.
tDepartment of Mathematics, University of South Florida, Tampa, FL 33620.
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where the continuity is in the strong sense; i.e., for each u U, the function
K(t, r)u A -+ Y is strongly continuous. Thus by the Banach-Steinhaus theorem, one has

sup(/,r)/x IlK(t, r)llct;r < cx. For convenience, we make a convention that K(t, r) 0
whenever (t, r) [0, T]2\A.

We denote y L2(0, T; Y) and L/= L2(0, T; U). The quadratic cost functional is

(2) J(u, f) (Gy(T), y(T)) + fo
r
[(Q(t)y(t), y(t)) + (R(t)u(t), u(t))]dt,

where the inner products (., .) are related to the spaces Y or U according to the context. We
assume furthermore that

(A3)

G 6 (Y), Q(.) 6 C(0, T; L(Y)), R(.) 6 C(0, T;/2(U)), where G, Q(t), R(t)

are self-adjoint and there exists a constant 3 > 0 such that R(t) > I, [0, T].

The problem is to find an optimal control u* 6 L/which minimizes J (u, f) over b/for any
given f satisfying (A1). We shall refer to this optimal control problem as (OCP).

Before getting into the mathematical theory, let us remark that more general controlled
linear Volterra integral equations can be reduced to the form (1). For instance consider the
integral equation

(3) y(t) f (t) + A(t, r)y(r)dr + N(t, r)u(r) dr, 0 < < T,

with appropriate assumptions similar to those above. Then it is easy to prove the following
lemma, which reduces (3) to (1).

LEMMA 1.1. Define an operator 7- E(C([0, T]; Y)) by

(7"y)(t) A(t, r)y(r) dr, 6 [0, T],

where A 6 C(A; (Y)). Then thefollowing statements hold.
(i) 7" is a quasi-nilpotent operator so that cr (7-) {0}.
(ii) There exists a unique solution y of (3), which can be expressed by

(4) y(t) g(t) + K(t, r)u(r)dr, 0 < < T,

where

g(t) f(t) + R(t, r)f(r)dr, 0 < < T,

g(t, r)u N(t, r)u + R(t, s)N(s, r)uds, (t, r) A,

and the resolvent kernel R (t, s) is given by

() R(t, s) Z Aj(t, s)
j=l



1876 A.J. PRITCHARD AND Y. YOU

with

A (t, s) A (t, s), Aj+l(t,s)y A(t, p)Aj(p,s)ydp, j=l,2

Here the series in (5) converges in the operator norm.
As we mentioned earlier, the difficulty in this work lies in the determination of a feedback

optimal control in the causal sense. Namely, the optimal control u* (t) at any time should
not involve future information of the corresponding trajectory y* (.). But it would be naive
to seek an optimal control whose real-time value depends only on the past information of the
function f(.), since the whole input f(t), [0, T], determines the optimality conditions.

2. Existence and open-loop result. We now define various linear operators on the func-
tion spaces 3) and H" F 6/(H, y), FT /(H, Y), Q G (Y), 7" (H),

(Pu)(t) K(t, z)u(r)dr, [0, T],

Fru g(r, r)u(r)dr (ru)(r),

(Qy)(t) Q(t)y(t), e [0, T], y e 32;

u 6bl;

uH;

(Tu)(t) R(t)u(t), [0, T], u H.

It is easy to see that Q and are self-adjoint and the adjoints of 1-’ and rT are given by

T

(r*y)(t) K*(z, t)y(r)dr, [0, T], y 32;

(1-’q))(t)- K*(T, t)99, [0, T], p Y.

An important role will be played by an operator 6 (H), where

(6) 7I + r*r + r sr .
Our final assumption is that

(A4) there exists e > 0 such that > elu.

A preliminary characterization of the optimal control is given in the following theorem.
THEOREM 2.1. Suppose that (A1)-(A4) hold. Thenfor any given f C([0, T], Y) there

exists a unique optimal control u (we drop the * notation where there is no confusion)for
(OCP). The pair {u, y} is optimal ifand only ifthefollowing relation is satisfied:

(7) u(t) -R(t)-1 K*(T, t)Gy(T) + K*(s, t)Q(s)y(s) ds [0, T].

Proof Substituting the expressions

(8) y f + Fu and y(T) f(T) + rTbt

into the cost functional (2), we obtain

J(u, f) (u, u)u + 2(r*Qf + FrGf(T), u)u + const(f).
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By assumption (A4),
given by

E(/g); therefore, the unique optimal control function u L/is

(9) u --1 (F* Qf + FGf(T))

or equivalently

(10)
7Zu -[1-’*Q(Fu + f) + FG(Fru + f(T))]

-[F*Qy + FGy(T)].

Replacing F*, Fr, Q, and 7Z by their explicit forms yields (7). [3

Another equivalent and useful expression for the open-loop optimal control u is given by
the following corollary.

COROLLARY 2.2. Under the same assumptions, the optimal control u is the unique solution

ofthefollowing equation in bl:

(11)

T

R(t)u(t) + L(t, r)u(r)dr

K*(T, t)Gf(T) + g*(s, t)Q(s)f(s)ds E [0, T],

where

(12)

/mL(t, r)u K*(T, t)ag(T, r)u + K*(p, t)Q(p)K(p, r)u dp,
ax(t,r)

(t, r) ,6.

Proof. This is simply a consequence of the variational equation

u -(r*2f + WrGf(T))

and the concrete integral expression of the operator

[(r*er + rGrr)ul(t) fo
r
L(t,r)u(r)dr.

It follows that the minimum of J (u, f) over/A is given by

(13)

with

kI/
(i)_ F,-GFr

-r*-lrG ].G-GFr-FG
The next task is to explore the possibility of producing a causal feedback optimal control.
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3. Causal projections. In the open-loop relation (7) the real-time value of the optimal
control u(t), [0, T], is given in terms of the future-time values of the corresponding state
trajectory y y(s; u, f), < s < T. The key issue here is to convert such a noncausal
dependence into a causal one. And as noted earlier, we are not able to proceed via a differ-
ential Riccati equation because the Volterra integral equation (1) may not have a state-space
realization. We need, therefore, a different approach in order to treat the causality problem
and a new way to accomplish the synthesis.

DEFINITION 3.1. We define a truncation operator 7r by

u(t) fort [0,] }(14) (7ru)(t) 0 for (, T]

where 0 < < T is a parameter which can be chosen arbitrarily.
Obviously, both zr and I 7r are projection operators on the function space H. They

are idempotent and commute with the operators R and R-1. We shall call these projections
causal projections. Similar truncations were introduced in the literature by Miller and Sell
[11 ]; see also the books by Gripenberg, Londen, and Staffans [4] and Bensoussan et al. [1].
In the control literature they have been used by Ichikawa [7], Vinter and Kwong [13], and
Delfour [5], [6]. We denote

range (I zr) (I zr)L/,

which is a closed subspace of b/, and define a parametrized operator { by

(15)

It has the following properties.
LEMMA 3.2. For any given [0, T), the operator (Lt) is positive definite and

self-adjoint. Moreover

(16) I1({)-1 IIc(g> const (uniform in [0, T)).

Proof For any u and v in L/{, we have

(-u, v)u (-u, v)u (u, (I r)v)u (u, v)u (u, v)u

(by tracing back in a similar way)(u, -V)u-.
Moreover for any u

Thus - is boundedly invertible and I[({)-I [[c(u-) 1/ for all 6 [0, T). [3

Note that r+ is the zero operator, but L/r+ {0}, and so we may also take the inverse

()-1 as the zero operator. Hence, the above lemma can be extended to the case T.
DEFINITION 3.3. For any state trajectory y(.) corresponding to an admissible control

u(.), we define the -causal trajectory y(.) by

(17) y(t) f(t) + K(t, z)(Tru)(r)dr, [0, T].
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One can call a -causal trajectory y (.) a semicausal trajectory because the control function
is truncated, but not the function f. Note that (17) can be written as y f + Fzr u, and it
is obvious that

(18) y y + F(I r)u, y(T) y(T) + FT(I zc)u.

DEFINITION 3.4. For any [0, T], we define a -evolutionary operatorN .(3) x Y)

(19) (F) (0{)_(I r)(F*Q, F.G).N Iyy-
FT

Now we prove two important identities which will be used later in establishing the syn-
thesis equations.

LEMMA 3.5. Thefollowing hold:

(20) ((P{)-(I .)(r*, ra) (i .)n-(r*, r)N y x Y --+ L/-,
r

(,)_( r) N r(21) r
Proof The verification of the two identities is straightforward, using the idempotent

property of (I 7r) and the commutative property (I rr)7".- - (i rr). In detail,
(20) follows from

Equation (21) follows from

(r) (I- zr)T-I ( r ) (I n-)’R,-N rr rr
r

(,) (i .)(r*, r) r

(F)[7"-l-(O-)-l(I-zr)(F*QF+FrGFr)7-l](l-zr)Fr
rr in-1 (,)-1( r)(, n)n-](

-(r)(0)-1(I-)’-rr
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4. Semieausal optimality principle. In the previous section, we defined several new
concepts: zr,, N, and semicausal trajectories y (.). We will now study their interrelations,
and it will turn out that the result can be regarded as a generalization of the well-known
optimality principle. We call such a new result the semicausal optimality principle.

THEOREM 4.1. Let e [0, T] and f e be given. The optimal state trajectory y(.) and
the corresponding semicausal trajectory y (.) are related by

(22)
y(T) N Y(T)

Proof Note that (22) is an equality in the space Y x Y. To show it, we substitute (18)
into (10) to obtain

7u + (F*QF + 1-’GFr)(I 7v)u -(1-’*Qy + FGy(T)).

Premultiplying the above equality by (I 7r) yields

.(I 7r)u -(I rc)(I’*Q, I’G)( y ).y(T)

By Lemma 3.2, it follows that

(23) (I 7c)u -()-I(I Jr)(I’*, FG)( y ).y(r)

Then, substituting (23) into (18), we see that (22) holds.
This theorem shows that the entire optimal state trajectory y(.) is determined by the

semicausal trajectory y(.). The latter depends only on the optimal control u(t), 0 < <_
and the real-time information ofthe function f (.). Furthermore, we get an immediate synthesis
result.

THEOREM 4.2. u (.) is the optimal control ifand only if

(24) u(t) -R-(t)[(I’*Q)(t), (FG)(t)]Nt(yt(T)Yt ), 6 [0, T],

where Yt (’) is the semicausal trajectory with parameter equal to and

(25)

(F*y)(t) K*(r,t)O(r)y(r)dr, y e 3;,

Proof. From (10), (22), and the expressions for E* and I’r, we see that

(26) u(t) -R-I(t)[(F*Q)(t), (I’G)(t)]N( y ) 6 [0 T],
y(T)

where u is the optimal control and 6 [0, T] is arbitrary. The choice yields (24).
Conversely, in order to show that if u(.) satisfies (24), then it is optimal, we need only

show that the pair {u(.), y(., u, f)} satisfying (24) is unique. Since both (1) and (24) are linear,
it suffices to show that when f 0, the unique solution of (24) is u(t) 0, [0, T]. Below
we prove this. Since f 0, we have Yt [’Trtu. If this pair satisfies (24), then

Ilu(t)llg <_ IlR-(t)llc(v)ll(F*Q)(t), (I’ra)(t)llc(y,,u)llNtllc(y,)
yt(T) yxY"
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By (25), (19), and Lemma 3.2, we have

II(r*)(t), (rrG)(t)llc(yr,u)llNtllc(yr const (uniform in t)

and

rrtu < (const)IIr, ullu,
yt(T) yxr FT

where again the constant is uniform in t. Therefore

Ilu(t)ll: _< (const) Ilzrtull (const) IIrtu(s)ll: ds (const) II,(s)ll: ds.

Applying Gronwall’s inequality it follows that u(t) O, [0, T], and this completes the
proof.

Although the expression (24) looks like a causal feedback, it involves the abstract operators
Nt and (Or+) -1, and we really need more effort to reach a computable implementation. This
will be the subject of the next section.

5. Feedback optimal control. Based on the result given in Theorem 4.2, we will now
focus on the further manipulation of the abstract operator Nt. We want to convert it into
another feedback gain operator which can be accessed in a computational manner. For this
purpose we define, for [0, T], the operator B (t, r) a/2(U) by

(27) B(t, r) -n-l(t)[(r*)(t), (ra)(t)]N
K(T, )

Here f2 [0, T] x [0, T]. In the following we will write operator equations without specifying
their action on various functions. This is really an abuse of notation since the integrands will
in general not be uniformly measurable. However, we feel that the proper interpretation is
always clear.

LEMMA 5.1. For any given [0, T], there exists a unique strongly continuous solution

B (t, r,) of thefollowing integral equation:

(28) B(t,

where L(t, ) is given by (12). This solution is given by the expression in (27) and is such
that

(29) sup liB,(t, r)ll < .
(,t,:)E[0,T]

Proof. First we show that the expression on the right-hand side of (27) really is a solution
of (28), and then it is easy to see that the solution is strongly continuous and satisfies the
equiboundedness condition (29). We have

B(t, r) -n-l[(r’*)(t), (rG)(t)]N
K(T, r)

n-l(t)[(r. )(t),

_()1-’ (,{) 1(i g)(r*, FrG)kK(T r)
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* ., *G)(t)K(T,r)]R-l(t)[(1 Q)(t)K(r) + ([’

+ R-l(t)[(F*Q)(t)[" + (FG)(t)Fv](cP)-I(I 7r)(l-’*Q, FG)\K(T, r)

R-(t)[(I’*Q)(t)K( ., r) + (I’G)(t)K(T, r)]

+ rcG)(t)r](I r)7-(r*, VG)N(K(’R-I(t)[(F*Q(t)F+
\/(r, )

(in this step (20) is used)

R-(t)L(t, r) R-(t)[(I’*Q)(t)I -t- ([’.G)(t)[’](I zc)Bg(., r)

R-(t)L(t, r) R-(t)L(t,s)((I :rr)B)(s, r)ds

R-(t)L(t, r) R-(t)L(t,s)B(s, r)ds, (t, r) .
Next we prove the uniqueness. It is enough to show that the homogeneous operator equa-
tion

T

(30) /}(t, r) + R-(t)L(t,s)[(s, r)ds O, (t, r) 6 f2,

admits only the null solution. Applying the operator (I zr)R to (30), we obtain

(I)-(I r)/(., r) 0 in H-.
By Lemma 3.2, this reduces to

( r)h(., r) 0, r [0, T].

So/t (t, r) 0 for (t, r) (, T] x [0, T]. Substituting this in (30) yields/} (t, r) 0 for
(t, r) f2, and this completes the proof. [q

Now we present the main results on feedback optimal control.
THEOREM 5.2. Suppose that (A1)-(A4) hold. Then u(.) is the optimal control ifand only

if

(31)

u(t) -R-l(t)[([’*Q)(t)yt + (I’.G)(t)yt(T)]

Bt(t,s)R-(s)[(F*Q)(s)yt + (FG)(s)yt(T)lds, [0, T],

where B (t, v) is the unique solution ofthe integral operator equation (28) ofFredholm type
and Yt (’) is the corresponding real-time semicausal trajectory which depends only on the past
information {u(z’) "0 < z" < t}.

Proof Suppose that u(.) is the optimal control. Then by (24), the definition (19) of Nt,
and the identity (21), we have
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u(t) R-l(t)[(I’*Q)(t), (r’rG)(t)]Nt
yt(T)

*G)(t)]( yt )R l(t)[(1-’*Q)(t) (I"r yt(T)

(I")( + , ( Yt )* t) (I-zrt)(F Q,FG)+ R l(t)[(F*Q)(t) (FrG)(t)] Fr yt(T)

R-l(t)[(r*)(t), (rra)(t]
y,(r)

F
(I zrt)-1(F-Q, FrG)

yt(T)+ -l(t)[(r, )(t), (rG)(t)]N

R- (t)[(F* Q)(t)yt + (FG)(t)yt(T)]

+ R-(t)[(F*Q)(t), (FG)(t)]Nt
K(T,s)

x (s)-l[(r*Q)(s)y, + (FG)(s)yt(T)]ds

R-l(t)[(F*Q)(t)yt + (FG)(t)yt(T)]

Bt(t, s)R(s)-l[(r* )(s)y, + (ra(s)y,(r)l s,

where in the last step we used Lemma 5.1 and (27). Therefore, (31) is satisfied by the optimal
control u(.) and its coesponding semicausal trNecto

Conversely, for any given f, there is only one pair {u, y} which satisfies the relation
(31). This can be proven in a way similar to the proof of Theorem 4.2 by using Gronwall’s
inequality. The proof is omitted.

Finally we replace the operators F* and F with their explicit expressions and obtain the
following synthesis result.

THgOREM 5.3. Suppose that (A1)-(A4) hold Then u(.) is the optimal control gand only

() u(t) -g(r, t)ay,(rl (r, t)Q(r)yt(r) dr, e [0, T],

where Yt is the corresponding semicausal trajecto, the feedback operator H(., is inde-
pendently determined by

(33) H(r, t) R(t)- g*(r, t) + Bt(t, s)R(s)- g*(r, s) ds,

and Be (t, s) is the unique solution of the Fredholm integral equation (28).
Pro@ Substituting (25) into (31), we obtain

u(t) -R-l(t) g*(r,t)Gy(r) + g*(r,t)Q(r)yt(r)dr

(4

Bt(t,s)R-l(s) g*(r,s)ay,(r)+ g*(r,s)Q(r)y,(r)dr ds.
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Note that we have a convention that K(r, s) K* (r, s) for (r, s) fl\A. Interchanging the
order of integration in the last term of (34) gives

u(t) -n(r, t)ay,(r) R-l(t)g*(r,t)Q(r)yt(r)dr

Bt(t,s)R-l(s) g*(r,s)Q(r)yt(r)drds

-H(r, t)Gy,(r) H(r, t)Q(r)yt(r) dr.

Conversely, since we can deduce (31) from (32), the control process satisfying (32) must be
optimal by Theorem 5.2. rq

COROLLARY 5.4. u(.) is the optimal control ifand only if it satisfies thefollowing linear
integral equation:

(35)

u(t) -g(r, t)af(r) n(r, t)Q(r)f(r) dr n(t, s)u(s) ds, e [0, rl,

where H(., is defined by (33) and the operator 1-I (., is given by

(36) rI(t, r) H(T, t)GK(T, r) -t- H(s, t)Q(s)g(s, r)ds.

Proof. By the definition (17) and the convention on K, we have

(37) yt(r) f(r) + g(r, s)u(s) ds, r [0, T].

Substituting (37) in (32) gives (35).
Remark 5.5. We have achieved a feedback optimal control given by (32). In this closed-

loop formula, there are two ingredients. One is the semicausal trajectory Yt (’) and its terminal
value at time T but with the parameter at the real time t. The other is the feedback operator
H(r, t), given by (33), and essentially relies on another operator B (r, t), which is obtained
by solving the linear integral equation (28). This latter equation is totally independent of the
function f. For this reason we call the Fredholm integral equation (28) the synthesis equation.
It plays a role similar to that of the operator Riccati equation.

Since the general Volterra equation does not have a semigroup evolutionary property,
the direct feedback implementation of the optimal control in terms of the actual trajectory
{y(r) 0 < r < t} is not possible, because the future information of the function f is not
counted. In view of this, the semicausal trajectory feedback is the best that can be hoped for.
However, when the Volterra integral actually represents a mild solution of a linear evolution
equation, our results incorporate both the regulator and the tracking problems. Indeed we are
able to obtain

the usual feedback via Riccati equations for the regulator problem,
the additional input which solves the tracking problem.

The approach is similar to that carried out in [10], and the first is illustrated in the next
section.

6. The reduction for controlled evolution equations. In this section we show that when
the Volterra integral equation is given by the mild solution of a time-invariant evolution equa-
tion, our results reduce to the well-known ones in terms of Riccati equations. Specifically we
assume that
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(t) Ay(t) + Bu(t), O < < T, y(O) yo Y,

where A generates a strongly continuous semigroup S(t), > O, on Y and B .(U, Y) so
that

(38) f (t) S(t)yo, K(t, r) S(t r)B.

Consider the differential Riccati equation

((t)x, y)+(’(t)x, Ay)+(Ax, I(t)y)+(Qx, y)-(’(t)BR-1B*(t)x, y) O, ]?(T) G,

where 6 [0, T], x, y 6 D(A), and we have assumed for simplicity that Q and R are
time invariant. We will prove that the optimal control as given in Theorem 5.3 is u(t)
-R-1B*I?(t)y(t), [0, T]. The proof of this reduction will be given in detail so that one
can see the correspondence between the standard approach and the one presented here. In this
way more insight is obtained into the operator method and causality argument that we have
used for Volterra integral equations.

LEMMA 6.1. If (38) holdsfor (1), then the optimal control u(.) is given by

(39) u(t) -E(t, t)y(t), [0, T],

where y(.) is the corresponding trajectory

(40) E(t, r) H(T, tlGS(T r) + g(s, t)QS(s r)ds, (t, r) [0, T]2,

H(., is defined by (33), and we have the convention S(t) 0 whenever < O.
Proof. By (17),

Hence

y(t) S(t)yo + S(t r)Brru(r)dr, > 0,

y(t), < ,
S(t )S()yo + S(t ) S( r)Bu(r)dr,

S(t- )y(), > . t>,

(42)

and
T

H(r, t)= R-1B*S*(r-t)+ Bt(t,s)R-1B*S*(r-s)ds

R-IB*S*(r t) + Bt(t,s)R-B*S*(r s)ds.

y(t), <
(41) y(t)

S(t )y(), >

and the result follows by substitution of (41) in (32).
Using (38), the expressions (12) and (33) for L(., and H(., take the form

L(t, r) B*S*(r t)GS(r r)B + B* S*(s t)QS(s r)B ds
ax(t,r)

B*S*(r t)GS(r r)B + B* S*(s t)QS(s r)B ds
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We define an operator W(., by

(43)

W(t, ) S(t ) r(t)(*)-l(l 7r)(1-’*Q, 1-’G)
S(T )

O<<t<T,

where W(T, T) I. We have the convention that W(t, ) 0 for < and with slight
abuse r(t)u (ru)(t), u lg.

LEMMA 6.2. The operator W has thefollowing properties:
(i) for any initial data, the optimal trajectory y(.) satisfies

(44) y(t) W(t, )y(), 0 < < < T.

(ii) sup0_<<t<T IIW(t, )llcr) < .
(iii) W(t, o)W(o, ) W(t, ), 0 < <_ 0 < < T.
(iv) W(t, ) is strongly continuous in [, T] and in (0, t], respectively.

Proof To prove (i) we note the following facts"

Hence

y y + 1-’(I- zr)u,

(1 zr)u _({)-l(i zq)(r* Qy + PGy(T)),

y(t) = S(t- )y(), 0 < < < T.

y(t) s(t )y() r(t)(,{)-(i zr,)(r*Q, r,G)
S(T )

y()

W(t, )y(), (t, ) {0 < < < T’ # T}.

For T, (44) holds since W(T, T) I.
The proof of (ii) follows from Lemma 3.2.
For (iii), let 0 < < r/< < T. By using (43) and (19), we find

S(T-)
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By (19), (20), and (21), we have

Uo-N =Uo(I-N)-(I-Uo)N

(r)(I- )R-(I’*Q r)N N(No [’T I-’T
(I zro)R-I (F* Q, I"TG)N

No 1-’r
(r r)R-I(F*Q’ FrG)N

(S("- ))F(r/)(I- yr)R-l(1-’*Q, I’,G)N.=N. S(T-)

Substituting this into the parenthesis {...} of the last term in the above expression, we have

s(t -r)Bn-((*O)(r), (IG)(r))N
S(T

S(t ) r(t)(I zr)R-1 (F* Q’ F’G)N( S(" )
)

s(t ) r(t)(.-)-(I )(r*O, rra)
s(r

w(t,

for any 0 < < < < T with < T, r < T, but if < T and r T, then the equality
remains valid, viz. W(T, r)w(r, ) w(r, ). Clearly it is true for T, and
hence (iii) is proven.

For (iv), by the definition of W it is clear that W(t, ) is strongly continuous in [, T].
Using this continuity and properties (ii) and (iii), it is easy to prove the strong continuity in

(0, t]. The detail is omitted.

(45)

LEMMA 6.3. Let P [0, T] --+/2(Y) be defined by

P(t) S*(T t)GS(r t) + S*(s t)QS(s t)ds

((F* Q)(t), (FTG)(t))Nt
FT

(I t) (F* Q, FT S(T t)

where the new operators [’* (3)) and [’r ’(Y, 3)) are defined by

(l"*4(t s*( tl(d, (P)l(t0 S*(r t0,

Then ifE is given by (40), we have

(46) E (t, t) R-1 B*P (t), [0, T].

6 [0, T].
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Proof From (27), (40), and (42), we have

E(t, t) H(T, t)Gs(r t) + H(s, t)QS(s t) ds

R- B* S* (T t)G S(T t) + S* (s t) Q S(s t) ds

( )R-1B* ((’*Q)(t) (f’*TG)(t))Nt S(. a)
S(T -a)

x BR-B*S*(T -a)GS(T t)da

(R-1B* ((*Q)(t) ()G)(t))Nt S(. a)
S(T -a)

x BR-B*S*(s a)QS(s t)da ds

R- B* S* (T t)G S(T t) + S* (s t) Q S(s t) ds

x BR-B* S*(T )Gs(r t) + S*(s -)QS(s t)ds d

R- B* S* (T t)GS(T t) + S* (s t) Q S(s t) ds

(). F
(I-t)R-(F*Q,FTG

s(r-t)
R-B*((*Q)(t)’ (TG)(t))Nt

FT

which completes the proof.
LEMMA 6.4. Let P and W be defined by (45) and (43), respectively. Then

(47) P(t)y S*(T t)aW(r,t) + S*(s t)QW(s,t)ds, e [0, T].

Proof. From (43) and (20), it follows that

S*(T t)GW(r,t) + S*(s t)QW(s,t)ds

S* (T t)GS(T t) + S* (s t) Q S(s t) ds

S*(T t)GF(T)(t+)-(I ,)(r*Q, rrG)
S(T t)

-ft
r
S*(s t)Or(s)(,+)-(I rrt)(r* Q, rG)

S(T t)

S*(T t)GS(r t) + S*(s t)QS(s t)ds
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r
(o+)_ (i r,)(r* O, rG)

S(T t)
((f’* Q)(t), (f’*rG)(t)) rr

S* (T t)aS(T t) + S* (s t) e S(s t) ds

((I*Q)(t) -* ([’)(l-yrt)R-[’TG)(t))Nt
f’T

P (t), [0, T]. f3

LEMMA 6.5. The relation

s(.-t))1(F’Q, rG)
S(T t)

(48) W(t,) S(t-)- W(t,a)BR-IB*P(a)S(a-)da

holds, and P is the unique strongly continuous and self-adjoint solution ofthe integral Riccati
equation

(49)

P(t) S*(T-t)GS(T-t)+ S*(s-t)[Q-P(s)BR-B*P(s)]S(s-t)ds, [0, T].

Proof. First we prove (48). Let the function on the right of (48) be denoted by O(t, ).
Then it can be verified that both

g(t) W(t,) and gz(t)=0(t,), (es, T],

are continuous solutions of the Volterra integral equation

g(t) S(t-)- S(t-a)BR-1B*p(a)g(a)da, [, t].

Then by the uniqueness of the solution, (48) is valid.
Now we prove (49). By (47) and (48), for 6 [0, T], we have

P(t) S*(T t)GW(T, t) + S*(s t)QW(s, t) ds

T

S* (T t)G S(T t) + S* (s t) Q S(s t) ds

T

S*(T t)G W(T,s)BR-B*P(s)S(s t)ds

S*(rl t)Q W(rl, s)P(s)BR-1B*P(s)S(s t)dsdrl

T

S* (T t)G S(T t) + S* (s t) Q S(s t) ds

r
S*(s t)BR-B*P(s)S(s t)ds

T

S*(T t)GS(T t) + S*(s t)[Q P(s)BR-IB*P(s)]S(s t)ds.
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By (47) and Lemma 6.2(iv), we see that P (.) is strongly continuous. In [2], it is proven that
the strongly continuous solution of (49) is unique. By transposition, it can be seen that P* (.) is
also a strongly continuous solution of (49). Hence, by uniqueness, P* (t) P (t), 6 [0, T],
and the proof is complete.

We have finally reached our goal in the reduction. This is stated in the following theorem.
THEOREM 6.6. Suppose that (A3) and (A4) holdfor the data given by (38). Then the

optimal control is given by

(50) u(t) -R- B*Ip(t)y(t), [0, T],

where lP is the unique strongly continuous and self-adjoint solution of the differential Riccati
equation and y(.) is the corresponding trajectory.

Proof. This follows from Lemmas 6.1, 6.3, and 6.5 and the known fact that the integral
Riccati equation (49) is equivalent to the aforementioned differential Riccati equation and
hence P .
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ON THE USE OF CONSISTENT APPROXIMATIONS FOR THE OPTIMAL
DESIGN OF BEAMS*

C. KIRJNER NETO AND E. POLAKt

Abstract. This paper presents a discretization strategy, based on the concept of consistent approximations, for
certain optimal beam design problems, where the beam is modeled using Euler-Bernoulli beam theory. It is shown that
any accumulation point of the sequence of the stationary points of the family of resulting approximating problems
is a stationary point of the original, infinite-dimensional problem. The construction of approximating problems
requires the development of a relaxation of constraints to ensure existence of solutions. The numerical solution of
the approximating problems, by means of nonlinear programming algorithms that are not scale invariant, must be
preceded by a change of variables to guard against deterioration of performance. The use of such approximating
problems, in conjunction with a diagonalization strategy, is illustrated by a numerical example.

Key words, optimal design, discretization theory, epiconvergence, consistent approximations, algorithm con-
vergence theory
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1. Introduction. Over the past 15 years, there has been a great deal of activity in the
development of numerical methods for the solution of optimal design problems (see, e.g., [4,
5, 9, 10, 12, 16] and references therein). A major class of these methods is based on the
construction of an infinite sequence of finite-dimensional approximating problems by means
of numerical integration techniques. To be of any value, such approximating problems must
be consistent in the sense that their solutions converge to those of the original problem. Now,
in the context of optimization problems, the concept of a solution is not unique; one may mean
a global minimizer, a local minimizer, or, quite commonly, simply a stationary point.

A scan through the optimal design literature (see, e.g., [6, 9, 13, 16]) shows that only the
question of convergence of global minimizers of approximating problems to a global mini-
mizer of the original problem is usually addressed. However, it has been observed empirically
(see [7]) that some numerical methods used to solve boundary value problems result in approx-
imating problems with local minimizers that converge to nonstationary points of the original
problem. A simple example of how such a pathology can occur is given in 2.

The impact of the multiplicity of solution concepts in optimization on the issue of con-
sistency of approximation is only now beginning to be recognized. In 18] we find an abstract
theory of consistent approximations for optimization problems. This theory provides guidance
to the construction ofapproximating finite-dimensional optimization problems and to the use of
efficient diagonalization techniques for constructing sequences of finite-dimensional approxi-
mating problems in the approximate solution ofan infinite-dimensional optimization problem.
Within this theory, optimization problems are not endowed with a specific structure, and hence
optimality conditions are expressed in terms of zeros of optimalityfunctions.2 Approximating
problems are judged to be consistent if the constrained epigraphs of their cost functions and
the hypographs of their optimality functions converge, in the Kuratowski sense, to those of
the original problem. Consistency in the sense of 18] ensures the convergence of the global

*Received by the editors April 18, 1994; accepted for publication (in revised form) July 13, 1995. This research
was supported by Air Force Office of Scientific Research contract AFOSR-90-0068 and National Science Foundation
grant ECS-8916168.

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720.
1Referring to 11], we see that using a diagonalization strategy in getting an approximation at specified preci-

sion to a solution of an infinite-dimensional optimization problem is always more efficient than simply solving an
approximating problem of the given precision.

2Optimality functions are usually the value functions of quadratic optimization problems that arise when one
attempts to verify whether a classical optimality condition is satisfied or not.
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minimizers, local minimizers, and stationary points of approximating problems to correspond-
ing points of the original problem.

To apply the results in 18] to optimal design, one must carry out three tasks. The first,
and often the easiest, is the selection of bases for finite-dimensional subspaces of the original
infinite-dimensional design space. Next, one must show that the selected numerical integration
method converges with the same rate on all the finite-dimensional subspaces used, uniformly
in the decision variables. This fact shows that there is an important interaction between the
selection of the subspaces and the selection of the method of integration (see, e.g. [22]). The
literature on numerical integration usually does not include such results, and their development
can be a serious source of difficulty. Finally, to ensure that the approximating problems have
solutions, one often has to invent a satisfactory relaxation of the constraints.

To date, the applicability of the theory of consistent approximations in [18] has been
established for discrete optimal control problems [19, 22] resulting from the use of Euler and
Runge-Kutta methods of integration on ordinary differential equations.

This paper uses the theory of consistent approximations in developing an approach to
the solution of a class of optimal Euler-Bernoulli beam design problems with continuum
constraints, such as constraints on vertical deflection, shear stress, and normal stress at the
extreme fiber. The continuum constraints make these problems nondifferentiable and hence
quite difficult to solve.

In the process of developing consistent approximations for the beam problems, we have
addressed two important issues that are usually ignored. The first is that of finding a rational
method for relaxing constraints so as to ensure that the approximating problems have solutions.
The second issue is that of preserving problem conditioning. It is well known in nonlinear
programming that changing norms can have a profoundly adverse effect on the behavior of
algorithms, such as the phase I-phase II method of centers in [20], that are not scale invariant.
When the basis functions used for the finite-dimensional subspaces on which the approximating
problems are defined are not orthonormal, the corresponding Euclidean coefficient spaces are
not isometric with the function subspaces. Hence, if one compares the behavior of a nonscale
invariant algorithm in solving an approximating problem formulated in a finite-dimensional
subspace of the original function space using the original norm, with its behavior in solving
the same approximating problem formulated in the space of coefficients using the Euclidean
norm, one often finds that in the Euclidean space this algorithm performs much worse. To
correct for this possibility, one must develop appropriate transformations in Euclidean space,
as we have done in this paper.

For ease of exposition we will restrict ourselves to beams with rectangular cross sec-
tion, fixed width, and distributed loads. Although beams with nonuniform cross sections are
more difficult to manufacture when weight is at a premium, as in aerospace applications, the
construction of minimum weight beams may be quite realistic. Moreover, the problem of
determining the optimal dimensions of a uniform beam subject to continuum constraints is a
particular case of the problems with which we will deal. It is straightforward to generalize our
results to beams whose cross sections are not necessarily rectangular, provided that the cross
sections have horizontal and vertical axes of symmetry and the plane containing the vertical
axis of symmetry also contains the loads. For instance, one can extend our results to the design
of rectangular beams with varying depth and width or the design of a cylindrical beam with
varying radius.

The paper is organized as follows. In 2 we summarize the basic definitions and results
on consistent approximations in [18]. In 3 we develop a mathematical formulation of the
optimal design problem together with an optimality function. Then we construct a sequence of
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approximating problems, together with their optimality functions, which we show to be con-
sistent in the sense of 18]. In 4 we develop transformations of variables that compensate for
the fact that our coefficient spaces are not isometric with the corresponding finite-dimensional
function subspaces. Also, we present a diagonalization strategy for the numerical solution of
the optimal design problems under consideration. In 5 we present the results of a numerical
experiment. Finally, in 6 we present our conclusions.

2. Consistent approximations. We begin by presenting a summary of the main defini-
tions and results related to the concept of consistent approximations introduced in 18].

Let B be a topological vector space, and consider the problem

(2.1 a) P min f (z)
zEZ

where f B --+ IR is continuous and Z C B is the constraint set. Let {BN}=I be a family
of finite-dimensional subspaces of t3 such that BN B if 13 is finite dimensional (iRn) and
IBN C BN+I for all N otherwise. Consider the family of approximating problems

(2.1b) PN min fN(Z), N N,
zEZN

where fN BN --+ IR is continuous and ZN C BN. To be of any use to us at all, the
problems PN must, at least, converge epigraphically to P; i.e., the epigraphs EN {(z, Z) 6

1R ZNIZ > fN(Z)} of the problems PN must converge in the sense of Kuratowski to the
epigraph E & {(z, z) ZIz > f(z)} of the problem P. Equivalently, we have the
following definition.

DEIINITION 2.1 (see 1, 8]). The problems in thefamily {PN}N= converge epigraphically
tO P, (PN ._.+Epi p) if (a) for every z 6 Z there exists a sequence {ZN}N= with ZN 6 ZN such
that ZN Z and lim fN(ZN) < f(z) and (b)for every sequence {ZN }k= with ZN 6 ZN such
that ZN -- Z as k --+ cxz, z 6 Z, and lim fN (ZNk) > f(z).

Epigraphic convergence, or epiconvergence for short, can be viewed as a "zeroth-order"
consistency property. In particular, it ensures the following result.

THEOREM 2.2. Suppose that PN .__Epi p and that {2N}= is a sequence such that
N 6 ZN for all N and N "(a) If the U are global minimizersfor the PN, then is a global minimizer ofP.

(b) If u are strict local minimizersfor the PN whose radii ofattraction do not converge
to zero as N -+ cx, then is a local minimizer ofP.

The reader is referred to 1, 8] for the proof of Theorem 2.2(a) and to 18] for the proof
of Theorem 2.2(b).

Optimization algorithms, applied to the finite-dimensional problems PN, are known only
to compute stationary points. As the following example shows, epiconvergence alone does
not rule out the possibility that stationary points of the PN converge to a nonstationary point
of P. Let [3 ]2 SO that z (x, y), and let f (z) fu (;) (x 2)2, N 6 N. Let

(2.2a) Z {(x, y) IR2lx2 + y2 < 2},

and, for all N 6 1 let

(2.2b) ZN (x, y) e Rl(x y)a(x + y2 2) < 0, x2 + y2 < 2 +

Then we see that PN _.+Epi p. Nevertheless, the point (1, 1) is feasible and satisfies the F. John
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optimality condition for all PN, but it is not a stationary point for the problem P. The reason
for this is an incompatibility of the constraint sets ZN with the constraint set Z that shows up
only at the level of optimality conditions.

To eliminate the possibility of pathologies such as in the above example, as well as
some others (e.g., failure of derivatives to converge), 18] imposed a second condition on the
approximating problems in terms of optimality conditions that can be viewed as a "first-order"
consistency requirement. For the purpose of this condition, it is convenient to characterize
stationary points as the zeros of optimality functions 0 D --+ for P and ON DN --+ for
PN, N E N, where D C B and DN C BN; i.e., the optimality functions may not be defined on
the entire space. We will assume that DN C D f) BN for all N 6 I.

DEFINITION 2.3. A function 0 D --+ is an optimality function for P if (i) Z c D,
(ii) 0(.) is sequentially upper semicontinuous, (iii) O(z) < Ofor all z D, and (iv) 0() 0

for any Z that is a local minimizer for P. Similarly, a function ON DN --+ I is an
optimality function for PN if (i) ZN C DN, (ii) ON(’) is sequentially upper semicontinuous,
(iii) ON(Z) < Ofor all z DN, and (iv) ON(N) Ofor any N ZN that is a local minimizer
forPN.

DEFINITION 2.4. Let 0(.), ON(’), N 1, be optimalityfunctionsfor P, PN, respectively.
0 cThe pairs (PN, ON), in the sequence (PN, N) N=I are weakly consistent approximations to

the pair (P, 0) if (i) PN _Epi p and (ii)for any sequence {ZN}N,I, K C I, with ZN DN
for all N K such that ZN --+ Z, limON(ZN) < O(Z).

As a result of this definition, we immediately get the following result, which subsumes
Theorem 2.2.

THEOREM 2.5. Suppose that the pairs (PN, ON) in the sequence (PN ,0N)}N=I are weakly
consistent approximations to thepair (P, 0) and that N N= is a sequence such that N ZN
for all N and N --+ .

(a) If the N are global minimizersfor the PN, then is a global minimizer ofP.
(b) IfN are strict local minimizers whose radii ofattraction do not converge to zero, as

N --+ cxz, then is a local minimizer ofP.
(c) IflimON(N) O, then 0() O.
If we define a point to be stationary for P if 0 () 0, then we see that Definition 2.3

permits nonfeasible points to be stationary (e.g., they can be stationary points for a problem
with relaxed or modified constraints). This phenomenon can be removed by imposing an
additional condition, as is done in the following definition.

DEFINITION 2.6. Let 0(.), 0U(’), N N, be optimalityfunctionsfor P, PN, respectively.
The pairs (PN, ON), in the sequence (PN, ON)}U= are consistent approximations to (P, 0),
if they are weakly consistent approximations, and in addition O(z) < 0 for all z q Z and
ON(Z) < Ofor all z ZN, N 1.

3. Consistent approximations for the optimal design of a fixed beam. In this section
we formulate the optimal fixed beam design problem and decompose it into a family of
consistent approximations. First, we present the equations for modeling a fixed beam from
which the bending moment, the shear, and the displacement of the beam can be computed, as
can the corresponding sensitivity equations. Second, we formulate the optimal design problem
and define an optimality function for it. Third, we choose a dense family of finite-dimensional
subsets ofthe design space and obtain discrete counterparts ofthe equations modeling the beam
as well as the corresponding sensitivity equations. Fourth, we formulate the finite-dimensional,
approximating optimal design problems and define optimality functions for them. Fifth, we
prove that the approximating problems, with their respective optimality functions, constitute
a family of consistent approximations for the original problem and its optimality function.
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3.1. Mathematical model of the beam. Consider a fixed beam of length L > 0 and
rectangular cross section with constant width b > 0 and variable depth defined by a positive,
Lipschitz continuous function h [0, L] --> R. The material of the beam has modulus of
elasticity E > 0, and the beam is subjected to a vertical load with density (h, .) of the form

l(h, x) rn(x) Kh(x), x [0, L],

where K > 0 is a given constant and m(.) is the density of an external load applied to the
beam. We assume that m(.) is piecewise Lipschitz continuous with finitely many points of
discontinuity in [0, L]. We model the beam using Euler-Bernoulli beam theory.

We will obtain an expression for the bending moment in a fixed beam by using the bending
moment in a similarly loaded cantilever beam and duality theory. For a cantilever beam of
length L, depth determined by the function h(.), and subject to the load density l(h, .), the
bending moment Mc(h, .) is the unique solution of the final value problem

(3.2a) Mc’(h, x) l(h, x), x [0, L]; Mc(h, L) 0; Mc(h, L) O,

where the prime denotes differentiation with respect to x. it is convenient to rewrite (3.2a) as
follows:

(3.2b) x M(h, x) l(h, x)
x [0, L]; Mc(h, L) M’ (h, L) O.

The bending moment M(h, .) in a fixed beam of length L, depth determined by the
function h(.), and subject to the load density l(h, .) differs from Me(h, ") only by an affine
term in x that is due to the reactions at the support points. Hence we have that

(3.2c) M(h, x) Mc(h, x) + g (h)x + g2(h), x [0, L],

where gl (h) and g2(h) are reals, depending on h, that can be computed by using a variational
formulation. Let

S {p 6 L2[0, Lllp(x) Mc(h, x) + ax + b, a, b IR, x [0, L]}.

It follows from the dual formulation of the variational problem associated with the bending of
the fixed beam (see [13, 21]) that M(h, .) is the minimizer of the convex functional W(h, .)
S -+ IR defined by

zx 12 [L p(x)2
W(h’P)=JO h(x)3

dx.

From (3.2c) and the first-order optimality condition for W(h, .) we conclude that the
vector g(h) [gl (h)g2(h)]T satisfies

(3.2d)

The shear force at x 6 [0, L] is given by

V(h,x) -M’(h,x) -Mc(h,x) g(h),(3.2e) x [0, L],
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and the deflection of the beam y(h, .) is the solution of the initial value problem

(3.2f) xx y (h, x) 12M(h, x)/Ebh(x)
x [0, L], y(h, O) (h O) O.

For design purposes we assume that the depth function is an element of the set

(3.3) Had {h 6 C[0, L]I0 < de _< h(x) < , Idh(x)/dxl <_ ’, for a.e. x 6 [0, L]},

where 0 < ot < fl < cx and , > 0 are given constants and C[0, L] is the space of continuous
real-valued functions defined on [0, L].

The "natural" norm on C[0, L] for establishing continuity and differentiability of solutions
of (3.2b)-(3.2f) with respect to depth functions h(.) is the sup-norm I1" I1. However, when we
define optimality functions for our design problems, by extension of optimality functions for
problems defined on Rn, which is a Hilbert space, it is much more natural to use the L2[0, L]
norm I1" 112. Hence, we will work in the inner product space (C[0, L], 112, (’, ")2), where
(’, ")2 denotes the usual inner product on L2[0, L].

DEFINITION 3.1. Let (V, II" ilv) be a normed space, and let ( Had C (C[0, L], I1" [12,
(’,’)2) (V, v). We will say that

(a) (.) is Lipschitz continuous relative to Had if there exists a C (0, oo) such thatfor
all h, h’ Had

(3.4a) lift(h) ff(h’)llv Cllh h’llz;

(b) ((.) is differentiable relative to Had iffor any h Had there exists a map D( (h; .) 6

L(C[0, L], V) (the space of continuous linear maps from (C[0, L], II" 112, <’, ">2) into (V,
II" IIv)), called the Had-derivative of ((.) at h, such that

II((h’) ((h) Dr(h; h’- h)llv
(3.4b) lim

’’-’a IIh’ h 112
Ilht-hll2-->O

(c) ((.) is Lipschitz continuously differentiable relative to Had ifit is differentiable relative
to Had, and the mapping h Had I-- D" (h, .) L(C[0, L], V) is Lipschitz continuous relative
to Had.

It can be deduced from the results in [3] that the mappings h - Me(h, "), and h -Me(h, ") from Ha (C[0, L], I1" 112, (’, ")2) into (C[0, L], I1" II) are Lipschitz continu-
ously differentiable relative to Had. Their Had-derivatives are denoted by D1M(h, .; .) and
D1Mc (h, .; .), respectively.

Let A(h) denote the matrix on the left-hand side of (3.2d), and let b(h) denote the vector
on the right-hand side of (3.2d) so that, abstractly, (3.2d) becomes A(h)g(h) b(h). To
establish differentiability of the mapping h - g(h) we need the following result.

LEMMA 3.2. There exist constants c, C (0, ec) such thatfor all h Had and w R2

we have

(3,5a) cllwll 2 wrA(h)w <_ Cllwll,
The proof of Lemma 3.2 can be found in the appendix.
It can be easily seen that each entry of A(h) and b(h) is Lipschitz continuously dif-

ferentiable relative to Had. We denote their Had-derivatives by DA(h; .) and Db(h; .). It
follows from (3.2d) and Lemma 3.2 that the mapping h Had g(h) 2 is also Lip-
schitz continuously differentiable relative to Had. Hence, (3.2c), (3.2e), and (3.2f) imply
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h w- M(h, .), h V(h, .), and h y(h, .), all mapping Had C (C[0, L], I1" 112, (’, ")2) into
(C[0, Z], I1), are Lipschitz continuously differentiable relative to Had. We denote their
Had-derivatives at h by Dg(h; .), D1M(h, .; .), DIV(h, .; .), and Dly(h, .; .), respectively.

Given h, h’ 6 Had, let ah =6 h’ h. It can be shown, using (3.1) and (3.2b)-(3.2f), that
the following relations hold:

__d I D1Mc(h’x;Sh) ] I DIM(h’x;Sh) 3,dx DIM(h, x; 6h) -Kh(x)
x [0, L],

(3.5b)

D1M;(h, L; Sh) 0

fo fo
L x6h(x)L x2h(x) dx dx

h(x)4 h(x)4
(3.5c) DA(h; h) -3

xh(x)
dx dx

h(x)4 h(x)4

L 3Mc(h, x)6h(x) DMc(h, x; ,h)h(x)
 67--

(3.5d) Db(h; h)
t 3Me(h, x)6h(x) DMc(h, x; 8h)h(x)f0 h(x)4

dx

(3.5e) a(h)Dg(h; 3h) Db(h; 3h) Da(h; 3h)g(h);

(3.5f)

(3.5g)

D1M(h, x; 8h) D1Mc(h, x; 6h) + Dgl (h; 8h)x + Dg2(h; 8h), x [0, L];

D1V(h,x;h)=-D1Mc(h,x;h)-Dgl(h;h), x [0, L];

d--- Dly’(h, x’ h)
12 x

Ebh(x)
DIM(h, x; 8h) 3M(h, x) h(x) [0 L];

h(x) ]
(3.5h) Dly(h, 0; 3h) Dly’(h, 0; 6h) 0.

3.2. Formulation of the optimal design problem. We will consider optimal beam de-
sign problems with continuum constraints on the shear force, the bending moment, and the
deflection. For example, suppose that we wish to minimize the weight or volume of a fixed
beam of constant width subject to constraints on the maximum normal stress at the extreme
fiber arnax(h, .), on the maximum shear stress rmax(h, "), and on the deflection y(h, .) of the
form

(3.6a) lamax(h, x)] < a 1, IZ’max(h, x)l < a2, lamax(h, x)l < a3 V X [0, L],

where the aJ’s are given positive constants. To obtain a convenient mathematical formulation
for this problem we define the cost function as

(3.6b) f(h) h(r) dr;

the bounds as r r2 a 1, r3 r4 a2, r5 r6 a3; and the constraint functions as

6 M(h x)
(3.6c) el(h, x) -A_. ffmax(h, x -’ 2(h, x) -el(h, x), x [0, L],

b h(x)2

3 V (h, x) 4(h, x) & _3(h, x), x 6 [0, L],(3.6d) 3(h, x) Zmax(h, x)
bh(x)
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(3.6e) dpS(h,x) Ay(h,x),6(h,x)--5(h,x), x E [0, L].

In terms of these functions and bounds, the above-described problem becomes

[
(3.6f) min { f(h)l

h6Had [

/
max max j(h,x)-rj <0}.
l<j<6x[O,L] I

The above example is a particular case of optimal design problems of the form

(3.7a) P min {f(h)l max max CJ(h,x)-rJ(x)<O},hHaa jq x[0,L]

where for any integer q > 0, q & 1, 2 q and the functions f (.) and cJ (., .), j E q, are
of the form

(3.7b)
L

f(h) (h,x)dx,

(3.7c) cJ (h, x) J (h(x), M(h, x), V(h, x), y(h, x), x), J

with M(h, .), V(h, .), and y(h, .) determined by (3.2b)-(3.2f) and, for j 6 = {0, q},
J "[or,,8] x x x x [0, L] .--> .

Assumption 3.3. (a) The functions rj (.), j q, are Lipschitz continuously differentiable
on [0, L] and satisfy

(3.8) min min rj (x) --- > O.
jq x[O,L]

(b) The functions J (.,.,.,., .), j ft, are Lipschitz continuously differentiable.
(c) The feasible set for P is nonempty.
Existence of a solution to P follows from the Ascoli-Arzel? theorem, which implies that

the set Haa is compact in (C[0, L], 112, (’, ">2). The proofs of existence of solutions for
similar problems can be found in [6, 9, 15].

It follows from (3.7b), (3.7c), and the Lipschitz continuous differentiability ofJ (.,.,.,., .),
j E , with respect to all their arguments and of M(h, .), V(h, .), and y(h, .) with respect to h
that h - cJ (h, .), j ft, and h - f(h) are Lipschitz continuously differentiable functions
relative to Haa. We will denote by D1j (h, .; .), j fl, and Df(h; .) their Haa-derivatives.

LEMMA 3.4. There exists a constant C (0, oo) such thatfor any h, h, h’, h" Haa,

(3.9a) IDf(h; h’- h) Df([t; h"- )1 < C[llh llz + IIh’- h"l12]

andfor all j

(3.9b) IIDIJ (h, .; h’ h) Diej (, .; h" )11 _< C[llh llz + IIh’- h"l121.

Proof Both inequalities are direct consequences of the Lipschitz continuity relative to

Had of the Had-derivatives of h -+ M(h, .), h - V(h, .), and h - y(h, .) and the Lipschitz
continuous differentiability of the functions J (.,.,.,., .), j 6 , in (3.7c). [3

We define the constraint violation function ap Had ]R for P by

(3.10a) ap(h) max max cJ (h, x) rJ (x)
jeq xe[O,L]
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and the surrogate cost function F Had Had ]1, suggested by method of centers-type
algorithms, by

(3.10b) F(h,h’) max{f(h’)- f(h)- coap(h)+, max max c/)J(h’,x)- rJ(x)- gr(h)+},
j6q xe[0,1]

where (h)+ max{(h), 0} and co > 0 is a parameter. Note that (i) for all h 6 Had,
F(h, h) 0, and (ii) if f 6 Had is a local minimizer for P, then since (h) > 0 when h is
infeasible and f(h) > f(f) for all feasible h in a ball about f, f must also be a local minimizer
for the surrogate problem

(3.10c) min F(f., h).
h6Had

This fact is used in [2] to obtain the following first-order optimality condition for P.
PROPOSITION 3.5. Iff is a local minimizerfor P, then

(3.10d) fi Had and dF(h, fi; h’ f) >_ 0 V h’ Had

where d2F(f, f; h’- f) denotes the (one-sided) directional derivative ofF(., .) at (f, f) with
respect to the second argument in the direction h’ f.

Referring to 17], we see that one way to verify whether (3.10d) holds at a given h Had is
to define an optimality function 0 Had -- I forPbased on a convex, first-order approximation,(h, h’) to F(h, h’). Thus we define

(3.10e)

and

P(h, h’) = max { Df(h; h’ h) co(h)+,

I
c])j (h, x) + DIj (h, x; h’ h) p(h)+ }max max

jq x[O,L] /

+ llh’ hl12

(3.11) O(h) min /(h, h’).
h’Had

THEOREM 3.6. (a) Thefunction 0 (.) is well defined and takes values in (-o, 0].
(b) 0 Had ]R is uppersemicontinuous.
(c) For any f Had, O(h) 0 if and only if either (f) < 0 and (3.10d) holds or

(f) > 0 and 0 O(f), where (f) denotes the Clarke generalized gradient [2] of(.) at
h (i.e., f satisfies thefirst-order optimality conditionfor the problem minh/ad 7r (h)).

Proof We start by showing that 0(.) is well defined. In view of (3.7b), (3.7c), and
Assumption 3.3(b), it should be clear that for all j 6 and x 6 [0, L] the mappings h
qJ (h, x) and h - gr(h) are continuous on Had. Hence, as a consequence of the definition
of/(., .), (3.9a), and (3.9b) we have that/ Had Had -- It{ is continuous. Since Had C
(C[0, L], I1" 112, (’, ")) is compact (by the Ascoli-Arzel? theorem), it follows from (3.11) that
0(.) is well defined.

The fact that 0(.) takes values in (-oe, 0], and part (c) can be deduced from Proposi-
tions 5.4 and 5.5 in [17]. We now prove part (b).

Suppose {hj}jo C Had is such that hj h Had as j oc. Let h’ 6 Had be such that

0 (h) =/(h, h’). Then

(3.12a) O(hj) < F(hj, h’) Y j N.
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Hence, taking lim on both sides and using the continuity of F(., .), we get

(3.12b) lim O(h) <_ li--- /?(h, h’)=/(h, h’) O(h).

COROLLARY 3.7. 0(.) is an optimalifunctionfor P.

3.3. Choice offinite-dimensional subsets ofHaa and discretization othe beam equa-
tions. According to the theory in 2, to define approximating problems P we must begin by
selecting a family of finite-dimensional subspaces of C[0, L]. We specify these subspaces by
constructing basis sets for them.

For every integer N > Owe letA&L/N and define the meshT&{0, A, 2A L}
with nodes x, (k 1)A, k N+I.

Let

X- XN,k_ VX [XN,k_I, XN,k] k {2, ..., N + 1};
As

(3.13a) P,(x) xs,+l x
Vx [XS,k, xs,+l], k N;

As
0 otherwise.

S+l Clearly, Hs is a subspace ofWe denote by Hs the span of the basis set {Ps,k=
C[0, L], and for each h Had,S there exists a unique (1, Oe OS+l)r S+l such that

N+I

h(x) qPN,(x), x [0, L].(3.13b)
k=l

AWe let Had, H Had.
Next, we discretize the equations describing the behavior ofthe beam. We will use Euler’s

method to discretize the initial value problem (3.2 and the final value problem (3.2b) and the
rectangle rule to approximate the integrals in (3.2d). The choice of this simple discretization
scheme is motivated by the fact that, in the context of optimal design problems, it is not clear
whether using higher order integration schemes is more efficient. To see this consider an
unconstrained optimal design problem Pu defined over Had and a sequence of approximating
problemsP, defined over Had,N and obtained by discretizing Pu. We assume that to define the
P,, one uses an integration scheme of order r 1 to discretize the differential equations and
the integrals defining Pu. Let f0 (.) andf (.) be the cost functions forP andPu,, respectively.
Then one can show, under appropriate assumptions, that there exists a K (0, ) such that
for all N

(3.13c) _K[AN + ArN] < fO()_ fc(N) < KAN,

where t is the minimizer of Pu and ’/N is the minimizer of Pu,N. The term -KAN in the
left-hand side of (3.13c) is due to the replacement of Had by Had,N, while the term -KAv
is due to the replacement of the differential equations and integrals by discrete counterparts
arising from the use of an rth-order integration method. Hence, if we use a first-order method
(i.e., r 1) according to (3.13c) the uncertainty interval in the computation of the optimal
value is of length 3KAN. As r -+ cx, the length of the interval of uncertainty decreases
to KAN. Hence we see that the difference between the optimal cost of the approximating
problem and that of the original problem is of order O (AN) regardless of the accuracy of
the integration method used. Therefore, it is not clear that much is gained by using the
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more computationally intensive higher order integration methods to solve optimal design
methods.

Let MN(h, XN,k), VN(h, XN,k), and yN(h, XN,), k e N+I, denote the discrete bending
moment, the discrete shear force, and the discrete deflection, respectively, defined by the
recursions

(3.14a)
M,N(h, XN,) Mc,N(h, XN,k+l) ANI(h, XN,+I)

M,N(h, XN,N+I) 0

keN,

(j- 1)2A (j- 1)i - (J -1--!N- Mc N(h, XN,j)
j=l h(XN,j) j=l h(XN,j )3 F gl’N(h)

j=l h(XN,l) j=l h(XN,j )3 (XN,j)

(3.14b)

(3.14c) MN(h, XN,k) Mc,N(h, XN,k) .qt_ gl,N(h)XN,k + g2,N(h), k e N+I;

(3.14d) Vu(h, XN,k) -M,N(h, XN,k) gl,N(h), k e N+I;

and, for k e N,

(3.14e)
12MN(h, xN,k)YN(h, XN,k+I) yN(h, XN,k) Jr- AN Ebh(xN,k)3

yN(h, XN,1) 0

Let AN(h) denote the matrix on the left-hand side of (3.14b), and let bN(h) denote the vector
on the right-hand side of (3.14b) so that, abstractly, (3.14b) becomes AN(h)gN(h) bN(h).

LEMMA 3.8. There exist constants c, C e (0, o) such thatfor all N > 1, h e Had,N, and
w e N2, we have

(3.15) cllwll 2 < wTAN(h)w < CIIwll 2.

The proof of Lemma 3.8 is similar to that of Lemma 3.2 and hence we omit it.
It follows from the implicit function theorem (see, e.g., 14]) that the maps h + Mc,N (h, .),

h w- M’c,N(h, .) from Had,N into RN+I are Lipschitz continuously differentiable. Lips-
chitz continuous differentiablity of the map h - gN(h) from Had,N into 2 and the maps
h -> MN(h, .), h -> VN(h, .), and h w-> yN(h, ") from Had,N into ]1N+I follows from the
Implicit Function Theorem, (3.14b)-(3.14e), and from Lemma 3.8.

Given h, h’ e Had,N, let 8h h’ h. One can show, by differentiating (3.14a)-(3.14e),
that

_DIM,N(h, XN,k; 3h)J D1Mc,N(h, XN,k+I; 8h) ANKh(XN,k+I

(3.16a) DIM’c,N (h, Xu,U+l," Sh) D1Mc,N(h, XN,N+V, 6h) 0;
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(3.16b) DAN(hN;6h) -3

(j- 1)2A3N3h(xN,j) (J- 1)A2N3h(xN,j)
j=l hN(XN,j )4

j---1 hN(XN,j)4

j=l hN(XN,j )4 hN(XN,jj=l

(3.16c)

DbN(hN; 3h)

E(j 1)Av
DMc,N(hN, XN,j; 3h)

Y

[ DMc,N(hN, XN,j; 8h)
AN hu(Xu,j)3

3Mc N(hN, XN j)
.----," 7--- .U" Ort (XN ’)]nN[XN,j)"

’S

N(N,j) .J

(3.16d) AN(hN)DgN(hN; 6h) DbN(hN; 6h) DAN(hN; 8h)gN(hN);

(3.16e)
D1MN(h, XN,k; 3h) D1Mc,N(h, XN,k; 3h)+Dgl,N(h; 8h)XN,k+Dg2,N(h; 3h), k 6 N+I;

(3.16f) D1Vu(h, Xu,k; 3h) -D1MN(h, XN,k; 3h) Dgl,N(h; 3h), k N+I;

and DlYN(h, XN,k; 8h) 8yN(h, XN,k), k N+I, where 8yN(h, XN,k) is the solution of

3Yk + AN3y
12AN (DEbh(xg,k)3

1MN(h, Xg,k; 3h)
3MN(h, XN,k)Sh(XN )’/’ k N,

h(XN,k)

(3.16g) 3Yl 8Y’l O.

3.4. Formulation of the approximating problems. We now define the family of ap-
proximating problems PN, N 1, 2 as

(3.17a) PN

where

1/2,,,,.j }min fN(h)] max max CJN(h, XN,) (1 + AN ), (XN,) <_ 0
h6Hao,u j6q k6N+l

(3.17b)
N

k=l

(3.17c) (h, XN,k) J (h(XN,k), MN(h, XN,k), VN(h, XN,k), yN(h, XN,k), XN,k), J l.
Equation (3.17c) defines the functions (h, .), j 1, only on the mesh points XN,k,

k 6 N+I. We define the functions (h, .) [0, L] --+ R as the piecewise affine interpolation
of the values Ju(h, Xu,k), k N+I.

hl/2The term ’---U in (3.17a) is added to guarantee that for N large enough the feasible
set for PN is nonempty. This relaxation of the constraints will be needed in the proof of
Theorem 3.10(a).

It follows from (3.17c) and Assumption 3.3(b) that the functions (., .), j 6 , are

Lipschitz continuously differentiable on Had,U. The derivatives ofthe mappings h (h, .),
j 6 , and h w- f(h), which we denote by DlJu(h, .; .) and Dfu(h; .), are easily obtained
from (3.17b), (3.17c) and (3.16a)-(3.16g) by applying the chain rule.

Next, we define the constraint violation function 1[u Oad,N for PN and the
surrogate cost FN :Had,N Had,N --’> ]l by
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(3.18a) JN 1/2)rJ(XN,k)TeN(h) zx max max cp (h, Xu,k) (1 + AN
j6q k6N+l

(3.18b)

FN(h, h’) - max { fN(h’) fN(h) WN(h)+, maXj6q k6N+lmax dpJN(h’,xN,) rN(h)+ }
Any local minimizer t 6 Oad,N Of PN is also a local minimizer of FN(, ") on Had,N and

hence it satisfies the optimality condition

(3.19) Had,U anddzF(t, ; h’- ) > 0 Yh’ Had,U.

Following the pattern set in 3.2 we define an optimality function ON Oad,N "---> ]1 based
on a convex, first-order approximation/u(h, h’) of FN (h, ht) defined by

(3.20a)

(3.20b)

!PN(h, h’) = max / DfN(h; h’ h) CON(h)+,

"h’ h)lmax max dpu(h Xu,) aPu(h)+ + DlCkN(h, XN,,
jEq kEN+I /

1 2/ llh’ hl12,

ON(h) A PN(h hi).mlnh’Hd,N

It is not difficult to show, using (3.20a), that ON(h) can be computed by solving a positive
definite quadratic program. An evaluation of ON(h) provides a computational method for
checking whether h Had,U satisfies the basic optimality condition (3.19).

Results analogous to Theorem 3.6 and Corollary 3.7 hold for ON(’).

3.5. Epiconvergence and consistency of approximations. We start by establishing
some results relating the functions defining P with those defining PN. The proof of the
following lemma is given in the appendix.

LEMMA 3.9. (a) For every h Had, and every integer N > 1, there exists an hN Had,N
such that

(3.21a) max Ih(x)- hN(x)l < VAN
x[0,L]

(b) There exists a constant C (0, o) such that for all j 1, N >_ 1, h Had, and

(3.21b) max Ij (h, x) qbJN(hN, X)[ _< C[AN -[- Ilh hNll2],
x[0,L]

A 1/2(3.21c) Ir(h)- 7rN(hN)I C[N / Ilh- hNl]2],

(3.21d) If(h)- fN(hN)l < C[AN + Ilh -hNl[2].

In view of the definitions of ap(h) and N(h), it is clear that the feasible sets Z and ZN
for P and PN are given by

(3.21e) Z {h 6 Hadl(h) < 0}, Zu {h 6 Had,Ulu(h) < 0}.

THEOREM 3.10 (epiconvergence). (a) For every h Z, there exists a sequence {hN}N=No,
with hN ZN, such that fN(hN) -+ f(h) as N --+ cx. (b) Let {hN} be a sequence suchN=No
that hN ZN and hN -- t as N x; then t Z, and fN(hN) --+ f (t).

hN Had,N,
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Proof. Suppose h 6 Z is given. Then, by Lemma 3.9(a), for each integer N there exists
an hu Had,U such that (3.21a)holds. Clearly, hN -"-> h as N --> oc. It follows from (3.21d)
that fu (hu) ---> f(h) as N --+ cx. To complete the proof of part (a) it remains to show that
there exists an No such that hu ZN for all N > No. Indeed, since h 6 Z by assumption we
have ap(h) < 0. Hence, using (3.21b) and (3.21a) we obtain

N(hN) <_ N(hN)- p(h)

1/2max max [Ju(hu, x)- rJ(x)(1 / AN I] max max [J(h x) rJ(x)]
jEq xE[0,L] jq x[0,L]

All2-1(3.22) < max max [l(hN, x) CJ (h x)l rJ (x)N
jeq xe[0,Ll

^1/2 2^1/2" C[AN / Ilk hNll2] rz-xN < C[AN / IIh hNll] ’z-N

.,:. 1/2< C(1 / )Au --/,-zu

where > 0 is as in (3.8). It follows from (3.22) that there exists an No such that for all
N > No, 1/tU (hu) 0, which proves (a).

Let {hN}N=No be a sequence as in (b). Since Had is closed and ZN CHad,U C Had for

all N 6 N, it follows that t 6 Had. The facts that t 6 Z, that is, that p(f) < 0, and that
fN(hN) --> f(f) follow directly from (3.21c) and (3.21d), respectively. [3

Next, we establish approximation results relating the derivatives of the functions defining
P and PN.

LEMMA 3.11. There exists a constant C < cxz such thatfor all positive integers N and h,
h Had,N,

(3.23a)

(3.23b)

IDf (h; h’ h) DfN(h; h’ h)l _< CANIIh’ hll2,

h’ h)l < CA IIh’ hl12.h’ h) DIv(h XN,k, Nmax [Dldl) (h, Xg,k,
kEN+I

Lemma 3.11 is proved in the appendix.
LEMMA 3.12. There exists a constant C (0, cxz) such thatfor all positive integers N

and h, h’ Had,N,

(3.24) g"A 1/2I/(h h’)- N(h h’)l < ""N

Lemma 3.12 follows from the boundedness of Had,N (3.21c), and (3.21d), the definitions
of F(., .) and FN(’, ") in (3.10e) and (3.20a), respectively, and Lemma 3.11.

THEOREM 3.13. Suppose that {hN}U=Uo’ with hu Had,N, is such that hN h as

N --+ cx. Then h Had and limuOu(hu) < O(h).
Proof Let h’ 6 Had be such that 0 (h) /(h, h’) Let {hN}N=No besuchthathu Had,U

and hv --+ h’ as N --> cx. Then we have

1/2(3.25a) ON(hN) < ff’N(hN, hN) < F(hN, hN) / CAN

where we made use of Lemma 3.12 to obtain the last inequality. Hence, taking lim on both
sides and using the fact that F (., .) is continuous, we obtain

(3.25b) lim ON(hN) <_ lim ’(hN, hN) ’(h, h’) O(h).
N-.+cx N--+ o,z

COROLLARY 3.14. The sequence (PN, ON) Next= is afamily ofweakly consistent approx-
imations to the pair (P, 0). Furthermore, iffor all h Had such that 7z(h) > O, 0 q 07t(h),

0then {(PN, U)}u= is afamily ofconsistent approximations to (P, 0).
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4. Transcription OfPN into a nonlinear programming problem. We will now establish
a transcription of the problem PN, which is defined on the finite-dimensional subspace HN C
C[0, L], into an equivalent nonlinear programming problem, N, defined on N+I. Given any
h HN there exists a unique vector r (01 0N+l)r N+I satisfying (3.13b). In fact,
in view of (3.13a), we have that rl h(xN,), k N+I. Let the mapping WN HN -+ N+I
be defined by

(4.1a) WN(h) --A (/]1, ]2, N+I)T.
Clearly, WN is a bijection and the components of r/ 6 ]u+a are the coordinates of h HN

U+l Since the basis set {Pu,i(’) U+lwith respect to the basis set {PN (’)j= }i=1 is not orthonormal,
given a vector h(.) .U, rli PN,i(’) HN, itis nottruethat Ilhll ]/U= IIWN(h)II2;
i.e., WN(’) is not an isometry. Now suppose that we define the problem U using the map
WN(.) and try to solve PN by solving PN, using a nonlinear programming algorithm, without
taking into account the fact that WN is not an isometry. Then it turns out that we are trying to
solve the problem PN using a nonlinear programming algorithm with a modified metric. As is
well known, changing the metric can cause the performance of nonscale invariant algorithms
to deteriorate considerably.

To compute in ]U+l, using a metric that is equivalent to the one on HN one can either
modify existing nonlinear programming software, something not easily undertaken when
using a standard library of programs, or define the U in terms of coordinates corresponding
to an orthonormal basis. Problems PN thus defined can be solved by standard nonlinear
programming algorithms, in the space of coordinates corresponding to this basis, without
incurring penalties due to induced ill-conditioning.

We will now show how to define PN in terms of coordinates corresponding to an orthonor-
mal basis for HN.

Let QN ](U+l)(U+l) be such that

(4.1b) (Qu)ij = Pu,i(x)Pu,j(x) dx,

where for any matrix A R(u+l(u+, Aij denotes the i,jth entry of A. One can verify that

AN(4.1c) QN

-2 1 0 0-
4 0 0

0 4

0 4
0 2

Let TN" HN -- ]N+I be defined by

(4.2a) Tu(h) zx t3/2
:c,U WN(h)

so that, for any h HN and TN (h), we have

L N+I

Ilhll (WN(h))j PN,j(x)(WN(h))i PN,i(X) dx
(4.2b) i,j=

tQ1/2 1/2 2"--(N WN(h))T(QN WN(h))-

Equation (4.2b) implies that the distance between two elements h and h’ of HN C (C[0, L],
[l" 112, (’, ")) is equal to the Euclidean distance between Tu(h) and Tu(h’). It is not difficult
to see that for each h HN, TN(h) is the (N + 1)-tuple made up of the coordinates of h with
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/N+I for HN defined byrespect to the basis set BN,k (’, k--

N+I
(4.2c) Bu,k(’) Wvl(Qvl/2ek)= Z(Qvl/Z)iPu,i(’), k N+I,

i=1

/U+l is an orthonormal basiswhere e denotes the kth canonical basis vector in Ru+. BN,k(’)Jk=l
set for HN. Indeed,

N+I

(BN,k(’), BN,I(’))2 (Ql/2)ik(Ql/2)jl(PN,i, PN,i)2

(4.2d)
i,j=

N+I

(al/2)ik(al/2)jl(aN)i eef.
i,j=l

Next, let N & TN(HN) and ad,N & TN(Had,N) Q RN+I SO that

ad,N { G N+I Q/2k , k N+I, I(Q/2)k+- (Q/z)k
(4.2e)

5N,kN}.

We define the mappings (., XN,)" aO,N , j ,k N+I, and fN" a,N by

(4.3a) (, XN,) (T (), XN,),
N

(4.3b) fN() (, XN,)AN,
k=l

which can be computed using (3.14a)-(3.14e), (3.17b), and (3.17c).
Finally, we define a family ,the problems N, N 1, 2 by

(4.4) 0N min fN()l max max (, XN,k) (1 + AN
ad,N j6q k6N+l

The following result, which establishes a coespondence between PN and PN, N
1, 2 follows directly from (3.17a)-(3.17c), (4.3a), (4.3b), and (4.4).

PROPOSITION 4.1. Problems PN andPN are equivalent in thefollowing sense. (a) h HN is

feasiblefor PN ifand only if TN(h) N+ isfeasibleforN and (b) h HN is a global/
local minimizerfor PN ifand only if TN(h) N+ is a global/local minimizerfor N.

We define the constraint violation function N ad,N ; the suogate cost fiN
ad,N X @ad,N ; the convex first-order approximation to N(, ’), denoted by FN
Had,N X Had,N ; and the optimality function ON’Had,N by

(4.5a) N() max max (, XN,) (1 + N )r (XN,k),
jq kN+l

N(h, h’) max [ fN(’) fN() WN()+,
(4.5b)

max max (’, XN,k) N()+ [,
jq kN+l /

F(h, h’) max (vf(), ’ ) m()+,

(4.5c) max max (, x)- ()+ + (V(, x,), ’-)
j kN+l

1 ,+ 1 -1,
(4.5d) g() min F(h,h’).
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PROPOSITION 4.2. (a) N /ad,N -- is an optimalityfunctionfor ’N"
(b) For any h, h’ Had,N, it TN (h), and it’ TN (h’) we have

(4.6a) Fu(h, h’) U([t,
(4.6b) ON(h) U(/).

Proof A proof of part (a) can be found in [17]. Next we prove (b). First, in view of
(3.17b), (3.18a), (4.3a), (4.3b), and (4.5a) it is clear that p(h) p(h) and f(h) f(h).
Hence, it follows from (3.18b) and (4.5b) that FN (h, h’) U(ft, [t’).

Second, given 6h HN let 6--- - Tu(h). Then for all j and k N+I we have, using
(4.3a) and the chain role, that

(v,6JN(, XN,k), 8--) D16JN(, XN,k; -) D,JN(Tgl (), XN,k; T;’ (-))
(4.7a)

DIJN(h, XN,k; 8h),
which, together with (3.17b)and (4.4b), implies

(4.7b) (Vfu(), ’-- ) Dfu(h; h’- h).

It follows from (3.20a), (4.2b), (4.3a), (4.3b), (4.5c), (4.7a), and (4.7b)that for all h, h’ Had,N,

(4.7C) ff’N(h,
where Tu(h) and/t’ Tu(h’). Equality (4.6b) follows directly from the definition of
/-ad,N, (3.20b), (4.5d), and (4.7c).

We now show how the gradients VlqU(, Xu,k), j fl, k N+I, can be computed. Let
ei denote the ith canonical basis vector in Ru+l. Then, for 6 ad,U, j 6 fl, and k 6 N+I,
we have from (4.7a) that

(4.8a) (VxqJu(/t, XU,k), el) DICJN(T ([), xU,k; T (el)), N+I,

which can be computed using (3.17c), (3.16a)-(3.16g), and the chain role.
We will apply the algorithm described in [20] to solve problem P using the framework of

consistent approximations, as suggested in 18].

ALGORITHM 4.3.
Parameters: a, b, s 6 (0, 1), w, e > 0 and No 6 N.
Data. ho Had, No.
Step O. Set 0.
Step 1.

Inner-Step O. Set N Ni, [ti TN (hi).
Inner-Step 1. Compute

(4.9a) u(li) min U(li, /t),
f--l’ .Had,N

(4.95) di arg_ min N([ti, f’).
hIYlad,N

Inner-Step 2. If g([i) O, set , i and go to Step 3. Else, compute the step size

(4.9c) )i = argmax{blg([i + bdi, i) < bag([ti)}.
ken

Inner-Step 3. Set

(4.9d) f, fi + )idi.

Step 2. if

(4.9e) PN([ti, it.) < --e ASN,
go to Step 3. Else, set hi T ([ti), replace Ni by 2Ni and go to Inner-Step 0.

T-1Step 3. Set hi+l Ni (*)’ Ni+l Ni, replace by + 1, and go to Step 1.
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500 psi

50in

(a)

2.85 in

[ 50 in

1.59 in

FIG. 5.1. (a) Initial design; (b)final design.

The following theorem on the convergence properties of Algorithm 4.3 can be deduced
from Theorem 5.15 in 18].

THEOREM 4.4. Suppose that Algorithm 4.3 has constructed an infinite sequence {hi}iC=o
that has an accumulation point . Then O(t) O.

5. Numerical results. We will. illustrate the use of consistent approximations and Al-
gorithm 4.3 in solving a particular problem of the kind P. In our example, we assumed that
E 107 psi, L 50 in, b 5 in, K 0 (we neglected the weight of the beam), ot 1.0
in,/3 5.0 in, and 9/ 0.15. We imposed continuum constraints on the maximum normal
stress, on the maximum shear, and on the deflection, as follows:

(5.1a) [Crmax(h,x)[ _< 30,O00psi Vx [O,L],

(5.1b) [Zmax(h, x)l _< 15,000 psi Yx [0, L],

(5.1c) ly(h, x)[ < 0.1 in Y x [0, L].

The cost function was proportional to the total mass of the beam,

(5. ld) f(h) h(x)dx.

The load applied to the beam was

-1500psi if x [20, 30],
(5.1e) l(x)

0 otherwise.

The initial discretization was set to N 8 points; and the initial h(.) was constant, with value
2.85 in (see Fig. 5.1(a)). This initial design, whose cost is 142.5, corresponds to the uniform
beam of least mass that satisfies the constraints (for this h (.) the constraint on the displacement
is active and the other two are slack).

In Fig. 5.1(b), we find the beam obtained after 16 inner-steps of Algorithm 4.1. The
discretization level at the end of the 16th inner-step was N 128. The corresponding cost
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0.80

0.70
5 I0 15

iration

L 8 .I. 16 .L 32 .l. 64 I 128 .IN r T T T

0.00 iteration

-0.10

--0.20

--0.30

--0.40

-0.50

FIG. 5.2. Computed cost and computed optimalityfunction.

was 124.05, about 87% of the initial cost. For the final design, the constraint on the deflection
of the beam was active and the constraints on the maximum normal stress and on the maximum
shear stress were slack.

In Fig. 5.2 we present the computed cost at each iteration as a percentage ofthe initial cost,
142.5, and the computed value of the optimality function ON, at each iteration. The number
of discretization points used at each iteration is also shown in Fig. 5.2. As our analysis
indicates, for each given discretization the optimality function is driven to zero, but when the
discretization is refined (at iterations 4, 8, 12, and 14) the value of the optimality function may
decrease. However, as the algorithm progresses, the optimality function is eventually driven
to zero and, therefore, the computed depth functions hi (.) approach a stationary point.

6. Conclusion. We have shown that one can obtain consistent approximations, satisfying
the axioms formulated in [18], for certain classes of optimal beam design problems involv-
ing Euler-Bernoulli beams subject to continuum constraints, which include displacement,
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maximum shear stress, and maximum normal stress constraints. We have also demonstrated
numerically how an algorithm first described in [20] and proposed for use with consistent
approximations in 18] can be used to obtain an arbitrarily good approximation to a stationary
point of these design problems.

Appendix A.
Proof of Lemma 3.2. First we show that for all h Had the determinants of the two

principal minors of A(h) N22 are positive, which implies that A(h) is positive definite.

Clearly, f x2/h(x) dx > La/3fl > 0. Next, because all h Had take values in lot, fl], we
have that for all Pl, P2,

fo fo (plX p2)2(plx p2)2
dx >

h(x)3 f13
(A.la)
If we set e 1/4 and choose

(A.lb) p2
h(x)

dx

we get from (A.la) that

p p2 PlP2 p p: ep p22dx n /323 /33
> 3---3 23 3 4e/33"

and lf01xP2
Pl h(x)

dx,

f01 X2 f01 1 (f01 X )
2

det A(h)--
h(x)3

dx h,(x)3 dx- h(x)3
dx

(A.lc)

--f0 I(plX p 1p2)2
dx > >

h(x)3 12/33 12/36’
which implies that A(h) 6 R22 is positive definite.

Next, we observe that all entries of A(h) are bounded by (L q- 1)/or3. Hence there exists
an M 6 (0, x) such that for all w 6 R2

(A.ld) wrA(h)w <_ Mllwll 2.

Since the strictly positive lower bounds on the principal determinants are independent of
h 6 Had, it follows that the smallest eigenvalue of A(h) is bounded away from 0 for all
h 6 Had, which implies the desired result.

ProofofLemma 3.8(a). Given h 6 Had, let hN be the linear interpolate of h on the mesh
TN. Clearly, hN Had,N. From (3.3), we have that h is Lipschitz continuous with Lipschitz
constant ,, and hence IIh hNII < ?’ AN, which proves (3.21a).

PROPOSITION A1. There exists a constant C (0, x) such thatfor all N > 1, h Had,
and hN Had,N,

(A.2a)

(A.2b)

(A.2c)

(A.2d)
(A.Ze)
(A.2f)

(A.2g)

(A.2h)

max IMc(h, XN,k) M;,N(hN, XN,)I C[AN -]-" Ilh hNII2],
k6N+l

max IMc(h, XN,k) Mc,N(hN, XN,k)l < C[AN -Jr-IIh- hNll2],
k6N+l

IIA(h) AN(hN)II <_ C[llh hNII2 / AN],

lib(h) bN(hN)ll <_ C[llh hNII2 / AN],

IIg(h) gN(hN)ll <_ C[llh hNIl2 + ZXN],

max IM(h, XN,) MN(hN, XN,)I < C[AN + IIh hNII2],
k6N+l

max IV(h, xN,)- VN(hN, XN,k)I <_ C[AN + IIh- hNIla],
k6N+l

max ly(h, Xu,g) yu(hu, XN,k)l < C[,U + Ilk hull2].
k6N+l
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Proof. Let h 6 Had and hN Had,N be given. First, from (3.2a) it follows that

M’(h, x) "M (hN, X) -K(h(x) hN(x)), x [0, L],

(A.3a) M(h, L) M(hN, L) O, Me(h, L) Mc(hN, L) O.

Hence, integrating both sides of (A.3a) and using Holder’s inequality, we get that

(A.3b) IMp(h, x) M(hN, x)l _< K/-llh hNII2, x [0, L].

If we integrate (A.3a) twice and use (A.3b) we get

(A.3c) IMc(h,x)- Mc(hu, x)l < KL3/ZIIh- hull2, x [0, L].

Next, we show that there exists a C > max{Kv/, KL3/2} such that for all N 6 NI and
hN Had,N,

(A.3d) max IMc,N(hN, XN,:)- M(hN, XN,k)I < CAN,
k6N+l

(A.3e) max IMc N(hN, XN,k) Mc(hN, XN,k)l < CAN,
kN+l

where M’ (hN XN,k) and Me N(hN XN,:) are determined by (3.14a) Equations (A.3d),c,N
(A.3e), (A.3b), and (A.3c) and the triangle inequality imply (A.2a) and (A.2b).

First we prove (A.3d). Recall that m(.) is assumed to be piecewise Lipschitz continuous
(see (3.1)). From (3.1) and (3.3), it follows that for any hN Had,U C Had, l(hN, ") is
also piecewise Lipschitz continuous and has finitely many points of discontinuity in [0, L].
Hence, there exists a constant C’, independent of N 6 1 and of hu Had,N, such that C’ is
a Lipschitz constant for l(hN, .) on any subinterval of [0, L] in which l(hN, .) is continuous.
Consider the mesh TN. In each mesh interval [XU,k, XN,k+I], k N, l(hN, ") is either Lipschitz
continuous or has at least one point of discontinuity. There are at most finitely many mesh
intervals, say p > 0, in which l(hu, .) is discontinuous. Clearly, p is no larger than the
number of discontinuities of m (.) and, hence, is independent of N 6 1. If we apply Euler’s
method to integrate the second equation in (3.2d), obtaining the second equation in (3.14a),
the local truncation error, on each mesh interval where (hN, ") has at least one discontinuity, is
bounded by 2AN maxx[0,L] I1 (hu, x)I. In the intervals where (hu, ") is Lipschitz continuous,
and there are at most N p of these, the local truncation error of Euler’s method is bounded
by C Av such that

(A.3f) IM’ 2c,N(hN, XN,k) Mc(hN, XN,k)] < C AN(N p) + 2p max ]l(hN, x)]AN,
x[0,L]

which implies (A.3d). To prove (A.3e) we first note that if we set

(A.3g) K & max Im(x)l + Kfl,
x[0,L]

where K is as in (3.1), then K’ is Lipschitz constant for Mc(h, x) for all h 6 Had; that is,

(A.3h) IM(h,x) M(h, Y)I < K’lx Yl Yh e Had Vx, y [0, L].

Now consider the first differential equation in (3.2b) and its discrete counterpart in (3.14a).
Their solutions satisfy

XN,k

(A.3i) Mc(h, XN,) Mc(h, XN,+I) + M(h, x) dx, k N,
XN,k+I

XN,k

(A.3j) Mc,N(h, XN,k) Mc,N(h, XN,k+l) + Mc,N(h, XN,k+I) dx, k N.
XN,k+l
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Defining ek
_6 IMc(h, Xu,k) Mc,u(h, Xu,k)[, k E N+I, and subtracting (A.3j) from (A.3i),

we obtain, after taking absolute values on both sides,
XN,k

(A.3k) e, < e+l + ]M’c(h x) M’c,u(h, XN,k+I)I dx, k N, eU+l O.
XN,k+l

Adding and subtracting Mc(h, XN,+I) to the integrand in (A.3k) and using the triangle in-
equality we get

fxN. fxN.ek <_ ek+l -- IM’c(h, x) Mc(h, XN,k+l)l dx -- IMc(h, XN,k+l)
(A.31) JXN,k+I tlXN,k+l

Mc,u(h, XN,k+l)l dx,

which, in view of (A.3d) and (A.3h) implies that there exists a constant C < o such that

(A.3m) eg _< e+l + CA2N, k G N, eN+m O,

which in turn implies levi _< CAN for all k 6 N+I and hence proves (A.3e).
Inequalities (A.2c) and (A.2d) follow from the fact that h(x) and hN(x) take values in

[or, fl], Holder’s inequality, the fact that the rectangle rule is O(AN), and from the definitions
of A(h) and b(h) and of AN(hN) and bN(hN) (see (3.2d) and (3.14d)). To prove (A.2e), we
first note that A(h)g(h) b(h) and Am(hm)gm(hm) bx(hN) imply

(A.3n) g(h) gN(hN) A(h)-I[(AN(hN) A(h))gm(hN) + (b(h) bN(hm))],

which in view of Lemmas 3.2 and 3.8 and (A.2c,d) implies (A.2e).
Inequalities (A.2f)-(A.2h) follow directly from (3.2c), (3.2e), and (3.2f) and (A.2a),

(A.2b), (A.2e), and (A.2f).
ProofofLemma 3.8(b). In view of Assumption 3.3(b), (3.21b) is a direct consequence

of (A.2f)-(A.2h), and the definitions of bJ (., .) and bv (., .) in (3.7c) and (3.6b), respectively.
Next, if we let R maxjq maxx[0,L] rj (x) and make use of (3.21b), it follows from (3.10a)
and (3.18a) that

A1/2\lr(h) 1]fu(hu) <_ max max {ok (h, x) r (x) CkJu(hu, X) + (1 -/__xu )r (x)}
jq x[0,L]

1/2 [A1/2(A.4a) < C[AN + I]h hN]]2] + RAN < Ct,--,m -- ]]h hN]]2].

In a similar way, an upper bound for ru (hu) lp (h) can be obtained, namely,
1/2(A.4b) 1/ru(hu) 7(h) <_ ClAN / Ilk hu]]2],

which together with (A.4a) implies (3.21c).
Finally, we prove (3.21d). First we note that because all h 6 Had take values between

lot,/3] and l(., .) is bounded, V(h, .), M(h, .), and y(h, .) are Lipschitz continuous on [0, L],
with a common Lipschitz constant independent of h 6 Had. In view of Assumption 3.3(b) we
get that there exists a constant C such that for all x, y E [0, L]

(A.4c) [q(h, x) -dp(h, y)] < C]x

Hence,

If(h)- fN(hN)] <_ {1 (h, x) (h, XN,j) " Ib(h, XN,j) --(ON(hN, XN,j)I} dx,
XN,

(A.4d)
which in view of (A.4c) and (3.21c) implies that there exists a constant C such that

(A.4e) If(h)- fN(hN)[ <_ C[AN -- [[h hN[[2]. [-]

The proof of the following result is similar to that of Proposition A. 1 and hence is omitted.
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PROPOSITION A.2. There exists a constant C (0, cxz) such thatfor all integers N > O,
h, h’ Had,N, we have

(A.5a) max [D1Mc(h, XN,; ht- h) D1Mc,N(h, XN,; h h)[ _< C[[h h[[2AN,
k6N+l

h h)-D1M’ "h h)[ <C[[h(A.5b) max [D1M(h, XN,, c,N(h, XN,g, h[[2AN,
k6N+l

(A.5c) IIDA(h; h’ h) DAN(h; h’ h)ll _< CANIIh’ hl12,
(A.5d) IlOb(h; h’ h) ObN(h; h’ h)ll _< CANIIh’ hll2,
(A.5e) IlOg(h; h’ h) DgN(h; h’ h)ll _< CANIIh’ hll2.
(A.5f) max ID1M(h, XN,; h’ h) D1MN(h, XN,; h’ h)l < CIIh’ hlI2AN,

k6N+l

(A.5g) max IDIV(h, XN,; h’ h) D1VN(h, XN,; h’ h)l < CIIh’ hlIzAN,
k6N+l

(A.5h) max IDly(h, XN,k; h’ h) DIyN(h, XN,k; h’ h)[ < C[Ih’ hIIzAN.
k6N+l

Proof of Lemma 3.11. The result follows directly from (A.5f)-(A.5h) and Assump-
tion 3.3.
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CLASSIFICATION OF GENERIC SINGULARITIES FOR THE PLANAR
TIME-OPTIMAL SYNTHESIS*

B. PICCOLIt

Abstract. This paper is concerned with control systems on the plane with control appearing linearly. It is known
that under generic conditions the problem of reaching points from the origin in minimum time admits a regular
synthesis. The minimum time function is piecewise smooth, possibly nondifferentiable on a set that is a finite union
of embedded submanifolds of dimension or 0, called singularities. The purpose of the present paper is to provide a
classification of all types of singularities arising under generic conditions.

Key words, time-optimal control, two-dimensional system, regular synthesis
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1. Introduction. This paper is concerned with the control system on the plane

(1.1) 2 F(x)+ u G(x), lul 1,

with F(0) 0.
Let R(r) be the reachable set for (1.1) at a given time r. Under generic conditions on

the vector fields F and G, it is known that the problem of reaching points x R(z) from the
origin in minimum time admits a regular synthesis [8]-[ 11 ]. Indeed, one can partition the set
R (r) into finitely many embedded submanifolds Ji such that, on each A//i, the corresponding
optimal control is either u 4-1 or singular, i.e., u q)s(x) {-1, +1}, where

VA,(x). F(x)
qgs(X)

V/B(X a(x)

See (2.11) for the definition of AB.

In particular, the minimum time function is piecewise smooth on R(r), possibly nondif-
ferentiable on the boundaries of the submanifolds Adj. These boundaries, of dimension 1 or
0, were called, in [8], frame curves (FCs) and frame points, respectively.

The purpose ofthe present paper is to provide a classification of all types ofFCs and frame
points, arising under generic conditions on F and G. In 3 and 4 we classify all generic types
of singularities, up to a relation of topological equivalence, and construct explicit examples
of each one of them. We refer to the examples as representations of the various equivalence
classes.

This paper is a first part of a research aimed at the generic classification of feedbacks,
analogous to the work of Peixoto; for ordinary differential equations see [7]. The research
will be completed in a subsequent paper.

2. Basic definitions. We consider the Banach space V of C vector fields on I2, having
all derivatives, up to order three, continuous and bounded on the plane. We endow the space
V with the norm

F (F1, F2), F IIc----sup {IDFi(x)l:x 2; I1 3;i 1,2}.

We denote by F, C 12 x 12 the Banach subspace of couples (F, G) such that F(0) 0,
endowed with the restriction of the product norm. With every couple (F, G) 6 F, we associate
the control system (1.1), called E, and write E 6 E.

*Received by the editors September 24, 1993; accepted for publication (in revised form) August 3, 1995.
Scuola Internazionale Superiore di Studi Avanzati-ISAS, via Beirut 2--4, 34014 Trieste, Italy.
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We recall that the Lie bracket of two vector fields F and G is the vector field

(2.1) [F,G] VG.F-VF.G.

A control is a measurable function u [a, b] - [- 1, 1 ], where -cx < a < b < +cxz. A
trajectory of E corresponding to u is an absolutely continuous curve y [a, b] -+ R2 which
satisfies the equation

(2.2) f/(t) F(9/(t)) + u(t)G(9/(t))

for almost every in the domain of u. We write Dom(u) (resp., Dom(9/)) to indicate the
domain of u (resp., 9/) and 9/ [c, d] to denote the restriction of 9/to [c, d] C Dom(9/). The
initial point of 9/is denoted by In(9/) 9/(a), and its terminal point by Term(9/) 9/(b). The
time along 9/is defined as

(2.3) T(9/) b a.

A trajectory 9/ 6 Traj(E) (the set of trajectories of E) is time optimal if, for every
trajectory 9/’ having the same initial and terminal points, one has T (9/’) > T (9/).

If Ul [a, b] [- 1, 1] and u2 [b, c] w- [- 1, 1] are controls, their concatenation

u2 u is the control

! Ul(t)
(U2 *’Ul)(t) {

Uz(t)
fort 6 [a,b],
for (b, c].

If 9/1 [a, b] - ]12, 9/2 [b, c] ]2 are trajectories of E for U and U2 such that 9/1 (b)
9/2(b), then the concatenation 9/2 * 9/1 is the trajectory

9/1 (t) for 6 [a, b],
(2 9/1)(t) | 9/2(t) fort [b,c].

For convenience, we also define the vector fields

X=F-G, Y=F+G.

We say that 9/ is an X-trajectory and write 9/ 6 Traj(X) if it corresponds to the constant
control -1. Similarly we define Y-trajectories.

If a trajectory 9/is concatenation of an X-trajectory and a Y-trajectory, then we say that 9/
is a Y X-trajectory. (The X-trajectory comes first.) Similarly we define trajectories of type
X Y, X Y X, and so on. For a complete description of notations see [9].

If r > 0, we denote by R(r) the reachable set within time r"

(2.4) R(r) {x" 39/ 6 Traj(E) s.t. 9/(0)"--0 G ]12 9/(t) x, for some < r}
The minimum timefunction, T ]2 I- [0, --O], is defined by

(2.5) T(x) inf{r "x 6 R(r)}.

The control system E is locally controllable if, for each r > 0, the set R(r) contains a
neighborhood of the origin. The following lemma is well known (see [6]).

LEMMA 2.1. If F(O) 0 and the vectorfields G, IF, G] are linearly independent at the
origin, then the system E (F, G) in (1.1) is locally controllable.
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A synthesis for the control system E at time r is a family 1" {Yx [0, bx] -+ I2 Ix
R(r)} of trajectories satisfying the following conditions:

(a) For each x R(r) one has ’x(0) 0, yx(bx) x.
(b) If y yx(t), where a Dom(,), then ?’y Yx [0, t].
A synthesis for the system E is time optimal if, for eachx R(r), one has ’x(T(x)) x,

where T is the minimum time function defined at (2.5).
An admissible pair for the system E is a couple (u, ,) such that u is a control and y is

a trajectory corresponding to u. We use the symbol Adm() to denote the set of admissible
pairs and say that (u, y) Adm(E) is optimal if , is optimal.

A variational vectorfield along (u, y) Adm(E) is the vector-valued absolutely con-
tinuous function v Dom(y) 2 that satisfies the equation

(2.6) (t) ((VF)(y(t)) + u(t)(VG)(y(t))) v(t)

for almost all Dom(?’).
A variational covectorfield along (u, y) Adm(E) is an absolutely continuous function

) Dom0,) - 2. that satisfies the equation

(2.7) (t) -)(t). ((VF)(,(t)) + u(t)(VG)(y(t)))

for almost all Dom(y). Here I2. denotes a space of row vectors.
The Hamiltonian 7-( 2. 2 I - is defined as

(2.8) 7-/(), x, u) ). (F(x) + uG(x)).

If is a variational covector field along (u, ,) 6 Adm(E), we say that ) is maximizing if

(2.9) 7-IOn(t), ,(t), u(t)) max {7-/()(t), y(t), w) :[w[ _< 1}

for almost all 6 Dom0,).
The Pontryagin maximumprinciple (PMP) states that if (u, ,) 6 Adm(E) is time optimal,

then there exists
(PMP1) a nontrivial maximizing variational covector field along (u, 9/);
(PMP2) a constant )0 _< 0 such that 7-(((t), y(t), u(t)) + 0 0 for almost all

Dom(,).
In this case ) is called an adjoint covectorfield along (u, V) or simply an adjoint variable,

and we say that (,,)) satisfies the PMP or that , is an extremal trajectory. Moreover, the
function qbz(t)-’)(t) G(,(t)) is called the switching function along (u, ?’, .).

Consider (u, ) 6 Adm(E), to Dora(V), and v0 6 I2. We write v(vo, to; t) to denote
the value at time of the variational vector field along (u, ?,) satisfying (2.6) together with
the boundary condition v(to) vo. If to, tl 6 Dom(,), we say that to and t are conjugate
along , if the vectors v(G(,(q)), t; to) and G(,(to)) are linearly dependent. Let D and D’
be two C3 connected one-dimensional embedded submanifolds of I2. We say that D’ is a
conjugate curve to D along the X-trajectories if there is a bijective function 7t D - D’ with
the following properties. If ’x is the X-trajectory satisfying ’x (0) x, then 7t(x) ,x(t(x))
for some time depending continuously on x, and the times 0, (x) are conjugate along
Conjugate curves along the Y-trajectories are defined similarly.

For each x 2, one can form the 2 x 2 matrices whose columns are the vectors F, G,
or [F, G]. As in [9], we shall use the following scalar functions on 2:

(2.10) Aa(x) det (F(x), G(x)),

(2.11) AB(X) det (G(x), [F, G](x)),
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where det stands for determinant. A point x 6 ]2 is called an ordinary point if

(2.12) AA(X AB(X O.

On the set of ordinary points we define the scalar functions f and g as the coefficients of the
linear combination

(2.13) [F, G](x) f(x)F(x) + g(x)G(x).

In [9, p. 447] it was shown that

zX(x)
(2.14) f(x)

AA(X)

These functions play a key role in the study of the structure of time-optimal trajectories. Of
particular interest are the curves formed by zeros of the function An called turnpikes. These
are the only curves that can be run by optimal trajectories corresponding to controls different
from 4-1.

A point x at which za (X) AB (X) 0 is called a nonordinarypoint. A C2 one-dimensional
connected embedded submanifold S ofR2, with the property that every x 6 S is a nonordinary
point, is a nonordinary arc and it is isolated (or it is an INOA) if there exists a set U satisfying
the following conditions:

(C1) U is an open connected subset of R2.
(C2) S is a relatively closed subset of U.
(C3) If x U \ S, then x is an ordinary point.
(C4) The set U \ S has exactly two connected components.

A turnpike is an isolated nonordinary arc that satisfies the following conditions:
(S 1) For each x 6 S the vectors X (x) and Y(x) are not tangent to S and point to opposite

sides of S.
($2) For each x 6 S one has An(x) 0 and AA(X O.
($3) Let U be an open set which satisfies (C1)-(C4) above. If Ux and Ur are the

connected components of U \ S labelled in such a way that X (x) points into Ux and Y(x)
points into Ur, then the function f in (2.14) satisfies

f(x) >0 on Ur,, f(x) <0 on Ux.

Next, consider a turnpike S and a point x0 6 S. We wish to construct a trajectory
?’ 6 Traj(E) such that ?’(to) x0 and ?’(t) 6 S for each 6 Dom(?’) --" [to, tl]. After
straightforward calculations we have that ?’ must correspond to the feedback control

VAB" F(x)
(2.15) qgs(x) "-"

VAB G(x)

The turnpike S is said to be regular if the function Ps in (2.15) satisfies

(2.16) Ios(x)l < 1, x 6 S.

A trajectory ?’ is said to be a Z- or S-trajectory or singular trajectory if there exists a regular
turnpike S such that {?’(t) 6 Dom(?’)} C S; in this case we write ?’ Traj(Z).

Given a trajectory ?’ we denote by n(?’) the smallest integer such that there exist ?’i 6

Traj(X) t.J Traj(Y) U Traj(Z), n(?’), verifying

?’ ?’n(,) *’’" * ?’1.

We call n(?’) the number of arcs of ?’.
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Given r > 0, define Hr to be the class of systems having an a priori bound on the number
of arcs of optimal trajectories"

l’Ir {E e E 9N(E) s.t. V9/" [0, v] --+ 2, optimal, n(y) < N(E)}.

A subset of E is said to be generic if it contains an open and dense subset of . In [8]
the following theorem was proven.

THEOREM 2.2. For every v > 0 the set 1-13 is a generic subset of .
Given a system E e Fir it is possible to construct a synthesis for E. We can follow

the classical idea of constructing extremal trajectories and deleting those trajectories which
are not globally optimal. At the end we obtain a set of trajectories from which we can extract
a synthesis. By construction, this synthesis is optimal. For synthesis theory see [2]-[4] and
[14].

We describe an algorithm 4 by induction. At step N, we construct precisely those
trajectories which are concatenation of N bang- or singular arcs and satisfy the PME The
endpoints of the arcs forming these trajectories, corresponding to the switching times of
the control, are determined by certain nonlinear equations. Under generic conditions, such
equations can be solved by the implicit function theorem, thus determining a smooth switching
locus. Eventually the algorithm will partition the reachable set R(z) into finitely many open
regions (where the optimal feedback control is either u or u 1), separated by boundary
curves and points, calledframe curves andframe points, respectively.

At each step, it may happen that distinct extremal trajectories reach the same point x0 at
different times. It is therefore necessary to delete from the synthesis those trajectories which
are not globally optimal. This procedure will usually produce new "overlap curves," consisting
of points reached in minimum time by two distinct trajectories, one ending with the control
value u 1, the other with u -1.

If at step N the algorithm 4 does not construct any new trajectory, then we say that .A
stops at step N or E at time z) or that j[ succeedsfor E. From Theorem 2.2, it is clear that
under generic assumptions there exists N(E) such that 4 stops before step N() and every
9/ constructed by 4 is optimal. By definition, Fr(R(z)) is a frame curve, and its intersections
with other frame curves are frame points.

If 4 stops, then for each x R(z) there exists a set of constructed trajectories that reach
x. Define lr’x {V 9/is constructed by 4, Term(y) x}.

We want to select, for each x 6 R(r), a trajectory from Fx to form a synthesis. Define
K to be the set of points x 6 R(r) reached by at least one constructed trajectory 9/satisfying
n(9/) < k. Note that K is compact for each k and KN(E) R(’c). We proceed by induction
on k. Given x 6 K \ K-I, we consider the optimal trajectories 9/ 6 1-’x formed by k arcs, for
which the following holds. If y 9/(t) is the initial point of the last arc of 9/, then 9/ [0, t]
has been selected from 17’y by induction. Finally, if there is more than one such trajectory, then
we select one, say, according to the preference order X, Y, Z on the type of the last arc.

In this way, at step N(E), we have constructed a synthesis for E at time r. We use
the symbol Ft(E, r) to denote this synthesis and call it the synthesis generated by the
algorithm 4.

THEOREM 2.3. Consider Z, E and r > O. If flt stopsfor Z, at time r, then Ft(E, r) is
an optimal synthesis.

Remark 2.1. The points of overlap curves are reached by two different optimal trajecto-
ries. Moreover, if a trajectory y y+/- (see (F1) and (F2) below) goes through an endpoint
of an overlap curve, say, at time to, then all points 9/(t), > to, are reached in two different
optimal way. See Example 13 in 4. These are the only cases in which a point can be reached
by two different optimal trajectories. Now, if a trajectory 9/as above enters a turnpike, then



CLASSIFICATION OF GENERIC SINGULARITIES 1919

there is an open region on which the synthesis is not unique. But this situation is not generic.
Therefore, for systems in a generic set the trajectories 9’ of the above type do not reach turn-
pikes, and the synthesis is unique, excluding a finite set of one-dimensional manifolds. Hence
we have that the synthesis 1‘ut (E, r) depends on the algorithm 4, but generically the optimal
synthesis is essentially unique.

Given x R(r) we denote by 9’x, Ux the trajectory of 1-’t(E, r) and the corresponding
control such that 9"x(tx) x. If x does not belong to any frame curve, then we denote by
ut(x) the control Ux(tx). We have luutl 1,

The algorithm constructs only six types of frame curves:
(F1) the trajectory 9’-, starting from 0 and corresponding to the control u- -1.
(F2) the trajectory 9’+, starting from 0 and corresponding to the control u+ _= 1.
(F3) the topological frontier of the reachable set: Fr(R(r)).
(F4) conjugate curves to other frame curves, also called switching curves.
(F5) regular turnpikes.
(F6) overlap curves.
To denote these types of curves we use, respectively, the symbols: X, Y, F, C, S, and

K. Therefore we say that an FC D is an X-curve if D C 9’- (Dom(9’-)) and similarly for the
other types of curves. We write D 6 1‘ut(E, r) to denote the fact that D is an FC constructed
by A.

Now consider two systems E1 and E2, a time r > 0, and two open sets U1 C R1 (r) and
U2 C R2(r); here R and R2 denote the reachable sets of E1 and E2, respectively. Assume
that 4 succeeds for E1 and E2 at time r. We will say that 1-’ 1‘t(E1, r) U and
I112 1‘t(E2, r) U2 are equivalent if there exists an homeomorphism q) U - U2 such
that

(EC1) q) induces a bijection on Fi" {q)(yx(t)) Dom(Fx)} C) U {Fo(x)(t)
Dom(9’e(x))} fq U2 for each x e U; if the two sets are oriented for increasing t, then q)

preserves the orientation.
(EC2) o induces a bijection on FCs; i.e., for each FC D1 of F we have that o(D1) is an

FC of Fe of the same type and vice versa, assuming that the types X- and Y- are equivalent.
In this case we write F U _= F2 Ue.

Remark 2.2. Note that in the definition of equivalence there are no requests about the
time along 9’x; in fact there are no conditions of the type 0(9’x (t)) 9’o(x)(t). It is necessary
to give a not-too-strict definition of equivalence to have a discrete set of equivalence classes.
The same problem occurs in the definition of equivalence for a singular point of a dynamical
system. In this case the orbital equivalence was introduced (see 1 ]).

Given x and xe we say that F1 x and Fe xe are equivalent, or we write F
x _= Fe xe, if there exist U and Ue neighborhoods of x and xe, respectively, such that
F U1 =_ F2 Ue. We say that two FCs Di of 1‘i, 1, 2, are equivalent if for each
yl D1 \ O D1, Y2 De \ O D2 we have that 1111 Yl 1112 Y2. Similarly two frame points
xi of 1‘i, 1, 2, are equivalent if 1111 Xl 1112 X2.

If 4 succeeds for E at time r, then under generic conditions, all frame points are inter-
sections of two FCs. Using the same notation used for FCs, we will say that the origin is an
(X, Y)-point; in fact, 0 6 9’+ N 9’-. Similarly if a frame point x is the intersection of two FCs
D and D2 of respective type V1 and V2, then we say that x is a (V, Vz)-point. As for FCs we
write x 6 1‘.4(E, r) to denote the fact that x is a frame point constructed by .A.

Given e > 0 we say that two systems ]1 (F1, G1), ]2 (F2, G2) are e-near if

(2.17) max {11 F1- F2 IIc, G- G2 IIc} .
Consider a system E for which A succeeds at a time r and a frame point x of 1‘ut(E, r). We
say that x is structurally stable if there exist e > 0, 6 > 0 such that for each system E’, e-near
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to E, there exists a unique frame point x’ of the same type verifying

(2.18) x -x’ II a,

(2.19)

We are interested only in structurally stable frame points: from conditions (2.18) and (2.19)
we know that these are the only points that are observable; i.e., a small perturbation of the
system does not change the structure of the synthesis near these points.

3. Frame curves. In this section we give a complete description of the FCs generated
by the algorithm ,4. We use the notation introduced in 2 for the six types (F1)-(F6) of FCs.
From now on we consider a fixed r > 0 and a fixed system E for which 4 succeeds at time r.

An FC D is simple if D \ OD does not contain any frame point. Every FC can be
divided into a finite number of simple FCs. The classification of simple FCs in connection
with the classification of frame points, described in the following section, gives a complete
classification of FCs. In fact two FCs D1 and D2 are equivalent if we can divide them into
two families of simple FCs D D7 and D2 D such that

D FI D D FI DJ Y i, j {1 n},

where we assume, by definition, that 0 0. Therefore, throughout this section we consider
only simple FCs.

X-curve. Consider an X-curve D and x E D \ 0 D. There exists a neighborhood U of x
such that the control ut is constant in each one of the two connected components U1 and U2
of U \ D. If, for example, ut 1 on U1, then Y-trajectories leave from D entering U1. It is
clear that there are only two possibilities:

(Xl) ut 1 on U1 and ut -1 on U2, or vice versa;
(X2) ut -1 on U1 (-J U2.
Example 1. Let r > 2, and consider the control system

(3.1) 22 xl + x

The X- and Y-trajectories can be described, giving x2 as a function ofxl, and are, respectively,
cubic polynomials of the following type:

(3.2) X2
X X [- 0, O/ E R,
6 2

(3.3) x2 - -+- f -}- o/, O/ ].

With a straightforward computation we obtain

0 ).[F, G] ( Xl

Then

0 1) "- Xl.(3.4) AB(X) det -1 Xl 0
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From (3.4) it follows that every turnpike is a subset of {(x, X2) E ]2 Xl -1}. Indeed, at
the second step the algorithm 4 constructs the turnpike

(3.5) S (Xl, X2) Xl -1, X2 __< --Given b, consider the trajectories 7’1 [0, b] - ]2 for which there exists to E [0, b] such
that ?’1 [0, to] is a Y-trajectory and V [to, b] is an X-trajectory, and the trajectories
7’2 [0, b] - JK2, b > 2, for which there exists tl 6 [2, b] such that V2 [0, tl] is an X-
trajectory and 7’2 [tl, b] is a Y-trajectory. For every b > 2, these trajectories cross each other
in the region of the plane above the cubic (3.3) with ot 0 and determine an overlap curve

2K that originates from the point (-2, -g). We use the symbols x+- (b, to) and x-+ (b, tl) to
indicate, respectively, the terminal points of 7’1 and 7’2 above. Explicitly we have

(3.6) x+- 2to b, x-- (2to 6- b)3 (2t0 2- b)2
+ t + 3,

,2 _:_t
(b 2tl)3 (b 2fi)2 t(3.7) x+ b 2q, x-+ 6 + 2

q2 + "Now the equation

(3.8) x+- (b, to) x-+ (b, tl),

as b varies in [2, +cxz[, describes the set K. From (3.6), (3.7), and (3.8) it follows that

to b -tl, tl (- 2tl2 + (2 + 3b)tl + (-b2- 2b)) 0.

Solving for tl we obtain three solutions:

b
(3.9) tl 0, tl b, tl + .
The first two equations of (3.9) are trivial, while the third determines a point of K so that

K (x, X2) Xl -2, X2 > --The set R(r) is portrayed in Fig. 1.
Consider the system E1 of Example at time rl > 2. If (Xl) holds true, then

(ECla) Pt(E, z’) Ix P(]l, Z’l) ?’-(to),

where

(EClb) 0 < to < 1.

Hence D is equivalent to 7’- [0, 1]. In this case we say that D is of type X1 or that D is an

Xl-curve.
If (X2) holds true, then

(EC2a) Ft(E, r) x Ft(E1, rl) ?’-(to),

where

(EC2b) < to < 2.
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A=(- 1,- 1/3)

B=(-2,-2/3)

FIG. 1.

Then D is equivalent to ?,- [1, 2]. As before, we say that D is of type X2 or that D is an
Xz-curve.

Y-curve. This case can be treated as the previous one, and we have the same equivalences.
Now, the only difference is the sign of ut.

F-curve. Consider an F-curve D and x 6 D \ 0D. There exists a neighborhood U of
x in R(r) such that ut is constant on U \ Fr(R(r)). Consider the system E1 at time rl of
Example 1. Choose 0 < e < 1, and let X be the point reached by the trajectory corresponding
to the control

We have

Ul --1 on [0, e], ul 1 on [e, v].

(EC3) I"(], Z’) IX r.A(l, Z’l) Xl.

C-curve. Let D be a C-curve, and consider a point x of D \ 0D. There exists a neighbor-
hood U ofx such that the control uut is constant in each one of the two connected components
of U \ D. From the description of the switching curves it is clear that ut is equal to 1 on one
component and equal to -1 on the other.

Example 2. Consider r > zr and the control system

31 X2,
(3.10)

32 --Xl "[" U.

This example is accurately described in [6, pp. 11-14] and [5, p. 80].
The X- and Y-trajectories are circles centered at (-1, 0) and at (1, 0), respectively. The

algorithm ft constructs 9/+ only up to time zr; indeed after this time they are not extremal.
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FIG. 2.

At step n -t- 1 the following switching curves originate:
(a) all the semicircles of radius centered at (2n + 1, 0) and contained in the half plane

{(Xl, X2) :X2 >__ 0}.
(b) all the semicircles of radius centered at (-2n 1, 0) and contained in the half plane

{(Xl, X2) :X2 __< 0}.
Along the switching curves described in (a) the constructed trajectories arrive as Y-trajectories
and leave as X-trajectories; i.e., the controls switch from + to -1. The opposite happens
along the switching curves described in (b).

The set R(r) is represented in Fig. 2.
Consider the system 2 of Example 2 at time r2 > 7r. We have

(EC4) 1-’t(E, r) Ix ----- F/t(E2, z’2) (-3,-1).

S-curve. Let x be a point ofthe relative interior of an S-curve D. As for the previous case,
there exists a neighborhood U of x such that ut is constant in each connected component
of U \ D. From the definition of turnpike we have that ut has different signs on the two
components.

Consider the system E1 at time rl of Example 1. The following equivalence holds:

(go5) 1-’4(, "c) Ix 1-’4(1, l"1) -1,-
K-erve. Consider a K-curve D and x D \ 0 D. If U is a suitably small neighborhood

of x, then the control ut is constant in each connected component of U \ D. As before, ut
has different signs on the two components. Consider the system E of Example at time

r > 4. We have the equivalence

(EC6) Ft(E, "t’) x I"4(E1, rl) (-2, 0).

Thanks to this analysis we have the following theorem.
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THEOREM 3.1. Consider E and r > O. Ift succeeds for E at time r and D is a
simple FC ofFer(E, r), then D is ofone ofthefollowing six types:

X1, X2, F, C, S, K,

and we have, respectively, one ofthe equivalences (EC1)-(EC6).

4. Frame points. In this section we give a complete description of the local structure
of 1-’t in a neighborhood of a frame point. More precisely, only structurally stable frame
points are considered. Therefore, all frame points will be intersections of no more than two
FCs. Indeed, an intersection of three or more FCs can be destroyed by an arbitrary small
perturbation (see (2.17)) of the system.

From now on we consider a fixed r > 0 and a fixed system E for which t succeeds at
time r. In particular E is locally controllable. For each type of frame point there are only a
finite number of equivalence classes.

Before starting to examine frame points, case by case, we make a general observation.
Consider a frame point x and two FCs D1 and D2 such that {x D1 f D2. There are four
possible cases:

(FP0) x D1 \ D1, x D2 \ D2,
(FP1) x D1 \ 8D1, x OD2,
(FP2) x 8D1, x D2 \ O D2,
(FP3) x 8D1, x 8D2.

It is easy to check that, by construction, (FP0) can never occur. The case in which one flame
curve is of type X, Y, F, S, or K is immediate. The case in which D1 and D2 are both C FCs
is a consequence of the following observation. If we assume that D1 and D2 are not tangent
and this is a generic situation, then there are some curves of zeros of either AA or A to which
x belongs. Indeed, near x, there are trajectories switching from control + 1 to -1 and vice
versa. Moreover, from Theorem 3.9 of [9] it follows that the possibility of switching from
control + to 1 and vice versa depends on the sign of the function f of (2.14). In all possible
cases, we obtain the existence of trajectories having two switchings near such curves. But this
is prohibited by Lemma 7.1 of [9].

However, for each point we have to examine the other three possibilities.
The classification of flame points will be based on the types of the two intersecting curves

D1 and D2. We will use the notation, introduced in 2, for flame points and the symbols ,+,
F, C, S, and K to indicate the curve of types (F1)-(F6), respectively.

(X, Y)-point. Consider an (X, Y)-point x of FA(E, r). If x (0, 0), then it is a
structurally stable (X, Y)-frame point. Indeed if E’ is t-near to E and is sufficiently small,
then E’ is locally controllable and Ft(E, r) (0, 0) Fut(E’, r) (0, 0). Let E1 be the
system of Example 1 at time rl > 0, then

(EP1) Ft(E, z’) (0, 0) = I".A(I, Z’l) (0, 0).

Now suppose that x 4 (0, 0). It follows that x ?,-(t-) 9/+ (t+), t- > 0, + > 0. We
have that t- t+; otherwise one of the two trajectories would have been deleted from the
synthesis. Since the condition t- + can be destroyed by a small perturbation, x is not
structurally stable. In fact in this case x belongs to an overlap curve; hence it is the intersection
of at least three FCs.

(X, F).point. Let x be an (X, F)-frame point. The cases (FP1) and (FP3) cannot occur
because O(Fr(R(r))) 0. Therefore we are in the case (FP2). There exists a neighborhood
U of x (in R (r)) such that ut is constant in each one of the two connected components U1
and U2 of U \ (),- t3 F). One of the two following eases holds:
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(XF1) ut -1 on U1 [..J U2,
(XF2) ut 1 on U1 and ut 1 on U2, or vice versa.

Consider the system E1 of Example (3) at time rl, and let xl }’-(171). If (XF1) holds
true and

(EP2a) < rl < 2,

then

(EP2b) I"4(] r) X r.A(l, 171) Xl.

In this case we say that x is a frame point of type (X, F)I.
If (XF2) holds true, then some Y-trajectories arise from ,- and reach F. Let

(EP3a) 171 > 2.

Then

(EP3b) rt(z, r) x r(z, r) x,

and x is a frame point of type (X, F)2.
(X, C)-point. Assume that (FP1) holds true. There exists a neighborhood U of the

(X, C)-frame point x such that ut is constant in each one of the three connected components
U1, U2, and U3 of U \ (?,- U C). We label U1, U2, and U3 in such a way that U3 is the
connected component of U \ ,- that does not contain C N U; U1 comes before U2 along y-
for the orientation of increasing time. Because of the definition of C-curve we have one of
the following:

(XC1) ut on U,
(XC2) ut 1 on U2.

ln(4) and the system E"Example 3. Consider 17 >

(4.1)

Since E 6 E and

( -3 )[F,G]= -2x-I

the system is locally controllable. The X-trajectory passing through the point (Xl, x) at time
0 is

(-1) e3tq_(4.2) Xl(t) Xl

(4.3)

e6 5 1
x2(t)-" g Xl

0 -k- Xl e

4 l(xlo 1)
2

5(xlo 1)+ -9t 5 5
While the Y-trajectory passing through the point (Xl, x2) at time 0 is

1 ) 3t 1
(4.4) Xl(t) Xl + e

3’
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G
[F,G]

FIG. 3.

(4.5)

e6t 3tx2(t)--g xOq-g q- Xlq- 5 e

-t x,0 + +

The equation for turnpikes is

0-- AB(XI,X2) -(2Xl + 1).

Hence every turnpike is a subset of S {(xl, X2) Xl --}. We have that the control q)s to
stay on S (cf. (2.15)) is

3
(t9S(Xl, X2) .

Then there is no regular turnpike.
Now consider the pairs (Vs, us) 6 Adm(E), In(ys) 0, Dom(?’s) [0, s + es] (es > 0)

such that V originates as an X-trajectory and switches at time s, going on as a Y-trajectory
up to the time s + e. Let (V*, u*) (Vs*, Us.) be the pair that verifies

(4.6) *(s*)= 2’-7 +ln
Define e* e,, and assume that V* satisfies the PMP with adjoint variable *. Weow that

(4.7a) X*(s*). G(V*(s*)) 0, AB(,*(s*)) 0.

Then

d G(?’*(t)))[ X*(s*). [F, G](?,*(s*))(4.7b) d--- 0*(t). t=s*

0.

From (4.7a), (4.7b), and straightforward calculations we have at y* (s*) the situation of Fig. 3.
Now it is easy to verify that

(4.8) Vt 6 [s*, s* + e*l AB(V*(t)) > 0.

Thus, for each 6 Is*, s* + e*], the pair of vectors (G(t), IF, G](t)) forms a positive-oriented
base ofN2. Since u*(t) Is*, s* + e*] 1, it follows that the two functions X*(t) G(,*(t))
and )*(t) [F, G](g*(t)) are positive in a right neighborhood of s*. Therefore G and [F, G]
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lie in the darkened region of Fig. 3. But this is prohibited by (4.8), as observed above; hence
it follows that e* 0.

Similarly, if the trajectories ?’s, s 6 [ln(/), s*], satisfy the PMP, then es is small. More
precisely the algorithm A constructs trajectories that have a second switching point, and these
switching points form a switching curve C1 originating at (4.6).

The above geometric reasoning is very general; however, in this case we can compute
explicit calculations. Suppose that ?’s satisfies the PMP with adjoint variable )d. The equation
for )d is

(4.9) s(t) -Xs(t) (VF(?’s(t)) + us(t) VG(?’s(t))) -Xs(t) (VF(?’s(t)))
Let x be the first component of ?’s. For time > s, the explicit form of (4.9) is

(4.10) (, )(t)--(-3)(t)- .(t)I2 (x(s)+ )e3(t-s)-I-], 0).
Denote by bs the switching function along (?’s, us, )s). The solution to (4.10) with initial
condition

ZS(s) O(s(S)) o

Thus

[ ( 2)-3(t-s) 1 ( 1) e3(t_s)1]x(s)+ e x(s)+4s(t) )(t) X2(t)
3 5 9

Now, the equation 4s (t) 0 has two solutions"

t s, t s + In
3x(s) +

x (t2) -x (s) 1

gives the first component of switching points belonging to C1.
Let ?’- be, as before, the X-trajectory verifying In(?,-) ?’-(0) 0. The point

?’-(In ) is conjugate to the origin along ?’-. Consider the trajectories ?’r, In(?’r) 0,
Dom(?’r) [0, br] (br >_ r) that originate as Y-trajectories and have a switching at time r,
going on as X-trajectories. Again we can make direct calculations and obtain the existence of
a second switching time (if r < In /):

10)(4.11) tr r + In -1 ar
where ar (?’r(r) "). These switching points form another switching curve C2 that

intersects ?’- at ?’-(In ./’). If we denote by x[ the first component of ?’r, then from (4.11) it
follows that

r(tr)X --X (r) 1.

In Fig. 4, the reachable set R(r) is represented.
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FIG. 4.

Consider the system E3 at time r3 of Example 3. If (XC 1) holds true, then uA 1 on
U2 U U3 and the Y-trajectories leaving - reach C. We have

(EP4) r4(E,r) xr(N,r) g- In

In this case we say that x is of type (X, C).
If (XC2) holds true, then u -1 on U U U. Hence

(EP5) FA(E,r) xrA(E3, r3) g- ln4

and we say that x is of type (X, C)2.
Remark 4.1. Consider the equivalence (EP4). In Example 3, -( In ) belongs to a

nonordinary arc that is not a turnpike. This happens for every frame point x of type (X, C)l.
Indeed, assume x -(&) and let (Vr, Ur), r e [& e, & + e] (e > 0), be the pair such that
Vr(0) v-(r) and Ur 1. Let r be the covector field along (Vr, Ur) satisfying

ir(O G(r(O)) =0,

and consider the function

det [)r(0), G(’r(0))] > 0, )r(0)II--" 1,

O(r, s) )r(S) G(},r(S)).
The equation p(r, s) 0 has two branches of solutions in (tx, 0). Then we have

(t,o)
,ktx (0). [F, Gl(v-(tx)).

Now 0 )tx (0). G(x) Xtx (0). [F, G](x) and Xtx (0) 0. Then

AB(X) det (G(x), [F, G](x)) O.
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It follows that if V(A(x)) 0, then x belongs to an INOA (see 2 and [91). This INOA
cannot be a regular turnpike; otherwise it would have been constructed by the algorithm 4.

The case (FP2) is not generic. Indeed if (FP2) holds, then there exists a neighborhood U
of x in C such that for each y 6 U there exists a trajectory ?’y that switches at y ?’y (ty).
One side of C with respect to x is reached by trajectories ,y that arise from an FC D1. The
other side is reached by trajectories that originate from a different FC, say, D2. Then at x, two
different switching curves meet each other and x is not stable.

Suppose that (FP3) holds true. If C lies on the left (fight) of ,-, then u.a -1 to the
left (right) of y-. Consider the system I32 of Example 2 at time r2 > 7r. Then we have that

(EP6) F4(13, Z’) X 1-’.,4 (132, Z’2) (2, 0).

In this case x is of type (X, C)3.

(X, S)-point. Let x be an (X, S)-point x, and assume that (FP1) holds true. There exists a
neighborhood U ofx such that uA is constant on each one of the three connected components
U1, U2, and U3 of U \ (?,- t3 S). We suppose that U1, U2, and U3 are labelled in such a way
that U3 is the connected component of U \ ,- that does not contain S A U; U1 comes before
U2 along ?,- for the orientation of increasing time. From the definition of a turnpike it follows
that ut 1 on U1 and ut -1 on U2 U U3. Consider the system E at time rl of the first
example (3). The following equivalence holds:

(EP7) Ft(13, r)Ix---1-’t(131, rl)I (-1,-).
The cases (FP2) and (FP3) cannot occur because, from the description of turnpikes, it follows
that ,- cannot terminate at x.

(X, K)-point. Assume that (FP1) holds true. As before, there exists a neighborhood U
of x such that ut is constant in each one of the three connected components U1, Uz, U3 of
U \ (,- U K). We label U1, U2, and U3 in such a way that U3 is the connected component
of U \ ,- that does not contain K A U; U1 comes before U2 along ?,- for increasing time.
We have that ut 1 on U2 and ut -1 on U1 U U3. Under generic assumptions, the
Y-trajectories arising from ,- reach K. In fact, if the opposite happens, then X (x) and Y(x)
are parallel and have the same versus, but this is not generic. Consider again the system E at
time rl of the first example (3). In this case we have

(EP8) Ft(E, r)Ix 1-’4(l,’rl)I (-2,-),
and we say that x is of type (X, K).

Now let (FP2) hold. For every sufficiently small neighborhood U of x, we have that ut
is constant in each one of the two connected components U and Ue of U \ K. If, for example,
U contains ?,- N U, then ut -1 on U1 and ut 1 on U2.

Example 4. Consider e, 0 < e < 1, r > , and the system "
/ 21 gX2 -t- UX2,

(4.12) / 32 b/(l --Xl).

It is easy to check that

(4.13) [F, G] (-e(1-xl)).--6X2

From (4.13) and Lemma 2.1 we have that the system is locally controllable.
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The X-trajectory passing through the point (Xl, x) at time 0 is

(4.14) Xl(t) (x 1) cos(/1 e t) + x/1 e sin(/1 e t) + 1,

(4.15) xz(t)
(xl 1)

sin(/1 e t) x2 cos(/1 e t).

The Y-trajectory passing through the point (Xl, x2) at time 0 is

(4.16) xa (t) (Xl 1) cos(/1 + e t) + Xzx/1 + e sin(x/1 + e t) + 1,

(4.17) x(t)
(x 1)

sin(/1 + e t) + x2 cos(/1 + e t).
/l+e

The equation for turnpikes is

(4.18) 0-- AM(X1, X2) --?X2
2 "+" ?(1 --Xl)2.

Hence every turnpike is a subset of S {(Xl, X2) X2 nt-(1 Xl)}. Using (4.16)-(4.18)
it is easy to verify that the trajectory ,+ intersects the set S in a point (Xl+, x2+) of the first
quadrant. The algorithm4constructs the turnpike $1 {(Xl, x2) x2 1-Xl, x- _< Xl < 1}.
The singular control q) along the turnpike S1 (cf. (2.15)) is

(4.19) q)(Xl X2)
82(’2

" 1.
1--Xl "+-X2

From (4.19) we have

(4.20) 2(p)-- (1- Xl).

Hence the point (1, 0) is not reached in finite time by a singular trajectory.
Similarly, using (4.14), (4.15) it is easy to verify that the trajectory ),- intersects the set

S in a point of the fourth quadrant:

arccos(4.21) (xj-, x-) ,
/1 e

Hence the algorithm 4 constructs the turnpike $2 {(Xl, x2) x2 Xl 1, Xl _< X }.
Indeed, the control q)2s (cf. (2.15)) is

8X2q)(X1, X2)
1 -Xl -x2

The trajectories ?,+ are very close to the circle A of center (1, 0) and radius 1; ,+ runs
clockwise, and ,- counterclockwise. From (4.14)-(4.17) we have that ,+ lies inside A, )/-
outside, and

,+ N ,- N A {(0, 0), (2, 0)}.

However, the two trajectories ?’+ do not meet each other at (2, 0); indeed,

(2,0)=9/+( zr

/+
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u=+l

FIG. 5.

But the X Y and Y X trajectories constructed by the algorithm give rise to an overlap curve
K, and y+ end on it. In Fig. 5, R(r) is represented.

Consider the system E4 at time r4 of Example 4, and let 2 be the point in which y-
intersects the overlap curve. We have

(EP9) 1-’.A(] "g) IX I".A(]4, T4) [,

and we say that x is of type (X, K)2.
Assume that (FP3) holds true and that X and K are not tangent. There exists a neighbor-

hood U of x such that ut is constant in each one of the two connected components U1 and
U2 of U \ (y- U K). Suppose that U1 and U2 are labelled in such a way that the vector X (x)
points into U2. It is clear that ut on U1 and ut 1 on U2. The Y-trajectories leaving
from V- do not reach K.

Example 5. Consider the system (cf. Example 1)

31 bt,

(4.22) 1
iz Xl

2 + x

and the two embedded submanifolds

M (Xl,X2)’Xl =0,-_<x2<0

M2 = (Xl, x2) "Xl ,-g _< x2 _< g
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We assume that for each y M1 there exists a Y-trajectory t’ (Y) that verifies , (y)(0) y.
Moreover, for each x Mg. there exists an X-trajectory ’2(x) that arises from x at time 0.
Finally, an X-trajectory originates from each point of the Y-trajectory t’l (0), i.e., ?,l (0) is the
trajectory t’ + of a given system.

At the point (1, ) the trajectories , (0),)’2 ((/-, 0)) meet each other. After this point
9/1(0) is not constructed by .4 because the trajectories ,2((./, c)), c >_ 0, achieve a better

performance. The trajectories , ((0, -c)) and Y2 ((,,/, -c)), meeting each other, give rise to
an overlap curve:

K (Xl, x2) Xl -1, 0 5 x2 5

In Fig. 6, this local example is portrayed.
Consider the synthesis 1’5 of Example 5. We have that

(EPIO) Ft(E,r) Ix=F5 1,

and we say that x is of type (X, K)3.

(Y, F)-, (Y, C)-, (Y, S)-, (Y, K)-points. These points can be treated as the corresponding
points with Y replaced by X, and we have the same equivalences. In this case the only
difference is the sign of ut.

(X, X)-, (Y, Y)-, (F, F)-points. It is easy to verify that points of these types cannot exist.

(F, C)-point. Consider an (F, C)-point x. Since 0(Fr(R(r))) 0, the cases (FP2) and
(FP3) cannot occur. Then (FP1) holds true. There exists a neighborhood U of x in R (r) such
that ut is constant in each one of the two connected components of U \ (F C). It is clear
that ut i on one connected component and ut 1 on the other. The trajectories leaving
from C reach F. Consider the system E2 of Example 2 at time zr. We have

(EPll) Ft(E, r) Ix Ft(Eg., zr) (-3,-1).
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(F, S)-point. As for the previous type, only the case (FP1) can hold There exists a
neighborhood U of x in R(r) such that ut is constant in each one of the two connected
components of U \ (F U S). Again ut on one connected component and ut -1 on
the other. Under generic assumptions the trajectories leaving from S reach F. Consider the
system E1 at time rl of Example 1. Let x be the point in which the turnpike intersects the
frontier of the reachable set, namely,

It follows that

(EP12) rt(2, r) x r(E, r) x.

(F, K)-point. Consider an (F, K)-point x. The case (FP1) is the only possible one.
There exists a neighborhood U of x in R (r) such that ut is constant in each one of the two
connected components of U \ (F U K). It is clear that ut on one connected component
and ut 1 on the other. Consider again the system E1 at time rl of Example 1. Let X be
the point in which the overlap curve intersects the frontier of the reachable set, namely,

We have the following:

(EP13)

Xl= -2, g+5 1+

r4(E, z’) x --= l-’A(]l, Z’l) Xl.

(C, C)-point. Let x be a (C, C)-point. From the definition of switching curve we have
that the cases (FP1) and (FP2) cannot occur. Therefore (FP3) holds.

There exist two switching curves C1 and C2 verifying x C1 f3 C2 and a neighborhood
U of x such that ut is constant in each connected component of U \ (C1 CJ C2). We have that

ut has different signs on the two connected components. Consider the following cases:
(CCa) The curves leaving from C reach C2.
(CCb) The curves leaving from C2 reach C1.

It is easy to show that (CCa) and (CCb) cannot hold at the same time; otherwise there is no
trajectory reaching x. Hence we have two cases:

(CC1) (CCa) holds and (CCb) does not, or vice versa.
(CC2) (CCa) and (CCb) do not hold.
Example 6. Consider the system (4.1) of Example 3 and the manifold

M {(Xl,X2):Xl --O, Ix2l 1}.

We assume that from every point (0, X2) E M an X-trajectory F (X2) arises, with initial time
0 and with adjoint variable satisfying

9 1
[/,l(X2)](0) sgn(x2) x2, [2(x2)](0) --1.

36 36

With simple calculations we obtain the solutions to the equation [q(x)](t) 0, where 4 (x)
is the switching function along (y(x2), -1, .(x)):

t+(x2) In 4- + 36 [Zl(X2)](



1934 B. PICCOLI

/

C Ce
1

M

FG. 7.

Hence, the trajectories 9/(x2), x2 _< 0, has a switching at time t-(xz), while the trajectories
F (xz), x2 > 0, do not switch. These switching points form a switching curve C1 having the
point (4.6) as endpoint.

Now the equation b(x2) 0 has another solution after the time t-(x2), namely,

3 p(x)+

where pl (x2) is the first coordinate of the first switching point of g(x). These switching
points form another switching curve C2 that meets C1 at the point (4.6). This local example
is portrayed in Fig. 7.

Consider the synthesis F of Example 6. If (CC 1) holds true, then

( 13 4 (_52))(EP14) Ft(E, z’) Ix F6 3’ 72
t- In

and we say that x is of type (C,
Consider the system E2 at time r2 > 37r of Example 2. If (CC2) holds true, then

(EP15) Ft(E, z’) x I"4(]2, z’2) (4, 0),

and we say that x is of type (C, C)2.
Remark 4.2. Reasoning as in Remark 4.1 one can prove that if x is a frame point of type

(C, C)I, then A(x) 0.
The frame points of type (C, C)2 are not effective singular points. Indeed, the optimal

synthesis near these points is equivalent to the synthesis near a point x of a simple FC of type
C, verifying x C \ OC.

(C, S)-point. Consider a (C, S)-point x. There exists a neighborhood U of x such that

ut is constant in each connected component of U \ (C LJ S).
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The cases (FP1) and (FP2) cannot occur because the control ut changes sign crossing S
(or C); moreover it has to be constant along each side of C (or S).

Therefore (FP3) holds true. There exists a C diffeomorphism ot [0, e] w- IR2, e > 0,
such that or(t) 6 C, or(0) x. Consider the vectors

C(x) lim de(t),
t---0

S(x) F(x) + Os(x)G(x),

where q)s is the control to stay on S (cf. (2.15)). Assume that C(x) and S(x) are not parallel.
Let Ux and Ur be the connected component of U \ {x + S(x) 6 JR} labelled in such a
way that X (x) and Y(x) point into Ux and Ur, respectively. Moreover, let U1 and U2 be the
connected component of U \ (C t3 S) labelled in such a way that the angle with vertex x and
sides C(x) and S(x) contained in U1 is smaller than that one contained in Uz. Now, if U is
contained in Ur, then ut on U1; otherwise ut -1 on U1.

There exists Fs 6 Traj(E) such that Fs(Dom(Fs)) S U. We have two cases:
(CS 1) In(Fs) x.
(CS2) Term(Fs) x.

Assume that (CS 1) holds. There are two subcases:
(CSa) Some constructed trajectories reach C from U2.
(CSb) Some constcted trajectories reach C from U.

if (CSb) holds, then no nontrivial trajectory reaches x, but this is not possible. Hence (CSa)
holds te. For the same reason the trajectories originating from S and entering U cannot
reach C.

Example 7. Consider the system (4.22) of Example 5 and the manifold

M= (x,x) x =O,- xa N

We assume that from each (x, x) M there ises, with initial time O, an X-trajectory
g (Xl, x) g (x) with adjoint variable (x) that satisfies

-1 -4 sgn(xa) x[Z(x)](0) [Z2(x2)](0) -,
2

where sgn(x) x x - if x 0 and sgn(0) 0. Now, the switching function along
((x2), -1, Z(x2)) is

2 1 + 4 sgn(x2) x[O(x2)](t) z (t) - + 2

If x2 0, the equation [(x2)](t) 0 has the following solutions:

tl(X2) -+-21X21, /2(X2)-- 1- 21x21;

otherwise there is no solution. Then every trajectory , (x2), x2 < 0, switches at the point

[’(x2)](t2) (2,x2,-1 (21x2’-1)3 (2’x21- l) )’- 6 2 + x2

These switching points form a switching curve C.
The trajectory ,(0) crosses the set {(x, x2) An(x, x2) 0} {(x, x2) xl --1} at

a switching point; hence the algorithm 4 constructs the turnpike

S= (x,x)’Xl=-l,x_<-
This local example is represented in Fig. 8.
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Consider the synthesis l"7 of Example 7. We have

(EP16) Ft(E,r) Ix -= F7 -1,-
and we say that x is of type (C, C)1.

Suppose that (CS2) holds. We again have the subcases (CSa) and (CSb). The case (CSa)
cannot hold. Indeed, the trajectories arising from S and entering U cannot reach C, and then,
from the direction of X(x), g(x), we have that In(,s) x, contradicting (CS2).

Suppose that (CSb) holds. We have that the trajectories leaving from S and entering U1
reach C. From Theorem 3.9 of [9] it follows that A cannot have constant sign on V fq U for
any neighborhood V of x. Hence we have the nongeneric condition VAo(x) 0.

Consider again the case (CS2), and assume that C(x) and S(x) are parallel. The trajec-
tories arriving onto C come from S.

Example 8. Let r > 37- + ,Y’, and consider the system

21 =u,
1(4.23) 22 (Xl + (x2)) + (xl + 7r(x2))2,

where

0, X2 >
(4.24) ap (x2)

(x2 + 1)4, X2 < 1.

Observe that for X2 > --1 the system is the same as in Example 1. There is a turnpike S that
lies on the line Xl between the points (- 1, 5) and (- 1, 1). Moreover, for x2 < 1,
S is represented by the equations

(4.25) xl + (X2 + 1)4 q- O, X2 < --1.

Recalling (2.15), from (4.23)-(4.25) we have that the control Ps is

(4.26) ps(Xl, x2) 0 if x2 __. -1, os(x, x2) 2(x2 q-- 1)3 if x2 < -1.
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By (4.26), the turnpike S is regular up to the point

(4.27) (2, ia) -1
24/’

-1

Indeed

(/9S(.1, 32) --1.

Hence, the algorithm 4 constructs a turnpike that ends at the the point (4.27). The set R(z)
near the point (4.27) is represented in Fig. 9.

Consider the system E8 at time of Example 8. We have

(EP17) r (z, r) x r (z8, r) - 2’
1

and we say that x is of type (C, S)2.

(C, K)-point. There exists a neighborhood U of the (C, K)-point x such that uA is
constant in each connected component of U (C U K).

The cases (FP1) and (FP2) cannot occur because the control uA changes sign when we
cross K (or C), but it also has to be constant along each side of C (or K).

Therefore (FP3)holds true. There exist two C diffeomohisms 1, :[0, e] Nm, e >
0, such that (t) 6 C, 2(t) E K, 1,2(0) X. Consider the vectors

C(x) lim &l(t), K(x) lim &z(t).
t0 t0

Suppose that C(x) and K(x) are not parallel. Let Ux and Ur be the connected components
of U {x + K(x) 6 } labelled in such a way that X (x), Y(x) point into Ux and Ur,
respectively. Let U1 and U2 be the connected components of U (C U K) labelled in such a
way that the angle with vertex x and sides C(x) and K(x) contained in U1 is smaller than that
one contained in U2. If U1 is contained in Ux, then uA 1 on U; otherwise uA on U1.
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We have two cases:
(CK1) Some constructed trajectories reach C from U1.
(CK2) Some constructed trajectories reach C from U2.

Assume that (CK1) holds. The trajectories originating from C cannot reach K; otherwise we
have one of the not generic conditions Y (x) 0, X (x) 0.

Example 9. Consider the system (cf. Example 2)

| 1 x2,
(4.28) / 32 =--Xl "+" U

and the two manifolds

M1 {(Xl, x2) :Xl 0, < x2 < 2},

M2 {(Xl, x2) < Xl < 2, X2 3}.

The algorithm .A succeeds for the system (4.28) at time 4. A Y-trajectory ,’(x) 6 Ft(E, 4),
with an associate adjoint variable 2.’(x), passes through each point x 6 M1. We suppose that
from each x 6 M1 a Y-trajectory ?, (x) with adjoint variable )(x) arises at time 0. Moreover,
(y (x), )(x)) is obtained from (V’(x), ;k’(x)) shifting the time.

Consider the line given by the equation

(4.29) x2 (- 3) xl + 8 f.
2 /-] the trajectory ?,s ((0, s)) intersects the line (4.29) in a point, say,For each s [1, g V

(x,x).
Let r(s) 6 1, 2] be such that the X-trajectory passing through (r(s), 3) intersects the line

(4.29) in (x, x). We assume that an X-trajectory ?’r with initial time (r) originates from
each (r, 3) 6 M2. If r r(s) for some s, define, denoting by d the Euclidean distance,

(4.30) t t(r(s)) 2 arcsin ;): 2 arcsin -v/--ri; 1)2 + 9

Otherwise

t(r)-" max {t :s [1, 2]}.

We associate with every ?’r an adjoint variable )r verifying

(4.31) ) (t(r)) -1, U2(t(r)) O.

The equation (4.31) implies that .r (t (r)). G ((r, 3)) 0. Then to satisfy the PMP the trajectory
’r is an X-trajectory for a time interval of length

2], form a switching curve"The trajectories ys, s e [1,

C= (x,x)’x=v/1-(x-),2_<x_<5
By direct calculations, one can verify that (4.30) ensures that the trajectories , and

2 /, 2] meet each other, giving rise to an overlap curve:se[

g (x, x2)’(xl, x2)satisfies (4.29), 2 x g
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The curves K and C meet each other at the point

In Fig. 10, this local example is portrayed.
Consider the synthesis 1"9 of Example 9. We have

(EP18) 1-’t(E, z’) Ix 1-’9 , T
and we say that x is of type (C, K)l.

Example 10. Consider the system

[ 21 3 Xl u,
(4.32) / -’2 Xl

2 + Xl

that is obtained from the system (4.1), replacing G with -G, and the manifold

M {(x, x2) :x 0, Ixl < e}.

We assume that from every point (0, x2) 6 M a Y-trajectory ’(x2) with initial time t0(x2)
arises. Moreover, , (x2) admits an adjoint variable satisfying

9
[Xl(X2)](0) + 25 sgn(x2) x2, [)2(x2)](0) -1.

36

With simple calculations we obtain the solutions to the equation [4(x)](t) 0, where 4(x2)
is the switching function along (’(x2), + 1, )(x2)):

(4.33) t+(x2) to(x2) + In 4-
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Hence the trajectories F (xe), xe > 0, have a switching at time t-(x2), while the trajectories
g(x2), x2 < 0, do not switch. Let x-(xe) "- [F(xe)](t-(xe)), xe > O. From (4.33) we have

1
(4.34) x- 2

-t- 5 x22,

and these switching points form a switching curve C originating from (4.6).
Now the equation b(x2) 0, where b(x2) denotes again the switching function along

F (x2), after the time t- (x2) has another solution:

(4.35) t’(x2)=t-(x2)+ln(-3x(xe)3x (X2) -t"--2)’1
These switching points give rise to another switching curve C2 that meets C1 at the point (4.6).

It is easy to verify that the X-trajectories leaving from C1 cross the trajectory F0 ?’ (0)
before reaching the switching curve C2. Hence, we can define P (x2), xe > 0, to be the point
at which F(x2) meets F0.

Let r(x2), x2 >_ 0, be such that the trajectory F(r(x2)) meets F(x2) at the point Q(x2) -"
[’(X2)](tt(X2)); i.e., they meet each other on C2.

Now let tl(X2), t2(X2) be the time in which, respectively, F(x2), F0 reaches P(xe) and
t3(x2), t4(x2) be the time in which, respectively, F(x2), F(r(x2)) reaches Q(x2). If xe is
sufficiently small, from (4.34), (4.35) we have that

t4--t3 < t2-- tl.

Then, taking e sufficiently small, we can define

/0(X2) 0 if xe < 0,

(t2 tl) + (t4 t3)
t0(x2) if x2 > 0.

2

With this choice, the trajectories F (x2), x2 > 0, and F (x2), x2 < 0, meet each other, forming
an overlap curve K that meets C1 at (4.6). The curve C2 is deleted by the algorithm. In Fig. 11,
this local example is portrayed.

Assume that (CK2) holds. Consider the synthesis Flo of Example 10. We have

( 1 13 4 ())(EP19) Ft(,r) Ix--F0 3’ 72 - In

and we say that x is of type (C, K)2.
Now suppose that C(x) and K(x) are parallel. If the trajectories leaving from C do not

reach K, then the equivalence (EP18) holds and an unstable tangency between C and K is
verified. If the opposite happens, then we have a stable tangency between C and K.

Example 11. Consider the system

91
Xl + Xl- 1

2
+u

2(4.36)
x2 x2

22=’ -- b/
2

and the manifold

M {(Xl, X2) Xl 0, 0 < X2 < 1}.



CLASSIFICATION OF GENERIC SINGULARITIES 1941

M

K

C

FIG. 11.

Assume that from every point (0, x2) 6 M, with initial time 0, an X-trajectory y (x2) originates
with adjoint variable satisfying

X2(4.37) [)(x2)](0) [)2(x2)](0) -1.
1

It is easy to verify, from (4.36), (4.37), that every y (x2) switches at time

(x2) 2 /1 x2
2

and the corresponding switching points form a switching curve

C {(Xl, l(Xl)) 1 < x < 2}, (x) V/1 (2 Xl)2,

that is an arc of circle.
Observe that for e small, Y(e, p(e)) points to the right of C and Y(2 e, p(2 e))

points to the left of C. Then there exists (:1, :2) 6 C such that Y(Yl, ’2) is tangent to C.
Define C’ -’-- {(x, p(x)) 6 C x > Y}. The trajectories y(x2) that reach C’ meet other
trajectories y(x2), giving rise to an overlap curve K. It is possible to move along C’ with a
trajectory of the system. Hence we can construct an envelope for the curves y(x2) [0, (x2)]
that reach C’; see [12], [13] for envelope theory. Hence the subset C’ of C is removed by the
algorithm. In Fig. 12 this local example is represented.

Consider the synthesis 11 of Example 11, and define (:, :2) in the same way. The
following equivalences hold:

l-’.A(], "g) X - 1-’11 (-1,-2)

( 1 13 4 (_52))=1-’10 3’ 72 +- In

Remark 4.3. The point (, 2) of Example 11 and (4.6) of Example 10 are equivalent,
but they are in some sense different. In fact, proceeding as in Remark 4.1 one can prove that
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if K (x) and C(x) are linearly independent and (CK2) holds, then An(x) 0. If, instead,
K(x) and C(x) are parallel, we can have that An (x) # 0 as in Example 10.

(S, S)-point. It is easy to verify that these points cannot exist.

(S, K)-point. Consider an (S, K)-point x. The control ut is constant in each connected
component of U \ (S tO K) for every sufficiently small neighborhood U of x.

The cases (FP1) and (FP2) cannot occur because the control ut changes sign when we
cross K (or S) and is constant along each side of S (or K).

Therefore (FP3) holds true. The cases in which every trajectory arising from S reaches K
or no trajectory leaving from S reaches K are not generic. Indeed, we have that X (x) and Y(x)
are linearly dependent. Therefore the trajectories leaving from one side of S reach K, and
those leaving from the other side do not. There exists Vs Traj(E) such that Fs(Dom(Fs))
S U. There are two cases:

(SK1) In(Fs) x.
(SK2) Term(Fs) x.
Example 12. Consider the same system and the same manifold of Example 7, and define

S in the same way. We assume that from each (0, x2) 6 M an X-trajectory (x2) arises with
initial time

2
t0(x2) =- x2

and with adjoint variable satisfying

-1 -or sgn(x2) x2
2

[,l(X2)](O) [,2(X2)](0) -1,
2

where ot > 0 and sgn is defined as in Example 7. There is again a switching curve C. The
X-trajectories starting from (0, x2), x2 _< 0, reach (-1, -g x2) 6 S at time

2
1 + Ix21.
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On the other hand the Z X-trajectories, concatenations of an X- and a Z- trajectory, starting
from 0 reach the same point at time

Ix211 -+-
2

Therefore the Y Z X-trajectories, concatenations of an X-, a Z-, and a Y-trajectory, starting
from the origin, and the X-trajectories starting from (0, x2), x2 < 0, give rise to an overlap
curve K having (-1, -5) as its endpoint.

Let (s, k(s)) be a parametrization of K in a neighborhood of (-1, -5), and define

d(s)
ds s=-l+

Now let (cl (x2), c2(x2)) be a parametrization of the switching curve C. After straightforward
calculations we have

Thus if ot is sufficiently small,

d2
dcl Cl=--I+

3

3

and the overlap curve K arises. Therefore the curve C is deleted by the algorithm. This local
example is portrayed in Fig. 13.

If (SKI) holds true, then consider the synthesis 1-’12 of Example 12. We have

(EP20) FA(E,r) Ix r2 -1,--
and we say that x is of type (S, K)I.
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(4.38)

Example 13. Consider 0 < e << 1, z > 1, and the system E"

We have that

( 0 ).tF, al e 3Xl2

hence the system is locally controllable. The X- and Y-trajectories are quartic polynomials
of the following types, respectively"

X2 X4 +6 -+Ot, 0t

X2--
4

The equation for turnpikes is

whose set of solutions is

(4.39)

0 AB(Xl X2) 6 3x2

Every turnpike is a subset of (4.39). The algorithm constructs the turnpikes

Stl (Xl, x2) Xl x2 < --6 O R(r),

(Xl, X2) Xl X2 __> -2The points (+/-c, q=-4-) are conjugate to the origin along ?’+. Two overlap curves K2 and K1,
respectively, originate at these points. The algorithm partially deletes the turnpikes S and S,
determining two new turnpikes $1 C S and $2 C S. The new turnpikes S and $2 end on K
and K2, respectively. In Fig. 14, R(r) is represented.

Remark 4.4. Let E" be the system (21,22) (u, x l/r(Xl)6Xl), where p is a smooth
function, {x O(x) 0} C B(0, 1),andO B(0, g) 1. Note that this system is obtained by
a small perturbation of the system E" (21,22) (u, x3). The synthesis Fut(E’, r) is formed
by bang-bang trajectories with at most one switching. It is clear that E is not structurally
stable (in a sense that will be stated more precisely in a following paper). In fact we have that
for 6 small the system I2" is e-near (cf. (2.17)) to 12’, but lut (12 ’’, r) has a structure completely
different from 1"t (12’, r).

If (SK2) holds, consider the system 1213 at time r and the curves S and K of Example
13. Let xl S f-1K. We have

(EP21) rut(E, r) x -= Ft(E13, r) Xl,

and we say that x is of type (S, K)2.
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FIG. 14.

(K, K)-point. Consider a (K, K)-point x. From the definition of overlap curve we have
that the cases (FP1) and (FP2) cannot occur; then (FP3) holds. Consider the system 13 at
time r of Example 13. The overlap curve K1 is union of two overlap curves K and K’I’. The
set K is formed by intersections of Y X- and X Y-trajectories, while K’I is formed by
intersections of Y X- and X S Y-trajectories. Let xl K f) K’. We have

(EP22) l-’t(X;, r) x rt(E13, r) Xl.

Remark 4.5. As observed for (C, C)2 points (see Remark 4.2), the frame points of type
(K, K) are not effective singular points.

From the present analysis we immediately have the following theorem.
THEOREM 5.2. Consider E E E and r > O. If ft succeeds at time r for E and x is a

frame point, then x is ofone ofthefollowing 22 types:

(X, Y), (X, F)l,2, (X, C)1,2,3, (X, S), (X, K)1,2,3, (F, C),

(F, S), (F, K), (C, C)1,2, (C, S)1,2, (C, K)l,2, (S, K)l,2, (K, K),

and we have, respectively, one ofthe equivalences (EP1)-(EP22).

Acknowledgments. We wish to thank Prof. A. Bressan for suggesting the problem and
for much useful advice.
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BIFURCATION PROBLEMS FOR SOME PARAMETRIC NONLINEAR
PROGRAMS IN BANACH SPACES*

AUBREY B. POOREt

Abstract. Singularities in a class of parametric nonlinear programming problems in Banach spaces are inves-
tigated using bifurcation theory. Motivated by the Fritz John first-order necessary conditions and a nonstandard
normalization of the multipliers, this problem is first formulated as a system of nonlinear equations. Conditions for
this system to be Fredholm are then derived, and singularities are shown to arise from a violation of one or more of
the following conditions: strict complementarity, surjectivity of the Fr6chet derivative of the active constraints, and
a second-order condition. A branching analysis is developed for each of these singularities under a second-order
nondegeneracy assumption. Examples from the calculus of variations are then used to illustrate these singularities.

Key words, bifurcation, singularity, parametric nonlinear programming, Banach spaces

AMS subject classifications. 90C31, 90C48

1. Introduction. The parametric constrained optimization problem considered in this
work is that of determining the behavior of solution(s) as a parameter or vector of parameters
ot E R varies over a region of interest for the problem

minimize f0(x, or)

(1.1) subject to F (x, or) 0,

fi(x, or) < 0fori m,

where j E ce(u V; R), F ce(u V; Y), U and V are open subsets ofthe Banach space
X and Rr, respectively, and Y is a second Banach space that contains the range of F(x, or).
This formulation is sufficiently general to cover classes of parametric problem in the calculus
of variations and nonlinear optimal control [1, 9, 16, 23, 56]. Physical problems leading
to (1.1) contain parameters. Some are fixed and are known either precisely or imprecisely;
others (sometimes called control parameters) may be varied to enhance the system. For
imprecisely known parameters, the sensitivity and persistence of the solution to variations
in these parameters can be of paramount importance. For control parameters that are varied
over a wide range to enhance the system, persistence of minima, exchanges in the type of
solutions of (1.1), differentiability, and sensitivity of the solution with respect to variations in
the natural parameters are equally important. Indeed, varying system parameters can often
assist in obtaining a "global" view of the solution set of (1.1).

For finite-dimensional versions of problem (1.1), local behavior of regular and singular
points has been investigated extensively (see, e.g., [4, 6, 20, 25-27, 32, 41, 42, 55] and the
references therein). Reviews with extensive bibliographies can be found in the works ofJongen
and Weber [28]; Bonnans, Ioffe, and Shapiro [7]; and Fiacco and Ishizuka [15] and the books
of Fiacco [13, 14] and Levitin [36]. Numerical continuation procedures for investigating the
global behavior of the finite-dimensional versions of (1.1) have also been developed 19, 37].
Following the work of Robinson [46-48], the sensitivity analysis of generalized equations
was investigated by several authors [11, 30, 35, 44, 48]. The case of infinite-dimensional
space and general cone and set constraints are discussed in a number of recent papers [2, 12,
24, 38, 53, 54]. The questions of parametric dependence for these problems are indeed more
difficult than for (1.1). Thus, and as reviewed by Ioffe [22], these investigations have generally
made three basic assumptions: (a) local uniqueness of the unperturbed solution, (b) constraint
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qualifications, and (c) a second-order sufficient condition. In a different direction, Ioffe [22]
has relaxed the first two assumptions and to an extent the third assumption by reducing a
problem of the form (1.1) to a composite unconstrained problem and developing a sensitivity
theory for the latter. In this work, we also investigate the problem (1.1) in those cases where (a),
(b), and (c) are relaxed, but our methods are those of bifurcation (and singularity) theory. In
particular, this work extends some of our previous bifurcation work on the finite-dimensional
problem [41, 55] to the infinite-dimensional problem (1.1).

Since the general setting for bifurcation theory is that of Fredholm operators, the first task
is to convert the optimization problem to a system of nonlinear equations and to determine
conditions under which the system is Fredholm. The formulated system is motivated by the
Fritz John first-order necessary conditions, uses a nonstandard normalization ofthe multipliers
similar to that used in our earlier work [41 ], and contains minimizers, maximizers, and saddle
points as well as nonfeasible solutions of the problem (1.1). Given a solution of this system
(see (2.4)), the classical implicit function theorem is generally applicable when the following
three conditions are valid: (1) strict complementarity, (2) surjectivity of the Fr6chet derivative
of the active constraints (a constraint qualification), and (3) the bijectivity of the Hessian of
the Lagrangian on the null space (kernel) of the Fr6chet derivative of the active constraints to
an appropriate subspace of the (topological) dual of X (a second-order condition). (Theorem
2.2 gives the precise conditions.) When these conditions are valid, the implicit function
theorem guarantees the existence ofa locally unique and smooth solution, and one can compute
derivatives of the solution and multipliers with respect to the system parameters and thus
perform a first-order sensitivity analysis. As a system parameter(s) is varied, one invariably
encounters situations where one or more of these three conditions fail. Many of the interesting
phenomena, e.g., changes in the active set, loss of the minima, exchanges in critical point type,
multiple solutions, and loss of differentiability of the solution in the natural parameters of the
system, occur at these singularities. Thus, neighborhoods of these singularities are regions of
"extreme sensitivity."

Bifurcation theory is now quite a large subject as evidenced by books on the subject (e.g.,
10, 17, 18]), and the various singularities are far too numerous to delineate in this work. In

particular, we do not exploit symmetry in the problem. Instead, the objectives are to derive
sufficient and almost necessary conditions for the applicability of this theory to the parametric
problem (1.1) and to demonstrate a branching analysis for some of the simplest but generic
singularities. Associated with the bifurcation or branching ofmultiple solutions is the question
ofthe persistence ofminima or changes in critical point type as the parameter or parameters are
varied about the singularity. Although we treat this stability topic to some extent in the exam-
pies, a systematic study under more restrictive assumptions will be undertaken in future work.

The paper is organized as follows. Section 2 contains a summary of much of the notation
used in the paper, the formulation of a system of nonlinear equations that must be satisfied by
a minimizer of (1.1), the development of necessary and sufficient conditions for the solution of
this system to be regular, and conditions under which this system is Fredholm. The bifurcation
theory framework for the investigation of the singularities is presented in 3. A bifurcation
analysis for some of the more commonly occurring singularities is presented in 4-6 with
some illustrative examples. Further research problems are discussed in 7.

2. Systems formulation and the bifurcation problems. The first objective is to convert
the parametric constrained optimization problem (1.1) to a closed system of nonlinear equa-
tions; this is accomplished through the use of the Fritz John first-order necessary conditions
and a nonstandard normalization of the Lagrange multipliers. Having developed this system,
we next establish sufficient and almost necessary conditions (Theorem 2.2) for the Fr6chet
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derivative of this system to be bijective so that with sufficient smoothness the hypotheses of the
implicit function theorem are satisfied. (If one adds a strong monotonicity condition (Theorem
2.3), then a minimizer exists and persists locally.) The primary interest in this work is the
investigation of the local solution structure when this Fr6chet derivative is no longer bijective,
but is Fredholm in which case bifurcation theory is applicable. Thus the final Theorem 2.4
in this section gives conditions sufficient to ensure that the Fr6chet derivative of this system
is Fredholm. We first explain the notation used in subsequent discussion and review some of
the needed facts from functional analysis [50].

2.1. Notation. X and Y with appropriate norms will be assumed to be Banach spaces
throughout without further comment. If F X R --+ Y, the Fr6chet derivative with respect
to x 6 X will be denoted by DxF(x, o), with respect to o 6 R by DF(x, o), and similarly
for higher derivatives. X* denotes the topological (normed) dual of the normed linear space
X, i.e., the space of bounded linear functionals on X, and (x, x*)x represents the action of a
bounded linear functional x* 6 X* on an element x 6 X. The subscript X on (x, x*)x will
be omitted if the context is clear. If L X -+ Y is a linear transformation, ./V’(L) will denote
the null space (kernel) of L and (L), the range (image) of L. The adjoint of a bounded
linear transformation L X -+ Y is that unique bounded linear transformation L* Y* -+ X*
satisfying (Lx, y*) (x, L’y*) for all x X and y* 6 Y*. The following closed-range
theorem will be used: assuming X and Y are Banach spaces, the range of L is norm closed if
and only if the range of L* is norm (or wk*-) closed.

Let M be a subspace of the Banach space X, and N, a subspace of X*. Then define
the annihilators M+/- and+/-N by M+/- {x* X* (x,x*) 0 for all x M} and
+/-N {x 6 X (x, x*) 0 for all x* 6 N}, respectively. If L X --+ Y is a bounded linear
transformation, then A/’(L) +/-7(L*) and A/’(L*) R(L)+/-; and if, in addition, the range of
L is closed, R(L) +/-A/’(L*) and R(L*) A/’(L) +/-.

A bounded linear transformation L X -- Y is called a Fredholm operator if the range
is closed, the codimension of the range is finite (i.e., the dimension of the quotient space
Y/7(L) is finite), and the dimension of the null space is finite. In this case, the index of L is
defined by index (L) dimA/’(L) dim Y/7(L). (To compute this index, we make use of
dim Y/R(L) dimA/’(L*) for a closed (L).) A bounded linear transformation L X -- Y
is called a semi-Fredholm operator if it has closed range and either the codimension ofthe range
is finite or the dimension of the null space is finite. Properties ofFredholm and semi-Fredholm
operators can be found in the books by Kato [29] and Schechter [51 ].

Two basic assumptions in the theorems to follow are that the Fr6chet derivative DxF(., )
has closed range and .N’(Dx F(, &)) is complemented in X (or splits the space X). A closed
subspace X1 of a Banach space is complemented in X if there exists a closed subspace X2
of X such that X1 + X2 X and X f3 X2 {0}. In this case we write X X @ X2 and
say that X is the topological (internal) direct sum of X1 and X2 and that X1 splits the space.
This assumption is needed since infinite-dimensional closed subspaces of Banach spaces need
not be complemented. Here are some valid examples. If X is a Hilbert space, then closed
subspaces are complemented. If M is a closed subspace of a Banach space X and either M
or X/M is finite-dimensional, then M is complemented in X [50, p. 106]. A fact that will be
used in some of the examples from the calculus of variations is that if L X --+ Y is a bounded
linear transformation with a finite-dimensional range, i.e., L is compact [50, p. 104], then the
null space of L has finite codimension and is thus complemented in X. In nonlinear optimal
control, the space X X1 X2 is split into state and control variables. One can often use this
along with the above facts to show that A/’(L) is complemented even when it and X/./V’(L) are
infinite dimensional.



1950 AUBREY B. POORE

The Cartesian product of two Banach spaces Y and Z, denoted by Y Z, is a Banach
space under the norm I[(Y, z)llYZ (IlYlI + I[zllz) 1/2. (There are several such equivalent
norms.) Next, if L X --+ Y and K X --+ Z are bounded linear transformations, then
J X --+ Y Z by Jx (Lx, Kx) is also a bounded linear transformation. We shall make
use of the following lemma on the closed image (range) [1, p. 80]: If the subspace R(L) is
closed in Y and 7(KIAr(L)) is closed in Z, then the subspace (J) is closed in Y Z.

Next, define two index sets A and As by

(2.1)
A(, fi) {i > 1 f/(, ) 0},

As(, c)) {i A" i 0},

where the subscript s on A is for "strongly active" and the i is the multiplier corresponding to
the th constraint f/used in the Lagrangian/2 in (2.3). By permuting the inequality constraints,
we may assume fts(:, &) {1, 2, l} and A(, &) {1, 2 k} with < k and define

(2.2)
IDxfl(,&) 1DfA
Dxf(,&)

Dx fk+l (., t) ]Dxfc
Dxfm(., )

Dx J+l (’’ &)

1DxfB
Dx fk(Yc, &)

and

Since the codimension of N’(Dx fA) is finite, which follows from (DxfA) being finite
dimensional, N’(DxfA) is complemented in X. Let L DF(, ), and suppose that the

null space of L is complemented in X and the range is closed in Y. If [ L ] the lemma
DxfA

on the closed image [1, p. 80] implies that the range of is closed. Also, one can show that
N’() is complemented in X so that X X (9 Xa, where X N’(). This decomposition
defines two continuous projections P and Pe (Pi X Xi). The adjoints P* and Pa* are also
continuous projections and induce a topological direct sum of the dual space X* X’ @ X,
where X PX* X2x and X PX* X1x N’(/) +/- (*). The notation is
consistent with the fact that X[ is the topological dual of Xi. Similarly, the adjoint Pi** of Pi*
is a continuous projection of the second dual X** onto Pi**X** =_ X[* (Pi** X** X[*)
with the corresponding decomposition X** X* @ X*, where X* ({*)+/- N’(**).

The (weak) Lagrangian for the problem (1.1) is

(2.3) /2 (fo(x, or), )o)a + (f(x, Or),/)Rm + (F(x, or), Y*)r,

where )0 6 R* (= R), ) 6 Rm* (-- Rm), and y* 6 Y* are Lagrange multipliers. Here we
have used the notation ) without a subscript to refer to the vector 01, )2 )m) that does
not include, in particular, the component )0. The same applies to the vector f with a range in

2 2 * ei**"DxRm. Finally, define D2xij Pi*D2pj and note that Dxij P’
2.2. The nonlinear system. Having completed a discussion of some of the notation, the

next task is to convert the parametric optimization problem (1.1) to a system of nonlinear
equations using the Fritz John first-order necessary conditions. This is the content of the
following theorem.

THEOREM 2.1 (see [1]). Let 3 C2(U V; R), F C2(U V; Y), U and g be
open subsets of the Banach space X and Rr, respectively, and Y be a second Banach space
containing the range of F(x, or). Let U be a local minimizer ofthe optimization problem
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(1.1) at V, and assume that the Frdchet derivative DxF(., ) has closed range. Then
there exist Lagrange multipl(ers .i (i O, m) and * Y*, not all zero, such that

X =- (x, y*, , )o) (, ;*, ), )o) solves the system ofequations

Dx.(x, y*, ,k, )o;

F(x,a)
(2.4) G(x, y*, ), ,ko; or)

Af(x, or)
0

N()0, ), y*)

and inequalities )o > 0 and i >__ 0 and j(x, or) < 0 for 1 m. Here, A
diag(,kl )m) is a diagonal matrix and the equation N()o, ), y*) 0 represents a nor-
malization of the multipliers that ensures that not all multipliers are zero.

Choices for the normalization N include

(2.5a) N1 ()0,), Y*) ;0 1,

(2.5b) N2()0, ), y*) ,k/2 + IlY*ll 2 1,
i=0

(2.5C) N3 ()0,), Y*) )/2 + [(Y0, Y*)12 1,
i=0

where Y0 6 Y is chosen so that I(Y0, Y*)[ > IlY*II. The usual choice is N1 0, which
is guaranteed by a variety of constraint qualifications such as the following. If the active
inequality constraints at (, 3) are {j5 }/k= then )0 0 if either of the following two constraint
qualifications is satisfied:

LICQ: The map (DxF(2, 6t), Dxfl(, ) Dxf(, )) X ----> Y x R is surjective.
MFCQ: The map DxF(fc, fit) X --+ Y is surjective and {h 6 X Dx3(, &)h < 0 for

k; DxF(, )h 0} is nonempty.
LICQ is the infinite-dimensional analogue of the linear independence constraint qualification
and MFCQ, the Mangasarian-Fromovitz constraint qualification. The latter is weaker than the
first in that it is implied by the first. Thus, not LICQ is implied by not MFCQ, so a violation
of LICQ is a weaker condition than a violation of MFCQ. Since a violation of the LICQ may
lead to bifurcations, we do not use the normalization N1 0 when )0 0. Instead, we use
either the normalization N2 or N3, which allows for the smooth transition of )0 away from
zero. (Such normalizations were introduced in our earlier work [41] on finite-dimensional
problems.) With the exception of a Hilbert space in which case [[y*]l 2 (y*, y*), N2 is
generally not differentiable with respect to y*. Thus the normalization N3 will be used in
those cases where )0 0.

2.3. The regular case. The next objective is to establish sufficient and almost sufficient
conditions for the Fr6chet derivative of the system (2.4) to be bijective at a solution of the
system, in which case the conclusion of the implicit function theorem is valid.

THEOREM 2.2. Let 3 C2(U x V; R)fori O, m, F C2(U V; Y), U
and V be open sets in the Banach space X and Rr, respectively, and Y be a second Banach
space containing the range of F(x, or). Let X =_ X x Y* R R, and suppose that
(); ) (., *, ., .o; ) 6 ,-t" R is a solution of G(x; or) O. Suppose that the Frdchet
derivative Dx F(c, has closed range and its null space is complemented in X. Under these
assumptions, a set ofnecessary and sufficient conditionsfor Dx G(( ) to be bijective is that

(a) strict complementarity holds, i.e., As and k in (2.2);
(b) the bounded linear transformation DZx.l X1 X is bjective;
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(c) the bounded linear transformation L =_ (DxF(., ), Dxfl (., t) Dxfl(, t))
X --+ Y R is surjective.
If the bounded linear transformation Dx G(, 6) is bijective, then there exist neighborhoods

131 of and 132 of ) C, *, ., .0) such that the following is true: there exists a

function c E C1(/31, &’) such that 4() (, G(c(a), c) 0 for all u 131, and this
solution is locally unique in that if (X, or) 6 1 )< J2 and G(X, or) 0, then (X, or) belongs
to the manifold defined by dp, i.e., X c(u) for some 131. Finally, if fi and F are
C (k >_ 2) (C or real analytic), then dp is C-1 (C or real analytic, respectively) on 131.

Several remarks are in order. The term critical point will refer to any solution of system
(2.4), regularpoint will describe any solution of (2.4) for which conditions (a), (b), and (c) of
Theorem 2.2 are valid, and singular point is reserved for any solution of (2.4) at which Dx G
is not bijective, i.e., at which one or more of (a), (b), and (c) is violated. The importance of
the three conditions (a), (b), and (c) in this theorem is that they provide a set of necessary and
sufficient conditions for a violation ofthe bijectivity ofDz G and thus an initial classification for
the singularities and bifurcation problems. Next, note that condition (c) is just the surjectivity
(linear independence) constraint qualification. Certainly, weaker constraint qualifications
such as those of the MFCQ guarantee )0 0. In the bifurcation analysis to follow we treat
the case )0 # 0 or )0 0 by the weakest possible set of conditions, i.e., whether or not

Dx fo(, &) (L).
In the finite-dimensional case, we [41, 55] have characterized the type (i.e., maximum,

minimum, or saddle point) of a regular point of (2.4) by three sets of numbers" (1) the sign
of (x, o) for 6 (1 k}, (2) the sign of *i for (0, k}, and (3) signs of the
eigenvalues of 2 2 isDxff.ll. The index, i.e., dimension of the largest space on which Dxff.il

2negative definite, and the nullity, i.e., the dimension of the null space of Dx,li, are sufficient
to characterize the numbers in (3). Definitions for the index and nullity of a bounded bilinear
form B X X -- R on a Banach space X can be similarly defined [57, pp. 86-87].

Finally and for completeness, we remark that a modification of this theorem guarantees
the local persistence of a minimizer as stated in the following theorem.

THEOREM 2.3. Suppose that in addition to the hypotheses of Theorem 2.2 that

(2.6) Dx2(), &)[h, h] >_ Cllhllex
for all h A/’(L(, 6)). Then is a local minimizer of (1.1) at ot &, and there exists a
constant and neighborhood ff31 ofor such thatfor each ot /1, Dx2L;(X (or), ot)[h, hi >

llhll2x for all h .A/’(L(x(ot), or)) and ,ki(ot) > O for each 1 k. In particular,
the local minimizer persists locally about ot &.

This theorem is established under weaker assumptions by Alt [3] and Shapiro [52], and
thus we omit the proof. As noted by Alekseev, Tikhomirov, and Fomin [1, p. 157], the strong
monotonicity condition (2.6) places severe restrictions on the space A/’(/,(, )). To explain,
first note that the closed subspace A/’((, c)) of X along with the norm of X is a Banach
space. Next, (u, v) Dx2L;(), &)[u, v] defines an inner product on A/’(LC, )), and due to
the assumptions of Theorem 2.2 we have

CIIhllex < (h h) < IID2( )11 Ilhll 2

Thus the norm induced on N’((:, c)) by the inner product (., .) is equivalent to that of
II" IIx, so the Banach space (N’(L (:, 3)), II" IIx) is linearly homeomorphic to the Hilbert space

.,.. * N’(L(: 3))* is identified with(N’(/(:, 3)) )) Interestingly, we now have that X
this Hilbert space via the Riesz representation theorem. Given these remarks, note that the
strong monotonicity condition (2.6) then implies condition (b) in Theorem 2.2.
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To circumvent this restrictive strong monotonicity condition (2.6), Ioffe [21] and Maurer
[39] replace it with a coercivity condition in a weaker norm and use this two-norm discrepancy
along with some compatibility conditions to establish a locally isolated minimum [21, 39].
This technique is now commonly used in the literature, particularly for the integral-type
objective functions. Indeed, it is used in 4.2 to establish a minimum in an example from the
calculus of variations. From the implicit function point of view, this same problem manifests
itself in condition (b) in Theorem 2.2 in that the topological duals X* and X’ are too large to
obtain surjectivity of the bounded linear transformation Ox2/ll X1 X for integral-type
objective functions.

2.4. The Fredholm operator and bifurcation problems. Since the general framework
for bifurcation problems is that of Fredholm operators, conditions must be imposed to ensure
that the Fr6chet derivative Dx G is Fredholm. This is the content of the next theorem.

THEOREM 2.4. Let j C2(U x V;R) fori 0,1 m, F C2(U x V; Y), U
and V be open sets in the Banach space X and Rr, respectively, and Y be a second Banach
space containing the range ofF(x, or). Let (); ) (}, *, ), )0; ) U x V be a solution

of G(X; or) 0. Suppose that N’(DxF(},t)) is complemented in X. Then the Frdchet
derivative Dx G(, t) is Fredholm if

Dx.l X1 --+ X is Fredholm;
(b) the range of DxF(, ) is closed and hasfinite codimension in Y.

Also, if 2Dxfl.ll and DxF(}, ) have closed ranges and DxG( t) is Fredholm, then (a) and
(b) are valid.

The proof of this theorem is included in the appendix. Just as we have discussed the
surjectivity of 2DxE11 X1 -- X in Theorem 2.2 as being too strong for integral-type
objective functions, we also note that condition Dx2/211 X1 X being Fredholm is too
strong for certain applications. Such problems arise for unconstrained problem in the calculus
of variations and have been resolved by two methods. The first approach is described by
Zeidler [59, 29.18], wherein one introduces a generalized inner product on a Banach space.
The second method is to embed the function spaces continuously and densely in a Hilbert
space and then use the structure of the Hilbert space to perform the bifurcation analysis as in
the work of Bobylev and Krasnosel’skii [5]. These same approaches will be investigated in
future work for the constrained problem with applications to the calculus of variations and
control systems.

3. A brief review of the bifurcation setting. The objective in this section is to give two
bifurcation theorems (3.2 and 3.4) that will be used in the subsequent three sections. The
singularities in these theorems are generic 17]. To explain these theorems within the context
of a general problem G(x, y) 0, we briefly describe the Lyapunov-Schmidt procedure for
a reduction to a finite number of equations in a finite number of unknowns and then delineate
some of the cases to which Theorems 3.2 and 3.4 apply. The setting described here is based
on the books by Nirenberg [40] and Rabier [45] as well as our earlier work [55]. We start with
the implicit function theorem, which is also used in 6.

THEOREM 3.1 (implicit function theorem [40]). Let 2(, y, and Z be Banach spaces, let
Uo x Vo C 2( x y be an open neighborhood ofa point (xo, yo) that solves G(x, y) O, and
suppose that

(a) G CP(Uo x Vo, Z)for some p > 1;
(b) (OxG(xo, Yo)) Z;
(c) N’(DxG(xo, Yo)) 2(1 has a closed complementing subspace 2(2 in 2(; i.e., 2( is a

topological direct sum 2( 2(1 @ 2(2.
Then there exist open neighborhoods U of xo and V of Yo and a solution x2 u(xl, y)
CP(PU x V, 2(2)ofG(Xl nt- xz, y) O, where P :2( --+ 2(1 is a projection of 2( onto 2(1,
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u(x01, Y0) x02, x01 Pxo, and X02 (I P)(xo). Furthermore, U and V can be chosen
so that this solution is locally unique in that if (x, y) U V is a solution of G(x, y) O,
then x xl + U(Xl, y)for some xl P U.

The problem of the previous section was that of determining the local structure of the
solutions of the equation G(X, or) 0, where ) 6 2" X Y* Rm R, the range of
G is in Z X* Y Rm R, and ot 6 Rr. The Lyapunov-Schmidt method for reducing
this problem to one of a finite number of equations in a finite number of unknowns is perhaps
best described by puttin_g (, or) and explaining the procedure for the generic problem
G() 0, where G 2" --+ Z. For smoothness, we require G Cp (Uo, ) for some fixed
p > 1, where U0 is an open neighborhood of a solution )0 of G 0. Next, assume that
DG(o) is Fredholm operator in that (D2G(o)) Z1 is a closed linear subspace of Z
of finite codimension and A/’(DG(o)) ,1 is finite dimensional. By this assumption, "and Z can be decompose_d into topological direct sums " ,’1 @ ’92 and Z Z1 @ Z2,
where dim Z2 and dim X1 are finite. Let Q be an associated (continuous) projection of Z
onto Z1. Applying Q and (I Q) to the equation G() 0 yields an equivalent system

QG(2) =0,
(3.1)

(I Q)G(2) O.

Theorem 3.1 can be applied to the problem

(3.2) 0- g(2, 1) OG(l + 2) ,2 ,91 Zl

to obtain the existence of a Cp locally unique solution 2 U( 1) (locally about X01). Hence
+ u () 1) is a solution of G() 0 if and only if

(3.3) (I Q)G( + u( 1)) O.

Since the range of I Q is finite dimensional, the problem G(x, y) 0 has been reduced
to one of a finite number of equations in a finite number of unknowns. We now consider the
simplest but generic cases of the bifurcation equations (3.3).

Thefirst case is that in which U,1 Z and the index ofthe Fredholm operator DG(o)
is one. Then the dimension of the null space of D2 G(0) is one. For the parametric problem
G(), or) 0, where G(), or) 2’ R --+ (or is now a single parameter), the problem
breaks into two cases:

(i) Dx G()0, or0) is surjective.
(ii) Codimension of(Dx G(0, o0)) is one and DG(xo, co) 7(Dx G(o, o)).

In case (i), DG()o, or0) is bijective and the implicit function theorem (Theorem 3.1) is
applicable with y ot and 2"1 {0} so that 2" 2"2. This is the content of Theorem 2.2 for a
one-dimensional parameter ot 6 R. The second case (ii) is addressed in the following theorem.

THEOREM 3.2. Let 2" and be Banach spaces and 131 and ]32 be open neighborhoods
of )o 2" and oto R, respectively, and assume that G(Xo, oto) O, G CP(131
/32; Z) for some fixed p > 1, D(x,)G(xo, oto) is a Fredholm operator of index one, the
codimension of (DxG(Xo, oto)) is one, and DG()o, oto) 7(DxG(xo, oto)) so that the
dimension A/’(Dx G()o, oto)) is one. Let dp 2", dp* 2"*, and 7t* ;Z* span the null space
of Dx G(xo, oto), the one-dimensional space complement of the range ofD G(xo, oto)*, and
the null space of DxG(xo, oto)*, respectively. Then there exist open neighborhoods U C

131 132 of (0, oto) and I C R of 0 and a function ((), ot()) CP(I; U) such that
d(O) O, and G(X() ot()) Ofor all I. Furthermore, any(x (0), c(O)) (zo, co), --7-

solution (X, or) U of G 0 is given by (), or) () (), ot()) for some I; and the
parameterization can be chosen so that P(X() )o) qb and (I P)() () Xo) v(),
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Z Z

FIG. 1. Quadraticfold point. FIG. 2. Hysteresis point.

where v(O) O, ao(o) O, and the projection P is defined by Pu (u, *}/(, *)de
Finally, ifG is an analyticfunction of (X, or) near ()o, oto), then (X (e), or(e)) is analytic in
near zero.

Proof of Theorem 3.2. Let [] N’(Dx G(X0, or0)) and [Tt*] AF(Dx G(Xo, oto)*).
Make the transformation X ;o 4- b 4- v, where v 6 N’(P) 74(1 P), and consider the
problem

d(v, or, ) G()(.o + eel) + v, or).

Then d" (I P)&’ x R x R -- Z. Now r(O, oto, O) O, d(v, or, ) e C.p( x " x [; 32)
for some open sets/) c (I P)X’ of (I P))0 and I c R and [ C R about zero. The
Fr6chet derivative D(o,)((0, or, 0) is a bijective, bounded operator from (I P)X’ x R onto
Z. Thus the implicit function theorem (Theorem 3.1) yields the result.

If p > 2 and

2G(Xo, Ot0)[ ] *)
(3.4)

d2t (0) (Dx
de2 = (DG(xo, co)[1], P*)

0,

the singularity in this theorem is called a quadratic fold point. Figure illustrates the case
d2ot (0)
dd > 0. Likewise, if a20) 0 but d3’0 7 0, then the singularity is called a hysteresisdE dE

point, which is illustrated in Figure 2.
The second case is that in which D2 G is a Fredholm operator of index one and 2,1 =

7(D2 G) has codimension one in Z, so the dimension of,’l AF(Di G() o)) is two and there
exists a continuous linear functional * 6 AF(Dx G*) so that Z1 {z 6 Zl(z, P*) 0}. The
study of the local solutions of G() 0 about 0 is thereby reduced to the investigation of
the single equation

g(21) (G(21 + u(21)), l/r*) 0 for 21 e 21,
where ’ ’1 2 and u(21) 6 CP((I P)U, 2) for some open neighborhood U C ’of 2 0. Here P --+ ’1 is a continuous projection. This situation breaks into three cases"

(i) g(2ol) 0 and Dlg(2ol) 0;
(ii) g(201) 0, D21g(2o1) 0, and D2- g(201) is nonsingular;

2(iii) g(2m) 0, D21g(2m) 0, and D21g(2o1) is singular, including the case when it
vanishes identically.

For case (i) we obtain a Cp curve locally about 2o. We do not consider case (iii),
which leads to higher-order singularities, since such singularities can be treated efficiently via
singularity theory 17, 18]. For case (ii) we use the following theorem.
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THEOREM 3.3 (see [40, 45]). Let and Z be Banach spaces, let Uo C , be an open
neighborhood ofa point o that solves G( O, and suppose that

(a) G CP(Uo, Z)for p >_ 2;
(b) TC(DG((o)) Z has codimension one so that there exists a bounded linearfunc-

tional * Z* such that Z1 {z Z (z, 7t*) 0};
(c) A/’(DG((o) 1 has dimension two (2), and ,2 is a closed complementing sub-

space in ,.
Then, ifthe 2 x 2 symmetric matrix associated with the quadraticform D g(ol)[V, v],

where v ./V’(DG((o)), is indefinite, there is an open neighborhood U (o such that
the solution set of G(() 0 consists of two Cp-1 curves crossing transversally at the ( o.
In a sufficiently small deleted neighborhood of (o, these two curves are Cp. If the 2 x 2

2symmetric matrix associated withDg((Ol)[V, v] is definite, then o is the only local solution
of G(() --0.

We note in passing that this statement of the theorem requires only that p >_ 2, whereas
that stated in Nirenberg [40] requires p >_ 3. The improved version is due to Kuiper [33].
The application of this theorem to the situation in which A’ ,’ x R yields the follow-
ing theorem.

THEOREM 3.4. Let 2( and Z be Banach spaces, ]31 and ]32 be open neighborhoods of
Xo 2( and oto R, respectively, and assume that G(Xo, oto) O, G CP(131 /32; Z)
for somefixed p > 2. Assume that the Frchet derivative D(x,)G(xo, oto) is a Fredholm op-
erator of index one with a two-dimensional null space, the dimension of N’(DxG(Xo, o))
is one, and DG(Xo, oto) (DxG(Xo, oto)). Let 2(, * ,Y*, and p* Z*
span A/’(Dx G(Xo, oto)), the one-dimensional space complement of 7(Dx G(Xo, oto)*), and
A/"(Dx G(xo, oto)*), respectively, and define

2 G[W, W], 7t*a (DZG[1, 1] + 2DDxG[W, 1] + Ox ),

b (D2xG[, W] + DDxG[, 11, *),
(3.5)

c (Ox2 G[, 1, *),

79 b2 -ac,

where derivatives of G are evaluated at (Xo, oto), W is the unique solution of PW 0 and
DxG(Xo, oto)W -DaG(Xo, oto), and the projection P is defined by Pu I,*l(u’*l . If
79 > O, then there exist open neighborhoods U C 131 x 132 of (Xo, ao) and I C R of O,
and two distinctfunctions (X +/-, a+) CP-I(I; U) such that (X+(0), a+(0)) (Xo, oto) and
G(X+(e), a+(e)) Ofor all e I. These two solution manifolds represent the totality of
solutions of G 0 in U. Also, if G is an analytic function of (X, or) in a neighborhood of
(Xo, co), then ((+(e), a+(e)) are also analytic on I.

Parameterizations ofthese manifolds are given asfollows:
(i) If c 0 and 79 > O, then a ot+(e) ao + e so that the two curves can be

parameterized by the naturalparameter or. These two curves have the structure X X +/- (or)
Xo + y+(ot) + w+(ot), where y+(O) O, d+/-(a) -b+VC Pw+(ot) O, w+(oto) O,dot

and dw(ot) W is the unique solution of PW 0 and Dx G(Xo cto)W -DotG(Xo, oto).dot
(ii) Ifc 0 and 79 > O, then the two solutions are parameterized asfollows:
(a) a c-() ao + so that the natural parameter can be used and X X-(c)

Xo + y-(a)dp + w-(ot), where y-(oto) O, d-(oto) -a Pw(c) O, w(co) O, anddot 2b
w-(oto) W is the unique solution ofPW O and DxG(Xo oto)W =-DG(Xo, oto);dot

aot+(o) O,(b) c ot+(e) and X X+(e) Xo + e + w+(e), where c+(0) oto, a,

Pw+(e) O, w+(0) 0, and w+() O.
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FIG. 3. Simple bifurcation. FIG. 4. Pitchfork bifurcation.

The simple bifurcation for case (i) in this theorem is illustrated in Figure 3, and case (ii),
which is frequently called pitchfork bifurcation, in Figure 4. The bifurcation condition 79 > 0
in this theorem is the same as the condition in Theorem 3.3 that the 2 x 2 symmetric matrix
associated with the quadratic form D2- g(01)[v v] where v A/’(DG(o)) is indefinite.

X1
The quantities a, b, and c in this theorem are significant in that they define a quadratic

(3.6) aot + 2botl q + C,l
2 0,

whose solutions indirectly determine the tangents to the two paths at the singularity (X0, or0).
For case (i) in which 79 > 0 and c 0, tangents bifurcating curves are

1 +
c

where W is the unique solution of PW 0 and Dx G(Xo, ao)W -D.G(xo, oto).
For case (ii) in which c 0 the two tangents for subcases (a) and (b) are, respectively,

(3.8) T=( W1 ,,--a (0)andT= (0)
where W is as defined in the previous paragraph.

4. Bifurcations for loss of strict complementarity. In this section we relax the strict
complementarity condition in Theorem 2.2 but maintain the remaining assumptions. Specifi-
cally, we assume that

(at) strict complementarity is violated by one inequality constraintmsay, Jr- 4s {k}--
so that fk (, ) 0, k 0, and k 1;

(b) the bounded linear transformation Dx2Zll X -- X is bijective;
(c) The bounded linear transformation/ _= (Dx F(.?c, ), Dxf (Yc, t) Dxfl(YC, t))

X Y x R is surjective.
If (at) is replaced by 4 -jts {l + 1 k} for any + 1 < k, one can proceed along the
lines developed in our earlier work on the finite-dimensional problem [41 to deduce multiple
bifurcating branches under conditions similar to those developed there. Although we shall
content ourselves with the case (a’), we do note that if (a’) and (b) hold and if in (c) is replaced
by k, Robinson [46] established (in the finite-dimensional case) the existence ofa locally unique
minimum of (1.1) under a coercivity assumption on Dx2/ll. Similar results have been obtained
by Ito and Kunisch [24] for the Hilbert space setting. The bifurcation analysis below shows
that the condition for bifurcation in Theorem 3.4 implies surjectivity of Dxf(, 3); however,
higher-order bifurcations can occur when there is a loss of this surjectivity.
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4.1. Branching for loss of strict complementarity. In the current case the bifurcation
Theorem 3.4 applies but Theorem 3.2 does not. As the following theorem shows, the con-
clusions can be characterized nicely in terms of the problem for which the constraint fk _< 0
is removed.

THEOREM 4.1. Let fi C2(U x V; R)fori O, 1 m, F C2(U x V; Y), U
and V be open sets in the Banach space X and R, respectively, and Y be a second Banach
space containing the range of F(x, t). Let 2( X x Y* x Rm x R, and suppose (); &)
(}, *, ., ,k0; &) 6 A’ x R is a solution of G(X; or) 0. Suppose that the Frdchet derivative
DxF(, ) has closed range, its null space is complemented in X, and the aforementioned
conditions (a’), (b), and (c) are valid.

Then Dx G(2, ) is a Fredholm operator ofindex zero with a one-dimensional null space
and DG(2,&) (DxG((,&)). If the constraint fk < 0 is removed from (1.1), then
conditions (a)-(c) in Theorem 2.2 are satisfiedfor the resulting problem. Let (2(ot), or) be the
locally unique solution of(1.1) with the constraint f < 0 removed. Then there is a bifurcation
provided that d-gg f(Y(t), ) # 0 at (, &); i.e., the path (2(c), ) is transversal to fk(x, t)
at (, ).

Several observations are in order before proceeding to a discussion of the proof. First,
if assumption (a) in Theorem 2.2 is relaxed to .A .As {l + 1 k} for any + < k,
assumption (c) implies that the dimension of the null space of the operator * is zero so
that .0 #- 0. (Otherwise, all multipliers must be zero.) Also in this case, DG(2, )
7E(DxG(), &)) so that in the special case of assumption (a’) above, Theorem 3.4 but not
Theorem 3.2 is applicable when dimN’(DxG(), &)) 1. Next, the bifurcation that arises
in this "loss of strict complementarity" case is due to the loss surjectivity in the nonlinear
system of equations. The relevant part is .f(x, u) 0. Differentiation of the expression
)kf(x, ) shows that it cannot be surjective when both ; 0 and fg(x, or) 0; i.e.,
there is a loss of strict complementarity. Furthermore, since all parametric perturbations
occur through the function f(x, ), the form of the equation (one of the dependent variables
times the constraint) rules out the simple quadratic fold point. Although this is true for the
parametric programming problem, the quadratic fold point does arise in numerical methods
such as augmented Lagrangian, penalty, and interior point methods because the entire term
)kf(x, a) is perturbed (e.g., by the penalty parameter).

We now proceed to the algebraic expressions in Theorem 3.4 for the current problem.
Given the assumptions (a’), (b), and (c), DxG(, ) is a Fredholm operator of index zero
with a one-dimensional null space. Vectors 4 6 X x Y* x R-1 x R x Rm-/ x R and
7t* 6 X** x Y* x R-1 x R x Rm-k x R that span the null spaces of DxG((, ) and
Dx G(2, &)*, respectively, are given by

-4’
t2
43
4
5

_46

V* + yp

1
0
V,o

and *
; o
; o

0

2 A2 + PDxfk 0, (* A) Y* x Rk-1 solves L’y* +where A21 6 X1 solves Dx
Dxff)A + oDxfo O, (Y,Ap) Y* x Rk-1 solves L’y* + DxfA + DC21A21 +
PDxfk 0, and v -(Yo, *)(Yo, Y) (2A, Ap).

<x..,.o*) , one needs the elementTo define the projection used in Theorem 3.4, i.e., PX ,.>
*. NowDxG* X** x Y* xR xR X* x Y** xRm xR= (DxG*)[*]and
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DxG X x Y* x Rm R --+ X* x Y x R x R 7(DxG) []. Thus the required 4)*
and are given by

; o, 0
and gr

0
0
ek

0

where ek 6 R is the standard basis vector with a one in the kth position and zeros elsewhere.
To evaluate the algebraic expressions for a, b, c, and 79 in Theorem 3.4 one needs, in

addition to the above expressions, the solution do(ot0) W (W1 W2 W3 W4, W5 W6) 6dot

X Y* Rk-1 R Rm-k R to the problem DxGW -DotG and PW 0, where
PX (x,*)q. The requirement PW 0 forces W4 0. To explain the remaining parts
of W, note that if the constraint f 0 and the coesponding multiplier are deleted
from the problem (1.1), then due to the assumptions (a), (b), and (c) the resulting system
is nonsingular at the coesponding critical point (, &) and W (W, W, W, W, W6)
X x Y* x R- x Rm- x R is the solution of the modified system D2 2 Da, where

dY
X is X with k and the constraint f removed. In paticular, W = a.

The substitution of these into the algebraic expressions for a, b, c, and D > 0 yields
a O, b Daf + DxfW1, c Dxfl, D b2. The bifurcation condition D > 0
in Theorem 3.4 is that b fg(Y(a), a) # 0 at (, ), which says the path (Y(a), a) is
transversal to f (x, a) at (, &).

Returning to Theorem 3.4, we consider the first of two cases presented in that theorem.
First, if c 0, the two curves can be parameterized by the natural parameter a and have the
structure and x xi (a) xo +y(a) + wi (a), where yi (a0) 0, and d.(a) -blbl

d c

Pwi(a) 0, wi(a0) 0, and w() W as defined above. From the definition of theda

projection P, kk Yi(a). Now one of a0) -b!V.l is zero and one is not. That which isda C

zero coesponds to the aforementioned path (Y(a), a) about a0 in which k 0. This
path is feasible for on one side ofo and is infeasible on the other side. The second path has
Lk # 0, so the constraint fk(x, ) 0 must be active along this path locally about 0 since

Zf(x, ) O.
For the second case, if c 0 and D > 0, then the two solutions are parameterized

as follows" the first path is parameterized by the natural parameter a as x x-(a)
x0 + y-(a) + w-(a) where k y-(a), y-(ao) 0, d-(0) - 0, Pw-(a)d 2b

0, w-(ao) 0, and a-t0) W where W is as defined above. It is this solution that
is transversal to the constraint fk 0 with k y-(a) 0. The second path has the
parameterization a a+ @) and x x+ @) x0 + + w+@), where a+(0) ao,
+o) O, Pw+@) O, w+(0) 0, and aw+t) 0. In fact, from the definition of the
d da

projection P, we conclude that e k is the parameterization parameter and the constraint

fk 0 is active.
In summary, the bifurcation diagram is as in Figure 3. One of the solution branches

coesponds to the constraint f 0 being active, i.e., f 0, and the other solution branch
crosses this constraint transversally as the parameter a crosses a0, going from the interior
feasible region of the constraint fk 0 to the exterior or vice versa. For a stability result, we
have a result similar to the finite-dimensional case.

THEOREM 4.2. Let Ca(U x V; R)fori 0, m, F C2(U x V; Y), U
and V be open sets in the Banach space X and R, respectively, and Y be a second Banach
space containing the range of F(x, a). Let W X x Y* x Rm x R, and suppose that
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(); &) (-, *, , 0; &) E , R is a solution of G(X; or) 0. Suppose the Frdchet
derivative DxF(, &) has closed range, its null space is complemented in X, and thefollowing
are valid.

(d) Strict complementari is violated by one inequali constraint--say, A-A {k}--
so that f (, & O, O, and k 1.

(b’) D(, 6)[h, h] Cllhll for all h
(c) The bounded linear transformation (Dx F(, ), Dxf (, ) Dx(, ))

X Y x R is surjective.
(d) The multipliers i > Ofor 1 at (x, ) (, ).

On that branch emanatingfrom (, ) that is interior to the constraint f O, there exists an
inteal [0, ] on which D(, )[h, h] llhll for all h (()). On that branch
emanating from (, ), where the constraint f 0 is active and > O, a similar result
holds. Thus and in particula there is a local persistence ofthe unique minimizer along these
o solution branches.

4.2. An isoperimetrie example. A simple example that illustrates the foregoing bifur-
cation phenomena is

minimize J(x) dt

subject to x (0) 0, x (1)

xdt 5 l, x 6 1], R).C1 ([0,

For this problem the constraints are affine, so we use the Lagrangian

dt + & x dx + lX(O) + 2(x(m) ).

Ifthe constraintf x dx is not active, then the solution is given by (t) t. Furthermore,

J( + h) J() + J(h) J(x) + llhll,2
for all h 6 C1([0, 1], R) such that h(0) h(1) 0. Here, wm’p[a, b] {v cm-[a, b]
v(m-) is absolutely continuous on [a, b], v

(0 ( p)/p. (This technique of using two different norms in establishing a minimizer
was mentioned at the end of 2.3 and is presented in the work of Ioffe [21] and Maurer [39].)
Thus, this solution is a global minimizer as long as the inequality constraint is satisfied and is

not active, i.e., (t) dt < l. At u 21, the inequality constraint becomes active, and
as u increases beyond 21, the inequality constraint is violated. As discussed in the previous
subsection, this path represents one branch in the bifurcation diagram in Figure 3.

The second solution branch emanates from u 21 and satisfies the active inequality
constraint, i.e. f2 x dt I. The solution is (t) )t, where u is related to the
Lagrange multiplier by L 12(u 2/), which is zero when u 21. This solution exists
for both u less than and greater than 2/; however, only for u > 21 is the multiplier positive.
In this case, the same inequality J( + h) J() + J(h) IIw, holds for all

h 6 C([0, 1], R), h(0) h(1) 0, and f h(t)dt 0. Thus for u > 21, which implies that
& > 0, we have a global minimizer with the inequality constraint being active. The bifurcation
diagram is as in Figure 3.
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5. Bifurcations for loss of surjectivity. In this section we investigate the problem (2.4)
under the same assumptions as in Theorem 2.2, except that the surjectivity assumption is
relaxed. In particular, we assume that

(a) strict complementarity holds, i.e., As A and k l;
(b) the bounded linear transformation Dx2/ll X1 "--> X is bijective;
(c’) the range of/ (DxF(., 6t), Dx fl (., &) Dx fk (, )) X --+ Y x Rk has

codimension one in Y x R.
Whenwe use these hypotheses, it is easily verified that the Fr6chet derivative Dx G(, *, ., )0;
) is a Fredholm operator of index zero with a one-dimensional null space. As in the appendix

6 Rm into,ka R and,kc 6 Rm-by) [A]zc (’kB is vacuous sincek 1.)we partition )

Likewise, Dx f is to be partitioned into Dx fA and Dx fc by

DxfA and Dxfc
Dxfk

DxA+I 1Dxfm

The analysis of this situation breaks into two cases: (1) Dxfo(Yc, &) R(*) and (2)
Dxfo(., &) 6 (i*), as given in 5.1 and 5.3, respectively. We refer to these two cases as
the abnormal and normal cases, respectively. Rather than restating Theorems 3.2 and 3.4 as
they relate to the current cases, we adopt an informal style.

5.1. Loss of surjectivity: The abnormal case. In this case, Dx fo(, dr) 7(L*), so
Af({*) ()+/- and dimN’(*) imply that the only choice of.0 in (2.4) is )0 0. Thus,
there exists a nonzero multiplier (y, ,A1) fl/r(L*), where y 6 Y* and ’A1 C (Rk)*, that

,spans N’(L*). We normalize these multipliers by first choosing a Y0 6 Y such that I(Yo, Yl )1 >_
IlY] and scaling Yl* and ,A1 So that I(y0, Y)]2+(’LA1, ,A1) 1. Then the system ofnonlinear

equations (2.4) has the following solution (x, y*, )A, .C, )0; or) (, *, A, 0, 0; &), where

* Ty, 2A Z’,A1 and v +/-1.

From the expressions for Dx G(., *, ., .0; t) and its adjoint in the appendix, spanning
vectors for the one-dimensional null spaces can be defined as follows. Under the assumed
hypotheses, Ax2 0, .0 0, c 0, and AA is invertible. Let A be the unique solution
of Dx2/llA21 -[- P(Dxfo) 0. The general solution (Ay*, A)) of L*Ay* + DxftAXA

2-A)oDx/21/X1 A,koP(Dxfo) is

ALA )Ap

where [ y; ] is a particular solution with A;o 1 and is chosen to be in the complementspace
k ),Ap

N’(/*). Also, v -(Yo, *)(Yo, Y[,) (2A, 2Ap). Thus 6 X x Y* x R x Rm-k xof R
and * 6 X** x Y* x Rk* x R(m-k)* x R*, given by

2 v)* + y
d U.A + I,Ap andr*=

4 0

5 1

0

AI-12A
0
0

span the null spaces of Dx G(2, &) and Dx G(2, &)*, respectively.
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For evaluation of the expressions in Theorems 3.2 and 3.4, note that
(Dx2 G(), )[u, v], p*) Dx2L;(), c)[Ul, Vl], (D,G(Yc, &)[1], p*) D,L;(), &), and
DDxG(, c))[u], ap*) DaDx.(, )[Ul], where u and v A" X Y* R R
and U represents the first component of u, i.e., the projection of u onto X.

Theorem 3.2 is applicable when DuG 7(DxG) or equivalently D/2 76 0. Note in
particular that .0 e crosses zero with e in Theorem 3.2. If Dx2/2(), &)[ql, 41] 76 0, then

dZot(0) (Dx2 G(), t)[b, b], *) Dx2/2(), &)[bl, bl]
df2 (DG(, )[1], p*) D/2(), )[1]

(Note that the signs of Dx() )[tl tl andD change with r but the sign of daO doesd2
not.)

Theorem 3.4 is applicable when DoG TZ(DxG) or equivalently DL;(, &)[1] 0. In
this case the algebraic expressions for a, b, and c in this theorem reduce to

2 2a Do[1, 1] + 2DoDxE.[W1, 1] + Dxff_,[Wl, Wl],

b 2Dx[bl, W1] + Da DxL;[bl, 1],

c Dx2/2[bl, ql]

and depend on r; however, the sign of 79 b2 ac, which is crucial for bifurcation, is
invariant with respect to r.

5.2. A fold point example. An example that illustrates the fold point phenomena for this
case is Queen Dido’s problem of maximizing the area under a curve of fixed length [1]:

maximize

subject to

y(x) dx

1+ xx dx--l,

y(-a) --0, y(a) =0,

y C1 ([-a, a], R).

The solution y 0 at 2a is a quadratic fold point for the above problem and is an

abnormal case. To see this, first note that at these values Dr( faa(1 .3f_ (dY.x)2)l/2 dx --/)[h]
dh dx 0 for all h C so the Fr6chet derivative of this constraint is notfaa O h + O -d-ix

surjective at 2a. Since Dl faa (1 + (dy)2) 1/2 dx l) 1, which is not in the range
of the Fr6chet derivative of this constraint with respect to y, we are in the abnormal case and
the situation is much like that in Theorem 3.2 for the parameter ot . The global solution
structure is as follows.

For > 1, there is no feasible solution to the constraints and thus no solution to the

problem. For 1, the unique solution to the constraints (and thus to the problem) is y 0.
(This is the fold point.)

For 2 < 2a < 1, there are two solutions to the first-order necessary conditions and each
is defined implicitly by the circle x2 + (y to)2 R2, where the center (0, to) and radius R are
defined as follows. From the center (0, c) draw two straight lines, one to the origin (0,0) and
one to (a,0), and let 0 denote the angle between these two lines at (0, x). Then, the relations
2RO l, R cos0 I:1, and R sin0 a yieldthe equation sin 0 ()0 whichhas a solution

2 < < The corresponding radius and center are Rin (0, rr/2), say 00, for g Ng0 and
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K
/cos(00) respectively. The solution y is given by y(x" x, R) tc -4- /R2 -x2" the

200
second solution is a minimum and is given by the negative of this one. Note also that as

2+
ot -= --+ 1- the solutions y --+ 0 and as ot -- F the solutions y -t-/a2 x2,
either of which has an infinite C norm.

For < _z there are no C solutions in nonparametric form for the above problem.
(One can continue the solution in parametric form.) Finally, there is a complete exchange of
the stability in the solution as )0 crosses the origin. The bifurcation diagram is qualitatively
like that in Figure 1.

5.3. Loss ol’surjeetivity: The normal ease. In the normal case Dx f0(, ) 6 7(/*), so

)0 # 0. We modify the normalization in problem (2.4) and replace it with )0 1; otherwise,
the assumptions are as follows"

(a) strict complementarity holds, i.e., .As 4 and k l;
(b) Ox2/ll X1 -+ X is bijective;
(c) the range of (DxF(., ), Dx fl (, t) Dxj(, c)) X --+ Y R has codimen-

sion one in Y Rl"

(d’) Dxfo(., t) TE(L*).
The situation (d’) occurs for the case (a)-(c) when, for example, the active constraints are
affine and consistent (i.e., have a feasible solution).

Since the codimension of the range of the operator [ DxLZA ] is one, the dimension of

the null space of/,* is also one, so there exist nonzero multipliers (y’,)) N’(i*), where
y’ Y* and ) (R)* such that L*y{ + Dx * *fA)l 0 and any solution of this problem
is a constant multiple of (y’,)). Thus the solution of the (2.4) with the normalization N3
replaced by N1 (see equation (2.5)) can be written as

+

where is a particular solution of (2.4) corresponding to )0 and is in the space

complement of N’(L*). One can show that the null spaces of Dx G(), ) and Dx G(), )*
are spanned by

respectively.

41 0

q2 Y
b= q3 ) andS*=

4 0

4 0

0

y{

0
0

The bifurcation Theorem 3.2 is applicable when DG(, t) 7(DxG(J, c)), i.e., when
(DoF(}, ), y{) +(DfA(YC, ),)) # 0. In this case there is a locally unique solution
according to Theorem 3.2 given by

for each y. Thus, this solution represents the entirety of solutions to the modified (2.4)
at (2, c).
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The bifurcation Theorem 3.4 is applicable when D,G(, ) E 7(DxG(fc, &)), i.e., when
(DF(,, ), y"{) +(DfA (}, t), X) 0. However, in this case the algebraic expressions for
(a), (b), and (c) now take the values b 0 and c 0, so Theorem 3.4 gives no information
about branching.

6. 2DxEll is singular. Finally in this section we relax the condition in Theorem 2.2 that
2Dx11 is bijective, but we maintain the remaining assumptions. Specifically, we assume that

(a) strict complementarity holds, i.e., 4 4s and k l;
(b’) the bounded linear transformation Dx211 X1 --+ X (X1 N’(/,)) is a Fredholm

operator of index 0 with a one-dimensional null space;
(c) L =_ (DxF(,,), Dxfl(fC,) Dxf(},&)) X -- Y x R is surjective.

Before proceeding, it is worth noting that, under the assumptions of N’(L) splitting the space
X (Theorem 2.4) and (a), N’(/) also splits the space [1, lemma on the closed image]. Thus,
there exists a closed linear subspace X2 such that X X1 @ X2 with X1 N’(/,). Then by
assumption (c), the implicit function Theorem 3.1 implies the existence of a locally unique
Cp solution X2 U(Xl, Ol) of/?(x, or) 0, where/? (F, f (x, or) j(x, or)) 0.
Since k by assumption (a), all active constraints in the problem can be removed and one
can, for the purposes.2of local phenomena, consider the equivalent unconstrained optimization
problem: minimize fo(x or) =_ fo(x + u(x or), or). Such unconstrained problems are most
efficiently treated by using catastrophe theory as in the book by Poston and Stewart [43], and
the examples in this section are for this reduced unconstrained problem. However, we first
present the theory within the current framework.

6.1. Branching analysis for a singular 2 ,,Dxll. Let .A, 2C 0 and 20 represent the
solution of (2.4) at (x, o) (}, &), and suppose that N’(D211) is spanned by 41. Finally, let

--Dxff_,21yp and IAp be the unique solution of L* * 2yp -t- (Ox fa) ap ql. Then the general
solutions of DxGc]) 0 and Dx G*O* 0 are spanned by

(6.1) 4
q4

5

Ya*
Al-1)a

0

respectively, where the parameter v is determined from the normalization equation in (2.5c),
2i.e., v -(Y0, *)(Y0, Y[,) (2*A, XAp), JV’(DxI) is spanned by 1, Ya and ’la solve

L*y + Dxf*)* --/32/’* ,/r* and a solves diag(fk+l fm))*Ca -Dxf*P{*apA Aa ’x"12’’l
Since the algebraic expressions in Theorems 3.2 and 3.4 do not simplify any further except
for the obvious substitutions, we omit a restatement of these theorems incorporating these
expressions.

Finally, we remark that the assumptions (a) and (b) imply that )0 7 0. Thus, if the
normalization Yi%o )/2 -Jr- Ily* 2 in (2.4) is replaced by .o 1, then the eigenvectors are

* * -Dx2/2 2tl Then thedetermined as follows: let yp, i,Ap ,1.Cp 0 solve L yp -Jr- Dx fAl,Ap
null spaces of Dx G and Gx are spanned by

be Y
and 7r*(6.2) b=

b3 )p
q4 0

7r Ya*
-1 ,1 AA Aa

1/r2 l*Ca
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respectively, where 2 .J(Dx/:ll is spanned by p’, Ya and )Aa solve L Ya + DxfAAa* *
_r2r, ,!, anda solves diag(f+l fm)L*Ca -Dxf*"-"x"12 "

6.2. Examples for loss of bijectivity. As remarked above, it suffices to consider the
unconstrained problem of minimizing f(x, or), where f(x, or) X R - R and X is a
Banach space. The first example illustrates the quadratic fold point phenomena, and the
second, pitchfork bifurcation; however, the local bifurcation analysis rests on the extended
approach of Zeidler [59, 29.18] and Bobylev and Krasnosel’skii [5].

The problem of finding the minimum surface ofrevolution connecting two coaxial circular
loops each of radius R separated by a distance of 2! can be formulated as 16]

minimize

subject to

l (dr)2_x27r
j_l

1 + dx

r(-1) a, r(1) a,

r C ([0, 1], R).

The answer to this problem is as follows. For 0 < < 0.6627, there are two zeros to the
equation ,R E cosh (-) 0. For either of these two zeros the curve defined by

r(x)=Ccosh

is an extremal of the above problem: the smaller zero yields a minimum and the larger, a local
maximum. In either case the area is given by

(() seek2 ())2zrR2 tanh +
Amin

27rR2

for 0 < < 0.6627,
C-

for > 0.6627,
C

where the constant C is determined from the above equation.
0.6627, there is exactly one zeroFor 1996786 to the above equation; the

corresponding solution is a quadratic fold point. For > 0.6627, there is no C solution.
The bifurcation diagram is qualitatively like that in Figure 1.

The next example is that ofthe equilibrium-deflected shape ofan Eulerbeam as determined
from the variational principle [60]:

minimize

subject to

EIu2-- P(1 -cos0)ds

dO

ds
0 (0) O, 0 () O,

0 C ([0, l], R), u e C([0, 1], R),

where P is the load on the column, E is the modulus of elasticity, I is the second moment of
cross-sectional area about the neutral axis, tan 0 is the slope of the neutral axis, is the length

dOof the column, s is the arc-length along the neutral axis of the column, and u is the
curvature. Euler’s equation for this problem is

d20
dx2 + w

2 sin 0 0,

0(0) =0, 0(1) =0,
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where 092 Pl2 and lx s This well-known example in bifurcation theory illustrates the
pitchfork bifurcation in Figure 4. Since it is analyzed rather completely in the book by Zeidler
[59], we forego any further discussion.

7. Conclusions. The primary objective in this work has been the derivation of condi-
tions under which bifurcation theory is applicable to the parametric optimization problem
(1.1) posed in Banach spaces. By using the Fritz John first-order necessary conditions and
a nonstandard normalization of the multipliers, this problem has been formulated as a set of
equations on Banach spaces. By relaxing the bijectivity assumptions of the implicit function
theorem but maintaining the Fredholm property of the Fr6chet derivative of the nonlinear sys-
tem of equations, a rather general framework for the analysis of bifurcation problems has been
developed. Singularities generally arise when the strict complementarity fails, the Fr6chet
derivative of the active constraints fails to be surjective, or a second-order condition fails (see
Theorem 2.2). A branching analysis has been provided for each of the generic cases.

With respect to further developments, one can analyze higher-codimension problems as
in the books by Golubitsky, Stewart and Schaeffer [17, 18] and by Poston and Stewart [43].
Exploitation ofsymmetry in the bifurcation analysis has been an active area ofresearch, and the
use ofthis work should prove to be equally productive for the nonlinear program (1.1). Another
fundamentally important aspect is the exchange in the stability (i.e., persistence of minima)
at the singularities. Similar problems have been investigated for unconstrained problems
using monotone operators and spectral theory, as presented in the books of Zeidler [58-60]
and references therein. The Hilbert space setting developed by Bobylev and Krasnosel’skii
[5] for the unconstrained problem appears to provide a correct framework. These approaches
should play a central part in the development of the stability theory for the abstract constrained
optimization problem (1.1) and will be investigated in future work.

Finally, we discussed the difficulty of treating problems with general cone constraints in
the introduction. To investigate the applicability of bifurcation theory to these problems, one
might consider, for example,

minimize f0(x, or)
subject to F (x, or) 0, G (x, or) K,

where fo C2(U x V; R), F C2(U x V; Y), G C2(U x V; Z), U and V are open
subsets of the Banach space X and Rr, respectively, Y and Z are Banach spaces, and K C Z is
a closed convex cone with a nonempty interior. Under appropriate conditions [34, Thm. 4.5],
one has a Fritz John condition in which a constraint qualification is relaxed, and a system
of equations somewhat similar to (2.4) can be derived. (The interiority assumption on K
again places restrictions on the Banach space Z.) This problem will also be investigated in
future work.

Appendix. Proof of Theorems 2.2 and 2.4. Central to the proofs of Theorems 2.2
and 2.4 are expressions for both Dx G and Dx G* since we need to investigate solutions of

Dx G(Ax b and Dx G*Ax* b*, respectively. First, note that Dx G X x Y* x Rm xR --X* x Y x R x R and that the problem Dx GAX b can be written as

D2x.Ax + L*Ay* + (Dxf)*AX -+- (Dxfo)*A,ko bl,

LAx b2,
(A.1)

ADfAx + diag(f)A) b,

2(yo, Y*)(Yo, Ay*) + 2(), A,k) + 2,koA)o b4,

where (b, b2, b, b4) X* x Y R R. The projections Pi and Pf defined in 2.1, the
definitions AA diag() )), A diag0+ )), Ac diag()+ )m),
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/,A (1 )1), B (l+1,..., k), C (k+l )m), and similar definitions for
fa, f, and fc allow one to rewrite the system (A. 1) as

(A.2)

(A.3)

(A.4)

(A.5)
(A.6)
(A.7)
(A.8)

Dx211AXl --[- Dx212Ax2 .-[-

PL*Ay* + P(Dxf)*A; + P(Dxfo)*A)o Pbl,
Dx221AXl + Dx2/22Ax2 +

P; *Ay* + P * D U *ZXZ + P; D Uo *ZXZo
LAx1 + LAx2 b2,

AaOxfaAxl -k- AaOxfAAx2 b31,

0A)B b32,

diag fc A;c b33,

2(yo, y*)(Yo, Ay*) + 2(.a, A.A) + 2)0A)0 b4.

An important observation about equation (A.3) is that, due to the definition of the projection

P2* as projecting X* onto the range ofthe transformation L* (Dx F*, Dx ft), (A.3) is always
solvable for (Ay*, A)).

The problem Dx G*Ax* b* for the linear transformation Dx G* X** Y* Rm*
R* --+ X* Y** Rm* R* can be written as

(A.9)

2 ** L* bl,Dx, Ax + Ay* + (Dxf)*A*A)* *

L** Ax** + 2(yo, y*) J (Yo) A); b,
Dxf**Ax** + diag(f)A.* + 2LA) b,

Dxf*Ax** + 2k0A,k3 b3
and decomposed as

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

2 ** 2 ** *Ay*DxE1,Ax, q- DxE21Ax2 q- PL nt- P;DxfA*AA)*A Pb,
** 2 ** *Ay* * *xZ,lZ/_XXl nt- Oxl,22/kx2 %- PL + P DxfAAAA)*A *

L**P *zXxt* + L**P *zXx * + 2(yo, y*)J(yo)A. b,

Dxf*P* Axt* + Dx f2* "**-l"2 /-.xx2.* "" 2)A A, b3*l,

Dxf* ,,**A ** **P2** ** diag(fc)A. *r zxx + Dxfc Ax2 q- b33,
(Dx f0 ** el**Zxxr* + (Dx f0 ** e **zXx * + 2z0zxz; b2,

where J Y --+ Y** is the isometric isomorphism of Y onto a closed subspace of Y** defined
by (y, y*) (y*, J(y)) for all y 6 Y and y* 6 Y* [50, p. 95]. As above, note that equation
(A.11) is always solvable for (Ay*, A)t).

ProofofTheorem 2.2. First assume that (a), (b), and (c) are valid. Assumption (a) implies
k l, so equation (A.6) is vacuous. Note that -AA and diagfc are nonsingular and that L
being surjective implies/* is injective. The latter, along with the first equation in (2.4) and
(2.5c), implies that o 0 and Dx fo(x) (*). The proof that Dx G is bijective is broken
into two parts" Dx G is injective and then Dx G is surjective.

To show that Dx G is injective, set b 0. Equations (A.4) and (A.5) imply Ax2 0.
Equation (A.7) implies A)c 0. Equation (A.2) now reduces to Dx,AXl 0, which
forces Axx 0 by assumption (b). Equation (A.3) with Axa 0, Ax2 0, and ALc 0
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and (/,*) being injective on Y* x R implies Ay* FY*, A) F), and A)0 F)0 for some
scalar F. Equation (A.8) then requires F 0, so AX 0.

To show that Dx G is surjective, let b be an arbitrary member of X* Y x Rm R1.
Assumption (a) (k l) shows that (A.6) is vacuous. Equation (A.7) is uniquely solvable
for A)c. Equations (A.4) and (A.5) are uniquely solvable for Axe since L is surjective and

2 "X - *isAA is nonsingular. Equation (A.2) is uniquely solvable for AXl since Dxll X
bijective. Since L* (L*, Dxf) is injective, P2* is a projection onto the range of L*, and
AXl, Ax2, and Ac are now determined, (A.3) is solvable with a solution having the structure

* and ,k are particularA)A ’A -1
t- Ap, and A,k0 F)0, where yp lpAy* FY* + Yp,

solutions. Substitution into the last equation, (A.8), shows that it is now uniquely solvable
for F.

Assume now that Dx G is bijective. The objective is to establish (a), (b), and (c). That

DxG is surjective implies that (A.6) must be vacuous so that assumption (a) must hold.
Condition (c), i.e., surjectivity of L, follows from (A.4) and (A.5) and the fact that AA is
nonsingular. In particular, Dxfo(x) 6 R(f*) and )0 7 0 for the same reason as above.
Finally, we must show that Dx2/ll is bijective. Consider the system (A.2)-(A.8) with b2 0,
b31 0, b32 0, b33 0, and b4 0 and with (a) and (c) being valid. Note that Ax2 0

2 Pbl, which must be solvable for someand A)c 0. Now (A.2) reduces to Dx.11Axl
Axl since the entire system is uniquely solvable. Thus Dx2:11 is surjective. We need to
show that it is injective. Let Axl be any solution to this equation. Now (A.3) reduces to

Dxff_,21Ax1. Thus given bl and AXl, thisL*Ay* + Dxf2A)A + (Dxfo)A)o Pbl 2

equation and (A.8) are uniquely solvable for Ay*, A)A, and A)0. Hence, if there are two
solutions of Dx211Axl Pbl, there are two distinct solutions of the system (A.2)-(A.8), a
contradiction. Thus 2Dx11 is bijective and (b) must hold. q

Proofof Theorem 2.4. Assuming first that (a) and (b) are valid, we need to demonstrate
that the dimension of the null spaces of Dx G(2, &) and Dx G(2, &)* are finite and the range
of Dx G(), &)) is closed. To determine AF(Dx G(), &)), consider equations (A.2)-(A.8) with

bi 0 for 1 4. Equations (A.4)-(A.6) imply Ax2 0 and A)c 0. Equation (A.6)
2leaves A) as a vector of arbitrary constants. Equation (A.2) now reduces to Dx.11Axl

P(Dx fo) A)0 P E-l+l (Dx3 A)i. By the Fredholm alternative theorem, this equation
has a solution if and only if (P(Dxfo)A,ko + P{ =l+l(Dxfi)A)i,x**) 0 for each

2x** 6 A/’(Dx:11), which is finite dimensional since DZEll is assumed to be Fredholm. These
finite number of conditions are imposed on the quantities ALl for 0 and + 1 k.
Thus the solution AXl is in the span of at most a finite number of elements from X. Next, to
address (A.11), recall that dimA/’(L*) dim Y/T(L) [50, p. 112], which is finite since Tg(L)
has finite codimension. Thus the solution (Ay*, A)A) to (A.3), which is always solvable, is
the linear span of a finite number of elements from (Y*, RI). Finally, (A.8) places one more
restriction on these finite number of elements from their respective spaces. This shows that
the dimension of the null space of Dx G((, ) is finite.

Continuing to assume (a) and (b), we turn to the linear transformation Dx G* X** Y*
Rm R ---> X* Y** Rm R and show that it has a finite-dimensional null space. First (a)
implies that Dx21 is Fredholm; that 7.(L) is closed and has finite codimension implies [50,
p. 112] that 7-.(L**) is closed and has the same finite codimension in Y**. Furthermore, by
our earlier remarks X** X’* @ X*, where X’* A/’(/,**). Before proceeding, we need to
compute Dx. and its adjoint. Given/2 (x, y*, ), ;0; or) from (2.3), the linear functional

DxE" X ---> R is bounded so that Dx. X*. Now

Dx, (Dx fo(x, or)Y, Xo) + (Dx f(x, o), )) + (Dx F(x, a), y*)

(, Vxfo(x, o)*)o)+ (, VxF(x, a)*y*) -b- (, Vxf(X, c)*,k).
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Thus (DxE2, ?’) (, DxE*?’), where DxE* R* --+ X* and

Dxfl-.* Dxfo(x, ot)*Xo + DxF(x, ot)*y* + Dxf(X, ot)*).

Next, we can compute DxE** from the requirement (DxE*y, 2"*) (),, DxE****) for all
2"* 6 X** and y 6 R* R. The result is

DxE**2** (o, Dxfo(x, or)**2**} + (y*, DxF(x, oe)**2**) + (X, Dxf(X, or)**2**).

Since DxE(X,Ot) 0 at (X,Ot) (2,), the same is true of Dx*(2,c) and
D**(2, ). Thus, in view of the above, an appropriate combination of (A.12), (A.13), and
(A.16) yields DxE**Ax** + (l(Y0, Y*)I e + (;A,)a) +X)A. 0; however, DxE**Ax** 0
and the coefficient of A, is one, so A) 0 and thus Axe* 0. Then (A.10) reduces to

2 **Dx/; Ax 0 so that Ax]* is a linear combination of a finite number of specific elements
in X**. Equations (A.14) (Dxf*Ax* 0 and (A.16) (Dxf)*Ax{* 0) can only further
restrict this finite number. Equation (A.15) is solvable for A) given this Axe’*. Finally, we
come to (A.11), which is always solvable for (Ay*, AYA). Since the dimension of N’(L*) is
finite, the entire system (A.10)-(A.16) is now solvable for (Ax**, Ay*, A), AYe0) in terms of
linear combination of a finite number of elements in X** x Y* x Rm x R*, so the null space
of Dx G* is finite dimensional.

It remains to show that Dx G has closed range. For this, we make repeated use of the
closed-range theorem [50] and the lemma on the closed image 1, p. 80]. Consider first (A.4)
and (A.5)-(A.7), i.e., LAx b2 and ADxfAx + diag(f)A) b3. Now L as a mapping
from , X x Y* x R x R to Y has closed range since L does as a mapping from X to Y.
Then the range of ADxfAX + diag(f)A), where Ax is restricted to N’(L), is a subspace of a
finite-dimensional space. Hence the range of the linear transformation defined by (A.5)-(A.7)
is a closed subspace of Y x Rm Next, as another application of the lemma on the closed image
1, p. 80] consider (A.2) restricted to the kernel of the linear transformation defined by (A.4)-

2(A.7). This equation reduces to DxEI1Ax + P(Dxf)*A, + P(Dxfo) A;,0--0. Now
2by assumption (a), the range of Dx,l is closed and the range of P(Dxf) and P(Dxfo)*

are finite dimensional. Thus, the range of the algebraic sum is closed [50, p. 32]. Next we
turn to (A.3) and apply the same lemma to this equation restricted to the null space of the
linear transformation defined by equations (A.2) and (A.4)-(A.7). Now the range of L is all of

PX*, so we have that the range of (A.2)-(A.7) is closed in X* x Y x Rm. Finally, the range
of (A.8) restricted to the kernel of (A.2)-(A.7) is either R or {0}, both of which are closed.
Thus, Dx G has closed range. This completes the first half of the theorem.

Next, assume DxG(2 ) is a Fredholm operator and 2DxE and DxF(.,dt) have
closed ranges. The objective is to show that (a) and (b) are valid. Thus we start with

dimN’(DxG(), &)) < cx and examine equations (A.2)-(A.8). Equations (A.4) and (A.5)
imply Axe 0, and equation (A.6) leaves A;i for + 1 k as arbitrary constants.
Equation (A.6) implies A) 0 for k + 1 m. Equation (A.2) now takes the form

2 kDxfl_, Ax -P{(Dx fo)A,ko P{ Zi=/+I (Dx fi)A)i, whose solution AXl must belong to
2a finite-dimensional space. Thus, the dimension of the null space of Dxl2 can be at most

finite dimensional. Also, (A.3) implies that the dimension of the null space of L* is at most
finite since Ay* is further constrained only by (A.8). Since N’(L*) 7(L)+/-, Y/(L) has
same finite dimension as N’(L*), i.e., (L) has finite codimension.

2 has finite codimension, we show that DxEFinally, to show the range of DxEll 2 has
a finite-dimensional null space by considering the null space of DxG(, )*, which must
be finite dimensional since it is Fredholm. Once again considering equations (A.10)-(A.16)
with b* 0, the same argument as above shows that A) 0 and Axe* 0. Regardless
of Axe{*, (A.11) is always solvable for (Ay*, A)A) and (A.15) for A;c. Now Axe* by
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its definition already satisfies (A.12) and (A.13). Thus we are left with (A.10), (A.14), and
2 ** ** ** **(A.16), which reduce to Dxff_,llAXl 0, Dxfn Ax O, and Dxf*Ax 0. Since the

ranges of Dxf* and Dx f0** are finite dimensional, so is the codimension of the null spaces.
Thus 2 * **A/’(Dx/ll) A.A/’(Oxfn fqA/’(Oxf*) is finite dimensional if and only ifA/’(D2/2l) is
finite dimensional. [

REFERENCES

V.M. ALEKSEEV, V. M. TIKHOMIROV, AND S. V. FOMIN, Optimal Control, Consultants Bureau, New York, 1987.
[2] W. ALT, Stability ofsolutionsfor a class ofnonlinear cone constrained optimization problems, Part 1: Basic

theory, Numer. Funct. Anal. Optim., 10 (1989), pp. 1053-1064.
[3] ,Local stability ofsolutions to differentiable optimization problems in Banach spaces, Optim. Theory

Appl., 70 (1991), pp. 443-466.
[4] B. BANK, J. GUDDAT, D. KLATTE, B. KUMMER, AND K. TAMMER, NonlinearParametric Optimization, Birkhiuser-

Verlag, Basel, 1983.
[5] N.A. BOBYLEV AND M. A. KRASNOSEL’SKII, Investigation schemefor extremals ofmultidimensional variational

problems, Functional Anal. Appl., 28 (1994), pp. 227-237.
[6] J. E BONNANS, Directional derivatives ofoptimal solutions in smooth nonlinearprogramming, J. Optim. Theory

Appl., 73 (1992), pp. 27-45.
[7] J. E BONNANS, A. D. IOFFE, AND A. SHAPIRO, Expansions ofexact and approximant solutions in nonlinearpro-

gramming, in French-German Conference in Optimization, D. Pallaschke, ed., Lecture Notes in Econom.
and Math. Systems, Springer-Verlag, Berlin, 1993.

[8] D.J. BELL AND D. H. JACOBSON, Singular Optimal Control Problems, Academic Press, London, 1975.
[9] L. CESARI, OptimizationmTheory and Applications, Springer-Verlag, New York, 1983.

[10] S.-N. CHOW AND J. K. HALE, Methods ofBifurcation Theory, Springer-Verlag, New York, 1982.
[11] S. DAFERMOS, Sensitivity analysis in variational inequalities, Math. Oper. Res., 13 (1988), pp. 421-434.
[12] A. L. DONTCHEV AND W. W. HAGER, Lipschitzian stability in nonlinear control and optimization, SIAM J.

Control Optim., 31 (1993), pp. 569-603.
13] A. V. FIACCO, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, New York, Aca-

demic Press, 1983.
14] Mathematical Programming Study 21: Sensitivity, Stability and Parametric Analysis, North-Holland,

Amsterdam, 1984.
15] A.V. FIACCO AND Y. ISHIZUKA, Sensitivity and stability analysisfor nonlinearprogramming, Ann. Oper. Res.,

27 (1991), pp. 215-235.
16] I.M. GELFAND AND S. V. FOMIN, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ, 1963.
17] M. GOLUBITSKY AND D. G. SCHAEFFER, Singularities and Groups in Bifurcation Theory, Vol. 1, Springer-Verlag,

New York, 1985.
[18] M. GOLUBITSKY, I. STEWART, AND D. G. SCHAEFFER, Singularities and Groups in Bifurcation Theory, Vol. 2,

Springer-Verlag, New York, 1988.
19] J. GUDDAT, E GUERRA VAZQUEZ, AND H. TH. JONGEN, Parametric Optimization: Singularities, Path Following,

and Jumps, John Wiley and Sons, Chichester, England, 1990.
[20] J. GtDDAT, ED., Parametric Optimization andRelated Topics II, Math. Res. 62, Akademie-Verlag, Berlin, 1991.
[21 A.D. IOFFE, Necessary andsufficient conditionsfora localminimum 3: Secondorderconditions andaugmented

duality, SIAM J. Control Optim., 17 (1979), pp. 266-288.
[22] ,On sensitivity analysis ofnonlinearprograms in Banach spaces: The approach via composite uncon-

strained optimization, SIAM J. Optim., 4 (1994), pp. 1-43.
[23] A. D. IOFFE AND V. M. TIIHOMIROV, Theory of Extremal Problems, North-Holland, Amsterdam, New York,

Oxford, 1979.
[24] K. ITO AND K. KUNISCH, Sensitivity analysis of solutions to optimization problems in Hilbert spaces with

applications to optimal control and estimation, J. Differential Equations, 99 (1992), pp. 1-40.
[25] H. TH. JONGEN, P. JONKER, AND E TWILT, On one-parameterfamilies ofsets defined by (in)equality constraints,

Nieuw Arch. Wisk., 3 (1982), pp. 307-322.
[26] , Critical sets in parametric optimization, Math. Programming, 34 (1986), pp. 333-353.
[27] , One-parameter families of optimization problems: Equality constraints, J. Optim. Theory Appl.,

48 (1986), pp. 141-161.
[28] H. TH. JONGEN AND G. W. WEBER, On parametric nonlinear programming, Ann. Oper. Res., 27 (1991),

pp. 253-284.
[29] T. KAa’O, Perturbation Theoryfor Linear Operators, 2rid ed., Springer-Verlag, Berlin, 1984.
[30] A.J. IQNG AND R. T. ROCKAFELLAR, Sensitivity analysisfor nonsmooth generalized equations, Math. Program-

ming, 55 (1992), pp. 193-212.



PARAMETRIC OPTIMIZATION PROBLEMS IN BANACH SPACES 1971

[31] J. KOGAN, Bifurcation ofExtremals in Optimal Control, Lecture Notes in Math. 1216, Springer-Verlag, New
York, 1980.

[32] M. KOJIMA AND R. HIRABAYASHI, Continuous deformation ofnonlinear programs, in Mathematical Program-
ming Study 21: Sensitivity, Stability and Parametric Analysis, A. V. Fiacco, ed., North-Holland, Amster-
dam, 1984.

[33] N.H. KUIPER, C equivalence offunctions near isolated criticalpoints, in Symposium on Infinite-Dimensional
Topology, Ann. of Math. Stud. 69, R. D. Anderson, ed., Princeton University Press, Princeton, NJ, 1972.

[34] S. KURCYUSZ, On the existence and nonexistence ofLagrange multipliers in Banach spaces, J. Optim. Theory
Appl., 20 (1976), pp. 81-110.

[35] J. KYPARISIS, Sensitivity analysis framework for variational inequalities, Math. Programming, 38 (1987),
pp. 190-203.

[36] E. S. LEWTIN, Perturbation Theory in Mathematical Programming and Its Applications, John Wiley & Sons,
Chichester, England, 1994.

[37] B.N. LUNDI3ERG AND A. B. POOR, Numerical continuation and singularity detection methodsforparametric
nonlinearprogramming, SIAM J. Optim., 3 (1993), pp. 134-154.

[38] K. MALANOWSK, Second order conditions and constraint qualifications in stability and sensitivity analysis of
solutions to optimization problems in Hilbert spaces, Appl. Math. Optim., 25 (1992), pp. 51-79.

[39] H. MAURER, First- and second-order sufficient optimality conditions in mathematical programming and op-
timal control, in Mathematical Programming at Overwolfach, H. K6nig, B. Korte, and K. Ritter, eds.,
Mathematical Programming Study, 14 (1981), pp. 163-177.

[40] L. NIRENBERG, Topics in Nonlinear Functional Analysis, Lecture notes, Courant Institute of Mathematical
Sciences, New York University, 1974.

[41 A.B. POORn AND C. A. TIAHRT, Bifurcation problems in nonlinearparametric programming, Math. Program-
ming, 39 (1987), pp. 189-205.

[42] A.B. PooR, Bifurcations in parametric nonlinearprogramming, Ann. Oper. Res., 27 (1991), pp. 343-370.
[43] T. POSTON AND I. STEWART, Catastrophe Theory and Its Applications, Pitman, London, San Francisco,

Melbourne, 1978.
[44] Y. QIU AND T. L. MAGNANT, Sensitivity analysisfor variational inequalities defined on polyhedral sets, Math.

Oper. Res., 14 (1989), pp. 410--432.
[45] P. RABmR, Lectures on Topics in One-Parameter Bifurcation Problems, Tata Inst. Fund. Res. Lectures on Math.

and Phys., Springer-Verlag, Berlin, 1985.
[46] S.M. ROBINSON, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43-62.
[47] , Generalized equations and their solutions, Part II: Applications to nonlinear programming, Math.

Prog. Stud., 19 (1982), pp. 200-221.
[48] , An implicit-function theorem for a class of nonsmooth functions, Math. Oper. Res., 16 (1991),

pp. 292-309.
[49] W. RUDIN, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.
[50] ,Functional Analysis, 2nd ed., McGraw-Hill, New York, 1991.
[51 M. SCHCHTR, Principles ofFunctional Analysis, Academic Press, New York, 1971.
[52] A. SHAPIRO, Sensitivity analysis ofparameterizedprograms via generalized equations, SIAM J. Control Optim.,

32 (1994) pp. 553-571.
[53] Perturbation analysis of optimization problems in Banach spaces, Numer. Funct. Anal. Optim.,

13 (1992), pp. 97-116.
[54] A. SHAPIRO AND J. E BONNANS, Sensitivity analysis ofparameterizedprograms under cone constraints, SIAM

J. Control Optim., 30 (1992) pp. 1409-1422.
[55] C. A. TAHRT AND A. B. POORE, A bifurcation analysis of the nonlinear parametric programming problem,

Math. Programming, 47 (1990), pp. 117-141.
[56] V. M. TIKHOMIROV, Fundamental Principles of the Theory of Extremal Problems, John Wiley & Sons, New

York, 1986.
[57] H. URAKAWA, Calculus of Variations and Harmonic Maps, Trans. Math. Monographs 132, American Mathe-

matical Society, Providence, RI, 1993.
[58] E. ZDLnR, Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators, Springer-

Verlag, Berlin, 1990.
[59] ,Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators, Springer-

Verlag, Berlin, 1990.
[60] , Nonlinear Functional Analysis and Its Applications III: Variational Methods and Optimization,

Springer-Verlag, Berlin, 1985.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 34, No. 6, pp. 1972-1998, November 1996

() 1996 Society for Industrial and Applied Mathematics
007

STABILITY RADII OF SYSTEMS WITH STOCHASTIC UNCERTAINTY
AND THEIR OPTIMIZATION BY OUTPUT FEEDBACK*

D. HINRICHSEN AND A. J. PRITCHARD

Abstract. We consider linear plants controlled by dynamic output feedback which are subjected to blockdiagonal
stochastic parameter perturbations. The stability radii of these systems are characterized, and it is shown that, for
real data, the real and the complex stability radii coincide. A corresponding result does not hold in the deterministic
case, even for perturbations of single-output feedback type. In a second part of the paper we study the problem of
optimizing the stability radius by dynamic linear output feedback. Necessary and sufficient conditions are derived
for the existence of a compensator which achieves a suboptimal stability radius. These conditions consist of a

parametrized Riccati equation, a parametrized Liapunov inequality, a coupling inequality, and a number of linear
matrix inequalities (one for each disturbance term). The corresponding problem in the deterministic case, the optimal
/z-synthesis problem, is still unsolved.

Key words, stability radius, stochastic systems, multiperturbations, state-dependent noise, dynamic output
feedback, Riccati inequalities, linear matrix inequalities, scaling

AMS subject classifications. 93C, 93D, 93E

1. Introduction. One of the main purposes of feedback control is to ensure satisfactory
behaviour of a dynamical system in the presence of unforeseen disturbances. This classical
problem, which was central to the work of Bode and Nyquist, has seen a vigorous renaissance
over the past decade, and recent developments in control theory have been strongly influenced
by it. The focus has been on deterministic disturbances: either unstructured (additive or
multiplicative) perturbations of the plant’s transfer function or structured perturbations of the
parameters of a given nominal state-space model. As examples, we mention two approaches,
H and stability radii. H theory (see [6], [20]) deals with the problem of minimizing
(by feedback compensation) the effect of deterministic disturbances on the variables to be
controlled. The results can be applied to maximize robustness of stability with respect to
unstructured perturbations ofthe transfer matrix. On the other hand, the theory of stability radii
determines precise robustness measures for stable linear state-space systems subject to different
classes of structured parameter perturbations [14]. Surprisingly there is a close relationship
between the two theories for the special case where stability radii with respect to complex
perturbations of single-output feedback type are considered. In fact, in this case the problem
of optimizing the stability radius by feedback control is equivalent to a singular H control
problem 13].

In this paper we use the framework of stability radii to study robust stability and robust
stabilization problems for systems with stochastic uncertainty. Because of the close relation-
ship between the theories of stability radii and H control, our results can be regarded as an
extension of H control theory to systems with stochastic uncertainty.

We consider the system

N

(1) dx(t) Ax(t)dt + DiAi(Eix(t))dwi(t) + Bu(t)dt, y(t) Cx(t),
i=1

where the matrices A, B, C, Di, and Ei are given and the processes t0 are independent
scalar Wiener processes, N. We view the above equations as describing a lin-
ear deterministic differentiable system (A, B, C) perturbed by stochastic multiperturbations
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q=l Di Ai(Eix(t))dwi(t). The family (Di, Ei)iN of matrix pairs describes the structure of
these perturbations, while Ai, 1 N, are unknown Lipschitzian nonlinearities. We
assume that all the Wiener processes wi have zero mean. In other words, the nominal model
(A, B, C) is assumed to be exact in the mean. If the system matrix A is also subject to deter-
ministic parameter perturbations, the problems of robust stability and robust stabilization are
more involved, and so far only estimates are available for the corresponding stability radii;
see 15].

Many authors have studied stability and stabilization problems for systems with state-
dependent noise; see, for example, [17]. The quadratic optimal control problem was solved
in [19], and a collection of papers concerning Liapunov exponents for such systems can be
found in [1]. However, there are few papers dealing with robustness issues for this class of
systems. An important reference is [18], which, in our terminology, derives necessary and
sufficient conditions under which infinite or arbitrarily large stability radii can be achieved by
state feedback. Some results on stochastic stability radii defined via Liapunov exponents can
be found in [4, 7]. A characterization of the stability radius in the special case where all the

Ei are equal was given in [7]. (The mathematical development is essentially the same as in
the single-perturbation case N 1.)

Here we study the robust stability and robust stabilization problems under multipertur-
bations. For deterministic systems the development of such stability radii requires the use
of/-analysis [14], and it is well known that in the presence of more than three perturbation
terms (N > 3) scaling techniques yield only lower estimates for the complex stability radius.
In contrast, we will derive a precise characterization via scaling techniques in this stochastic
case. This is based on the analysis of an associated minimax problem for quadratic forms.
Moreover we will show that the real and the complex stability radii coincide for stochastic
multiperturbations of the above kind.

The second main contribution of this paper concerns the problem of optimizing the sta-
bility radius of systems of the form (1) by dynamic output feedback. We characterize the
supremal stability radius by combining a Riccati inequality with a Liapunov inequality, a
coupling condition, and a number of additional linear matrix inequalities. Moreover we give
explicit formulae for suboptimal controllers. These results are obtained by using an inequality
approach to deterministic Ha control theory developed by Gahinet and his co-workers; see
[10], 11]. Whereas in the deterministic case the suboptimal controllers can be characterized
by a pair of Riccati equations and a coupling condition, it is not possible in the stochastic case
to replace both the Riccati and the Liapunov inequalities by equalities. This will be illustrated
by an example.

We proceed as follows. In the next section we give some results on a minimax problem
for quadratic forms. (The proofs are in an appendix.) These results will be instrumental for
our characterization of the stability radius relative to stochastic multiperturbations in 3. In
4 the problem of optimizing the stability radius by (linear) feedback is studied, and it is
shown that the supremal stability radius can be determined via matrix inequalities. Finally, in

5 we show that in this characterization the Riccati inequality may be replaced by a Riccati
equation, whereas the Liapunov inequality cannot be transformed into an equality. Moreover
the corresponding results for state feedback are derived as corollaries of the previous results
on dynamic output feedback.

2. A minimax problem for quadratic forms. Throughout the paper we use the fol-
lowing notation. IK is either the field of real numbers or the field C of complex numbers.
For any integer >_ l, e(IK) is the real vector space of Hermitian matrices in IKee and
+(() {H e(]K); H 0} is the convex cone of positive semidefinite matrices in

e (]K). By (., .) we denote the usual inner product on IKe, ll, and by H [[, the associated
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operator norm or spectral norm of H 6 e(K):

(6)

Let

(4) f (or) max fj (c), j (or)
jeN

c e (0, )U_.

Then the optimization problem (3) is equivalent to minimizing the function f (.) on the positive
orthant (0, cz)N--. The optimal value of (3) is denoted by

(5) /2 inf f(a).
ue(O,)N-

In this section, in order to maintain the flow of the paper, we give only the pertinent results.
The proofs are relegated to the appendix. Nevertheless we would like to stress that these
proofs are an important part of the overall proof of our main results in 3-5.

The solution of (3) depends strongly on the zero block pattern of the compound matrix
H (Hij)i,j=I.N To capture this pattern we denote by the directed graph [3] with node set
N = N} and set ofdirected arcs

A {(i, j) e N__.2; Oij # 0}.

is said to be strongly connected if every node of is connected to every distinct node of
by a directed path in .

THEOREM 2.1. Suppose that is strongly connected. Then there exists a subset J C N__
and a vector t (0, c)N satisfying f(&) z, and

(lj) Hij
i=1

=z ifj eJ,

i=1

</2 /fj e N\J.

HII max (v, Hv),

We suppose that N 6 N is given and

(2) Hij e 7-[+e. (N), i, j 6 N :--- N},

is a given family of nonnegative ej x gj Hermitian matrices. For any set C, we denote by
(0, cx)c the set of all mappings from C to (0, cxz), the set of all positive real numbers. If C is
finite, the elements of (0, cx)c are represented by finite families a (Cc)ceC. In particular
the set (0, o)N consists of all N-tuples ot (Oil,..., OeN), with O/i > 0 for all 6 N. In our
later analysis the Hij will be given by

cx: ,, A*rHij .j uj e E Eiear Djdz >- O, i, j N,

and the oti’s are free scaling parameters which are used to improve a lower bound for the
stability radius. In fact we will see that the scaling technique applied to multiperturbations
leads to the following optimization problem:

ci
(3) minimize max Sij with respect to oe (0/1 aN) (0, O)N--.

jN__ i=l \ 0/j ,/
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The theorem shows that in the strongly connected case the optimal value of the minimiza-
tion problem (3) is equal to the optimal value of the subproblem

(7) minimize max
jEJ

subject to ot 6 (0, cx) J

for which only the data Hij, i, j J, play a role. According to (6) the reduced scaling vector

lj (li)iEJ is a minimizer for (7), and each of the norms _ij()2nijll, j J, is equal
to/2. A natural question is, under which conditions is the subset J N? The following
proposition gives a sufficient condition.

PROPOSITION 2.2. Suppose that is strongly connected andfor every nonempty subset
J C N, J N there exists j N\J such that

(Q )1(8) ’ ker Hij f3 ker Hij {0}.
i6N\J

Then

(9) f () fN() ;Z

for all t (0, c)u satisfying,f (t) z.
Remark 2.3. Suppose that each Hermitian matrix Hij, i, j N, is either invertible or

zero. Then assumption (8) is satisfied if is strongly connected. In particular, (9) always
holds in the scalar case (j 1, j 6 N if is strongly connected.

If is not strongly connected, there will not, in general, exist a minimum of f. To deal
with this case we introduce the following notation. Let C, k K, be the node sets of
the strongly connected components [3] of ordered in such a way that for 1 < h < k < K
there is no directed arc (i, j) 6 A such that Ck, j Ch. Then, for all h, k 6 K,

(10) h <k === (i 6Ckandj 6Ch=:Hij--O).

Since N UkgCk, it follows from (10) that

(11)

f(ot) max max
h6K jECh

i=1

max max Hij
h6K jCh

a (0, )N.

The next theorem shows that problem (3) can be solved by restricting our considerations to
the strongly connected components of .

THEOREM 2.4. Let

(12) /Zk= min max
ote (0, cx)c jCk

_
Oli

Iij
iEC

k6K.

Then

max/k.
k6K
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Moreover, if: satisfies/z, max/z there exist a subset J C C and, for every > O, a

vector t E (0, o)N such that

(13)

Oli
Hij

i=1

<fz+3, jEN,

=z, jJ.

We see that the solution of problem (3) can always be reduced to the solution of a sub-
problem corresponding to a strongly connected component of .

3. Characterization of stability radii. Suppose that A 6 Knn is a given matrix with
spectrum a(A) in the open left half-plane C_ {s 6 C; Re s < 0}. Let N 6 N, and let
((Di, Ei))iN be a given family of matrices D Knxe/, Ei Kqin, N. We will
consider uncertain systems described by Ito stochastic differential equations of the form

N

(14) dx(t) Ax(t) dt + Di Ai(Eix(t))dwi(t),
i=1

where A AN are unknown Lipschitzian nonlinearities satisfying

(15) Ilmillz < tr, 1 N.

(Wi(t))teR+, 1 N, are independent zero-mean Wiener processes on a probability
space (, .T’,/z) relative to an increasing family (Ut)te+ of a-algebras f’t C U. Thus, if )i
denotes the variance of (wi(t))teR+, we have

C(Wi(t)) O, c((Wi(t)--Wi(S))(Wj(t)--Wj(S))) ij,i(t--S), t, s R+, > s, i, j N,

where 6ij is the Kronecker symbol. For each 1, N, the Euclidean norm is taken on
]Kqi Kei The disturbances Ai vary in

Lip (]Kqi Kti) A ,qi I------> ]i; A (0) 0 and A is Lipschitzian},

and the size of each A Lip (Nqi, ]Kli) is measured by the Lipschitz norm

IIAilIL inf {?’i > 0; Vy, E qi" llAi(y Ai@)llei ’illy llq }.

The unknown A represent uncertainty in the state-dependent gains through which the sta-
tionary white noise processes dwi(t) affect the evolution of the system. The matrix family
((Di, Ei))iN determines the structure of the perturbations, and tr > 0 indicates the overall
level of the stochastic disturbances. Altogether (14) with constraints (15) describes a set of
stochastic systems parametrized by m Lip (]qi, Nli), Ai I1 < cr for 6 N.

Let L2(, ]m ),, denote the space ofsquare-integrable ]Km-valued functions (modulo equiv-
alence) on the probability space (, ’,/). We denote by L2 (N+; L2(S2, ]Km)) the space of
nonanticipative stochastic processes z(.) (z(t))teR+ with respect to (Ut)te+ (see, e.g., [9])
satisfying

(16) IIz(.)l12 g IIz(t)ll at (llz(t)ll z) dt < cxz,
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where g denotes the expectation. For arbitrary A E Lip (]qi, ]xli ), N, and any initial
state x 6 IKn there exists a unique solution x(.) (x(t))teli+ of (14) on R+ [0, cx) such
that x(0) x (see, e.g., [9]). x(.) is a continuous nonanticipative stochastic process with L2

second moments on every finite interval [0, T]"

z
(llx(t)ll 2) dt < oc, T>0.

Many concepts of stability have been studied for stochastic systems. In this paper we consider
L2-stability.

DEFINITION 3.1. The system (14) is said to be L2-stable if for every x Kn, the unique
solution x(.) of(14) on R+ [0, cx) with initial value x(O) x satisfies

(llx(t)ll 2) at < .
Our aim is to determine which bounds a on the perturbations A ensure that the stability

of the deterministic system k (t) Ax (t) is preserved under additive stochastic perturbations
of the form y/N=I Di Ai(Eix(t))dwi(t). Let A denote the combined perturbation operator

(17)
N

A @ A Lip (Kq, Ke),

The Lipschitz norm of A is given by

z II max Ai lit.
i6N

Note that because A (0) 0, we have

(18)
N N

Y (Yi)i6N ]I(q"

The maximum tr > 0 for which all the systems in (14) are L2-stable is called the stability
radius of (14).

DEFINITION 3.2. The stochastic stability radius of A INnn with respect to the pertur-
bation structure ((Di, Ei))ieN and the Wienerprocesses (Wi)iU is

(19)

r(A;(Di, Ei)ieN)=inf[ +Ai ;Ai Lip(qi,ei)suchthat(14)isnotL2-stable].
L

Remark 3.3. (i) We have chosen x 6 ]n since we regard (14) as a stochastic perturbation
of a deterministic system. However, it is straightforward to extend the theory to any -0-
measurable initial state x 6 L2(f2, INn).

(ii) A stability radius with respect to linear perturbations can be defined analogously
by restricting the perturbations A in (19) to be linear, i.e., A ff..(]qi, ]ei). It is an open
question whether this restriction leads to a different stability radius.

(iii) If the data A, Di, Ei are real, two stability radii are obtained according to whether
one chooses N C (complex perturbations) or IK IR (only real perturbations) in (19). In a
deterministic framework the real and the complex stability radii are, in general, distinct; see
14]. We will show later that they are equal in the present stochastic framework. [3
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In order to characterize the stochastic stability radius we need the following lemmas.
LEMMA 3.4. Suppose that E ]qxn and

N

footy(t) EeAtx q- EeA(t-S)Divi(s)dwi(s),
i=1

where l)i L2w (+; L2(, ]ei )), N__, and x Kn. Then

(20)
N

for(lly(t)ll 2) IlEeatx]12 + i )i ([[EeA(t-SDiwi(s)[[2) ds, +.

Moreover, y(.) Lw(+; L2(f2, ]I(q)) and

(21)
IlY(.)ll2 (lly(t)ll) dt

[[EeAtx[[ 2 dt + i ,((Divi(s), PDivi(s))) ds,

where

(22) PA + A*P + E*E O.

Proof. The first part is a standard result for stochastic integrals [9]. Now since a(A) C
C_, the following integrals are well defined, and we have

([[y(t) 2) dt IlEeatx[12 dt + i ([[EeA(t-S)Divi(s)[[ 2) dsdt.
i=1

By Fubini’s theorem

o

c

fOO .([[EeA(t-SDivi(s)[I 2) dsdt

_.([[EeA(t-s)oivi(s)[[ 2) dtds

fo (( ys )), Divi(s), ea*(t-S)E*Eea(t-s) dtDivi(s) ds.

The result follows since the unique solution P P* of (22) is given by

(23) P eA*r E*EeAr dr.

Consider the map L L2w (]+’, L2(f2 Ke)) --+ LZw (I+’, L2(2 Kq)) defined by

(24) (]Lv(.))(t) L (t) EeA(t-SDivi(s)dwi(s).
UN(. i=1

]LV(.) L2w (+’, L2(f2, Kq)) for all v(.) 6 L2 (+’, L2(f2 Ke)) by the previous lemma.
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LEMMA 3.5. The linear map L L2w (IR+’, L2(2 Ke)) --> L2 (IR+’, L2( IKq )) defined by
(24) has the operator norm

( [foOO ])1/2(25) IILII max XilID? ea*rE*Eear dr Dill max ()illO[PDill) 1/2

where P satisfies (22).
Proof. If v(.) L (IR+; L2(f2, IK)) and y Lv, we have by Lemma 3.4

(lly(t)ll 2) dt Z ,((Dioi(s), PDivi(s))) ds,

where P satisfies (22). Hence

IILvll _< maXeu_ (’ilID[PDII) il._
So IILII _< max/eu (.i D[POi II)1/2. Now suppose that max/eu (.i D[PDi II)/ is achieved
for/= j and v e N satisfies I111 1 and (v, DPDv) IIDPDIIo Let v(t) O,
e R+, - j, and v(.) /(.)v, where/(.) e L(R+; IR), I1(o)11 is chosen

arbitrarily. Then v(.) (vi(’))ieN Lw(R+; L(S2, Ke)), IIv(’)llL 1, and

IILvll2 ) eo((Djvj[3(s), PDjvj[3(s)))ds

IIDPDj I(s)l ds max(Xi IIDPDg II).
ie__N

This completes the proof.
THEOREM 3.6. Suppose that A is stable and there exist

+ (K) satisfying

N

(26) A*P + PA + Z2iE[Ei --O,
i=1

(27) Ie (a/otj)2)j DfPDj >- O, j N.

Then r(A; (Di, Ei)ieN) > o’.

Proof Let x 6 K, Ai 6 Lip (Nq, Kt), 6 IV, A @vAi and II’X IlL < r, and
suppose that ot 6 (0, oo)N, P 6 7-/n+ (K) are such that (26), (27) hold. The unique solution
x(.) of (14) with initial condition x(0) x satisfies the scaled integral equation

N

for(28) x(t) eAtx0 -Jr- i eA(t-S)D’A’(E’x(s))dwi(s), +,

where

(29) D ol-[-1Oi, EC oliEi, Ai(") o/iAi(og-I.), e N.

The input-output operator ILa L2
w (JR+; L2 (--’, ])) ._.> L2 (]R+; L2 (’-, ]q )) of the scaled

system (A, (D’, Ei)ieN) is given by

1)1 (’) N

(Lv(.))(t) (t) eA(t-s)oc/il)i(s)dwi(s),
ONON(’) EN

eI+.
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Let u’ (t) A (gix(t)), yi (t) Eix(t),
_
N+, and

(30)

E(ot)

y(t)

yl (t)

ON
YN (t)

N

’(t)u

u(t)

u/ (t)

Then (28) implies

N

for(31) y(t) E(ot)eAtx + i E(ot)eA(t-S)D/iu{i(s)dwi(s), . +.
For every T > 0, define the truncations g 2 (R+; L2 (,", Kegui, r Lw )), N, andur 6

L2(N+; LZ(f2, Ke)) by

(t) { ui (t) A (y’ (t))
ui’r 0 ift > T,

ift [0, T],
’ (t)Ul,T

(t)U T

aN (t)gN, T

Then

(32)

Let y denote the output of the scaled system (A, (D, E{)ieN) generated by the input ur
with initial condition x (0) x:

(33)

N

f0YT(t) E(t)eAtxO + Z E(ot) eA(t-S)D/’ui,T’ (s)dwi(s)
i=1

E(ot)eAtx0 + (Lau-(’))(t), 6N+.

It follows from (31)-(33) that

(34)

(T )1/2(lly(t)ll2)dt

IIE(a)eA(’)xll-t-IIll IIAII (r
([ly (t)II 2) dt)

1/2
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By Lemma 3.5

IILII max ()iII(D’’)*PD’ II) /2,
i6N

where P satisfies (26). Thus from (27) we have IlL" 5 a-, and since A II A II < a,
the operator LA is a contraction on L2(R+; L2(82, Kq)) with 9/ "= IILII IIAII < 1.
Hence from (34) for all T > 0,

T t 1/2

(ll y= (t) ll2) dt < (1 ,)-1 ilE(c)eA(.)xOllL2.

Therefore.y (.) 6 L2w (N+; L2(, ]Iq)) and u (.) A (ya (.)) 6 Law (N+; L2(, Ie)). Ap-
plying Lemma 3.4 (with E In, D instead of Di and u (.) instead of v(.)) it follows from
(28) that x(.) 6 L2w (R+; L2(2, ]n)), and this completes the proof. [3

Remark 3.7. Suppose the A (t, y) are time-varying Lipschitzian nonlinearities, measur-
able in (t, y) 6 N+ x Kqi satisfying A (t, 0) 0, > 0, and

IIAilIL inf{?’i > 0; Yy, ][g(xqivt e ]t+ IIAi(t, y) Ai(t, )11:i < ?’illY [lKqi < r.

Then the previous proof carries through, showing that no time-varying Lipschitzian perturba-
tions A (t, y) of Lipschitz norm smaller than cr can destabilize the system. [3

If in the previous theorem condition (27) is satisfied with >- instead of >-, then clearly
r(A; (Di, gi)ieN__) > t7 follows. Similarly, the equality in (26) may be replaced by an
inequality _.

COROLLARY 3.8. Suppose that A is stable and there exist t (0, c), P E 7-(n+ (]K)
satisfying

(35)
N

A*P + PA + Ol2iE:Ei 0,
i=1

(36) le (cr/otj)2jDPDj 0 (resp., le (rr/otj)2ZjDPDj >- 0), j N.

Then r(A; (Di, Ei)iN) >_ tr(resp., r(A; (Di, Ei)ieN) > t7).
Proof. Let P(ot) denote the solution of the Liapunov equation (26). Then 0 __.

P(a) -< P. Hence P(ot) satisfies (26) and (27) and r(A; (Di, Ei)ieu) > cr follows from
Theorem 3.6. [3

For any J C and any scaling vector ot J 6 (0, cxz) J, define

(37) P(ot) eA*r ot2i EEi eAr dr;
iJ

i.e., P (or) 7-/+ (IK) is the unique solution of

(38) A*P + PA + 2iE;E "-O.
i6J

Then

(39)
(j/ol)D;P(olJ)Dj Z(Oli/Olj)2j t)j’-’* eA*r gi* E eArOjd

iJ

Z(Oli/Olj)2 Hij, j e J,
i6J
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where
c
-, A* ,

(40) Hij 3.j t)j e E EieAr Djd’c O, i, j N.

Wee now in a position to prove our main theorem by applying the results of 2 to the family
of positive semidefinite matrices (40).

THEOREM 3.9. Given (A, (Di, Ei)iN), (A) C_, and (Wi)i6N as in (14), the associ-
ated stabili radius is determined by

(41) r(A; (Di, Ei)ieN) sup max II(Xj/)DP()Djll
(o,) J

where P (0/ is the unique solution of(26). Ifr (A; Di Ei )i eN < 0, there exists a minimum

norm destabilizing perturbation A @IN Ai 6 Lip (Kq, KI), IlzXlIL r, Moreover, there
exist a subset J C N and a scaling vector 0/J (0, cx)J such that

(42) r(A; (Di, Ei)iN)_
\ Jej(max II(j/0/)D;P(otJ)DjII)

-1/2

r(A; (Di, Ei)ij),

where P(0/J) 7-[+n (K) is the unique solution of (38).
Proof By (39)

(43)

inf max ()j/0/)D]P (0/) Dj
e(O,o) jeN___.

N

max ’(0/i/0/j)2Hijinf O.
(0,) j i=1

If/2 0, then r(A; (Di, Ei)iN) X by Theorem 3.6; hence (41) is satisfied. Moreover,
in this trivial case,

EjeAr Dj O, "C R+ j N,

so that (42) is satisfied for every singleton J {j C N and all 0/J 6 (0, cx).
Now assume that/2 > 0. For every 0/6 (0,) let a (a) be the largest a for which (26)

and (27) have a joint solution P n(K), i.e.,

-1 ( )-1a()2=(maxll(j/)D;P()D;ll/_) max(44)

(see (39)), whence supe(0,)u_ 0"(0/)2 /-1. By Theorem 2.4 there exist J C N and a vector
0/J (otj):ej 6 (0, cx) J satisfying

(45) /2 (O/i /O/J )ZZ HJ (’J /O/ DP (O/J) DJ jEJ,

where P(0/J) ’]-/n+(K) is the unique solution of (38). Hence there are vj Ke:, j J,
Ilvjll:j such that

(vJ (E(0/i /Olj )2 Hij) uJ ) oj ()j /0/)o;P (OlJ oj l)j
s
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Setting 92 =/-1 we obtain

(46) (vj, (,j/ot)2DP(otJ)Djvj)= 1, j J.

Define Aj (.) Lip (KqJ, Klj) for j iV by

Aj (yj) fi Yj pj, Yj ][(qJ, j 6 J,
(47)

Ai=0, 6N\J.

Then Aj I1 , J 6 J, and hence A I1 for A @1N Ai. We will show that for this
A (14) cannot be stable. Assume the contrary; then, for all x 6 Kn, the solution x(.) of (14)
with x(0) x must satisfy f0 (llx(t)ll 2) dt < . x(.) satisfies the reduced scaled integral
equation

(48) x(t) eAtxO -[ E eA(t-S)D; A; (E;x(s))dwj(s)’
jj"

where D, Ej, and A. (.) are defined by (29).

L2w (+; L2(f2, IKq)), j J. Now

A; (yj olj Aj (0/; yj t yj vj,

Defining y# (.) and E by

Y (’) (Y2 (’))jeJ,

(gj x)jj @Kqj

jeJ

we get

(49)

By assumption y;(.) E.Jx(.) e

yj e Kq, j J.

X Kn,

yaJ (t) EaeAtx + jj Ea eA(t-s)o; vj IlY (s)lldwj(s).

Application of Lemma 3.4 to (49) yields

(lly= (t)l[ 2) dt [[E# eAtx[[ 2 dt

+ a2 j,j(D;Jvj, P(o’)D;’vj) $([[y;’(s)[[)ds,

where P(ot) 7-tn+(K) is the unique solution of (38). But then by (46), we have

g(lly=: (t)ll 2) dt IlEJeAtx[[ 2 dt+ g(lly (s)l] 2) ds

IlEJeatx[I 2 dt+ g(llY=J (s)[I 2) ds

for all x K. This would imply that Ej 0 for every j 6 J; hence P(J) 0 and 0,
contry to our assumption. Therefore, there exists x 6 Kn such thatf (llx(t) 2) dt
and neither of the two stochastic systems (14) and (48) is L2-stable. It follows that

r(A; (Di, Ei)ieN) r(A; (Di, Ei)iej) max ]IXjDP(aJ)Dj/fI[ -1/2.
kjs
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On the other hand, for every r < " =/-1/2, i.e., 0"-2 > /, there exists ot 6 (0, cx)u such
that

N

max II(,kj/o)D]P(o)Djll max (oti/oj)ZHij < cr -2.
jN jN

i=1

But this implies r < r(A; (Di, Ei)iN) by Theorem 3.6 and concludes the proof. [3

Note that the destabilizing disturbance A defined by (47) is real when the data
(A, (Di, Ei)ieN) are real. In this case we can choose N R in (41) and obtain a formula for
the real stability radius. However, we may also choose N C so that we obtain the same
formula for the complex stability radius since the right-hand side of (41) does not depend on
the choice of the field N. Thus we obtain the following corollary.

COROLLARY 3.10. Under the conditions ofTheorem 3.9, ifthe data (A, (Di Ei)ieN) are
real, then the complex and the real stability radii coincide:

r(A; (Di, Ei)iN) r(A; (Di, Ei)ieN).

Remark 3.11. In the deterministic case, stability radii for complex and real multipertur-
bations are, in general, not the same, not even in the single-perturbation case (N 1); see
[14]. Moreover, the scaling technique does not provide a characterization of the complex
stability radius but yields only a lower bound; see [16]. In the stochastic case, however, the
scaling technique works and we have, as a consequence of (41),

r(A; (Di, Ei)i6N) sup IIL=II- sup r(A; D, E)
(0,)N- o(0,c)-for ]K and ]K C. The application of the theorems of 2 to obtain this result is based

on the simple formula (25) for the norm of L. The corresponding characterization in the
deterministic case is much more complicated and involves a parametrized Riccati equation
(see 14]) instead of the single Liapunov equation (22) without parameters.

One reason for the basic difference between the deterministic and the stochastic case lies
in the fact that there is no deterministic counterpart to the fundamental equation (20) (on which
all our results are built). [3

For later use we note the following characterization of the stability radius in terms of strict
inequalities.

COROLLARY 3.12. Given (A, (Di, Ei)ieN) and (Wi)ieN as in (14), the following state-
ments are equivalentfor cr > O:

(i) or(A) C C_ and r(A; (Di, Ei)iN) > O’;

(ii) there exists Ol > O, N, and X + (K) satisfying

(50) XA + A*X + E(ot)*E(ot) -< O,

(51) Ii )i(ff/oti)2DXDi >" 0, 1 N.

Proof. Suppose (i) and choose or’ 6 (or, r(A; (Di, Ei)ieN)). By Theorem 3.9 there
exists t 6 (0, cx)L such that

But then

](cr’/oti)2XiD eA*rE(ot)*E(ot)eArd’c Di hi,

[fo(ff/oti)2)iD[ eA*rE(ot)*E(ot)eArdr Di "< Iei,
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and hence there exists e > 0 such that

(o’/oli)2’iO[ eA*r(E(o)*E(o) + eIn)eAdr Di -< hi,
0

Setting X f eA*(E(o)*E(oe) + eIn)eAdr it follows that

XA + A*X + E(o)*E(oe) + eIn O.

Hence X >- 0 satisfies (ii).
Conversely, (ii) = (i) follows first from the fact that (50) implies or(A) C C_ and then

from application of Corollary 3.8. q

Remark 3.13. Let denote the directed graph with node set N and set of directed arcs
4 {(i, j) 6 N2; Hij =fi 0}, where the Hermitian matrices Hij 6 +(]K) are defined by (40).
By Theorem 2.4

/=max/x /x= min max Hij k K,
leK_ oe(O,ec)ck jeCk

ieC Olj

where/ is defined by (43) and C, k K, are the strongly connected components of. Since
-1/2

/x r(A; (Di, Ei)iec) we have

rrW(A’, (Di Ei)iN)_ maxr(A;kK (Di, Ei)iec).

Thus the LZ-stability of the uncertain stochastic system (14) is equivalent to the LZ-stability
of each uncertain stochastic system corresponding to the connected components of G"

dx(t)- Ax(t)dt + _DiAi(Eix(t))dwi(t), [[AiIIL <cr, 6 C,k= K.
ieC

This reduces our original problem to the separate investigation of K uncertain stochastic
systems with strongly connected perturbation structures. In particular, the subset J in Theorem
3.9 can be chosen in a strongly connected component C with/z /2. The question of
determining conditions under which no further reduction beyond the connected components
is possible, i.e., J C, has been dealt with in Proposition 2.2. [3

4. Maximizing the stability radius by dynamic output feedback. In this section we
investigate how the stability radius of a stochastically perturbed system can be improved by
dynamic output feedback. For this we introduce a control term into the system equation (14)
and add a measurement equation. We consider controlled stochastic systems described by Ito
equations of the form

N

(52) dx(t) Ax(t)dt + DiAi(Eix(t))dwi(t) + Bu(t)dt, y(t) Cx(t), ]+,
i--1

where B 6 ]nm and C 6 IKp are the input and output matrices, respectively, and the other
variables and matrices are of the form specified in the previous section.

Remark 4.1. Extensions of this problem, including control-dependent noise and noise
corrupting the output, should be considered in the framework of a general stochastic H
control. While the development of a comprehensive H control theory for stochastic systems
requires substantial new work, it can be built on the results presented here. This will be the
subject of future work. ]
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The compensator takes the form

(53) d(t) HJ(t)dt + Gy(t)dt, u(t) F}(t) + Ky(t),

where (H, G, F, K) 6 K’x’ x K’p x Kmxt X ][mxp and the dimension fi > 0 is arbitrary.
The resulting overall system is

dJ(t) GC H )c(t)
dt

ql..
0

A E 0]
x(t)[ (t) ] ) dwi(t)"

We will use the notation

4= I A + BK
c

BF K(n+,) x (n+fi) Di K(n+h) ei
H 6 ,Di

0
6

gi [Ei 0] Kqi x (n+fi),

Xand 2- 6/[n+ Then the above system can be written

N

(54) d2-(t) ,Y(t)dt + 79iAi(gi2-(t))dwi(t).
i=1

For all compensators (53), arbitrary m Lip (xqi xli), N, and any 2-0 6 Nn+ there
exists a unique solution 2-(.) (2-(t))teR+ of (54) on+ such that 2-(0) 2-0 [9].

Our aim is to determine conditions for the existence of dynamic compensators of the form
(53) that stabilize the system and achieve a stability radius rff (A; (Di, gi)ieN) > cr for a given
cr > 0. We follow an approach based on inequalities similar to that which Gahinet developed
in his approach to the H control problem; see [10], [11]. We proceed in two steps. First we
derive some necessary conditions, and then we show that these conditions are also sufficient
for building a stabilizing compensator of dimension n which achieves the required stability
radius. We will make use of the following criterion for the positive definiteness of Hermitian
block matrices.

LEMMA 4.2. Let 2( s N ], where S 7-/k(K), Q 6 e(K), N Kkxe Then
N* Q

2(>-0 Q >- O and S- NQ-1N* >-0.

THEOREM 4.3. Given r > 0 and a compensator (53) such that a(4) C C_ and
r(A; (Di, gi)ieN) > r. Then there exist ot (0, cxz)N, y, 6 > O, R, S 7-/n+(K)such
that

(55) AR + RA* + RE(ot)*E()R BB*/y2 -< O,

(56) SA + A* S -Jr- E c *E ot C*C/(2 -’< O,

(57) R >- O and S >- R-,
(58) hi )i (O’/Oli )2D[ SDi >- O, i=1 N,

where (see (30)) E(ot)* E(ot) -gi= ol2i E Ei
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(59)

+ KProof. By Corollary 3.12 there exists ot (0, o)-, 2’ 7-/n+, (), 2" >- 0, such that

2"A + A*2’ + (o)*(o) -< 0,

(60) I.i )V (O,/Oli )2,/); 2")i >" O, i=1 N.

Writing

2"
N* Q M* P

with R, S 6 7-/n+ (K), we obtain

SR + NM* In, N*R + QM* O.

Since 2" >- 0, we have

S >- O, Q >- O, S- NQ-1N* >- O,

R>-O, P>-O, R-Mp-1M*>-O.

Now SR- NQ-1N*R In and 79;’ [D;’ 0]. Hence

0-< R-1 S-NQ-1N* -< S,
(61)

Ie )i(O’/Oli)2D; SDi >- O,

because of (60). Moreover,

0 M* N*

i=1 N,

Multiplying (59)on the left by [i, 0 and on the right by [I, R yieldsR M 0 M*

In 0 GC H 0 M*

(63)
R M F’B* H* N* 0

R M FI21 122 0 M*
0

for some

l-Ill I’I12 ] >"0.I’I
1..i21 i.i22

Writing out these equations, we obtain

(64) (A + BKC)*S + C*G*N* + S(A + BKC) + NGC + E(ot)*E(ot) + l’Ill 0,
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(65)

R(A+BKC)*+MF*B*+(A+BKC)R+BFM*+RE(oe)*E(o)R+[R M]n M*
--0,

(66)
(A + BKC)* + SAR +NGCR + SBFM* +NHM* + E(ot)*E(ot)R + I-II1R + l"112M* 0.

Equation (64) is equivalent to

A*S + SA + E(ot)*E(ot) C*C/2 -5 (C*/ -5 6(NG + SBK))(C*/3 + 6(NG + SBK))*

62(NG + SBK)(NG + SBK)* -I-Ill,

and (65) is equivalent to

AR -5 RA* + RE(ot)*E(ot)R

BB*/?’2 + (B*/y + y(FM* + KCR))*(B*/?’ + y(FM* + KCR))

g(FM* + KCR)*(FM* + KCR) -[R M]I-I M*

Note that [R M] has full row rank so that [R M]I-I R >_ 0. Therefore, choosing , and
M*

sufficiently small we obtain (55) and (56). These inequalities and (61) are still satisfied if
for e > 0 sufficiently small we replace S with S + eIn. Denoting the modified S by the same
symbol we get 0 -< R-1 -< S, and thus (55)-(58) are satisfied. Fq

Remark 4.4. Equations (55) and (56) hold for some y, 6 > 0 if and only if

AR + RA* + RE(ot)*E(ot)R -< 0

SA + A*S + E(ot)*E(ot) -< 0

on ker B*,

on ker C,

so it is possible to state an equivalent theorem which does not involve y and 3. [3

THEOREM 4.5. Suppose that (55)-(58) hold for some ot E (0, x)N-, r > O, > O,
> O, R, S 7-[+n(]K). Then there exists an n-dimensional compensator (H, G, F, K)

]nxn )< ]nxp X ]rnxn X ]mxp such that cr(t) C C_ and r(.A; (Di, gi)ieN) > or.

Proof Choose

(67) K 0, F -B*R-1/’2, G -N-1C*/62, N R- S,

(68) M R, 1-Ill -(A*S + SA + E(ot)*E(ot) 2C*C/2), 1-I12 --l-Ill

(69) R-1 A* *E B*1"I22 1-Ill JAR -5 R -5 RE(u) (ot)R- 2B /y2]R-

An easy calculation shows that (64) and (65) hold. Moreover, it follows from (55) and (56)
that 0 -< 1-I 11 -< 1-I22 and I-I 11 I-112 I-I -211-112 1-I 11 I-I 111-I -211-I 11 >-- 0; hence

1-Ill lrI12 ] >-0.1-I
l_i12 1..i22

Finally, we have by assumption 0 -< R-1 -< S so that N (I SR)R-1 and M R are
invertible. Therefore,

(70) H -N-I[A*R-1 -5 SA -5 NGC -5 SBF -5 E(ot)*E(ot)]
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is the unique H 6 ]K’" satisfying (66) (with specifications (67)-(69)). Altogether we see

that, with the above choices, (63) holds with FI >- 0. Now [I, R [In R] is invertible.
0 M* 0 R

Multiplication of (63) on the left by InR /0 ]--1 and on the right by Ino t*R ]--1 yields equation

(59) with

(71) X--
N* 0 0 M* N -N

[3

Remark 4.6. (i) The above theorems show that if a compensator of any order fi stabilizes
the system with a stability radius greater than or, then this can always be achieved by a
compensator of order n. Moreover, for this compensator the feedthrough matrix K may be
taken to be zero. We do not address the problem of reduced-order observers but expect that a
development similar to 11 (in the deterministic case) is possible.

(ii) For cr > 0, let Ao denote the set of all pairs (R, S) 6 n(K) "n (]) such that
(55)-(58) hold for some 9/ > 0, > 0, ot 6 (0, cxz)N. By the construction in the proof of
Theorem 4.3, for any stabilizing compensator (H, G, F, K) which achieves a stability radius

r(A; (Di, i)iN) > or, there exists an (R, S) 6 A obtained from the solutions &’ of the
matrix inequalities (59) and (60). Conversely, by the construction in the proof of Theorem
4.5, for every given (R, S) 6 Ao there is an associated stabilizing compensator (H, G, F, K)
which achieves a stability radius greater than or.

For later use we add another remark in which an alternative formula for the system matrix
H of the observer is derived; cf. (70).

Remark 4.7. The gap between the Riccati inequality (55) and the corresponding Riccati
equation is measured by the operator

(72) FIR -[AR 4- RA* 4- RE(ot)*E(ot)R BB*/?,2] >- O.

Using specifications (67)-(69) we get

SA 4- SBF S(A BB*R-1/?,2) -S[RA*R-1 4- RE(ot)*E(ot) 4- FIRR-1],

and so

A*R- 4- SA 4- SBF 4- E(ot)*E(c)

(In- SR)A*R-1 + (In- SR)E(ot)*E(ot)- SI-IR R-1.

Using this equation and N-1 R(I SR)-1 to transform (70) we get

-H RA*R-1 + RE(ot)*E(ot)- R(In SR)- SI-IRR- + GC.

It follows from (72) and F -B*R-1/y2 that

H [AR BB*/?,2 4- FIR]R-1 GC + R(In SR)-1SI’IR R-1
(73) [a BB*R-1/V2] GC + [In 4- R(In SR)-1S]I-IRR-A + BF GC + (R-1 S)-IR-11-IRR-1.

Thus H is the sum ofthe usual matrix ofthe observer-based compensator system A 4- BF GC
and a correction term (R-1 S)-R-1FIRR- depending on the gap between the Riccati
inequality (55) and the corresponding equality. [3
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Theorems 4.3 and 4.5 together yield a complete characterization of the stability radii
which can be achieved by dynamic output feedback applied to the system (52). We conclude
this section by discussing this point.

For any ot (0, oo)N, 0- _> 0, }/ > 0, 8 > 0, define

.A,,,a, {(R, S) "/n(I) x -ln(K); (55)-(58) hold},

(0,)L

a(}/, 8) sup{o- A,r, 0}.

In the following remark we collect some properties of 4,,, and a (}/, 8).
Remark 4.8. A,,,c is an open subset of 7% (IK) 7-/n (K) for all a > 0, }/ > 0, 8 > 0,

ot (0, cx)N--. If ot (0, cx)N is fixed, the set 4,,a, increases as the parameters 0-, }/, 8 > 0
decrease:

0"2 >_ 0"1 >_ 0, }/2 --> }/1 > 0, and 82

As a consequence we have

0 < }/1 --< }/2 and 0 < 81 _< 82 ::=} 0"(}/1, 81) >_ 0"(}/2, 82). [-I

DEFINITION 4.9. F(A; (Di, Ei)iN_; B, C) sup{r(gt; ()i, /)iN); the compensator
(H, G, F, K) is stabilizing} is said to be the supreme stability radiusfor the uncertain stochas-
tic system (52).

As a consequence of the previous two theorems we obtain the following characterization
of the supreme stability radius.

COROLLARY 4.10.

F(A; (Di, Ei)iN; B, C) lim 0"(}/, 8) sup{a(}/, 8); }/ > 0, 8 > 0}.
(,a)$(0,0)

For the computation of 0" (}/, 8) the following description of the sets 4o,,a,,, in terms of
linear matrix inequalities is useful.

LEMMA 4.11. Given c (0, cxa) 0" > O, }/ > O, 8 > O, the set gt,,a,,, consists of all
Hermitian matrix pairs (R, S) 7-{n (IK) x n(IK) which satisfy the following linear matrix
inequalities:

(74) JAR+ RA*-BB*/}/2 RE(c)* ] .< 0,
E (ot) R lq

(75) SA + A*S + E(ot)*E(ot) -C*C/82 -< 0,

(76) R >- O, S >- O,
In S

>-0,

(77) Ie, ’i (0"/0li)2D7 SDi >- 0 1 N.

In particular, .Am,a, is convex.

Proof The equivalence of (55)-(58) and (74)-(77) is obtained by application of Lemma
4.2. The convexity of gt,,a, then follows.

For a discussion of linear matrix inequalities and their numerical solution, see [2].
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Remark 4.12. In the case of single complex perturbations (N 1) the deterministic
counterpart of the problem considered in this section leads to a singular Ha-optimal control
problem which can be solved via Riccati equations (see 13]) or linear matrix inequalities (see
11]). The maximization of the real stability radius by dynamic output feedback is still an
unsolved problem, even for N 1. In the (complex) multiperturbation case, the deterministic
version of our problem leads to an optimal/x-synthesis problem since the stability radius with
respect to multiperturbations can be characterized via the/z-function [14]. To our knowledge
this problem is still unsolved. Our solution of the stochastic problem is based on the fact that
the scaling technique works and yields a characterization of the stochastic stability radius in
terms ofmatrix inequalities; see Theorem 3.9. A similar result is not available for deterministic
multiperturbations; see Remark 3.11. 71

5. Replacing Rieeati inequalities with Rieeati equations. In this section we explore
the possibility of replacing the Riccati inequality (55) with a Riccati equation. Throughout
the section we will assume that (A, B) is stabilizable and (A, C) is detectable.

As a starting point we take the Riccati inequality

(78) PA + A*P + E(ot)*E(ot) PBB*P/v2 -< O.

Since (A, B) is assumed to be stabilizable, this inequality always has positive definite solutions.
Moreover, every such solution P 7-(n (K) is invertible and solves (78) if and only if R p-1
solves (55). We will also consider the usual linear-quadratic control Riccati equation,

(AREa,) XA + A*X + E(ot)*E(ot) XBB*X/v2 O,

and its 6-approximations,

(79) XA + A*X + E(ot)*E(o) XBB*X/y2 + 62In O.

The following lemma summarizes some useful and well-known properties of these equations;
see, e.g., [12], [5].

LEMMA 5.1. Suppose that (A, B) is stabilizable and 9/ > O, (0, oc)N. Then
(i) for each 6 > 0 (79) has a unique solution Xa, (6) in 7-l+n (K), and Xa, (6) >- O. For

every solution P >- 0 of (78) there exists 6 such that Xa, (6) -< P.
(ii) (AREa,e) has a unique maximal solution Xa, 7-l+n (K), and this solution is char-

acterized among all other Hermitian solutions of (AREa,e) by the property

cr(A- BB*Xa/y2) C ---.
Moreover, Xa, -< Xa, (6), for all 6 > O.
(iii) If6 $ O, then
Remark 5.2. It can be shown that the maximal solution Xa, of (AREa,) is stabilizing

if and only if

(80) ker (twin A) ker E1 C)... C ker EN {0}, o) G R.

Consider the following set of conditions for S 6 H, (K):

(81) SA + A*S + E(ot)*E(ot) C*C/32 -< 0,

(82) S

(83) lei )i(ff/oti)2D*SDi >- O, i=1 N,
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where Xa, denotes the maximal solution of (AREa,). For a _> 0, y > 0, 3 > 0, let

,AR,,,,a {S (E); (81)-(83) hold},

AR U "AR
a(0,o)N

aR (?’ ) sup{a AR,, 0}.

The following proposition is derived by means of Lemma 5.1.
PROPOSITION 5.3. Suppose that (A, B) is stabilizable and ?" > O, 3 > O. Then

a(y, ) a(y, ).

Proof. Let a < a(?’, 3). Then there exist ot 6 (0, cx)L, (R, S) 6 n(K) x -’/n(]) such
that (55)-(58) hold. By Lemma 5.1 R-1 >- Xa, since R-1 solves (78). But S >- R-1 and
hence S >- Xa, So S 6 e4R and thus a < aR(?’, 3) This shows that aR(?" 3) > a(?" 3).

Conversely, suppose that a < crY(?’, 3). Then there exist ot (0, oc)N--, S n(]K) such
that (81)-(83) hold. By Lemma 5.1. and (82) there exists e > 0 such that X Xa,(e) -< S.
Hence (X-1, S) A,, and thus a _< a(?,, 3). This shows that a(?’, 3) >_ o-R(?’, 3) and
concludes the proof. q

For any a < aR(?’, 3) we now construct, via the Riccati equation (AREa,), a compen-
sator of order n so that the stability radius of the overall system is greater than a. For this, the
maximal solution of (AREa,) must be stabilizing; i.e., condition (80) must be satisfied.

PROPOSITION 5.4. Suppose that (80), (81)-(83) hold for some S n(IK) and given
a >_ O, ?" > O, 3 > O, ot (0, x)N. Then the compensator (53) defined by

(84) H A + BF GC, K O, F -B*Xa,/?’2, G -(Xa, S)-C*/32

achieves a stability radius r (.A; ()i, /)i6N) > O’.

Proof. Replacing R- with Xa, in the formulas (67) and (73), then using equation (72)
for 17R, we see that the compensator (H, G, F, K) in (84) coincides with the compensator
defined in the proof of Theorem 4.5 by (67) and (70). Let

A’=
N -N

Then the same calculation as in the proof of Theorem 4.5 yields

(85) xA + A*x + g(oe)*g(o) -l-I,

where now

--l-Ill ]1711 + Xa,BB*Xa,/?"2 17 1 -(SA+A*S+E(or)*E(or)-2C*C/32).

1711 >’- 0, but note that in contrast to the development in the proof of Theorem 4.5 we only

have A"
_

0 and 17 >- 0. Now 2- 6 ker I-I if and only if 2- Xl with x 6 ker B*Xa,.
Xl

We will now show that a (4) C C_. Suppose there exist 2- 6 C2, 2- # 0, and ) 6 C with
Re ) > 0 such that )2-. Multiplying (85) on the right by 2- and on the left by 2-*, we
obtain

2(Re .)(2-, A’2-) + (2-, I72-) < 0.
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This can only be the case if 2 6 ker FI i.e. 2 [xl with .171 ker B*X,. But then
Xl

the first component of the equation 12 ;2 reads (A BB*X,/,e)xl )Xl, and this
contradicts assumption (80), which implies that (A BB*X,/?,e) C C_. So r(4) c C_,
and we conclude from Corollary 3.8 and

XA + A*X + g()*g() O,

hi ’i(O’/Oli)2)")i hi )i(tY/Oli)2D[ SDi >" O, 1 N,

that r (4; ()i, gi)i s/V) > O’. [-]

In the deterministic case the Liapunov inequality (81) takes the form ofa Riccati inequality,
and it is possible to replace this by a Riccati equation. Here this is not possible, in general,
since the requirements S >- R-1 and hi ,i(cr/oti)2D[ SDi >- O, N, work against
each other as S increases or decreases. This is an essential difference between the deterministic
and stochastic cases. We illustrate it in the following example.

Example 5.5. Consider the perturbed stochastic system

dXl(t) (-Xl(t) + xe(t))dt + Al(Xl(t))dWl(t),

dxe(t) (xe(t) + u(t))dt + A2(Xl(t))dwe(t),

y(t) x2(t),

A
0 1

B C [0 1], E1 E2 [1 0],

D1 0 D2

Note that (A, B) is controllable, (A, C) is detectable, and ker (tcole A) A ker E1 {0} for
all co 6 JR. We write

R--[ rll r12 1,
/’12 /’22

Equality in (56) or (81) takes the form

(86)

S._. [ Sll s12 ]S12 $22

--2Sll -+- (IYl2 + Or22) 0,

(87) Sll 0,

* ---0.(88) S12 + S12 nt- 2S22 1/2

We see that, for arbitrary parameters o/1 > 0, 0/2 > 0, 6 > 0, there does not exist any solution
S 6 7-(2(IK) of (86)-(88). Therefore, we cannot replace the inequalities in (56) or (81) with
equalities.

We will now determine ? g(A; (Oi, Ei)i=l,2; B, C) for the present example and do so
via inequalities rather than the Riccati equation (ARE,,) and (81)-(83). Suppose o" < .

is a basis for both ker B* and ker C, by Theorem 4.3 and Remark 4.4, there existSince
0

R, S 6 ’7-[2(]) and 0/1 > 0, 0/2 > 0 such that

(89) 2Sl + (ot2 + or22) < 0, -2rll + r*z + r12 + (ot2 + otz2)(r2 + [rl2[ 2) < 0,
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(90) 1 lazS11/0/21 > 0, 1 )V20"2.;22/0/22 > 0.

Therefore, er 2 < 0/12/01s11) < 20/12/ [)v1(0/2 + 0/22)] < 2/. and hence _< [2/)v] /2.
We willnowdemonstratethatequalityholds. Forthislet)cr2 2(l-e) < 2, 1 > e > 0.

We must show that there exist 0/1 > 0, 0/2 > 0 such that (89) and (90) hold and S >- R-1 >- 0.
Normalizing 0/2 + 0/22 1, (89) becomes

Sll > 1/2, (rll 1)2 -+-Irl2 q- II 2 2 < 0.(91)

Choose

0/2 8, Sll (1 -+- e/2)/2, r12 s12 0,

r 2(1 + e/3)- $22 82/(22cr2) r22 3/(2S22)
Then it is easy to see that (91) is satisfied. Since

1 )vr2Sll/0/ (1 + e/2)(1 + e) -1, 1 )20"2S22/0/ 1 1/2,

(90) also holds. So all we need to show is S >- R- >- 0. But

0 82/(2.2O’2) 0 e2/ (3)v2O. 2

We conclude the paper with a proposition concerning the statefeedback case.
PROPOSITION 5.6. Suppose p n and C is invertible. Then thefollowing conditions are

equivalentfor > O:
(i) There exists a staticfeedbackmatrix K Kmn such that r(A + BKC) C C_ and

r(A + BKC; (Di, Ei)iN) >
(ii) There exists a dynamic outputfeedback of theform (53) such that tr(4) C C_ and

r: (gt; (Di, i)i6N) >

(iii) There exist 0/6 (0, oo)N-, , > O, R 6 7-[+n (K), R >- O, such that

AR + RA* + RE(0/)*E(0/)R- BB*/?’2 -< O,

IlI, ,.i(o’/0/i)2DR-1Di >- O, 1 N.

(iv) There exist 0/ (0, oo)E, ’ > 0 such that the maximal solution X,r of (AREc,)
satisfies

Ig. )vi(o’/0/i)2DX,,Di >- O, 1, N.

Proof Clearly (i) => (ii). (ii) => (iii) follows from Theorem 4.3, and (iii) => (iv) follows
from Lemma 5.1. Now suppose (iv). Select an S 7-/n(IK) such that S >- X, and (83) are
satisfied. Then choose 6 > 0 sufficiently small so that (81) holds. Then (81)-(83) hold, and
(ii) follows from Proposition 5.3 and Theorem 4.3. Hence (ii), (iii), and (iv) are equivalent.

It remains to prove, e.g., (iii) =:> (i). Suppose (iii). Then there exist 0/6 (0, oo)E, , > 0,
+P 7-/n (IK), P >- 0, such that

PA + A*P + E(0/)*E(0/) PBB*P/?,2 -< O,

Iei )vi(cr/0/i)2DPDi >" O, 1 N.

From the first inequality it follows that

P(A BB*P/?,2) + (A BB*P/g/2)*P + E(0/)*E(0/) -< O.

Applying Corollary 3.12 we get r(A BB*P//2; (Di, Ei)ieN) > ft. Thus is suffices to

choose K B*PC-1/2 in order to obtain (i).
In particular, the proposition shows that it is not possible to obtain a larger stability radius

by dynamic statefeedback than that which can be achieved by static statefeedback.
In [8] the equivalence (i) > (iv) was proven for the special case Ei E, N.
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6. Appendix. We use the notation introduced in 2. In order to prove Theorem 2.1 we
need the following lemmas. First note that the functions j, j N, and f in (4) are constant
on rays in (0, Cx)U:

f (rot) f (ot), ot (0, oo)N, r > O.

LEMMA 6.1. Suppose that (a)N is a sequence in S {or 6 (0, Cx)L; I111 1} and
(f(ot))er is bounded. Ifj N can be reachedfrom N via a directed path in , then

(92) lima,=0 =, lima/=0.
k-cx k--- cxz

Proof. By induction it suffices to prove (92) for the case where (i, j) 6 t. But in this
case Hij 7 O, and thus (92) follows from the boundedness of (f(a))er, because

f(oe) > J) (ot) > Hij II.

Applying this lemma we obtain the following existence result.
PROPOSITION 6.2. Suppose that is strongly connected. Then there exists sN+ such

that

(93) f() =/2.

Proof. Since f is constant on rays, it suffices to consider f on S+u. Let (a) be a
minimizing sequence for f on S+u which converges toward some limit in the closure of S+u.
We have only to prove that 6 S+N, i.e., i > 0 for all 6 N. But if &j 0 for some j 6 N,
then since (f (ot)) is bounded and j can be reached from every 6 N via a directed path in, we must have 0 by the previous lemma. On the other hand c 0 because (or) is a
sequence in S+N. The contradiction shows that i > 0 for all N. [3

LEMMA 6.3. Suppose Ho, H -(IN), and rl < r2 are such that

Ilno + rHII liB0 + r2HII.

Then

H0 + rH H0 II, 0 < r < r2.

Proof. Let v 6 Ke, Ilvll 1, be such that (v, (Ho + rl H)v) IIHo + rl HII. Then

(v, (Ho + rill)v) < (v, (Ho + r2H)v) < liB0 + rzHll (v, (Oo -t- rl H)v).

Hence Hv 0. So H0 + r2H <v, n0v) H0 II. But r - H0 + rH is increasing,
and hence the result follows. [3

ProofofTheorem 2.1. By Proposition 6.2 there is a vector z 6 (0, cxz)E such that

]I/N (.j)2zimax nij

Among all these minimizing vectors we choose one, denoted by , for which the number of
j 6 N satisfying

(94)
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is minimal. Let J be the set of these j N. Then

(95) i 2

Hij < fz, j N\J.

For r 6 [0, 1], define (r) 6 (0, cxz)N by setting j(r) j if j 6 J and j(r) rj if
j 6 N\J. For r sufficiently close to 1, say r 6 [, 1] with < r, the inequalities (95) still
hold when is replaced by (r). For these r,

/N (i(r))
2

(r)
Hij

i 2 i 2

ij (-7"l Hij+r2 E (jj) Hij
iN\J

<z, jJ.

But by the minimality assumption on J, none of the above inequalities can be strict for
r 6 [, 1]. Applying Lemma 6.3 with H0 ZiJ ()2Iij and H EiN\J ()2Iij we

conclude that

(96) i(r) ,2 =/2, r 6 [0, 1], j 6 J.

Setting t i (?), 6 N it follows from (96), (95) that (6) is satisfied. [3

ProofofProposition 2.2. Let & be a minimum such that J {j 6 N; j(&) =/2} has a
minimum number of elements, and suppose J N. Arguing as in the proof of Theorem 2.1
we obtain (see (96))

(97) Hij

If/2 0, (9) is trivially satisfied. Therefore we may assume/2 # 0. Choose vJ Kej,
vJ 1, such that

Then

j6 (ker (/ (&.)
2 ))_L (O)_LHij key nij j J,

(l)J’(igj()2nij)uJ) "-0"

It follows that vJ NieN\J key Hij A ([iJ key Hij) +/- for all j 6 J, and this contradicts

assumption (8). Thus J , and the proposition is proven.
In the case where is not strongly connected, for every e > 0 we define the set

(98) X(e)= (0,)N;gkg-l’i CAjC+ <e

The proof of the following statement is straightforward.
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LEMMA 6.4. Suppose that, for each k K_., a positive vector zk (0, x)ck is given.
Choose rk > 0for all k K such that

(Zk+maxr(z)i < min r+ )j,
iCk jCk+l

k= 1,...,K-I,

and define (0, cx)N by

ol rkEK-k (zk)i kK__,iCk.

Then

i (zk)i
(99) t X(e) and i,j Ck (zk)

LEMMA 6.5. Given afamily ofvectors z (0, cx)c, k K__, satisfying

(100) max
jCk

((zk) 2

Hij =tz, k K,

(where lz is defined by (12)), there exists, for every > O, a vector a (0, cx) such that

(101) f(ct) < max/z + 8
keK

Ol (zk)i
and Yk K ’i, j Ck" o (z)j

Proof. Suppose that zk (0, cx)C, k K, satisfy (100), and let > 0. Then

max max Hij max
keK jeC keK__

For every s > 0, there exists, by Lemma 6.4, a vector a or(e) (0, cx) such that (99) is
satisfied. It follows that

f(a(s)) maxmax
leK jeC E (E)j Hij

h= eCh
19[

< max max
keg jeCk E ( Ol(E)i 2 Hij

h=l ieCh ot@)j ]
+ max

keK

But for all s e (0, 1) we have

Ch, j and h <k = c(s)

Choosing s e (0, 1) such that

max max
k-1

h--1 ieCh

we obtain

f(ot(s)) < max/x + 3.
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This concludes the proof. [3

Proof of Theorem 2.4. By Proposition 6.2 there always exists a family of vectors zk,
k 6 K, satisfying (100). Hence by Lemma 6.5 for 3 > 0 there exists ot (0, cx)N such that

f(ot) < max/zk + 3.
kK

But for every ot (0, x)N,

f(a) max max
kK jqCk

Hj
h-" Olj

> max max
kK jeC iC

Oli
Hij > max

Since/2 infe(0,)_ f(or), we conclude that/2 maxke_r/Zk. The second part of Theorem
2.4 follows from this and Theorem 2.1. [3
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LINEARIZATION OF DISCRETE-TIME SYSTEMS*
E. ARANDA-BRICAIREt,/1. KOTTAt, AND C. H. MOOG

Abstract, The algebraic formalism developed in this paper unifies the study of the accessibility problem and
various notions of feedback linearizability for discrete-time nonlinear systems. The accessibility problem for nonlin-
ear discrete-time systems is shown to be easy to tackle by means of standard linear algebraic tools, whereas this is not
the case for nonlinear continuous-time systems, in which case the most suitable approach is provided by differential
geometry. The feedback linearization problem for discrete-time systems is recasted through the language of differ-
ential forms. In the event that a system is not feedback linearizable, the largest feedback linearizable subsystem is
characterized within the same formalism using the notion of derived flag of a Pfaffian system. A discrete-time system
may be linearizable by dynamic state feedback, though it is not linearizable by static state feedback. Necessary and
sufficient conditions are given for the existence of a so-called linearizing output, which in turn is a sufficient condition
for dynamic state feedback linearizability.

Key words, nonlinear discrete-time systems, algebraic methods, accessibility, feedback linearization, differential
forms, Pfaffian systems

AMS subject classifications. 93C10, 93C55, 93B25, 93B05, 93B 18, 58A10, 58A17

1. Introduction. Suppose one is given a discrete-time nonlinear (analytic) system E.
The goal of this paper is to develop a formalism that provides answers to the following four
questions.

Question 1. Is there a neighborhood from which the system E is (forward) accessible?
Question 2. Does there exist a regular static state feedback and a state diffeomorphism

such that in new coordinates the system Z reads as a linear controllable system in Brunovsky
canonical form?

Question 3. If the answer to Question 2 is negative, then which is the largest feedback
linearizable subsystem contained in E ?

Question 4. If the answer to Question 2 is negative, then does there exist a dynamic state
feedback such that the extended system becomes linearizable by static state feedback and state
diffeomorphism?

Question 1 has originated a great amount ofwork; cf. [2, 29, 30] and the references therein.
Current literature characterizes pointwise accessibility, whereas we will consider accessibility
in a generic sense. Another difference from our work is that we replaced the assumption of
invertibility of the discrete-time dynamics by the weaker assumption of submersivity, which
is, by the way, invariant under regular static state feedback. On the other hand, our algebraic
formalism seems to be a natural tool for the analysis of discrete-time systems.

Question 2 has also received a lot of attention; cf. [21, 27, 31, 34, 35, 45, 46]. The
problem consists of finding candidates for output functions whose feedback linearization (as
done in [36, 37, 40, 41, 42, 43]) fully linearizes the state equation. The interest of recasting
the problem of static state feedback linearization is that it fits nicely in our formalism. For
example, it can be viewed as a special case of the answer to Questions 3 and 4.
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For nonlinear continuous-time systems, Question 3 was solved in [38]. However, this
problem has never been studied for discrete-time systems. The solution that we provide
to this problem can be seen as a dual version of the differential geometric approach used
in [38].

The dynamic feedback linearization problem is a challenging research problem. Although
in the continuous-time case it has been tackled by several authors (cf. [5, 8, 9, 17, 8, 19, 28,
47, 48, 49]), a complete answer is still missing. To our best knowledge, this problem has never
been addressed for discrete-time systems. It should be acknowledged, however, that the idea
of using a dynamic compensator in order to linearize fully a discrete-time system with outputs
was outlined in [44]. We give necessary and sufficient conditions for a nonlinear discrete-time
system to admit a so-called linearizing output 17]. This is a sufficient condition for dynamic
feedback linearizability.

Preliminary results of this work have been presented in [3, 4].
The contributions of this paper are organized around the classification of one-forms (not

necessarily exact) with respect to their relative degree. Our mathematical formalism employs
several results both from difference algebra and from exterior differential systems. For the
reader’s convenience, these results are briefly summarized in 2.

The paper is organized in the following manner. In 3 we develop the algebraic formalism
that will allow us to tackle the problems stated above. In 4 we give three equivalent conditions
for a discrete-time system to be (forward) accessible. The feedback linearization problem is
addressed in 5. Necessary and sufficient conditions are derived under which a discrete-time
system is fully linearizable by regular static state feedback and coordinates transformation.
When these conditions are not met, it is interesting to characterize the largest feedback lin-
earizable subsystem. This is done in 6. In 7 we define the notion of linearizing output
and show its relation with the dynamic feedback linearization problem. Finally, concluding
remarks are offered in 8.

2. Mathematical preliminaries.

2.1. Difference algebra. J. F. Ritt founded the branch of mathematics known as differ-
ence algebra in the late thirties. His aim was to provide difference equations with a formalism
as powerful as commutative algebra is for algebraic equations. Fifty years later, M. Fliess used
this formalism for the analysis of discrete-time nonlinear systems 14]. Some basic definitions
of difference algebra are recalled in this section. For an introductory exposition of difference
algebra we refer the reader to 14], and for a complete panorama of the subject to 1 ].

A difference ring/3 is a pair consisting of a commutative ring H--called the underlying
ring--and a monomorphism r of H onto a subring H’--called the transforming operator. If
a 6 H and r-la is defined, it is unique and is called the inverse transform of a. If r-la is
defined for all a 6 H, then/3 is said to be inversive. /3 is inversive if and only if H’ H.

A difference ring 79 (S, r) is called a difference overring of the difference ring/3
(H, r) if $ is an overring ofH in the sense of ring theory and if r H --+ H is a contraction of
r S --+ S. A pair such as (79, /3) is called a difference ring extension and is denoted by the
symbol 79//3. An isomorphism of the difference extension 79//3 into the difference extension
79’//3 is an isomorphism of difference rings that leaves fixed every element of the difference
ring/3.

If rings are replaced by fields in the preceding discussion, one obtains the definitions
of difference field, inversive difference field, difference overfield, and difference field exten-
sion.

It is often helpful to work with difference rings that are inversive. The inversive closure
of a difference ring/3 is defined to be a difference overring 79 that is inversive and is such that,
for every a 6 79, there exists an integer r > 0 such that zra 13.
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It is proved [11] that every difference ring admits an inversive closure. The inversive
closure is not unique, but any two inversive closures of a given difference ring are isomorphic.
Finally notice that the inversive closure of a difference field is a difference field as well.

In 3 we define a difference field associated to a discrete-time nonlinear system. A
practical procedure for the construction of the inversive closure of this difference field is given
in Appendix A.

2.2. Exterior differential systems. The material of this section has been borrowed from
[6, 10]. Henceforth, it is assumed that the reader is comfortable with the notions of analytic
manifold, vector fields, differential forms, Lie derivative, and Lie bracket 1, 50].

Given an analytic manifold M, which in general will be RN for some positive integer N,
we adopt the following notation. TM denotes the tangent bundle, T*M the cotangent bundle,
C (M) the ring of analytic functions defined over M, V(M) the set of analytic vector fields
defined over M, and f2p (M) the set of differential p-forms. In particular, f2(M) C (M)
and I(M) T*M. V(M) and P(M) are C(M)-modules.

Let {xi be a system of local coordinates of M. Thus {dxi is a system of local coordinates
of the cotangent bundle. In this frame, every p-form ot 6 S2P (M) has a unique representation
of the form

ot ail,...,ipdXil /... /k dXip ail,...,i C)(M).
il <...<ip

The exterior product of a p-form ot and a q-form/3 is a mapping

/X P(M) x "2q (M) (P+q)(M),

which is bilinear and associative. In general, the exterior product is not commutative. Instead,
it satisfies the relation ot/x/3 (-1)Pq/x ot. This relation implies that

1. if ot is an odd form, then ot/x ot -_- 0.
2. the exterior product of a p-form ot and a q-form/3 commutes if pq is even.

The exterior differential d is an R-linear operator

d f2p (M) -+ S2p+I (M),

which satisfies the following properties.
1. d(ot/x/3) dot/x/3 + (-1)Pot/x d/3, where p is the degree ofot.
2. If f 6 C)(M) f, then df coincides with ordinary differential.
3. d2=0.

These properties uniquely define the operator d.
A differential p-form ot 6 P(M) is said to be closed if dot 0. It is said to be exact if

there exists a differential (p 1)-form/3 6 f2(p-I (M) such that ot d/. An exact differential
form is closed. Poincar6’s lemma states that the converse holds locally.

A Pfaffian system I is a C)(M)-submodule of the cotangent bundle. The rank of a
Pfaffian system I at point x is the dimension of the submodule Ix C Tx*M. The rank depends
in general on the point x, but if it is maximal at point x, then it is constant in a neighborhood
ofx.

An algebraic ideal 27 is a C)(M)-module of differential forms that is also an ideal with
respect to the exterior product. An exterior differential system is an algebraic ideal 27 that is
stable with respect to exterior differentiation.

Frobenius’s theorem states that in the event that the algebraic ideal and the exterior dif-
ferential system generated by a Pfaffian system I coincide, then there exists a collection of
exact forms that generates I.
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THEOREM 2.1 (Frobenius). Let I be a Pfaffian system generated by the one-forms
{o91 Ogs }. Suppose that the condition

dogk A 091 / /k O) O, k s,

is satisfied. Then, there exists locally a system ofcoordinates {X such that I is generated by
{dXl dxs }. In this case, the Pfaffian system I is said to be completely integrable.

The interior product by a vector field X 6 V(M) is an R-linear operator

X_I" f2p (M) -+ ,-p-1 (M),

which satisfies the following properties.
1. X . (o/x fl) (X _lot)/x fl + (-1)Pot A (X / fl), where p is the degree of or.
2. ’Of 6f2(M), X_if =0.
3. X _1 dxi Xi, where Xi is the i-th component of X.

The characteristic vector fields associated with an exterior differential system 27 are the
elements of the set

A(27) {X V(M) X _27 C Z}.

The annihilator C (2-) of A (27) is the characteristic system of 2-. The characteristic system is
completely integrable.

The first derived system of a Pfaffian system 2- is defined by

i(1) {09 G I dco -- 0 mod I},

where mod I means modulo the algebraic ideal generated by I. The first derived system is
again a Pfaffian system. Higher order derived systems are defined by I (k+l) (I(k)) (1 and
yield the filtration I D I (1) D D I (), which is called the derived flag. Let K be the
smallest integer such that I(r+l I (r. It is proved that such an integer exists. I(r is called
the bottom derived system, and K the derived length. The bottom derived system is the largest
completely integrable subsystem contained in I.

3. Algebraic formalism. The material that we shall develop in this section is related
to the linear algebraic approach introduced by Grizzle [22] and with the difference algebraic
approach introduced by Fliess [13, 14] for the analysis of discrete-time systems. The ground
field/* that we consider below can be viewed as a field extension ofthe field K ofmeromorphic
functions that was already defined in [22]. As a matter of fact,/* is the inversive closure of
/ that is unique up to an isomorphism.

Working with K instead of/* leads to sets of one-forms whose dimension or whose inte-
grability properties are not the appropriate tool for characterizing accessibility or for solving
the various feedback linearization problems.

Consider the discrete-time nonlinear system

(1) E x(t + l) f (x(t), u(t)), O,

where x(t) Rn, u(t) Rm, and the map

f Rn X Rm Rn

is supposed to be analytic and generically to define a submersion, i.e.,

0frank n.
O(x,u)



LINEARIZATION OF DISCRETE-TIME SYSTEMS 2003

The assumption that the discrete-time system E admits the (global) analytic representation
(1) may be a disadvantage in some cases. This may be circumvented by stating our results
locally. As in [2], equations (1) are assumed to hold only for positive time, which is not the
case in 15]. Throughout the paper it is also assumed that

rank Of
0u

Except in 6, where dynamic state feedbacks will be considered, through the paper we
shall consider regular static state feedbacks, which are defined as follows.

DEFINITION 3.1. A regular static statefeedback is a mapping

l,t ]n )< [m ___>

(2)
(x(t), v(t)) w- u(t) p(x(t), v(t))

such that

rank
Ov

Let 7?,. denote the ring of analytic functions in a finite number of the variables {x(0), u(t),
> 0}; and let/C be its associated quotient field, i.e., the field of meromorphic functions in a

finite number of the variables {x(0), u(t), >_ 0}. The forward-shift operator 3 7". --+ 7. is
defined by

3 qg(x(0), u(0) u(N)) p(f(x(O), u(0)), u(1) u(N + 1)).

The mapping 3 7-. is injective, thanks to the following technical lemma [22].
LEMMA 3.2. Assume that the system E is submersive. Hence the kernel ofthe endomor-

phism 3 7-. --+ is trivial.
Thus, the pair (7-., 3) is a difference ring [11, 14]. Moreover, Lemma 3.2 also implies

that the mapping 3 /C --+ /C is well defined. Hence the pair (/C, 3) is a difference field
[11, 14]. (/C, 3) is not inversive in general. Nevertheless, it is always possible to embed
into an inversive difference overfield/C*, called the inversive closure [11, 14] of/C. With
a slight abuse of notation, we denote by 3 /C* --+ /C* the forward-shift operator that ex-
tends 3 /C -- /C. Sometimes the abridged notation o+(.) 30(.) and 0-(.) 3-1o(.)
are used.

The inversive closure of/C is unique up to an isomorphism 11]. From now, we assume
that the inversive closure/C* is given. A practical procedure for the construction of/C* is given
in Appendix A.

Let .T" spanx:. {dq9 0 E /C*}. The operators 3 and 3-1 induce, respectively, the
operators A .T" --+ U and A-1 3r -- .T" by

A(Ei aidqgi) Ei ai+dPi+,
A-1 (Zi aidi) -i a-d.

With some abuse of notation, sometimes we write co+ A co and co- A-1co. The elements
of are called one-forms. Hereafter, for any set 14; of one-forms, the notation W+ should be
understood elementwise.

Let us investigate the following introductory example.
Example 3.3. Consider the nonlinear control system

371 (t + 1) u (t),
(3) x2(t + 1) x3(t)Ul (t),

x3(t q- 1) u2(t).
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For system (3), one can readily check that

spanc{dx(1)} fq spanc{dx(0)} spanc{dx2(1) x3(0)dXl(1)}
spanc {dx3 (0)}.

More precisely, x3(0) x2(1)/xl(1). Thus, a pre-image in /E (through 3) of x3(0) is
x2(O)/xl(O). Whereas x3(0) has a pre-image in/, xl(0) and x2(0) have none. Accord-
ing to the procedure given in Appendix A (see also the Proof of Theorem II in pp. 66-67
of 11]), the construction of the inversive closure of/ amounts to embed/E into an over-
field/E* and extend 3 in such a way that 3 /C* /E* becomes an automorphism. For
our example,/C* is nothing but the field of meromorphic functions in a finite number of the
variables {x(0), u(t), u(-k), z(-k) > 0, k > }, where z(-k) [zl (-k), z2(-k)], subject
to 6(Zl(-1)) xl(0) and 6(z2(-1)) x2(0).

We now continue with the analysis ofthe general case. The relative degree r of a one-form
09(0) 6 spanc, {dx(0), du(0)} is defined to be

r min {k > 0l w(k) Akog(0) spanc,{dx(0)}}.

If such an integer does not exist, set r cx. The relative degree of a meromorphic function
p(x(0), u(0)) is defined to be the relative degree of the one-form d99(x(0), u(0)).

Introduce the sequence of subspaces 7-/0 D 7-/1 D D k of.T defined by

7-/0 spanc, {dx(0), du(0)},
(4) =/X- (7% A 7% C... C/x o),
where A 7-/0 spanc, {o9+ o9 7%} and Ak 7-/0 spanx:, {o9+ co A-1 7-/o}, k > 1.

PROPOSITION 3.4. 1. For k > O, 7-[ is the space of one-forms whose relative degree is
greater than or equal to k.

2. Thereexistsanintegerk* < nsuchthat,forO < k < k*, 7-/k+1 C kbUtk+l 7-[,k
and ’"/k*+l ’7"/k*+2 to.

3. The subspaces 7-[k are invariant under regular static statefeedback and under state

diffeomorphism,
Proof. Point 1 is clear because the 7-/’s can alternatively be defined by

7-/k spanz, {w 6 -/k-1 O)+ -/k-1}, k > 1.

In particular, 7-/1 spanx:, {dx(0)}. Existence of the integer k* comes from the fact that each
7-/ is a finite-dimensional/C*-vector space so that, at each step, either its dimension decreases
or 7-(+1 ---7-/k. Moreover, k* < n dimc, 7-/1. Feedback invariance comes from the fact
that the relative degree is obviously invariant under regular static state feedback. [3

THEOREM 3.5. Supposeo O. Then there exists a list ofintegers rl rm, invariant
under regular static state feedback, and m one-forms Wl (0) O)m (0) 6 spanc, {dx (0)
whose relative degrees are, respectively, rl rm such that

1. spanx:, {ogi(k), 1 <_ <_ m, 0 <_ k <_ ri 1} spanc, {dx(0)}.
2. spanxz,{og/(k), < <_ m, 0 < k < re} spanc,{dx(0), du(0)}.
3. The one-forms {ogi(k), 1 < _< m, k _> 0} are linearly independent; in particular,

Zi Fi n.

Proof. Let W, be a basis for 7-/,. By definition, /Vg, and ]/V+, are in 7-/,-1. We next
prove that W, and W, are linearly independent. Let W, {r/1 , }; then )/V,

+{r/1+ r/, }. Suppose, contrary to our claim, that W, and W, are linearly dependent. This
means that there exist some coefficients 3,i, lzi, 1 <_ <_ Pk*, which are not all zero, such that

Pk*

i=1
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The linear independence of the Oi’S implies that not all the/zi’s vanish. Now, consider the
one-form co i/z-]i E ]-k* whose forward-time shift is, by (5),

So, equality (5) implies that co 6 ,+l 7-/, which contradicts our assumption 7-/ 0.
Hence, it is always possible to choose a set (possibly empty) /V,_ such thatW,toW,
is a basis for 7-/,_. Repeating this procedure k* 1 times we obtain

7-/ spanx;, {Vi(j), k < < k*, 0 < j < k},

0fThe assumption rank m implies W0 0. Finally, set

0<k<k*.

{col (0) com (0)} "kk* U"-U Wl.

Since the subspaces 7-/ are invariant under regular static state feedback, the invariance
of the integers {ri is obvious from the construction. [3

COROLLARY 3.6. Suppose 7-[ O. Then there exists a basis

{coi,j(0), 1 < < m, < j <_ ri

ofspanc, {dx (0) such that thefirst-orderapproximation ofE yields the infinitesimalBrunovsky
form

(6)

coi, l(t 1_ 1) Wi,2(t),
coi,2(t -[- 1) Wi,3(t),

coi,ri--1 (t + 1) Ul)i,ri (t),
m

coi,ri (t "JI- 1) Zsm___l yffs___. a,jUl)s,j(t + Yj=I bjdblj(t), l<i<_m,

where a ]. [bj ans,j, bj and has inverse in the ring ofm m matrices with entries in

Proof For 1 < < m and 1 < j < ri, take COi,j(O) coi (j 1).
Example 3.7. Consider the nonlinear discrete-time system

(7)
Xl(t + 1) b/l(t),
x2(t + 1) x3(t)Ul (t),
X (t + 1) X4 (t)/,/1 (t),

x4(t + 1) X5(t)Ul(t),
xs(t + 1) x6(t)Ul (t),
x6(t + 1) u2(t).

For system (7), one has

spang,{dx(0)} N spanz,{dx(1)} spanxz,{dxi(1 Xi+l(0)dxl(1), 2 5}
spanm, {Ul (0)dxi (0), 3 6}.

In fact, it is straightforward to check that

(8) xi(O)--Xi-l(1)....t(Xi-l(0) i=3 6.
xl(1) \/xl(O)

This shows that Xi (-- 1), for 3 6, must not be considered as independent variables in
the sense that they can be expressed as functions of x (0). This is not the case for x (- 1) and
x2 (-1), which cannot be expressed as functions of x (0). Thus we can choose, according to
the procedure given in Appendix A, z(0) (x (0), x2(0)).
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We carry out the computations necessary to bring forward the infinitesimal Brunovsky
form associated with the system described by (7). We know that ]"1 span, {dx(0)} and we
already computed

spanz,{dx(0) f3 spanx;,{dx(1)} spanxz{dxi(1) -Xi+l(0)dXl(1), 2 5}.

Thus, using (8), one obtains

2 A-1 (7-/1 N A 1) spanxz,{xl (0)dxi(0) xi(0)dx (0), 2 5}.

In a similar vein, one may check that

7-3 spanm, {X2 (0)dx3 (0) x3 (0)dx2 (0), x2 (0)dx4 (0) x4 (0)dx2 (0) },
4 spanx:, {x2 (0)dx3 (0) x3 (0)dx2 (0) },

=0.

Up to multiplication by a nonzero function, the choice of 0)1 is unique. Namely

0)1 X2 (0)dx3 (0) X3 (0)dx2 (0),

whose relative degree is rl 4. For 092 it suffices to pick any one-form 092 E 7-2 independent
of 0)1 (0), 0)1 (1), 0)1 (2). Let

0)2 Xl (0)dx2(0) x2(0)dx (0),

whose relative degree is r2 2. Finally set 0)i,j 0)i (j 1), for 1, 2, j ri.
In coordinates 0)i,j, the first-order approximation of (7) takes the infinitesimal Brunovsky
form (6).

4. Accessibility. Following the notation in [30] we shall denote by Ak(x) the set ofpoints
reachable from x in k forward steps using arbitrary sequences of controls

u-- (u(0) u(k- 1)) E (]m)k.

Denote by A(x) the set of points reachable from x in any number of forward steps using arbi-
trary sequences of controls. That is, A (x) [,-J_>0 A(x). The system Z is forward accessible
from x if its reachable set A (x) has nonempty interior. A generic notion of accessibility can
be derived from this pointwise definition as in [2, 5].

DEFINITION 4.1 (see [2]). System Z is said to be (forward) accessible if its reachable set
A(x) has a nonempty interior in ]n for almost all x n.

Associated with E there is a family of maps

fu f (’, u) ]xn ]1 bl ]tm

If we apply a sequence of controls u, then we obtain the composition of such maps, which is
denoted by

fu fu(k-1) 0’’’ 0 fu(O) ]xn n.

Conversely, for each fixed state x define the transition map

F(k, X)(U)" (m)k ]1n,
u A(x).

By definition, A(x) Im F(k, x)(u).
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PROPOSITION 4.2 (see [30]). The interior of the reachable set A(x) is nonempty if and
only if

sup {rank F(k, x)(u), u (]m)k}Ou

Thus, system E is (forward) accessible ifand only if

sup rankF(k x)(u), u (Nm) k> 1 -n.
xERn Oil

It was pointed out in [30] that Proposition 4.2 does not provide a practical test of acces-
sibility mainly because from a computational point of view the composition of functions is a
difficult task. In the rest of this section we develop alternative accessibility criteria that require
only a reduced number of algebraic operations.

From this point, we make extensive use of the results on exterior differential systems
presented in 1. However, we need to state some facts in order to employ such results. Notice
that the elements of K* are defined over a space that is isomorphic to and hence is not
a Banach space. It turns out that the results of do not apply to general subspaces of -,
viewed as Pfaffian systems. Nevertheless, the filtration

(9) spanc, {dx(0)} ’7-i[1 D 2 D D ’)[k* D ]-k*+l

has some nice properties that we examine next.
LEMMA 4.3. For < k <_ k* + 1, there exist p one-forms oo o% that depend only

on the variables {x(0), u(-j), z(-j), j <_ k 1} and constitute a basisfor 7-[k.
Proof. We proceed by induction. Lemma 4.3 is evidently true for k 1. Suppose it is

also tree for some integer k >_ 1. Let {1 r/o,/z /zo_,_p and {r/1 r/ be,
respectively, bases of-1 and. An arbitrary element o) i ai i .k belongs to +1
if and only if o)+ i a/+r//+ e 7-k. Notice, since r/i 6 7-[k, it follows that r/i, r//+ 6 k-1.
Hence,

O)+--’i a?

Thus, o) 6 +l if and only if the a/+’s satisfy the system of linear equations

(10) a?cie O, <_ e <_ Pk-1 Pk.

To each nontrivial solution a/+ of (10) corresponds a form co Zi ai rli that belongs to
More precisely, dimc. +1 P rankc.[cij]. Now, notice that from the induction as-
sumption the a/+’s may be chosen to depend only on the variables {x(0), u(-j), z(-j), j <
k 1}. Finally notice that, since ai ;-la?, the ai’s depend only on the variables
{x(0), u(-j), .z(-j), j < k}.

Lemma 4.3 is crucial because it allows consideration of the filtration (9) as a nested
sequence of Pfaffian systems defined over RN, for some integer N large enough. More-
over, the proof of Lemma 4.3 provides a systematic procedure to compute bases of the sub-
spaces .

PROPOSITION 4.4. Let {Oil otpoo} be a basisfor o. Then the Frobenius condition

dol A ol A A Olp O, 1

is satisfied. In other words, there exists (locally) a basisfor composed ofexact one-forms.
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Proof. The proof is largely technical and is given in Appendix B.
Theorem 4.5 is our main result concerning the accessibility property. It should be strength-

ened that the characterization of this property through condition 2 is very natural. In plain
words, it means that every nonconstant function of the state is eventually influenced by the
input of the system and hence cannot satisfy any autonomous difference equation. On the
other hand, from a computational point of view, condition 3 can be checked rather easily.

THEOREM 4.5 (Accessibility criteria). Thefollowing statements are equivalent.
1. System E is (forward) accessible.
2. Any nonconstantfunction 99(x (0)) hasfinite relative degree.
3. =0.
4. Define X’k spanc, {dx (k)}. Then, there exists an integer k > 0 such that

dimc, n.

Proof. We show (1) (4) = (2) = (3) = (1).
(1) :> (4) By definition, x(k) F(k, x)(u). Hence

Or(k, x) or’(k, x)
dx(k) dx(O) +

Ox(O)
dll

and thus

Xo+ Xk span. [ OF(k,x) }Xo --ud
The equivalence follows from Proposition 4.2.

(4) = (2) Suppose that there exists a function o(x(0)) whose relative degree is infinite.
o(x(0)) can always be completed to define a diffeomorphism z(k) qb(x(k)). Define Z
spanz,{dz(k)}. The fact that p(x(0)) has infinite relative degree implies that, for k > 0,
dimc, (Z0 + Zk)/2o dimc, dimc, (Z0 fq Zk) < n. The implication follows because,
fork > 0, X’

(2) = (3) Suppose 7-/o -fi 0. By Proposition 4.4, this implies the existence of p
functions whose relative degrees are infinite.

(3) =: (1) Suppose that system E is not accessible. Since (1) (4), this implies
that dimc, (X’0
X’k -fi 0 and hence there exists a nonzero one-form o9 X’0 whose relative degree is infinite,
i.e., 7-/

Remark 4.6. For linear time-invariant systems, condition 4 of Theorem 4.5 coincides
with the celebrated Kalman controllability criterion, i.e.,

0 =rank[BIABI...IA-IB].

Example 4.7 shows the application of the results of this section. It has been borrowed
from [30].

Example 4.7 (see [30]). Consider the discrete-time polynomial system

(11)
x(t + 1) x(t)(x(t) + 1)2,
x2(t qt_ l) X2(t)(x(t) + 1) 3,
x3(t d- 1) x3(t) -t- u(t).
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Clearly, for system (1 1) one has ’2 spant:. {dXl (0), dx2(0)}. Straightforward computations
also show that 7-/3 spanz. {r/}, where

r/ 3xz(0)dXl (0) 2Xl (0)dx2(0).

Moreover, 7-/3 is closed under forward-shifting. In fact, r/+ (x32(0) 4- 1)st/. Thus system
(1 1) is not accessible.

Note that although r/is not an exact one-form, Proposition 4.4 guarantees the existence of
an integrating factor, i.e., a nonzero function a 6/C* such that a r/becomes integrable. Taking
a x21 (0)/x (0) one obtains

x(O)
dx (0)- 2

x(O) (x3(O)a 3
x22(0) x2 (0)

dxl (0) d
x22(0) J"

The relative degree of the function p(x(t)) x (t)/x(t) is infinite

5. Static state feedback linearization. The static state feedback linearization problem
has already been considered by several authors; cf. [21, 27, 31, 34, 35, 45, 46]. The problem
can be thought of as consisting of finding suitable output functions (without zero dynamics
and with vector relative degree) and of applying standard input-output feedback linearization
techniques [41, 40, 42, 43]. The interest of recasting this problem is that our solution naturally
fits in the more general frame of dynamic feedback linearization. In the rest of this paper, the
results on the various feedback linearization problems are local results.

DEFINITION 5.1. System )2 is said to be linearizable by static statefeedback if there exist
a state diffeomorphism

(12) (t) 4(x(t))

and a regular static statefeedback (2) such that, in new coordinates, the compensated system
reads

(13) (t 4- 1) A,(t)4- By(t),

where the pair (A, B) is in Brunovsky canonicalform.
THEOREM 5.2. System E is linearizable by regular static statefeedback ifand only if

1. 7Y--O.
2. For <_ k <_ k*, 7-[ is completely integrable.

Proof. Sufficiency. If 0, then by Corollary 3.6 there exists a basis

(14) {coi,j(0), < <_ m, < j < ri}

of spanc. {dx(0)} such that in this basis the first-order approximation of system E, i.e.,

dx(t + 1) -x (x(t), u(t))dx(t) + --u (x(t), u(t))du(t),

takes the infinitesimal Brunovsky form (6). By Frobenius’s Theorem, there is no loss of
generality if we assume that the basis (14) is composed of exact one-forms. Thus, every
ooi,j(O), 1 < < m, 1 < j < ri, can be integrated; i.e., there exist i,j(x(O)) such that
O)i,j(O dqbi,j(x(O)). In coordinates ci,j i,j(x), < < m, 1 < j < ri, system E reads

)i,1 (t 4- 1) ’/,2(t),
i,2(t 4- 1) 3i,3(t),

i,ri-l(t 4- 1) i,ri(t),
Ci,ri(t 4- 1) fi(Yc(t), u(t)), < _< m,
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Oi Oiwith as, j, bj. The proof is completed by showing that under the feedback

u(t) q)(2(t), v(t)) where

(15) fi(c(t), q)(2(t), v(t))) vi(t), <_ < m,

the system E takes the Brunovsky canonical form (13) with controllability indices rl rm.
Note that by the implicit function theorem (15) has a local solution with respect to u(t)
q)(2(t), v(t)) since the matrix with elements b} is invertible by Corollary 3.6.

Necessity. This is clear because for a linear system the 7-/k’S are completely inte-
grable and this property is invariant under regular static state feedback and state diffeo-
morphism, rq

Remark 5.3. Theorem 5.2 gives an alternative solution to the static linearization problem,
considered earlier in [21, 27, 31, 34, 35, 45, 46]. One can see a particular close connection
with Lemma 5 of [35]. The proof of our theorem indicates how actually to find the functions
h hm in terms of which Lemma 5 is formulated.

Example 5.4 (Example 3.7 continued). We have computed, for the system (7), the one-
forms

0)1 X2 (0)dx3 (0) x3 (0)dx2 (0),
0)2 Xl (0)dx2(0) x2(0)dXl (0)

that generate the infinitesimal Brunovsky form (6). The one-forms 0)1, 0)2 are not exact.
However, one can readily verify that

d0)l A 0)1 d0)2 A 0)2 0,

so that there exist integrating factors ai such that ()i ai 0)i are exact one-forms for 1, 2.
This implies that the conditions ofTheorem 5.2 are satisfied and hence system (7) is linearizable
by regular static state feedback. Taking al- 1/x22(0)anda2--- 1/Xl (0) one obtains

Define now the diffeomorphism

(t)__ (x3(t) x4(t) xS(t) x6(t) x2(t) )Xz(t)’x3(t)’x4(t)’xs(t)’xl(t)’
x3(t)

In coordinates 2(t), the system (7) reads

21(t + 1) 22(t),
2"2(t + 1) 23(t),
23(t + 1) 24(t),

2"4(t nt- 1) u2(t)/(22(t)23(t)24(t)26(t)Ul (t)),
25(t + 1) 6(t),
6(t + 1) c2(t)c6(t)Ul(t).

Finally, the state feedback

ul(t) 22(t)26(t)’ u2(t) 23(t)24(t)vl (t)v2(t)

yields the Brunovsky form (13) with controllability indices {4, 2}.
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6. The largest feedback linearizable subsystem. When system E cannot be fully lin-
earized using static state feedback, it is interesting to characterize the largest feedback lin-
earizable subsystem. This is done in this section. Throughout this section, we assume that
system E is accessible, i.e., 7-/ 0.

DEFINITION 6.1. System E is said to be partially linearizable with controllability indices
n > >_ nm if there exists a state diffeomorphism (12) and a regular static state feedback
(2) such that, in new coordinates, the compensated system reads

(16)
l(t + 1) AI’I (t)+ Blv(t),
’2(t + 1) f2(.l(t), 2(t), v(t)),

where the pair (A 1, B 1) is in Brunovsky canonical form with controllability indices n >

The sequence of subspaces 7% D 7-/1 D D k* can be viewed as a nested sequence of
Pfaffian systems. For k 1 k*, the bottom derived system ofk is denoted . Also,
introduce the list of integers {p }, defined by

Pk dimc,

and its dual list {nf }, defined by n card {p P _> j }.
Our claim is that {n is the list ofcontrollability indices ofthe largest feedback linearizable

subsystem.
THEOREM 6.2. System E is partially feedback linearizable with controllability indices

n >... > nm.
Proof. Let )k* be a basis for 7,, and choose a set ), such that ), W )** is a basis

for ,. Let Wk,-1 be a set such that

Wk* U Wk, U Wk* U k*-I

is a basis for k*-I -t- ’lk*, and choose a set )/k*-I such that

-+Wk, U Wk, U Wk,-1 U Wk*-I
is a basis for 7-/,_ 1. This procedure can be repeated k* 1 times in such a way that

U U
k+ <i <k* 0<j <i-k

]i(j) } U "}/k+l U /k

is a basis for 7 + -k+l and

U U i(J)} U)/k
k<i <k* O< <i-k

is a basis for 7k. For k 1 k*, denote Pk card l/;. Thus, the k* sets we have
constructed (some of them possibly empty) satisfy

(17) p dim:,
7k + 7-/+1

)’k+l Z Pi.
i>k
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Clearly, the Wk’s can be chosen to be composed by exact one-forms. Say, for k
1 k*, k {d0k,1 dOk,pk }. Moreover, the fact that each ’k can be completed
into a basis for 7-/k implies that the d0k,j’s and their corresponding forward shifts are linearly
independent.

Introduce the set of indices 27 such that k 27, Wk 0. For k 2" and _< j _< k,
define bk,j (0k, l(j- 1) Ok,pk(j- 1)). Let kz k pk. Complete the qk,j’s by
a set of arbitrary functions (+1, n) such that (2l,j, 2) (qk,j, ) defines a
diffeomorphism. In new coordinates, system E reads

(18)

~1 (t "- 1) ~1 (t)Xk, Xk,2
~1 (t + 1) ~1
Xk,2 Xk,3 (t),

~1 (t + 1) ~1 (t)Xk,k_ Xk,k

X,k~l (t + 1) f(l(t), 2(t), U(t)),

2(t + 1) f2(l(t),22(t), u(t)).

Under the state feedback u @(21 (t), 22(t), v(t)) where

(19) fl(21(t),22(t),u(t)) vk(t), dim vk(t) pk, k 627,

system E takes the form (1 6). Next we prove that (1 9) has a local solution. The fact that the
dOk,j’S are linearly independent implies

rank J

OU --Zdim Z Pk’Xk,k
kZ kZ

where fl [(f)T, k 271T. On the other hand, by (17), one has

Pk P -----dimc.
k27 ’2

Then, our assertion holds by the Implicit Function Theorem
The proof is completed by showing that the linear part of (1 8) under the state feedback

(19) has n > > nm as controllability indices.

The controllability indices of (18) are {ki ki 27} with multiplicities Pki, i.e., {n
k k 27, 1 <_ j <_ Pk}. Up to reordering one has, by (17), p )-i>k Pi card {n{ > k}.
The result follows because both lists {n’ }, {n{} are dual to the list {p} and then they are the
same.

We state the following theorem without proof. It can be easily demonstrated by contra-
diction.

THEOREM 6.3. If system E is feedback linearizable with controllability indices n >
>_ nm, then ni <_ n, 1 m.
Example 6.4. Consider the nonlinear discrete-time system

Xl(t + 1) X2(t) + Ul(t),

(20)
XE(t + 1) X3(t)Ul(t),
x3(t -4- 1) X3(t)u2(t),
x4(t d- 1) x4(t) q- Ul(t).



LINEARIZATION OF DISCRETE-TIME SYSTEMS 2013

For system (20) one can readily check that

span: {dx (0)}
spanc{dx(O)} t spanxz{dx(1)}

spanxz{dxl (0), dx3(0)}.

Thus one can set z(0) (xl (0), x3(0)). This allows us to compute

7-/9. spanK:, {dx4 (O) dxl(O), dx2(O) z2(-1)dxl(O)},
3 =0.

Clearly, 2 span, {dx4(0) dx (0)}; thus set 2 {d(x4(0) Xl (0))} and 2
{dx2(0) z2(-l_)dXl (0)}. Accordi_ng to the proof of Theorem 6.2, V has to be chosen in
such a way that2 to- tO W2 toW is a basis for 7z/ + 7-/2; set {dx3 }. One concludes
that system (20) is partially feedback linearizable with controllability indices {2, 1 }. Consider
the diffeomorphism

Y’(t) (x4(t) Xl(t), x4(t) x2(t), x3(t), x4(t)).

In new coordinates, system (20) reads

l(t + 1) 2(t),
2(t -+- l) 4(t) Yc3(t)u(t),

Under the state feedback

’4(t) Vl (t)
Ul(t)

.3 (t)

’3(t + 1) fc3(t)u2(t),

24 (l --}-- 1) 24 (t) %- U (t).

v2(t)
u2(t) 3(t)’

system (20) takes form (16) with controllability indices {2, }.

7. Dynamic state feedback linearization. For continuous-time systems it is well known
[7, 24, 25] that a sufficient condition for a nonlinear system with outputs to be linearizable by
dynamic state feedback is that

1. the system be right-invertible; and
2. the system has no zero dynamics, in the sense of the dynamics of the reduced inverse

system [26].
In [44] it was pointed out that a similar property can be deduced for discrete-time systems.
However, if a system without outputs is given (or if the outputs of the system do not satisfy
the properties above), then it is interesting to decide whether these outputs exist or not. This
question is addressed in this section. To be more precise, the existence of outputs satisfying
properties 1 and 2 is shown to be equivalent to the existence of a transformal operator that
maps a certain Pfaffian system into another one that is completely integrable.

Consider system E and suppose that the output function y(t) h(x(t)), y(t) m, has
been specified. Then one has the following definitions and results.

Define a chain of subspaces o C 1 C C n of.T by

(21) gk spanx;, {dx(0), dy(0) dy(k)}

and the associated list of dimensions Pk dimx;, gk [22].
DEFINITION 7.1. 1. For k 0 n, o"k Pk Pk-1 is the number ofzeros at infinity

oforder less than or equal to k, with the convention that p-1 n.

2. The rank p* of the system is the total number of zeros at infinity, i.e., p* an
Pn Pn- 1"

3. The system is said to be invertible ifp* m.
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Definition 7.1 gives an abstract characterization ofthe rank 12, 14, 22] and the structure at
infinity [22] for discrete-time nonlinear systems. These notions have, however, a meaningful
interpretation in terms of the inversion algorithm [22, 32]. The integer cr represents the
number of independent scalar inputs that can be recovered at the k-th step of the inversion
algorithm. In a similar vein, invertibility of the system means that it is possible to recover the
complete input u(t) as a function of the output y(t) and its forward-shifts.

The structure at infinity can be expressed in different manners, which are of course
equivalent and suitable for different tasks. For instance, the list {n’ n. of the orders
of the zeros at infinity is the list of integers k such that a a-i - 0, each one repeated
O’k tTk-1 times.

In the rest of this section we are concerned with dynamic compensators of the type

(22) C / (t + 1) a(x(t), (t), v(t)),

I u(t) b(x(t), (t), v(t)),

where (t) 6 ]q and v(t) m. Like in the continuous-time case [20, 23], a dynamic
compensator C is said to be regular if it is invertible when v(t) is viewed as input and u(t) is
viewed as output. This leads to the characterization of the regularity of the compensator C as

dimE,
spanx;, {dx(0) dx(q), d(0), du(0) du(q)}

m.
spanx;,{dx(0 dx(q), d(0), du(0) du(q 1)}

For invertible systems it is always possible to construct a dynamic compensator C in such
a way that

1. noninteracting control is achieved; i.e., for the compensated system E o C one has
yi(t -t- (i) vi(t), for some integers i.

2. the dimension of the compensated system E o C is n + Yi (8i nl) [46].
The nl functionsSet nl i i, n2 n Ei ni.

{yi(t + j), 1 < < m, 0 < j <_ (i 1}

can be completed by n2 functions 0 such that (21,22) (yi(t d- j), 0) defines a diffeomor-
phism on Rnl+n2. In new coordinates 2 the compensated system E o C reads

21(t + 1) A121 (t)+ Blv(t),
22(t + 1) f2(21(t), 22(t), v(t)),

y(t) C121(t),

and the pair (A B 1) is in Brunovsky canonicalwhere dim 21 -i ti, dim 22 n -.i ni,
form with controllability indices {t }. The dynamics

2"2(t q- 1) f2(21(t),22(t), v(t))

is the zero dynamics in the sense of the reduced inverse system.
DEFINITION 7.2. System E is said to be linearizable by dynamic state feedback if there

exist a regular dynamic compensator (22) and an extended coordinates transformation (t)
b(x(t), (t)) such that, in new coordinates, the compensated system reads

(23) (t d- 1) A2(t) + By(t), O, 1

where 2 e ]t{n+q and the pair (A, B) is in Brunovsky canonicalform.
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From our previous analysis, one concludes that the existence of an output y(t) h(x(t)),
y(t) Rm, which defines an invertible system without zero dynamics, is a sufficient condition
for dynamic feedback linearizability. This property was already recognized in [44, 4]. One
can also see that the sum of the orders of the zeros at infinity will play an important role.
Lemma 7.3 gives a characterization of this quantity. Define the subspaces

A:’ spanx;, {dx(0)}, 32 span;, {dy(k), k > 0}.

LEMMA 7.3. Suppose that the output y(t) h(x(t)), y(t) ]m, defines an invertible
system. Then

dimx;, (A" f-I 32) p n

where p m cri is the number ofzeros at infinity oforder greater than or equal to + 1.

Proof. The proof is a direct consequence of the inversion algorithm [22]; see also [32].
An application of the algorithm for invertible systems gives, for each 0 < k < n,

k k k

dimx;, (X G spanx;,{dy(g), 0 _< g _< k}) (m -o’i)-- Y(P’I- ’i)-- Z P"
i=0 i=0 i=0

On the other hand, one has i ni i i(pi Pi+l) i Pi.
For continuous-time systems, Fliess et al. 17] have shown that a more general formulation

consists of allowing the output function to depend explicitly on the input and a finite number of
its time-derivatives. Accordingly, for discrete-time systems, a more general problem statement
consists of allowing the output y(t) to depend explicitly on u(t) and a finite number v 1 of its
forward shifts. ,Within our framework, this implies the statement of a more general definition
of the structure at infinity, which includes possibly nonproper discrete-time systems. This can
be done by applying the usual definition to an extended system for which the forward-shifts
of the input that explicitly appear in the output equation are considered as states. See for
example [39] for the continuous-time case. We do not pursue this line further because, as
we explain next, it is possible to state the problem without making explicit reference to the
extended system. More precisely, we seek an output y(t) h(x(t), u(t) u(t + v 1)),
y(t) Nm, such that

dimx;, (A’v f) 32) n + rn v,

where A’v spanx;, {dx(O), du(O) du(v 1)}. For square invertible systems one has

and hence

dim;, (X, N Y) dimx;, (X f’l 32) + my.

The term linearizing output in Definition 7.4 below is borrowed from 17].
DEFINITION 7.4. A linearizing output is an outputfunction

y(t) h(x(t), u(t) u(t + v 1)), y(t) ]m,

that satisfies thefollowing properties.
1. y(t) h(x(t), u(t) u(t + v 1)) defines an invertible system.
2. dimx;, (A:’ f)y) n.
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Remark 7.5. For continuous-time systems [17, 19, 39], a linearizing output has the
important property that any variable of the system can be expressed as a function of the
linearizing output and a finite number of its time-derivatives, i.e., without integrating any
differential equation. The corresponding property for the discrete-time case should be that
any variable of the system can be expressed as a function of the linearizing output and a finite
number of its forward-shifts, i.e., without solving any difference equation. As a matter of fact,
this property can be deduced from Definition 7.4. First, recall that invertibility of the system
means that one is able to recover the complete input of the system as a function of the output,
a finite number of its forward-shifts, and the state. Second, notice that the second property
of Definition 7.4 implies that each state variable can also be expressed as a function of the
linearizing output and its forward-shifts.

It is also possible to show that the conditions of Definition 7.4 are independent of the
system of coordinates.

Let K;*[ A] denote the set of polynomials in the operator A with coefficients in/C*. One
can give/C*[A] the structure of a noncommutative ring with the addition defined in the usual
manner and the multiplication defined by the noncommutative operation

A p p+A, for all p 6/C*,

which corresponds to operators composition. Let/C*mm[A denote the set ofm x m matrices
whose entries belong to/C*[A]. The set K*mxm[A] is also a noncommutative ring. The
elements of/C*mxm m are called transformal operators.

Let .--m denote the/C*-vector space spanned by m-tuples of one-forms. Every transformal
operator P 6 K*mxm[A] defines a mapping from f’m to .)um in the following way. Let
P -i ei (A) ]*mxm[A], and let f2(O) (o9(0) gom(O)) .)-’m. Then define

p o%"m .)-’m,
b- e ’-- Ei ei-(i)

where f2(i) (o91(i) OOm(i)). A transformal operator P 6 K*mm[A] is said to be
invertible if there exists another transformal operator Q 6/C*mm[A] such that

for all

or, equivalently, P o Q Q o P lm, the identity matrix in mm. The only invertible
elements of/C*[A] are the nonzero polynomials of degree zero.

The concept of infinite zero structure can be generalized in a natural way to arbitrary
m-tuples of one-forms S2(t) (o91 (t) O.)m(t)) dTM, which are not necessarily exact.
The m-tuple f2 (t) is said to have

(span;,{dx(O),f2(O) S2(k)} )(24) a dimx;, spa-,l " (k 1)}

zeros at infinity of order less than or equal to k. If f2 (t) is a set of exact one-forms (o)i (t)
dhi (t)), then (24) coincides with the definition of structure at infinity given above. In particular,
Lemma 7.3 is also valid for m-tuples of one-forms, provided that one defines invertibility of
a set of one-forms f2 (t) by condition an m.

Proposition 7.6 below states that the sum of the orders of the zeros at infinity of a system
of one-forms cannot increase under the action of a transformal operator P 6/C*m xm[A].

PROPOSITION 7.6. Consider the m-tuple ofone-forms f2(t) (o91 (t) corn(t)) and the
polynomial matrix operator P /c*mxm[A]. Define 2(t) P(t). Then

dim;, (X fq spanx;,{(k), k > 0}) < dimc, (X fq spanx;,{a(k), k > 0}).
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The proof is straightforward and is left to the reader. Note that Proposition 7.6 establishes
that the sum of the orders of the zeros at infinity of an m-tuple of one-forms remains constant
under the action of invertible transformal operators P 6/C*mm [A].

Let f2(t) (COl(t) COrn(t)) be a system of one-forms satisfying the conditions of
Theorem 3.5. Then f2 (t) satisfies the properties

1o an rn.
2. dim:, (A:’ fq spanc{f2(k), k _> 0}) n.

In the case when f2(t) is composed of exact one-forms (coi(t) dhi(t)), these properties
coincide with the conditions in Definition 7.4. Therefore, an m-tuple ofone-forms that satisfies
the conditions of Theorem 3.5 is called a system oflinearizing one-forms.

THEOREM 7.7. Suppose "t-[o O, and let f2(t) be a system of linearizing one-forms.
Then, there locally exists a system oflinearizing outputs ifand only ifthere exists an invertible

transformal operator P ](,mm A such that

(25) d(Pf2) 0.

Hence (25) is a sufficient conditionfor system E to be dynamicfeedback linearizable.
Proof Necessity. Suppose y(t) h(x(t), u(t), u(t + v 1)) is a linearizing output.

Definition 7.4 implies that .T" 3;. Theorem 3.5 implies that U span:. {f2 (k), k > 0}.
Thus there exist transformal operators P, Q such that dy(t) P 2 (t) and f2 (t) Q dy(t).
Clearly PQ QP Im, and hence P is invertible. Moreover d(Pf2(t)) d(dy(t)) 0.

Sufficiency. Let

N dim:, (A’ A spanc,{f2(k), k > 0}),
/ dim/c, (A" fq spanc, {(k), k > 0}),

where ff2(t) Pf2 (t). Theorem 3.5 implies that N n. Existence of the operator P implies
N <_ N. Invertibility of P implies the existence of an operator Q such that f2 (t) Q f2(t);
i.e., N <_/ and hence/ N. The result follows because one can assume, without loss of
generality, that f(t) dap(x(t), u(t) u(t + v 1)). (x(t), u(t) u(t + v 1)) is
a linearizing output.

COROLLARY 7.8. Suppose O, and let f2 (t) (col (t) COm (t)) be a system of
linearizing one-forms. Further, suppose that the Frobenius condition

dcok(t)/X COl (t) A... A corn(t) O, k 1 m,

is satisfied. Then there exists a linearizing output. The relative degrees ofthe co(t)’s coincide
with the orders ofthe zeros at infinity of the linearizing output.

Proof. The Frobenius condition implies that the Pfaffian system generated by f2(t)
(col(t) com(t)) admits a basis composed of exact one-forms. Therefore there exists an
invertible matrix (with entries in/C*) relating this basis to {COl (t) COm (t) }. 1-]

Example 7.9. We already showed that system (20) cannot be fully linearized using regular
static state feedback. However, we shall show that system (20) is linearizable by dynamic
state feedback. For system (20) we have already computed

]-2 spanK;, {dx4 (0) --dXl(0), dx2(0) z2(-1)dXl(0)},

3 0;

hence

(CO(t)) (dxe(t)-z2(-1)dx,(t))fl(t)
CO2(t) dx4(t) dx(t)

is a system of linearizing one-forms. Consider now the transformal operators
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Z2(-- 1)A--Z2(-- 1) )P(A) 1-z2(-1) l-z2(-1)

0 1

1 z2(-1)
Q(A)

0

Z(--1) z2(-1)A ’.
Straightforward computations show that P o Q Q o P 12 and that

d(x4(t) Xl (t)) o92(t)

Therefore,

y(t) ((26)

is a linearizing output.
Consider the dynamic state feedback

x2(t) )X4(t) Xl (t)

(t + ) (t),
(27) u (t) (t),

u2(t) tz(t)

and the extended diffeomorphism

2(t) (x(t), x3(t)(t), x4(t) Xl(t), x4(t) xz(t), x4(t) (t) x3(t)(t)).

In new coordinates, the extended system (20)-(27) reads

’l(t + 1) 2(t),
2(t)l(t)2(t)

,2(t + 1)
2(t) + 5(t) l(t) 4(t)’

(28) .3(t + 1) 2"4(t),

24(t + 1) 25(t),

22(t)l (t)fi2(t)
25(t + 1) 22(t) + 25(t) + ill(t)

22(t) + 25(t) 21(t) .4(t)
and under the state feedback

fil (t) Vl (t) + v2(t) 22(t) :5(t),

v2(t)(22(t) + 25(t) 21(t) 24(t))
fi2(t)

22(t)(Vl (t) + v2(t) :2(t) 25(t))
the extended system (28) reads as a linear system in Brunovsky canonical form with control-
lability indices {3, 2}.

The linearizing output (26) is not unique. For instance, the output function

(29) (t)
x3(t)Ul (t) + x4(t) Xl (t)

(which depends on the input) is a linearizing output as well in the sense of Definition 7.4.
Both lineizing outputs are related by the inveible transformal operator

(30) P=
A 1
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Remark 7.10. For continuous-time systems, it has been shown in [8] that any single-input
system is dynamic feedback linearizable if and only if it is linearizable by static state feedback.
We can state an analogous result for discrete-time systems. Let E be a single-input system,
and suppose 7-( 0. Then a system of linearizing one-forms reduces to any single one-form
601 (t) such that n spanx;, {COl (0) }.

THEOREM 7.11. Let E be a single-input system, andsuppose 7-{o O. Then, thefollowing
statements are equivalent.

1. E admits a linearizing output.
2. E is linearizable by static state feedback.
3. dcol (t)/x col (t) 0, where col (t) is such that n spanc, {COl (0)}.

The proof of Theorem 7.11 is an immediate consequence of Theorems 5.2 and 7.7 and is
left to the reader.

8. Conclusion. The accessibility problem and three different notions of feedback lin-
earizability for discrete-time analytic systems have been addressed in this paper. Our main
contribution has been to show that these issues can be organized around the classification of
differential forms with respect to their relative degree. The solutions that we have stated along
the paper fit within a single linear algebraic framework.

The notion ofdynamic feedback linearizability defined in 7 relies on the use of a discrete-
time version of a so-called Singh compensator [23]. An open problem for further research
is to determine to what extent the existence of a linearizing output is necessary for dynamic
feedback linearizability using a more general class of dynamic compensators.

A. Construction of K;*. As pointed out in 2, every difference field/ can be embedded
into an inversive difference overfield/*, which is called the inversive closure of/. The
inversive closure is unique up to an isomorphism. A precise statement of these properties can
be found on pp. 66-67 of Cohn’s monograph [11 ].

We next give an explicit construction of K*. This construction allows us to carry out the
practical computations.

Assume that system E is given and is submersive. Hence (/, 6) is a difference field.
Denote by g the/-vector space spanned by {d0 0 6/}. The operator 6 induces a forward-
shift operator A : --+ g by

/k aidq9 a dq9

where ai, qgi i. With some abuse of notation, sometimes we write co+ A co. The
pair (, A) is a difference vector space [14]. Introduce a (nonunique) vector-valued function
z(0) qg(x(0)) such that dp 6 span;{dx(0)} and

spanx; {dx (0)
span: {d(0)

spanx;{dx(0)} fq spanxz{dx(1)}’

where d(0) denotes the coset associated to the element dz(0). Consequently,

span{dx(0)} C span{dx(1)} + span{dz(0)}.

This implies that (locally) there exist a vector-valued function (x(1), z(0)) such that
x(0) p(x(1), z(0)). Finally, let/*/K be the field extension of meromorphic functions
in a finite number of the independent variables

{x(0), u(t), u(-k), z(-k), > 0 k > 1}.
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Notice that although the choice of a variable z(0) 0(x(0)) is not unique, each possible
choice brings up a field extension that is isomorphic to/C* tiC.

The pair (KT*, 3) can be given the structure of an inversive difference field using the usual
rules and noting that

6-1x(0) 6-1(x(1), z(0)) (x(0), z(-1)).

B. lntegrability of 7-L. Let .T’* be the algebraic dual of f’. More precisely, .T’* is the
space of linear mappings from bt- to/C*. As pointed out in 4 (see Lemma 4.3), the filtration

spanc,{dx(0)} ’1-1 "" ’]/k*

can be viewed as a nested sequence of Pfaffian systems defined over 1RN, for some integer N
large enough. Therefore, the elements of .T’* can be viewed as sections or vector fields of the
tangent bundle TIRN. These vector fields can be written in the manner

0 0 0 0
X a

Oxi(O)
.ql_ bi j + Z ci,j OR

-Jr- di,j
i, i,

aui(j)
i,

i(--j) i,j
Ozi(-j)

where ai, bi,j, ci,j, di,j E it*, all sums are finite, and the set

0 O 0 O }Oqxi(O) aui(j)’ OUi(--j)’ OZi(--j)

is defined to be a dual basis of the canonical basis {dxi (0), dui(j), dui(-j), dzi(-j)} of .T’.
Given a vector field X E *, its forward-shift X+ is defined by

(31) (X, co)+ (X+, co+) for all co Y.

Formula (31) has to be interpreted in the following manner. First notice that (X, co) 6 KT*, so
that (X, co) + a(X, co) is well defined. Therefore, evaluating (31) with different choices of
co, we obtain a system of equations that uniquely defines X+. Let us investigate this by an
example.

Example B. 1 (Example 4.7 continued). Consider the nonlinear system described by (11),
and let X be an element of.T’*. Assume that X+ has the form

aX3 (0)

3 0 N 0X+ Z ai -+- Z bj
i=1 axi(O) =o Ou(j)

where ai, bj *. Evaluating (31) with different choices of co yields the system of equations

(32)

(X, dXl(0))+ 0 (X+, dXl(1)) (x(0) q- 1)2al q- 4Xl(O)x3(O)(x23(O) --I- 1)a3,

{X, dx2(0))+ 0 {X+, dx2(1)} (x32(0) -+- 1)3a2 -+- 6x2(O)x3(O)(x(O) --I- 1)2a3,
(X, dx3(0))+ 1 (X+, dx3(1)} a3 q- b0,

(X, du(j))+ 0 (X+, du(j + 1)) bj+, j > -1.

Equations (32) have the unique solution bj O, a3 1, a2 -6x2(O)x3(O)/(x(O) + 1),
a -4x (O)x3(O)/(x(O) + 1). Therefore, one concludes that

Xl(0)X3(0) ] 0
X+= -4

(x32(0)+1) axe(O)
X2(0)X3(0) I 0

6
(x(O) + 1) Ox2(O)

-[-
ax3(0)
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We now prove that 7-/00, when viewed as a Pfaffian system defined on T*RN, is completely
integrable.

Let {Oil otpo be a basis for 7-/00. The characteristic vector fields 7-too are the elements
of the set

goo {X ’*1 (X, o) =0, a A... Aotpoo A Xldco--- 0Vco E 7-oo }.

The characteristic system of 7-/00 is defined to be C(7-too) g. It is clear that 7-/00 C C(7-/o).
The rest of the proof consists of showing the converse inclusion.

First we show that goo is invariant under forward-shifting. Let X E goo, and co 6 7-too.
Therefore one has

(X, co) + (X+ co+) O,
(33)

(/.../a/ X
_
dco)+ -/.../+/ X+ _dco+ 0.

The fact that is closed under forward-shifting implies that or/+, co+ 6 . Hence, is
closed under forward-shifting because (33) hold for any co

Next we show that C() is also closed under forward-shifting. Let r/ 6 C(7-/) and
X E . Then one has

(34) (X, /)+ (X+, r+) 0.

The fact that is closed under forward-shifting implies that X+ 6 . Hence C(7-/) is
closed under forward-shifting because (34) holds for any X 6 .

Finally note that 7-/ is the largest subspace of H1 that is closed under forward-shifting
so that C(7-/) C H. We have shown that 7-( C(7-/), and the result follows.
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NUMERICAL STABILIZATION OF BILINEAR CONTROL SYSTEMS*

LARS GRINE

Abstract. Extremal Lyapunov exponents for bilinear control systems with constrained control values are com-
puted numerically by solving discounted optimal control problems. Based on this computation a numerical algorithm
to calculate stabilizing control functions is developed.
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Hamilton-Jacobi-Bellman equation
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1. Introduction. In this paper we present numerical algorithms for the calculation of
extremal Lyapunov exponents and stabilization of bilinear control systems in ’/, i.e., systems
of the form

m

(1.1) J;(t) (A0 + E ui(t)Ai)x(t), x(O): xoE d \ {0}
i=1

with Aj E dd, j 0 m, u(.) 6 H {u U, u measurable} with a compact
and convex set of control values U C ]m with nonvoid interior. The Lyapunov exponent of
(1.1) with respect to an initial value x0 6 d and a control function u(.) 6 H is given by

1
,(xo, u(.)) lim sup - In IIx(t, xo, u(’))ll,

where x (t, x0, u (.)) denotes the trajectory of (1.1).
Bilinear control systems arise, e.g., by linearization of a nonlinear control system with

a common fixed point x* for all control values u 6 U with respect to x. They were first
studied systematically by Mohler [18] in 1973. Lyapunov exponents were introduced by
A.V. Lyapunov in 1892 (under the name of order numbers) as a tool to study nonlinear differ-
ential equations via their linearizations along trajectories. Recent results about the Lyapunov
spectrum of families of time-varying matrices (cf. Colonius and Kliemann 11 ]) made it pos-
sible to characterize the domain of null controllability of bilinear systems using Lyapunov
exponents (cf. Colonius and Kliemann [10]). A basic property of the Lyapunov exponents
is that )(x, u(.)) < 0 iff x(t, xo, u(t)) converges to zero faster than any exponential eat with
,(x0, u(.)) < a < 0. As an easy consequence inf,.u ,k(x0, u(.)) < 0 implies that there ex-
ists a control function such that the corresponding trajectory converges to zero. The domain of
null controllability--the set of all points x0 with negative minimal Lyapunov exponentmmay
be only a part of a and as a consequence stabilization may only be possible for subsets of
a. Null controllability in this context always means asymptotical null controllability since
the origin is not reachable in finite time from any other point of the state space. This implies
that an approach via the minimum time function (cf. e.g., Bardi and Falcone [1]) does not
apply here.

In contrast to the direct approach to this stabilization problem via Lyapunov functions
(cf., e.g., Chabour, Sallet, and Vivalda [5]) the method developed here is in some sense an
indirect approach:
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lnstitut ftir Mathematik, Universitit Augsburg, Universititsstr. 8, 86135 Augsburg, Germany (Lars.Gruene@
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First a numerical approximation ofthe extremal Lyapunov exponents of (1.1) is calculated.
This enables us to characterize the stability properties of (1.1). Once this approximation is
known we stabilize the system (i.e., we find control functions such that the corresponding
trajectories converge to zero) by searching for control functions such that the corresponding
Lyapunov exponent is close to the minimal exponent or at least negative. In 2 these problems
are discussed in terms of optimal control theory. We show that the problem of calculating
extremal Lyapunov exponentsmwhich can be expressed as an average yield optimal control
problemmcan be approximated by discounted optimal control problems.

If we look at the uncontrolled system with U {0} it turns out that the Lyapunov
exponents are just the real parts of the eigenvalues of A0. Together with the corresponding
eigenspaces they determine the stability properties of the system. For the controlled system
we need suitable generalizations of eigenspaces associated with the Lyapunov exponents. The
basic ideas of this concept are presented in 3, followed by an interpretation of the results of

2 in terms of calculating extremal Lyapunov exponents.
Section 4 presents algorithms to solve discounted optimal control problems numerically

based on a discretization scheme by Capuzzo Dolcetta [2], Capuzzo Dolcetta and Ishii [4], and
Falcone [12], [13] connected to the framework of dynamic programming (cf. [3]). Section 5
contains several numerical examples calculated with these algorithms.

2. Discounted and average cost optimal control problem. In this section we will show
that average yield optimal control problems can be approximated by discounted optimal control
problems.

Consider a control systemon a connected n-dimensional C-manifold M given by

(2.1)
(2.2)
(2.3)

with

k(t) X(x(t),u(t)) for all 6 ,
x(0) x0 6 M,

u(.) lg "= {u --+ U lu measurable},

(2.4) U ]m compact,

(2.5) X(-, u) is a C-vector field on M, continuous on M U,

(2.6) for all x 6 M, u(.)6 L/ the trajectory o(t,x, u(.)) exists for all 6 .
We now consider the following two optimal control problems given by the control system

(2.1)-(2.6) and a cost function g satisfying

(2.7) g’M U --+ continuous on M U,

(2.8) Ig(x,u)l <Mg for all (x,u) 6MU.

The 3-discounted cost for 3 > 0 and the average cost are defined by

(2.9) J(x, u(.)) := e-tg(q)(t, x, u(.)), u(t))dt,

(2.10) Jo(x,u(.)) := limsup fo
r

r--,
g(qg(t, x, u(.)), u(t))dt.

The associated optimal value functions are

(2.11) v(x) "= inf Ja(x, u(.)),
u(.)

(2.12) vo(x) inf Jo(x, u(.)).
u(.)t4



2026 LARS GRONE

A basic property of the discounted optimal value function is Bellman’s optimality principle"
for any > 0 we have

{f0(2.13) va(x) inf e-as
,(.)eu

g(q)(s, x, u(.)), u(s))ds + e-atva(q)(t, x, u(.)))

For the average cost a similar estimate is valid: for any > 0 we have

(2.14) vo(x) inf {v0(0(t, x, u(.)))}.

Results about the relation between discounted and average cost optimal control problems as
the discount rate tends to zero have been developed by Colonius [6] and Wirth [20]. Here we
will first show the relation between the values of 6 Ja and J0 along certain trajectories. Then
we will use similar techniques as in [6] and [20] to obtain convergence results for the optimal
value functions. The first theorem shows that J0 is bounded if 6 Ja is bounded. Since J0 has
an infinite time horizon it is not sufficient that 6 Ja is bounded for the initial value. It has to be
bounded for all o(t, x, u(.)), > 0, and the corresponding shifted control function.

THEOREM 2.1 (approximation theorem I). Consider optimal control systems on M given by
(2.1)-(2.6) and (2.7)-(2.10), a discount rate 6 > O, x M, u(.) lg, C N, and ot > 0
such that 6Ja(qg(t, x, u(.)), u(t + .)) < C ot for all > O. Then

Jo(x, u(.)) < C.

Proof. We may assume C 0 by using g C instead of g. In the first step we show that
for every > 0 there exists a (t) such that

(2.15) g(o(s, x, u(.)), u(s))ds <_
23

Abbreviate f(s) "= e-a(s-t)g(p(s, x, u(.)), u(s)). Obviously there exists a ’(t) such that

(2.15) is true for the shifted discounted functional ft(t) f(s)ds < -. Choose ’(t) minimal
with this property. Since g is bounded there exist constants a, b > 0 such that " (t) 6 [a, b]
for all > 0, a 2a----- In the case of f[(t) f+ (s)ds 0, (2.15) is immediately implied. In

the case of f7(0 f+ (s)ds > 0 it follows that ft(t f (s)ds < g, and we can choose , > 0

maximal such that "t+ f-(s)dsJ g. Hence we have

f+(s)ds f- (s)ds > 0
?,

for all v [t + V, r (t))

and

(t) (t)

f+ (s)ds f- (s)ds O.

Fixing e > 0 we can define a monotone increasing sequence (Z"i), 6 N by rl t, r2 "=

t+,,

{ fi
"gi

fi
7i+1

"gi+l :’-" max r [z’i, ’(t) f+(s)ds
-1

f-(s)ds}
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From the construction of this sequence it follows that z" converges to (t), and we may truncate
the sequence by choosing k I1 such that Irk-1 (t)l < e and set rk "= ?(t). Now we can
estimate

(t)

ft
’(t)

g(q)(s, x, u(.)), u(s))ds ea(S-O f(s)ds

ea(’-t) f+ (s)ds ea(s-t) f- (s)ds + Mge
i=2 -1 dlTi 23

n-

fi,i f i-b

<-- Z eS(ri-t) f+(s)ds e8(ri-t) f-(s)ds + Mg8
ot

i=2 ,1 ’/"i 2

20
Mge 23’

which proves (2.15) since e > 0 was arbitrary.
To prove the theorem we first fix T > 0 and define a sequence (’i), 1 _< < k by

0 := 0, i+1 "= (i), as long as f(i) < T, ? := T. Then we have a < ?i+1 ’i <
T T By definition of ’(t) it follows thatb for all 0 k- 1 and hence < k < 7"

fi-I-1 O/ for all 0, k 2. This yieldsai g(go(t, x, u(.)), u(t))dt < -T

g(q)(t, x, u(.)), u(t))dt

f
,i+l

fk
g(q)(t, x, u(.)), u(t))dt + g(q)(t, x, u(.)), u(t))dt

i=0 d ’i k-1

kot Tot
(2.16) < + (? g-1)Mg < + bMg

28 2b8

and as a conclusion

lim sup fT ot bMg ot

T--+oo - Jo
g(go(t, x, u(.)), u(t))dt _< limT_+oosup + T 2ba

<0,

which finishes the proof. [3

Note that it is possible just to replace < by > and -ot by +ot to obtain the analogous
result for a lower bound of J0.

THEOREM 2.2 (approximation theorem II). Consider optimal control systems on M given
by (2.1)-(2.6) and (2.7)-(2.10).

Assume there exists a controlfunction u(.) Lt such that Jo(x, u(.)) < C-otforconstants
C IR, ot > O. Then there exists a constant R R (x, u(.), ot) > 0 such that

8Ja(x,u(.)) < C for all < R.

Proof We may again assume C 0. Hence it follows that there exists To > 0 such that

(2.17) f0 g(qg(t, x, u(.)), u(t))dt < T for all T > To.
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Now assume that J(x, u(.)) >_ 0 for arbitrarily small g > 0. The first step of the proof of
Theorem 2.1 for the opposite inequality with 0 applied to g + then yields that there
exist arbitrarily large times 17 > 0 such that

g(o(t, x, u(.)), u(t))dt + T- > O,

which contradicts (2.17). Hence the assertion follows. [3

In contrast to the first approximation theorem here it is not possible simply to replace <
by > and -or by /or to obtain an analogous result for the lower bound. Estimate (2.17) does
only hold for the reverse inequality if in (2.10) the lim sup is replaced by the lim inf.

We will now combine these two theorems with controllability properties to obtain results
about the relation between 3v and v0 as 3 tends to zero. To do this we first introduce
some definitions.

DEFINITION 2.3. The positive orbit ofx M up to the time T is defined by

Of(x) {y M lthere is 0 < < T and u(.) H, such that q)(t, x, u(.)) y}.

The positive orbit ofx M is defined by

:= U
T>O

The negative orbits O(x) and O- (x) are defined similarly by using the time-reversed system.
For a subset D C M we define O(D) :-- xoO(x) and 0+(D), O(D),

0 (D) analogously.
DEFINITION 2.4. A subset D M is called a control set if

(i) D c_ 0+ (x) for all x D,
(ii) for every x D them is u (.) H such that the corresponding trajectory o(t x, u (.))

stays in Dfor all > O,
(iii) D is maximal with the properties (i) and (ii).

A control set C is called invariant if

C O+(x) for all x C.

A noninvariant control set is called variant.
In order to avoid degenerate situations we need the following setup: Let L =/L4{X (., u),

u 6 U} denote the Lie algebra generated by the vector fields X(., u). Let AL denote the
distribution generated by L in TM, the tangent space of M. Assume that

(2.18) dim A/ (x) dimM for all x 6 M.

This assumption guarantees that the positive and negative orbits of any point x 6 M up to
any time T 0 have nonvoid interior. Note that the definition of control sets demands only
approximate reachability (i.e., existence of controls steering into any neighborhood of a given
point); as a consequence of assumption (2.18) we have exact controllability in the interior of
control sets, more precisely intD C O+ (x) for all x D.

The following proposition shows--as an extension of [7, Prop. 2.3]--that we have exact
controllability infinite time on certain compact subsets.

PROPOSITION 2.5. Consider a control system on M given by (2.1)-(2.6) and satisfying
(2.18). Let D C M be a control set and consider compact sets K1 C O-(D), K2 C intD.
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Then there exists a constant r > 0 such thatfor every x K1, y K2 there exists a control

function u(.) Lt with o(t0, x, u(.)) y for some to < r.

Proof (i) We first show that for every x 6 K1, z K2 there is an open neighborhood
U(x) such that all y U(x) can be steered to z in bounded time to. By (2.18) there is
T < c and Zl 6 intD N O_r(z and an open neighborhood U(Zl) C intD N O_r(z). For
x 6 K there exists a control u(.) 6 b/and a time tl < : such that o(tl, x, u(.)) zl (as
a consequence of exact controllability in the interior of control sets). Since the solutions of
the system depend continuously on the initial value, there is an open neighborhood U (x) with
qg(tl, X1, U(’)) U(Zl) for all X U(x). Putting this together yields U(x) C O_tl+T(y),
which proves the assertion with to _< tl d- T.

(ii) For x K1, y K2 we now show that there exists a time ty < (X such that all
z in some open neighborhood of y can be reached from x in time ty. Let X intD and
Ul (.) L/, tl < cx such that (tl, X, U(’)) Xl (the existence of Xl, Ul (.), tl follows from
(2.18)). Again by (2.18) there exists T < cx and yl intD f3 (.9_T(Xl); let U(yl) be an open
neighborhood of yl contained in intD N O_T(X). Now because of the exact controllability
there exists u2(.) L/, t2 < witho(t2, Yl, U2) y. Sincethe solution ofthe control system
using the control u2 (.) defines a semigroup ofhomeomorphisms on M, the open neighborhood
U(yl) is mapped onto some open neighborhood U(y) and U(y) C O+<_tl+T+t2 (x). This means
that all z U(y) can be reached from x in time ty tl d- T + t2.

(iii) Because of the compactness of K1 and Kg. now the proof of the proposition
follows.

The following proposition summarizes the consequences of these controllability proper-
ties for the optimal value functions.

PROPOSITION 2.6. Consider optimal control systems on M given by (2.1)-(2.6) and
(2.7)-(2.10) and satisfying (2.18). Let D C M be a control set and consider compact sets

K1 C O-(D), K C intD. Then thefollowing estimates hold:
(i) vo(x)= vo(y) for all x, y intD.
(ii) vo(x) <_ vo(y) for all x O-(D), y intD.
(iii) 1Bye(x)- 8v(y)l _< e(8) for all x, y K2.
(iv) 8va(x) <_ 8v(y) d- e(8) for all x

and e(8) -- 0 as tends to zero.
Proof. Just combine (2.13) and (2.14) with the controllability properties stated

above.
Now we can formulate the results about the relation between the optimal value functions.
PROPOSITION 2.7. Consider optimal control systems on M given by (2.1)-(2.6) and (2.7)-

(2.10) and satisfying (2.18). Then

limsup;v(x) < vo(x) for all x M.
0

Proof. Fix e > 0. Choose a control function u (.) such that Iv0 (x) J0 (x, u (.))1 <

yieldsaR > 0 such that for all 8 (0, R1]" v(x) <Using Theorem 2.2 with c
J(x,u(.)) < Jo(x,u(.)) + < vo(x) + e. It follows that limsup__>0 Bye(x) < vo(x) since
e > 0 was arbitrary.

PROPOSITION 2.8. Consider optimal control systems on M given by (2.1)-(2.6) and (2.7)-
(2.10) and satisfying (2.18). Let D c_ M be a control set. Thenfor every compact Q c intD
and every e > 0 there exists a Ro > 0 such that

v(x) <_ vo(x) + e for all (O, Ro], x Q.

Proof. Fix x0 Q. Using Proposition 2.7 we know that there exists a constant R1 >
0 such that v(xo) <_ vo(xo) + for all (0, R1]. Now choose R > 0 such that
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for 3 < R2. Since v0 is constant on Q now theProposition 2.6 (iii) holds with e(3) <
assertion holds for all x Q with R0 := min{R1, R2}. [3

LEMMA 2.9 (pointwise convergence). Consider optimal control systems on M given by
(2.1)-(2.6) and (2.7)-(2.10). Assume there exists x M, R ], and a set B C M such that
8vs(y) < 6vs(x) + () for all y B, (0, R], and constants () > O. Assume there
exist optimal controls us(.) lg for all (0, R] such that p(t, x, us(.)) B for all > O.
Thenfor every e > 0 there exists Ro > 0 such that

16vs(x)- v0(x)l < max{e, or(g)} for all 6 (0, R0].

In particular ifot(3) 0 as 6 ---> 0 the convergence 3vs(x) --+ vo(x) is implied.
Proof. From Theorem2.1 itis clearthat Vo(X) < 3vs(x)+ot(6) for all 6 < R. Now choose

a control function u(.) such that Ivo(x) Jo(x, u(.))] < . Using Theorem 2.2 with ot

yields R0 > 0 such that for all 3 < R0: 6vs(x) < 6Js(x, u(.)) < Jo(x, u(.)) + < vo(x) + e.
Combining these inequalities finishes the proof. [3

By using the estimate of Proposition 2.6, two results on uniform convergence can
be obtained.

THEOREM 2.10 (uniform convergence). Consider optimal control systems on M given by
(2.1)-(2.6) and (2.7)-(2.10) and satisfying (2.18). Let D M be a control set and assume
there exist xo intD, a compact subset K c__ D, and optimal controls us(.) such that

p(t, xo, us(.)) K for all > 0 for all (0, R]

for some constant R > O. Then

6vs--+ vo uniformly on compact subsets of intD.

Proof. By Proposition 2.6 (iii), on any compact subset Q of intD we have I6vs(x)
3vs(y)l < e(6) --+ 0 uniformly for all x, y 6 Q as 3 tends to zero. By Proposition 2.6 (iv),
x0 and K fulfill the conditions of Lemma 2.9 with c(8) e(8) since K c_ D c__ O-(D).
Hence pointwise convergence follows. Since v0 is constant on intD, uniform convergence on
Q follows. [3

THEOREM 2.11 (uniform convergence in compact invariant control sets). Consideroptimal
control systems on M given by (2.1)-(2.6) and (2.7)-(2.10) and satisfying (2.18). Let C c_ M
be a compact invariant control set. Thenfor 6 0

(i) 3vs(x)--> vo(x) for all x intC,
(ii) 3vs ---> vo uniformly on compact subsets ofintC,
(iii) ifM is compact and C is the unique invariant control set we have SUPxM 3vs(x) --+

SUPxt vo (x).
Proof Since C is a compact subset of C and no trajectory can leave C, the conditions of

Theorem 2 (with K C) are fulfilled. Hence the assertions (i) and (ii) follow.
If M is compact and C is the unique invariant control set it follows that O- (C) M 16,

proof of Lem. 2.2 (i)].
From Proposition 2.6 (ii) and (iv) and the compactness of M O-(C), it follows for

any compact subset Q c intC that vo(x) < vo(y) and 6vs(x) < vs(y) + e() for all
x 6 M, y 6 Q. Since we have uniform convergence on Q assertion (iii) of Theorem 2.11
is proved. [3

Remark 2.12. Note that these results are not valid in general for the corresponding
maximization problems, since the second approximation theorem is not valid for the re-
verse inequality. However some of the results remain valid and others are valid under addi-
tional conditions.
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(i) The application of the results to the maximization problems is possible if the lim
sup in (2.10) can be replaced by a lim inf without changing the value of v0. This is possible if
there exist approximately optimal trajectories and controls--with respect to the maximization
problemmsuch that the lim sup is a limit. From [20, proof of Prop. 1.4 (a)] it is clear that this
is the fact if there exist approximately optimal trajectories and controls which are periodic.
A sufficient condition for this is that there exists an optimal trajectory that stays inside some
compact subset K C intD (cf. [20, Prop. 2.7]).

(ii) Adding this condition to the assumptions of Theorem 2.10 we obtain Theorem 2.10
from Wirth [20] under the weaker condition that the optimal trajectories with respect to the
discounted problems stay inside a compact subset of a control set instead of a compact subset
of the interior of a control set.

(iii) For invariant control sets C we can use [7, Cor. 4.3] to conclude that for any
initial value x0 6 intC there exist approximately optimal periodic control functions and tra-

jectories. Hence Theorem 3 remains valid for the maximization problem without any addi-
tional assumptions.

3. Lyapunov exponents of bilinear control systems. We will now return to the bilinear
control systems in , i.e., systems of the form

(3.1) 2(t) (Ao + ui(t)Ai)x(t), x(O) --Xo
i=1

with A Rdxd, j 0 m, u(.) Lt := {u R -- U, u measurable} with a compact
and convex set of control values U C ]Rm with nonvoid interior.

We denote the unique trajectory for any initial value x0 Rd and any control function
u(.) L/by x(t, xo, u(.)).

In order to characterize the exponential growth rate of the solutions of (3.1) we define the
Lyapunov exponent of a solution by

1
(3.2) )(xo, u(.)) := lim sup )- In IIx(t, xo, u(’))ll,

The minimal Lyapunov exponent with respect to xo 6 R \ {0} is defined by

(3.3) )* (xo) := inf )(xo, u(.)),
u(.)4

and the extremal Lyapunov exponents of the control system are defined by

(3.4) to* :-- inf inf )(x0, u(.)),
x00 u(.)e/J

(3.5) tc := sup sup )(x0, u(.)),
x00 u(.)bt

(3.6) t? "= sup inf )(x0, u(.)).
x00 u(’)b/

The Lyapunov exponent can be interpreted as a measure for the exponential growth of
trajectories. Our aim is to calculate numerical approximations of the minimal and maximal
Lyapunov exponents with respect to the initial values. If)* (x0) < 0 the system can be steered
asymptotically to the origin from x0. Using the approximation of the Lyapunov exponents we
then are able to calculate controls that stabilize the system.

For a bilinear control system (3.1) the following identity is obvious:

.(x0, u(.)) )(otx0, u(.)) for all x0 6 IRd \ {0}, oe 6 R \ {0}, u 6 H.
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Due to this observation we can identify all x 0 lying on a straight line through the origin.
Hence it is sufficient to consider initial values so in ]?d-1, the real projective space. To calculate
the Lyapunov exponents we can project the system onto the unit sphere gd-1 via so "= Xo/IIx0 II.
This yields the projection onto 1Pd-1 by identifying opposite points. A simple application of
the chain rule shows that the projected system can be written as

m

(3.7) (t) ho(s(t)) + Z ui(t)hi(s(t))
i=1

where

hi(s) [Ai stAiS Id]s for all 0 m.

The Lyapunov exponent (3.2) with respect to so xo/llxoll can be written as

(3.8) )(xo, u(.)) )(so, u(.)) lim sup - q(s(r, so, u(.)), u(r))dr

where

m

(3.9) q(s, u) st (Ao + -uiAi)s.
i=0

We recall some facts about projected bilinear control systems and their Lyapunov exponents.
For the projected bilinear system assumption (2.18) reads

dim AL(p) d- for all p ]d-1, L Z;M{h(., u), u q U}

where h(., u) := h0(.) + Y.im=l btihi(’). Under this assumption the following facts hold (cf.
[9, Cor. 4.4], [8, Thm. 3.10])"

If tel denotes the maximal Lyapunov exponent of the original system and c the minimal
exponent of the time-reversed system the identity Xl -tc: holds.

For the projected system there exist k control sets with nonvoid interior where 1 < k < d.
These are called the main control sets. They are linearly ordered by Di < Dj : there exists
pi Di, pj Dj, > 0, and u(.) /g such that q)(t, Pi, u) pj.

The control set D1 is open; the control set C :-- D is closed and invariant. All other
control sets are neither open nor closed. Furthermore we have O- (p) pd-1 for all p intC.

The linear order of the control sets implies a linear order on the minimal Lyapunov
exponents (which can easily be proved using Proposition 2.6): .*(Pi) <-- .* (Pj) for Pi Di,
pj 6 Dj, and < j. Furthermore, )* (p) is constant on the interior of control sets.

Under the following condition there is a stronger relation between the control sets of the
projected and the Lyapunov exponents of the bilinear system. Considering the set of control
values pU := {pu u U} for p > 0 and the corresponding set of control functions L/ we
assume the following p-p inner pair condition"

For all 0 < p < p’ and all (u(.), p) 6 b/ x I?a-1 there exist T > 0 and S > 0

such that q)(T, p, u(.)) 6 intO+r (p) (the positive orbit corresponding to b/#).

Let Do be a main control set corresponding to/go. We define the Lyapunov spectrum of(3.1)
over Do by

ELPy(’) {.(p, u(.))I qg(t, p, u) 6 D---7 for all > T for some T > 0}
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and the Lyapunov spectrum of(3.1) by

Ey := {)(p, u(.)) u(.) 6 b/, p 6 I?a-l}.
Under the p-p’ inner pair condition we know that

k(p)

ELy U ELy(D;)
i=1

for all except at most countably many p < p’, where k(p) is the number of main control sets

D corresponding to b/p 11, Cor. 5.6].
Furthermore Ey(D) are closed intervals and thus it is sufficient to calculate the minima

and the maxima of ELy(D) to obtain the whole Lyapunov spectrum of the system. These
maxima and minima can be approximated by periodic trajectories with initial values in intD.

In the case d 2 these results hold for all p > 0 without assuming the p-p’ inner pair
condition [11, Cor. 4.9].

We will now give an interpretation of the results of 2 in terms of calculating Lyapunov
exponents and stabilization. Since we are going to solve the discounted optimal control
problem numerically we cannot expect to calculate optimal control functions but only e-
optimal control functions. We call a control function Ux(.) Lt uniformly e-optimal with
respect to x M iff [J(o(t, x, Ux(.)), Ux(t + .)) 8v(p(t, x, Ux(.)))[ < e for all > 0.

THEOREM 3.1. Consider a bilinear control system (3.1) and the related optimal control
system on - given by (3.7) and (3.8) with cost function q from (3.9). Assume (2.18) is

satisfied. Let

v(x) := inf Ja(x,u(.)) and fia(x) := sup Ja(x,u(.)).
u(.)eb/ u(.)/

Then thefollowing estimates hold with e -- 0 as tends to zero.
(i) 6v(x) <_ )*(x) -t- e for all x M.
(ii) 6v(x) < )*(x) + e uniformly on compact subsets Q ofthe interior ofcontrol sets.

(iii) I6v(x) .*(x)[ <_ e uniformly on compact subsets Q ofthe interior ofcontrol sets
under the conditions of Theorem 2.10.

(iv) [6va(x) )* (x)[ < e uniformly on compact subsets Q ofthe interior ofthe invariant
control set.

(v) SUpxel v (x) -+ as tends to zero.
(vi) infxet 6a(x) -+ tc as tends to zero.
(vii) If ;: < 0 and u(.) is uniformly e-optimal with respect to s then o(t, x, u(.)) is

asymptotically stablefor all x R with s x/Ilx provided and e are sufficiently small.
(viii) If )* < 0 in the interior of some control set D and us(.) is uniformly e-optimal

with respect to s and p(t, s, u(.)) stays inside a compact subset of O-(D)for all times, then
q)(t, x, Us(’)) is asymptotically stable for all x IRd with s x/llxll provided 6 and e are
sufficiently small.

Proof All assertions follow directly from the results in 2. Assertion (iv) is true since
the invariant control set of the projected system is compact. Assertions (v) and (vi) are proved
using the fact that the projective space is compact and that there exists a unique invariant
control set for the projected system. [3

Remark 3.2. Knowing the facts cited in this section we can see that even more can be
calculated.

(i) Property (vi) can be used to calculate x* by calculating tc of the time reversed
system. Hence it is possible to approximate x, x*, and t for any bilinear control system
satisfying (2.18) by solving discounted optimal control problems.
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(ii) For all main control sets Di we can approximate the minimal Lyapunov exponent
over intDi as follows: Proposition 2.8 yields that 3va < )* + e uniformly on compact subsets
of intDi. Ifwe find control functions as described in Theorem 3.1 (viii) for e > 0 we know that
there exists a Lyapunov exponent )* < 3v + e; hence )* 6 [6va e, 3va + e]. However, the
existence of such control functions is not guaranteed; nevertheless for all examples discussed
in 5 it was possible to find them.

(iii) For systems with d 2 or systems with d > 2 satisfying the p-p’ inner pair
condition we are also able to compute ]y() for D C and D D1 at least for all but
countably many p > 0, since in this case the upper and lower bounds of this interval coincide
with x and t of the original or of the time-reversed system, respectively. For all other main
control sets we can apply the technique from (ii) to both the original and the time-reversed
system to calculate ]2y(/).

(iv) In the case that d > 2 and p > 0 is one of the (at most countably many) exceptional
points of the spectrum (3.10) we can use the monotonicity of v and ]2y in p. This implies
that there exist values pl < p < p2 arbitrarily close to p such that the approximated spectrum
contains E1 and is contained in E2Ly Ly"

4. Numerical solution of the discounted optimal control problem. A discretization
scheme to solve discounted optimal control problems in ]n has been developed by Capuzzo
Dolcetta [2], Capuzzo Dolcetta and Falcone [3], Capuzzo Dolcetta and Ishii [4], and Falcone
12], 13]. The algorithm used here to solve these problems is based on this discretization. We

will first describe this discretization scheme and then present the modifications for our case,
where the system is given on e-1 instead of Rn.

Hence we first assume that we have a discounted optimal control problem defined by
(2.1)-(2.6) and (2.8) with M Rn. In addition we need the following conditions on X and g:

(4.1) IlX(x, u) X(y, u)ll Lxllx Yll for all x, y 6 n for all u 6 U for an Lx ,
(4.2) IIX(x, u)ll _< Mx for all (x, u) 6 ]n x U for an Mx ,
(4.3) Ig(x, u) g(y, u)l < Lgllx Yll for all x, y 6 ]n for all u 6 U for an Lg .
The 6 discounted cost functional J and the optimal value function va are defined as in (2.9)
and (2.11).

Under the assumptions made above the value function va satisfies

(4.4) Ioa(x)l < Mg and Ira(x)- v(y)l < fix- yl

for all x, y 6 n (cf. [4]; the second estimate can be proved by using [4, Lem. 4.1]). For
g for a constant M independent on and , is a constant satisfyingsmall 6 > 0 we have C -g-
for3<L and 6(0,1) arbitrary for 3 Lx1 for > Lx, ’ Z-; x, ?’

Furthermore (cf. 17]) va is the unique bounded and uniformly continuous viscosity so-
lution of the Hamilton-Jacobi-Bellman equation

(4.5) sup{3v(xo) g(xo, u) Dv,(xo)X(xo, u)} O.
uEU

The first discretization step is a discretization in time. By replacing Dva by the difference
quotient with time step h one obtains

(4.6) sup{vh(X) il)h(X + hX(x, u)) hg(x, u)} 0
uEU

with/3 := 6h.
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It turns out that the unique bounded solution of this equation is the optimal value function
Vh ofthe discretized optimal control system with respect to the space b/h of all controls constant
on each interval [jh, (j + 1)h), j 6 N:

(4.7) xo’=x, xj+l"=xj+hX(xj, uj), j=O, 1, 2

with running cost

Jh(x, u(.)) h E flj g(xj’ uj).
j=O

Furthermore for all p 6 N, Vh satisfies

(4.8) inf hEjg(xj, uj) + iPl)h(Xp)Yh(X)
u(.)eUh

j=O

and the estimates (4.4) also apply to Vh.
The discretization error can be estimated as follows [4, Thm. 3.1]:

(4.9) sup I(va- Vh)(X)l Ch
XE]I

for all h 6 (0, 1/2). Here we have C for small 3 > 0 and ?, is the constant from (4.4).
The discretization error of the functionals for any u(.) 6/gh can be estimated as

(4.10) sup IJh(x, u(.)) Ja(x, u(’))l < Ch
x", u(.)bth

Mwhere C -g- for small 3 > 0 and Y as above [4, Lem. 4.1 ].
In order to reduce (4.6) to a finite-dimensional problem we apply a finite difference

technique. To do this we assume the existence of an open, bounded, and convex subset f2
of the state space Rn which is invariant for (2.1). Thus a triangulation of S2 into a finite
number P of simplices Sj with N nodes xi can be constructed (cf. [13, Prop. 2.5]) such that
’k :__ [’--Jj’-I p Sj is invariant with respect to the discretized trajectories (4.7). Here k :=
sup{llx y IIIx and y are nodes of Sj, j 1 P}. We are now looking for a solution
of (4.6) in the space of piecewise affine functions W := {w 6 C(flk) Dw(x) cj in Sj }.

Every point xi + hf(xi, u) can be written as a convex combination of the nodes of the
simplex containing it with coefficients ,kij(u). Let A(u) := [,ij(u)]i,j=l N be the matrix
containing the coefficients and G(u) := [g(xi, u)]i=l N an N-dimensional vector containing
the values of g with control value u at the nodes of the triangulation. Now we can rewrite
(4.6) as a fixed point equation

(4.11)

It follows that Th is a contraction in ]1N with contraction factor fl := 1 8h and therefore
k and lineardenotes the function obtained by vh (xi) := [V*]ihas a unique fixed point V*. If vh

interpolation between the nodes, the discretization error can be estimated by

kF
(4.12) sup I(v- Vh)(x)l C--

xe h

with ?’ as in (4.4) and C for small 6 > 0 (cf. [13, corrigenda]).
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For the whole discretization error we obtain the following estimate:

((4.13) sup I(Vh v)(x)l < C h- / --with the constants from (4.9) and (4.12).
Remark 4.1. These results have been improved by Gonzales and Tidball 14]. From 14,

Lem. 3.4] in connection with [4, Lem. 4.1] it follows that

(4.14) xsaksup I(Vh- Vh)(x)l C ()r
14, Thm. 3.1 yields

((4.15) easup I(Vhk v)(x)l _< C / +

with similar constants C and ?’.
Remark 4.2. Note that the convergence becomes slow if the discount rate 3 becomes

small. For the approximation of the average cost functional as described in 2 it is nevertheless
necessary to calculate v for small 3 > 0. This means that for this purpose we need a fine
discretization in time and space to get reliable results.

If one uses estimate (4.13) we obtain as an additional condition that k should be smaller
than h, using (4.15) convergence for the case k h is guaranteed.

To handle the optimal control problem on I?’-1 we use the following modifications on
this scheme.

We first consider the optimal control problem on d-1 defined by the projected system
(3.7). The optimal value function va then again satisfies (4.4) and is the unique bounded and
uniformly continuous viscosity solution of (4.5). This can be proved exactly the same way as
in the ]1n case by using the metric on a-1 induced by the norm on Na.

We have seen that the discretization in time of (4.5) corresponds to the Euler discretization
of the control system. Hence here we use the following Euler method on ga-1. For h > 0 and
any s a-1 we define

s + hX (s, u)
(4.16) h(S, u) "=

IIs / hS(s, u)ll’

i.e., we perform an Euler step in Rd and project the solution back to d-1. With this (4.6)
reads

(4.17) sup{vh(S) iVh((h(S, bl)) hg(s, u)/= 0
uU

and (4.7) translates to

(4.18) so S, Sj_t_ "= Cbh(Sj, U), j O, 1, 2

The estimates (4.8)-(4.10) remain valid; again all proofs from the ]1 case apply by using the
metric on gd-1 induced by the norm on Rd.

We will now use the fact that this discrete time control system on g- defines a (well-
defined) control system on I?d- by identifying s and -s on gd-. Let W C gd- be an open
set in gd-1 such that it contains the upper half of the sphere. Any discrete time trajectory
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(Si)iENo C gd-1 as defined in (4.18) can be mapped on a trajectory (i)iEN0 C W by i Si
if si W, i --Si if si W. Since X (s, u) -X(-s, u) this mapping is well defined
and g(s, u) g(-s, u) implies that Vh does not change if we only consider trajectories in W.
Hence we can define a discrete time optimal control problem on W via

{ (I)h (S)’
h(S

(I)h (S)

(I)h (S) W,

*h(S) W

without changing Vh

To obtain a region f2 C ]d- suitable for the space discretization we use a parametrization
q of 5d-1 which is invertible on W such that q-I maps W to an open and bounded set
f2 C d-1. (The parametrizations used in our examples are given in 5.) Now we can project
the system on W to a system on f2 and compute Vh on S2. The system on f2 is then given by

di)h,f2(X bl) :-- kI/-1 (t)h(kI/(x), b/)), gg2(X, b/) "-- g(kI/(x), b/),

and by definition of t)h the set f2 is invariant for this discrete time system. We can rewrite (4.17)
by using h,n and ga and denoting the solution by Vh,a. This solution satisfies Vh(P(x))
Vh,n(X) and, since q is Lipschitz continuous, estimate (4.4) remains valid for Vh,n.

Thus we can proceed as in the ]n case described above. Keeping in mind that there exists
a one-to-one relation between the system on W and the system on f2 we can simplify the
notation by writing h, g, and Vh instead of Ch,n, gn, and Vh,n.

We will now turn to the problem of how the fixed point equation (4.11) can be solved
numerically. In order to do this it is possible to use the contraction Thk to construct an iteration
scheme, but since the contraction factor/3 1-3h is close to one this iteration converges rather
slowly. An acceleration method for this iteration scheme has been proposed by Falcone 12].
Falcone uses the set V ofmonotone convergence of Th given by ; := {V 6 ]N The(V) > V}
where ">" denotes the componentwise order. A simple computation shows that )2 is a convex
closed subset of RN. Given a V0 6 ; the operator Th is used to determine an initial direction.
The algorithm follows this direction until it crosses the boundary of );; then it determines a
new direction using Th and continues the same way.

A different algorithm to calculate V* can be developed by observing that V* is the
componentwise maximum of V and that 1; can be written as

(4.19)

" {V ][N

i Ej=, U i,ij(lg)[V]j "1" hGi(u)
[V]i < min Jsi

uEt 1 iZii(U)
for all 6{1 N}}.

Note that the fraction on the right side does not depend on [V]i. Thus we can construct the
increasing coordinate algorithm:

Step 1" take V l; (e.g. V M _M)T),...,
Step 2: compute sequentially

fl Ej=, v ,ij(tl)[V]j + hGi(u) I
[V]i min Jsi

uV 1 i,ii (bl)
for all {1 N}.

Step 3: continue with Step 2 and the new vector V.

Figure 4.1 shows an illustration of the algorithms for N 2.
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Falcone’s accelerated method Increasing coordinate algorithm

FIG. 4.1. Algorithms.

Note that for every arrow in the left picture the intersection between the initial direction and
the boundary of )2 has to be determined. To do this, e.g., by bisection as in the implementation
used here, the operator Th has to be evaluated several times to decide if a point is inside or
outside );. In the increasing coordinate algorithm N arrows (i.e., two arrows in Figure 4.1)
are calculated by N evaluations of the fraction in Step 2. These N evaluations are about as
expensive as one evaluation of Th. This means that one iteration in the increasing coordinate
algorithm corresponds to one evaluation of Th in the acceleration method.

The convergence of this algorithm is guaranteed by the following lemma.
LEMMA 4.3. Let V1 be the vector obtained by applying Step 2for N to a vector

Vo E V. Then

[V1]i [V0]i >_ [T(Wo)]i [V0]i.

Proof Because of V0 e ); and (4.19) it follows that [V1]i > [V0]i for all 1 N.
Hence

i Yj= U Zij(u)[Wllj + hGi(u) (1 ,ii(u))[Wo]i ][V1]i [V0]i min Jvki
uV il,ii (U)

> min{ - ’ij(u)[Vo]j+hai(u)-(1-fl’kii(u))[Vo]i IuU j=l N

ji

min fl i,ij(u)[Vo]j + hai(u) [V0]i [Th(Vo)]i [V0]i.
u6U

j=l

The convergence of the increasing coordinate algorithm therefore is a consequence of the
monotone convergence of the iteration scheme using the contraction Thk.

All iteration methods described here have in common that during the iteration a minimum
over all u 6 U has to be calculated. The following lemma shows that this can be done by
minimizing over a finite set U C U.

LEMMA 4.4. Assume that X and g are uniformly Lipschitz continuous in the control u U
with Lipschitz constant Lu. Let Ue C U such that for all u U there exists t Ue with
Ilu 11 < . Let Lt denote the corresponding set ofcontrolfunctions. Thenfor all s d-1
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it holds that

inf Ja(s, u(.)) inf Ja(s, (’))11 < C
u(.)b/ (.)b/

wherefor 3 < Lx + 1 we have rl
Proof. For all u(.) 6 b/there exists zT(.) 6 b/ such that Ilu(t) 7(t)ll < e for almost all

6 IR. Hence we have

lifo(t, s, u(.)) p(t, s, (’))11 < Luet + gx II0(v, s, u(.)) 0(v, s, (.))lldv

where I1" denotes the norm on IRa. Now the Gronwall lemma and [4, Lem. 4.1] can be used
to estimate this integral equation and the assertion follows.

For the projected bilinear control system with cost function g q the assumptions of
Lemma 4.4 are fulfilled and hence we may use a finite set of control values to calculate vh.

is calculated it can be used to construct e-optimal control functions"Once vh
Step 1: Let x0 x, n 0.
Step 2" Choose a control value ~Uxn,h U such that tV(dPh(Xn, Uxn,h) -{- hg(xn, Uxn,h)

becomes minimal.
Step 3" Let Ux,h (t) Uxn,h~k for all [nh, (n + 1)hi.
Step 4: Let Xn+l Oh(Xn, UXn~ ,h)’ n n + 1 and continue with Step 2.
In Step 2 a unique ~Uxn,h U may be found, e.g., by using a lexicographic order on U.
THEOREM 4.5. Let Ux,h denote the controlfunction defined above. Thenfor every e > 0

there exist H > O, K(h) > O, such thatfor all h < H, k < K(h):

IJ(x, Ux,h(’)) va(x)l < e for all x

Proof. Using (4.12) or (4.14) and the definition of k,i k
Ux,h :--" Ux,hl[ih,(i+l)h we have the

following for sufficiently small k and xi from (4.7):

k,i k k,i k,i k
Ux h) -}- vhhg(xi blx,h) "31- iUh(OPh(Xi, blx,h)) > hg(xi, (dPh(Xi’ Ux’h)) 2

k> Vh (xi)
2 Vh

and with 0,i
Ux,h U denoting the value, where hg(xi, u) -+- tUh(dPh(Xi, hi)), bl U attains its

minimum:

k,i k k,i 0,i k 0,ihg(xi, blx,h) dr- iUh(dPh(Xi, blx,h) <__ hg(xi, blx,h) t_ tUh(fh(Xi, blx,h)
0,i 0,i 8

< hg(xi, ux,h) + flVh(h(Xi, Ux,h)) + -k<__ (Xi "-}- g.Vh (Xi q
2 Vh

Putting this together yields

k,i kk,i k(dPh(Xi, blx h)) Vh(Xi)l < e for all x 6 2(4.20) Ihg(xi, blx, h) Or- IVh

By induction we can conclude that for every e > 0, p 6 N, h > 0 there exists k > 0 such
that

(4.21)
P

k,j flp+l h kh flJg(xj, blx,h) "}- Vk (Xp+l) Vh (X)
j=0

< for all xf2.
2
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Since/3 < 1 for all h > 0 and g and Ph are bounded on f2k, for every e > 0 we may find a

Ph E 1%I such that

(4.22)
o Ph

h "x,h h "x,h Vh (X 
j=0 j=0

< forallx E ,u 6b/h.

Combining (4.12) or (4.14), (4.21), and (4.22) yields

IJh(X, Ux,h(’))- Ph(X)l e for all x

Using estimates (4.10) and (4.9) the assertion follows.
Remark 4.6. The proof also shows how k and h have to be chosen: first choose h such

that (4.10) and (4.9) hold for the desired accuracy; then choose k dependent on Ph from (4.22)
such that (4.21) is fulfilled.

To construct a control function that is uniformly e-optimal we can put together the
optimal control functions according to the following definition and lemma.

DEFINITION 4.7. Let ux (.) bt be controlfunctionsfor every x f2. Let (’gi)i6N be a real
sequence ofswitching times satisfying rl 0, z’i+l > "ci and a < z’i+l "ci < b for all N
for positive constants a, b IR, a < b. Then we define controlfunctions fix(’) bl by

txl[ri,r+,) Uo(x,r,ax(.))l[O,ri+l-r) for all N.

LEMMA 4.8. Assume for every x f2 there exists a control function Ux(.) Lt such
that IJa(x, Ux(.)) v(x)l < e. Then for tx(.) bl from Definition 4 the following estimate
holds:

J(o(cr, x, x(’)), x(r + .)) _< v(0(r, x, x(’))) +
eb

e for all r > 0.
3a

Proof. For all > 0 it holds that

(4.23)

v(x) >_ J(x, Ux(.)) e

fo> e-g(qg(x, r, Ux(’)), Ux(r))dr + e-tv(o(x, t, Ux(.)) e.

By induction with ri it follows that

J(x, fix(’)) <_ v(x) + e-ie
i=0

and for 0 < 6a < 1 this sum can be estimated by

y’e-’ri < Ze-’ai < Z(1--a)i <
a

i=0 i=0 i=0

Together with the definition of the t/x (.) this implies

Ja(ftg(’gi, x, lx(.)) tx(’g nt- .)) <_ va(qg(’gi, x,/x(’))) --for all 6 N.
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For the times between "gi let a > 0, g > 0 and consider ux0 (’) 6/g such that Ja (x0, Ux0 (’))
(xo)l _< :

va(xo) + > e-atg(qg(t, xo, Uxo (’)), Uxo (t))dt

e-at g(go(t, Xo, Uxo (’)), Uxo (t))dt

+ e-a e-atg(99(t, 99(a, xo, Uxo (’)), Uxo (a 4- .)), Uxo (a 4- t))dt

e-at g(go(t, Xo, Uxo (’)), Uxo (t))dt

+ e-a Ja(qg(a, xo, Uxo(’)), Uxo(a + "))

>_ e-atg(qg(t, Xo, Uxo), Uxo(t))dt 4- e-aava(go(a, xo, Uxo))

>_ v(xo).

From this inequality it follows that

Iva(o(a, xo, Uxo(.))) Ja(o(a, xo, Uxo(.)), Uo(a 4-.))1 <_ eag.

Choosing 6 I maximal with ri < a and xo "= 99(ri, x, fix(’)) it follows that

1 eab 1 eab
[va(cp(a, x, fix(’))) Ja(p(a, x, fix(’)), fix(a + ’))l <- ea(a-ri)--ae <_ ae

3a
e

which finishes the proof.
Remark 4.9. This lemma does not answer the question of which switching times ri are

optimal. In estimate (4.23) we have to assume the worst case, i.e., that the error up to the
time

e(t) "= va(x) e-ar g(p(x, r, Ux(’)), Ux(r))dr e-atva(p(x, t, Ux(.))

may be equal to e for all > 0 and hence the error becomes large if a min(ri+l ri)
becomes small. The numerical examples discussed in the next section show that good results
can be obtained for small a.

Using the results from Theorem 3.1 we can use the control functions constructed here to
develop an algorithm to stabilize bilinear control systems:

k the approximation of the optimal value function for small dis-Step 1" Calculate vh,
count rate 6 > 0 to approximate the minimal Lyapunov exponents of the systems (under the
assumptions of Theorem 3.1).

Step 2: Given an initial value x 6 d with *(x) < 0 compute the control function
that is e-optimal along its trajectory according to Definition 4 (using the projected system).
The trajectory of the bilinear system using this control is asymptotically stable under the
assumptions of Theorem 3.1 provided h and k are small enough.

Note that the main numerical expense lies in the calculation of the approximated optimal
k Once this function is known the algorithm to calculate the control functionsvalue function vh.

is numerically simple and quite fast.
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For this algorithm only the information x(t, xo, u(.))/llx(t, xo, u(’)) of the bilinear sys-
tem is needed. In particular the calculated control functions are exactly the same for all xl,

x2 d with Xl/llxlll x2/llx211 and hence the algorithm works for arbitrarily large or
small IIx II. It is not necessary to discretize the trajectory of the bilinear system or to lift the
discretized solution from d-1 to Rd which then would imply that small discretization errors
on d-1 could become large in Rd.

The value function and the corresponding optimal control values for each point can also
be used to "verify" the assumptions ofTheorem 3.1 (viii) numerically: if there exists a set such

kthat vh < 0 and this set is invariant with respect to the numerically computed optimal controls,
the corresponding trajectory will tend to zero for any initial value from this set, provided the
discretization is fine enough (see also Remark 3.2).

Remark 4.10. The way the stabilizing control functions are constructed leads to the
question of whether vh can be used to construct a stabilizing feedback for the bilinear control
system. This question is closely related to the optimal switching times ri. If it is possible to
choose (Zi+l Z’i arbitrarily small it could also be possible to obtain an e-optimal feedback,
e.g., by linear interpolation or averaging of the feedback for the discrete time system.

The main problem in proving this property of the switching times lies in the fact that the
Euler method yields only linear convergence in h, hence quadratic convergence for one time
step. Thus the difference between Vh(q)(h, x, u)) (the value that can be reached after the first
time step) and l)h(fI)h(X U)) (the value that is supposed to be reached) is of the order h2’ For
9/ < g this error will accumulate and convergence is no longer guaranteed. However, there is
hope to overcome this difficulty by using a higher-order method to calculate h (x, u) which
then will require a different proof of the convergence of Vh.

5. Numerical examples. In this section we will present some numerical examples cal-
culated with the algorithm developed in the previous sections. All examples were computed
on an IBM6000 Workstation.

The first example is a bilinear control system in 2, the two-dimensional linear oscillator
given by

2 + 2b2 + (1 + u)x 0

or written as a two-dimensional system by x x, x2 2"

(5.1) ( 21 ) ( 0 ) Q Xl )22 -1 u -2b X2

=:A(u)

The projection of the system to 51 by s reads

(5.2)
s2(1 nt- us q-- 2bSlS2) )-(1 -t- U)Sl 2bs2 nt- s(usl + 2bs2)

For the one-dimensional sphere we may use the parametrization via polar coordinates q(0)
r rr ki-I(cos cp, sin q)) where q I(S) arcsin(s2), $2 E [---, 5], (S) arcsin(zr $2), $2 E

-]. In polar coordinates the cost function reads g(qg, u) -sin 0(u cos q9 -+- 2b sin 0),
and we can choose S2 (0 e, zr + e) to cover the whole projective space (identified with
one half of the sphere).

Tables 5.1-5.3 show the number ofiterations in the increasing coordinate algorithm (opsl)
and the number of evaluations of the operator Th in the accelerated algorithm (ops2) depending
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TABLE 5.1
Dependence on the time step h (k 0.032, 3 1.0).

1.0 13 11477
0.1 42 11477
0.01 51 11477

TABIE 5.2
Dependence on the space discretization k (h 0.1, p 1.0).

ops1 ops2

0.06328 5918

00.0003623 42 11477
233 49625

TABL 5.3
Dependence on the discount rate (h 0.1, k 0.032).

5.0
2.0
1.0
0.1
0.01
0.001

-0.66 16 2001
-1.66 35 5543
-3.32 42 11477
-33.23 194 121187
-332.27 1707
-3322.72 16836

TABLE 5.4
Lyapunov spectrumfor system (5.1) with b 1.5.

p min(D1) lmax(D’)lmin(D2)I max(D2)

0.0 -2.61 -2.61
0.1 -2.65 -2.58
0.2 -2.69 -2.52
0.3 -2.73 -2.47
0.4 -2.77 -2.42
0.5 -2.81 -2.37
0.6 -2.85 -2.31
0.7 -2.89 -2.24
0.8 -2.91 -2.18
0.9 -2.96 -2.09
1.0 -2.99 -2.00
1.1 -3.00 -1.90
1.2 -3.03 -1.74
1.3 -3.03

-0.38
-0.42
-0.47
-0.52
-0.57
-0.63
-0.69
-0.75
-0.82
-0.90
-0.99
-1.10
-1.27

-0.38
-0.35
-0.31
-0.25
-0.22
-0.19
-0.14
-0.11
-0.07
-0.06
0.00
0.03
0.06
0.10

on certain parameters with damping parameter b 1.5. Remember that one iteration in the
increasing coordinate algorithm corresponds to one evaluation of Th. The used set of control
values was pU with U {-1, and p 0.5.

Using the techniques described in Remark 3.2 the whole Lyapunov spectrum for this
system was computed for p {0.1, 0.2 1.3} with parameters h 0.01, k 0.006, and

0.01 and locally refined grid with k 0.0016 around the variant control set for p < 0.5.
(For p 0.0 the exponents are just the eigenvalues of A.) The calculated intervals are shown
in Table 5.4 and Figure 5.1. For p < 1.2 there exist two control sets D1 and D2 and therefore
two intervals of Lyapunov exponents. For p 1.3 there is only one control set and thus only
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Control Range p

FIG. 5.1. Lyapunov spectrum ofsystem (5.1) with b 1.5.

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0
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FIG. 5.2. Trajectoriesfor b 1.5, p 0.5.

one interval. For this system a finer discretization of U does not yield different values for Vh;
it is sufficient to minimize over the extremal control values.

For p 0.5 the system is asymptotically stable for all control functions since the maximal
Lyapunov exponent is negative. But as the Lyapunov exponents corresponding to D1 are much
smaller than those of the control set D2 it can be expected that the optimal trajectories with
initial value inside D1 tend to zero much faster.

Figure 5.2 shows that this is exactly whathappens. In this figure the dotted lines correspond
to the boundaries of D1, the dashed lines to the boundary of D2.
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All trajectories in this section were computed using the extrapolation method for ordinary
differential equations by Stoer and Bulirsch 19, 7.2.14]. The parameter a from Definition 4
was chosen as a h (see Remark 4.9).

The second example is the three-dimensional linear oscillator given by

y + a 4- b + (c 4- u)y O

or written as a three-dimensional system by

(5.4) P2 0 0 y2

P3 -(c+u) -b -a y3

with a, b, c 6 N, and u 6 U. The projected system on g2 reads

(5.5)

s2 Sl (--tSlS3 4- SlS2 4- (1 b)s2s3 as)
s3 s2(-tSlS3 + sis2 4- (1 b)s2s3 as) )--lS1 bs2 as3 s3(-lS1S3 + s1s2 4- (1 b)$2s3 as)

with fi "= c / u.
For 2 the parametrization by spherical coordinates is not suitable since this parametriza-

tion maps two opposite points to a line and hence it is not invertible on one half of the sphere.
Thus the stereographic projection is used instead; it is given by

2xl 2x2 2
q/(x)

4-Ilxll 2’ 4- Ilxll 2’ 1 / Ilxll 2

and

’S1, $2q’ (s) 1 + s3 + s3

The cost function reads

g(x, u) -(c 4- u)q/1 (X)q/3(X) 4- q/1 (X)q/2(X) 4- (1 b)q/:z(x)q/3(x) aq/3(x)2

with q/= (q/l, q/2, q/3). The set S2 was chosen as (-1 e, 1 + e) x (-1 e, 1 + e) to
cover the whole IP2 (identified with the upper half of g2).

All values given have been checked according to Remark 3.2 (ii); in all cases it was possible
to find trajectories that realized the values as Lyapunov exponents. Hence the calculated values
at least give an approximation of the minimal Lyapunov exponents over the interior of the
control sets. To apply the results of Remark 3.2 (iii), i.e., to make sure that this is indeed
the Lyapunov spectrum, we have to check the p p’ inner pair condition described in 3.
Unfortunately as of now it is not known how to check this condition analytically. However,
the program CS2DIM from Hickl 15] has been used to calculate reachable sets for the system
for different p-parameters numerically. Since they turned out to be strictly increasing in this
example there is strong evidence that the condition is fulfilled.

For Figures 5.3-5.8 spherical coordinates (sl sin 0 cos q), s2 sin 0 sin q9, s3
cos 0)x 0, y q) were used and the system was transformed by z(t) := e1/2aty(t).

The first parameters considered for this system were a 1, b 0, c 0.5, and
U {-0.3, -0.25 0.25, 0.3}. Figure 5.3 shows the two control sets of this system. The
control sets were computed again using the program CS2DIM 15].
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FIG. 5.3. Control sets ofsystem (5.5) with a 1, b 0, c 0.5.

FIG. 5.4. Valuefunction around D1.

The numerical parameters used for this example are k 0.003 around D1, k 0.09
elsewhere, h 0.05, and 8 0.01. The discounted value function of this system around
D1 is shown in Figure 5.4. The calculated minimal Lyapunov exponent over D1 is -1.25,
the maximal exponent is -1.15. The calculated minimal and maximal exponents over D2
are 0.019 and 0.24 and the value function is constant outside D1. Figure 5.5 shows two
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FIG. 5.5. Optimal trajectories in D1.

TABLE 5.5
Stabilized trajectoryfor system (5.4) with a 1, b 0, c 0.5.

2
3
4
5
6
7

9
10
11

Xl X2 X3

0.124609 -0.169914 0.219449
0.031318 -0.043096 0.060307
0.008062 -0.010800 0.014665
0.002129 -0.002818 0.003757

-0.000750 0.0009860.000569
0.000153 -0.000201 0.000264
0.000041 -0.000054 0.000071
0.000011 -0.000014 0.000019
0.000003 -0.000004 0.000005
0.000000 -0.000001 0.000001
0.000000 0.000000 0.000000

trajectories of the projected system with initial values inside D1. Table 5.5 shows the values
of one corresponding trajectory in I3.

The second set of parameters considered for this system is a -1, b -3, c 0.5,
and U {-1.0, -0.9 0.9, 1.0}. Figure 5.6 shows the three control sets of the projected
system, the domain of attraction of D2 (denoted by A-(D2)), and the domain of attraction of
D2 of the time-reversed system (denoted by A+ (D2)).

Here the numerical parameters were k 0.002 around D1, k 0.045 elsewhere, h
0.05, and 3 0.01. Figure 5.7 shows the discounted optimal value function around D1.

The calculated spectrum for this example is (D1) [-1.47,-1.17], .(D2)
[-0.10, 0.43], and )(D3) [2.07, 2.36].

Figure 5.8 shows an optimal trajectory in IP2, starting in the domain of attraction of
D2. Table 5.6 shows the corresponding trajectory (Xl, x2, x3) in IR3 and another trajectory
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X

FIG. 5.6. Control sets ofsystem (5.5) with a -1.0, b -3.0, c 0.5.

FIG. 5.7. Valuefunction ofthe system.

(Yl, Y2, Y3) in R with projected initial value in D1. This trajectory tends to zero much faster,
which is exactly what one would expect since the minimal Lyapunov exponent inside D is
much smaller.
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FIG. 5.8. Optimal trajectory starting in A-(D2).
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10
15
20
25
30
35
40
45
5O

TA3LE 5.6
Stabilized trajectoriesfor system (5.4) with a 1, b -3, c 0.5.

Xl x2 X3

0.576395 -0.119011 0.071718
0.293857 -0.044627 0.007731
0.142984 -0.020156 0.003083
0.070691 -0.009962 0.001172
0.034949 -0.004924 0.000754
0.017279 -0.002434 0.000373
01008543 -0.001204 0.000184
0.004224 -0.000595 0.000091
0.002088 -01000294 0.000045
0.001032 -0.000146 0.000022
0.000510 -0.000072 0.000008

Yl Y2 Y3

0.096972 -0.141621 0.200267
0.000260 -0.000384 0.000562
0.000000 -0.000000 0.000000
0.000000 -0.000000 0.000000
0.000000 -0.000000 0.000000
0.000000 -0.000000 0.000000
0.000000 -0.000000 0.000000
0.000000 -0.000000 0.000000
0.000000 -0.000000 0.000000
0.000000 -0.000000 0.000000
0.000000 -0.000000 0.000000
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CONVERGENCE OF THE BFGS METHOD FOR LC CONVEX CONSTRAINED
OPTIMIZATION*

XIAOJUN CHENt

Abstract. This paper proposes a BFGS-SQP method for linearly constrained optimization where the objective
function f is required only to have a Lipschitz gradient. The Karush-Kuhn-Tucker system of the problem is
equivalent to a system of nonsmooth equations F(v) 0. At every step a quasi-Newton matrix is updated if F (v)l]
satisfies a rule. This method converges globally, and the rate of convergence is superlinear when f is twice strongly
differentiable at a solution of the optimization problem. No assumptions on the constraints are required. This
generalizes the classical convergence theory of the BFGS method, which requires a twice continuous differentiability
assumption on the objective function. Applications to stochastic programs with recourse on a CM5 parallel computer
are discussed.

Key words, quasi-Newton methods, convex programming, nonsmooth equations

AMS subject classifications. 90C30, 90C25

1. Introduction. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is the most
successful quasi-Newton method for solving convex minimization problems [11], [14]. In
this paper we consider the BFGS method for solving the following constrained minimization
problem:

min f(x)

(1.1) subject to (s.t.) Ax < b,

where A Rmn, b Rm, and f R R is a convex LC function.
The LC property of f means that f is Fr6chet differentiable at all points in an open convex

set f2

_
R containing X {x Rn Ax <_ b}, and the gradient function g := Vf’f2 --+ Rn

is locally Lipschitz in f2. If f is LC and X is nonempty, then (1.1) is called an LC
minimization problem. LC optimization problems arise from nonlinear minimax problems,
stochastic programs, augmented Lagrangians, semi-infinite programs, and some differentiable
penalty function methods for constrained optimization problems. See [2], [7], [8], [13], [27],
[28], [31], [32], [33], [37].

The Karush-Kuhn-Tucker (KKT) system for (1.1) is

Vf(x) + ATu O,

U>0, b Ax >_ O, ur (b Ax) O,

where x Rn and u Rm. Let N n + m and v (x T, uT)r. Then the KKT system is
equivalent to a system of nonsmooth equations [25]"

(Vf(x) +ATu, )(1.2) F(v)
min(u, b Ax)

O,

where the "min" operator denotes the componentwise minimum of two vectors.
The local convergence theory of quasi-Newton methods for smooth equations and smooth

unconstrained minimization problems is well developed. See [3], [4], [11], [12], [14], [22].
Quasi-Newton methods have been applied to nonsmooth equations in [5], [6], [9], [16], [17],

*Received by the editors September 28, 1994; accepted for publication (in revised form) September 19, 1995.
School of Mathematics, University ofNew South Wales, Sydney 2052, Australia (X.Chen@unsw.edu.au). This

research was supported by the Australian Research Council.
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[19], [21], [23], but local superlinear convergence properties have not been obtained without
the differentiability of the function F at a solution of the system of nonsmooth equations. Re-
cently, Bonnans, Gilbert, Lemar6chal, and Sagastizfibal [2] presented a conceptual method for
LC unconstrained minimization combining the BFGS method with the Moreau-Yosida regu-
larization. Their local superlinear convergence requires that f be twice strongly differentiable
at the solution.

Several authors [7], [8], [27], [28], [31], [32] studied the generalized Newton method
for solving problem (1.1). Local superlinear convergence properties were established under
a "semismoothness" assumption on the gradient function g at a solution [28], [31]. The
generalized Newton method utilizes the generalized Hessian instead of V2f in a Newton
method or a sequential quadratic programming (SQP) method. In many cases, however,
calculating the generalized Hessian is very difficult.

Motivated by the fact that the BFGS method combines global convergence, a rate of
superlinear convergence, and simple updates for smooth unconstrained minimization problems
[4], we present a BFGS-SQP method for solving the LC minimization problem (1.1). This
method replaces the Hessian in the SQP method by the updated BFGS matrix and uses an
Armijo line search to reduce the objective value. Moreover, this method uses the BFGS
formula to update the quasi-Newton matrix if F(v)11 satisfies a rule at every step.

The goal of this paper is to establish global and superlinear convergence ofthe BFGS-SQP
method for the LC convex optimization problem (1.1). Global convergence of this method
only requires Lipschitz continuity of the gradient function and boundedness of the level sets
of f in X. Superlinear convergence of this method requires twice strong differentiability
of f at the solution of (1.1), but it does not require differentiability of F at the solution
of (1.2). Furthermore no assumptions on the constraints are required, for example, the linear
independence condition [31 ]. Note that an LC function f can be twice strongly differentiable
at a single point but can fail to be twice differentiable at arbitrarily close neighboring points
(cf. [25]). Our results extend the classical convergence theory of the BFGS method for convex,
smooth minimization problems which typically requires a twice continuous differentiability
assumption on the objective function.

The remainder of the paper is organized as follows. In 2 we review the key analytic
properties of the BFGS method. In 3 we give the BFGS-SQP method and study global
convergence of this method. In 4 we study superlinear convergence of the BFGS-SQP
method. In 5 we discuss applications to stochastic programs with recourse on a CM5 parallel
computer.

2. The BFGS method. Quasi-Newton versions of SQP methods for solving linearly
constrained minimization problems are iterative methods of the form [14]

Xk+l Xk -Jr- Olkdk,

where ot is a steplength and d is a solution of the quadratic subproblem

gd + drB:dmin

s.t. A(xk + d) <_ b.

The matrix B is updated at every step by means of a quasi-Newton update formula, and g is
the gradient of f at x. In particular, the BFGS update formula is given by

Bss[B, YkY[
(2.1) Bk+l Bk- sBtcs yfs
where y g+ g and s x+ x.
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The BFGS formula has an important property that Bk+l is positive definite if Bk is positive
definite and yTkSk >0.

Powell [29] first proved the global convergence of the BFGS method for unconstrained
optimization by measuring the trace

IlnkSkll IlYkll 2(2.2) tr(Bk+l) tr(Bk) T BkSk yskSk

and the determinant

ySk
det(Bk+l) det(Bk)

TBkSksk

Byrd and Nocedal [4] simplified the proof by using a function

k(B) tr(B) ln(det(Bk)).

Let x0 be the starting point for the BFGS method. We define the level set

Do- {x Rn" f(x) <_ f (xo)l.

Byrd and Nocedal [4] proved the global convergence of the BFGS method under the
conditions that f is twice continuously differentiable and there exist positive constants/z and
v such that

(2.3) llzll 2 _< zrV2f(x)z <_ vllzll 2

for all z R and all x 6 /0. Note that (2.3) implies that f has a unique minimizer
x* 6/0. They proved the local superlinear convergence under assumption (2.3) and that V2f
is Lipschitz continuous at the minimizer x*.

Bonnans, Gilbert, Lemar6chal, and Sagastizibal [2] presented a BFGS proximal method
for LC unconstrained optimization problems which combines the Moreau-Yosida regular-
ization and the BFGS method. The BFGS proximal method is an iterative method of the
form

x+ x + c(x’ x),

where ot is a steplength and

(2.4) xp arg min f(x) -t- - (x Xk) T Bk (X Xk) x Rn

The matrix Bk is updated at every step by the BFGS formula (2.1).
Paper [2] gave preliminary results to combine methods for nonsmooth optimization and

classical quasi-Newton methods. However, the BFGS proximal method is only a conceptual
algorithm because we do not specify how {xff} can be calculated from (2.4). The superlin-
ear convergence theorem for the BFGS proximal method requires that f be twice strongly
differentiable at the solution. This assumption has been required in superlinear convergence
analysis of the Broyden method. See [5] and [19].
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3. Global convergence. We will now use ideas from both smooth and nonsmooth op-
timization [2], [4], [29] to study a new BFGS-SQP method for LC convex constrained
optimization (1.1). We show global convergence of this method in this section.

BFGS-SQP method
Given constants v, a, p, r/E (0, 1), e0 > 0 and an integer r > 0, choose x0 E X, u0 > 0,

and an n x n symmetric positive definite matrix B0. Let v0 (xg, u)r and let 3 IIF(v0)ll.
For k > 0

1. Solve the quadratic program

dT (Bk + -k I)dmin gd +
(3.1) s.t. A(xk + d) <_ b.

Let dk be the solution of (3.1) and U+l be the Lagrange multipliers at d corresponding to
A(x+d) <b.

2. Let t be the minimum integer _> 0 such that

(3.2) f (xk + ptd) f(xk) < pt Tg d.

Let ot ptk and let Xk+l x + otd.
T T3. Let v+l (xkT+l, u+)

If [[F(v+I)[[/3 < rl,

let 6 F(v+) [[, e+ rk.
Otherwise let +1 --.e.

4. If yfd >_ pr+led[dk, update B by the BFGS formula (2.1). Otherwise, set B+I
Bk.

5. If x+ satisfies a prescribed stopping criterion, terminate; otherwise, return to Step 1
with k replaced by k + 1.

Without loss of generality, we assume that xk is feasible but nonoptimal to (1.1). Suppose
that B is symmetric positive definite. Since d 0 is feasible to (3.1), the optimal objective
value of (3.1) must be nonpositive. Moreover, the nonoptimality of x to (1.1) implies that
(3.1) has a unique optimal solution d which satisfies

(3.3)

This implies

T 1 Tg dk + -d/, (Bk + I)dk < O.

Tgd <0.

A standard result in nonlinear programming [1] establishes that the integer tk is well defined
and finite. Therefore, we have

yffs Otk yffd > 0 if Yk >_ pr+lkddk"

By construction, the matrix Bk+l is symmetric positive definite. By the convexity of X, the
point X+l is feasible. Hence the BFGS-SQP method is well defined and generates an infinite
sequence {x}

___
X.

We define the level set Do {x X f(x) < f(xo)}, where xo is the starting point for
the BFGS-SQP method.

Assumption 3.1. Assume that the level set Do is bounded and there is a positive constant
L such that

IIg(x) g(Y)ll Zllx Yll if x, y Do.
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THEOREM 3.1. Under Assumption 3.1, every accumulation point c of the sequence {xk}
produced by the BFGS-SQP method is an optimal solution of (1.1).

Proof. Let K {0, 1, 2 and K0 {k 6 K ek+l rek at iteration k}.
If K0 is infinite, then every accumulation point fi of the sequence {v k 6 K0} is a

solution of F(v) 0. By Theorem 9.4.2 in [14], Y is a global minimum point of (1.1).
The remainder of this proof is for the case where K0 is finite.
Since Do is bounded, the seguence {x} is bounded. Since K0 is finite, there is a large

c such that ek e, for all k >_ k, and thus ek >_ e for all k >_ 0. Let g e,. Since Bk is
symmetric positive definite, we have

(3.4) dT(Bk + ekI)d > glldll 2 for all d 6 Rn and all k > 0.

By the variational principle of the quadratic program (3.1), the unique optimal solution d
satisfies

(3.5) T
gk dk + d(Bk + e,I)dk <_ O.

Let KI {k 6 K >yd pr+l:dd} If K is finite, then there is a large such that

B+ Bk for k >_ :. Using the inequality [29]

y 2 _< Lyrs
and the trace relation (2.2), we obtain

tr(Bk+l) _< tr(B)+ L if k 6 K1.

Noticing Bg+l B if k ’ K1 we have

tr(B) < tr(B0) for all k > 0.

Since the largest eigenvalue )kn of Bk is less than the trace, we get

dT(Bk + ekI)d < ()n + k)lldll 2 -< (tr(B0)+ :L + 0)lldll 2

for all d 6 Rn and all k 6 K. Hence we can show that every accumulation point is an
optimal solution of (1.1) by a standard proof (see, e.g., [26]). We omit the details.

Now we consider the case where K1 is infinite. From (3.2), (3.4), and (3.5) and that Do
is bounded, we have

(3.6)
c 2g lldll 2 < otld[(Blq-ell)& <_ -otlgl dk < --(f(xo)--f(2)) < Cx.

t7
k=0 k=0 k=0

Furthermore, if k e K1, we have

T /(pr+lddk _< y d e) _< Liislllldll/(pr+l g) otkLdk
This implies

pr+l
Ck >_ for k 6 K1.L

Since K1 is infinite and pr+l-/L is a constant, we obtain

(3.7)
pr+lg

k=0 k6K k6K
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From (3.6) and (3.7), the sequence {lldgll} cannot be bounded away from 0. There exists a
subset K2 C K1 such that limgeK2 IId 0.

Let f denote the optimal value of f. Extract from K2 a further subset, say K3 C K2,
such that {x, k K3} tends to some limit 2 and IIBsll _</llsll for k 6 K3, where/3 is a
constant (cf. Theorem 2.1 in [4]). By construction, the point Y must necessarily belong to X.
Let {d, k 6 K3 be a corresponding sequence of directions. Since lim/ceK3 d/ 0, Y is an
optimal solution of (1.1) and f(2) f.

Since {f(x)} is nonincreasing and has a limit f*,
o" Tf* f (Xk) < f(Xk+l) f (Xk) < -Otkgk dk

< otcd (B + I)d
2

(3.8) -Z&IIdII2.
2

From (3.6), clldll 2 --> 0. Pass to the limit in (3.8), written for k 6 K3; we obtain f* f.
Then any accumulation point of {x is also optimal, rq

Analysis in [4] covered a large class of line search strategies. We can generalize the results
to LC problems easily. In particular, the Armijo line search in the BFGS-SQP method has
the following relationship with two other line search strategies.

LEMMA 3.1. UnderAssumption 3.1, there exist positive constants rll and 2 such that the
steplength ot produced by the BFGS-SQP method will satisfy either

(gffd)2

f(x + otkdk) f(Xk) < --rllIldkll
or

f(x k- otd) f(x) < t12gd.

We can prove Lemma 3.1 by the same technique in [4, Lem. 4.1], since g is Lipschitz
continuous and construction of the BFGS-SQP method implies gffd < 0 and

’pt-(3.9) f(x nt- pt-ldk) f(xk) > - gk d if tg > 0.

Lemma 3.1 will be applied to superlinear convergence analysis ofthe BFGS-SQP method.

4. Superlinear convergence. In this section we first prove superlinear convergence of
the BFGS-SQP method under a Dennis-Mor6-type condition [10]. Next we show that the
condition is satisfied when f is twice strongly differentiable at a solution of (1.1).

Assumption 4.1. The objective function f is twice differentiable at a solution x*, and
V f(x*) is nonsingular.

Assumption 4.1 and the convexity of f imply that x* is a unique minimizer of (1.1) [33].
Clearly, if a sequence (Xk) generated by the BFGS-SQP method converges to x*, then -- 0
as k -- cx3.

Assumption 4.1 implies that the following limit holds:

Ilg(x* -t-d)- g(x*) V2f(x*)dll
lim 0.(4.1)

Ildll0 Ildll
THEOREM 4.1. Under Assumptions 3.1 and 4.1, the BFGS-SQP method generates a

sequence {x that converges to the unique minimum point x* of (1.1). Moreover, if
(V2f(x*) B)d

(4.2) lim 0- IIdll
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and the sequence {ll B-II]} is bounded, then there exists an integer ko such that ot 1 for all
k > ko and the sequence {x} converges to x* at least Q-superlinearly; i.e.,

X*IIx+alim- IIx x*

Proof From Theorem 3.1, the BFGS-SQP method generates a sequence {x} that con-
verges to x*.

Now we show that {x converges to x* at least Q-superlinearly. First we show

(4.3) IIx + & x*ll o(llx x*ll).

Combining (4.1) and (4.2), we have

g g(x*) V2f(x*)(xk x*) (V2f(x*) Bk)dk
g g(x*) B(x x*) (V2f(x*) Bk)(Xk -k- dk x*)
o(llx x*ll) + o(ll& II),

Hence we may write

g(x*) gg + B(x* x) (V2f(x*) B)(x + d x*)
/o(llx* xll) / o(ll&ll).

By the variational principle of (1.1), we have

0 < (x +di x*)Tg(x*)
(4.4) (Xk -- dk X*)T (gk + Bk(X* Xk) (vZf(x*) Bk)(Xk + d, x*)

/o(llx* x II) / o(lld, II)).

Since d is the solution of (3.1), by the variational principle of (3.1) we have

0 <_ (x* Xk dk)r (gk + (Bk + ekI)dk),

which implies

(x* x d)r(B + eI)(x* x d)

(4.5) < (x* x d) (g + (B + eI)(x* x)).

Adding (4.4) to (4.5), we have

(x* x d) (B + eI)(x* x -dg)

_< (x* x d)r ((x* x) / o(llx* xll) / o(lld II))

(4.6) -(x + d x*)r (V2f(x*) B)(x + d x*).

Since f is convex, the nonsingularity ofV2f (x*) implies that the matrix V2f(x*) is symmetric
positive definite [20]. Hence there exists a constant/z > 0 such that

/xllzll 2
_
zrV2f(x*)z for all z 6 R.

Therefore from (4.6) and that e -+ 0 as k -- oo we have

llx / d x*ll 2 < (x* x& d,)r (V2f(x*) + eI)(x* x d,)
<_ IIx / & x*ll(o(llx x*ll) / o(lldll)).
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This implies

(4.7) Ildkll O(llxk

and (4.3).
Now we show that there exists an integer k0 > 0 such that Otk for all k > k0.
From (4.1), we have for all large k,

(4.8) f(x) f(x*) + g(x*) T (Xk X*) + ’(Xk x*)Tv2f(x*)(Xk X*) -t- o(llx x*ll 2)

and

1
f(x + d) f(x*) + g(x*)T (x + d x*) + -(x + d x*)Tv2f(x*)(x + d x*)

(4.9) + o(llxk / dk x* 112).

By subtracting (4.8) from (4.9), we obtain

1
,) V2 ,))rf (Xk + d) f(xk) gffd + (g (x gk + f(x*) (xk x d

1 1
+-df (gk + nk&) + -d(V2f(x*) nk)dk + o(llxk x*l12).

Using the relation d[ (gk + Bkdk) < 0 and (4.1), (4.2), and (4.7), we have

1
(4.10) f(xk + dk) f (xk) -gdk <_ o(llxk -x*l12).

Since the sequence {IIB- Ill is bounded, there exists a constant ? > 0 such that for all large k

T
--gk cl >_ df (Bk + ekI)d >_ lldll 2.

Thus from (4.7) there exists a constant c > 0 such that

(4.11) cllx x*ll z _< -gd for all large k.

Combining (4.10) and (4.11), we have the existence of k0 such that for all k > k0 there is a
positive scalar <min{7, 7(1 a)} such that

a -a
x*f(xk + dk) f (Xk) -g[dk < gdk + llx2

c
g2d <_o.

Hence for all k > k0 we have Ck 1 and Xk+l xk + dk. From (4.3) we obtain that
superlinearly converges to x*.

The condition (4.2) is a Dennis-Mor6-type condition 10] which plays a key role in the
superlinear convergence analysis. We give the following sufficient conditions for (4.2) by
using Theorem 3.2 in [4].

LEMMA 4.1. Suppose that f satisfies Assumption 4.1 and Yk d >_ pr+lkddk for all
large k. Assume that {sk} and {Yk} are such that

[[Yk V2f (x*)Skll
<_ Wk

IIsll
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for some sequence Wk with the property =0 wk < cxz. Then (4.2) holds and the sequences
{11 nk II}, {11 n-I II} are bounded.

The assumption that ydk > pr+ledd for all large k implies that sffy > 0 and Bk
is updated for all large k in the BFGS-SQP method. See Theorem 3.2 in [4] for a proof of
Lemma 4.1.

To prove ydk > pr+lekddk for all large k, we require the strong convexity of f.
Assumption 4.2. f is strongly convex on Do with modulus > 0; i.e., for any . 6 (0, 1)

there holds

1
)f(x) + (1 )Of(y) f()x + (1 ,k)y) > /zJL(1 )01Ix Yllz

for all x, y 6 Do.
There are two equivalent properties to Assumption 4.2 (see Theorems 3.4.4 and 3.4.5 in

[24]):

/z 2(4.12) f(x) f(y) > g(y)T (x y) + -llx Yll for all x, y 6 Do

and

(4.13) (g(x) g(y))r (x y) > zzllx Yll z for all x, y 6 Do.

THEOREM 4.2. Under Assumptions 3.1, 4.1, and 4.2, if
/z(1 -+- pr)(4.14) L <

2pr

then thefollowing statements hold:
(i) there exists an integer ko > 0 such thatfor all k > ko the sequences {y}, {dk}, {}

generated by the BFGS-SQP method satisfy

ydk >

(ii) the sequence {xk converges to x* at least r-linearly; this implies

IIx x*ll <
k=0

Proof (i) Since

yf& ys/ot > llsl12/ ll&ll2,

it suffices to show that there is a ko > 0 such that

(4.15) Iza > Dr+16.k for k > k0.

From (4.12) for any ot 6 (0, 1] there holds

(4.16) ]Aot2 2f(Xk)- f(Xk q-Otdk) > --otg(Xk +Otdk)Tdk q- - Ildkll

From (4.14), we have
(4.17)

u(g(x + d) gk)rd < llg(xg / oral) gkllll&ll _< Lot2lldkll 2 -<
l+p

2p
/zoe2IId 2
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Combining (4.16) and (4.17), we have

Ot2 2f(xk) f(xk + otdk) > --otg(xk + otdk)Tdk + - II&ll

T + [o Id’ol2 2
lZOl

2 Ildk 2 -t- I[&> -otgk dk
2p -a r 2- r 1 /z211&ll

2
otg d

2
otg dk

2p
a r 2- 1

> ---otg dk + d[(B + I)d /zot211dll 2

2 2 2p

> ---otgk d + (2 a)k cll&ll2 -7
O" T 1( /x ) 2> ---otg d 4- k cll&ll2 7;-

Hence

f(Xk + otdk) f (xk) <_ -otgk dk if ot < min 1,
p

Since --+ 0 as k -+ oo, there exists ko _> 0 such that ,ork//z < 1 for k > ko. Therefore,
for k > ko there is an integer l > 0 such that

plk+l _< pr __:k _< plk.

Consequently, we have

f(xk + p/k+ldk) f (xk) < ,gk Uk.

By construction of the BFGS-SQP method, we have

Olk ptk >_ plk+l >_ kpr+l.,

thus (4.15) holds.
(ii) The Lipschitz property of g ensures [29]

Lysk > Ilyll 2 for k > k0.(4.18)

From (4.13), we have

(4.19) yfsk /zllskll 2 for k > 0.

From Theorem 2.1 in [4] and Lemma 3.1, (4.18) and (4.19) imply that there is a constant

fl > 0 such that

(4.20) f(xj) f (xj -t- otjdj) > fl IIgj 2

holds for at least [p(k ko + 1)](p 6 (0, 1)) values of j 6 [k0, k] where k0 is defined in (i)
of this theorem.

Now we show

1
x*

1
(4.21) llx- 2 < f(Xk)- f(x*) <_ -Ilgll 2.

The lower bound follows from (4.12) and

(4.22) (xk x*)rg(x*) > O.



BFGS METHOD FOR LC OPTIMIZATION 2061

and

The upper bound follows from

f(xk)- f(x*) < gf (xk --X*) < IIgllllx -x*ll

(4.23) Ilgk >
g[(x x*) (g g(x*))r (x x*)

x*> >_lzllxk-- II,
IIx x* IIx X*

where (4.23) is derived by (4.13) and (4.22).
From (4.20) and (4.21), the r-linear convergence of {x} can be obtained by a simple

manipulation (see, e.g., [4, p. 733]). We omit the details. D
We are now ready to give the superlinear convergence result.
THEOREM 4.3. Under the assumptions of Theorem 4.2, if there exist a positive constant

and a neighborhood A/’, ofx* such thatfor any x, y A/’,,

(4.24)
Ilg(x) g(y) V2f(x*)(X Y)]I

Lmax(llx x* II, Ily x* II),

then the sequence {xk generated by the BFGS-SQP method converges to the unique solution
x* of (1.1) Q-superlinearly.

From Theorems 4.1 and 4.2, there exists ko > 0 such that for k > ko, x, X+l 6 A/’,, and
ydk >_ pr+l-kddk. Hence for k > ko,

IlYk V2f(x*)s[[
Lmax(llx x*ll, IlXk/l x*ll) =" w

where -’-%0 w < oo. Let wk Ily V2f(x*)sll/llsll for k < k0. Since IIsll > 0 and
x-,ko-1the sequences Ilyll and IIsll are bounded, z_,=0 wk < oo. Hence from Theorem 4.1 and

Lemma 4.1, we conclude the rate of convergence is superlinear.

5. Applications. Some source problems for LC convex optimization have been dis-
cussed in [2], [7], [8], [13], [27], [28], [31], [32], [33], [37]. In this section we use the
BFGS-SQP method to solve quadratic stochastic programming problems on a 16-node parti-
tion of a CM5 parallel computer using data parallel constructs expressed by Fortran 90 style
matrix operations.

The quadratic stochastic programming model was introduced by Rockafellar and Wets
[34], [35], [36]. A version of a 2-stage quadratic stochastic program with fixed recourse is

min XTPX + cTx + E !l(x’ )i)i
i=O

(5.1) s.t. Ax < b

where
1 T

Z
T!/t(x,w)=max-z Hz + (w- Tx)

s.t. Wz < q.

Here P Rnxn and H 6 Rnlxnl are symmetric positive definite; c Rn, T Rnxn, W
Rm, n, q Rm,, wi Rn’ O, 1 /, andi >_ O, O, 1 /are scalars satisfying
E=0 i 1.

The objective function of (5.1) is strongly convex and has a Lipschitz continuous gradient
at all points in X but it is not twice differentiable in X. Hence this problem is an LC convex
constrained optimization problem. The gradient of the objective function is

Px q- c Tr H-1/2 E z; (X)i,
i=O
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55
85

TABLE

k(t-2, t-l, t) IIx* xll IIF(v)ll CPU(sec)
6 (6, 6, 1) 3.6 x 10-11 6.7 x 10-12 236.3

5 (6, 6, 1) 2.1 x 10-11 2.1 x 10-12 246.0

4 (1, 4,2) 1.1 x 10-1 9.3 x 10-12 1062.8

where

zi (x) argmax - Itz + (oi rx), Wz <_ q rls(It-1/2 (oi Tx)).

Here rls(u) is the projection of u R’1 into the set S {s
Since the projection operator is nonexpansive, we have a Lipschitz constant L IIPII -t-
rrH- H- r for Assumption 3.1. Furthermore, we can choose a positive integer r and

positive scalars ,o < 1,/x < )min (P) (the smallest eigenvalue of P) such that condition (4.14)
holds.

Calculating the objective and its gradient involves a large number of quadratic programs.
We tested the BFGS-SQP method for solving (5.1) on a CM5 parallel computer. At each step,
f(xk) and gk are calculated in parallel. The test problems are randomly generated but with
known solution characteristics so different features of the algorithm can be tested.

We chose n 100, m 60, nl 5, m 3, x(P) to(H) 102, x(A) to(W)
2.52,/z0 30, v0 15. Here x(G) .g2 is the condition number ofa matrix G whose nonzero
eigenvalues are distributed on [1/r, r],/z0 is the number of active constraints at the solution
x* with positive multipliers, and v0 is the number of active constraints at the solution x* with
zero multipliers. We generate O) (O9i,1, O9i,2, O9i,3, O)i,4, O9i,5) [0, ]5, 1, 2, ?’ with
wi,j {0, 1}, t’ 15. In the BFGS-SQP method, we chose B0 P, r cr
p r/ e0 0.75, and r 20. We choose the starting point x0 Fix(2), uo O,
where 2 Rn was randomly generated. The algorithm terminated when vk (x[, u)r

satisfied [IF(Vk)ll < 10-11. Numerical results are reported in Table 1, where t is the number
of iterations on the Armijo line search at the kth iteration.

Aeknowledgrnents. The author is grateful to Liqun Qi, Robert S. Womersley, and Tetsuro
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EXISTENCE RESULTS FOR NONCOERCIVE VARIATIONAL PROBLEMS*
GRAZIANO CRASTA AND ANNALISA MALUSA

Abstract. The aim of this paper is to give an existence result for a class of one-dimensional, nonconvex,
noncoercive problems in the calculus of variations. The main tools for the proof are an existence theorem in the
convex case and the closure of the convex hull of the epigraph of functions strictly convex at infinity.

Key words, existence theory, nonconvex problems, noncoercive problems
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1. Introduction. It is well known that if L is a continuous function, such that -L(t, x, ) is convex and superlinear, then the variational problem

(1.1) min {for L(t, u, u’)dt u W1’1 ([0, T], Item), bt(0) a, u(T) b}
has a solution (see, for instance, [7]).

In recent years, the possibility of avoiding the convexity or the superlinearity assumption
was investigated by many authors.

Some existence results for nonconvex coercive problems were obtained in the case
L(t, x, ) g(t, x) + f(t, ) (see, for instance, [5], [14], [16], and the references therein).
In particular, in [5] it was proved that the convexity assumption on f (t, .) can be replaced by
the condition of concavity of g(t, .).

More recently, some techniques were developed in order to treat convex but noncoercive
problems. In this case, even if the functionals considered are lower semicontinuous in the
weak topology of W1’1 ([0, T], Im), the direct method of the calculus of variations cannot be
applied due to the lack of compactness of the minimizing sequences.

In [10] problem (1.1) was studied with L continuous, bounded from below and convex
with respect to , the superlinearity being replaced by a weaker condition which permits
construction of a relatively compact minimizing sequence, obtained by considering the minima
of suitable coercive approximating problems. The main step in the proof of the existence
result in [10] was to show that every minimum point of the approximating problems solves
a generalized DuBois-Reymond condition, which implies that the minimizing sequence is
bounded in the space WI,([0, T], IRm).

A similar approach was used in [6] for the autonomous problem L(t, x, ) g(x) + f(),
where g is a nonnegative continuous function and f 6 C (]Rm, IR) is a strictly convex function
bounded from below, such that

(1.2) illn [f() (Vf(), )] -c.

In that paper, it was proved that for every rectifiable curve C in ]tm joining a to b there
exists a unique solution to the problem (1.1) restricted to the class of all absolutely continuous
parameterizations u: I --+ ]m of C. Thus, every element Un of a minimizing sequence can be
replaced by the minimum corresponding to the curve parameterized by Un. It can be shown,
still using a DuBois-Reymond condition satisfied by those minima and by (1.2), that this new
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sequence is bounded in WI’([0, T], ]m), SO that there exists a minimum point for (1.1) in
this space.

In [12] both the superlinearity and the convexity assumptions were dropped for La-
grangians of the form L(t, x, ) (a(t), x) + f() where f is a lower semicontinuous
function whose convexification f** satisfies (1.2) for every diverging sequence of points of
differentiability of the Lipschitz continuous function f**. The existence of a minimum is
proved by a technique relying only on a Lyapunov-type theorem due to Olech (see 15]).

For other results concerning noncoercive problems we mention [1], [2], and [3].
In this paper we consider nonautonomous problems of the form

(1.3) {f0min [g(t, u) + f(t, u’)] dt u e wl’l([o, T], ]m), hi(O) a, u(T) b

with neither coercivity nor convexity assumptions. More precisely, we introduce the class
of all functions [0, T] ]m ], bounded from below, such that p(., ) is Lipschitz
continuous for every fixed 6 ]m and 7z(t, .) is lower semicontinuous and satisfies

lim [7r** (t", n) (Vlr**(tn, n), n)] --OQ
n--++cx

for every sequence {tn [0, T] and for every choice of points n of differentiability of
7r**(tn, .) such that limn Inl /. We show that if f 6 and there exist two constants
A and B, B > 0 such that f(t, ) > -A + BIll for every (t, ) 6 [0, T] x ]m and g(t, x)
is a continuous function, Lipschitz continuous with respect to t, concave with respect to x,
satisfying g(t, x) > -c -/lxl for every (t, x) 6 [0, T] x ]m and for suitable constants ot

and 0 </3 < B/T, then the problem (1.3) has a solution in the space WI’([0, T], Nm). This
result is the analogue for a class of noncoercive functionals of the one in [5], but it is not a
generalization of that result due to the additional requirement of the Lipschitz continuity of
the Lagrangian with respect to the variable t. However this extra regularity allows us to obtain
the necessary conditions that, used at an intermediate step, also give a regularity result, which
is interesting.

As a first step we prove an existence result for (1.3) requiring that f be convex with
respect to and dropping the concavity assumption on g. This can be done following 10] and
making suitable changes due to the the fact that the Lagrangian is not bounded from below.
The second step, linking the convex to the nonconvex case, is based on a result concerning the
closure of the convex hull of the epigraph of functions whose convexification is strictly convex
at infinity (that is, the graph ofthe convexification contains no rays). This result is an extension
of the classical theorem that holds for superlinear functions (see [13]). We want to remark
that the notion of strict convexity at infinity was still used in 11 in order to study noncoercive
problems of the type (1.1) with the additional state constraint Ilu I1 < R. We shall prove
that every function in the class is strictly convex at infinity for every fixed t, so that by
using the previous results and the Lyapunov theorem on the range of nonatomic measures the
existence result for the nonconvex problems follows. The regularity of the solution of (1.3) is
a consequence of the regularity of the solution to the relaxed problem.

2. Preliminaries. We shall denote by (x, y) the standard scalar product of two vectors
x, y e ]m. For every 1 < p _< +cxz we shall denote by LP(I, ]m) and WI’p(I, Item),
respectively, the usual Lebesgue and Sobolev spaces of functions from the interval I -" [0, T]
into m. We shall use the symbol IILp to denote the norm in Lp (I, ]m).

If A C m, we shall denote by int A the interior of A and by co A the convex hull of a
A, that is, the smallest convex set which contains A. It is well known that, by Carath6odory’s
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theorem, the convex hull of A can be characterized by

(2.1) coA x E ]m X ,iXi Em+l xi A, 1 rn + 1
i=1

where () Am+1) and Em+ denotes the standard simplex

Em+l (1 ,m+l) ]m+l /’i > 0 i m + 1, ,i 1
i=1

Given a function 7:" ]m ._.+ ], we shall denote by dom(7:) its effective domain, defined
as the subset of ]tm { 1/r() < "-’OQ}, and by epi 7: its epigraph, that is, the set

epi 7r {(x, a) 6 ]m X ]t lp(X) _< a}.

If 7:" ]lm ] is Lipschitz continuous in a neighborhood of a point , we shall denote
by 07:() the generalized gradient of 7: at , defined by

(2.2) 07:() co {limi._++<x Vl/:(i)I ----> , ie )(1/:)}
where D(7:) denotes the set of points of differentiability of 7:. We recall that a Lipschitz
continuous function 7: is almost everywhere differentiable in int(dom(7:)).

AfunctionT:: Rm --+ (-cx, +c] isconvexifforevery, r E ]m and for every . 6 [0, 1],
we have 7:(. + (1 .)r/) < )7:() + (1 ;()ap(?). We say that 7: is concave if-7: is
convex.

Given a function 7:: ]m (--(:X:), "qt-OO], we shall denote by * its dual function, defined
for every p 6 ]1m by

*(p) sup {(p, )- 7r()}.
E]I

It is well known that the bipolar function 7:** coincides with the convexification of 7:, which
is the largest convex function p satisfying 09 < 7:.

If 7::m --+ (-cxz, +cx] is convex, then the generalized gradient of 7: coincides in
int(dom(7:)) with the subgradient of 7: in the sense of convex analysis, defined at every point

d0m(7:) by

(2.3) 01r() {p ]tm 1() 1() -- (p, ) for every r/E ]m}

(see [8, Prop. 2.2.7]). By definition, we set 0p() "-- 0 for every dom0p). We recall that,
if is differentiable at , then 0p() {Vp()}.

In the following proposition we collect some well-known properties of the subgradient
(see [8] and [13]).

PROPOSITION 2.1. Let p: ]R (-ec, +eel be a convexfunction. Then the following
properties hold:

(i) if p is bounded from above in a nonempty open set A, then 7t is locally Lipschitz
continuous in A;

(ii) for every Nm the set Op() (possibly empty) is convex and closed in
(iii) if int(dom(p)), then Op() is a nonempty compact set.
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3. The closure result. In this section we shall prove a result concerning the closure of
the convex hull of the epigraph of functions possibly without superlinear growth.

We recall the notion of strict convexity at infinity introduced by Clarke and Loewen
in [11].

DEFINITION 3.1. A convex function : ]m ] is said to be strictly convex at infinity
if its graph contains no rays; that is, for every v Nm, v # O, andfor every Nm, the
function Pv,(s) -:- 7t(sv + ) has thefollowing property: for every so D(v,) there exists

Sl 79(ap,), sl > so, such that p’ ’, (s) > , (so).
Remark 3.2. It is easy to see that if : Rm __+ is convex then p is strictly convex at

infinity if and only if 07t* (p) is either empty or bounded for every p 6 Rm.
DEFINITION 3.3. We shall denote by the family of all lower semicontinuous functions

lp m ] such that ap** -cxz and p** is strictly convex at infinity.
Remark 3.4. Clearly every strictly convex function is strictly convex at infinity. Moreover,

every lower semicontinuous superlinear function p: ]1m belongs to . Indeed, denoting
by 0 the convexification 7t**, for every fixed v, 6 Rm, v 0, by (2.3) it follows that the
inequality (Vo(sv + ), sv) > 9(sv + ) 9() holds for every s D(9,). This implies
that

,(s) (V(sv + ), v) >_ oCsv + +) o(+)
for every s D(o,+), s > 0.

Since p is superlinear, the last term tends to +c as s goes to
LEMMA 3.5. For every function p satisfying > 0 and p (0) 0 there exist two

positive constants C, p such that () > C I+lfor every I+1 > P.
Proof We can certainly assume that p is convex; if not, we replace p by **. We start

by proving that p is coercive; that is, (+) -- +x as I+1 -- +x. Since 7t is convex, the
sets 7ta {+ ]m lr() < a} are convex subsets of]m for every a > 0. By contradiction,
suppose that there exists a > 0 such that a is unbounded. Since a is convex, it contains
at least one half-line {sv s > 0} for some v 6 m, v 0. This means that ,0(s) < a for
every s > 0. Since 7iv,0 is an absolutely continuous function, then for every r > 0 we have

0 _< ,o(r)- 7,o(O) 7’,o(r) dr.

Hence there exists so 6 79(p,o) fq [0, r] such that p’,o(So) > 0. Since p is strictly convex at
infinity, there exists sl 6 D(Pv,o) Sl > so such that ’ (Sl) > 0. By the convexity of ,o itv,O
follows that

rv,O(S) v,0(S1) -at- (S S1)rv,o(S1) for every s > 0,

and this implies that lims__,+ Po,o(s) +cx in contradiction with aP,o < a.
Since is coercive, there exist two positive constants p, 6 such that

p(r/) > 6 for all Il-- p.

If I1 > /9, let us define ) p/ll and r/ ). By the convexity of , and recalling that
p(0) 0, we get

P P

so that we conclude by choosing C
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We are now in a position to prove the closure result. The proof is based on the fact that
if f belongs to the class then for every support hyperplane r of f** the function f r
belongs to . Applying the estimate of Lemma 3.5 to this function, we can follow the lines
of the proof of Lemma IX.3.3 in [13].

THEOREM 3.6. For every f the set co epi f is closed.
Proof Let (, a) 6 0(coepi f), where OS denotes the boundary of the set S, and let

r(r/) "-- (c, ) + d be an affine function such that the hyperplane H -:- {07, r(r/))} weakly
separates co epi f and the point (, a). Let us define the function

(r/) f(o + ) r(r/+ ).

We have **(0) f**(r/+ ) r(o + ), ** > 0, **(0) 0. Moreover, for every
: )tv 6 Rm, v 0, for every r/ 6 ]Rm, and for everys 6 D(fv,+o) we have (v.o (s)

(fv*,*+o)’ (s) (c, v). Since f** is strictly convex at infinity, then so is **. By Lemma 3.5,
there exist two positive constants C, p such that

**() Cirri for every Irl p,

Notice that (, a) e co epi f if and only if (0, 0) co epi 4). Moreover, (, a)
0(coepi f) if and only if (0, 0) O(co epi 4)). Hence, to prove the proposition, it suffices
to show that (0, 0) co epi 4).

Let (n, an) coepi 4) be such that limn(n, an) (0, 0). By the characterization (2.1)
of the convex hull, for every n there exist .n Em+2 and (j, a) epi, j 1 rn + 2,
such that

m+2

E (’ a) (n, an).
j=l

By the very definition of epigraph it follows that

(3.2)
m+2 m+2

an E)a > E) ;
j=l j=l

Moreover, (3.2) and the fact that b >_ b** imply that an >_ Em+2j=l )jnq** (jn). Since b** > 0,
the inequality

n ** n(3.3) an >_ )j (j

holds for every j 1 rn + 2. Let J C {1 rn + 2} be the set of all j such that {ljn I}n
is unbounded, and let I {1 rn + 2}\J. By passing to a subsequence, we can assume
that there exist j, j I, and . Em+2, such that

lim Ijnl +, jeJ,
n--++oo

lim ;--j, jI,
n---> +x:

lim . j, j 6 {1 rn + 2}.
n--->+cx

For every j 6 J we have Inl > p for n large enough, and then from (3.1) and (3.3) it
follows that an > C’lnl, Since limn an 0, we get

(3.4) n__>+cxZjlimn ijl 0, j e J.
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From (3.4) and recalling that limn n 0, we deduce that

i jjnnI lnE n n1lim )y; Zj j lim ,j j 0.
n--+x

\j=l jeJ

Moreover, since limn ) 0 for every j 6 J, we obtain

(3.6) E)j lim E) 1.
n-,+x

jEI

Since q is a nonnegative lower semicontinuous function, we get

(3.7) 0 _< E )J ((J) -< lim infE) (jn) _< lim inf a" O.
n--.+cx n-++c

jEI

There is no loss of generality in assuming that )j > 0 for every j 6 I; hence (3.7) implies
that (j) 0 for every j 6 I; that is, (j, 0) 6 epi b for every j 6 I. Thus by (3.5) and
(3.6) we can conclude that (0, 0) belongs to co epi 4. q

Now we state two direct consequences of Theorem 3.6.
COROLLARY 3.7. If f , then

m+l m+l }f**(se) min E ’J f(J) E ’jj ’ Em+l
j=l j=l

for every ]m.

Proof. See 13, Lem. IX.3.3]. [3

We recall that a function f:I x m __+ is said to be a normal integrand (see [13]) if

f (t, .) is lower semicontinuous for almost every (a.e.) 6 I and there exists a Borel function: I X ]m ] such that f(t, .) f(t, .) for a.e. 6 I.
COROLLARY 3.8. Let f: I ]m ]1 be a normal integrand and suppose that f (t, .)

for every I. Thenfor any measurable mapping p: [0, T] --+ ]Rm, there exist a measurable
mapping .: [0, T] --+ Em+I and m + 1 measurable mappings qj" [0, T] --+ ]m such that

m+l m+l

E )j(t)qj(t) p(t), E )j(t)f(t, qj(t)) f**(t, p(t))
j=l j--1

for almost all [0, T].
Proof See 13, Prop. IX.3.1 ]. [3

4. Existence results for variational problems. In this section we shall show that the
existence result proved by Cellina and Colombo in [5] holds even for functions of the class g
defined below. In the following, the convexification and the gradient of a function p (t, ) are
understood with respect to .

DEFINITION 4.1. We shall denote by thefamily ofallfunctions ap: I x ][m __> I[, bounded
from below, such that (., ) is Lipschitz continuousfor everyfixed m, /(t, .) is lower
semicontinuousfor everyfixed I, and

(4.1) lim sup sup{
R +cx tel

Il>R



2070 GRAZIANO CRASTA AND ANNALISA MALUSA

The following proposition gives a characterization of the family . The proof is similar
to the one of Proposition 3.2 in 12].

PROPOSITION 4.2. The condition (4.1) in Definition 4.1 is equivalent to

(4.2) lim [!/***(t, ) (V!/**(t, ), )] -oo

for eveu sequence (t, n) I x Rm such that n D(**(tn, .)), limn Inl +.
Proof We have to prove that (4.2) implies (4.1), the other implication being trivial. Let

us denote by X (R) the argument of the limit in (4.1), and let {Rn be a diverging sequence.
For every fixed n 6 N, by definition of supremum, there exists (tn, , pn) I x m X m,
with pn O **(t, n) and I1 > Rn, such that

(4.3) g(Rn) 5 **(t", ")- (p", ")+ 1.

From (2.2) and (2.1) there exist p O**(t, ), (**(tn, .)) with [ff nl < 1,

j 6 J {1 m + 1}, and 6 Em+I such that

m+l

pn yp, IVy** (tn, ) p[ < for eve j 6 J.
j= Inl + 1

For every j 6 J the last inequality and the fact that I 1 < 1 imply that

(4.4) (V**(tn’ f)- P’ )[ <
]n] + 1

By the convexity of **(t, .) we have

(4.5) ** (tn, n) **(tn, ) (p n ff for eve j J.

Using (4.4) and (4.5) we obtain

(4.6) **(tn, n)_ (p, n) **(tn, )_ (V**(tn, ), ) + 1.

Multiplying (4.6) by and summing over j it follows that **(tn, n) (pn, n) n,
where n 1 + maxj ** (t ) (V** (tn ), }.

Since lim, I1 + for every j 6 J, (4.2) implies that lim, n __. Hence by
(4.3) it follows that

lim (gn) lim (n + 1) -.
n+ n+

Since is a monotone nonincreasing function, (4.1) holds.
Remark 4.3. Definition 4.1 agrees with the one given in [6] and [12], respectively, in the

case of convex time-independent smooth functions and nonconvex time-independent
functions.

LEMMA 4.4. If , then (t, .) for eve I.
Proof. Let us fix 6 I and denote by the convexification with respect to of (t, ).

By Lemma 3.3 in [12], the effective domain dom(*) of * is an open subset of m. Hence
by Proposition 2.1(iii), O*(p) is either bounded, if p 6 dom(*), or empty, if p dom(*).
By Remark 3.2, the result is thus proved. U

LEMMA 4.5. Let " I m x m be a lower semicontinuous function, Lipschitz
continuous with respect to the first variable. Assume that (t, x, .) is convex for a.e. I
andfor eve x m and that there exist three constants Ci, O, 1, 2, such that

(4.7) Ivl C0](t, x, )1 + Clxl + c2
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for every (t, x, ) I Im I[{m and for every v Otq)(t, x, ), where Otq) denotes the
generalized gradient of 99 with respect to t.

Let u W’1 (1, IRm) and assume that thefunction - q)(t, u(t), u’ (t)) belongs to L (1).
Then there exists ko L (I) such that

[g0(s:, u(t), u’(t)) q)(sl, u(t), u’(t)) <_ ko(t)ls2 Sl[

for every t, s1, $2 I.
Proof For every fixed t, t2 G I, let us define the function

g(s) Iq)(ta + sd, x, ) q)(tl, x, )1, s 6 [0, 1],

where d t2 tl. By (4.7), it follows that for a.e. s 6 [0, 1]

g’(s) < IdllOtq)(q + sd, x,)l <_ Idl (Cog(s)-q-Colgo(tl,X,)l + CllXl +C2).

We can apply Gronwall’s inequality to the nonnegative absolutely continuous function g,
obtaining

(4.8) 190(t2, x, ) cp(tl, x, )1 g(1) _< It2 fileCr (C0199(tl, x, )1 + CllXl -t- C2).

This inequality, with tl and t2 sl, implies that

(4.9) 199(s1, x, )1 Iq)(t, x, )1 + TeCr (C019o(t, x, )1 + Clxl + C2).

Again by (4.8), with t s, t2 $2, and by (4.9), it follows that

19o(s2, x, ) 99(Sl, x, )1 Is2 sl(olrp(t, x, )l -t- llxl + 2),

where i CieCT (1 + TCoeCr), 0, 1, 2. Finally, by hypothesis, the function

ko(t) 01qg(t, u(t), u’(t))l-t- llU(t)l + 2
belongs to L (I), completing the proof.

DEFINITION 4.6. We shall say that 0 C((0, +cx), IR) is a Nagumo function if 0 is
convex and increasing and it satisfies limr_+ O(r)/r +oe.

We begin the study of minimization problems, starting with an existence result for convex
functionals. We collect here the basic hypotheses on the integrand.

(H0) f 6 g and f (t, .) is a convex function for every 6 I.
(H) There exist two constants A and B, with B > 0, such that f(t, ) > -A + BIll for

every (t, ) 1 x Rm.
(H2) g: I x ]m ] is Lipschitz continuous with respect to the first variable and

continuous with respect to the second, and there exist two constants ot and fl, with 0 < fl <
B/T, such that g(t,x) > -a tlxl for every (t,x) I x IRm.

(H3) There exist three constants Ci, 0, 1, 2, such that the condition (4.7) holds with
q)(t, x, ) g(t, x) + f (t, ).

Remark 4.7. If f 6 g is independent of t, then it is easily seen that Lemmas 3.5 and 4.4
imply that condition (H) is always satisfied for suitable constants A and B, with B > 0.

THEOREM 4.8. Let f and g satisfy the hypotheses (Ho), (H), (H2), (H3). Then there
exists a solution to the problem

(4.10) min {F(u) lu wl’l(I,m), u(O)"-a, u(T)- b},
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where

F(u) fi[f (t, u’(t)) + g(t, u(t))]dt

Moreover every solution fi belongs to WI’(I, Nm) and satisfies for a.e. I

(4.11) f (t, fi’(t)) (p(t) fi’(t)) + g(t, Ft(t)) c + v(r) dr,

where c is aconstantand (v(t), p(t)) (Ot f (t, fi’(t))+Otg(t, fi(t)), 3 f (t, fi’(t)))foralmost
every I.

Proof The proof follows the lines of the proof of Theorem 3 in 10], with some changes
due to the fact that in this case the Lagrangian is not bounded from below. As in 10] one can
prove, using the De Giorgi semicontinuity result (see [4]) and the Dunford-Pettis criterion of
weak compactness in L I(I, m), that for every Nagumo function 0 and for every > 0 there
exists a solution Ul to the problem

min {F(u) lu aclo(I, ]m), u(O)"-" a, u(T)= b}
where AC (I, ]m) denotes the class of all function u 6 W1,1 (i, ]lm) such that (R) (u) < l, with
(R)(u) fi O(lu’(t)l) dr. Let us set Vo(l) F(ul).

One can easily check that if Vo (1) Vo (lo) for every > l0 then Ulo is a solution to the
problem

(4.12) min {F(u) lu WI’I(I,Im), (R)(U) < +X, u(O)=a, u(T)= b}
Finally, as in [10], ifwe are able to prove that u/0 belongs to WI’(I, m) then wecan conclude
that such a function is a solution to (4.10). Furthermore, any other solution t/of (4.10) would
solve (4.12) for some Nagumo function 0 and hence would belong to Wl’C(I, Itm) and satisfy
(4.11).

Thus it remains to prove that Vo is eventually constant and that, for large enough, U

belongs to WI’(I, m) and satisfies (4.11). Since Vo is lower semicontinuous, for every
> 0 there exists a proximal subgradient (see [9]) of Vo at and, since Vo is nonincreasing,

it is nonpositive. If Vo is not eventually constant, by Proposition 6.1 in [10], there exists a
diverging sequence {lk such that the proximal subgradient of Vo at l takes the form -r, with

r > 0. Moreover, it is easy to check that, if we set u =- u, then (R)(u) l, so that

0-1(4.13) lim Ilull > lim (l/T) +cx.
k--,+x k--++c

By definition of r and the fact that (R)(ug) l, it follows that for every k 6 ll there exists a
positive constant rg such that, if we define

G(u) F(u) + r(R)(u) + crl(R)(u (R)(u)l 2

then we get that G(u) < G(u) for every u admissible for (4.12) and such that (R)(u) is
sufficiently near to (R)(u) (see [10]). By (H3) and Lemma 4.5, it follows that there exists
ko L I(I) such that for every sl, s2, 6 I

If(s1, u’ (t)) 4- g(sl, u(t)) f(s2, u(t)) g(sa, u(t))l _< ko(t)lSl sal

so that we can apply Theorem 5 of [10]. Thus we obtain that u satisfies

(t)l) Ck + Vk(r) dr(t)) + g(t Uk(t)) 4- rkEo(luk(4.14) Ef(t uk
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(t)) f (t, (t)) with (v(t), p(t)) ewhere c is a constant, Ef(t, uk u:(t)) (pk(t), uk
(Otf (t, u(t)) %- Otg(t, uk(t)), O f(t, u(t))) for a.e. I, and Eo(s) O(s) sO’(s).

Moreover there exists M1 > 0 such that [[u [[L _< M1 for every k N. Actually, if there
exists t I such that lim suPk [uk(t)[ %-Cxz, then

lim sup f/lu,(t)l dt > lim sup
k--> +cx k--++cx

t

u(t)dt lim sup lug(tg) al

whereas, if we define uo(t) a + t, with (b a)/T, then u0 is admissible for (4.12),
F(uo) < +cxz, and

(4.15) F(uo) > F(u) > (-A -ot)T %- nllull, llull A %- (B T)llull,

so that, by (H2), {u} must be bounded in L I(I, m).
The boundedness of {u in L (I, Rm) and the continuity of g guarantee that there exists

M2 such that

(4.16) Ig(t, u(t)l _< M2

for a.e. 6 I and for every k. Moreover, by (H3) we obtain

(4.17)
p(s) ds If0 If(s, u’(s)) + g(s, uk(s)) + Cllug(s)l + c2] ds

_< f [.0 + + + + +

where (1 C0/3 %- C1 and d2 Coloel + C2. Without loss of generality we can assume that

f is positive, so that, thanks to (Hz), it follows that for every k N

(4.18) f (s, u:(s)) %- g(s, u:(s)) %- ot %- lu(s)l 0 a.e. s I.

By (4.15), (4.17), and (4.18) there exist M3 > 0 and two constants all, d2 such that

(4.19) v(s) ds < CoF(u:)+ lllull’ + z M3 for every I.

By (4.14), (4.16), and (4.19) we obtain

Ef(t, U’k(t)) + rEo(lU’k(t)l) <_ c + M2 4- M3

for every I and for every k N.
We claim that it is not possible that there exists a subsequence of {c }, still denoted by

{c}, such that limk c --cxz. Indeed, if this is the case, then for every I we should have

(4.20) ug(t)l)lim Ef(t, u(t)) + rEo(I

Since f 6 g and 0 is superlinear, (4.20) implies that lim lu(t)l +c for every 6 1,
which by Fatou’s lemma contradicts the boundedness of u in L I(I, IRm).

Thus there exists c* such that ck >_ c* for every k. From (4.14) we obtain, for every 6 I,

(4.21) Ef(t, u’(t)) + rEo(lu’(t)l) > c* M2 M3.
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Now let us suppose that for every k there exists tk E I such that lim supk [kl +c, where

k u(tk). Since f and 0 belong to g, we have

liminf [Ef(t, ) + rEo(ll)] <_ liminf sup {Ef(t, :) + rEo(ll)}
k-++o k-+c tel

in contradiction with (4.21). This implies that IlullL is bounded, which contradicts (4.13).
So we can conclude that Vo is eventually constant. Hence for k sufficiently large

WI’(I, IRm) is a solution of (4.12). Moreover r 0, so that u satisfies (4.11). Then the
proof is complete.

The last part of this section is devoted to the study of the nonconvex case. The hypotheses
(H0) and (H3) will be replaced, respectively, by

(H) f g;
(H) there exist three constants Ci, 0, 1, 2, such that the condition (4.7) holds with

q)(t, x, ) g(t, x) + f**(t, ).
Notice that (H) requires the Lipschitz continuity of f** with respect to t. The following

two lemmas show that this conclusion follows from (H) and
(H4) for every R > 0 there exists a constant L such that

If(t,)-f(s,)l <LIt-sl for everyt, s6I, and 6Bn,

where Bn denotes the closed ball centered at the origin and with radius R.
LEMMA 4.9. Let 7 g and let us define, for every (t, p) I x IRm, the set

W(t, p) { I P OO**(t, )}.

Then for every r > 0 there exists R > 0 such thatfor every (t, p) I x I[{m the condition
W(t, p) fq Br 76 implies W(t, p) C Bn.

Proof. Suppose, by contradiction, that there exist sequences (tn, pn) C I xRm, (On) C Br,
(n) C Rm, with lim Il +oc, such that for every n 6 N

(4.22) Pn O**(tn, tin), Pn O**(tn, n)

From (4.22) it follows that for every n 6 1N

(4.23) ** (tn, On) (Pn Fin) ffJ**(tn, n) (Pn n)

Since (r/n) is a bounded sequence, there exists a constant C such that the left-hand side of
(4.23) is bounded from below by C. Thus

(4.24) c **(tn, n) (Pn, n) x(lnl) for every n 6 N,

where )(R) is the argument of the limit in (4.1). Since limn I&nl -+-, from (4.1) we have
that lim X (]n 1) -cx, which contradicts (4.24). [3

Remark 4.10. Let us fix 6 IRm. Let I, ) Em+I, j G ]m, j m + 1 satisfy

m+l m+l

f** E )j f j E j j

j=l j=l

Since for every j there exists pj O f**(t, ) such that j W(t, pj), by Lemma 4.9
we obtain that there exists R > 0, depending only on I1, such that j E B for every
j=l m+l.
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LEMMA 4.11. If f g satisfies (H4), then f**(., ) is Lipschitz continuous for every
eRm.
Proof Let us fix 6 ]1m and consider t, s 6 I. By Corollary 3.7, there exist .,/2 6 Era+ 1,

j, r/j 6 Rm, j 1 m + 1 such that

m+l m+l

f**(t, ) Z )j f (t, j), f**(s, ) lzj f (s,
j=l j=l

and Y-j )jj -]j lzj rlj. Moreover, one has

m+l m+l

f**(t, ) < Z ljf (t, Oj), f**(s, ) < Z )jf (s, j)
j=l j=l

Then, by Remark 4.10 and (H4), there exists L > 0, depending only on 11, such that

m+l m+l

f**(s, ) f**(t, ) < )j[f (s, j) f (t, j)] < )jLIt sl Lit sl
j=l j=l

In the same way one obtains

m+l

f**(t, ) f**(s, ) < y] lzj[f (t, rlj) f (s, j)] < Lit sl
j=l

completing the proof, rq

We are now in a position to prove the existence result for the nonconvex case.
THEOREM 4.12. Let g and f satisfy the basic hypotheses (H6), (H1), (H2), (H), (H4)

and assume that g(t, .) is concave for every I. Then the problem (4.10) has a solution
U wl’cx([0, T], m).

Proof The proof follows the same lines of the one of Theorem 1 in [5]. It is enough
to use Theorem 4.8 to obtain a solution fi 6 WI,([0, T], m) of the relaxed problem and
to replace Lemma IX.3.3 and Proposition IX.3.1 of [13] with Corollaries 3.7 and 3.8. Since
fi’ 6 L([0, T], m), it is easily seen, using Lemma 4.9, that we obtain a solution u 6

Wl,([0, T], m). 1--]

Acknowledgments. The authors wish to thank Arrigo Cellina for kindly suggesting the
problem.
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RELAXATION OF CONSTRAINED CONTROL PROBLEMS*
E. N. BARRON AND R. JENSENt

Abstract. The problem of relaxation of optimal control problems with state and control constraints is for-
mulated in this paper. We determine that if the original problem consists of minimizing, over control functions
(.), g((T)) subject to d/ds f(s,,(), < s < T, and h(s,(s),f(s)) < 0 for a.e. < s < T,
then the relaxed prob.lem consists of minimizing, over measu.re-valued control functions /z(.), g((T)), subject
tod/ds f(s,(s),z)lz(s, dz) and/x(s) -esssupzh(s,(s),z) < 0 for a.e. < < T. For each s this is the
essential supremum of h in z with respect to the measure #(s).

Key words, relaxed controls, state and control constraints

AMS subject classifications. 49A40, 49A10, 49C20

1. Introduction. In this paper we will determine the relaxed formulation ofthe following
constrained optimal control problem of Mayer type:

minimize Pt,x(() g((T)) over controls ’(.)

subject to d(r)/dr f(r, (r), ’(r)), 0 < < r < T, (t) x E Rn, and the state
and control constraints h(r, (r), ’(r)) < 0 for a.e. < r < T. The control functions ’(.)
typically take values in a compact control set Z. Relaxing this problem consists of enlarging
the space ofcontrol functions to include control functions/z(.) which, for each fixed r E [0, T]
is a probability measure on the control set Z. Then we have the problem of how to define
f(.,.,/z) as well as h(.,.,/z).

The reason for relaxing a control problem is twofold. First, it is always pleasant to have an
optimal control, but this optimal control is usually found only in the class of relaxed controls,
which is compact in the weak topology. We do not, in general nonconvex problems, expect
an optimal control to exist outside of the class of measure-valued controls. Of course, optimal
controls can be found for special problems with additional hypotheses. For example, even
in nonconvex problems, an optimal control will exist in the class of uniformly bounded and
uniformly Lipschitz continuous control functions with a fixed Lipschitz constant. Many of
these results can be found in books by Cesari [10], Berkovitz [7] and Ekeland and Temam
[13]. Second, numerical approximations of a control problem are known (for example, [8]) to
converge to the relaxed version of the original problem. For these reasons, when one speaks
of relaxing an optimal control problem, the relaxation chosen, since there is often more than
one way to do this, must satisfy the following properties:

(i) an optimal relaxed control must exist for all problems with reasonable hypotheses;
(ii) the relaxation should have the same minimum as the infimum of the original problem.

A relaxation satisfying these two properties can be said to be correct.
Relaxation theory has been important ever since the origin of optimal control theory, espe-

cially when L. C. Young emphasized the important role of convexity. The standard reference
for relaxation theory is [22]. For some more recent results see [21 ], and for relaxation applied
to some state contrained problems (but without mixed control and state constraints) see [20].

The theory has led to a major tool in variational problems, appropriately named Young
measures relaxed controls. It is known that the straightforward idea ofdefining f (t, x,/z) by

fz f (t, x, Z)lz(dz) and h(t, x, tx) by fz h(t, x, Z)lz(dz) will not work since simple examples

*Received by the editors September 19, 1994; accepted for publication (in revised form) September 28, 1995.
The research of the first author was supported in part by grant DMS-9300805 from the National Science Foundation,
and the research of the second author was supported by grant DMS-9101799 from the National Science Foundation.

tDepartment of Mathematical Sciences, Chicago, IL 60626 (enb@math.luc.edu and rrj @math.luc.edu).
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show that (ii) will not be satisfied. That is, enlarging to relaxed control functions with this
definition of f and h may decrease the minimum. We will prove that the way to relax this
problem is to define f (t, x, lz) in the usual way by fz f (t, x, z)lz(dz), but h(t, x, lz) should
be defined by/z ess SUpzz h (t, x, z), the essential supremum in z of h, with respect to the
measure/z. We will prove that this relaxation is the correct relaxation. In particular, (ii) will
be proven by using the uniqueness results of viscosity solutions to first-order PDEs, initiated
in the seminal papers of Crandall and Lions [11] and Crandall, Evans, and Lions [12].

A major role in this paper is played by the constraint condition (for one constraint function)
that when h(t, x, z) O, Dzh(t, x, z) g: O. This condition is very stringent and should be
weakened. Nevertheless, it is consistent with the assumption for necessary conditions in 15]
and is intuitive as well. That is, in practical problems one expects to be able to control the
system back into the desired region when one reaches the boundary. The condition says that
the control variable can still be used when the constraint is about to be violated. Helene
Frankowska has informed us that under this constraint assumption, the theory of differential
inclusions already proves the relaxation theorem in this paper. The specific formulation of the
relaxed problem and the proofof the relaxation theorem using viscosity solutions appears to be
new. In any case, our goal in this paper is not to find the most general result regarding the state
constraint problem but to determine the correct formulation of the relaxed state constrained
problem in an explicit form.

The problem of this paper was brought to our attention by an anonymous referee of [3],
where we determined the relaxation ofoptimal control problems withL cost functionals. The
referee pointed out that the result obtained there was a special case of the problem considered
in the present paper.

2. Statement of the problem. Consider the controlled system of ordinary differential
equations

(2.1) d(r)/dr f(r, (r), ’(r)), 0 < < r < T,

(2.2) (t) X E en.
In this section we will begin by imposing only one constraint on the control functions ’.
Consequently, the controls will be allowed to take values in Rq. Specifically, the control
functions " (.) are chosen from the class of functions

Z[t, T] { [t, T] ---, Rq ff is Lebesgue measurable}, q > 1.

Throughout this paper we will assume that the following condition holds. The letter K will
be a symbol perhaps denoting a different constant at different times.

(A) f [0, T] x en eq --+ gn is jointly continuous and is Lipschitz in x and z. That
is, there is a constant K such that

(2.3) If(t, x, z) f (t, x’, z’)] < K(lx x’l + Iz z’]) Yx, x’ Rn, Z, Z’ Rq.

In addition, If(t, x, z)[ < K(1 + Ixl). The given function g e -+ R is Lipschitz and
uniformly bounded below.

We turn now to the single constraint function h [0, T] Rn Rq --+ R1. Later we will
indicate the hypotheses needed when we have more than one constraint. In particular, we will
need more than one constraint function in order to incorporate constraints such as ffl _< M,
which gives us a compact control set.

(B) h(t, x, z) is continuously differentiable and Lipschitz in all variables and satisfies the
two conditions

(2.4) Dzh(t, x, z) g= 0 if h(t, x, z) 0,
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and

{Z E Rq h(t, x, z) <_ r} is compact r E R 1.

The goal is to choose a control function ( Z which minimizes the cost functional

Pt,x(() g((T))

subject to the constraints that

h(r, (z), ((z)) < 0 for a.e. < r < T.

Define the set of feasible control functions

Zh[t, T] { Z[t, T] h(r, (r), ((z)) < 0 a.e. < z < T}.

The constrained value function V’[0, T] Rn --+ R is defined by

(2.6) V(t, x) inf Pt,x(()
6;h[t,T]

By the usual convention, V(t, x) +cx if ;h[t, T] 0. We shall have use of the domain

2 [(t,x) [O, T] Rn minh(t,x,z) < O

and the function

,(t, x) min h(t, x, z).
zGRq

LEMMA 2.1. When (B) holds, the minimum in the definition of 9/ is achievedfor each
(t, x). Also, [0, T] Rn.

Proof. Letz satisfy ?,(t,x) > h(t,x,z)- l/k, k 1,2 Thenz 6 {z
h(t, x, z) < 9/ + 1}, which is assumed compact. So we may assume Zk Z*, and then
it is easy to see that z* provides the minimum.

Under the assumption (2.5) when ?,(t, x) 0--say, h(t, x, z0) 0--the fact that
Dzh(t, x, zo) 0 implies that ,(t, x) < 0. Thus, {, < 0} everywhere, which says that
f2 [0, T] x Rn.

We assume throughout this paper that

(2.7) V" -->- R is finite for each (t, x)

This is equivalent to assuming that ;Zh[t, T] 0 for (t, x)
Remark 2.1. If we assume that there is a constant C > 0 such that minz h(t, x, z) < -C,

it will follow that V < +cx for all (t, x). Indeed, we set

u(t, x) inf ess sup h(s, (s), f (s)),
;[t,T]

which is the value function for the L control problem with cost function h (see [2]-[4]).
Then u is the unique viscosity solution of

!max /ut
/ {z:h(t,x,z)<u}

Dxu" f(t, x, z), minh(t,z x, z) u } 0
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in f2, with u(T, x) minz h(T, x, z). The assumption (2.5) replaces the need for a compact
control set used in [4]. Under the assumption minz h(t, x, z) < -C, we verify that uo(t, x) =_

-C is a viscosity supersolution of the L problem and therefore u < u0 -C everywhere.
But then one can always find a control ( 6 Z[t, T] so that h(s, (s), (s)) < -C/2 < O, i.e.,

Define the Hamiltonian function

(2.8) H (t, x, r, p) min p. f (t, x, z)
{zERq:h(t,x,z)<r}

for r R and p Rn.
Observe that the minimum is over the r-level set {z 6 Rq h(t, x, z) < r}, which is

assumed to be compact in Rq Yr R by (2.5). If this set is empty, H is defined as +cxz. It
is known that H(.,., r, .) is, in general, discontinuous, in which case we must calculate the
upper and lower semicontinuous envelopes of H. This was done in [4] for H given in (2.8):

H*(t,x,r,p)=_ lim sup H(s,y,p,q)= H(t,x,r-O,p)
(s, y,p,q)-+ (t,x,r, p)

and

H.(t, x, r, p) liminf H(s, y, p, q) H(t, x, r + 0, p).
(s, y ,p ,q )--+ (t,x,r, p)

In general, upper (lower) * denotes the upper (lower) semicontinuous envelope. Using the
continuity of h we see quickly that

(2.9) H. (t, x, r, p) H(t, x, r + 0, p) min p. f(t, x, z).
{zERq:h(t,x,z)<O}

Using condition (B) we can say more.
LEMMA 2.2. Assuming (A) and (B), H*(t, x, 0, p) H.(t, x, 0, p) H(t, x, 0, p).
Proof. We know that

H* (t, x, 0, p) H(t, x, 0 0, p) > H (t, x, 0, p) H (t, x, 0 + 0, p) H. (t, x, 0, p),

and so it is sufficient to prove that H (t, x, 0, p) > H(t, x, 0 0, p). Fix (t, x) 6 f2 and let z0
satisfy h(t, x, zo) < 0 and min{zRq:h(t,x,z)<_o p f(t, x, z) p f (t, x, zo). If h(t, x, zo) < O,
we are done. If h(t, x, z0) 0, then (B) says that for each e > 0, we can find 3(e) > 0 and "so that Iz0 ’1 < and h(t, x, ) < -e. Using (A) we get, with Kf the Lipschitz constant
for f,

H(t, x, O, p) p. f(t, x, zo) > p" f(t, x, ) Kflzo 1
> min p. f(t, x, z) K6

{zRq:h(t,x,z)<-e}

H(t, x, -e, p) K6.

Since e > 0 was arbitrary, we reach the result. [3

Now we will characterize the constrained value function.
THEOREM 2.3. Assume (A), (B), and (2.7). The valuefunction V -- R is the unique

continuous viscosity solution ofthe problem

(2.10) Vt + min Dx V f (t, x, z) O, (t, x)
{zRq:h(t,x,z)<O}
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satisfying the terminal condition

(2.11) V(T,x) g(x), x E Rn.
We recall here the definition due to Ishii (see [16] and [1]) of a viscosity solution for

problems with discontinuous Hamiltonians. Even though we have proved the continuity of H,
the formulation ofthe definition using upper and lower semicontinuous envelopes is convenient
for use in some of the proofs below.

DEFINITION 2.1. A locally bounded function u is a viscosity solution of
H(t,x, O, Dxu) O if

(i) u is a viscosity subsolution on f2, i.e., for any (to, xo) for which u* 99 has a
maximum, for a smoothfunction q), itfollows that

q)t -t- H*(to, xo, O, Dxtp(to, xo)) > 0;

and
(ii) u is a viscosity supersolution on f2, i.e., for any (to, x0) 6 f2 for which u. q) has a

minimum, for a smoothfunction 99, itfollows that

q)t "- n*(t0, x0, 0, Dxq)(to, xo)) < O.

Since is all of [0, T] x Rn we do not have to work with constrained viscosity solutions
(see [9], [17]-[19]) in this paper. These are functions which are subsolutions in the interior
of a constraint set and supersolutions on the entire constraint set, including the boundary. In
order to relax assumption (B) constrained viscosity solutions will have to be used.

ProofofTheorem 2.3. The fact that V is locally bounded on f2 follows from the classical
results of Hestenes [15, Chap. 7, 5] and is a consequence of the implicit function theorem
using assumption (B). In fact, it is proven in 15] that if there is a control ( zh for a starting
point (s, y) f2, then the same is true in a neighborhood of (s, y). Let e > 0 and (s, y) ft.
Let ( E 2h[S, T] be near optimal, i.e., V(s, y) + e > g((T; s, y)) e, where (. s, y) is
the trajectory associated with (. Then, using assumption (A) and standard results in ODEs,
it is easy to verify that V(t, x) <_ V(s, y) + K8 + e for all (t, x) B(s, y). It follows that V
is locally bounded above. V is bounded below also by assumption (A),

The fact that V satisfies (2.10) follows in a standard way (see [19]) from the dynamic
programming principle:

(2.12) V(t, x) inf V(s, (s)),

where Zh[t, s] { 6 Z[t, s] h(r, (z), ((z)) _< 0, a.e. < r _< s].
We will only prove that V is a subsolution, the proof that V is a supersolution is similar.

Suppose that V* 99 achieves a strict zero maximum at (s, y) 6 f2. If V is not a subsolution,
then there is 3 > 0 such that

q)t nt- H(S, y,--3, Dxq)) < -3

at (s, y), By the definition of H and (2.5), there is a z gq so that h(s, y, za) < -3 and

(2.13) ot + Dxq). f (s, y, z) <_ -3.

Set ((r) _= z, and let (.; t, x) be the trajectory associated with ( on [s, T] with (t) x.
Set

.A(z, p) {(t, x) h(t, x, z) <_ p}.
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There is an r > 0 such that (r, (r; t, x)) 6 4(’(r), -3/2) for all (t, x) Br(s, y) and for
all s < < r < s + r. Let e > 0 such that e < r and select (se, ye) Br(s, y) f) t(za, -3/2)
such that

V (se, ye) > q) (se, ye) e2.

Using the dynamic programming principle (2.12) we have

o(se, ye) e2 < V(se, ye) <_ V(se + e, (se + e; se, ye)) <_ (p(se + e, (se + e; se, ye)).

From this and (2.13) we get, for small e > 0, that

This leads to a contradiction ifwe let e --+ 0 and so we conclude that V is indeed a subsolution.
To prove uniqueness and continuity we will use the following comparison principle.
PROPOSITION 2.4. Ifu f2 --+ R is an uppersemicontinuous subsolution and v f2 --+ R

is a lower semicontinuous supersolution of(2.10), both ofwhich satisfy the terminal condition
(2.11), then u < v on f2.

Proof. We only sketch the proof since it is similar to the proof of uniqueness in [4] until
we get near the end.

By assumption, in the viscosity sense, u solves

bl .qt_ H*(t, x, O, Dxu) >_ O, (t, x)

and v solves

vt + H.(t, x, O, Dxv) < O, (t, x)

If/3 > 0, M > 0andwe set v’(t,x) v(t,x)+ +Ml(T-t)-t-/3gR(Ixl), where
gR CI(R 1) satisfies 0 < dglc(r)/dr < 1, glc(r) 0 if r < R, and gg(r) --+ +oc as
r --+ ec. Then v’ > v and it is easy to check that v’ is a solution of

v + H.(t, x, O, Dxv’) + <_ O, (t, x)

We refer to [4, Thm. 4.2, p. 1086] for similar details. Set w(t, x, y) u(t, x) v’(t, y).
Since u is a subsolution and v’ is a supersolution, w is a viscosity solution of

(2.14) wt + H*(t, x, O, Dxw) H.(t, y, O,-Dyw) >_ O.

We want to prove that u < v on f2. For the sake of contradiction, suppose that

u (t’, x’) v’(t’, x’) sup (u v’) > 0.
(t,x)S2

The presence ofg in v’ guarantees that the supremum is achieved even though S2 [0, T] x R
is unbounded. In addition the terms M/3 (T t) and/3/t allow us to assume that 0 < t’ < T.
Consider

M= sup w(t, x, y) -glx yl 2
(t,x,y)
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for ot > 0. Then M < +c for large or, and if (t, x, y) satisfies

lim M w(t, x, y) + lx yl2 O,

then (i) olx-y 12 -+ 0 and (ii)M -- u(t’, x’)-v’(t’, x’). Using the definition ofsubsolution
lx a,with the test function 7 y at (t, x, y) (t, x, y) we have from (2.14) that

H*(t, x, O, (x y)) H.(t, y, O, (x y)) 2 > O.

Using the fact that

H*(t, x, O, (x y)) H(t, x, 0 O, (x y)) H(t, x, O, (x y)),

H.(t, y, O, c(x y)) H(t, y, 0 + O, (x y)) H(t, y, O,(x y)),

we obtain

0 < H(t, x, O, u(x y)) H(t, y, O, ot(x y))

< H(t, x, O, a(x y)) a(x y). f(t, y, ) 2

< H(t, x, O, c(x y)) u(x y). f(t, x, ) + Kfclx yl 2 2’

where 6 {z h(t, y, z) < 0} achieves the minimum in H(t, y, 0, ot(x y)). We have used
the Lipschitz continuity of f in the last line.

Now suppose that h (t, y, ) 0; the case when h (t, y, ) < 0 is similar but easier. Using
assumption (B), there exists so that

(2.15) I 1 gflx yl and hCt, y, ) < --2Khlx Yl.

Then

h(t, x, ) h(t, y, )+h(t, x, )-h(t, y, ) < --2Khlx--yl+Khlx--yl --Khlx--yl < O.

Consequently, " is a member of the set over which the minimum is taken in the Hamiltonian
H(t, x, O, c(x y)). Therefore, using (2.15),

0 < H(t, x, O, u(x y)) c(x y). f(t, x, ) + Kfulx yl 2

< a(x y). f(t,x, ) -c(x y). f(t, x,g) + Kfotlx yl 2

<_ gflx Yl I -l + gflx yl 2
2

< Kclx yl 2
/3
t2

2

2

Since otlx yl 2 O, we have reached a contradiction. This contradiction tells us that
u < v’ v + o8 (1), and since fl > 0 was arbitrary, u _< v. [3

Completing the proof of the theorem, we have shown that V* is an upper semicontinuous
subsolution and V, is a lower semicontinuous supersolution, both satisfying the terminal
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condition (2.11). By the proposition, we conclude that V* < V. and therefore that V is
continuous. Uniqueness is also an immediate consequence of the proposition. ]

Remark 2.2. If we have m > constraint functions--say, hi(t, x, z) hm (t, x, z)
then we generalize assumption (B) to the condition that

(B’) The matrix

(Ohi)(2.16) il ir, j- 1,2 q,

has rank r, where il ir are the indices from 1, 2 rn such that hi(t, x, z) O.
In the remainder of this paper we will assume that we have rn + 1 constraint functions

with hi hi(z) for 1, 2 rn and hm+l h(t, x, z). We will set

(2.17) Z {Z G Rq "hi(z) < O, 1, 2 m},

which is assumed to be compact in Rq. The set Z is the usual compact control set of control
theory, often taking the form Z {z E Rq Izl _< M}, A set of this form is easily expressed
using smooth functions h hm.

Assuming the rank condition (2.16) for the continuously differentiable functions h (z),
hm(Z), h(t, x, z), we prove, using the method of this section, that the value function with

these constraints on the controls is the unique continuous viscosity solution of

(2.18) Vt + H(t, x, O, Dx V) O, (t, x) 2,

and terminal condition (2.11), but now since

{Z Rq hi(z) < 0 hm(Z) < O, h(t, x, z) < 0} {z Z h(t, x, z) < 0},

H (t, x, r, p) min p. f(t, x, z).
{zZ:h(t,x,z)<r}

The value function is given by V(t, x) infcezht,rl g((T)), but now we take

2;h[t, T] { [t, T] --+ Z" h(r, (r), ’(r)) _< 0, a.e. < r < T}.

In other words, we have the admissible controls taking values in the compact set Z C Rq.
We no longer need to assume that the level sets of h(t, x, z) in the z variable, i.e., {z 6 Z
h(t, x, z) < r}, are compact because this will follow from the assumption that Z is compact.

3. The relaxed problem. Since our aim in this paper is to determine the relaxed version
of the problem just formulated, we need to introduce the space of relaxed controls and the
relaxed dynamics.

We assume throughout the remainder of this paper that condition (A) and the assumption
(B’) on the constraint functions given in Remark 2.2 hold, as does (2.7).

Let M(Z) denote the space of bounded measures on the compact control set Z {z 6

Rq hi(z) < 0 hm(z) < 0} and 79.A//(Z) be the set of probability measures on Z.
Viewing M(Z) as the dual space of C(Z) continuous functions on Z, we endow M(Z) and
79.A4 (Z) with the weak star topology of C(Z)*. For any/z E 79.A//(Z) define the functions

and

f(t, x, lZ) f (t, x, z) lz(dz),

(3.2) h(t, x,/z) =/z ess sup h(t, x, z).
zZ
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This means that we take the essential supremum in z 6 Z of h(.,., z) with respect to the
measure

Let Z [t, T] L([t, T]; 79Ad (Z)), and define the space of feasible relaxed controls by

Z h[t, T] {Iz Z [t, T] h(s, (s), lZ(S)) < O, a.e. < s < T},

where (.), for any control/z 6 Z [t, T], is the unique relaxed trajectory given by

(3.3) (r) x + f(s, (s), Z) tz(s, dz)ds.

Remark 3.1. We proved in [3] that, for each (t, x) fixed, the mapping

I 79.A/t Z h x, tx

is weakly sequentially lower semicontinuous. The conti...nuity properties of h in the (t, x)
variables are the same as those of h. In general, however, h is not continuously differentiable.

DEFINITION 3.1. The relaxed valuefunction associated with the constrainedproblem is

(3.4) V(t,x) in...f g((T)).
Iz(.)E Z h[t,T]

Consider the set

(3.5) S2--- (t, x) [0, T] x Rn" min h(t, x, lz) < 0
ETM(Z)

and set

(3.6) (t,x) min h(t,X, lZ).

PROPOSITION 3.1. f2 f2 [0, T] x Rn.
Proof. The proof follows from the fact that

(3.7) ’(t, x) y(t, x) min h(t, x, z)
zZ

V(t, x) [0, T] x Rn.

To see that this is true, we have that, for any/z 79A//(Z),

h(t, x, lZ) lZ esssuph(t, x, z) > minh(t, x, z),
zZ zZ

and so (t, x) > ,(t, x). If z0 satisfies 9/(t, x) h(t, x, z0), let/z0 79Jt(Z) be the Dirac
measure on Z concentrated at z0,/z0 8z0. Then

?(t, x) < h(t, x, tzo) h(t, x, zo) ?’(t, x),

and (3.7) is proven. B
THEOREM 3.2. Assume (A), the conditions ofRemark 2.2, and (2.7). V is a continuous

viscosity solution ofthe Bellman equation (2.18) satisfying the terminal condition (2.11).
Proof. Since any ordinary control ( 6 Zh[t, T] can be viewed as a relaxed control (by

taking the relaxed control to be the Dirac measure concentrated on , /z(r) 3()), it is
immediate that V(t, x) < V(t, x) (t, x) 6 f2. Assumpt.ion (A) implies that V is bounded
below. Thus, V is locally bounded. Also, it is clear that V (T, x) g(x).
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Define the relaxed Hamiltonian

(3.8) H (t, x, r, p) mi p. f (t, x,/z).
{lZ79JM(Z):h(t,x,tz)<r}

Then, just as in the unrelaxed case,

H* (t, x, r, p) H (t, x, r 0, p) and H. (t, x, r, p) H(t, x, r + 0, p).

We may not y conclude continuity of the Hamiltonians because we have not imposed con-
dition (B’) on h. To obtain continuity we will need the following lemma relating the relaxed
Hamiltonian with the ordinary Hamiltonian.

LEMMA 3.3. H (t, x, r, p) H(t, x, r, p), i.e.,

(3.9) min p. f(t, x,/z) min p. f(t, x, z).
{lz79jM(Z):h"(t,x,tz)<r} {zZ:h(t,x,)<r}

Proof of Lemma 3.3. First, if the set {/z 6 79JM(Z) h(t, x,/Z) < r} is nonempty,
then it contains a measure/z such that for/z a.e. z Z, h(t, x, z) < r. Therefore, the set
{z Z h(t, x, z) < r} also is nonempty. The converse statement is also clearly true by using
Dirac measures. Without loss of generality we may therefore assume the sets are nonempty
since otherwise the Hamiltonians are both +cxz. Now H(t, x, r, p) < H(t, x, r, p) since, for
each z0 such that h(t, x, zo) < r, we can let/z 6zo. To see the opposite inequality, let e > 0
be given and/z* 6 79A/l(Z) satisfy

H(t, x, r, p) > p. f(t, x,/Z*) e p. f(t, x, z)/z*(dz) e

and/z*-esssupzh(t,x,z < r. Let B {z 6 Z’h(t,x,z) < r}. Then/Z*(B) 1, and

H(t, x, r, p) > p. f(t, x, z)/z*(dz) e

fn p f (t, x, z)/z*(dz) e

> min p. f(t, x, z) e H(t, x, r, p) e.
zB

Therefore, (3.9) is true. D
One consequence of the lemma is that even though h(t, x,/z) is not a continuously dif-

ferentiable function, at least for the purpose of calculating the Hamiltonian we may use the
continuously differentiable function h from which h is defined.

Returnin..to the proof of the theorem, we begin the proof that V is a subsolution of (2.18).
Assume that V* 99 achieves a zero maximum at (s, y) S2 f2. If V is not a subsolution,
then there is > 0 so that

(,Or(S, y) + H(s, y,-6, Dxq)(s, y)) q)t(s, y) + H(s, y,-6, Dxq)(s, y)) <_ -6.

Observe that we have used the fact that H and H are identical. Now we may use the dynamic
programming principle for the relaxed value, i.e.,

V(s, y) inf g(a, (a; s, y)), s < a < T,

and we complete the proof that V is a subsolution of (2.1 8) in a manner entirely similar to that
of Theorem 2.3. In this proof we use a control ’(r) za and the relaxed control/z(r)
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The assumption (B’) is used exactly as in the proof of Theorem 2.3 to achieve a contradic-
tion. The continuity of V also follows from the comparison principle once we know that V is
a viscosity solution.

Once we know that V is a viscosity solution of (2.18) and satisfies the terminal condition
(2.11), the uniqueness of viscosity solutions is used to yield the following relaxation theorem.

COROLLARY 3.4. The relaxed value function V and the ordinary value function V are
identical on

The reader may well ask whence comes our definition of the relaxed problem and, in
particular, the use of the function h. The following theorem provides the answer to that
question.

Denote by a+ max{a, 0}.
THEOREM 3.5. Assume (A), the conditions ofRemark 2.2, and (2.7). Define, for each

n 1, 2 the valuefunctionfor the unconstrainedproblem

Vn(t, X) inf g((T)) + n
EZ[t,T]

h+(s, (s), (s)) ds}
where is the trajectory startingfrom x Rn at time t. Here Z[t, T] {" It, T] --+ Z}, and
recall that Z {z eq hi (Z) < O, < < m}. Let Vn (t, x) be the classical unconstrained
relaxed value:

Vn (t, x) if
lzE Z [t,T]

g( (T)) + n h+ (s, (s), z) lz(s, dz) ds

Then, for (t, x) [0, T] Rn,

(3.10) lim Vn(t,x)-- V(t,x)

and

(3.11) lim Vn(t,x)-- V(t,x).

Proof. To prove (3.10), we know (see [19]) that Vn is the unique continuous viscosity
solution of

0Vn
Ot +min(DxVn. f(t,x,z)+n.h+(t,x,z)) =0,

zZ
(t,x) 6[O,T) xRn,

with terminal condition Vn T, x) g (x Set

Hn (t, x, p) min (p. f(t, x, z) + n. h+ (t x z)).
zZ

Then, by classical penalization arguments (cf. [4] and [6]), assuming that all of the Hamilto-
nians are finite,

lim sup Hn (s, y, q) H(t, x, 0 0, p)
(n,s, y,q)--+ (cx,t,x, p)

and

lim inf Hn (s, y, q) H(t, x, 0 + O, p).
(n,s, y,q)-+ (cx,t,x p)
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Recall that under our assumptions, V is locally uniformly bounded. The stability result of
Barles and Perthame (see Fleming and Soner [19, p. 288]) then gives us (3.10).

To prove (3.11), we know that Vn is the continuous viscosity solution of

OVn + min (Dxn.f(t,x, ix)+n, fzh+(t,x,z)lz(dz)) =O, (t,x) 6 [O,T) Rn

t 7A4(z)

with Vn (T, x) g (x). Now, setting

Hn (t, x, r, p) min
,(z)

p.f (t, x, ix) + n (h(t, x, z) r)+ix(dz),

we verify easily that

lim sup Hn(s, y, b, q) min p.f(t, x, ix)
(n,s, y,b,q )---> (cx),t ,x ,r, p) {lzT M(z):fz (h (t ,x ,z)-r+0)+tx(dz)<0}

and

lim inf Hn (s, y, b, q) min p.f (t, x, ix).
(n,s, y,b,q)--> (oz,t ,x ,r, p) {/xT).Ad (Z):fz (h (t ,x ,z)-r-O)+tz(dz) <0}

Indeed to verify the first claim, we have, for all (s, y, b, q) B(t, x, r, p),

min
224 (Z):fz (h(s, y,z)-b)+tx(dz) <0}

q. f(s, y, ix)

=limn__,7M(z)min (q.f(s,y, ix)+n.fz(h(s,y,z)-b)+ix(dz))

min
{/z67"9jM (Z):fz (h(t,x,z)-r+(Kh )e)+Iz(dz) <0}

(p (t, x, 1) + gf + IPI)

Since e > 0 was arbitrary we have shown that

lim sup H(s, y, b, q) < min p.f (t, x, ix).
(n,s,y,b,q)-->(cxz,t,x,r,p) {#7)JM(Z):fz (h(t,x,z)-r+0)+/x(dz) <0}

The reverse inequality is immediate, so the claim is verified.
Now fz(h(t, x, z) r + O)+ix(dz) < O, if and only if ix ess SUpz h(t, x, z) < r and so

lim sup Hn (s, y, b, q)
(n,s, y,b,q)-+ ,t,x,r,p

min p.f(t, x, ix)
{/x7).Ad(Z) "/z-ess SUpz h(t,x,z)<r-O}

H* (t, x, r, p).
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Similarly,

lim inf Hn (s y, b, q)
(n,s, y,b,q)--+ (o,t ,x,r, p)

min p.f (t, x, Ix)
{/xTvA,4(Z) "/z-ess SUpz h(t,x,z)<r+O}

H.(t, x, r, p).

Once again the Hamiltonian for Vn converges correctly to the Hamiltonian for V and the
theorem of Barles and Perthame allows us to conclude. Without loss of generality we are
assuming that all of the Hamiltonians in the proof are finite to avoid trivial cases, rq

Remark 3.2. It is apparent from Theorem 3.5 that the natural approach to relaxing the
constrained problem, i.e., convexifying h by taking fz h(t, x, z)Ix(dz), is not correct. The
theorem shows that we must relax h+, not h. The distinction comes from the fact that

(fz h(t, x, z)Ix(dz))+ fz h+(t, x, z)Ix(dz).
We have proved so far that the relaxed value defined in this paper and the original value

function will coincide. Thus, even though the class of controls is enlarged to guarantee the
existence of an optimal control, this enlargement will not decrease the value. Furthermore,
the fact that the values are the same means that it will be possible to approximate the relaxed
value function with ordinary controls and trajectories. This is the first part of establishing that
the formulation of the relaxed problem in this paper is the correct one.

The second part now consists of showing that an optimal relaxed control will always exist
in our formulation. If we do that, then our formulation will satisfy the properties required in
enlarging the class of controls to give us existence of an optimal control.

We recall here the definition of a quasi-convex function. A quasi-convex function--say,
g X --+ R 1, X a convex set--satisfies

g(Jx + (1 ,k)y) < max{g(x), g(y)}, 0 < ,k < 1, x, y X.

Equivalently, g is quasi-convex if the r-level set of g, {x X g(x) < r} is convex for all
r6R1.

It was proven in [3] that Ix - h(t, x, Ix) is a quasi-convex function. In fact,

(3.12) h(t, x, )Ixl + (1 ))Ix2) max{h(t, x, Ix1), h(t, x, Ix2)}

for 0 < . < 1. Furthermore, it is obvious that Ix w- f (t, x, Ix) is linear and weakly continuous.
The continuity properties of f and h in the (t, x) variables are inherited from f and h.

THEOREM 3.6. For each fixed (t, x) f2, there exists an optimal relaxed constrained
control Ix*(.) Z h[t, T]..

Proof Let {Ixn C Z h[t, T] be a minimizing sequence and n the associated relaxed
trajectory for each n 1, 2 starting from x Rn at time > 0. Then, we know that on
a subsequenc.e Ixn Ix*, weak-* for some Ix* 6 Z It, T], as well as n --+ *, unirmly on
[t, T], with * the trajtorLassociated with Ix*. We first need to show that Ix* Z h[t, T],
i.e., that the constraint h (s, * (s), Ix* (s)) < 0 for a.e. < s < T, is satisfied. This constraint
is equivalently expressed as

(3.13) . ess suph(s, *(s),/z*(s)) < 0,
t<_s<_T

where . denotes Lebesg.ue measure on [0, T]. It was proved in [3] and [5] (see Remark 3.3)
that the functional F Z [t, T] R defined by

F(Ix) ,k ess sup h(s, (s), Ix(s))
t<s<T
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is weakly lower semicontinuous if h(.,.,/z) is qu.asi-convex. Since (3.12) shows that this
function is indeed quasi-convex, and since xn Z h [t, T], we have that

F(/z*) < lim inf F(/Jn) --< 0,

and (3.13) is prove...n.
Finally, since n (T) --+ "g* (T),

V(t, x) lim g(n(T)) g(*(T)) >_ V(t, x),
n---x

which says that (/x*, *) is optimal. V1

Remark3.3. We will sketch a proofofthe fact that u 6 L([0, T]; Rn) - ess suph(u(r))
is weakly lower semicontinuous when h is quasi-convex. The proof here is modeled after a
similar statement for integrals of convex functions in [14]. The proof given in [3] is based
on Mazur’s lemma. Set G(u) esssuP0<r<r h(u(r)). Suppose that u u weak-* in
L([0, T], Rn). We assume that h is represented as

h(p) max (qj p + dj) A cj,
l<j<m

qj Rn, cj R1,1< j < m <

Indeed, it is proven in [5] that any quasi-convex function can be represented as h(q)
SUpp,c ((q p h*(p, c)) /x c), where h*(p, c) (SUpq(p q h(q)) /x c). Set Ej {z
[0, T] h(u(r)) (qj u(r) + dj)/x cj}. Then [0, T] tAjEj, and we assume that the sets
are disjoint. Then, since u --+ u weak-*,

G(u) ess sup h(u(r)) max ess sup h(u(z))
O<z<T J "Ej

max ess sup(qj u (r) + dj)/x cj
J vEEj

< liminfmax ess sup(qj u(r) + dj)/x cj
k--+ cx j EE

lim inf G(uk).
k--- cx

A limiting argument on m --+ cxz then completes the proof.
Remark 3.4. Recall that Z {z 6 Rq hi(z) < 0 hm(z) < 0}. The class 79AA(Z)

convexities Z. Also,

{lz 7")JM(Rq) hl(I) < 0 hm(l) < 0} {/z

An equivalent formulation of the relaxed problem can be stated, using the greatest quasi-
convex minorant of h. It was shown in [5] that the greatest quasi-convex minorant of a function
h can be written

h** (z) min max h (Zi) Z i,i Zi, i O, )i 1
l<i<q+l

i=1

Once we have h** (t, x, z), we may state the relaxed optimal control problem using chattering
controls as in [7].
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SOLVABILITY AND RIGHT-INVERSION OF IMPLICIT NONLINEAR
DISCRETE-TIME SYSTEMS*

T. FLIEGNER’r, O. KOTTAt, AND H. NIJMEIJER

Abstract. In this paper the problems of solvability and right-invertibility for implicit nonlinear discrete-time
control systems are investigated. The concept "solvability" is defined in such a way that consistency of the implicit
system equations is locally guaranteed for all input sequences, and an algorithm is introduced to verify the solvability
of an implicit system in that sense. It is demonstrated how this mechanism may be used to decide on the right-
invertibility or functional reproducibility of a given system. In contrast to previous work on right-invertibility for
special classes of implicit nonlinear systems, the approach is not restricted to the characterization of right-invertibility,
but it is shown in addition how an inverse system can actually be obtained. The theory is illustrated by a realistic
economic example in which the inversion procedure is applied using formula manipulation.

Key words, implicit nonlinear systems, solvability, right-invertibility
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1. Introduction. Controllability questions play a prominent role in the study of dynam-
ical control systems. Among them the problem of right-inversion has, starting with the paper
[4], received a lot of attention. Roughly speaking, a control system is right-invertible (also
referred to as functionally reproducible or dynamic path controllable) if for all time paths in
the output space, one can find an input sequence and an initial state x (0) such that, applied to
the system, the system generates precisely the given time path as its output. Practically, the
problem consists of two parts" the decision whether or not a given system is right-invertible
and, if the answer is affirmative, construction of a feedback/feedforward mechanism producing
the desired inputs.

Concerning linear standard state-space systems, the problem of system inversion is sat-

isfactorily solved. Some of the major references are [4], [18], and [19]. There also exist a
number of articles dealing with the inversion of standard explicit nonlinear systems in con-
tinuous time, such as [16], [17], and [20], and similar work in discrete time (see, e.g., [11],
[l]).

In this paper we are concerned with the right-inversion of implicit nonlinear discrete-time
systems, a problem which, to the best of our knowledge, has not been considered before in this
form. However, note that in [6], [7] left- and right-invertibility are characterized for (implicit)
rational systems in a differential/difference algebraic language.

We formulate necessary and sufficient conditions for right-invertibility, and an inversion
algorithm is introduced which can be used to obtain a right-inverse system in case such a
system exists.

The results of this paper are inspired by a series of articles [12]-[14] by Luenberger
in which he studied problems of the existence and uniqueness of solutions for both linear
and nonlinear implicit discrete-time systems. As suggested by Luenberger (but not further
pursued), we tackle the inversion problem as the solvability problem ofthe system with respect
to the state variables and control variables; that is, we ask whether there exists for every given
output sequence a sequence of states and inputs, respectively, such that the system equations
are satisfied. For this purpose we generalize the shuffle algorithm given in [14] for linear
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systems to the nonlinear setting. The outcome of this algorithm decides upon local solvability
of the given implicit system and rearranges the system equations in a way that solutions can
be obtained easily if they exist.

Note that the inversion algorithm introduced in this paper applies to implicit systems as
well as to standard state-space systems. In the latter case it just reduces to the traditional
inversion algorithm suggested in 11 ]. The order of the obtained inverse system is the same
as the order of the original system.

To our knowledge, the approach suggested by Luenberger and used in this paper for
constructing a right-inverse system has not been used before, even for linear systems. All
the papers [2], [8], [21] seem to follow the traditional semiimplicit case where the dynamic
part and the algebraic part are treated separately. This either causes a lot of trouble or leads
to a very complicated inversion procedure. In [2], for instance, the author conjectures that
his inversion procedure finds an inverse system whenever one exists, but a formal proof is
not available. The procedure in [8] consists of three steps. At a first step, the consistency
of the system equations with respect to states and control variables is checked. The second
step deals with the construction of a so-called "candidate inverse system" whose order is in
general greater than that of the original system. Finally, a finite iterative method is applied to
the "candidate inverse" to reduce its dimension, either yielding an inverse system or providing
evidence that there is no such system.

In our approach, we try to circumvent some of these disadvantages by directly attacking
the problem of obtaining a right-inverse system without a preliminary test of the invertibility
conditions. The shuffle algorithm provides both a simple criterion for checking invertibility
and a systematic procedure for constructing a right-inverse system. Moreover, our method--in
contrast to, for example, [8]redoes not require state transformations.

A main part of the paper is dedicated to show that, in spite of the fact that the shuffle
algorithm extensively uses the theorem on the functional dependence of functions, which,
in turn, is based on the implicit function theorem, the procedure lends itself to a numerical
treatment and may even be performed using formula manipulation in case the nonlinearities
are not too serious.

The organization of this paper is as follows. In 2 we consider the solvability of nonlinear
implicit systems over a finite time interval. Section 3 is concerned with the extension of the
shuffle algorithm to nonlinear systems, and 4 connects the results of the previous sections.
The problem of right-invertibility is addressed in 5. The purpose of 6 is to show in some
detail how the methods introduced so far can be used to treat problems arising in economic
policy making. Final remarks conclude the paper.

2. Preliminaries. In the following discussion we consider implicit nonlinear discrete-
time systems described by equations of the form

E I f(x(k+ 1),x(k),u(k)) O,
(1)

/ h(x(k), u(k), y(k)) O,

where, for all k, x (k) belongs to some open part 2, ofn, the inputs u (k) are in an open part
of m, and the outputs y(k) belong to some open set 3 of P. With regard to right-inversion
we moreover assume p < m.

The mappings f" 2’ 2" /4 Is, s < n, and h 2" b/ 3 P are supposed
to be smooth; that is, all partial derivatives of the functions f and h exist and are continuous.

Remark 2.1. In the terminology of [23], systems of this type are state-space systems.
Therefore, we do not hesitate to call the x variables states. In [12] and many other papers
they are referred to as descriptor variables (or generalized states or semi-states), expressing
their role in the modelling process. In order to differentiate among systems given in implicit
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(respectively, explicit) state-space form, we call the latter systems in standard state-space form.
Implicit systems may not be necessarily input-output systems; that is, u and y may not possess
additional properties which qualify them as inputs and outputs, respectively. Despite of this
we often refer to the u and y variables as inputs and outputs even if there is no justification to
do so.

We work on a finite time interval k 0, kF < cx, where kF is supposed to be
greater than n. Furthermore, we adopt a local point of view by assuming the existence of an
equilibrium point for the system E; that means a point (Xe, tie, Ye) E X /a/ satisfying
f(Xe, Xe, Ue) 0 and h(xe, Ue, Ye) 0. Throughout the paper, we work in a neighbourhood
A,0 /go 3;0 of this equilibrium point not further specified, although everything works in
the same way in case E is given in a neighbourhood of a reference trajectory of the system
(cf. 6).

Denote by ,VF, b/0F and YF the sets of state variable sequences

control sequences

(k))=0 Ix(k) ,0 < k < kF),

[0 k=kF-1
kF {{u(k)}k=O lu(k) lg, 0 < k < kF 1}

and output sequences

)0 lk=kF-1 yOF {{Y(k)’=o ly(k) ,0 < k < kF 1}.

Individual members of these sets will be denoted x, u, and y, respectively.
DEFINITION 2.2. a triple (x, u, y) ?(F lg’OF 3;F is said to be admissiblefor E if it

satisfies equations (1) on the time horizon considered.
Remark 2.3. Since we are working on a finite time horizon, E may equivalently be

considered, for a fixed u, as a set of kF (s + p) nonlinear equations in the variables
x(0), y(0), x(1) y(kF 1), x(kF) (abbreviated (x, y)).

Observe that in case ofimplicit system equations, the initial state x (0) cannot be arbitrarily
selected in general. This peculiarity arises because implicit system equations usually consist
of a dynamic and an algebraic part of implicit equations. In the most general case, this
algebraic part constitutes implicit relations which, at k 0, relate the components of x(0)
and those of u (0), including special cases such as relations between the components of x (0)
and u (0), respectively, only. A free choice of x (0) can therefore lead to inconsistencies in the
system equations or impose constraints on the inputs. The latter is not desirable because the
inputs are then not what is called "free" in system-theoretic terms. This unwanted situation
especially occurs when there exist algebraic implicit equations relating only components of
u. At any rate, performing the shuffle algorithm propagates these relations between x (0) and
u (0), leading to equations of the form

(2) L (x (0), u (0), u (1) u (1)) 0

for some < n (see Remark 3.1), and if these relations fail to hold for x(0), the system
equations are not satisfied. We call the initial variable x(0) admissible if all the implicit
algebraic relations which can be derived from E and which relate the components of x (0) and
u(k), 0 < k < l, hold for x(0). We specify these implicit equations in 4 after extending the
shuffle algorithm to nonlinear systems in 3. At the moment, we do not fix x(0).

Moreover, again in contrast to systems in standard state-space form, in general neither
existence nor uniqueness of solutions (x,y) for E can be guaranteed for arbitrary control
sequences u 6 b/),0F without further assumptions.
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(3)

Luenberger 13] introduced the notion of local solvability for systems of the form

Fk(x(k + 1), x(k)) O,

where the number s n of scalar equations of (3) equals dim x. If we interpret both x and y
as descriptor variables, E may be considered, for a given input sequence u, as a special case
of (3), and the notion of solvability may be easily specified to our case. An input sequence u
then merely specifies a certain set of functions Fk. Note, however, that we allow the number
of scalar equations in (3) to be less than dim x.

Denote for ot E Z the time shift operator by cr, that is, for instance o"x(k) x(k + a).
In order to economize notations, we frequently drop time dependence if there is no danger of
confusion

For a given input sequence u E L/0F let .Mu denote the set of pairs (x, y) ,0. x 32v
such that (x,u,y) becomes an admissible triple of system E. Following Luenberger [13], we

Ai Of (rx, x, u)
(x,u,y) Ox [x(i+l),x(i),u(i), 0 <_ <_ kv 1,

Ei Of (crx, x, u)
(x,u,y) -0-- Ix(i),x(i-1),u(i-1), <_ <_ kF,

(x,u,y) Oh(xo’:’ y) Ix(i),u(i),y(i), 0 _< _< kF 1,C

ai Oh(x, u, y)Ix(i),u(i),y(i), 0 < < kF 1(x,,,y) Oy

which are computed for every admissible (x,u,y). These matrices usually differ for different
admissible triples. The same holds for the matrix F(x,u,y) (0 k/) defined by

( A 0 E
Co Go 0

A 0 E2 0
F(x,u,y)(O, kF) C G 0

O AkF-1 0 EkF

CkF-1 GkF-1 0

F(x,u,y) (0, kF) is of size kF(s + p) [(kF + 1)n + kFp] and is referred to as solvability matrix.
Essentially, it represents the collection of coefficient matrices of the linearization of E along
the admissible path (x,u,y).

DEFINITION 2.4 (see [13]). The system is said to be locally solvable about the equi-
librium point (Xe, Ue, Ye) if there exist neighbourhoods iV, bl, and 3; of Xe, Ue, and Ye,
respectively, such thatfor every control sequence u lgkOF the solvability matrix F(x,u,y)(0, kF)
hasfull row rankfor every admissible triple.

Remark 2.5. This definition essentially entails that if the conditions are satisfied, the
solution set A//u forms a manifold of dimension (n s)kv + n for every u 6 blkv and thus
displays a nice structure.

Remark 2.6. In connection with the question under which conditions nonlinear implicit
state-space systems can be converted to standard state-space form, some sufficient conditions
for the existence of solutions for nonlinear implicit systems that are considered over an infinite
time horizon are derived in [9].

define the matrices
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If system Z is solvable on 0 < k < kF 1, its solution is not unique. This follows from
the fact that one has (kF + 1)n /kFp unknowns but only kF(s + p) equations. Thus in order to
define a unique solution, kF(n s) + n additional conditions have to be imposed to make the
sequences of state vectors x and outputs y corresponding to a prescribed sequence of control
vectors unique. Special cases of such additional conditions are initial (Xond x (0)) and final
conditions (Xcond X(kF)) (both together also termed end-point conditions) or combinations
of them. Evidently, in case of an explicitly given system in standard state-space form, where
especially n s, the necessary n additional conditions can always be obtained by fixing the
initial value x (0). For an arbitrary system Z, an end-point conditioning is not always possible,
and the degrees of freedom in the solution require one to restrict certain components of the
x-vector also at intermediate points of time. Again, we specify these additional conditions in

4 after having extended the shuffle algorithm.

3. The shuffle algorithm. Strictly speaking, Definition 2.4 throws light upon two aspects
of the solutions of E. If satisfied, it guarantees the existence of admissible triples for arbitrary
u L/ and it excludes pathological solution sets A/tu. But it does not provide a computationalkF
means to obtain solutions.

In this section we generalize the shuffle algorithm given in [14] for linear systems to
nonlinear implicit systems. We maintain the name "shuffle algorithm," although it does not
become clear in the nonlinear setting where the name originates. In the linear case this name
is derived from the fact that certain matrix blocks are "shuffled" from the right side to the left
while performing the algorithm. As already mentioned, the result of this algorithm indicates
whether or not E is solvable in the sense of Definition 2.4. Moreover it converts the system to
a form which allows an easymwhich here should be understood as recursivemcomputation
of the solutions. The main operations of the shuffle algorithm are

1. separation of the functionally independent components in the system equations;
2. expression of the functionally dependent components by the independent ones;
3. restriction of the considered time horizon in order to avoid variables at time instants

greater than ke when time-shifting the arguments of the dependent components.

3.1. The shuffle algorithm. Before presenting the shuffle algorithm we want to draw
attention to a part of the algorithm which may be difficult to grasp at first sight. It concerns the
part immediately after expressing functionally dependent components by the independent ones
in each step > 1 of the algorithm. Having permuted independent and dependent components
to obtain the system

[(I)/r (x(k),/,/(k) o’/-1/,/ (k)), /lr (crx(k), x(k), u(k) o’/-lb/(k), y(k))]r 0,

which is considered for 0 < k < kF l, one temporarily interprets the system as collection
of simultaneous equations in the variables x(0), y(0), x(1) (cf. Remark 2.3). Then the
system Fl+l 0 is formed by deleting the equations

(I)l (X (0), b/(0) t/(l 1)) 0,

pl (X(kF + 1), x(kF l), u(kF 1) u(kF 1), y(kF 1)) O.

This comes down to applying the time-shift operator cr to the dependent components t in
the unpermuted system but avoids the occurrence of variables at time instants greater than kF.
The new system is considered on the restricted time horizon 0 < k < kF (l + 1).



SOLVABILITY AND RIGHT-INVERSION OF IMPLICIT SYSTEMS 2097

We now present the shuffle algorithm. In performing the algorithm one should keep in
mind that most of the derived equations hold only along trajectories of E.

Let F (fT, hT)T.

STEP 1

Define

0 F(ax, x,u,y) ( rankPl "= rank
O(o.x, y) O(o.x, y) h(x, u,

and assume that/91 constant in a neighbourhood of (Xe, Ue, Ye). If/91 < s -+- p, then the
components of the functions f and h are not independent but functionally related. Choose Pl
components of (fT, hT)T, denoted by (fT, T)T, which are functionally independent, and
define

p := (fr,

The remaining s + p p components, denoted by 1, are functionally dependent and can
therefore be expressed as a function of 1, x, and u, that is,

Since 1 0, we have

/1 (O-X, X, //, y) (/l(o-x, x, u, y), x, u).

(4) pl (o-x, x, u, y) (I1 (x, bt)

for some function 1. Write the system in the form [epT (x, u), lr (o-x, x, u, y)]r 0, and
define

( 1 (O-X’ X’O-HI)Y) )F2(o.x, x, u, au, y) "= @l(ffx,

considered on the time horizon 0 k kF 2.

Go to the next step.

If Pl s + p, then define

and the equation

if.1 (o-x, x, u, y) 0

can be solved locally for s + p components of o.x and y. In this case the algorithm stops.

STEP (1+1)

Suppose that in steps through the functions Fl+l :’- (IT di)lT) T, where pl and (I)l are Pl-
and (s+p Pl)-dimensional, respectively, considered on the time interval 0 < k < kF (1+ ),
have been defined in such a way that

/l (O’X, X, U, o’/,t o-l-l/g, y) O,

II (o’x, o’u o’lbl) --0,
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and 0/t (.)/O(ax, y) has full row rank equal to Pl in some neighbourhood of (Xe, Ue, Ye). Next
define

/91+ :-- rank
O(ax, y)

Fl+l (o-x, x, u o-l/g, y),

and assume that Pl+l constant in a neighbourhood of (Xe, Ue, Ye). If/9l+1 < s -1- p, then
the components of the functions pl and (I)l are functionally dependent about (Xe, Ue, Ye).
Choose Pt+I Pl components of l, denoted by , which together with/l are functionally
independent, and define

If Pl+ /91, then

/6l+1 := (plr, lr)T.

pl+l :_ pl and )l (i)l.

The remaining s + p -/91+1 components, denoted by (l, can be expressed as

(5) fkl (O-X, O-U O-lu) (I01+1 (X, U O-lu).

Write the system in the form [q+l)r (x, u o-tu), /(/+l)r (o-x, x, u o-lu, y)]r 0,
and define

( ff’+l(o-x, x, u o-tu, y) )Fl+:Z(o-x, x, u o-t+lu’ Y) "= l+l(o-x, o-u, o-l+lu)

considered on the time horizon 0 < k <_ kF (1 + 2).

Go to the next step.

If Pl+l s + p, define

p/+l :__ Fl+l, (I)/+l :_._ ()l 0,

and the equation

P/+I(o’x, X, y, u o’l/g) 0

can be solved locally for s + p components of o-x and y. Then the algorithm stops.

Remark 3.1. Before introducing the shuffle algorithm we have explainedhow the functions
Fl+l in each step of the algorithm are obtained by deleting certain equations. Some of these
deleted equations, namely,

(I)1 (x(O), u(O)) O, (I)2(x(O), u(O), U(1)) O, (I)l+l (x(O), u(O) U(I)) O,

arejust the algebraic restrictions connecting x (0) and successive inputs and which have already
been mentioned in the preliminaries. They are indispensable for a consistent initialization of
the system. The other part consists of such equations of system E in the interpretation of
Remark 2.3 which already exhibit a maximal possible rank with respect to x(k + 1) and y(k)
for k sufficiently large.

Remark 3.2. The algebraic constraints occur in the first step of the shuffle algorithm in
form of the equation l(x, u) 0. It can happen that parts of these constraints involve only
components of the inputs u. A consequence of this situation is that the inputs cannot be chosen
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freely. Moreover it turns out that in this case the system is never solvable in the sense that
we have defined above. If these particular constraints can be solved for a number of input
components, we can take remedial measures by eliminating them. In case these constraints are
inconsistent, the system is not solvable in any sense whatever, in the subsequent discussion
we therefore exclude systems which exhibit constraints that only involve input components.

Remark 3.3. The following linear example is intended to show that pt+l Pl is not
sufficient for the termination of the algorithm, and hence a separate stopping criterion has to
be introduced. Consider the system

X1 (k + 1) + xe(k) + x3(k) 0,

X1 (k) + x2(k) O,
xe (k + 1) + u (k) O,

y(k) + xl (k) O.

Evidently,/91 3 for this system, with xl (k) + x2(k) 0 the functionally dependent com-
ponent. Time-shifting this component does not increase the rank of the Jacobian with respect
to x(k + 1) and y(k), which results in pe 3. It is not hard to see that in the third step we
obtain P3 4.

3.2. The stopping criterion. We now give the stopping criterion for the shuffle algo-
rithm.

Denote W 0 and

Define

Wl(x /g o./g o.l-1/g) [ wl-l(x, /g, O’/g ol-2/g) ]di)l(x,/g,o./g,. ,o’l-1/g) 1>1.

Proof. The stopping criterion (6) or equivalently

0
rank

0
rank

Ox -1 (.) Ox 21 (.),(.)

implies that about the point (Xe, Ue)

(I)t (X, /g, O’/g, O’t-1/g) /Z((I)l (I)or-1 ,/g, flU, ...,O’a-lu).

rl "= rank
0 Wl (x u au crl-lu)
Ox

and assume that for all > l, rl constant in a neighbourhood of (Xe, Ue, Ye). Stop if

(6) rl rl-l.

LEMMA 3.1. The stopping criterion (6) of the shuffle algorithm is always reached for
some < n.

Proof. Note that the sequence {rl > 1 is nondecreasing by its definition. Hence, by
the finite dimensionality of x, (6) must be reached for some < n.

Remark 3.4. Observe that the functions W are just the collection of the functionally
dependent components up to step and, for k 0, contain all information about the algebraic
restrictions on x (0).

The next lemma shows that when condition (6) is satisfied, the sequence {Ol > 1}
defined by the shuffle algorithm has converged so that it can indeed be concluded that the
algorithm has terminated.

LEMMA 3.2. Denote by the first integer such that (6) is satisfied. Then lot does not
increase byfurther iterations of the algorithm, that is, Pl P for all >
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Since (I)l (’) 0 for 1 < < ot 1, we have

(7) (X, U, O’U O’c-lu) )(U, O’U O’t-lu).

According to the shuffle algorithm define

O[lff’(crx, x,y,u, cru cr-lu) ] 0 /?c(.) =p.P+I := rank
O(rx, y) ;(cru cru)

rank
O(rx, y)

This means/?+1 =/? and , which by (7) is equal to .
Thus, it is clear that for every > 1, +l does not depend on crx and y anymore, which

completes the proof. q

Note that the application of the shuffle algorithm is not unique. In general there exist
different selections of (l in each step + 1, > 1, so that the matrix

0 pl+l(.) 0 [ pl(’) ]O(crx, y) O(crx, y) 1 (.)

has full row rank equal to pt+ in a neighbourhood of (Xe, Ue, Ye). Note moreover that different
choices of (1 result in different functions/1+1 and l+.

In the shuffle algorithm certain constant rank conditions have been imposed to ensure that
the algorithm can be applied about a given equilibrium point. We summarize these conditions
in the definition of regularity of an equilibrium point associated with the shuffle algorithm.

DEFINITION 3.5. We call the equilibriumpoint (Xe, Ue, Ye) ofthe implicit system E regular
with respect to the shuffle algorithm iffor some specific application of the shuffle algorithm,
the constant rank assumptions ofthe algorithm with respect to the sequence {Pl are satisfied.
We call (Xe, Ue, Ye) strongly regular if this holdsfor each application ofthe algorithm.

Although the result of the application of the shuffle algorithm apparently depends on the
actual choice of (l at each step of the algorithm, the sequences of quantities Pl and rl are
unique. We especially have the following lemma.

LEMMA 3.3. About a strongly regular equilibrium point, the integers Pl, > 1, do not

depend on the specific application of the algorithm; that is, for any two applications of the
algorithm we have

p p, > 1,

where superscripts refer to the application under consideration.

Proof. The proof is given in the appendix.
From the proof of Lemma 3.3 one concludes that any "successful" application of the

algorithm leads to the same sequence {Pl and thus to the same or. In particular, applying the
shuffle algorithm about a strongly regular equilibrium point, one obtains a uniquely defined
sequence of integers p < P2 <_ <_ tOl <_ <_ s -+- p. Define p* "= max {iOl > 1 }, and
let ot be defined as the smallest 6 N such that p p*.

4. Necessary and sufficient conditions for local solvability.

4.1. Local solvability, It is clear that about a strongly regular equilibrium point the
shuffle algorithm can terminate in either of the following ways:

(i) The rank of OF’(.)/O(crx, y) is equal to s + p.
(ii) At least one function appears in which does not depend on crx.

It will turn out that there exists a close connection between the solvability of the given implicit
system and the outcome of the shuffle algorithm. In order to prove this relation, we have to
provide an additional result.



SOLVABILITY AND RIGHT-INVERSION OF IMPLICIT SYSTEMS 2101

In each step of the shuffle algorithm, functionally dependent components of certain func-
tions are expressed as a function of the independent components and parameters. The purpose
of the next lemma is to show that these manipulations have no influence on the row ranks of
the row blocks of the solvability matrix Fx,u,y (0, kF).

To this end, consider the equation

F(z, x) (F1 (z, x) Fs(z, x))r O,

where dim x dim z n > s. Suppose that in a neighbourhood of a point (z0, x0) with
F(z0, x0) 0 we have

OF(z,x)
rank=p <s,

Oz

and assume moreover without loss of generality that

O(Fl (z, x) Fp(z, x))
(8) rank p.

Oz

Denote/ (F1 Fp)r,/ (F+ Fs) r Then we know that we can write

(z,x) (P, x),

which becomes for F(z, x) 0 a function (x) of x only. Now consider the matrices

P(z,x)
A (z, x) Ox

O(z,x
Ox

-z and (z, x)(z,x)
Oz Ox

P<z,x
OZ

0

We then have the following lemma.
LEMMA 4.1. rank A (z, x) rank A (z, x).
Proof We show the existence of an invertible matrix,

Ml(z,x)M(z,x) M3(z,x)
M:(z, x) )Ma(z, x)

such that A(z, x) M(z, x)A(z, x). Set MI(z, x) Ipp, Me(z, x) Op<s-p, and
M4(z, x) I<s-<s-p. It remains to show the existence of a ((s p) p) matrix M3(z, x)
satisfying

P(z,x) (x) P(z,x)
(9) M3(z,x)

and

OP(z,x) P(z,x)
(10) M3(z,x)

Oz

From P(z, x) (P, x) it follows that

,(z, x) P, x) P(z, x) (z, xand
(P,x)

+ Ox
(P,x)



2102 T. FLIEGNER, . KOTTA, AND H. NIJMEIJER

Observing that about solutions (0, x) (x), it immediately follows that M3 5- satisfies
(9) and (10). This means

A(z, x) M(z, x)A(z, x)

with a nonsingular matrix M(z, x), and therefore rank A(z, x) rank A(z, x). [

The main result of this subsection consists of the following theorem.
THEOREM 4.1. About a strongly regular equilibrium point, the following statements are

equivalent:
1. F(x,u,r(0, kF) hasfull row rankfor every (x,y,u) 6 A//u u, u 6 HkOF
2. The application of the shuffle algorithm with respect to rx and y terminates with

p* =s+p.
Proof Consider the solvability matrix F(x,u,r (0, kv) of the original system. According

to Lemma 4.1, the solvability matrix Fx,u,r (0, kv) of the system obtained after the first step
of the shuffle algorithm can be computed by multiplying the original one from the left by a
permutation matrix I-I representing the permutations of the components of F(rx, x, u, y)
performed in the first step and a nonsingular block diagonal matrix, the blocks of which consist
of the inverses of matrices as obtained in Lemma 4.1, that is,

F(x,., (0,

M (X 1 ), x (0), u (0), y (0)) "]
".. J FI 1F(x,u,y)(0, kF).

MI(x(kF),X(kF- 1), u(kF- 1), y(kF- 1))

Now suppose that the solvability matrix F (0, kF) of the system obtained after the lth step(x,u,y)
of the shuffle algorithm (including the deleted parts) has been obtained by left-multiplying

l-1Fx,u,y (0, kF) by a nonsingular matrix. After the lth step, we are left with the modified system

(x (0), u (0)) 0,

(I)l (X(0), U(0) u(l 1)) 0,
F1+1 (fix, x, u, cru o’lu, y) 0,

P(rx(kv 1), x(kv l), u(kF 1) u(kF 1), y(kF l)) O,

pl(x(kF),X(kF 1),u(kF- 1), y(kF- 1))--0.

The (1 + 1)th step modifies Fl+ only. If the solvability matrix of this restricted system is
denoted by F and that for the system after performing the (1 + 1)th step is denoted byr(x,u,y)

l+1F< y), we know that

l+ FF( Y)
F

F( y)’

where 1-’ is some invertible matrix computed as described above. It is then clear that

(11) /+1
-<x,u,y (0, kr) diag [I, 1-’, I]F (0, ke)(x,u,y)

where the identity matrices in (11) represent the unaltered equations of the system above.
Thus, applying the shuffle algorithm does not change the rank of the solvability matrices
connected with the systems obtained in each step of the algorithm. Now consider the function

( ff’(rx, x, u r(’-’u, y) )f(+l)(ffx’x’u ’u’ Y) :=
p(crx, cru cru)
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obtained in the final step of the shuffle algorithm. From the proof up to now and the special
structure of F+1) ( does not depend on x!), it immediately follows that Fx,,,r) (0, kF) has
full row rank if and only if p* s + p. [3

From now on we assume that the shuffle algorithm terminates with p s + p. In this
case, the implicit system E may be expressed locally in the equivalent form

(12)

(13)

f(x(k + 1), x(k), u(k)) O,
[t(x(k), u(k), y(k)) O,

l(x(k + 1), u(k + 1)) 0,

-l(x(k + 1), u(k + 1) u(k + ot 1)) 0,

W-1 (x(0), u(0) u(ot 2)) 0,

O<_k<_kF-1,
O<_k <_kF-1,
O<_k <_kF--2,

O<k <kF-Ot,

where, according to the shuffle algorithm, (12) can be solved for s + p components of (x(k /
1), y(k)). Assume furthermore that these components contain all components of y(k).

Remark 4.2. This full rank assumption with respect to the output components is very natu-
ral in view of right-inversion. In case it is not satisfied, there exist functional relations between
the output components, making right-invertibility impossible. Those situations are often a re-
sult of overparameterization in the modelling process. A consequence of this assumption is
/t h in the first step of the shuffle algorithm.

Hence, possibly after reordering the components of x, (12) is solvable for

xl(k q- 1)"-- [xl(k + 1) xs(k + 1)] and y(k)

in terms of

x(k),u(k) u(k -q-or- 1) and x2(k d-- 1)"- [Xs+l(k -k- 1) xn(k + 1)],

that is,

(14)
xl(k -+- 1) 7r(x(k), u(k) u(k + ot 1), x2(k + 1)),

y(k) (x(k), u(k) u(k -’1" Ol 1), xZ(k "1-" 1)),

where these equations hold for 0 < k <_ kF or. For the role of (13) see Remark 3.4.

4.2. Uniqueness of solutions. The rest of this section is concerned with the question of
how to impose further restrictions in order to make the solution of (12), (13) unique. Introduce
the following notation:

t(1,t-l) .__. [t 1T tot--lT] T

Consider (12), (13), and specify unique initial and final conditions via equations of the form

(15) f,fin(xl(kF)) --0.finit (X (0)) 0, #in (X (kF Ol -- 2)) 0 ct-1

Here, finit f(in ffin,-1 are arbitrary functions with dimensions s r-l, s + p-
P-I s + p Pl, respectively, such that

O [ finit(xl(O)) ](16) rank
0xl(0) Wct-l(x(0), u(0) u(ot 2))

s,
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rank

(17)

(18)

Oxl(kF --Ot nt- 2)

f(X(kF Ot nt- 2), X(kF Ot -Jr" 1), U(kF Ot d- 1))
t(l’u-2)(X(kF Ot "Jr- 2), u(kF ot + 2) u(kF 1)) s,

f(in (X (kv ot nt" 2))

rank
X (kF 1)

(X(kF 1), X(kF 2), U(kF 2)) "]
P(l’l)(x(kF 1), U(kF- 1)) J --s,

finf_2(l(kF- 1))

(19) rank O[f(X(kF)’X(kv--1)’u(kF--1))]=S.yfin(xl(kF))Oxl(kF)

In order to make the solution unique, one has to specify x2 for the whole time interval as well"

(20) x2(k) x2(k) 0 < k < kF.

After determining initial and final conditions and specifying x2 (k) over the whole time interval,
the number of equations and unknowns in equations (12), (13), (15), (20) is the same, and the
system is still solvable.

A feature of the system equations as obtained after applying the shuffle algorithm is that
they can be solved recursively if they are solvable at all.

1. From

finit (X (0)) 0,

W- (x (0), u (0) u (or 2)) 0,

we compute X (0).
2. Then, using x (0) and the given control sequence u L/k0F we obtain x (k), 1 _< k _<

kF Ot d- 1, and y(k), 0 < k <_ kF or, from (14).
3. Finally, by means of the set of equations

f(X(kF Ot "k- 2), X(kF Ot + 1), U(kF Ot -+- 1)) O,
h(x(kF ot q- 1), U(kF Ot -t- 1), y(kF Ot "k- 1)) O,

(l’-2)(X(kv Ot d- 2), U(kF Ot nt- 2) u(kF 1)) O,

f(in (X (kF Ol nt- 2)) O,

f(x(kF 1), x(kv 2), u(kF 2)) O,
h(x(kF 2), u(kF 2), y(kF 2)) O,

(l’l)(x(kF 1), U(kF 1)) 0,

f,fin (xl(kF 1)) O,or--2

f (X(kF), X(kF 1), U(kv 1)) O,
h(x(kF- 1), u(kF- 1), y(kF- 1))= O,

f,fin(xl(kF)) =0c-I

weobtainxl(kF -c + 2), y(kF -- + 1) xl(kF 1), y(kF 2) andx
respectively.

(kF),y(kF 1),
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5. Right-invertibility. If the solvability conditions stated in Theorem 4.1 are satisfied,
we know that there is for every locally given input sequence u H at least one pair (x,y)ke
satisfying the system equations for 0 < k < ke 1 or, stated equivalently, for every such
u there exists (x,y) such that (x,n,y) is an admissible triple. Of course, one can ask as well
whether or not the same holds true if, instead of u, a sequence of outputs y 3;e is considered
to be given; that is, does there exist for arbitrary y a pair (x,u) such that the system equations
are satisfied? Obviously, this question can be decided by performing the shuffle algorithm
with respect to crx and u. But this is basically what right-invertibility means: given a desired
output trajectory, one wishes to determine a control sequence (not necessarily unique) that
enforces the prespecified output trajectory. Thus, the problem of right-invertibility appears as
the solvability problem of the system with respect to rx and u. To make things precise we
use the following definition.

DEFINITION 5.1. System E is said to be locally right-invertible in a neighbourhood of its
equilibrium point (Xe, Ue, Ye) iffor any sequence yref yOkF it is possible tofind Xref rgkO

F

and a control sequence Uref b[’kOF such that (Xref Uref yref is admissible.
As already mentioned, the right-inversion problem can be solved quite routinely via the

shuffle algorithm. The algorithm can also be used to determine explicit recursive equations
for the inverse system.

In order to differentiate between the two versions of the shuffle algorithm, that is, between
the cases where we check the solvability with respect to crx and y or crx and u, we will refer
to the second case as the inversion algorithm.

Introduce in addition to the matrices defined in 2 the following matrices:

’Y) OU Ix(i+l),x(i),u(i), 0 <_ <_ kF 1,

Dix, u

Oh(x, u, y)Ix(i,.(i) y(i), 0 < < kF 1’Y) OU

and

G(x,u,y) (0, kF)

( Ao Bo

CO DO
E

A
C

B E2

D 0

AkF_ BkF--1 EkF
\ CkF-1 DkF-1 0

where G(x,u,y)(0, kF) is of size kF(s nt- p) x [(kF q- 1)n + kFm] Again, these matrices are
defined along every admissible path (x,u,y) of system E.

Similarly to Theorem 4.1 one now proves the following theorem.
THEOREM 5.2. Consider system E about--with respect to the inversion algorithm--the

strongly regular equilibrium point (Xe, Ue, Ye). Then thefollowing statements are equivalent:
1. System E is locally right-invertible about (Xe, Ue, Ye).
2. G(x,u,y)(0, kF) hasfull row rankfor every (x,u,y) 6 .A/[y y, y 6 YF"
3. The application ofthe inversion algorithm terminates with p* s + p.

6. Example: Economic policy making by right,inversion. The inversion algorithm
(and the shuffle algorithm) essentially uses the implicit function theorem, which is frequently
considered a restriction on the applicability of an algorithm. The aim of this section is to show
by means of a realistic model that for many problems a numerical’ treatment is still possible.
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Moreover if the nonlinearities are such that they include only, for instance, rational expressions
(as is the case in most macroeconomic models), then an inverse system can even be obtained
by symbolic computations.

The model we want to use for our considerations was created by Klein and Goldberger
(cf. [10]) and adapted by a number of economists over the course of the years. It aimed at
modelling the U.S. economy of the years 1929-1952 and is probably the first macroeconomic
model used for economic forecasting (cf. [3]). This was done in a way still in use nowa-
days. The approach simply consists of predetermining a policy scenario and investigating the
corresponding behaviour of the state variables by solving the system equations.

In this section we are going to demonstrate how the right-inversion approach of 5 can
be employed to actively enforce a desired evolution of a number of (important) state variables
depending on the number of control variables available to a policy maker.

6.1. The Klein-Goldberger model. In the sequel we use the Klein-Goldberger model
as adapted by Adelman and Adelman [1]. The model consists of 22 state and 10 exogenous
variables, the latter containing 4 control variables, which have the following meaning.

Exogenous control variables:

U government employee compensation,

/’/2 government expenditures for goods and services,

u3 government payment to farmers,

u4 number of government employees.

Exogenous variables with no interpretation as control variables:

z index of agricultural exports,

z2 number of persons in the United States,

z3 number of persons in the labour force,

Z4 number of nonfarm entrepreneurs,

z5 number of farm operators,

z6 time in years; z6(O) 0 corresponds to the year 1929.

State variables:

xl consumer expenditures in 1939 dollars,

X2 gross private domestic capital formation in 1939 dollars,

x3 corporate savings,

x4 corporate profits,

x5 capital consumption charges,

x6 private employee compensation,

x7 number of wage-and-salary earners,

x8 index of hourly wages,

x9 farm income,

x0 index of agricultural prices,

x end-of-year liquid assets held by persons,

X12 end-of-year liquid assets held by businesses,

x13 gross national product,
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X14 nonwage nonfarm income,

x15 price index of gross national product,

x16 end-of-year stock of private capital,

x17 end-of-year corporate surplus,

x8 indirect taxes less subsidies,

x9 personal and payroll taxes less transfers,

x20 corporate income tax,

x2 personal and corporate taxes less transfers,

x22 taxes less transfers associated with farm income,

where states and exogenous variables are combined by the following set of simultaneous
implicit nonlinear equations:

(21)

(22)

(23)

(24)
(25)
(26)

(27)

xl(k) 0.55[x6(k) -t- u(k) Xl9(k)] -t- 0.41[x14 (k) x21 (k) x3(k)]

+ 0.34[x9(k) + u3(k) x22(k)] + 0.26xl (k 1) + 0.072Xll (k 1)

+ 0.26z2(k) 22.26,

x2(k) 0.78[xla(k 1) x21(k 1) + x9(k 1) --}- u3(k 1) x22(k 1)

+ xs(k- 1)]- 0.073x16(k- 1)+ 0.14x12(k- 1)- 16.71,

x3(k) -3.53 + 0.72[x4(k) x20(k)] 0.027XlT(k 1),
xa(k) -7.60 + 0.68x14(k),
xs(k) 7.25 -t- 0.05[x16(k) -+- Xl6(k 1)] -}- 0.044[x13(k) ul (k)],

x6(k) -1.40 + 0.24[x13 (k) ul(k)] nt- 0.24[x13(k 1) ul(k 1)] -t- z6(k),
[26.08 + Xl3(k) Ul (k) 0.08x16(k) 0.08x16(k 1) 2.05z6(k)]

XT(k)
2.17 1.062

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)
(38)

(39)
(40)

d- u4(k) [z4(k) d- zs(k)]/1.062,
x8(k) x8(k 1) + 4.11 0.74[z3(k) x7(k) z4(k) zs(k)]

+ 0.52[Xls(k 1) x23(k 1)] d- 0.54z6(k),

x9(k) O.054[x6(k) -k- Ul (k) Xl9(k) -’1- Xl4(k) X21 (k) x3(k)]
O.O12zl(k)xlo(k)+

Xl5(k)
Xl0(k) 1.39x15(k) + 32.0,

Xll (k) O.14[x6(k) +/’/1 (k) Xl9(k) -k- xla(k) X21 (k) x3(k) -+- x9(k)
+ u3(k) x22(k)] + 76.03(1.5)-"84,

Xlz(k) 0.26x6(k) 2.55 0.26[Xls(k) Xls(k 1)] + 0.61Xlz(k 1),
Xl3(k) Xl (k) + xz(k) nt- uz(k),

Xl4(k) Xl3(k) Xl8(k) xs(k) x6(k) Ul (k) x9(k) u3(k),
1.062x7(k)x8(k)

X15 (k)
(x6(k) --+-/,/1 (k))’

Xl6(k) Xl6(k 1) --}- x2(k) xs(k),

XlT(k) XlT(k 1) -t- x3(k),
Xl8(k) 0.0924x13(k) 1.3607,

x9(k) 0.1549x6 (k) -k- 0.13lug(k) 6.9076,

x20(k) 0.4497xa(k) + 2.7085,
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0.2695x15 (k 1)
(41) X21 (k)-- [Xl4(k- 1)- x20(k- 1)- x3(k- 1)]

Xls(k)
+ 0.248[x4(k) x20(k) x3(k)] + 0.4497xg(k) 5.7416,

(42) x22(k) 0.0512[x9 (k) d- u3(k)],
(43) x23(k) Xls(k- 1)

withx (x x22) r the vector of state variables, u (u u4) the vector ofexogenous
control variables, and z (z z6) the vector of exogenous variables without control
interpretation. Considering the system equations above, one recognizes a number ofdeviations
from the model form as given by (1). This mainly concerns the occurrence oflagged exogenous
variables such as for instance u (k) and u (k 1) in (26). A second point is the explicit time
dependence of the system via the variable z6. We are therefore left with structural equations
of the form

(44) x(k) f[x(k), x(k 1), u(k), u(k 1), z(k)] 0,

where (43) is introduced only to avoid lag-2 variables.
The flexibility ofthe algorithm appears among other things in its robustness with respect to

the model form. This is due to the fact that all variables which do not enter into the computation
of Jacobians are treated on an equal footing by simply regarding them as parameters. Hence,
even though it is possible to bring (44) to the form (1) by redefining variables if required, there
is actually no need to do so. On the contrary, it would unnecessarily complicate the model!

The incorporation oftime-varying exogenous variables without an interpretation as control
variables in the model equations leads to the nonexistence of equilibrium points. The role of
the equilibrium point is now taken over by the points of a reference trajectory about which
the inversion algorithm may be performed. Eventually, the results can be patched together,
provided that the applications of the inversion algorithm about each single reference point
led to the same number of independent functions in each step of the algorithm, and moreover
independent components could be chosen to be the same.

In the next subsection we demonstrate the right-invertibility of the considered model
along the lines of 5. As it is common practice in economics, the goal will be the guidance of
selected state variables as to enforce a desired behaviour.

6.2. Right-invertibility of the Klein-Goldberger model. The first part of the follow-
ing investigations is dedicated to the generation of a reference trajectory for the considered
model beyond the year 1952. This trajectory should reflect a reasonablemmeaning econom-
ically possible--behaviour of the underlying system. Such a trajectory can be generated by
determining the evolution of the state variables under the influence of exogenous variables ob-
tained by extrapolating their historical trends and with initial conditions as actually observed.
Information about initial values and extrapolations for the exogenous variables are tak.en
from [1].

In order to perform the inversion algorithm we have to fix output equations. In view of
the fact that we have only four control variables at our disposal, their number will naturally
be bounded above by four if one wants to have an outlook for a positive result with respect
to right-invertibility. This follows from well-known necessary right-invertibility conditions
which generalize Tinbergen’s counting rule for the inversion of static systems (cf. [22]).

As already mentioned, the most common objective in economics is the control of selected
state variables rather than the control of certain combinations of them. The output equations
are therefore chosen in the following form:

yi(k) xji (k) O, i=1 4; ji jl for : l;
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that is, the outputs consist of mutually different components of the vector of state variables.
We now perform the inversion algorithm with an arbitrary selection of four outputs of the form
above.

The Jacobian (with respect to x(k) and u(k)) obtained in the first step of the algorithm
is a simply structured rational matrix with only six nonconstant elements resulting from the
nonlinearities in equations (29), (35), and (41). According to the occurrence of x15 and
(x6 + u l) as divisors in matrix elements, it can be computed for all combinations of variables
where these terms do not vanish.

To determine its rank, one has to distinguish two cases. In the first case the selection
of outputs is such that Xji X2, 1 4. Then the rank is maximalmthat is, 27m
independent (with exception of the restriction made above) of the chosen values of x(k), u(k),
y(k), and z(k) and thus also along the considered reference trajectory resulting in a termination
ofthe inversion algorithm. By Theorem 5.2 (global) right-invertibility ofthe system is ensured.

The remaining case is concerned with the situation in which Xji X2 for some i. Ob-
viously, the rank of the Jacobian matrix obtained now is one less than maximal. Bearing in
mind that the rank is computed with respect to x(k) and u(k), this is easily seen by comparing
equations (22) and yi(k) x2(k) 0. Since (22) does not contain variables at time instant
k others than x2(k), the corresponding rows of the Jacobian matrix will be dependent. The
observed rank defect indicates the functional dependence of this output component which
makes a representation

(45)

yi(k) x2(k) 0.78[x14(k 1) x21(k 1) + x9(k 1) -F u3(k 1)

x22(k 1) + xs(k 1)] + 0.073x16(k 1)

0.14x2(k 1) + 16.71 + yi(k) 0

independent of x(k) and u(k) possible. Applying the shift operator a to (45) we get a new
equation in the variables x (k) and u (k). Adding this equation to the system ofequations already
recognized as functionally independent (seen as functions of x(k) and u(k)) and computing
the rank of the resulting Jacobian give full rank. Again the system is right-invertible. Hence,
the inversion algorithm terminates after at most two steps irrespective of the selection of output
functions.

In the next subsection we consider both cases with the help of concrete examples.

6.3. Some simulation results. As a first example we want to retrace results obtained by
Chow in [5]. In this article similar objectivesnamely, the guidance of certain state variables
along desired paths--are pursued. However, the employed methods differ essentially from
ours. Chow formulates the intended goal as an optimal control problem which is solved with
the method of dynamic programming minimizing a quadratic loss function with respect to the
control variables. The remarkable point is that dynamic programming is not applied directly
to the nonlinear problem but instead relies on the linearized system. This involves an iterative
computation of the control variables until convergence occurs.

As an illustration ofhis method, Chow used the Klein-Goldberger model. In a first control
experiment he considered the number ofwage-and-salary earners x7, the gross national product
X13, the nonwage income X14, and the price index of the gross national product x15 as targets
and tried to steer them to grow at 2%, 5%, 5%, and 1% per year, respectively, from their initial
values at 1952. This will also be the objective in our first simulation.

We have already seen in the previous subsection that with this choice of targets, the
inversion algorithm terminates in the first step with a favourable outcome. Stated differently,
the unmodified system can be solved for the controls and the state variables, which enables the
computation of control values enforcing the intended growth of the targets. For the considered
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example this leads for instance to the following time-varying nonlinear feedback generating
the unique control sequence which achieves our goal. In the equations below most of the
coefficients occur rounded off to four-digit accuracy.

ul(k) [5.743yl(k) + 1.034Y12(k) + 1.842y4(k) + 0.316ul(k- 1)y4(k)

0.316y2(k)y4(k) 1.034yl (k)z3(k) + 1.034yl (k)z4(k) -Jr- 1.034y (k)zs(k)

+ 0.755yl (k)z6(k) 0.382y4(k)z6(k) + 1.397y (k)xs(k 1)

0.316y4(k)x13(k- 1) + 0.727(y1(k)xls(k- 1) y1(k)x23(k- 1))]/ya(k),

u:z(k) [-1.149 0.768y (k) 0.138y2 (k) + 30.160yn (k) 0.009ul(k 1)y4(k)

0.768u3(k 1)ya(k) -t-0.729y2(k)y4(k) + O.191y3(k)ya(k)

0.26ya(k)z2(k) + O.138y(k)(z3(k) z4(k) zs(k)) O.lOly(k)z6(k)

+ y4(k)(O.OlOz6(k) 0.26x(k 1) 0.768xs(k)) O.187yl(k)x8(k 1)

0.768ya(k)x9(k 1) O.072y4(k)Xl(k) O.138ya(k)x12(k 1)

q-O.O09ya(k)Xl3(k- 1)- 0.768ya(k)xa(k- 1)- O.097yl(k)x5(k- 1)

-0.121Xls(k- 1)(x3(k- 1)- xla(k- 1)-t-x20(k- 1))

+ O.103ya(k)xl6(k- 1)- O.O09ya(k)xl7(k- 1)+ 0.768y4(k)x:zl(k- 1)

+ 0.768y4(k)x22(k- 1) + O.097yl(k)x23(k 1)]/ya(k),

u3(k) [-65.994 4.331yl(k) 0.780Y12(k) 8.743ya(k) + 0.013Ul(k 1)y4(k)

y4(k)(O.O37u3(k -.1) 0.853y2(k) + 1.017y3(k)) + 0.780yl (k)z3(k)

0.780y (k)z4(k) 0.780y (k)zs(k) 0.569yl (k)z6(k) O.O15y4(k)z6(k)

-O.037y4(k)xs(k- 1)- 1.054y(k)x8(k- 1)- O.037ya(k)x9(k- 1)

-O.O07ya(k)x2(k- 1)- O.O13y4(k)x3(k- 1)- O.037y4(k)xla(k- 1)

-0.548x15(k- 1)(y(k)+ 0.016x3(k- 1)- 0.016xla(k- 1))

y4(k)(O.O92x16(k- 1)+ 0.001x7(k- 1))- 0.016x5(k- 1)x20(k- 1)

+ O.037y4(k)(x2(k- 1)x22(k- 1))+ 0.548y(k)xz3(k- 1)]/ya(k),

u4(k) [2.500y1(k) + 0.450y(k) ll.307ya(k) h-0.137u(k- 1)ya(k)

+ y4(k)(O.O26u3(k- 1)+ 1.000yl(k)- 0.573y2(k))- 0.450yl(k)z3(k)

+ 0.450yl(k)zn(k) + 0.942yn(k)za(k) + 0.450yl(k)zs(k) + 0.942ya(k)z(k)

+ 0.329y(k)z6(k) -at- 0.723ya(k)z6(k) + O.026ya(k)xs(k 1)

+ 0.608yl(k)xs(k 1) + O.026y4(k)x9(k- 1) + O.O05y4(k)x:z(k- 1)

O.137ya(k)x3(k- 1) + O.026y4(k)xa(k- 1) + 0.316yl(k)x5(k- 1)

+ O.064ya(k)x6(k 1) O.026y4(k)x2(k 1) O.026y4(k)x:z2(k 1)

0.316y(k)x23(k- 1)]/ya(k).

This feedback has been obtained by means of formula manipulation packages and leads to
the controls depicted in Figure 1 (computed with the exact coefficients). Incidentally, they
coincide with those computed in [5] as far as they are available. The resulting closed-loop
system generates the desired target paths (Figure 2). As an example for the second case we are
going to steer the gross private domestic capital formation xz by means of the control variable

u2 to grow at a rate of, say, 5% per year, with extrapolations used for the other controls. It
should be noticed that since x is exclusively dependent on lagged variables and in view of
fixed initial conditions for all involved quantities, we have no access to x2 in the first year of
the planning period. Afterwards, exact tracking can be achieved as above.
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FIG. 2. Computed target values.

The results of the simulations can be seen in Figure 3. Clockwise, this figure shows the
evolution of the gross private domestic capital formation x2 as obtained by using extrapolated
values for all exogenous variables, the desired time path of x2, the computed sequence of
controls attaining the control objective, and, finally, the resulting evolution ofx2. Again, exact
matching is achieved starting with the year 1954.

7. Final remarks. In this article we focused on the problems of solvability and right-
invertibility of implicit nonlinear discrete-time systems. The concept "solvability" has been
defined for this class of systems in such a way that the existence of solutions for any locally
given input sequence is ensured. Moreover we showed how this property can be checked
algorithmically and how the algorithmically modified system can be equipped with additional
conditions in order to obtain unique solutions which can be calculated recursively.
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FIG. 3. Time paths ofthe second control experiment.

A second question was that of fight-inversion of implicit systems. It turned out that the
problem of fight-inversion appears as a special solvability problem which can be solved quite
routinely with the methods developed so far, lending itself to a numerical treatment.

We would like to mention that the approach used here to investigate the solvability of a
difference-algebraic equation shows at least some similarity with the procedure which is used
to determine what is called the index of a differential-algebraic equation, a natural number
which is considered an indicator for the numerical complexity of such an equation. This
similarity opens a wide field of research on the mutual connections between the solvability
theories of constraint systems in discrete and continuous time.

Apart from a theoretical characterization of solvability and right-invertibility for im-
plicit nonlinear discrete-time systems, a main objective was to demonstrate that important
classes of such systems may be conveniently approached within the developed framework also
from a computational point of view. One should not forget, however, that fight-invertibility
merely reflects an ideal with respect to a complete access to the outputs and does not say
anything whatever about the possibility of a practical realization of the inputs required to
enforce a desired output behaviour. Moreover, even if the necessary inputs can be gen-
erated, their values may not be acceptable from a practical point of view. A way out of
this situation could consist in fixing an acceptance region for the inputs and finding, within
this region, those inputs generating the output which is "nearest" to the desired one. We
believe that the fight-inversion approach as introduced above could be helpful in this direc-
tion.

Appendix.
ProofofLemma 3.3. Consider the system of equations

f(z,x,u) =0,
h(x, u, y) 0,

and define F := (fr, hr)r. Observe that we use slightly different notations to keep notations
compact. In the first step of the shuffle algorithm let

rank OF(z, x, u, y)/O(z, y) Pl.
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We show that/92 does not depend on the selection of/91 functionally independent (with respect
to (z, y)) components of F in the first step. For the other steps, the proof is analogous.
Nowlet (Pl PPl Pl ff’s+p-pl) T and (/, /, ^, ^, r

pl’ F1 Fs/p-m) denotetwo
arbitrary permutations of components of F such that

0(PT, P*
rank.

0F
=rank

0 pl’’" F;,) =rank ’O(z, y) O(z, y) O(z, y) Pl.

It then follows that

P/c(Z, x, u, y) k(/?l /6pl, X, U), 1 <k <s+p-pl,

and along trajectories of the system

/k(Z, X, U, y) k(X, U).

Analogous equations hold for the starred functions. If {1 , {/? /?* }, noth-
ing has to be shown. Assume therefore that this is not the case. Then there exists a number d
with 1 < d < Pl < s + p such that the following hold:

card ((/ P* N {/1 /s+p-p,}) d,
Pl

card({/? /* IN{P1 /p,})=Pl-d,
Pl

card ({/* ^* Ppl}) d,Fs+p_pl} O {Pl

card ((/ Fs+p_pl f-I (/1 Fs+p-pl}) s + p Pl d.

Rename the components (/1 PPl) and (/1 Ps-.l-p-pl) on the one hand and the com-

ponents (/, /* and (/, ^*p Fs+p_pl on the other hand to obtain

p, Fs+p_p,)
(? Fd, 1 pl-d, tpI-d+l Pl’ Fd+l Fs+p-p,)T

Observe that we only renamed components rather than altering groups of components that had
been selected to be independent and^ dependent, respectively.

(i) For components F F we obtain

F. ’*(F F, F,+I F*k pl ’x’bl)

;(1(/?1,.. Pp,,X u) d(ff’l,.. Pp,X U) "* P*fd+l’’" pl’X’

Restricting ourselves to 1 p, 0 we get, after applying the shift operator a,

[, (’ (z, u) d(Z, u), 0 O, Z, u) 0
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^:(ii) For components F+ Fs+p_pl we get by similar computations

O(z, y) O(z, y) Ofi 0-;-y) q
OF*a

Partial derivatives with respect to y occurring in (i) and (ii) are of course equal to zero and
appear only for formal reasons. O*/O(z, y) and O/O(z, y) are therefore connected via

O(z,y)

O(z,y)

O0*a+
O(z,y)

\ O(z,y ,

(46)

OF*

O*

O(z,y)

O(z,y)

O(z,y)

Os+p-p
O(z,y)

Denote the coefficient matrix of (46) by A. A is invertible if and only if the upper left corner
is nonsingular. It will turn out later that this is indeed the case. Now consider the set of
components

This provides the following relation between

(47)

0(/1 01)

O(z,y)

OFp -d

O(z,y)

F,o
O(z,y)

F,o
O(z,y)

and Pl

O(z, y) O(z, y)

OF OF*

OF OF*

OF*d+ O F*pl

O(z,y)

~*Fd+l
O(z,y)

Denote the coefficient matrix of (47) by B. Observe that the lower left corner of B is, up to
the sign, equal to the upper left corner of A. Since

0(/"" FPl) and
O(z, y) O(z, y)

have full row rank by assumption, B and consequently its lower left corner must be invertible
in a neighbourhood of (Xe, Ue, Ye) A is invertible.
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It finally follows that

O(z,y)

O(z,y)

O(z,y)

O(z,y)

B-1 O)0 A

O(z,y)

OFp
o(,y)

O(z,y)

OdPs+p-p
\ O(Z,y)

which proves that/92 will not depend on the choice of independent components in Step 1.
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A TARGET RECOGNITION PROBLEM: SEQUENTIAL ANALYSIS
AND OPTIMAL CONTROL*

MARK H. A. DAVIS AND MOHAMMAD FARID

Abstract. An iterative computational method for determining the value function of an optimal control problem,
related to target tracking, is presented. The target is assumed to be located in a fixed known position in space, but
its identity (hostile or friendly) is known only with a prior probability. An observation of the target can be made
at any location, and its error has position-dependent probability. The objective is finding the optimal navigation
and observation strategy which leads to a final decision (i.e., the target is friendly or hostile). The value function is

shown to be the unique viscosity solution of a variational inequality. Furthermore it is the unique fixed point of a

nondecreasing concave operator.

Key words, optimal control, viscosity solutions, variational inequality, dynamic programming, Hamilton-
Jacobi-Bellman equation, target tracking, hypothesis testing
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1. Introduction. An aircraft locates a target and seeks to classify it as one of a finite
number ofpossible objects. This iS done by taking a sequence ofobservations, each observation
(consisting, say, ofemission of a radar pulse) being processed to produce a classification which
is subject to errors occurring with distance and relative orientation-dependent probabilities.
After a certain number of observations a final classification decision is made. There are known
penalties for misclassification and costs associated with taking observations. The latter might
be actual costs of physically taking an observation, or more indirect penalties associated with,
for example, the risk of giving one’s own position away by emitting a radar pulse. The problem
is to decide how to navigate, when to take the observations, and at what point to make a final
classification, in such a way as to minimize overall costs.

This problem incorporates features of several traditional statistical and control-theoretic
paradigms. It is sequential analysis in that a data-dependent number of observations is taken.
There is an element of experimental design in that the distribution of the observations is not
fixed in advance but depends on some design parameters. It is optimal control in that these
design parameters are actually the control inputs to a dynamical system. This combination of
features does not appear to have been studied before, and our objective is to outline how the
problem is solved in a fairly simple setting, described in more detail below.

The problem arose in connection with a study of Bayes-optimal tracking and interception
strategies. It has of course been widely appreciated since the pioneering work of Fel’dbaum
[F] on "dual control" that control problems in which the control is used with a view to acquir-
ing information as well as steering along a low-cost trajectory are typically extremely hard.
Considerable insight into the form of optimal strategies in the case of a binary (friend/foe) clas-
sification with penalties for missing a foe or hitting a friend has been gained by exact solution
of very simple discrete-time models [H]. It turns out that, typically, an optimal strategy avoids
"commitment" as long as possible, steering to a point as close to the target as possible but
from which both hitting the target and avoiding it are still feasible. Up to arrival at this point
the main function of the control action is information gathering. At the "commitment point"

*Received by the editors August 31, 1994; accepted for publication (in revised form) October 5, 1995. This
research was supported by an SERC/EPSRC grant and agreement 2037/393/RAE with the UK Defence Research
Agency (DRA).
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a classification decision must be made and the appropriate subsequent action taken. To study
tracking in a more general setting it seems worthwhile to isolate the "information-gathering"
phase as a separate problem in its own fight, and this is what we do in the present paper. Of
course, various applications of the problem formulation, other than the one outlined above,
are easily envisaged.

The paper is laid out as follows. In 2 below a precise formulation of the problem
is given. As will be seen, the target is assumed to be stationary and the "own vehicle"
dynamics are deterministic, so the only sources of uncertainty in the problem arise from the
classification mechanism. For simplicity we assume a binary (friend/foe) classification, but
the theory would be the same for any finite classification. In 3 Bayes’ formula is used to
make an information-updating procedure after each observation. A dynamic programming
formulation of the problem is described, and the variational inequality formally satisfied by the
value function is obtained. Later in 4 the value function is proven to be the unique viscosity
solution of this variational inequality. We also present a computational algorithm for the value
function and prove its convergence. Finally, some simulation results are presented in 5.

2. Problem formulation. A target is located in a certain fixed known position in space
but may be hostile or friendly. Let 0 1(target is hostile), and suppose that the event (0 1) has
prior probability p0. An observation of the target can be made at any point x in space (or,
more generally, at any point in the state space of the vehicle; see below), and the observation
device produces an output Y which takes the values 0, and misclassifies the target with
position-dependent probabilities e0(x), el(x), i.e., PlY 1[0 0] eo(x) and PlY
0[0 1] el (x) (see below).

-eo(x)O -0

0 eY

1 -el(x)

For definiteness, we assume that

(1) 0 < r < eo(x), el(x) < -The observations are taken from a vehicle whose state x (s) satisfies the dynamical equation

(2) 5c(s) g(x(s), u(s)).

Here x(s) IR and u(s) is a control, taking values in U, a subset of ]t We make the
following assumptions:

(3) U is compact,

(4) g C(IR x U),

(5) 3K > 0: Ig(x, u) g(x’, u)] < K[x x

(6) g is bounded.
’1 Yx, x’ 6 I andYu 6 U,

Equation (2) then has a global solution for any measurable control function u(.) and starting
point x (0).
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An observation strategy is a collection S {k, Z" Z’k, u, d}, where k is a nonnegative
integer, rl < r2 _< _< r are observation times (there are none of these if k 0),
u {u(t), 0 < < rg} is a control, and d is a final classification of the target. Observations

Yj are taken at each time rj, j 1 k (when the vehicle’s state is x(zj)).
Admissible strategies are nonanticipative in the sense that either k 0 and d 6 {0, 1 is

fixed decision or "gl > 0 and U {u(t), 0 < < "gl} are fixed and "gj and b/j {u(t), "gj-1 <
< rj are functions of (Y1 Yj-1) only, for j 2 k. It may be the case that rj-1 rj

with positive probability. The number k is a stopping time ofthe filtration 3;j tr Y1 Yj },
and the decision d is 34-measurable. A penalty or cost g-1 > 0 is incurred if a hostile target
is identified as friendly, and a cost g-2 > 0 is incurred for the converse error. In addition, a
cost of c(x(rj)) is paid each time that an observation is taken, and a cost g-(x, u) per unit time
is paid when the vehicle is in state x, control action u is applied, and < rg. We assume
c(x), g.(x, u) > > 0, and that c, g- are uniformly continuous on IR and ]n X U, respectively.
The problem is now to choose a strategy S to minimize

(7) J(S) ] g-(x(s), bl(S)) Ms + Z c(x(’gj)) + g-l(1 -d)O q- g-2 d(1 -0)
j=l

One possible strategy is to make an immediate decision at time zero without taking any
observations, and for this strategy clearly J (S) _< L max(g- 1, &). We can therefore restrict
attention to strategies such that Elk], E[r] < L/g, so that in particular k and r are finite
with probability 1.

Let zr P[O 113;]. Temporarily writing 7r rrr, we have

E[g-l(1-d)0 + g-zd(1-O)]=E[g-l(1-d)zr + g-zd(1-rr)]

E[g-l -" (g-2 (g-1 --The minimum cost decision is therefore d l>e2/el+e2)). Thus d can be taken out of the
problem and the cost written as

(8) J(S) E g-(x(s), u(s)) ds + c(x(rj)) + h(zr)
j=l

where

(9) h(zr)" min{zrg-1, (1

3. Dynamic programming. For a strategy S, define the filtration f’t as follows:

ft’= cr{Yj l{rj<_t), j 1, 2 }.

Clearly Ut (rj < < "gjd-1) ."rj A(’Uj < lTjq_l). We denote zr(t) P[O llt]. At
time rj, random variable Yj is observed. Denote temporarily 7r rr (rj-) (= re (rj_ 1) if rj >

when Yj takes the values 0rj_l) and x x(rj). By Bayes formula, zr is updated to rr0 or rr
andor 1, respectively, where re0 re are given by

(10)

rco e[o-- llY --0]

P[Y 010- l] P:[O 1]
P[Y 010 1] Pr[O 1] + P[Y OlO O] Pr[O O]

el (x)rt"

el (x)Tt" + (1 e0(x))(1 rr)’
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and similarly

(1 el (x))zr
(11) zr (1 el(x))yr + e0(x)(1

If V" ]n X [0, --> R is a given bounded measurable function, we therefore have

E[V(x(rj),yr(rj))l,T] V(x, zr) Pr[Yr O] 4- V(x, rc) Pr[Yr 1]

V(x, yr6) + (V(x, yr) V(x, yr))((1 e(x))zc

+ eo(x)(1 zr)),

since

P.[Y 1] P[Y 110 1] P[O 1] + P[Y 110 O] P.[O O]

(12) (1 el (x))zr + e0(x)(1 yr),

and Pr[Yrj 0] Pr[Yrj 1]. We define an operator M acting on the space of bounded
measurable functions as follows:

(13) MY(x, yr)’= c(x)+ V(x, yr6)+(V(x, rc)- V(x, zr6))((1-el(x))yr +e0(x)(1-yr)),

where zr0, zr are defined by (10) and (11). MV(x, re) represents the average cost paid if one
observation Y is taken, updating the original zr to zr + zr0’ l(r-0) + zq’ l(r_l), and then a
cost V (x, zr +) is paid. For example, let S be the strategy such that k 1 and rk 0; i.e.,
one observation is taken at time zero and then a decision is made. Then J(SI) Mvo(x, Po),
where vo(x, re) h(yr), h is given by (9), and p0 is the prior probability that 0 1.

Define the value function W(x, yr as

(14) W(x, zr) inf E e.(x(s), u(s)) ds + C(X(Tj)) + h(Yr(’Ck))
SEad j--1

where x and zr are, respectively, the starting point and the prior classification probability and
ad is the set of all admissible strategies as defined in 2. At time zero, there are three possible
courses of action:

(i) Take no observations and make an immediate decision; expected cost h (zr).
(ii) Take an observation immediately and then continue "optimally"; expected cost

MW(x,).
(iii) Maneuver for a short time before continuing optimally. In this case we have

W(x, rr) < inf g(x(s), u(s)) ds + W(x(t), rr)
uEU

where x(s) is the solution of the dynamical equation (2). Assuming that W is C in x, this
leads in the standard way to the inequality

sup[-g(x, u) Dx W(x, yr) e(x, u)] < 0.
uEU

Combining this with the inequalities W < h and W < MW obtained from (i) and (ii) we
obtain the basic variational inequality

(15) max {sup[-g(x, u) DxW(x, yr) ,(x, W-h, W MW} =0.
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The (x, Jr) space splits into three regions C, S, and (_9 in which each of the three expressions
in (15) is equal to zero (in the respective order). The conjectured form of the optimal strategy
is this: starting at (x, Jr) 6 C (the continuation region) the process evolves, with Jr constant,
until region 69 (for observation) is hit at, say, (x’, Jr). (It cannot be the case that ,.g is hit first.)
An observation is now taken, and the process jumps to (xI, Jr +), where Jr+ n01 or Jrlt (see
(1 0) and (1 1)). If (x’, Jr +) 6 C, this process is repeated; if (x’, Jr +) $ (stopping region), one
stops, paying h (jr +), while if (x’, 7r +) 6 (.9, one takes another observation. It is thus possible
in principle to take a sequence of observations at the same place and time, but as argued above,
both k and rk are a.s. finite. The variational inequality in (15) may be written as follows:

(16) max { sup[-g(x, u) Dx W(x, jr) g.(x, W(x, jr) NW(x, jr) } =0,

where NW(x, Jr): h (jr)/x MW(x, Jr). The variational inequality given in (1 6) will be used
throughout the following section.

4. Viscosity solution. Since we cannot guarantee in advance that (16) has a C solution,
a rigorous theory should be sought in the framework of viscosity solutions [CL] and [FS]. An
approach to this is as follows. Let B(E)/ denote the set of all positive bounded measurable
functions on E. Define

(17) NV(x, Jr)’= h(7)/ MV(x, Jr),

and for a given function 7r B(N x [0, 1])+ define an operator by

(18) inf f0t7(x, zr): g.(x(s), u(s)) ds + Ngz(x(tf), Jr),

where the infimum is taken over pairs tf > 0 and u 6 L([0, tf]; U). Thus the -operator
defines a free end-time deterministic optimal control problem.

Let us give the definition of viscosity solutions for a variational inequality [B].
DEFINITION 4.1. Let So Rn x (0, 1), BUC(), and consider the following

variational inequalityfor all (x, Jr) So:

(19) max tueu[SUp[-g(x’u)" DxV(x, jr)- g(x, u)], V(x, jr)- (x, Jr)} 0.

Assume V BUC(So); then viscosity solutions are defined asfollows.
(a) V is a viscosity subsolution of(19) in So iffor each w CI(s0),

max [sup[-g(Y, u). Dxw(Y, #) e(Y, V(Y, #) gr(2, #)] <0
at every (2, #) So which is a local maximum of V w on So.

(b) V is a viscosity supersolution of(19) in So iffor each w CI(So),

max {sup[-g(Y, u). Dxw(Y, #) g(2, V(Y’ c) gr(2’ c) } >0
at every (2, c) So which is a local minimum of V w on So.

(c) V is a viscosity solution of(19) in So ifit is both a viscosity subsolution anda viscosity
supersolution of(19) in So.
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THEOREM 4.2. Assume (1)-(6). Moreover assume that c, g., and p are bounded and
uniformly continuous on IRn, .n X U, and , respectively. We also assume that eo and el
are uniformly continuous on N and is positive. Then V (x, re) Tt(x, yr) is bounded
uniformly continuous in and is a viscosity solution ofthe equation

(20) Fy (x, 7r, V, Dx V) O,

where

Fy(x, rr, r, p) max {sup[-g(x, u). p e(x, r Np(x, rc) }
The following three lemmas prove that V 6 BUC(S0).
LEMMA 4.3. 7t 6 BUC(o) implies thatN BUC(o).
Proof The following is an outline of the proof. Given the above assumptions,ff and 7r[

((10) and (11)) are bounded uniformly continuous functions in ;. So 6 BUC(So) implies
thatM BUC(o). It is easily verified thath (refer to (9)) is bounded uniformly continuous
in [0, 1]. Finally, N(x, 7r) min{h(zr), Mp(x, 7r)}, so N BUC(So). [3

LEMMA 4.4. For p >_ 0 define

me(p) sup{lg(x, u) e(y, u)l" Ix Yl < P, u U},

toO(p) sup{INap(x, rr) Np(y, 7r’)l" Ix Yl + Ire 7r’l <_ p}.

Then the uniform continuity of g. and Nap implies that me, my C([0, cxz]) and me(O)
O, my (0) O.

Proof. It can easily be verified. For a similar argument refer to the proof of theorem
II(10.1), pp. 95-97 in [FS].

LEMMA 4.5. V < h(2/(1 + e2)) and

IV(x, re) V(y, yr’)l < Vmaxme(lx yle/vmax) + my(Ix ylexvmax) + my(lyr 7r’l),

where rmax h(2/(l -+- 2))/ and K is the Lipschitz constant. Hence V BUC(o).
Proof. Since h achieves its maximum at 2/( + 2) and V _< h (take tf 0 in (18)),

one can write

V(x, 7r) < h(e2/(e + e2)),

V(x, r) inf g.(x(s), u(s)) ds + N(x(r),
r6[0, Z’max], u(.)6L([O,15max];U)

Using inf...- inf... < sup.., and Gronwall’s inequality [PSV], one can obtain the required
result. [3

Proof of Theorem 4.2. The above lemmas imply that V BUC(). Now let us prove
that V is a viscosity solution of (20). The argument is very similar to that in [B]. Let
99 6 C (Nn (0, 1)), and assume that (2, #) 6 ]n (0, 1) is a local maximum point of
V 99. Then for a fixed control t 6 U and all T > 0 we have

T

V(2, c) < g.(x(s), ft) ds + V(x(T), #).

But for small values of T one can write

V(x(T), fr) qg(x(T), ) < V(2, 72) p(2, #),
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so replacing for V(x(T), #) from the above inequality gives

T

g.(x(s), fi) + (go(x(T), :) go(Y, #)) >ds O.

Then dividing both sides of the above inequality by T and taking the limit when T $ 0, one
finally gets

-g(2, ). Dxgo(2, #) .(2, fi) <_ 0 fi U.

According to the definition of V (x, zr) one can immediately say that V (2, ) _< Np (2, #),
so

max [sup[-g(2, u). Dxgo(2, #) (2, u)], V(2, #) Nap(2, #)/ <(21) 0;
uEU

in other words, V is a viscosity subsolution of (20).
Now let go C (JRn x (0, 1)), and assume that (2, ) E ]Rn x (0, 1) is a local minimum

point of V go. We have two cases.
Case 1. If V (2, ’) N!/* (2, ’), then there is nothing to prove.
Case 2. V(2, fr) < N!l, (2, #), which means (2, #) E C (continuation region). So

3 > 0 such that T (0, ) we have

V(2, ) inf g(x(s), u(s)) ds + V(x(T), :)
uEU

but if we choose T small enough, one can write

V(x(T), #) go(x(T), ) > V(2, ’) go(2, ).

Again replacing for V(x(T), #) from the above inequality gives

inf (x(s), u(s)) ds + (go(x(T), ) go(2, )) < O.
uU

Then dividing both sides by T and taking the limit when T $ 0, one finally obtains

sup[-g(2, u). Dxgo(2, :) (2, u)] > 0,
uU

which immediately implies

max/sup[-g(2, u). Dxgo(2, #) e(2, u)], V(2, #) NO(2, #)1 >-(22) 0,
uU I

so V is a viscosity supersolution of (20). If we use the definition of viscosity solutions and
inequalities in (21) and (22), it is easy to see that V is a viscosity solution of (20).

Now we prove that V (x, re) ak (x, zr) is the unique viscosity solution of (20).
THEOREM 4.6. Consider the variational inequalityfor all (x, re) ]R x (0, 1),

(23) max {sup[-,(x,u)-g(x,u).DxV(x, V(x, rr)- k(x, zr)] =0,

and make all the assumptions of Theorem 4.2; then if k (x, 7r) > 0 (x, 7r) ]n X (0, 1),
there is at most one viscosity solution of (23).

We will need the following lemmas.
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LEMMA 4.7. Define H(x, p): supuu[-(x, u) g(x, u) p]; then H(x, p) is a convex

function with respect to p.
Proof This is easily verified. [3

LEMMA 4.8. Define
(x, r, p): max{H(x, p), r (x)},

where

(x,u)>3>0 (x,u) 6RnU,
p(x)>0 Yx6Rn.

Then IYI (x, V, DV) has a strict subsolution, i.e.,

w C1(1tn) fq BUC(n) s.t. I(x, w, Dw) < 0 in Itn.
Proof It is easily seen that w(x) =- 0 is a strict subsolution. [3

LEMMA 4.9. Assume that u(x) is a viscosity subsolution of I(x, V, DV) O. Then
flu(x) + (1 O)w(x) is a strict viscosity subsolution of IYI, where w(x) is a strict subsolution
and (0, 1).

Proof. u is a viscosity subsolution of I(x, V, DV) 0, so for all p 6. C(n), if u -0
attains a local maximum at x0 6 n, then

H(xo, u(xo), Dqg(xo)) < O.

When u 99 attains a local maximum at x0, so does Ou + (1 r/)w (Oq9 / (1 r/)w) for

r/6 (0, 1). Here w 6 CI(n) is a strict subsolution of/. Now we show r/u + (1 r/)w is a
strict viscosity subsolution of H

H(xo, Ou(xo) + (1 O)w(xo), rlDog(xo) + (1 rl)Dw(xo))
max{H(xo, rlDcp(xo) + (1 rl)Dw(xo)), flu(o) + (1 O)w(xo) P(xo)}

< max{/H(xo, Dog(o)) + (1 o)H(xo, Dw(xo)), Ou(xo) + (1 O)w(xo) 7t(xo)}
< /max{H(xo, Dog(o)), u(xo) P(xo)}

+ (1 0) max{H(xo, Dw(xo)), w(xo) P(xo)}
<0,

because u is a viscosity subsolution and w is a strict subsolution. [3

Proofof Theorem 4.6. Without loss of generality we drop 7r in all arguments. Consider
the following auxiliary test function:

(X y)2
(X, y) v (x) v2(y) , e > 0,

2e

where Vl and v2 are a viscosity subsolution and a viscosity supersolution of (23), respectively.
In our problem any viscosity subsolution or supersolution must be bounded and uniformly
continuous, so (x, y) has a maximiser over x n at (Y,, ) 6 ( (, where Q is a
bounded subset of n. Obviously

(24)

For p >_ 0 define

(x, y) < (Y, e) (x, y) 6 n n.

Dp ((x, y) 0"Ix Yl2 < P},

m,l(p) 2sup{lVl(X) vl(Y)l (x, y) Dp},

K sup{mv (p) p > 0}.
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( is compact and vl is uniformly continuous on (. Thus my1 6 C([0, cx)) with my1 (0) O.
We have

so

(25)

which gives

(26) lY Y < K.
One can observe that lye el -+ 0 as e $ 0. Using (25) and (26) it is easily verified that
(2e e)2/ $ 0 as e $ 0. Now let us define pe’= (2e e)/. Then

IH(2e, Pe) n(Ye, Pe)l < sup I(g(Ye, u) g(2e, u)).
uU

< sup le(2e, u) e(Ye, u)l + sup Ig(2e, u) g(Ye, u)l IPel
uU uU

(27) me(l Y,I) + KI22, YIIp, I,

where K is the Lipschitz constant of g and me C([0, c)) with me(O) O. Using (27) one
can show that IH(2e, Pc) H(e, Pe)l --+ 0 as $ 0.

Define

Wl(X) V2(Ye) q-
(X ye)2

Obviously Wl Ccx(]n) and 1) W attains its local maximum at 2e. By Lemma 4.8 we
know that (23) has a strict subsolution, which is w(x) =- O. So according to Lemma 4.9 we
have

(28) max{H(Ye, ripe), riv(Ye) + (1 ri)w(Ye) 7z(Ye)} < 0.

Now define

w2(y) Vl (2e)
(2e y)2
2

where W2 G C (In) and v2 1/)2 attains its local minimum at Ye, so

(29) max{H@e, Pe), v2(Ye)- 1/r(Ye)} > 0.

The inequality in (28) implies

H(2e, ripe) <0 V >0andri6(0,1),

ril)l (3e) -Jr- (l ri)W(2e) 1/t(3e) < 0.

Now we show that the inequality in (29) implies only that

(30) V2(Ye) > (Ye) V < 0 for some 0 > 0.
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An argument similar to (27) verifies that H(x, p) is uniformly continuous in x and p, so we
have

lim IH(2c, r/pc) H(Yc, Pc)l 0,

but we know that H($c, r/pc) < 0 e > 0 and r/e (0, 1), so 3 eo > 0 such that H(/Pc, Pc) <
0 ’v’ e < co. Together with (29) this implies (30). We also have

(31) v1(2c) < aP(Yc),

because Vl is a viscosity subsolution of (23). Using (24), (30), and (31) we have

Vl (X) V2(X __< Vl (3c) V2(Yc)
2

<_ ((Yc) (Yc)) (-c Yc)2/2,

so when e , 0 one gets l) (X) l)2(X) __< 0 or

(32) v(x) <__ l)2(X ).

The inequality in (32) simply says that any viscosity subsolution is less than or equal to any
viscosity supersolution. A viscosity solution is both a viscosity subsolution and a viscosity
supersolution, so if V and V2 are two different viscosity solutions for (23), then by (32) we
must have V < V2 and V > V2, which implies that Vl V2. SO there is at most one viscosity
solution of (23). [3

COROLLARY 4.10. V(x, r) (x, re) is the unique viscosity solution of(20). This is
easily verified by replacing ap with N in Theorem 4.6 and using Theorem 4.2.

LEMMA 4.11. Define vo(x, re) h(yr) and l)n(X 212) 13n_ (X, 7’) for n 1, 2
where h and are defined in (9) and (18), respectively. Then Vn(X, zr) is the minimal cost
with at most n observations.

Proof. In view of the definition of N and the fact that tf 0 is admissible in (18), it is
clear that v (x, zr) vo(x, re) is the minimal cost if at most one observation is taken. The
result follows by induction. ]

THEOREM 4.12. Consider an operator , defined by (18). Then

W(x, zr) inf E g(x(s), u(s)) ds + c(x(rj)) + h(zr(rk))
SEad j=l

is the uniquefixedpoint of, where aa is the set ofall admissible strategies as defined in 2.
We will need the following lemmas.
LEMMA 4.13. W is afixed point of, i.e., W W.
Proof. Define

aabd S aad" Z’l >" 0},

g S immediate stopping},

aaa( ) {S . aabd: lg(t) (t), 0 < < f and I" "},
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where is the set of all admissible strategies with at least one observation. Obviously

Sa U <:,, so

inf J (S) inf J (S)
SEad poob uostSad ad

(33)

We also have

inf J (S) inf inf
s-sb (,)

ad

(x(s), fi(s)) ds + c(x(f))

k }+ (x(s), u(s)) ds + c(x(rj)) + h(rrk)

{foinf g(x(s), (s)) ds + c(x())
(,)

/ inf Ex() r (x(s), u(s)) ds + c(x(zj)) + h(r%)
Sad(l’)

j=2

and it is easy to observe that

(34) inf J(S) inf (x(s), (s)) ds + MW(x(?), rr)

Combining (33) and (34) yields

W(x, ) inf (x(s), (s)) ds + NW(x(’), r)
(,)

and the result follows.
LEMMA 4.14. N, acting on the space ofbounded measurablefunctions, is nondecreasing

and concave.

Proof. Assume that for all (x, rr) 6 ]n X [0, 1 ], we have V1 (X, Y/’) < V2 (X, Y/’). Then it
is easy to show that

NVI (X, re) < NVz(x, re),

because MV1 (x, zr) < MV2 (x, zr), so N is nondecreasing. Now assume that/z 6 [0, 1 ]. Then

N(lzV1 + (1 -/z) V2) min{/zh + (1 t)h, M(tzV1 / (1 -/z)V2)}

min{/zh + (1 lz)h, lzMV1 + (1 -/z)MV2}

> min{/zh + (1 -/z)h, /zh + (1 lz)MV2, lzMV1 + (1 -/z)h,

pMV1 + (1 -/z)MV2}

=/z min{h, MV1} + (1 -/z) min{h, MV2},

so N(/z V1 / (1 -/z) V2) >/zN V1 / (1 -/z)NV2 and N is concave.
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LEMMA 4.15. is nondecreasing and concave.

Proof. Let us assume that V1 < V2 (x, rr) ]n X [0, 1 ]. Then

{foV2(x, 7r) inf (x(s), u(s)) ds + NV2(x(r), re) NVI (X(r), 7r) + NV1 (x(r), r)
(u,r)

inf e(x(s), u(s)) ds + NV1 (x(r), zr) + [NV2(x(r), r) NV1 (x(r), zr)]
(u,r)

but

> V1 (x, r) + inf [NV2(x(v), re) NV1 (x(r), zr)],
(u,r)

inf [NV2(x(z), r) NV1 (x(v), 7r)] > 0,
(u,r)

because NV2(x(z), r) > NV1 (x(r), r), so

V2(x, r) >_ V (x, r)

and is nondecreasing. Now assume that/z 6 [0, 1 ]. Then

(/xV1 + (1 -/x)V) inf /x (x(s), u(s)) ds + (1 ) (x(s), u(s)) ds
(u,)

+ N(lzV1 + (1 -/z) V:)}
> inf / (x(s), u(s)) ds + lzNV1

(u,r)

fo }+ (1 -/z) (x(s), u(s)) ds + (1 Iz)NV2

{fo>/x inf (x(s), u(s)) ds +
(u,r)

{fo }+ (1 -/z) inf (x(s), u(s)) ds + NV2
(u,r)

zTv + (1 z)v2,

so

(/zV1 + (1 -/z)V2) >/zV1 + (1 b,)V2.

LEMMA 4.16. Let V for some B(n [0, 1])+. Then there exists
such that V < tcGO.

Proof For all 6 B(In [0, 1])+ we have

(35) V(x, rr) <_ h(zr).

Let maxetO, lj h(zr) hmax. (The maximum is actually achieved at zr 2/(1 +- 2).) One
can verify that 0 >_ h (rr) A 3, because c _> 3 > 0. Now two cases can happen.
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Case 1. If hmax > 8, then

h(r) _< - (h(rr)/ )

hmax< 0.

Case 2. If hmax _< 8, then 0 h(zr).
Finally, using (35) one can write V < (1 v hmax/) 0, i.e., tc (1 v hmax/).
LEMMA 4.17. Let 79 {V B(n [0, 1])+" V < xOfor some tc +}. Then

has at most onefixed point in

Proof The following proof is very similar to the one on p. 250 of [D]. Let V1, V2
and assume that V1 V1 and V2 V2. Without loss of generality we can consider

Vl V2 B(I [0, 1])+.

So let to sup{t 6 +" V1 > Vz}, to [0, 1) since V > 0 and V V2. We have V > to V2,
so

v v >_ (tov)

9(toV2 + ( to)O)

> toV2 + (1 to)0

to V2 + (1 to)0

(1 to)
>_ to V2 + V2 for some x

06) to +
K

since Va . Inequality (36) gives V > (to + (1 to) / k) V2, which contradicts the definition
of to, so we must have V1 >_ V2. Now assume that V V B(Rn x [0, 1])+ and conclude
that V2 V1, so gl V2. []

Proofof Theorem 4.12. According to Lemma 4.13 W(x, zr) is a fixed point of . Then
Lemma 4.17 proves that W(x, r) is the unique fixed point of .

Before proceeding to the following theorem let us remark that the definition of viscosity
solutions for Fv (x, zr, V, Dx V) 0 can be stated exactly in the same way as Definition 4.1,
but 7r must be replaced by NV throughout the definition.

THEOREM 4.18. W is the unique viscosity solution ofthe equation

(37) Fv(x, yr, V, Dx V) O,

where W(x, 7r) is given by (14).
The following lemmas are needed.
LEMMA 4.19. W is a viscosity solution of(37).
Proof. This is due to the fact that if V V, then V < NV, and one can follow the

proof of Theorem 4.2. [3

LEMMA 4.20. Any viscosity solution of(37) is afixed point of.
Proof. If V is a viscosity solution of (37), then by Corollary 4.10 V is the unique viscosity

solution of the equation Fv (x, 7r, , Dx) 0 (regarded as an equation for unknown with
V "frozen"), and this solution is given by V V; i.e., V is a fixed point of .
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Proof of Theorem 4.18. According to Theorem 4.12, W is the unique fixed point of .
Using the above lemmas it is clear that W is the unique viscosity solution of (37).

The following theorem describes a computational algorithm for the value function and
gives the necessary convergence result.

THEOREM 4.21. Let vo h and Vn l)n-1 for n 1, 2 Then limn Vn W,
where W is the valuefunction given by (14).

Proof. It is obvious that 0 < vn < h for n 0, 1 Since vl < v0, a simple induction
argument proves that Vn < Vn- for all n 1, 2 because is a nondecreasing operator
(Lemma 4.15). So the limit V(x, zr) limn-_, Vn(X, re) certainly exists and V V, which
implies V W since W is the unique fixed point of (Theorem 4.12). [3

5. Simulation results. As an example, consider the following scalar system:

(s) u(s); x(0) x0,

U--[-K,K],

e(x(s),u(s)) =e,
c(x)-- 1.

We also assume that the target is located at x 0. This simple one-dimensional example is
obviously a minimum-time optimal control problem, so we expect to get bang-bang control.
This problem may be solved by the following iterative computational scheme ((18) and (17))"

Un(X 272) Un--1 (X, 272),

(38) Un_ (X, 2"t’) inf
f
I

te

(u,t) Jo
g ds + Nun-1 (X(tf), 7r),

Nvn- (x, re) h(rc) A Mvn-1 (x, 7t’),

with vo(x, rr) h(rr). Let 9/ > 0 as the time step. Then E would be the state-space set,
where

ES {xj xo + jvK, j--0,+1,4-2 }.

Then (38) can be written as

(39) Un(XO, 7l’) inf [Ijl?’e + Nvn_ (xj, zr)].
j=0,+l,+2

After obtaining W(x, r) one can find the optimal observation strategy. In (39), replacing
Vn-(xj, re) and vn(xo, re) with W(xj, re) and W(xo, re), respectively, gives the necessary
formula:

W(xo, rr) inf [Ijlye + NW(xj, 7r)].
j=0,+l,+2

So starting from any initial condition (x0, 7r), one can obtain rl. Then choosing (X(’U1),
as the new starting point, r2 can be calculated and one can continue until (x(r), zr(r)) 6 S.
The following forms are assumed for eo(x) and el (x) throughout the simulation:

eo(x) =(1 exp(-bx)), bl > 0,

el(x)-" (1- exp(-b2x)), b2 > 0.
z
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FIG. 1. Stopping, observation, and continuation regions.

Although assumption (1) is not satisfied here, one can show that all the results hold when
0 < eo(x),el(x) < , e0(0) 0, el(0) 0, andYx n \ {0} eo(x),e(x) O.
Figures 1-3 show the simulation results for , 0.01, bl 0.25, be 0.5, e 8, ee 16,
and e 1. The discretization step along the 7r-axis is equal to 0.01. Stopping, observation,
and continuation regions are shown in Figure 1. ee > , so there are more observation points
for 7r > 0.5. Some continuation points are scattered in the observation region. This arises
either due to numerical inaccuracy (discretization) or as a result of position-dependent prob-
abilities (eo(x) and e (x)). So at some starting points the optimal strategy is as follows: go a
bit forward and then make an observation, because otherwise the cost is slightly more. When
e ee and b be, the regions are symmetric with respect to zr 0.5. Figure 2 shows
the maximum difference, i.e., max [vn v_ I, at each iteration. At the third iteration, v is
approximately equal to Vn-. Thus one can claim that most optimal strategies will have at most
two observations. The value function is also depicted in Figure 3. The observation strategy
was determined for a friendly target (0 0) and starting point (x0 1, rr 0.25) C. The
results were as follows:

=0.07, r2= 1,

k=2,

X(rl) =0.93, x(r2) =0,

7(Z’l) =0.72, 2t’(’E2) =0,

d=0.

The sequence of two observations, which was produced by a random generator with the
associated distributions, was Y1 1 and Y2 0.
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FIG. 2. max IVn Vn-ll versus iteration.
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FIG. 3. Valuefunction.
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As one may expect, any observation error within the vicinity of target can cause a wrong
decision. Due to discretization inaccuracies, finding the accurate boundaries between stopping,
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observation, and continuation regions is very difficult. Nevertheless, the resulting difference
in the value function is very small.
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HEAVY TRAFFIC CONVERGENCE OF A CONTROLLED,
MULTICLASS QUEUEING SYSTEM*
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Abstract. This paper provides a rigorous proof of the connection between the optimal sequencing problem
for a two-station, two-customer-class queueing network and the problem of control of a multidimensional diffusion
process, obtained as a heavy traffic limit of the queueing problem. In particular, the diffusion problem, which is one
of "singular control" of a Brownian motion, is used to develop policies which are shown to be asymptotically nearly
optimal as the traffic intensity approaches one in the queueing network. The results are proved by a viscosity solution
analysis of the related Hamilton-Jacobi-Bellman equations.

Key words. Brownian networks, queueing, heavy traffic, viscosity solutions, stochastic control
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1. Introduction. This paper provides a rigorous proof of the connection between the
optimal sequencing problem for a two-station, two-customer-class queueing network and the
problem of control of a multidimensional diffusion process, obtained as a heavy traffic limit of
the queueing problem. In particular, the diffusion problem, which is one of "singular control"
of a Brownian motion (also called "regulated Brownian motion" by Harrison (1985)), is used
to develop policies which are shown to be asymptotically optimal as the traffic intensity
approaches one in the queueing network.

The diffusion we wish to control here has been given the name Brownian network by Har-
rison (1988), who proposed such models as approximations to multiclass queueing networks.
The idea of using diffusion approximations for single-class queueing systems dates back to
Inglehart and Whitt (1970), Reiman (1984), and Johnson (1983). More recently, Reiman
(1988), Peterson (1990), and Dai and Kurtz (1995) have obtained diffusion approximations
for multiclass queues.

The control of Brownian networks for the purpose of obtaining control policies for queue-
ing networks was initiated by Wein (1990a, 1990b, 1992) and Harrison and Wein (1989, 1990).
These papers derive rules for sequencing customer services and for controlling input to queue-
ing networks. Laws and Louth (1990) and Laws (1992) use Brownian networks to derive
queueing network routing policies as well. All these papers are based on a heuristic under-
standing, amply supported by simulations, of the connection between the Brownian network
control problem and the original queueing problem. Such a connection has been rigorously
established in models with a single customer class by Kushner and Ramachandran (1988,
1989), Kushner and Martins (1990, 1991), and Krichagina et al. (1993, 1994). These papers
use weak convergence methods. After the completion of this paper, Kushner and Martins
(1994) used these methods to obtain the convergence of the value function considered in this
paper. For weak convergence methods, the exogenous processes (e.g., arrival and service
processes) can be quite general, provided that they have finite first and second moments.

In this paper, we assume that the arrival processes are Poisson and the service times
are exponentially distributed. We base our analysis on the Hamilton-Jacobi-Bellman (HJB)
equation, which, in turn, is based on the Markov property. In contrast to most other rigorous
treatments of convergence, we treat a network with multiple customer classes. Our analysis

*Received by the editors April 8, 1994; accepted for publication (in revised form) October 20, 1995. This research
was partially supported by the Army Research Office and the National Science Foundation through the Center for
Nonlinear Analysis. The research of the second and third authors was partially supported by Army Research Office
grant DAAH04-95-1-0226.

Department of Mathematics, Cleveland State University, Cleveland, OH 44115.
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15123.
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uses the theory of viscosity solutions of HJB equations. Viscosity solutions were first in-
troduced by Crandall and Lions (1984), and equivalent definitions were given by Crandall,
Evans, and Lions (1984). For recent developments, we refer the reader to Crandall, Ishii, and
Lions (1992) and Fleming and Soner (1993).

The particular example chosen for our study has also been examinedby Harrison and Wein
(1989) and Chen, Yang, and Yao (1991). The former work derives a plausible asymptotically
nearly optimal sequencing policy for the queueing network in one of the parameter cases
that we study; we confirm the asymptotic near-optimality of this policy. The latter work,
which does not introduce the Brownian network, solves the original queueing problem in
some parameter cases; we obtain consistent results in the case where comparison of results
is appropriate, and we obtain an asymptotically nearly optimal policy in a parameter case not
solved by Chen, Yang, and Yao (1991).

This paper is organized as follows. In 2 we describe enough of the queueing system
problem, including the heavy traffic assumptions, to enable us to summarize our results.
We complete the problem formulation in 3. Sections 4 and 5 establish elementary results
concerning the value function for the queueing system problem. In 6 we define the limit of
the value functions for a sequence of queueing systems. Of course, our goals are to represent
this limit as the value function for a diffusion control problem and to use this representation
to construct asymptotically optimal policies for the queueing systems. In 7 we introduce the
associated controlled Brownian network, and in 8 we reduce the Brownian network problem
to one of workload control. Section 9 dispatches the easy Case I. Section 10 provides an
overview of the harder Case II. The remaining sections are devoted to the technical analysis
of a subcase of Case II, which we call Case IIA.

We choose only Case IIA for full treatment because
(i) it includes the common situation of seeking to minimize the sum of the queue

lengths when the service time at station one is independent of customer class;
(ii) a closed-form solution to the queueing system problem in this subcase is unknown;
(iii) the convergence result in this subcase requires new methodology; and
(iv) the workload control problem in this subcase has a simple solution.

We believe that the techniques developed here can be extended to the other cases, but this
would first require the solution of nontrivial singular stochastic control problems to prove
existence of the functions q and q2, which appear in the discussion of cases IIB, IIC, and
liD in 2.

2. Summary o1’ results. We study a family of two-station queueing networks with Pois-
son arrivals and exponential service times. In the nth network, customers of class 1 and 2
arrive at station 1 with arrival rates )n and )(2n, respectively, and are served at respective

rates/zn and/z2(n) Class customers then exit the system, whereas class 2 customers proceed
to station 2, where they are redesignated as class 3 customers and served at rate/zn. See
Figure 1.

The cost per unit time of holding a class customer is ci > 0. The objective is to minimize

fo o(n)(t)dt,(2.1) E e-t/n i .i
i=1

(n) is the number of class customers queued or undergoing service at time t, and otwhere Qi
is a positive constant.

In order to minimize this objective, we may decide at each time whether to serve a
class or a class 2 customer. Service can be switched away from one class to the other and
subsequently switched back, resuming where it left off. We may also decide to idle station 1,
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FIG. 1. Criss-cross network.

even though there are customers who could be served. This may be desirable if there are no
class 1 customers and the cost c3 is high relative to c2 so that we prefer not to serve any class 2
customers until a backlog of class 3 customers has been reduced.

We want these networks to approach heavy traffic conditions as n --+ cxz. Therefore, we
define numbers bln and bn by the formulas

h(n) /(n)
so that 1 vl is the traffic intensity at station 1 and 1 v2 is the traffic intensity at station

2. The heavy traffic assumption is that for 1, 2, 3 and j 1, 2 the limits

)j lim )J, /Z lim Id’i"
(n) bj ,--,lim bn)

n--+ cx n--+ cxz

are defined and positive and satisfy

(2.3) sup Ilzi lZi -k- Ibj bj < cx.
n j=l i=1 "=

Our analysis divides naturally into two main cases, and the second case divides into four
subcases. We describe our results in each case.

Case I (Cl/Zl c2/z2 + c3/z2 < 0). As long as customer class 2 is present, it should be
served. If all class 2 customers have been served, then class 1 customers should be served.

This result agrees with Theorem 5.2 of Chen, Yang, and Yao (1991). The expected cost
reduction per unit of service effort devoted to a class 2 customer is (c2 c3)/z2, since service
turns a class 2 customer into a class 3 customer. In Case I, (c2 c3)/z2 dominates Cl/Zl, the
expected cost reduction per unit of service effort to a class 1 customer. This results in the
simple fixed priority rule of serving class 2 customers whenever they are present.

Case II (C1//I C2/Z2 "1- C3/Z2 > 0). We further divide this case into four subcases.
Reasoning behind this subdivision is given in 10 below.

Case IIA (cl/zl c2/z2 / c3/z2 > 0, c2/z2 c3/z2 > 0, c2/z2 ca/z1 > 0). Now a unit
of service applied to class 1 results in a greater expected cost reduction than a unit of service
to class 2. In 12 we prove the asymptotic near-optimality (see the last paragraph of 6 for
this concept) of the policy of serving class unless the number of class 3 customers falls
below a positive threshold, in which case priority is switched to class 2 so that station 2 is
not starved. The switching threshold depends on the queue lengths in the following way. Let
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a, b [0, cx) -- [0, cxz) be bounded, concave, increasing functions satisfying

a(0) b(0) 0, r/-- b(cx) < (a(cx))2.

Define V (zl z2, z3)
zx

a(zl)a(z3) b(z2). The nearly asymptotically optimal policy is given
by

serve class 1 if ,(on)(t)//-ff, a(n)2 t/, t)/4-ff) >_ o,

serve class 2 if ?’(Qn(t)//-ff, Q((t)//-ff, Q(t)/v/-ff) < 02

where an) (t) denotes the number of class customers present at time i. As r/$ 0, this policy
approaches asymptotic optimality.

Harrison and Wein’s (1989) model with Cl c2 c3 1,/Zl =/z2 2,/z3 1 falls
into this subcase, and their proposed policy is to serve class 1 if and only ifQ(t)//-ff exceeds
a positive constant which is independent of n and the other queue lengths. They showed by
simulation that with a properly chosen constant, this policy outperforms the rules "first-in,
first-out," "longest expected remaining processing time," and "shortest expected remaining
processing time." They also found that its performance was within about 5% of a lower bound
that they obtained for the optimal cost. We have not done simulation testing of our policy.

The heuristic justification of the policy in Case IIA suggests that the same policy is
asymptotically optimal under only the Case II condition c1/z1 2/Z2 - C3/Z2 > 0. Our proof
of the result stated in Case IIA suggests otherwise. Although we have not worked out a full
proof for the other three subcases, the proof for Case IIA strongly suggests the following
conjectures. A brief motivation of the following conjectures is given in 10 below. Chen,
Yang, and Yao (1991) offer a heuristic policy, based only on the length of the queue at the
second station, for all subcases of Case II. (Note that one must set r 0 in Chen, Yang, and
Yao in order to compare to our result.)

Case liB (Cl/Zl c2/z2 + c3/x2 > 0, c2/z2 c3/z2 < 0, c2/z2 Cl/Zl > 0). There is a
continuous, increasing function 2 [0, cxz) [0, cx) satisfying

0 _< 2(c02) </z3co2//z2 c02 >_ 0, lim 2(c02)
O)2--+

Class 1 should be given priority unless either the queue length Q) of class 1 customers falls
to zero or the queue length Qn of class 3 customers falls below some positive threshold.
While either of these conditions is satisfied, priority should be switched to class 2, except that
whenever on) 0 and

2 <ki/2 ::2 -!"

station 1 should be idled. This idleness can be explained by the fact that it is cheaper to
hold class 2 customers at station 1 than to send them on to be held as class 3 customers at
station 2; note that in this subcase, c2 < c. Also observe that when Q]n) 0, the pair

(2 //z2, (Q + )//z3) is equal to the expected impending service time for the two
stations embodied in customers anywhere in the network; see 8 below for details. The term

1/v/-ff that appears in the above formulas is related to time scaling that will be introduced in
the next section.

Case IIC (cl/zl c2/z2 + c3/z2 > 0, c2/z2 c3/z2 > 0, c2/z2 c/z < 0). There exists a
continuous, increasing function [0, oo) --+ [0, oo) satisfying

0 _< Will ((.01)
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Class 1 should be given priority unless either Qn) 0 or Qn) is less than a positive threshold.
While either of these conditions is satisfied, priority should be switched to class 2, except that
when Q > 0 and

( Q(n) g)(n) )2 < kill 2t .2

priority should be given to class 1, even though this may cause station 2 to starve. Idling
station 2 can be explained by the fact that the cost of operating the network can be reduced
more quickly by serving class 1 than by serving class 2; note that Cl/Zl > c2/z2. As in the
previous case, the term 1/ff-ff is related to time scaling, and when c() 0, the pair:3

is equal to the expected impending service time for the two stations embodied in customers
anywhere in the network.

Case IID (Cl/Zl c2/z2 + c3/x2 > 0, c2/x2 c3/z2 < 0, c2/z2 Cl/Xl < 0). This case is
a combination of Case IIB and Case IIC. We conjecture the existence of functions ql and q2
as described above. Idling can occur at either station or station 2, as described in Case IIB
and Case IIC, respectively.

3. The queueing network problem. For the queueing network of the previous section,
for 1, 2, let {An) (t); 0 < < ) be the class customer arrival process, assumed to be

Poisson with intensity )n). For 1, 2, 3, let {S{n) (t); 0 < < cxz} be the class customer

service process, assumed to be Poisson with intensity/z}n). We take all these processes to be
left-continuous, and we denote by {f’(n)(t); 0 < < O} the filtration generated by these five
processes.

A control law {Y(t), U(t); 0 < < oo} is a pair of left-continuous, {.T’()(t); 0 _< <
xz}-adapted, {0, 1}-valued processes. The process Y(t) indicates whether station 1 is active
(Y (t) 1) or idle (Y (t) 0), and U (t) indicates whether station 1 is serving customer class 1
(U(t) 1) or customer class 2 (U(t) 0). Given nonnegative initial queue lengths Q(0),
Qn Qn)2 (0), and (0) for the three customer classes, and given a control law (Y, U), there is a
unique triple of queue length processes satisfying

Qn)(t) Qn)(o) -!- An)(t) Y(S)U(s)I{Q)(s)>_I dSn)(s),

Q(n) (t) Q(n) A(2n) fot2 2 (0) -t- (t) Y(s)(1 U(s))l{Q,,(s)>_l}dS(2n)(s),

Qn)(t) Qn)(o) + Y(s)(1 U(s))lQn,(s)>_ dS")(s) l{Qn)(s)>_l

where 1A is the indicator of the set A. We denote the vector of queue length processes by

t,-)(n) Qn)a(n) (t) (a]n) (t) ,.2 (t) (t)).

(Note: Because the interservice times are exponentially distributed, the processes

(fo’ )Y(s)V(s)liQ(,(s)>_)dSn)(s) and Sn) Y(s)U(s)l{Q,(s)>_}ds
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have the same law. This permits us to write Qn) (t) in terms of the former, although the latter
more nearly reflects the way we interpret the system. If service of a customer is preempted and
later resumed, we assume that service begins where it was left off. After resumption of service,
the time to completion has the same exponential distribution as the original distribution of the

g}(n) g}(n)service time. Similar comments apply to 2 (t) and (t).)3
The vector of scaled queue length processes is

Z(n)(t) A 1 Q(n)(nt)=--
For fixed controls (y, u) 6 {0, 1}2, this is a Markov chain with lattice state space L (n)

---" k 0 .}3 and its infinitesimal generator is (see Chung (1960))

(3.1)

-.n y’ U (tg z A- Ftzn (t z + (tg z "JI- Ft) (2n (t9 z + --ee p z

+ nlzn)yu q) Z- el --g)(z) l{z,>O}

2 y(1--u) p z--e2+e3 --q)(z) l{z2>O}

+nIzn) p z----e3 --q)(Z) l{z3>0},

where z (Zl, Z2, Z3), el (1, 0, 0), e2 (0, 1, 0), and e3 (0, 0, 1). In particular, given
any control law (Y(.), U(.)), for any real-valued function q) on L (n), the process

(3.2) e-atq)(z(n)(t)) -+- e-S[otqg(z(n)(s)) .,n,Y(s),U(s)o(Z(n)(s))]ds

is a local martingale.
Using the positive holding costs C1, 2, 3, we define the holding cost function h(z)

=1 cizi. Given an initial condition z(n)(0) z 6 L (n) and a control law (Y(-), U(.)), we
define the associated costfunction at z by

(3.3) r, vt(n) (Z) =zx E e-Uth(z(n)(t))dt.

In terms of the original queue length process, this cost can be written as (cf. (2.1))

n- E e-(t)/nh(Q(n) (t))dt.

The valuefunction at z is

(3.4) j,(n)(z) h:. inf{J)u(Z); (y, U) is a control law}

4. Stationary control laws for the queueing network. A stationary control law for the
nth queueing network is a pair of functions Y L (n) -, {0, }, U L (n) -, {0, 1 }. The value
of the control at time is given in feedback form as (Y(Z(n)(t)), U(Z(n(t))). Because the
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queueing network is driven by time-homogeneous Markov arrival and service processes, we
have

(4.1) j.(n) (Z) inf{ l(n) (Z)" (Y, U) is a stationary control law}Y,U

Let n,r,v denote the infinitesimal generator of the controlled process with stationary controls
Y, U. Then n,r,v is given as in (3.1) with the pair (y, u) replaced by (Y(z), U(z)).

PROPOSITION 4.1 For any stationary control law (Y, U), thefunction 7(n) is the unique,,V
linearly growing solution ofthe equation

(4.2) ..n’Y’U q9 h 0 on

Ifp is a linearly growing subsolution ofthis equation, i.e.,

Ol n’Y’Uq9 h < 0 on

or ifp is a linearly growing supersolution, i.e.,

cp n’Y’U9 h > 0 on

then 9 < l(n) l(n)
f,v or p > respectively.,V’

Proof. Under any control law, we have

(4.3)

(4.4)

(4.5)

so

L(n).

L (n)

L (n)

1 n) ZI.) )n)EZln)(t) < zln)(o) + --EA (nt) (0) + t,

7(n) Z(2n) 1EA(2n)(nt) Z(2n) )n)(t) <_ (o) + (o) +

(4.6) l(n) (z) < h(z) + h(Xn) X(2n) (n))"Y,U t2

and J.( has the same upper bound Using the bounds (4.3)-(4.5) and the dominated conver-
gence theorem, one can show that for any linearly growing p, the local martingale (3.2) is in
fact a martingale. In particular, if (Y, U) is a stationary control law, then

jy(n) Ee-t l(n) (Z(n) (t)),u (z(’(O))

Y,U Y,U]

But for a stationary control law, the Markov property implies

(,0 (ZOO(O)) Ee-t(,O (ZOO(t))+ E e-h(Z(’O(s))ds.Y,U Y,U

Comparing these two equations, we see that

E e-S[ ’y,v(7(n ZOO (s)) (..n’r(z((s)’v(z(( r,v(nl (X(,0 (s))]ds

E e-h(Z(’O(s))ds.



2140 L.F. MARTINS, S. E. SHREVE, AND H. M. SONER

Dividing by and letting $ 0, we see that l(n) satisfies (4.2). Uniqueness of this solution
will follow from the second part of the proposition.

If q) is a linearly growing subsolution of (4.2), then the martingale property for (3.2)
implies

[ f0 ](z(n)(o)) < E e-to(z(n)(t)) + e-USh(Z(n)(s))ds

Letting --+ cxz, using (4.3)-(4.5) and the linear growth of p, we obtain q) < l(n) The
supersolution claim is proved similarly.

5. The HJB equation for the queueing network. For 9 L(n) -- 7E, we define the
nonlinear operator Z;n,* acting on q) by

(5.1) n’*qg(Z) min{ff_,n’y’ug)(z); (y, u) E {0, 1}2} Vz L(n).

The HJB equation for the nth queueing network is

(5.2) otq9 /n’*(/9 h 0 on L(n).

PROPOSITION 5.1. The valuefunction j(,n) is the unique, linearly growing solution of the
HJB equation (5.2). If9 is a linearly growing subsolution (respectively, supersolution) ofthis
equation, then 9 < j(,n) (respectively, q) > j(,n)). Furthermore, any stationary control law
(Y*, U*) satisfying

ff.n,Y*,U*j(n) ff,,n,, j(n)

is optimal.
Proof We first prove the comparisons. Let q) be a linearly growing subsolution of (5.2).

Then, for any stationary control (Y, U), we have

ot9 .n,r’,u h <_ otto .n’*9 h <_ O.

Proposition 4.1 implies 9 < l(n) and minimization over (Y, U) yields 9 < j(,n)"Y,U’
Now let 9 be a linearly growing supersolution of (5.2), and choose a stationary control

(Y, U) satisfying

Ol(fl ff.n,r,u h or9 ..n,, h >_ O.

Proposition 4.1 implies 9 > l(n) which dominates j(.n)Y,U’
A linearly growing solution of (5.2) can be constructed by the policy iteration algorithm.

Let (Y0, U0) be any stationary control, and choose (Y+I, Ut+m) recursively so that

ffn,Y+l,U+t j(n) ..n,,-(n)
Y,,O aY, U,

Then J) zx
lim l(n)

rk,Vk can be shown to be a linearly growing solution of (5.2); we omit
the details. By the comparisons already proved, any linearly growing solution of (5.2) must

(n)agree with j(,n), and since (5.2) has a linearly growing solution, J is a solution.
Remark 5.2. In certain situations, we will need to extend the definition of the operator

ff.,n,y,u to allow (y, u) to take values in the square [0, 1]2, rather than just at the corners.
Fractional values of u correspond to processor sharing at the first station, and fractional values



HEAVY TRAFFIC CONVERGENCE 2141

of y correspond to partial utilization of this station. The only property that will be needed,
however, is that (5.1) can be rewritten as

(5.4) n’*q)(Z) min{n’y’uq)(z); (y, u) E [0, 112},

a fact easily verified by noting from (3.1) that the minimum in (5.4) will be obtained at some
corner of [0, 1 ]2.

6. The heavy traffic limit of the value function. In order to let n -- oe, we need an
l cxupper bound, independent of n, for the nonnegative functions {, in=l"

PROPOSITION 6.1. There are constants K1 and K2, independent ofn, such that

.J(,n(z) < KI + Ke(z + z2 + z3) Yz L (n).

Proof. Define q)(Z) =I(Zi "at- e-Zi) for all z L(n. Set u 1/1. We begin by
verifying that (n’l’uq))(z) is bounded above by a constant independent of n and z L(n.

.l )2 (n) nFrom (2.2) and (2.3) we have l + 1, 2 ]-/3, ’i i --t- O( ), and /i"
(n)

/Z + O(), where O(np) denotes a term whose absolute value is bounded by KnP and K is

a constant independent of n and z L(n). We may thus rewrite (3.1) as

(-,n’l’uq))(Z) n)l q) Z q-el -I-q) Z-- e 2q)(Z)

[ ( ) ( ---n )+ n)2 q) z nt- -e2 at-q) z --- e2 -k- e3 at- q)(Z e3) 3q)(Z)1
1

-n)2 q) z-e2+e3 -q)(z) llz2:0

1-nJ.e[q)(z--e3)- q)(z)l l{z3=0

q)(zzl:--l/rtei) --q)(z) e2 at- --e3 --q)(z)

e-ZiSince q)(z -4- --ei) q)(z) 4-(1 + O() and
l__ (e-Z2 e-Z3) + 0(), we have

/ee -t- e3)- q)(z)

(,n’l’uq))(Z) --/’ )2(1 e-z) + O(1).

This implies that ,n,l,uq) is bounded above by a constant K0.
Let K2 g max{c, c2, c3}, socK2q) h > O. Put P gK2Ko + K2q). Then

Og.! .n’l’u. h otK2q) h + K2(Ko ff_,n,l,uq)) >_ O,

which shows that ot n’*kI/ h _> 0. (Recall Remark 5.2.) The supersolution part of
Proposition 5.1 implies

1J(,n)(z) 5 tIJ(z) 5 -K2Ko q- 3K2 at- K2(Zl at- z2 -1
t- z3).
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We wish to consider limn-,o j(,n), but since each J.n) is defined on a different set L(n),
the definition of this limit is not straightforward. Borrowing the technique developed by
Barles and Perthame (1988) (see also Fleming and Soner (1993, 7.3)),we define the upper
semicontinuous limit J# of {J,(n)}n__ by

(6.1) J#(z) = lim lim sup .l(n)() YZ E [0, 00)
$0 n-+ cxz

iI-zll<

and the lower semicontinuous limit J# by

(6.2) J#(z) & lim lim inf j.n() Yz [0, c)3.
e$0 n--+o

Then J# is upper semicontinuous, J# is lower semicontinuous, and

(6.3) 0 < J#(z) < J#(z) <_ K1 + K2(zl + z2 + z3) Yz 6 [0, cxz) 3.

We shall eventually show that J# J#, and we shall use a Brownian network problem to

suggest, for each r/> 0, a sequence of stationary policies {(Y U)} such thatn=l

1 (n)(6.4) lim lim sup I,,yn,un( J#()l <-. 1"] YZ [0, 00)
$0 n---o z/n

We call such a family (parametrized by 0) of sequences of policies asymptotically nearly
optimal.

7. The controlled Brownian network. We first introduce the controlled Brownian net-
work and then explain by an analysis of the infinitesimal generator ,n,y,u why it is relevant.
Let M1, M2, and M3 be continuous martingales relative to a filtration {U(t)} satisfying the
usual conditions that each 9r(t) contains all null sets of U(cxz) and that f’(t) As>t.T’(s) for
all t. Assume that for all t,

(7.1) (M1)(t) 2)1t, (M2)(t) (M3)(t) 2Z2t,

(7.2) (M, M2)(t) (M, M3)(t) 0, (M2, M3)(t) -)2t.

Given z 6 [0, cx)3, we will say that the quadruple (Co, el, e2, e3) of {’(t)}-adapted processes
is admissiblefor initial condition z, provided that

(i) (0, e, e2, e3) are right-continuous with left-hand limits, with the convention that
ei(0-) =0, 1,2,3;

(ii) go is of finite variation on bounded intervals;
(iii) el, e2, and e3 are nondecreasing,
(iv) the state process Z(t) (Z1 (t), Z2(t), Z3(t)) is in [0, oe)3 for all > O, where

(7.3) Z (t)
zx
z + Ml(t) +/Zle0(t) + el(t),

(7.4) Z(t)
/

Z2 bltX2t + M2(t) -/Z2eo(t) + e2(t),

(7.5) Z3(t)
zx

z3 + (bl/Z2 b2/z3)t + M3(t) + zeeo(t) ee(t) + e3(t).

The costfunction associated with (e0, el, e2, e3), admissible at z 6 [0, cxz)3, is

Veo,e,,e2,e3 (z) E e-ath(Z(t))dt.
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The valuefunction for the controlled Brownian network is

(7.6) V(z) 6= inf{Veo,el,e2,e3(z); (0, 1, 2, 3) is admissible at z}, z 6 [0, cxz)3

The cross variation formulas (7.1), (7.2) imply that the vector ofmartingales (M1, M2, M3)
is nothing more than a three-dimensional standard Brownian motion multiplied by a nonsin-
gular matrix, so this vector of martingales is also a Markov process. If we set the control
processes 0, 1, 2, 3 equal to zero, the state process Z(t) given by (7.3)-(7.5) is Markov
with infinitesimal generator

(7.7) /2o -blb/,2992 -[-- (bl//,2 b23)q93 + )lqgll --I- )2q922 ,2q923 + 29933,

where 99 is any C2 function from [0, cxz) to R with q9 denoting partial derivative with respect
to the th variable.

The controlled Brownian network is an intermediate problem between the queueing net-
works studied thus far and the workload control problem of the next section. Although the
value function is well defined by (7.6), the problem does not have an optimal solution. We
shall see in the next section that one would like to keep the state Z(t) on a face of the orthant
[0, cx)3, but this is not possible with the bounded variation control processes 0, 1, 2, 3.
Fortunately, when we pass to the workload formulation, we will obtain a well-posed control
problem.

We conclude this section with an asymptotic expansion of the infinitesimal generator
/2n’y’u of (3.1) for the controlled queueing network. This expansion is needed for the proofs in
the following sections and also explains the origin ofthe Brownian network problem introduced
in this section.

Suppose that p [0, cx)3 --+ is thrice continuously differentiable, and all derivatives
of 99 up to order three are bounded uniformly on [0, cxz) 3. Fix (y, u) 6 {0, 1 }2, and define

(7.8) o(n)= U O’1 .q/’//n)(1 y)u, ," (n)
or2 /2 (1 y)(1 u).

Recalling (2.2), we may write

0(n) n)
(7.9) u

o(n) n) b(n)

For z 6 [0, cxz) 3, we set

(7.10) ]31 (Z) yu Q1 (Z) ’(j011 (Z) I{Zl=0

(7.11)

(7.12)

A ( 1
q)(z) x(n)2 Y(1 u) 992(z) o3(z) 2-nq)2(z)2

)-- q923(Z)- q933(Z) l{z2=0},

],y,U(z) A ]j,n) [(/93(Z)_ ’q933 (Z) l{z3=0}
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so that (3.1) becomes, by use of a Taylor expansion,

cn,y,uq)(Z %// jn) q)l (Z) + (Z) "-[- 2(Z) + 22(Z)

[ nyu+ un --Z +Z +’’ Z
a (1 u) a) (z) + (z) + (z) a(z) + (z)

Nn,y,u+ (z)

I 1 1 n yu-t-" //zn) --(/93(Z) + ’-(/933 (Z) t_ 3’’ (/9(Z) + O

Because the derivatives of are bounded, we can conclude from (2.3) and (7.9) that

n’y’U(z) (Z) + 0(n) V(Z) (n) + (Z)

(7.13)

znl+ 2 2(z) -3(z) (22(z) 223(z) + 33(z))

(1)ql.. j]’Y’Uqg(Z).._ 0 --i=1

where 99 is given by (7.7) and

(7.14) (n) A n) (n) (n)(/J’ ’--]’2 ’/’t’2 )’

(7.15) .ACn)q) ,x 1/x,) 1. (n)
(/911 + /2 (q322 223 "4- (/933).

The expressions in (7.14), (7.15) are bounded uniformly in n. However, 0 (n) O’1, and r2 are of
n,y,u (n) [(n)(/9 in (7.13) agrees with Vtp.order /-, as are the terms i . The term V0. +

but this term cannot immediately be replaced by Vtp. because 0up to an error of order ,
multiplying it is of order 4eft. In 11 we treat this term by adding a corrector to the function
which is the argument of .n,y,u. The corrector causes the offending term to vanish.

Equation (7.13) suggests that the controlled Brownian motion Z(t) given by (7.3)-(7.5)
approximates the scaled queue length process Z(n) (t) - Q() (nt). The control variable 0 (n)

in (7.13), which can be either positive or negative, corresponds to pushing in approximately the

direction - (/x, -/z2,/z2) or the direction -. In (7.3)-(7.5), this pushing is accomplished
by the locally finite variation process e0. The processes , 2, and 3 appearing in (7.3)-(7.5)
allow us to enforce the condition Z(t) [0, oe)3 for all _> 0. We have set up the controlled
Brownian network to allow i to grow even when Zi(t) > 0; this corresponds to idling the
serving stations.

Remark 7.1. When all derivatives of q) up to order three are bounded uniformly on
) in (7.13) is a term whose absolute value is bounded by K//-ff, where[0, oe)3, then O(,/
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K is a constant independent of n and z E [0, o)3. If 0 is of class C3, but only with locally
bounded derivatives, then the term O(!,/if) is bounded by k(z)/v/-ff, where k(.) is a locally
bounded function of z E [0, cx)3. We need the uniform bound in (11.24) when we are
obtaining a lower bound on the limit of the queueing system value functions so that we can
proceed to (11.25). The nonuniform bound is sufficient for (12.66) when the upper bound is
sought.

8. The workload formulation. Following Harrison and Wein (1989), we introduce the
workload transformation

(8.1) co(zl, ze, z3) = ( Zl
_

z: ze+z3)
which maps the state space [0, cxz) of the controlled Brownian network onto the state space
[0, cxz)2 ofthe workloadcontrolproblem formulated in this section. If (zl, z2, z3) represents the
three queue lengths, then (Wl, w2) cO(Zl, z2, z3) is the expected impending service time for
the two stations embodied in customers anywhere in the network. The workload formulation
reduces the dimensionality of the control problem from three (the number of customer classes)
to two (the number of stations).

Because we can use the control process 0 in (7.3)-(7.5) to instantaneously change the
state Z(t) in the directions 4- 4-(/zl, -/z2,/z2) at no cost, the Brownian network value
function V of (7.6) will be constant along the direction . This means that V (z) can be written
as a function of co(z), because co(z) does not change along the -direction. It also means that
one would want to keep the process Z(t) on the locus of points in [0, c) which minimize h
along line segments parallel to . To find this locus, one considers for each (wl, w2) [0, o)2

the linear program

minimize cl zl "+- C2Z2 "+" C3Z3

subjectto
z z2

Wl,

Z2 Z3
-}- //32

/z3

Z >_0, z2>0, z3_>0.

Denote by f(Wl, w2) the value of this linear program. We have two major cases.
Case I (Cl/Zl c2/z2 + c3/z2 < 0). In this case,

(8.2) f’/(Wl, W2) Cl/Z1Wl + C3//3W2,

and the minimizer in the linear program is

(8.3) Z 11/31, Z2 Z 3W2.

Case II (cl/zl c2/z2 + c3/z2 > 0). Now

(C2/Z2 3/Z2)Wl q- C3/Z3W2 if /z3w2 >_/ze

(8.4) f’/(Wl, W2)
Cl/ZlWl -- //--3 (C2//2- Cl/Z1)W2 if /Z3W2 < /Zzw.

The minimizing values are

0(8.5a) Zl Z2 //2Wl, Z /Z3W2 /ZZWl

, /Z1
(8.5b) z (/z2w -/z3w2), z2 z3w2,

if z3w2 /z2

z3 0 if /3w2 < /Z2
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The workload control problem has state equations

1 1
(8.6) Wl (t) wl bt -k- --M (t) + --M2(t) + m (t),

]Z1

1
(8.7) Wz(t) w2 b2t q- mM2(t) + ---M3(t) + m2(t),

/z3

where the pair (m, m2) of {’(t)}-adapted control processes is admissiblefor initial condition
w (wl, w2) 6 [0, oe)z, provided that

(i) m and mz are right-continuous with left-hand limits, with the convention that

mi (0-) 0, 1, 2;

(ii) m and m2 are nondecreasing;
(iii) the state process W(t) (W (t), W2(t)) is in [0, cxz)2 for all > 0.

el(t) 2(t) e3(t)(We have in mind, of course, that ml (t) +, m2(t) -’7-3 where 1 and 3 are part
of an admissible quadruple (0, 1, 2, 3) for the controlled Brownian network.) The cost

function associated with (m l, m2) at w 6 [0, oe)2 is

e-atml,m2(LO) E (W(t))dt,

and the valuefunction at w is

(8.8) l’(w) inf{Qml,m2(W); (ml, m2) is admissible at w}.

Although we do not need this fact for our analysis, one can show that V of (7.6) and V
of (8.8) are related by the equation

(8.9) V(zl’z2’z3)-I(Zl -[- V z e [0, )3.

If one had an optimal (m, m) for the workload control problem, then as an optimal policy
for the Brownian network problem, one would want to take eT(t) -/xlm(t), e(t) ==. o,
e(t) =/z3m(t) and choose g0 to ensure that Z*(t) is always given by (8.3) or (8.5) with

wi W’(t), 1, 2, depending on the sign of Cl/Zl c2/x2 + c3/z2. However, such an e0
does not exist, so the Brownian network control problem is ill posed.

9. Solution of Case I. This is the case Cl/,bl C2//2 + C3//,2 < 0. Since t given by (8.2)
is increasing in each variable separately, the optimal control processes m and m2 act only
when Wl 0 or W2 0, respectively. More precisely,

(9.1) ml(t)
zx [ 1 ] +max -Wl + bs ml(s) mMz(s)

O<_s<t ]J,1 2

(9.2) m2(t)’x [ 1 1 ] +max -wz + b2s M2(s) --M3(s)
O<_s<t 11,3 113

(see, e.g., Harrison (1985)) are the minimal nondecreasing processes which ensure that the
associated state processes remain nonnegative almost surely. In particular,

(9.3) mi(t) l{Wl(s)=o}dmi(s), 0 < < cx3.
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One can actually compute the value function

(9.4)
r(Wl, W2) Irml,m (Wl, W2)

A + y1B1 wl + g2B2w2 + B1 e-’lwl -k" B2e-nw2,

where 1/1 > 0, t/2 > 0 solve the quadratic equations

1-I- y12+blYl-l=0,

and B1 Cl#l/’l, B2 c33/}/2, A -YlblB1 ’2b2B2.
The formula z 0 in (8.3) suggests that customer class 2 should always have priority,

a fact already established by Chen, Yang, and Yao (199 1). Thus, for the queueing networks,
we define the stationary control law (independent of n in this case)

Y(z) { 1 if Zl >0 or Z2 >0,

0 if Zl Z2 0,

0 if z2 > 0,
U(z)

if Z2 0.

One can show that (Y, U) is asymptotically optimal in the sense of (6.4) with r/- 0. We omit
the proof, focusing instead on the more complicated Case IIA below.

10. Discussion of Case II. This is the case Cl C2//2 + C32 > 0. We shall complete
the analysis only for Case IIA.

Case IIA (Cl/Zl c2/z2 +c3/z2 > 0, c2/z2- c3/z2 > 0, c2/z2- cl/zl > 0). In this case, the
function t given by (8.4) is nondecreasing in each variable separately. The optimal control
processes for the workload problem are still given by (9.1), (9.2) and satisfy (9.3), but ’ no
longer has the simple closed form (9.4). Because

(10.1) 9(w) E e-tt(W(t))dt V //3 E [0, 00)2,

the Feynman-Kac formula and elliptic regularity imply that is C2 on the open quadrant
(0, cxa)2, Q is C on the closed quadrant [0, 00)2, and

(10.2) 1(0, W2) 2(1/)1, 0) 0 V(Wl, W2) E [0, 00)2,

(10.3) ot-Q-t=O on (0, oo)2

where

.1 ) )2
(10.4) __A -bll- b22-at-

--//,12 -+- .- 11 q-
2 /23

q12 -’}- 22

for any C2 function (0, 00)2 _._> R. To verify that I" is of class C2 on (0, 00)2, we can let
fa be an arbitrary domain in (0, o0)2 satisfying an exterior sphere condition and then solve the
Dirichlet problem

otu-u-t =0 in , u 1" on 0f2.
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This problem has a solution u which is C2 in (Gilbarg and Trudinger (1977, Thm. 11.5)),
and it is an easy exercise using It6’s formula to verify that u V. To prove the claimed
boundary behavior along the wl-axis, we can choose a domain S2 in (0, ec) x R which is
symmetric about the wl-axis, and we can extend/, t, and 1) across the wl-axis by even
symmetry so that the extended functions are continuous and piecewise differentiable. The
above Dirichlet problem still has a solution u which is C in f2 (Gilbarg and Trudinger (1977,
Thm. 8.9)), and because of the even symmetry, w2 0 on the intersection of f2 with the
wl-axis. Again, It6’s formula can be used to verify that u and I) agree in the intersection of
f2 with the upper half-plane. The same argument applies to the we-axis, and the condition

’1 (0, 0) 1)2(0, 0) 0 is obtained by letting f2 be symmetric with respect to the origin.
Note that with b as in (10.4) we have

(10.5) (z2)(o(z)) z:( o o)(z) v z [o, )3.

The principal result of this paper is the following theorem.
THEOREM 10.1. Assume Case IIA. Then

A(z) J#(z)= 9(o(z)) v z [0, )3,

where J# and J# are the lower and upper semicontinuous limits ofthe queueing network value
functions, defined by (6.1) and (6.2), respectively.

The proof of Theorem 10.1 is the subject of the next two sections. Since J# _< J#, it
suffices to prove the two inequalities

r(CO(E)) _< J#(z), J#(z) <_ (co(z)) V z G [0, 00) 3.

In 11, we prove the first of these inequalities, and in 12, we prove the second. The proof of
the second inequality requires the construction of a sequence of asymptotically nearly optimal
stationary policies (defined by (12.5a), (12.5b)) which satisfy (6.4). We establish additional
properties of V in the next section.

Case IIB (cl/zl c2/z2 + c3]z2 > 0, c2/z2 c3]z2 < 0, c2/z2 Cl/Z >_ 0). Now h is
strictly decreasing in wl for wl 6 [0, w2], which suggests that wl should not be allowed
to fall too far below 3 we. Numerical experimentation supports the conjecture that there is a

/z2
continuous, increasing function 2 [0, x) [0, zx) such that the optimal control process
ml in the workload control problem acts whenever Wl(t) 2(W2(t)) to ensure that the
inequality W1 (t) >_ 2(W2(t)) is always satisfied. The rest of the conjecture was set out
in 2.

Cases IIC, IID. The functions kI/1 and 2 appearing in the conjectures in 2 about these
cases are the free boundaries on which reflection should occur in the optimal control of the
workload processes.

11. The lower bound. Throughout the remainder of the paper, we assume Case IIA. In
particular, $) is given by (10.1), where W is determined by (8.6), (8.7), (9.1), and (9.2), and f
is given by (8.4). The purpose of this section is to prove the following proposition.

PROPOSITION 11.1. Assume Case IIA. Then

(11.1) 9(co(z)) <_ J#(z) V Z [0, 00) 3,

where J#, defined by (6.2), is the lower semicontinuous limit of the queueing network value

functions and co is given by (8.1).
The proof of Proposition 11.1 proceeds through several steps.
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LEMMA 11.2. The workload valuefunction 7 [0, oo)2 ---+ [0, oo) is strictly increasing
in each variable and is convex. There are positive constants Ko, K1, and K2 such that

(11.2) Kot(w) <_ (7(w) <_ K1 qt_ Kz(w) ’v’ w E [0, cx)).

Furthermore, the partial derivatives 1 and 2 are uniformly bounded on [0, oo)2.
Proof We may rewrite (8.4) as

(w)=max{ (c22-c32)wl+c33w2,cllwl+(C22-cll)w2]2 Vw G [0’)2’

which shows that is convex, and , being the value function for a control problem with linear
dynamics and a convex state space, inherits the convexity of. The representation (10.1) of Q
shows that Q is strictly increasing in each variable and grows at most linearly. Such a function
must also grow at least linearly, and we have (11.2) for suitable positive constants K0, K, and
K2. A linearly growing convex function must have bounded partial derivatives. S

The idea behind the proof of Proposition 11.1 is to alter the function

(11.3) v(z) 9((z)), z [0, )3,

in order to obtain a subsolution of the HJB equation (5.2). Proposition 5.1 will then imply
that jn) of (10.4) dominates the altered function. We then let n to obtain (11.1).

The construction of the altered version of v requires three steps. First, we mollify v to
obtain a smoother function. Next, we compose v with a truncation function so as to restrict
attention to a compact subset of the domain of v. Finally, we add a "coector" to cancel the

(v(z) is replaced by Vv. in the expansionorder eor incued when Vv(z). (" +
of ’Y’"v (see (7.13)). This eor must be cancelled because 0( multiplying the eor is of
order.

Step 1. Mollification. Let p be a nonnegative C function with suppo contained in the
open ball B (0) of radius e > 0 centered at the origin in R2 and such that f,(0l P 1. We
define

.a(w) f. 9(x + w)p,(x)dx  (x)pe(x w)dx.
(o)

(To make this definition possible, we first extend Q to R2 so that it remains continuous.) We
likewise define

l + 1
e(O) JR2

On the set (, )2, (10.3) implies 9 0.
Let us set Q(w, w2) 9(w +2, w +2). The Lipschitz continuity of (and hence

) implies

(11.4) la’ kg’ ’l Lo on (-e, )2,

where Lo is a Lipschitz constant for . Like , each ’ is strictly increasing in each variable
and satisfies (11.2). Fuhermore,

OWl
gO(W) i(X + w)pe(x)dx i(x)pe(x w)dx.

(0)
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Computing all higher-order derivatives by differentiating under the second integral, we see
that for each N, there is a constant CN,, such that all partial derivatives up to order N of Q’
are bounded in absolute value by CN,, uniformly on (--, cxz)2.

We next define

(11.5) v (Z) e (O)(Z)), Z E (--3, O)3,

where
zx

min{/z and note that v converges to v of (11.3) uniformly on [0, x)//’2, /J’3
i.e.,

(11.6) lim sup IvY(z) v(z)l 0.
6,0 ZE[0,OO)3

From its definition, we see that v satisfies

(11.7) Vv (z) 0 z E (-3, cx) 3,

where (/z l, -/2,/z2). Inequality (11.4) and the fact that t solves the linear program in

8 imply

Ol V Z ll) Z < f.l ( Z__l
_

Z_.2 Z2, _].. z___3 ) + Loe
(11.8) /z2’

< c. z + 2L0e,

where c (cl, 2, 3). There isa constant C1, such that

(11.9) Iloi II-+-Ilvi# I1+ I1/11+11 Uijkl I1 +11 l)ijklm Ilcx _< Cl, i, j,k, 1, m {1, 2, 3},

where I1 is the supremum norm on (-3, cx) 3.
Finally, because fi is increasing in each variable separately, we have

>0, >0, >0 on (_,)3(11.10) v v2 v v

and there is a constant K satisfying

1
(11.11) v(z) < K +-c.z V z 6 [O, cx)3,

the last inequality following from (11.8) and the uniform boundedness ofv.
Step 2. Truncation. Fix/3 > 0, and let o --+ be a C function with the following

properties"
1.(i) qg(x) x ifx < ,
4.(ii) qg (x) 0 if x >_ ,

(iii) -/3 < qg(x) < 0 x > 0.
One could, for example, take the C function

2
x if x<-

--’
f(x) -x2 --1- 3x

5 if x> 3-
2 /3

2 2 3
if -<x<-

t- -’
and mollify it.
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We truncate v by defining u, (z) 99(v (z)) for z 6 (-3, (X))3. Then

ou’ (z) u’(z) oo(v" (z)) o’(v (z))v’(z) + o(),

where IO(/3)1 is bounded by/ times a constant depending on Cl,e in (1 1.9). Because qg, (x)
x for 0 < x < , we have from (1 1.8) that

v (z) < - =, otut’ (z) Eu’* (z) otv (z) -/2v (z) < c. z + 2L0e.
P

Conditions (i)-(iii) above imply
(iv) 0 < tpt(x) < Yx > 0.

This fact, (1 1.8), and (1 1.1 1) allow us to argue that

otu’* (z) ut’* (z) < ottp (v (z)) p(v (z))[otv (z) c. z 2Loe] + 0(/3)

_< c[o,(v’(z)) o’(v’(z))v’(z)]
[ o’(v’(z))]c. z + c. z + 2Lo + O(/)

_< c[o,(v’(z)) o’(v’(z))v’(z)

+ c. z + 2Loe + 0(/3)

c[99(v*(z)) v*(z) + K(1 9(v*(z)))]
+ c. z + 2Loe + O(fl).

Since q)(x) < x for all x,

99 (v (z) K) _< v (z) K,

from which we conclude that

9/(v(z))- v(z) + K(1 -9(v’(z))) <_ 99(v*(z))- qg/(v(z)- K)- Ko(v(z))

Thus, regardless of whether v (z) < or v (z) > , we have

(11.12) otu’* (z) u’(z) < c. z + 2Loe + O(/3), Z (--3, 00)3

Also, from (1 1.7), (1 1.9), and (1 1.1 0), we have

(11.13) Vu’* (z) 0 V z (-3, cxz) 3,

(11.14)

(11.15)

i, j,k,e,m {1, 2, 3},
, ,

U _.> 0, b/2’ U3 > 0, /’/3 _> 0 on (-3, o)3,
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where Ce,, is a constant depending on . In place of (11.11), we have now the existence of a

constant R such that

(11.16) U/fl’(zl, Z2, Z3)--" 0 if Zl v ze v z3 > R1’ i= 1 2 3

Step 3. Construction ofthe corrector. For each n, define

kIIn’fl’ (Z) " --%//-VU15’ (Z) (n) dtnu, (Z)
(11.17)

,:ffVu," (z). ( ) Au’" (z), z (-, )3

(A is defined by (7.15)), and note that ,,, and its first, second, and third paaial derivatives
are bounded uniformly in z, n, and fl and

(11.18)

Zl Z3Define (z)
/

min{, }, and let T [-3, oc) --+ R be a mollification of which does not

depend on the variable z2 and which satisfies the following:
(v) T is thrice continuously differentiable;
(vi) the derivatives of T, up to second order, are uniformly bounded;
(vii) /21 T1 +/2eT3 1 on [0, oe)3;
(viii) t(z) < T(z) < t(z) + v2 z [-Vl, cx]3,

where Vl > 0 and v2 > 0 are chosen so that

Z t(Z) (n) (--3, CXD) 3, Z (t(z) + 1)2) (n) (--3, O) V Z [--Vl, 00)3, Yn.

We may now define the corrector

fn,, (z

_
C3,,(wln) 2f_ wn)) -- fo

T(z)

(11.19)

where

(n) A Zl Z2 2(n) Z2
W //3

/2n) /d2"(n)’ /2(3
and the constant C3,,, is chosen below, independently of n.

Direct computation reveals that

pn,, (z p(n))dp,

Z3

Z I--U1, C)3,

(11.20) Vfn,f,, (n) qn,, + 0 - on [-1)1, 00)3.

Also, (ll.18) shows that the term f:(z)pn,f,(z p(n))dp and its first, second, and third
partial derivatives are bounded uniformly in z and n. Consequently, we may choose the
constant C3,,f independently of n so that

t:n fl, fl,(11.21) f’f" > O, 2 f3 _> O, f3’’f’‘ >_ 0 on [-vm, oc)

Similarly, we may choose a constant K,/ independently of n so that

(11.22) -K,, < f’Z’e(z) < K,/(1 + c. z) z 6 [-vl, oc)3.

Finally, we have

fn,f, fn,,(11 23) IIJi IIo + ILL,) IIo + i,j,k IIo _< C4,,/3 i, j, k 6 {1, 2, 3},

where C4,,/ is independent of n and we mean IIo to be the supremum norm on [0, 00)3.
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Step 4. Subsolution confirmation. We set

1 fn,,gn,,e (Z) Ut3’ (Z) .qt_ _. (Z) tZ E [--131, 00)

gn,,and check that for < Vl is nearly a subsolution of (5.2). Using (7.13), we compute
for z 6 [0, )3:

En,y,uagn,#, n,y,ugn,, au,e n,y,uu, + [ufn,, fn,,e]

o(n) Vu,e (n) + u

0(n) [ n +al[--g’fl’6+gi#’6](11.24) vfn,,, n + fn,,, 1

[ n’fl’ n’fl’ n’fl’+ 2 -g2 + g3 + ge2 2g’ + g’

i=1

The term O() is independent of z (see Remark 7.1). The terms multiplying and are

respective Taylor series approximations of the nonpositive (see (11.15), (11.21)) differences

( ) gn, gn,, ( l ) gn,,gn,,, z-e (z), z- e2 + e3 (z),

Thusand the eor in these approximations is of order .
a -g’’(z)+g (Z) O

and the term involving az has the same upper bound. A similar argument shows that

n,y,Ugn,,,i (Z) O {1,2,3}.

Dropping these five terms and using (11.12), (11.22), (11.23), (11.17), and (11.20), we see
that

K, (1)gn,,,(Z) .,y,ugn,,,(Z) C" Z + 20 + O(g) + (1 + C. Z) + 0

where as before [O()l is bounded by a constant, K K(, fi) times , and IO(fi)l is

bounded by a constant, K K() times ft. Minimization of ,y,ugn,, (z) over (y, u) 6

{0, 1}2 results in the inequality

gn’"(Z)--n’*gn’"(Z) 1 + , c.z+2Lo+O()+O Vz [0,

This shows that
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is a subsolution of (5.2), and Proposition 5.1 implies

otK,, J(,n)(z) +- 2L0e + O(fl) + 0 Yz E(11.25) gn,,, (z) < -q-
ot

Step 5. Passage to the limit. As a final step, we let n cx, then fl $ 0, and then $ 0 in
(11.25). From the bound (11.22), we see that limn__, gn,, (Z) U’ (Z) and the convergence
is uniform on compact sets. Therefore,

1
u’ (z) < J#(z) + -(2L0 + O(fl)) Yz [0, cxz) 3,

where J# is given by (6.2). As fl $ 0, 0 approaches the identity function and u’ (z) v (z).
Finally, (11.6) implies lim$0 v(z) v(z), given by (11.3). This concludes the proof of
Proposition 11.1.

12. The upper bound. In this section we prove the following proposition.
PROPOSITION 12.1. Assume Case IIA. Then

(12.1) J#(z) <_ f’(o)(z)) Vz [0, )3,

where J#, defined in (6.1), is the upper semicontinuous limit of the queueing network value
functions and co is given by (8.1).

The proofofProposition 12.1 depends on the construction of a sequence of asymptotically
nearly optimal policies for the queueing networks. We now describe this sequence of policies.

Let a and b be functions in C([0, oo)) which are strictly increasing, concave, and such
that a(0) b(0) 0 and

A A
(12.2) 31 lim a(x), 32 lim b(x)

x---), oo x--- oo

are finite. We also require

(12.3) 32 < 32.

We define a function 9/ [0, 00) -- 7". by

(12.4) ’(Z) a(zl)a(z3) b(z:z)

and use ?, to define a stationary control law (Y, U) for the nth queueing network by setting

(12.5a) Y(z) 1;

if t’(z)>0,
(12.5b) U(z)=

0 if ?,(z)<0

for z L (n).
The control used at z 6 L( thus depends on which "side" of the surface ?’ 0 the scaled

queue length vector z is located. Note that if 31 and 32 are small, the surface , 0 is "close"
to the set {z 6 [0, cx)3

Zl z3 0}, which, by the discussion in 8, is the set toward which we
would like to push our system. The meaning of "close" above is better explained in Lemma
12.2(d) and (e) below.

The policy (12.5a), (12.5b) is also chosen in such a way as to simplify the boundary
terms in expansion (7.13). Suppose that z2 0. Then ’(z) > 0, so that U(z) 1, and
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13’r(zl’t(zlq)(z) 0 for any o. In the same way, if Zl 0 and z2 > 0, then g(z) < 0 and the
/31 term vanishes We finally note that (12.5b) and (7.8) imply, for z L (n),

(12.6) On(z)9/(Z) O,

with strict inequality if ?, (z) 7 0.
The next lemma collects the relevant properties of 9/.
LEMMA 12.2. (a) For z [0, cx) 3,

(12.7) Vg/(z) > 0 and V9/(z) (n) > 0,

where (/Xl, /x2,/x3) and (n) (iZn) (n) [&n)-ie ). Furthermore, there is a 63 > 0 such
that

(12.8) V9/(z). > 63 if 9/(z) 0.

(b) Forall z [0, cx)3, there is a unique r 7 such that g/ (z+r O, (9/ (z4-r (n)) O,
respectively). We denote this r by p(z)(p(n (z), respectively).

(c) Thefunctions p:[0, x)3 Tand p(n [0, cx))3 7defined in (b)arefour times

differentiable and linearly growing, and their derivatives oforder up to four are bounded on
[0, cx:) uniformly in n. We also have

(12.9) 9/(z)p(z) < 0;

with strict inequality if 9/(z) 7k O.
(d) Set

9/(Z)IO(n)(z) 0 [Z [0, (X)) 3,

Thenfor all z [0, cx)3 we have

(12.10) Ip(z)l _< 64; Ip((z)l 64(n if ZlZ3 --O.

(e) The constant Co
zx

Cl//1 --C22 4-C3/3, which ispositive underthe Case II assumption,
satisfies

(12.11) IC" Z f/(O)(Z))l __< C064

for all z [0, ec)3 such that 9/(z) O.
Proof. We will give the proof for the vector . The proof for (,0 is identical
(a) We have

(12.12) Vg/(z) lzla’(zl)a(z3) 4- lz3[a(zl)a’(z3) 4- b’(z2)],

which is obviously positive for all z 6 [0, cx)3. Now suppose that 9/(z) 0. Since by (12.3)

62 2

32 2by (12.2) there is an xo such that b(xo) > (g) Therefore x0 satisfies, 2 <61. Ifz2<x0,

we then have

Vg/(z). >/xeb’(xo).
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Next, assume z2 > x0. Then a(zl)a(z3) b(z2) > b(x0), so either

(12.13) a(zl) > v/b(xo)

or

(12.14) a(z3) > v/b(xo).

We also have that a(zl)a(z3) < ’2, so (12.13) implies

/b(xo)

and we get

V?,(z).es>iz2a(zl)a,(z3)>lz2v/b(x)a,(a_ ( ’2 ))/b(xo)

By repeating the same argument following from (12.14), we conclude that we can take

’3 min {/z2b’ (x0) (tZl/\lz2)v/b(x)a’(a-l( /b(x0) )) }"’2
z, z3 z_z. Note that(b) Suppose that z [0, cxz) Denote by I the internal [-( /x ), u2

].
z + r [0, +cx) if and only if r I. Let h(r) y(z + r) for r I. From (12.7), h is

zl z3 )) < 0 and h z2strictly increasing in I. Also, h(-( / ) > 0. The conclusion follows.

(c) Since 9/ ca ([0, cxz)3), we have/9 Ca ([0, cxz)3), by the implicit function theorem
Also,

(1215) Pi(Z)
-i(z + p(z))

v(z + p (z)) ’which is bounded by (12.8) and boundedness of Yi. Boundedness of higher-order derivatives
is obtained by repeatedly differentiating (12.15). Relation (12.9) follows from (12.7) and the
definition of p.

(d) Assume that z3 0. Then

’2 > b(z2-/z2p(z)) a(zl + lzlp(z))a(lz2p(z))

> a((/Zl A/z2)p(z))2,

so

1 - (-’2),p(z) <_a

where the term on the right is well defined by (12.2) and (12.3). We have a symmetrical
argument if Z 0, and thus we can take

1 _1 (2)’4 a

We note that if we hold the function a(.) fixed and vary b(.) so that ’2 , 0, then ’4 , 0 also.
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(e) Let z [0, cxz)3 be such that F(z) 0. There is a unique such that 13 0 and
z + p(). Furthermore, by (8.5), t(o)(z))t(o)()) c. . It follows that

Ic. z (o(z)) Ic. ( + p()) (0())1
(c. )/9() < (c. )s4.

Let j(n) l(n) be the cost associated with policy (12.5a), (12.5b). The next proposition
shows that the sequence of costs j(n) grows linearly in z, uniformly in n. In particular, it
shows that the sequence j(n) (z) }n=l is bounded for each z.

PROPOSITION 12.3. There are constants K1 and K2 independent ofn such that

(12.16) J(n)(z) <_ Kalzl + K2 Yz L(n), Vn.

Proof. We will construct a function o [0, cx)3 --+ such that

(12.17) kl Izl k2 < g)(z) < k3lzl + k4 Vz [0, q-cx:)) 3

and

(12.18) En’r(z)’V(z)q)(z) < k5 Yz L(n),

where _,n,y,u is given by (3.1) and kl k5 are positive constants independent of n. Once
max{c1, c2, c3 }. Then cL q) >q) has been constructed, we proceed as follows. Let L1

Llk5h aLlk2. Put Llq) + ---d- + Llk2. Then

OlkI ff.,n’Y’Uk[ h otL199 (h Llk2) -I- Ll(k5 ff.,n,Y,U) _. O,

and, by Proposition 4.1,

Llk5J(n)(z) < (Z) < Llk31zl + Llk4 + + Like.

It remains to construct o. We fix a real number A > supn {64(n)" (n)
t2 }, and define

.(n)}(12.19) ( . A sup{4(n)/2,2
n

and

(2.2o) K=inmf \- >0.

Inequality (12.3) guarantees that K can be defined this way. In order to construct 0, we will
need to define a number of auxiliary functions. We let G 6 Ca(7) be an even convex function
such that

(12.21) G(x)- Ixl if Ixl 1.

We note that G’ (0) 0 and

(12.22) xG’(x) > 0 Yx .
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Let H 6 C4 (ff,) be a nondecreasing convex function such that

0 if x<A,
(12.23) H’(x)

1 if x >_ 2A,

and let ) C(72) be a bounded nonincreasing function such that

(12.24) )(x)--0 if x<0, )(x)_<0 if x>0, )(K) <-sup{/zm}.
n

We then define

(12.25) (n)Zl) + H(Z2) Z G [0, cx:)) 3f (z) a(lzn)z3 2

and, finally, we set

p(n)(z)

(12.26) q)(z) f (z + p(n)(z)(n)) )(s)ds, Z [0, OQ)3.
dO

We first verify (12.18). Because the derivatives of q) up to order four are bounded, we
may use the expansion (7.13) to write for any z 6 L (n)

(12.27)

_,n,y(z),U(z)(D(Z) ,(tg(z) + o(n)(z) V(tg(z) (n) ’Ji- ([9(Z)

+ 1’(z)’v(z)o(z) + 1’(z)’v(z)(z) + o --Note that, as remarked earlier, there is no J2 term above. Also, the B1 term above is nonzero
only if z z2 0.

g(")(z) An(z), and O(!The terms q)(z), -- ,/) in (12.27) are bounded. Furthermore, Vq)(z)

(n) 1.(p(n)(z)), SO from (12.24) we get p(n)(z)Vq)(Z).(") < O, and from (12.6) and Lemma
12.2(c), it follows that

(12.28) 0 (n) (z) V(/9(z) (n) 0.

From (7.10) we have

]3’Y(z)’U(z)(/9(z) -]n)o1 (Z)l/z,=z2=O + 0(1),

where O(1) is uniformly bounded in n. If Zl Z2 0, then y(z) p(n)(z) 0. Also
a simple computation from (12.25) and (12.26) shows that, if Zl z2 0, then q)l(z)

(n) c, n Y(z) U(z) umforml bounded from-t2 t., (/xn)z3) < 0, which shows that Bl’ o(z) is y above
in n.

By an analogous reasoning, to show that ];’Y(n)(z)’U(n)(z) ((z) is bounded from above, it is
enough to show that q)3 (z) < 0 if z3 0. A direct computation gives, for z3 0,

(n) (n) t’ (n)(fl3(Z) lzn)at(--lz(2n)Zl) Pn)(z)[Iz(n)Ht(z2 tz p (Z)) nt- ),t (Z))]2 2

Note first that, from (12.15), pn)(z) <_ O. Also, from (12.22), G’(-txn)zl) < O. To show that

03 (z) is nonpositive, it is then enough to show that

A (n) H’ (z2 -/2to(n) (z)) + (to(n) (z))/2
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is nonpositive. Suppose first that z2 < A. Then (12.23) implies A .(,o(")(z)) < O. Next
assume that z2 > A Then by (12.10) and (12.19) we have z2 tz(n)o(n)(z) > It follows2
that

(n) (n)b() _< b(z2 (n) P(n) (Z)) a(Zl + lzn)lO(n) (z))a (lz(n)lo(n)(z))2 < lal,/z2 /9 (Z))

so that

p(n) (Z) >_ a -1

by (12.20). Using (12.23) and (12.24), we now get

.(m)(n) (n) (n) sup[/J,2 < 0A<t2 +k(p (z))_<t2
m

as desired. This concludes the proof of (12.18). We continue with the proof of (12.17). First
note that it is clear that o grows at most linearly, since its derivatives are bounded. To exhibit
a linearly growing lower bound for p, we start by showing that o grows linearly on the surface
y (z) 0. It is obvious that there is a constant m such that

(12.29) H(Z2) Z2- ml.

(n)Now suppose that y (z) 0 and/z]n)z3 -/z2 Zl > 1. This implies

2 > b(z2) ---a(zl)a(z3) > a(zl)a
[zn Zlzl > a 1/x 2

so that

Zl _< kl
zx

sup V a
n 2

and it follows that, in this case,

G(lzn)z3 -//’2 Zl) z3 -/J’2 Zl > z3 -/2 /1 z3 -+- Zl (1 -f-/zn))kl.
Thus, there are constants m2, m3, and m4 such that for all n

(12.30) G(txn)z3 /zn)Zl) >__ m2zl -4- m3z3 m4 if ’(Z) 0, lznz3 (n)2 Zl > 1.

By analogous reasoning, there are ms, m6, and m7 such that for all n

(12.31) G(lzn)z3 /zn)Zl) _> mszl + m6z3 m7 if g(z) O, [zln)z3 -/z2(n)Zl < _1.

(n)Now suppose that ?’(z) 0 and I/znz3 ]2 Zll < 1. Then (zl, z3) is contained in the
set

n (n)An
/x

{(x, y) "x _> 0, y > 0, I/Z y --/ Xl < 1, a(x) A a(y) < v2 }.

The set A Un>_lAn is clearly bounded. Let k2 be such that A

_
[0, k2]2. We then have

(12.32) a(lzln)z3 [j.,(n)2 Zl) > Zl + Z3 2k2 if V(z) 0, I/zn)z3 --Jz2(n)Zll < 1.
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Putting (12.29)-(12.32) together, we see that there are constants K0, K1 such that

f(z) > K0lzl- K1 if z [0, cx)3, y(z) 0,

so

f (z + io(n)(z) (n)) Kolz + P(n)(z)(n)l K1.

To prove the lower bound (12.17), it is then enough to show that there is a K2 such that

IZ "JI- p(n)(z)(n)[ gelzl Yz [0, ec)3.

Since all norms on 7 are equivalent, we may rewrite this as

3 3

(12.33) (zi -t- pn)(z)’(tn)) K2 Zi VZ [0, (X)) 3.
i=1 i=1

For z [0, ee) 3,
3

Z(Zi + pn)(Z)n)) >_ A
i=1

Suppose that

Then

If, however,

zx
min r (n)" Zl Z3 Z2

’-- A.-S <r<.-S
i=1 /2 /2

Zl -- Z2 -- z3 --/zn) Zl
/

Zl Z3
(n) <2 (n---’S"

]J’l

(n) 12A > z2 + z3 > 4/z.,), Zl -t" Z2 +
Z

Zl Z3
(n)#In) #2

then

1
A> zl+z2+z3.

(n)
/zlWe can therefore take K2 /x infn in (12.33).4/xn)

In view of Proposition 12.3 we can define

J(z) lim li--- max j(n) (().
I-zl_<

We obviously have J#(z) < J(z), so to prove Proposition 12.1 it is enough to show that

(12.34) J(z) < ’(w(z)) Yz [0, oe) 3.
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The remainder of this section is devoted to the proof of (12.34). First observe that because
of the special structure of the control process U, the scaled queue length process Z(" moves
very rapidly towards the surface ?, 0. Therefore in the limit we expect the value of J(z)
to be equal to J(z + p(z)). Indeed we have the following result.

LEMMA 12.4. Let z [0, e)3 be such that z3 > O. Then

(.35) (z) _< (z + (z)).

Since the proof of this lemma is rather technical, we will first give a brief outline of the
proof. Let z be a point in (0, x)3, and suppose that there is a smooth function such that
J has a strict maximum at z0. Then by an elementary argument, we can construct a
sequence zn converging to z such that zn maximizes the difference J( -. Setting u U (z),
we have from the definition (3.1) of n,, and from Proposition 4.1 that

(12.36) ,,(z) n,l,u j(n)(zn j(n)(zn h(Zn).

For z 6 (0, )3, the only unbounded term in the expansion (7.13) of n’l’"p(z) is

By the definition (12.5b) of U, the term in the brackets has the same sign as -g. By letting
n go to infinity and using the Nct that the right-hand side of (12.36) remains bounded, we
conclude that

(z)v(z) 0.

Now if J is differentiable, then VJ (z) V(z), and we would have

g (z)vJ (z) 0 Vz e (0, )3.

This inequality tells us that J(z + t) has the sign as -g(z + t), so J(z + t) is
maximized at p (z).

Pro@ Fix [0, )3 such that 3 > 0. If 1 0, then p() 0 and (12.35)
holds at z . We thus assume, without loss of generality, that

(12.37) 1 v e > 0.

The idea of the proof is to construct, for each suNciently small positive e, a point z’ satisfying
g (z’) 0 such that

(12.38) limz’ + p(), J() limJ(z).

The upper semicontinuity of J, which follows from its definition, will then yield the desired
result, (12.35).

Step 1. Choice of constants. From Proposition 12.3 it follows that there e positive
constants k and k2 such that

(12.39) J(’(z) kl(z)l + k2 Vz L(n), Vn 1.

We put k3 & 2(1 + k + ke + I()1), k4 & 2(klk3 + k2 + 1). For e > 0, set

(12.40) () & min{p(z); z [0, )3 Ira(z) m()l2 < k4 Z3 0}
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where we use the convention min tp cx. Since 3 > 0, there is an eo > 0 such that

(12.41) p() < fl(e) (0, o).

Henceforth, we consider only 6 (0, 1/ 0).
Step 2. Definition of o. Let p, 6 C4() be such that

(0)=0 and (x)>O x67,

(12.42)

(12.43)

x7 (x) > 0 Vx , x 0,

(fl(e)) klk3 q- k2 + 1,

(12.44) 7t (p ()) < .
Inequality (12.41) guarantees the existence of such a aPE. We put

1
(12.45) qg,(z) = ,(p(z)) + - leo(z) -w() z 6 [0, cx)3.

Step 3. Definition of z. Because qg, grows quadratically and j(n) grows linearly (Propo-
sition 12.3), the difference J(n) o attains its maximum at some point z L (n). Indeed,
the linear growth of jn) is uniform in n, so the sequence {zn is bounded. We can thus select
a convergent subsequence {zn such that

lim [J(n)(Zn) qg(znk)] lim [J")(z")
(12.46) k n--+o

>_ jcxz (Z) e (Z) ’V’Z G [0, 0<3)

Let z denote the limit of {zn}. From (12.46) we see that

(12.47) J(z) qg,(z’) >_ J(z) qg,(z) Yz [0, )3.

Step 4. Bounds on {zn and z. Because z maximizes J<) o,, we have

(12.48) j(n)(zn qg,(zn) >_ j(n)() qge(’) >_- > -1,

where we have used (12.44). It follows then from (12.39) that

1
(12.49) 2-- Ico(z) O)()l2 < (tge(zn) J<n)(z) + 1 < kllW(zn)l q- k2 -+ 1.

This inequality implies

1

e2
mlc(zn)12 < kllc(zn)[ -+- k2 "k- +-Ico(zn)l Io()1,

so if [co(zn)l > , we have

1 k31
io(z)l < k / [k2 d- 1 -k-Io()1] < .2e e

Regardless of the value of Io(z)l, we have

(12.50) IcO(zn)l < min{e, k3} < k3.

Substitution of (12.50) into (12.49) yields

(12.51) Io9(zn) o)()l2 _< kae.
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Taking the limit along the sequence {n}, we obtain from (12.48), (12.50), and (12.51)

(12.52) J(z) qg (z) > -e > 1,

(12.53) Io(z)l < k3,

(12.54) Ico(z) co(’)l2 < k4e.

Finally, we show that z > 0. If z were zero, then (12.40) and (12.54) would imply/3(e) <
p(z’). But (12.52) implies

(p(z)) < qg(z) < J(z) + < kllO(z)l + k2 + 1 < klk3 -4- k2 -+- 1,

where we have used (12.53) and the limit form of (12.39). From (12.42) and (12.43), we
conclude that p(z) </3(e) and hence z > 0.

For sufficiently small e, (12.37) and (12.54) imply z v z > 0. Thus, we may choose
el 6 (0, 1/ G0) such that, for each e 6 (0, El), there is a positive integer k satisfying

(12.55) z >0, zvz >0 Yk>k.
Step 5. ,(z’) 0. Given e 6 (0, El), let k be as in (12.55), and let k > k be given.

Because z" maximizes j(nk) e, we have nk,y,u(j(n) qg)(znk) < 0 (see (3.1)). Setting
y 1 and u Un (zn), we have from Proposition 4.1 that

n’l’u9 (znk > _,nk’l’u j(n) (zn ol J(m,) (zn h(Zn ),
(nk)

which is bounded below uniformly in k because {zn is bounded. But with 0(" zx
cn_[ 1(nk

I&

Un (znk) ], we have from (7.13) that

(12.56) _,n’’"q9(z’) qg(zn) +0(n) V99(zn) (n) + - o(Zn) + 0

The terms O" and r2 in (7.13) vanish because y 1. The terms/7,l,u, 1, 2, 3, vanish
because z/ z > 0, z > 0, and

1. z--0=,z >0, y(z) <0, u--0;
2. z O = y (zn > O, u l.

All the terms on the right-hand side of (12.56) are bounded uniformly in k, except possibly
O(nk)Vqg(znk) (n). Therefore, this term must be bounded from below, uniformly in k, i.e.,

(12.57) inf unk(znk) Vg)(Znk). (nt) > --OO.
k>k

We use (12.57) to prove that /(z) 0. If V(z) > 0, then V(zn) > 0 and U"(zn) 1
for sufficiently large k. Since

[ 1lim
k-- cx

)2
1-- <0,

(12.57) implies that

(12.58) Vqg(z’) lim Vq)(zn) (nk) O.
k--cx
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But

(12.59) V99(z’). O(p(z’))Vp(z’) -’(p(z’)),

where we have used (12.15). From (12.58), (12.59), and (12.42), we conclude that p(z’) > O.
Lemma 12.2(c) implies that y(z’) < 0, which contradicts our initial assumption y(z’) > 0.
A similar argument rules out the possibility y(z’) < 0, and we are left with the conclusion
(z’) 0.

Step 6. Conclusion. Because lim,+0 w(z’) co() (see (12.54))and y(z’) 0, and we
have lim,+0 z’ + p(). We may now take the limit as e $ 0 in (12.47), using (12.44), to
conclude

J( + p()) > limJ (z’) > lim[J() 99, ()] J().

This completes the proof of (12.38).
The next few lemmas allow us to remove the condition z3 > 0 in Lemma 12.4.
LEMMA 12.5. Suppose that 99 C ([0, x3)3) is such that J 99 has a local maximum at. Assumethat.l v2 > Oandeither3 > Oor3 --Oand993(.) < O. Then y()V99(). < O,

where (/Xl,-#2,/z3).
Proof. Assume for the moment that J 99 has a strict local maximum at

be a compact set whose interior contains and is such that strictly maximizes J 99 over
[0, )3 f3 int(/). Define K [0, o) f3/, and let z maximize j(n) 99 over the finite set
K f3 Ln). Choose a convergent subsequence {zn with limit z such that

lim [J(n)(zn) 99(zn)] lim [J(n)(zn) 99(zn)].
k---o n---x

Then

j(z) o(z) >_ lirn[J() (z) qg(zn)]

> J(z) 99(Z) YZ [0, cx)3 fq int(/).
It follows that z .

There exists a positive integer k0 such that z v z > 0 for all k > k0, and either z > 0
n, 1, Unk (znkfor all k > k0 or else z 0 and 993 (zn) < 0 for all k > k0. Consequently,/3 99(zn)

given by (7.12) is either zero or else is bounded from above, uniformly in k > k0. This
observation allows us to use the argument in Step 5 of the proof of Lemma 12.4 to conclude
that y ()V99() < 0.

If the maximum attained by jo 99 at is not strict, we introduce the function

o (z) ’ 99(Z) 4- 8e-Iz-12. For all 8 > 0, the function J 99 attains a strict maximum
at . Furthermore, V99() V99(). The preceding argument shows that y(z)V99()
(z). v0 (). _< o.
LEMMA 12.6. Suppose that 99 C ([0, cx)3) is such that J 99 has a local maximum

at . Assume that 3 O. Then J() < J( 4- p()).
Proof. We assume without loss of generality that > 0, since if 0, then p() 0

and the result follows. The assumption > 0 is equivalent to y () < 0.
Suppose the desired result is false, i.e., there is an > 0 such that J() > J( 4-

p()) 4- . Continuity of p and upper semicontinuity of J imply the existence of 8 > 0
such that

Iz 1 < JCz + (z)) < J(E + ()) +
2

< J() 2"
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From Lemma 12.4, we have then that

Iz- l < 8, z3 > 0 := J(z) < J()

i.e., J jumps up at as the boundary z3 0 is approached. Consequently, with K > 0 and

(z) q)(Z) Kz3, the function J has a local maximum at . For K large enough, we
also have q53 () < 0. Applying Lemma 12.5 to and recalling our assumption t’ () < 0, we
see that

1 K
0 _< v(). 01() --02() + 03()

1 /Z2 #2

This inequality is violated for sufficiently large K. rq

PROPOSITION 12.7. J(z) < J(z+p(z))forallz [0, cxz) 3, where (/Zl, -/z2,/z3).
Proof. In light ofLemma 12.5, it is enough to consider the case z3 0. As in that lemma,

we assume without loss of generality that Z v z2 > 0. Consider the so-called sup-convolution
(Crandall, Ishii, and Lions (1992), Fleming and Soner (1993))

J(z)= sup {J(y)lly zl2}y[O,x)3

By the linear growth of J, there is, for each e, a point y(e) at which the supremum is attained.
We then have

JCy()) -ly(e) zl 2 jC(z) 0,

and this implies that {y(e) e > 0} is bounded and y(e) --+ z as e 0. Since J(y(e)) >

J(z), upper semicontinuity ofJ implies J(y(e)) J(z). Now note that J(y(e)) <
J(y(e) + p(y(e))). This follows either from Lemma 12.4 if the third coordinate of y(e)
is positive or from Lemma 12.6 (taking q)(y) 7 lY zl 2) if the third coordinate is zero. We
have then

J(z) lim J(y(e)) < limJ(y(e) + p(y(e))) < JC(z + p(z)). [3
$0 $0

For w 6 [0, cx)2, we denote by ((w) the unique z 6 [0, cxz) for which w(z) to and

V (z) 0. In terms of the function p constructed in Lemma 12.2, we have the formula

(12.60) ((co(z)) z + p(z) Yz 6 [0, cx)3.
We set

(12.61) ](w) _A jcx((to)), to G [0, 00)2.
It will be shown that J is a viscosity subsolution (defined below) of the partial differential

equation

(12.62a) otJ J h C084 on (0, cx)2

and the Neumann boundary conditions

(12.62b) J1 (0, w2) 0 w2 > 0,

(12.62c) -J2(w,O)=O Vw>O.
Here, 84 and Co are the constants defined in Lemma 12.2(d), (e),/ is defined by (10.4), and
t by (8.4). The value function 1 for the workload control problem is a classical solution of
the related euations (10.2), (10.3). These facts will allow us to obtain an upper bound on J
in terms of V, and Proposition 12.1 will follow.
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DEFINITION 12.8 (Crandall, Evans, and Lions (1984), Crandall and Lions (1984), Crandall,
Ishii, and Lions (1992)). We say that an upper semicontinuousfunction J [0, cxz)2 - is
a viscosity subsolution of(12.62a)-(12.62c) if whenever Co E arg max[0,)2 (J -(fi)for some
(fi E C(72), we have

(a) if Col > 0 and b2 > 0, then

o/J() (fi(/) /(/) < C04;

(b) if 601 0 and 6o2 > O, then

min{otJ(t) -/(fi(tb) t(tb) C04,-(fi (tb)} < 0;

(c) if 01 > 0 and 02 O, then

min{otJ(tb) -/(fi(tb) t(tb) C064,-(fiz(tb)} < 0;

(d) if 601 0 and 132 O, then

min{otJ(tb) (fi(tb) t(tb) Co64,-(fi(tb),-(fiz(tb)} < 0.

Remark 12.9. A function J is a viscosity subsolution of (12.62a)-(12.62c) if and only
if, for every C function (fi j-2 _+ T and every tb which is a strict maximum of J (fi over
[0, x)2, conditions (a)-(d) of Definition 12.8 hold. Indeed, if we have these conditions at
strict maxima and if tb maximizes J (fi, but perhaps not strictly, then tb is a strict maximum

of J (fia where 6 > 0 and (fia(w)
zx _wl2(fi(w) + 6e-Iw Writing conditions (a)-(d) for (fia

and letting 6 $ 0, we obtain these conditions for (ft.
PROPOSITION 12.10. , defined by (12.61) is a viscosity subsolution of(12.62a)-(12.62c).
Let (fi j-,2 + be of class C, and let tb maximize J (fi over [0, cx)2. In light of

Remark 12.9, we may assume that J (fi has a strict maximum over [0, cxz)2 at
For e > 0, put

(fie(Z) (fi(CO(Z)) + (’(Z))2, Z e (--1, 00)3.

We claim that & ((tb) is a strict maximizer of J (fit over [0, cx) 3, i.e.,

(12.63) J(z) -(fi(co(z)) (’(z))2 < ](tb) -(fi(tb) Vz 6 [0, )3\{}.

Consider z 6 [0, cx)3, z . If co(z) b, then },(z) 0 and Proposition 12.7 implies

J(z) o(o(z)) _< J(z + p(z)) o(o(z)) J() o();

inequality (12.63) follows. On the other hand, if w(z) To, then Proposition 12.7 implies

J(z) 0(o(z)) _< J(z + p(z)) o(o(z))

J(oo(z)) o(o(z))

< () 0().

Set

kln,e(Z A %/-/V(fie(Z). ( (n)) An)(fi(Z), z (-1, cx)3,

where n and " are given by (7.14) and (7.15). Let T be as in Step 3 of the proof of
Proposition 11.1. For z 6 [0, )3, set

1
fn, (z).f’ (z) &

r(z)

’" (z r(n))dr, g’ (z) & " (z) +
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Note that

vfn’e(Z).(n)--l[rn’e(Z).- 0 (--),
where O(14-) is bounded in absolute value by K(z)/x/-ff and K [0, cx) --+ [0, cx) is locally
bounded. Indeed, we may choose a linearly growing K because fn,e grows at most linearly.

Because 5 is a strict maximizer of J q0 over [0, cx)3, we can find a compact set
G C 3 containing 5 in its interior, a strictly increasing sequence of positive integers {kn }nl,
and a sequence {zkn }nl such that J(kn) (zkn jo() and each z’n maximizes j(k,) gkn,e
over G/x L(n). To simplify typography, we assume that kn n, i.e.,

(12.64) lim J() (Zn) J(),
n---- oo

(12.65) j(n) (Zn) gn, (Zn) > j(n) (z) gn, (Z) YZ E G N L(n).

Directly from (3.1), this implies .,n’l’Un(zn)(J (n) g"")(z") < 0, and Proposition 4.1 yields

(12.66) OlJ(n) (zn) n’l’Un(zn)gn’ (Zn) "< C" Zn.

(12.67)

We now use expansion (7.13) to obtain

ff-,n’l’Un(zn) gn’ (zn) lgn’ (zn) -Jr" 0 (n) Vgn’ (Zn) (n) ..]_ ___,A(n)gn, (zn

.qt_ Bi ,1,Un(Zn) gn, (Z) + 0
i---1

)(n)
where 0 (’0 -[ Un(zn)] and O() is bounded in absolute value by K(z)//- for

some locally bounded function K (see Remark 7.1). Simplifying the right-hand side of (12.67)
and using the inequalities O()?’(z’) < O, V,(z’) _> 0, we obtain

n,l,Un(zn)gn,e(zn e(zn + o(n)(zn)V(zn)
+ + o

i=1

i=1

and

]3Un(zn)gn(zn)--/-ln)n(zn)[(((zn)).-t-.y(zn)(zn)-.-(--)]{z=}
]3’lUn(zn)gn"(zn) /-’-(n) sn lx/n/z2 (1 (zn)) (/92(O)(Zn)) + .,(zn),2(Zn) .qt_ 0 l{z=0),

31’Un(zn)gn,’(Zn) rA,n) I2(O)(zn))...]-6.,(zn)B(Zn).qt-O (-.--) ]n’ 1 {z=0).

Note that ,(z) > 0 whenever z 0, which implies (1 u(n)(zn))l{z=O} 0; hence

]3,l,Un(Zn) gn,, (Zn) O.
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Let us consider now the four cases (a)-(d) of Definition 12.8.
Case (a) (tb > 0, 1)2 > 0). Because V() a(l)a(3) b(2) 0, we must have

> 0, 2 > 0, 3 > 0. Thus, for sufficiently large n,

n,l,Un(zn) gn, n,l,Un(zn) _n]31 (Zn) ]33 (Zn) 0,

and (12.68) implies

(1)(12.69) _,n,l,U(n)(zn) gn, (Zn) ,,q3 (Zn) .qt_ 0

From (12.66), we see that

otJ(n(zn) p(zn) c" zn "- O (n )
and letting first n --+ x and then e $ 0, we obtain

otJ()

But J() a(tb) and 0(co()) Zqg(tb), so (12.11) yields

(12.70) ota(tb) qg(tb) < (ff)) + C04,

as required by Definition 12.8(a).
Case (b) (tb 0,/)2 > 0). We have 2 0, 3 > 0. If p (tb) > 0, the inequality

in Definition 12.8(b) is satisfied and we are done, so we assume that p (tb) < 0. But in this
case

lim Il(O)(Zn))/6g(zn)l(Zn)+o (--)1n--- (x)

so we have 13’l’V"(Zngn’(Zn) <_ 0 for sufficiently large n. Since 3 > O, we have

13’l’vnzngn’(zn) 0 for sufficiently large n; (12.69) follows and leads to (12.70) as be-
fore.

Cases (c) and (d) are similar.
PROPOSITION 12.11. We have

C04J(w) < Q(w) + ’v’w 6 [0, cx)2,

where 34 and Co are the constants defined in Lemma 12.2(d), (e).
Proof For each > 0, let ’" be the Ca function constructed in Step of the proof of

Proposition 11.1. For 3 > 0, define

Q9e’3 (tO) __.A e(W) + r](to), to [0, (:X:)) 2,

where O(w) & w2 / w22 wl w2. Since and l) grow at most linearly, q9’,a attains its
maximum over [0, cxz)2 at some point &’. Furthermore, the set {tb"; 0 < e < 1 is bounded
for each fixed ti > 0.

With 3 > 0 fixed, let k > 0 be such that tbE, 6 [0, ka]2 for all e 6 (0, 1). On the compact
set [0, k / 3]2, ’’ and 2 are uniformly continuous. Consequently, there exists e 6 (0, 1)
such that for all w, w’ 6 [0, k / 3]2, we have

IIi(w)- 9i(w’)l < , i-- 1, 2,
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whenever ]w w’l < 4e In particular, if e < ea and -’a 0, then because ’’l(tb’a) 0
(see (10.2)), we have

(12.71)

2

Similarly, if 2
We next show that

(12.72)

For6>0and0<e < if-’ -’w > 0 and w2 > 0, inequality (12.72) follows immediately
from Proposition 12.10 and (a) of Definition 12.8. If w 0 and w2 > 0, then we use

-,6 -,3 -’ 0,(12.71) and (b) of Definition 12.8. The case w > 0, w2 0 and the case w
-" 0 are handled similly.2

From (11.4) we have

(12.73) O(,.a) + (,.a) + 3(,,) Lo
2’,*(’,*) + h’ (’,*) + ,[(’,*) (’,*)] Lo.

Combining this inequality with (12.72), and using the fact that tb’ maximizes 9*’a, we
see that
(12.74)

c[](w) o,(w)] _< a[](,) o,(,)1

tO) G [0, 04))2,

where

K A
max {-otr/(w) + Zr/(w)} < cx.

w[O,(x))

Letting first e $ 0 and then 3 $ 0 in (12.73), we conclude that

Ot[](W)- (W)] _< C04,

which establishes the proposition.
Proof ofProposition 12.1. Propositions 12.7 and 12.11 and (12.59), (12.60)imply that

for any z 6 [0, xz)3

(12.75) J#(z) <_ J(z) <_ J(z + p(z)) ](o(z)) _< P(o(z)) + C034
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But Co c1/z1 c2//,2 + c3//,3 is constant, and 34 a-1 (4/2) can be made as small as

we like by choice of the functions a and b introduced at the beginning of this section. [3

COROLLARY 12.12. Recalling that j(n) l(n) denotes the cost of using the controlyn u
law (12.5a), (12.5b) in the nth queueing network, and j,n) denotes the optimal cost in this
network, we have

C04
(12.76) lim lim max jn)(a) _< lim lim min .l_,n)(()+ Yz [0, o0)3

$0 n--+oo L(n) 0n L(n)
I-zl I-zl

Proof. Inequality (12.75) is simply

J(z) <_ J#(z) + C04

But Proposition 11.1 and 12.1 imply J#(z) J#(z) Q(w(z)) for all z 6 [0, o0)3, and
(12.76) follows from (12.74).
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ON THE LAVRENTIEV PHENOMENON FOR OPTIMAL CONTROL PROBLEMS
WITH SECOND-ORDER DYNAMICS*
CHIH-WEN CHENG AND VICTOR J. MIZEL

Abstract. The present article examines control problems in one dimension for which there is an autonomous
running cost and a specified terminal state. In this case, when the running cost involves only the control and the state,
it is known that the infimal cost corresponding to any initial state is unaffected by the precise choice of Lp space
(1 < p < o<z) which is specified for controls to be admissible. Here we show that the situation is different in the case
of an autonomous running cost involving, in addition to the control, the state and its derivative. That is, despite the
density of each space with higher exponent in those with lower exponent, the infimal cost will generally depend on
the choice of p if sign constraints are present.

Key words. Lavrentiev gap, free zone, fully coercive running cost

AMS subject classifications. 49J05, 49J45

1. Introduction. We are concerned with control problems of the autonomous form

(P) C[u] f (x, x’, u) dt with x" u,

over Ap ua,b
where f >_ 0 is smooth and is convex in its third argument. Intuitively, one is evaluating
the cost of parking a moving railroad car at the origin in unit time, but the availability of
less artificial applications is not clear. (One possible exception is the control of second-order
nonlinear materials with negative capillarity [CMM].) The question to be raised is whetherm
despite the density of Lp2 in Lpl for each Pl < P2mthe minimal cost mp infAaP, C varies

with the choice of exponent p E 1, cx). If such an effect occurs, one says that Lavrentiev’s
phenomenon is present (cf., e.g., [La], [Ma], ICe], IBM], [M1], [M2], [M3], [HM1], [HM2],
[HM3], [L], [Da], [BUM]). It is known that in analogous autonomous control problems with

first-order dynamics, namely,

0

C[u] f(x,u) dt, with x’ u, over
-1

aPa {u LP(-1, O) Ix(-1) a, x(O) 0},

the minimizing u in Aap actually lies in L, so such an outcome is impossible [CV1 ], [Da],
[AAB]. In contrast, we present a class of examples in the second-order context for which such
a phenomenon does take place on suitable subsets of APa,b This sheds light on a conjecture
raised in [CV2] concerning higher-order integrands. It also provides an incentive for further
study of the troubling issue raised in [BK], [NM], and [Li]: the invalidity in such examples of
standard numerical methods for dealing with optimization problems.
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To illustrate the phenomenon, consider the following example:

f_0C[u] (x’)6(u)8dt, with x" u,

over APa,b {u E LP(-1, 0)] x(-1) a > 0, x’(-1) b < 0, x(0) x’(0) 0}. Now by
Jensen’s inequality and the chain rule for absolutely continuous functions (cf., e.g., [MM])

(1)

o
(x’(t))6(u(t))8dt (Ix’(t)13/4x"(t))8dt

(4/7) (d/dt(lxt(t)[7/4))8dt

>_ (4/7)81X’(S)114/1S17, --1 < S < O.

In particular, it follows that for all u E AaP, b
(2) C[u] >_ (4/7)81b114.

Now consider the curve F given by 1-’ {(x, Y)IY -xl/3, x > 0}, and multiply the
integrand by a weight factor O(x, y), which vanishes along 1-’ and is positive everywhere else.
Denoting the modified integrand by f#, we have

f#(x, x’, u) O(x, Xt)(X’)6(U) ---: d(x, x’)(u) 8.

Consider first the extreme case

O(x,y)--O if(x,y) el-’

if (x, y) 6 [0, oc) x (-cxz, 0]\1-’

oe otherwise.

It is not hard to see why there is a Lavrentiev phenomenon for the cost function C# corre-
sponding to f#. Indeed consider the trajectory x* given by

x.(t) (-2t/3)3/2, x’.(t) -(-2t/3) /2,

f!with corresponding boundary data a x.(-1), b x’.(-1). For this trajectory, u. x. 6

LP(-1, 0) for all p 6 [1, 2), and C#[u,] 0 (d(x.(t),x’,(t)) 0 for all E [-1, 0]).
However, if we restrict attention to the smaller class L2(_ l, 0), then the optimizing control
u. is no longer admissible. It then follows from the previous estimate (1) that, in particular,
we have the gap (4/7)8(2/3)7 for those controls u 6 L2(-1, 0) that coincide with u, on an
interval [-1, s] for some s < 0 but are such that O(x,(t), x.(t)) 0 for all 6 (s, 0). The
full demonstration that there is a Lavrentiev gap for all L2 controls for these and other a, b
values will follow from the proof of Theorem A below.

Now the phenomenon is not restricted to cases in which the weight function d is non-
smooth. Indeed, as follows from Theorem A stated below, the same basic result applies, for
example, even to the polynomial weight function d(x, y) (x + y3)2. More precisely, if we
restrict attention to the state constrained subclasses

AP’+--{u LP(-1 0)Ix(-1) a > 0, x’(-1) b < 0, x(0) x’(0) 0 withx(.) > 0}
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then there will again exist for appropriate data a, b the relation

m-’=infC#>0=m-=minC#.
A2,+ AI,+

a,b a,b

However, if one relaxes the sign constraint on x, then the Lavrentiev gap disappears:

mp inf C# 0 m min C#

A Aa,b a,b

for all p 6 (1, cx).

The initial class of problems that we discuss here retains the following features of the
example analyzed above"

There are zero-cost curves ("turnpikes") in the fourth quadrant of the (x, y) plane that
correspond to trajectories arising from controls in Lp (-1, 0) only for 1 < p < P0 for some

P0 > 1. The optimal trajectories for exponents p < P0 follow these zero-cost curves, but
such trajectories are not admissible when controls are restricted to LP (_ 1, 0).

The weight function d d(x, y) has the following homogeneity property: for some
?, 6 (1,2) andot > 0

d(x), y,-) )d(x, y) for all ,k > 0.

This article is organized as follows. In 2 two propositions are presented that demonstrate
that there is a certain region in the fourth quadrant ofthe (x, y) plane over which every trajectory
in the subclass AP’+a,b must cross, while such crossing can be avoided by trajectories in the

classes AP’+a,b, _< P < Po. Then our main results for cost functions as above are presented.
Finally, in 3, it is pointed out how perturbation of this special class of cost functions leads
tofully coercive cost integrands that still exhibit the Lavrentiev phenomenon. Related results
are presented in [CM].

2. Basic results. Our first result is a simple consequence of H61der’s inequality.
PROPOSITION 2.1. Given?, (1, 2), set po 1/(2-?,). Suppose thatx W:Z’P(-1, 0)

satisfies x(to) O, x’(to) O. Then thefunctions Y0, Y1 [-1, to] --+ ] defined by

Yo(t) x(t)lt t01 -, Yl(t) x’(t)lt t011-
satisfy

Yo(t) o(1), Yl(t) o(1) as to-.

Our next result shows that with ?, and p0 as above, the phase vector (x (t), x’ (t)) associated

with any function in aP"’a,b must occupy a plane sector --c2 < x1-/y < --Cl for some nonde-
generate time interval [to, q]. Note that Y0, Y1 above satisfy Y(t) [Y1 (t) + ?, Yo(t)]/(to t).

AP’+ Put to min{t 6PROPOSITION 2.2 With ?, and po as above, suppose that x a,b

[--1,0]Ix(t) X’(t) 0}, Yo(t) x(t)lt- tol -, Yl(t) x’(t)lt- tol 1-, Z(t)
x’ (t) Ix (t) 1->/.

For any constants c and D satisfying 0 < c < D?, < a?, and any choice of c and
ca satisfying 0 < c < c2 < cD1-/ there exist t2, tl (-1, to)such that the following
conditions hold: Z(t2) -c2, Z(fi) -cl, 0 < Yo(t) <_ D,-c < Y(t),-c2 < Z(t) < -c
for all [t2, tl ].

Proof Since Yo(-1) > a and, by Proposition 2.1, Yo(t) 0(1) near to, it
follows by continuity that there is a 6 [-1, to) such that Yo(t) D. Define t4
max{t 6 [-1, to) lYo(t) D}, so 0 < Yo(t) < D for all 6 [t4, to). Consequently
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Y(t4) _< 0, which implies that Yl(t4) < -D,. Since by Proposition 2.1 Yl(t) o(1)
near to, it follows by continuity that there is a (t4, to) such that Y1 (t) -c. Defining t3
max{t (t4, to)I Y1 (t) -c}, we obtain -c _< Y1 (t) for all [t3, to]. Examine G2(t)
Yl(t) + c.lYo(t)l (-1)/ [c2 q-- Z(t)]x(t)(y-1)/’(t0 t) 1-’. Note that GE(t3) <
D(-l/[c2 cD1-/] < 0 by choice of c and c2. If, for some [t3, to), Yl(t) > 0
or Yo(t) 0, then it follows by continuity that G2(s) 0 for some s [t3, to). (x(t) >_ 0
implies that also Y1 (t) 0 in the latter case.) Otherwise, Yo(t) > 0, Y1 (t) < 0 for all

[t3, to). We now show that in this case sup{Z(t) It [t3, to)} 0, so again G2(s) 0 for
some s [t3, to). Otherwise, for some k > 0, x’(t)lx(t)l1-/ < -k for all [t3, to).

Integrating both sides of this inequality over (t, to) gives x(t) > (k/,)lt tol, i.e.,
Yo(t) > (k/?’) > 0 for all [t3, to), contradicting Proposition 2.1. A similar argument
establishes that G1 (t) Y1 (t) + cllYo(t)l-/ satisfies Gl(S) 0 for some s [t3, to). On
setting t2 max{t [t3, to) lG2(t) 0}, t min{t [tz, to)I Gl(t) 0}, we obtain the
desired conclusion.

We now state our main results.
THEOREM A. Considerproblem (P) with a cost integrand oftheform

f(x, y, u) d(x, y)lul g,

where k > 1 and d Cont(N2) satisfies the homogeneity condition

(Hom) d(x,e, y,-l) )d(x, y) for all ) > Ofor some ?, (1, 2) and > O.

Put F {/3 > 01d(1,-/3) 0}, and define the "free zone" ] by

IF {(x, y) y =--fiX (t’-I)/y with F}.

Suppose that F is nonempty with empty interior and that

(,) oe k(2 ,) < 1.

Then ifthe boundary data a > 0 and b < 0 satisfy

(#) (Ibl/)/-1 a <_ Ibl- (’- 1)(Ib[/)/-1 for some F,

the Lavrentiev phenomenon holdsfor Ap’+a,b where P0 1/(2 /).
Remark. Note that (#) is nondegenerate, i.e., allows real values for a, if and only if

Ibl _<//’-.
Proof. We begin by estimating C[u] for controls u LP(-1, 0). By setting )

lyl1/- in (Hom) we can express f as follows"

f (x, y, u) d(xlYl/(-, -1)lYl/(-llul for y < O.

Now choose scalars c, D, Cl, and C2 satisfying 0 < c < DF < ag, 0 < Cl < C2 < cD(1-’)/’

such that [-c2,-Cl] contains no point of F. By Proposition 2.2, for the above choice of
constants there exists [t2, tl] C (-1, 0) such that

x’ (t2) -c2 Ix (t2)I (-1)/ X’ (tl) --c1 IX (tl)l (y- 1)/,

with 0 _< x(t) <_ D,--C2 <_ x’(t)lx(t)l (1-)/ <_ --Cl for all 6 [t2, tl]. Hence by continuity
of d we conclude that there is a constant 1 1 (C2, Cl) > 0 such that

d(x(t)lx’(t))/(-1, -1) > 1 > 0 for all [t2, tl].
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Consequently, setting or/(F 1) we have the following appraisal:

tl

f2
tl

C[b/] __> t Ix’(t)lelu(t)lkdt --1 Ix’(t)lelx"(t)lkdt

fx Ix’(t)le+-ldx’/dxl(t)dx

fxA Id/dxlx’(t)l(e+2k-)/ldx,

where A 31(k/(e + 2k 1))k, xl := x(q), x2 := x(t2), and we have employed the chain
rule as well as the substitution rule for integrals IF, Thm. 3.2.6]. Putting (e + 2k 1)/k r
and applying Jensen’s inequality and the chain rule we now obtain

fxC[u] >_ A Id/dxlx’(t)lrldx

> A [[Ix’(t2)l --Ix’(tl)lr]/(x2 Xl)I k
(X2 Xl)

[-r (F-1)r/F F-1)r/F
k

A tczx2 ClX ]/(x2 Xl) (x2 Xl)

kr k(F-1)r/F+(1-k)x:  Xl/X: 

where a [1 (c/c2) (Xl/X)-l)r/]/(1 x/x2) > 1 (Cl/C2)r. Since x2 6 [0, D] and
its exponent is nonpositive, we obtain

C[u] >_ Acx=-->+>/ll (Cl/C2)r[k

>, AcD(=-(2-+/I1 (Cl/C2)r[ =" 6(D, c, c2) > 0.

Next we appraise C[u] for controls u 6 L l( 1, 0). To do so we take/3 to be a point of
F chosen to satisfy (#) and consider the specific control function u* Lp (-1, 0) defined by

u*(t) 0 for all [-1, t*], where t* + 1 [a (Ibl/)/(-]/lbl

wfl (to t)-2 for all It*, to]

0 for all 6 [to, 0],

where w (F 1)’- and 1 + to [a + (F 1)(Ibl/)/(-l]/Ibl.
Simple integration gives

x*’(t) b for 6 (- 1, t*)

b + [wfl’/(9/- 1)][(to t*)’-1 (to t)-1] for 6 (t*, to)

b + [wfl/(y 1)][(to t*)’-1] for (to, 0).

Our choice of to and t* ensures that x*’ (0-) 0, which simplifies the expressions above and
implies via a second integration that

x*(t)--a+b(t+l) fort6[-1, t*]

(/?’) (to t) for 6 (t*, to]

=0 fort 6 (to, 0].
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Hence C[u*] 0, since on the subset of [-1, 0] where u* O, x’(t) -t(x(t))(-1/ for
all 6 [t*, to], so d(x*(t), x*’(t)) O.

By the preceding calculations we conclude that, as claimed,

m+ > 6(D cl c2) > 0--ml+P0

Some analogue of the positivity restriction on trajectories in the above result is essential,
as is shown below; cf., e.g., [J, Chap. 10].

THEOREM B. Consider problem (P) with the same cost integrand as in the preceding
result and with boundary data subject to (#) as before. Then the Lavrentiev phenomenonfails

Pto take place over the spaces Aa,b, 1 <_ p < oc. That is,

mp inf C 0 m inf C for all p (1, ).
A Aa,b a,b

Proof. We define the control u* 6 L(-1, 0)\LP(-1, 0) as before. Thus since C[u*]
0, it remains to prove that mp 0 for p >_ P0 as well. Recall that in the definition of u*
the time to _< 0 following which u* is identically zero was determined by the boundary data
according to + to [a + (V 1)([bl/)/(-]/[b[. We separate our analysis into two
cases, according to whether to < 0 or to 0.

Case 1 (to < 0) In this case, given any e > 0, we construct a control ue Ap whicha,b’
bifurcates from u* and satisfies C[u] < e. Necessarily, this requires that the correspond-
ing trajectory (x,(t), x(t)) avoid crossing the zone of the (x, y) plane defined by -c2 <
y[x[(-/ < -c, since otherwise by our previous calculations C[u] > 6(D, c, c2) > 0.

Let p > 0 be taken sufficiently small. (Its value will be specified later.) On the interval
It*, to] where u* is nonzero, we select a point (s4,-p) on the graph (t, x*’(t)), It*, to]
such that a "--- to s4 6 (0, [t0[/4). (By a straightforward computation it is seen that
x*’(t) -j3[(j3/,)(t0 t)]-l on this interval.) Subdivide the interval [$4, 0] into four
subintervals [s4, s3], Is3, s2], [s2, -or], [-a, 0] of lengths It0l/2, It01/4, It01/4, or, respectively.
Now we define ue by the requirement

u(t) u*(t), 6 [- 1, s4]

2p/ltol, Is4, s3]

4r/It01, G [$3, $2]

=-4r/It01, 6 [s2,-a]

0, 6 I-or, 0],

with r 6 (0, p) chosen so that Xe(S4) X*(S4) and xe(-cr) x*(to) 0, i.e., so that
(p r)t0/4 fs Ix*’(t)l dt x*(s4). It is easily verified that lue(t)l <_ 4p/Itol, Ix’(t)[ < p,
Ix(t)l _< pltol/2 for 6 [s4, 0]. Thus by the continuity of d at (0, 0), for p sufficiently small

’(t)) < 1 over Is4, 0] wherebywe obtain d(x(t), x

C[u] d(x(t), x(t))lu(t)ldt

< lu(t)]kdt <_ 14p/tolkltol.

This value is < e for p < (e/4)l/(to/4)(-l/, so the gap phenomenon does not occur. (Note
that ue 6 L (- 1, 0).)
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Case 2 (to 0). In this case the preceding construction for ue as a direct perturbation of
u* is clearly no longer available. We still apply the above construction, but this time for each
e > 0 it is performed as a perturbation of a control u** L l( 1, 0)\Lp (--1, 0) satisfying
both C[u**] < e and the requirement that there be a t6 [-1, 0) such that u** (t) 0 for all
E [t6, 0]. Examine the fourth quadrant of the (x, y) plane. The control u* led to a curve

proceeding from the initial point (a, b) in this quadrant to the origin by a path consisting of a
horizontal segment which intersected the locus I" {(x, y) [y -fix-1)/ at a point P*,
followed by that portion of F extending from the point of intersection to the origin. By the
convexity of 1-’, each tangent to this locus lies below the locus. Let P 1-" be a point to the
left of P*, and let Q be the point of intersection of the tangent line at P with the horizontal
segment y b. It can be verified that the locus consisting of those points of the horizontal
segment y b between (a, b) and Q, together with the points of the tangent line at P lying
between Q and P and that portion of 1-’ lying between P and the origin, corresponds to a
control u** (t) x**" (t) for which the associated trajectory satisfies x** (t) O, x**’ (t6) 0,
with t6 < 0 but arbitrarily near 0 as P approaches P*. Indeed u** (t) 0 for all [t*’, 0],
where t*’ t* > 0; u** (t) pe(t-t’) for all [t*’, t**] for appropriate p > 0, 0 < 0, and
t** > t*’; u**(t) const (t t)-2) for all [t**, t]; and u**(t) 0 for all [t6, 0].
Furthermore since C[u**] achieves a positive contribution only for those values associated
with points of the tangent line between P and Q, it is clear that C[u**] is smaller than any
preassigned e > 0, once P is chosen sufficiently near to P*. Therefore, by forming a control
ue L (- 1, O) bifurcating from u** in the same manner as was done in Case 1 in relation to
u*, we obtain C[u**] < 2e. Hence the gap phenomenon does not occur.

3. Perturbations off. In this section we point out how an additive perturbation of the
type of running cost integrand appearing in 2 can lead to the Lavrentiev phenomenon, even
for running cost integrands f# satisfying the following "Tonelli-type" regularity and growth
conditions:

f#u(X, y, u) > 0, f#(x, y, u) > 99(u), with liminf o(u)/lul .
COROLLARY. Let f f(x, y, u) be an integrand satisfying the hypotheses of

Theorem A, and let x(-1) a, x’ (-1) b denote boundary data satisfying the conditions

of that theorem. Suppose that e e(x, y, u) is a nonnegative function satisfying euu > O,
e(x, y, u) > p(u), with 99 as above. Let u* denote the minimizerfor C obtained in Theorem
Afor the given boundary data. Then ife(x*(t), x*’(t), u*(t)) is a function in LI(-1, 0), the
Lavrentiev phenomenon m+ > m also occursfor the cost Ce associated with the integrandPo

fe(x, y, u) f (x, y, u) + ee(x, y, u)

for e > 0 taken sufficiently small.
This result is clear if e is taken sufficiently small so that C[u*] < 6(D, C1, C2) in the

notation of Theorem A.
Example. Consider problem (P) with

Ce[u] [(Ix(t)l4/9 + x’(t))81u(t)lk + elu(t)12]dt with x" u

for data x (0) x’(0) 0, x (- 1) a > 0, x’(- 1) b < 0. By the corollary this can be
treated as an additive perturbation for the cost functional

C[u] [(Ix(t)l 4/9 -+- x’(t))18lu(t)l]dt.
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The latter problem fits into Theorem A with 9/ 9/5, ot 72/5, F {-1 }, k > 77, and

P0 5, provided that a and b satisfy (#). The function e(x*(t), x*’(t), u*(t)) It1-2/5 at
0 is integrable on [-1, 0], so by the corollary for s > 0 sufficiently small C[u] does

exhibit the Lavrentiev phenomenon m- infAs,+ > m- infal,+.
a,b a,b
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